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Abstract. We provide explicit examples to show that the relaxation of functionals

Lp(Ω) 3 u 7→
∫

Ω

∫
Ω

W (u(x), u(y)) dx dy,

where Ω ⊂ Rn is an open and bounded set, 1 < p < ∞ and W : R × R → R a suitable
integrand, is in general not of double-integral form. This proves an up to now open statement
in [Pedregal, Rev. Mat. Complut. 29 (2016)] and [Bellido & Mora-Corral, SIAM J. Math.
Anal. 50 (2018)]. The arguments are inspired by recent results regarding the structure of
(approximate) nonlocal inclusions, in particular, their invariance under diagonalization of the
constraining set. For a complementary viewpoint, we also discuss a class of double-integral
functionals for which relaxation is in fact structure preserving and the relaxed integrands arise
from separate convexification.
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1. Introduction

Let Ω ⊂ Rn be a non-empty, open and bounded set and 1 < p <∞. Moreover, let W : Rm×
Rm → R be a lower semicontinuous function satisfying p-growth, i.e., W (ξ, ζ) ≤ C(|ξ|p+ |ζ|p+1)
for all (ξ, ζ) ∈ Rm × Rm with a constant C > 0. For any such W , we define a double-integral
functional

IW (u) =

∫
Ω

∫
Ω
W (u(x), u(y)) dx dy(1.1)

for u ∈ Lp(Ω;Rm). Without loss of generality (see e.g. [18]), one may assume W to be symm-
metric, that is, W (ξ, ζ) = W (ζ, ξ), for every (ξ, ζ) ∈ Rm × Rm.

Nonlocal functionals of this type and their inhomogeneous versions with explicit dependence
of W on x, y ∈ Ω have recently become of increasing interest in the literature. Besides their
nonlocal character, which gives rise to interesting mathematical questions that require the de-
velopment of new techniques [2, 4, 17, 19], this can also be attributed to their relevance in
various modern modeling approaches, e.g. in image processing [5, 10, 12], in machine learning
[1, 22, 24], in the theory of phase transitions [8, 21], or in continuum mechanics through the
theory of peridynamics [3, 9, 14, 16, 23] and crystal plasticity [15].

Under the additional assumption that W is p-coercive, i.e., there are constants c, C > 0 such
that

W (ξ, ζ) ≥ c(|ξ|p + |ζ|p)− C for all (ξ, ζ) ∈ Rm × Rm,

the existence of minimizers of IW is guaranteed by the direct method in the calculus of variations,
if IW is Lp-weakly lower semicontinuous, or equivalently, if W is separately convex [4, 17, 19].
In situations when W fails to have this property, minimizers of IW do in general not exist due
to oscillation effects. A common strategy to capture the asymptotic behavior of minimizing
sequences of IW is resorting to a related variational problem, called the relaxed problem, which
involves the Lp-weak lower semicontinuous envelope of IW , i.e., for u ∈ Lp(Ω;Rm),

Irlx
W (u) := inf{lim inf

j→∞
IW (uj) : uj ⇀ u in Lp(Ω;Rm)}.(1.2)
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The major challenge in relaxation theory lies in finding alternative representations of Irlx
W , ideally

via closed formulas. Contrary to the single-integral case, where a body of works has emerged
over the last decades, see e.g. [6, 7] and the references therein, relaxation in the nonlocal setting
is still largely unsolved. In the following, we give some background and outline briefly the latest
developments related to this problem.

The first paper to present a characterization of Lp-weak lower semicontinuity of IW in the
scalar case m = 1 goes back to Pedregal [18] in the late 1990s. Separate convexity of W as a
necessary and sufficient condition was identified almost ten years later in [4], and generalized to
the case of vector-valued fields, meaning for m ≥ 1, in [17]. More recent results, in particular
on the inhomogeneous setting, can be found in [2, 19].

Motivated by these findings, a natural first guess for the relaxed functional associated with
IW seems a double-integral with the separately convex hull W sc of W as integrand. However,
there are one-dimensional counterexamples to disprove this conjecture, see e.g. [4, Example 3.1]
or [2, Example 7.2] for integral functionals involving suitably chosen integrands with eight or
six wells, respectively. Here, as a consequence of Corollary 4.7 and Corollary 4.8, which both
provide different necessary conditions for the relaxation via separate convexification of W , we
can generate a whole class of counterexamples. The probably simplest one for m = 1 is when
W is a four-well integrand with minima in the corners of a square, cf. (5.1).

In [19], Pedregal claims even more, namely that Irlx
W may not be representable as a double-

integral at all. His reasoning is based on a monotonicity argument along the lines of a basic
observation for single-integrals. However, as Bellido & Mora-Coral point out in [2, Section 7],
this argument is in general not valid in the nonlocal context, see Section 4.1 for more details.

In this paper, we give proofs based on two different approaches to confirm that Pedregal’s
statement is indeed correct, see Propositions 5.1 an 5.4. Both counterexamples in the proofs
feature double-integrands W : R × R → [0,∞) of distance-type (see (5.1) and (5.9)), and take
inspiration from recent insights on the properties of nonlocal supremal functionals in [13]; cf. also
(1.3) below. Especially the operation of diagonalization of sets in the sense of Definition 2.3,
applied here to the zero sublevel sets ofW , and its interplay with approximate nonlocal inclusions
plays a central role. Indeed, the latter are invariant under diagonalization as a consequence of
Theorem 3.1.

In the related nonlocal supremal setting, which was mentioned briefly above already and
corresponds formally to the limiting case p → ∞, one considers in place of IW as in (1.1),
functionals

L∞(Ω;Rm) 3 u 7→ esssup(x,y)∈Ω×Ω Z(u(x), u(y))(1.3)

with a suitable symmetric supremand Z : Rm × Rm → R. The problem of relaxing (1.3) has
been settled recently; it is shown in [13] that the relaxation of (1.3) is structure preserving,
meaning that it is again of supremal form, and that the relaxed supremand corresponds to
the separately level convexification of the diagonalization of Z, cf. (4.1). Here, in contrast, the
challenging open question remains: What kind of representation for Irlx

W in (1.2) can be expected
if double-integrals are out of the picture? For first steps towards a better understanding, we
refer to the Young measure relaxation result in [2, Theorem 6.1], as well as to Proposition 6.1,
where we contribute a partial result by giving a closed formula for the relaxation of a specific
class of double-integrals.

This article is organized as follows. After introducing notation and collecting some auxiliary
results in Section 2, Section 3 is concerned with the asymptotic behavior of approximate nonlocal
inclusions; in particular, we provide a characterization of Young measures generated by sequences
of nonlocal fields of the form (u(x), u(y)) for (x, y) ∈ Ω × Ω subject to approximate pointwise
constraints, see Theorem 3.3. Even though these are technical tools for the remaining paper,
the results are also interesting in their own right. In Section 4, we address the issue of order
relations and comparison arguments for double-integrals as in (1.1), and deduce conditions on
W that are necessary for the identity Irlx

W = IW sc . The heart piece of this paper, namely
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the two counterexamples to structure preservation during relaxation, are presented, along with
their proofs, in Section 5. For a complementary viewpoint, we close in Section 6 by discussing
functionals with double-integrands in the form of distances to Cartesian sets and extended-valued
indicators; the relaxations in both cases give rise to the intuitively expected double-integrals with
separately convexified integrands.

2. Notation and preliminaries

To make the paper self-contained, we fix notations and collect some well-known results that
will be used later on.

We denote the Euclidean norm of a vector η = (η1, . . . , ηd) ∈ Rd by |η| = (
∑m

i=1 η
2
i )

1
2 , and use

the notation ‖·‖ for a generic norm on Rm×Rm (without explicit mention, we often idenitfy Rm×
Rm with R2m); specific choices of norms in the following include the 1-norm ‖(ξ, ζ)‖1 := |ξ|+ |ζ|,
the Euclidean norm ‖(ξ, ζ)‖2 =

√
|ξ|2 + |ζ|2 or the maximum norm ‖(ξ, ζ)‖∞ = max{|ξ|, |ζ|}

for (ξ, ζ) ∈ Rm ×Rm. Further, Br(ξ, ζ) represents the closed ball in Rm ×Rm centered at (ξ, ζ)
of radius r > 0, and for the distance of a point (ξ, ζ) ∈ Rm × Rm to a non-empty, closed set
E ⊂ Rm × Rm, we write

dist((ξ, ζ), E) = min
(α,β)∈E

‖(ξ, ζ)− (α, β)‖;(2.1)

if relevant, the use of a specific norm is indicated by super- and subscript indices, e.g. B1
3(0, 0) =

{(ξ, ζ) ∈ Rm × Rm : ‖(ξ, ζ)‖1 ≤ 3} or dist∞(·, E) = min(α,β)∈E ‖ · −(α, β)‖∞. Besides, the
generalized closed interval [ξ, ζ] for ξ, ζ ∈ Rm is the set {λξ + (1− λ)ζ ∈ Rm : λ ∈ [0, 1]}.

For the complement of a set A ⊂ Rd, we write Ac = Rd \ A, and let 1A be the indicator
function of A, i.e.

1A(η) :=

{
1 if η ∈ A,
0 otherwise,

η ∈ Rd.

To refer to the minimum of a function f : Rd → R∞ := R∪ {∞} (if existent), we usually use
the short-hand notation min f rather than minη∈Rd f(η).

For any probability measure µ ∈ Pr(Rd),

[µ] := 〈µ, id〉 =

∫
Rd
η dµ(η)

stands for its barycenter. The product measure of ν, µ ∈ Pr(Rd) is denoted by ν ⊗ µ, and for
the Lebesgue measure of a Lebesgue measurable set U ⊂ Rl, we write Ll(U), or simply |U |.
We employ standard notation for Lp-spaces with p ∈ [1,∞]; particularly, our way to symbolize
weak and weak∗ convergence of a sequence (uj)j ⊂ Lp(U ;Rd) with U ⊂ Rl bounded and open

to a function u ∈ Lp(U ;Rd) is uj ⇀ u in Lp(U ;Rd) if p ∈ [1,∞) and uj ⇀
∗ u in L∞(U ;Rd) if

p =∞. Moreover, S∞(U ;Rd) refers to the set of simple functions on U with values in Rd.
Convexity notions including separate convexity, separate level convexity and the related en-

velopes are a recurring theme in this paper. We briefly collect here some basics, referring the
reader to [13, Sections 2, 3 and 4] for more properties, relations and characterizations of the
following definitions.

A set E ⊂ Rm × Rm is called separately convex (with vectorial components), if for every
t ∈ (0, 1) and every (ξ1, ζ1), (ξ2, ζ2) ∈ E such that ξ1 = ξ2 or ζ1 = ζ2 it holds that

t(ξ1, ζ1) + (1− t)(ξ2, ζ2) ∈ E.
The smallest separately convex set in Rm × Rm that contains E is called the separately convex
hull of E and denoted by Esc. Our notation for the convex hull of a convex set A ⊂ Rd is Aco.

Definition 2.1. A function f : Rd → R∞ := R ∪ {∞} is level convex if all level sets of f , that
is,

Lc(f) := {η ∈ Rd : f(η) ≤ c} with c ∈ R,
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are convex sets.
We say that a function W : Rm×Rm → R∞ is separately convex (with vectorial components)

if for every ξ ∈ Rm, the functions W (·, ξ) and W (ξ, ·) are convex, and we call W separately level
convex (with vectorial components) if the sets Lc(W ) = {(ξ, η) ∈ Rm × Rm : W (ξ, η) ≤ c} are
separately convex for all c ∈ R.

Moreover, W sc : Rm × Rm → R∞ (W slc : Rm × Rm → R∞) stands for the separately (level)
convex envelope of W , that is, the largest separately (level) convex function below W . It is well-
known that if W is of distance type, meaning that W (ξ, ζ) = distp((ξ, ζ), E) for (ξ, ζ) ∈ Rm×Rm
with some non-empty and closed E ⊂ Rm × Rm and p ≥ 1 (cf. (2.1)), then the (generalized)
convex envelopes of W are

W co(ξ, ζ) = distp((ξ, ζ), Eco),(2.2)

and

W sc(ξ, ζ) = W slc(ξ, ζ) = distp((ξ, ζ), Esc)(2.3)

for (ξ, ζ) ∈ Rm × Rm.
The following lemma is a corollary of a classical result in convex analysis, also known as

zig-zag lemma (see e.g. [7, Lemma 20.2]). For the readers’ convenience, we give here a simple
explicit construction.

Lemma 2.2. Let A ⊂ Rm and v ∈ S∞(Ω;Rm) be a simple function with image in Aco. Then
there exist a sequence (vi)i ⊂ S∞(Ω;Rm) such that vi ∈ A a.e. in Ω for any i ∈ N and vi ⇀

∗ v
in L∞(Ω;Rm).

Proof. Let ξ(j) ∈ Aco and {Ω(j)}j be a decomposition of Ω into measurable subsets such that

v =

n∑
j=1

ξ(j)
1Ω(j) .

By Caratheodory’s theorem, ξ(j) ∈ Aco is the convex combination of m + 1 elements of A,

that is, ξ(j) =
∑m+1

l=1 λlξ
(j)
l with ξ

(j)
l ∈ A and λl ∈ [0, 1] with

∑m+1
l=1 λl = 1. Let Ω

(j)
l,i for i ∈ N

be measurable subsets of Ω(j) such that

1
Ω

(j)
l,i

⇀∗ λl1Ω(j) in L∞(Ω) as i→∞.

This can be achieved for instance by choosing Ω
(j)
l,i = Ω(j)∩

⋃
z∈Zm

1
i z+ 1

i [0, λ
1
m
l ]m for j = 1, . . . , n,

l = 1, . . . ,m+ 1 and i ∈ N. Then,

v
(j)
i :=

m+1∑
l=1

ξ
(l)
j 1

Ω
(j)
l,i

⇀∗ v in L∞(Ω;Rm) as i→∞.

With these definitions, the sequence (vi)i given by

vi :=
n∑
j=1

v
(j)
i 1Ω(j) for i ∈ N

has all the desired properties. �

Next, we recall some terminology related to the diagonalization of a symmetric set E ⊂
Rm × Rm from [13, (4.1)]. Such a set E is symmetric if (ξ, ζ) ∈ E if and only if (ζ, ξ) ∈ E.

Definition 2.3. Let E ⊂ Rm × Rm be symmetric, then

Ê = {(ξ, ζ) ∈ E : (ξ, ξ), (ζ, ζ) ∈ E} ⊂ Rm × Rm(2.4)

is called the diagonalization of E. We also use the alternative notation E∧.
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If K ⊂ Rm × Rm is symmetric and compact, then also K̂ is compact. Note that for any
symmetric E ⊂ Rm × Rm,

Ê =
⋃

P∈PE

P ;(2.5)

here PE stands for the set of maximal Cartesian subsets of E. A set P ⊂ E is a maximal
Cartesian subset of E if P = A × A with A ⊂ Rm and if for any B ⊂ Rm with A ⊂ B and
B×B ⊂ K it holds that B = A. As a simple consequence of the above definitions, it holds that

PE = P
Ê

(2.6)

Finally, we associate with any suitable W : Rm × Rm → R∞ the double-integral functional
IW : Lp(Ω;Rm)→ R∞ with

IW (u) :=

∫
Ω

∫
Ω
W (u(x), u(y)) dx dy(2.7)

for u ∈ Lp(Ω;Rm). To keep notations light, we dispense with highlighting explicitly the depen-
dence on p and Ω, which will always be clear from the context. Unless mentioned otherwise, Ω
is a non-empty, open and bounded subset of Rn and p > 1.

The nonlocal field vw ∈ Lp(Ω×Ω;Rm×Rm) corresponding to a function w ∈ Lp(Ω;Rm) with
p ≥ 1 is defined by

vw(x, y) := (w(x), w(y)) for a.e. (x, y) ∈ Ω× Ω.(2.8)

3. Approximate nonlocal inclusions

Throughout this section, let Ω ⊂ Rn be an open and bounded set and E ⊂ Rm × Rm
symmetric.

As in [13], all essentially bounded solutions u : Ω→ Rm to the (exact) nonlocal inclusion

(u(x), u(y)) ∈ E for a.e. (x, y) ∈ Ω× Ω(3.1)

are collected in the set AE , recalling (2.8), one can write

AE = {u ∈ L∞(Ω;Rm) : vu ∈ E a.e. in Ω× Ω},
and we introduce

A∞E := {u ∈ L∞(Ω;Rm) : uj ⇀
∗ u in L∞(Ω;Rm) with (uj)j ⊂ AE}(3.2)

to describe the limiting behavior of sequences in AE . Upon relaxing the strict requirement of
the exact nonlocal inclusion in (3.1), we obtain an approximate version whose asymptotics is
encoded in

B∞E := {u ∈ L∞(Ω;Rm) : uj ⇀
∗ u in L∞(Ω;Rm) with (uj)j ⊂ L∞(Ω;Rm) such that

dist(vuj , E)→ 0 in measure as j →∞}.
(3.3)

Clearly, A∞E ⊂ B∞E . Under the additional assumption of compactness, we can show equality
of these two sets and provide a new characterization, valid in any dimension.

Theorem 3.1. Let K ⊂ Rm × Rm be symmetric and compact. Then,

A∞K = B∞K = {u ∈ L∞(Ω;Rm) : u ∈ Aco a.e. in Ω with A×A ∈ PK},(3.4)

where PK is the set of maximal Cartesian subsets of K.

Remark 3.2. a) The sets A∞K and B∞K remain unchanged under diagonalization of K, that is,
A∞K = A∞

K̂
and B∞K = B∞

K̂
. Since PK = P

K̂
by (2.6), this is apparent from the representa-

tion (3.4).
Even though based on a different argumentation, the diagonalization invariance of A∞K has

been observed before in [13]. Indeed, [13, Proposition 5.1] yields that AK = A
K̂

, which implies
A∞K = A∞

K̂
in view of (3.2).
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b) Note that the assumption of closedness of the set K in Theorem 3.1 cannot be dropped.
To see this, we refer to [13, Remark 5.2] for a simple example of a symmetric, non-closed set
E ⊂ Rm × Rm and a set Ω ⊂ Rm such that ∅ = A

Ê
6= AE. This implies in particular that

A∞E 6= A∞Ê , and hence, (3.4) cannot be true.

c) An equivalent way of writing the characterization formula in (3.4) is

A∞K = B∞K =
⋃

A×A∈PK

AAco×Aco = A⋃
A×A∈PK

Aco×Aco ,

cf. also (6.9). Under an additional assumption on K, which is always satisfied for m = 1, it

was shown in [13, Theorem 1.1] that A∞K = A
K̂sc, where K̂sc is the separately convex hull of K̂.

We postpone the proof of Theorem 3.1 to the end of the section, since it is a consequence of
the characterization of Young measures generated by sequences subject to approximate nonlocal
constraints, which we address next.

Following the notation of [13, Section 2.2], we consider the sets of parameterized measures

YE := {Λ ∈ L∞w (Ω× Ω;Pr(Rm × Rm)) : Λ(x,y) = νx ⊗ νy with ν ∈ L∞w (Ω;Pr(Rm))

and supp Λ(x,y) ⊂ E for a.e. (x, y) ∈ Ω× Ω},
(3.5)

Y∞E := {Λ ∈ L∞w (Ω× Ω;Pr(Rm × Rm)) : vuj
YM−→ Λ with (uj)j ⊂ AE},

and

Ỹ∞E := {Λ ∈ L∞w (Ω× Ω;Pr(Rm × Rm)) : vuj
YM−→ Λ with (uj)j ⊂ L∞(Ω;Rm) such that

dist(vuj , E)→ 0 in measure as j →∞};

(3.6)

here, L∞w (U ;Pr(Rd)) denotes the space of weakly measurable functions defined on an open

set U ⊂ Rl with values in the space of probability measures on Rd. By vj
Y M−→ µ, we mean

that a sequence (vj)j ⊂ L∞(U ;Rd) generates the Young measure µ ∈ L∞w (U ;Pr(Rd)), see e.g.
[11, 18, 20] for more details.

It was shown in [13, (5.21) and Theorem 5.11] that for symmetric and compact K ⊂ Rm×Rm,⋃
P∈PK

YP = Y∞K ⊂ Ỹ∞K = YK .(3.7)

In light of Proposition 3.5, all four sets in (3.7) have to coincide, which gives rise to the following
theorem.

Theorem 3.3. Let K ⊂ Rm × Rm be compact and symmetric. Then

Ỹ∞K = Y∞K = YK =
⋃

P∈PK

YP .(3.8)

Due to (2.6), all the sets in (3.8) are invariant under diagonalization of K. In particular,
YK = Y

K̂
.

The next lemma serves as the main tool for the proof of Proposition 3.5.

Lemma 3.4. Let ν, µ ∈ Pr(Rm) and Λ = ν ⊗µ ∈ Pr(Rm×Rm). If (ξ, ζ), (ζ, ξ), (α, β), (β, α) ∈
supp Λ, then

{ξ, ζ, α, β} × {ξ, ζ, α, β} ⊂ supp Λ.

Proof. It suffices to prove that one element of {ξ, ζ, α, β}×{ξ, ζ, α, β} different from (ξ, ζ), (ζ, ξ),
(α, β) and (β, α) is contained in supp Λ, say (ξ, α). For the other elements, the argumentation
is analogous.

Recalling the definition of the support of Λ, that is,

supp Λ = {(ξ, ζ) ∈ Rm × Rm : Λ(U) > 0 for any open neighborhood U of (ξ, ζ)},
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let U be an open neighborhood of (ξ, α). Within U one can find another neighborhood of the
form A×B ⊂ U with A,B ⊂ Rm open such that ξ ∈ A and α ∈ B. From

Λ(U) ≥ Λ(A×B) = (ν ⊗ µ)(A×B) = ν(A)µ(B) > 0,(3.9)

we conclude that (ξ, α) ∈ supp Λ, as desired. For the last estimate in (3.9), we have used that
A× (B − α+ ζ) is an open set containing (ξ, ζ), and thus,

0 < Λ(A× (B − α+ ζ)) = ν(A)µ(B − α+ ζ)

by the assumption that (ξ, ζ) ∈ supp Λ. This implies in particular that ν(A) > 0. Similarly, we
show that µ(B) > 0. �

Proposition 3.5. Let E ⊂ Rm × Rm be symmetric. Then,

YE =
⋃

P∈PE

YP .

Proof. We prove the first two identities of

YE = Y
Ê

=
⋃

P∈P
Ê

YP =
⋃

P∈PE

YP .(3.10)

in separate steps; the last one is immediate, since PE = P
Ê

by (2.6).

Step 1: Invariance under diagonalization. Since Ê ⊂ E, we only need to prove that YE ⊂ YÊ .
Let Λ ∈ YE , and assume to the contrary that there exists a measurable set N ⊂ Ω × Ω with
positive L2n-measure such that

supp Λ(x,y) ∩ E \ Ê 6= ∅

for all (x, y) ∈ N . Due to the symmetry of E and Ê, we may take N to be symmetric.

Now fix (x, y) ∈ N and let (ξ, ζ) ∈ supp Λ(x,y) with (ξ, ζ) /∈ Ê. Then also (ζ, ξ) ∈ supp Λ(x,y),
and we infer from Lemma 3.4 that

{ξ, ζ} × {ξ, ζ} ⊂ supp Λ(x,y) ⊂ E.

Hence, (ξ, ζ) ∈ Ê in view of Definition 2.3, which is a contradiction.

Step 2: Alternative representation of Y
Ê

. By definition, any P ∈ P
Ê

is contained in Ê;
hence,

⋃
P∈PE YP ⊂ YÊ is immediate. For the reverse inclusion, let Λ ∈ Y

Ê
. To show that

Λ ∈ YP for some P ∈ P
Ê

, we argue again by contradiction, assuming that there is a measurable

set N ⊂ Ω × Ω with L2n(N) > 0, as well as a maximal Cartesian set P ∈ P
Ê

such that for all
(x, y) ∈ N ,

supp Λ(x,y) ∩Q 6= ∅ and supp Λ(x,y) ∩Q 6= ∅,
with

Q := P \
⋃

P∈P
Ê
,P 6=P

P and Q :=
⋃

P∈P
Ê
,P 6=P

P \ P .(3.11)

Since Q and Q are both symmetric, N can be chosen to be symmetric, too.
Next, we fix (x, y) ∈ N and take (ξ, ζ), (α, β) ∈ supp Λ(x,y) such that

(ξ, ζ) ∈ Q and (α, β) ∈ Q.(3.12)

By symmetry, also (ζ, ξ), (β, α) ∈ supp Λ(x,y), and we infer from Lemma 3.4 that

M := {ξ, ζ, α, β} × {ξ, ζ, α, β} ⊂ supp Λ(x,y) ⊂ Ê.

Since M is a Cartesian product, it is contained in some maximal Cartesian subset P of Ê.
However, in view of (3.12) and (3.11), P cannot coincide with any element of P

Ê
; indeed,

(ξ, ζ) ∈ P , but (ξ, ζ) does not lie in any maximal Cartesian subset of Ê other than P , and
(α, β) ∈ P , but (α, β) /∈ P . This is the sought contradiction. �
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Proof of Theorem 3.1. The equality of A∞K and B∞K is an immediate consequence of Theorem 3.3
after retrieving to barycenters. Indeed, it suffices to use (3.8) along with the observation that

A∞K = {u ∈ L∞(Ω;Rm) : vu = [Λ], Λ ∈ Y∞K } and B∞K = {u ∈ L∞(Ω;Rm) : vu = [Λ], Λ ∈ Ỹ∞K }.

For the desired representation formula, we invoke again (3.8) to deduce that

A∞K = B∞K = {u ∈ L∞(Ω;Rm) : vu = [Λ],Λ ∈
⋃

P∈PK

YP }

=
⋃

A×A∈PK

{u ∈ L∞(Ω;Rm) : vu = [Λ],Λ ∈ YA×A}

=
⋃

A×A∈PK

{u ∈ L∞(Ω;Rm) : u = [ν], ν ∈ L∞w (Ω;Pr(Rm)), supp νx ⊂ A for a.e. x ∈ Ω}

=
⋃

A×A∈PK

{u ∈ L∞(Ω;Rm) : u ∈ Aco a.e. in Ω},

which was the claim. �

Remark 3.6. Let p ≥ 1 and E ⊂ Rm × Rm symmetric. Replacing in the above definitions of

Ỹ∞E and B∞E (see (3.6) and (3.3)) the weakly∗ converging L∞-sequences by weakly converging
Lp-sequences results in new sets of functions and parametrized measures, which we want to call

Ỹ∞E,p and B∞E,p, respectively.
If K ⊂ Rm × Rm is symmetric and compact, then

B∞K,p = B∞K and Ỹ∞K,p = Ỹ∞K ,

which is a consequence of [18, Proposition 2.2] and the fundamental theorem on Young measures,
see e.g. [11, Theorem 8.6 (iii)].

4. Necessary conditions for relaxation via separate convexification

As pointed out in the introduction, the papers [2, 4] present each a specific example of a
double-integral functional of multi-well form for which separate convexification of the integrand
fails in providing a correct relaxation formula. Here, we generalize these findings and generate
a whole class of such examples (see Corollary 4.7), motivated by recent insights from the study
of nonlocal supremal functionals and nonlocal inclusions [13]. A key ingredient is the following
notion of diagonalization for functions introduced in [13, (7.1)].

Definition 4.1. The diagonalization of a symmetric function W : Rm × Rm → R is defined as

Ŵ : Rm × Rm → R, Ŵ (ξ, ζ) = inf{c ∈ R : (ξ, ζ) ∈ L̂c(W )},

where L̂c(W ) is the diagonalization of the sublevel set Lc(W ) with c ∈ R in the sense of Defini-
tion 2.3.

Notice in particular that the previous definition implies

Lc(Ŵ ) = L̂c(W ) = Lc(W )∧(4.1)

for all c ∈ R, cf. [13, (7.2)].

4.1. Double-integrals and order relations. An important difference between the theory of
single- and double-integral functionals, which has substantial conceptual and technical ramifi-
cations, lies in the order relations for the functionals and their integrands.

Whereas it holds for any suitable f : Rm → R that

inf
u∈Lp(Ω;Rm)

∫
Ω
f(u) dx ≥ 0 ⇒ f ≥ 0,
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the analogy of this implication is in general not true in the context of double-integral functionals.
In fact, even if

inf
u∈Lp(Ω;Rm)

∫
Ω

∫
Ω
W (u(x), u(y)) dx dy ≥ 0,

for a suitable W : Rm × Rm → R, the integrand W may take both positive and negative
values, which is owed to nonlocal effects. This observation was pointed out first by Bellido
& Mora-Corral in [2, Section 7] and illustrated with an explicit scalar example of the form
W (ξ, ζ) = w(ξ − ζ) for (ξ, ζ) ∈ R, where w : R → R is a fourth order even polynomial; see [2,
Example 7.2] for the details. In the next proposition, we investigate a more general class of
related integrands, cf. Remark 4.3 c) below.

Proposition 4.2. Let W : Rm × Rm → R be a symmetric, lower semicontinuous function with
p-growth and p-coercivity. If

minW < min Ŵ ,(4.2)

then,

|Ω|2 min Ŵ ≥ inf
u∈Lp(Ω;Rm)

IW (u) > |Ω|2 minW.

Remark 4.3. a) It is clear that W attains its infimum on Rm × Rm due to its coercivity and

lower semicontinuity of W . Since these two properties carry over to Ŵ (cf. comment right after

Definition 2.3), also min Ŵ is well defined.

b) As a consequence of the previous result and the properties of Ŵ , one finds that minW =

min Ŵ if and only if

inf
u∈Lp(Ω;Rm)

IW (u) = min
u∈Lp(Ω;Rm)

IW (u) = |Ω|2 minW.

c) The above result is valid also for double-integrands W : Rm × Rm → R of the form
W (ξ, ζ) = w(ξ − ζ) for (ξ, ζ) ∈ Rm × Rm, where w : Rm → R is a lower semicontinuous with
p-growth and p-coercivity, provided we consider IW only on the smaller space of Lp(Ω;Rm)-
functions with vanishing mean.

Proof of Proposition 4.2. For simplicity of notation, we write inf IW := infu∈Lp(Ω;Rm) IW (u) in
what follows, and we assume without loss of generality that minW = 0; otherwise, W can be
translated suitably.

First, we show the estimate

min Ŵ ≥ inf IW .(4.3)

Let (ξ, ζ) ∈ Rm×Rm be a minimizer of Ŵ . Then, (ξ, ζ) ∈ L
min Ŵ

(Ŵ ) = L
min Ŵ

(W )∧ (cf. (4.1)),
so that

Ŵ (ξ, ζ) = Ŵ (ζ, ξ) = Ŵ (ξ, ξ) = Ŵ (ζ, ζ) = min Ŵ ,(4.4)

by the symmetry of Ŵ and the definition of diagonalization of sets in (2.4). Considering the
piecewise constant function v : Ω→ Rm given by

v = ξ1Ωξ + ζ1Ω\Ωξ

with Ωξ ⊂ Ω measurable such that 0 < |Ωξ| < |Ω|, we conclude in view of (4.4) and W ≤ Ŵ
that

inf IW ≤ IW (v) = |Ωξ|2W (ξ, ξ) + |Ω \ Ωξ|2W (ζ, ζ) + 2|Ωξ| |Ω \ Ωξ|W (ξ, ζ)

≤ (|Ωξ|+ |Ω \ Ωξ|)2 min Ŵ = |Ω|2 min Ŵ .

This implies (4.3).
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To prove the strict inequality inf IW > minW = 0, we assume to the contrary that inf IW = 0,
meaning that there exists a sequence (uj)j ⊂ Lp(Ω;Rm) such that

lim
j→∞

IW (uj) = lim
j→∞

∫
Ω

∫
Ω
W (vuj (x, y)) dx dy = 0,(4.5)

cf. (2.8). As a consequence of the p-coercivity of W , (vuj )j is uniformly bounded in Lp(Ω ×
Ω;Rm × Rm).

If Λ = {Λ(x,y)}(x,y) = {νx⊗νy}(x,y) with ν ∈ L∞w (Ω;Pr(Rm)) is the Young measure generated
by a (non-relabeled) subsequence of (vuj )j ⊂ Lp(Ω × Ω;Rm × Rm) according to [18, Proposi-
tion 2.3], the fundamental theorem on Young measures (see e.g. [11, Theorem 8.6 (i)]) yields
that

lim
j→∞

∫
Ω

∫
Ω
W (vuj (x, y)) dx dy ≥

∫
Ω

∫
Ω
〈Λ(x,y),W 〉 dx dy,

where 〈Λ(x,y),W 〉 :=
∫
Rm
∫
RmW (ξ, ζ) dΛ(x,y)(ξ, ζ).

In light of (4.5) and the non-negativity of W , it follows that 〈Λ(x,y),W 〉 = 0 for a.e. (x, y) ∈
Ω× Ω, and hence, supp Λ(x,y) ⊂ L0(W ) for a.e. (x, y) ∈ Ω× Ω, or equivalently by (3.5),

Λ ∈ YL0(W ).(4.6)

On the other hand, (3.10) in the proof of Lemma 3.5 together with (4.2) results in

YL0(W ) = Y
L̂0(W )

= ∅.(4.7)

Combining (4.6) with (4.7) produces the desired contradiction. �

We continue our discussion of order relations for double-integrals with the following basic,
yet useful, observation.

Lemma 4.4. Let V,W : Rm × Rm → R be symmetric, lower semicontinuous integrands with
p-growth such that IV ≤ IW . Then V (ξ, ξ) ≤W (ξ, ξ) for all ξ ∈ Rm.

Moreover, if V (ξ, ξ) = W (ξ, ξ) for all ξ ∈ A ⊂ Rm, then V ≤W on A×A.

Proof. Trivially, the first statement follows by evaluating IV and IW for constant functions.
To show the second statement, let (ξ, ζ) ∈ A × A, and consider a piecewise constant function
v = ξ1Ωξ + ζ1Ω\Ωξ ∈ S

∞(Ω;Rm) with a measurable set Ωξ ⊂ Ω such that |Ωξ| = 1
2 |Ω|. Then,

|Ω|2

4
V (ξ, ξ) +

|Ω|2

4
V (ζ, ζ) +

|Ω|2

2
V (ξ, ζ) = IV (u)

≤ IW (u) =
|Ω|2

4
W (ξ, ξ) +

|Ω|2

4
W (ζ, ζ) +

|Ω|2

2
W (ξ, ζ).

Since V and W coincide on the diagonal elements in A × A, this implies V (ξ, ζ) ≤ W (ξ, ζ),
concluding the proof. �

Remark 4.5. The previous lemma shows in particular that a double-integral IW as in (2.7)
determines its integrand W uniquely. We point out that this is in contrast to the supremal
setting, where according to [13, (7.3)]), all supremands with the same diagonalization in the
sense of Definition 4.1 generate the same supremal functional.

With the help of the previous lemma, we can derive the following bounds for certain relaxed
double-integrands.

Proposition 4.6. Let W,G : Rm × Rm → R be symmetric, lower semicontinuous functions
with p-growth. Suppose that Irlx

W = IG and that there exists A ⊂ Rm open such that W (ξ, ξ) =
W sc(ξ, ξ) for every ξ ∈ Ac. Then,

W sc ≤ G ≤W on (A×A)c.(4.8)

If A = ∅, it holds that G = W sc.
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Proof. From

IW sc ≤ Irlx
W = IG ≤ IW ,

we conclude with Lemma 4.4 that W sc(ξ, ξ) ≤ G(ξ, ξ) ≤ W (ξ, ξ) for all ξ ∈ Ac, which, in view
of our hypothesis, yields

W sc(ξ, ξ) = G(ξ, ξ) = W (ξ, ξ) for ξ ∈ Ac.(4.9)

Let (ξ, ζ) ∈ (A×A)c, and assume without loss of generality that ξ 6∈ A; otherwise interchange
the roles of ξ and ζ. Moreover, suppose for simplicity that |Ω| = 1. We define

v = ξ1Ωξ + ζ1Ω\Ωξ ∈ S
∞(Ω;Rm),

where Ωξ ⊂ Ω is measurable such that |Ωξ| = λ with λ ∈ (0, 1). Then,

λ2G(ξ, ξ) + (1− λ)2G(ζ, ζ) + 2λ(1− λ)G(ξ, ζ) = IG(v)

≤ IW (v) = λ2W (ξ, ξ) + (1− λ)2W (ζ, ζ) + 2λ(1− λ)W (ξ, ζ).

Due to (4.9), this can be rewritten as

G(ξ, ζ) ≤ 1− λ
2λ

(
W (ζ, ζ)−G(ζ, ζ)

)
+W (ξ, ζ).

Letting λ tend to 1, allows us to conclude that G ≤W on the complement of A×A.
If we replace G in the argument above with W sc, and W with G, the exact same reasoning

provides that W sc ≤ G outside of A×A. Overall, this proves (4.8).
For the statement on the special case A = ∅, we infer from (4.8) that W sc ≤ G ≤ W . Since

G has to be separately convex due to the Lp-weakly lower semicontinuity of IG (see e.g. [4,
Theorem 1.1]), it follows that even G ≤W sc, which entails the claim. �

4.2. Implications for relaxation formulas. Based on the results of Section 4.1, one can
derive necessary conditions for the relaxation of IW as in (2.7) via separate convexification of
the double-integrand W . We distinguish in the following between the two cases when minW =

min Ŵ and minW 6= min Ŵ , which we address in Corollary 4.7 and Corollary 4.8, respectively.

Corollary 4.7. Let W : Rm × Rm → R as in Proposition 4.2 with min Ŵ > minW . If
Irlx
W = IW sc, then

min Ŵ sc 6= minW.(4.10)

Proof. By contrapositive, we show that if min Ŵ sc = minW , then Irlx
W 6= IW sc . Observe first

that Ŵ sc ≥W sc and W sc ≥ minW implies

min Ŵ sc = minW sc = minW.(4.11)

Thus, by Proposition 4.2,

inf
u∈Lp(Ω;Rm)

IW (u) > |Ω|2 minW = |Ω|2 minW sc.(4.12)

On the other hand,

|Ω|2 min Ŵ sc = inf
u∈Lp(Ω;Rm)

I
Ŵ sc(u) ≥ inf

u∈Lp(Ω;Rm)
IW sc(u) ≥ |Ω|2 minW sc;(4.13)

for the first identity, it suffices to consider any piecewise constant function with values ξ, ζ ∈ Rm
such that (ξ, ζ) minimizes the diagonalized Ŵ sc. Along with (4.11), all inequalities in (4.13)
turn into equalities, and the infima are in particular attained.

Combining (4.12) and (4.13) finally proves that

min
u∈Lp(Ω;Rm)

Irlx
W (u) = inf

u∈Lp(Ω;Rm)
IW (u) > min

u∈Lp(Ω;Rm)
IW sc(u),

which implies the statement. �
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For a simple, one-dimensional example of a double-integrand that fails to satisfy the necessary
conditions (4.10), see Section 5.1, especially (5.5).

Next, we formulate a corresponding result in the case when the minima of the double-
integrand and its diagonalization coincide.

Corollary 4.8. Let W : Rm × Rm → R be symmetric and lower semicontinuous with p-growth

and p-coercivity such that minW = min Ŵ = 0. If Irlx
W = IW sc, then,⋃

A×A∈PL0(W )

Aco ×Aco = (L0(W )sc)∧.(4.14)

For m = 1, (4.14) reduces to

(L0(W )∧)sc = (L0(W )sc)∧.(4.15)

Proof. According the classical abstract theory of relaxation (see e.g. [6, Section 9] and [7, Sec-
tion 3] and the references therein), the set of Lp-weak limits of sequences of almost minimizers
for IW coincides with the set of minimizers of the relaxed functional Irlx

W = IW sc .
Translated into the language of nonlocal inclusions in the spirit of Section 3, this means

B∞L0(W ),p = AL0(W sc).

Because L0(W ) is symmetric and compact as the sublevel set of a lower semicontinuous and
coercive symmetric function, we can infer from Theorem 3.1 in conjunction with Remark 3.2 c)
that

A⋃
A×A∈PL0(W )

Aco×Aco = A∞L0(W ) = AL0(W sc).

Upon exploiting [13, Proposition 5.1], this is equivalent to saying that⋃
A×A∈PL0(W )

Aco ×Aco =
( ⋃
A×A∈PL0(W )

Aco ×Aco
)∧

= L0(W sc)∧;(4.16)

notice that also L0(W sc) is compact, as the symmetry, growth and continuity properties of W
carry over to W sc, and that the left-hand side of (4.16) is the union of Cartesian products and
thus, already diagonal.

The simplification in the case m = 1 follows from⋃
A×A∈PL0(W )

Aco ×Aco =
⋃

A×A∈PL0(W )

(A×A)sc =
( ⋃
A×A∈PL0(W )

A×A
)sc

= (L0(W )∧)sc,(4.17)

where we have used in particular (2.5) and the fact that the diagonalization of a separately
convex set in R × R is again separately convex, see [13, Lemma 4.5]. Let us point out that in
higher dimensions, the latter is not true and the second identity in (4.17) fails in general, cf. [13,
Remark 4.6 b)]. �

Given that the operations of diagonalization and separate convexification do not commute, (4.14)
and (4.15) impose in general non-trivial restrictions on W , as the following example for m = 1
illustrates.

Example 4.9. Let K = {(±1, 0), (0,±1), (2, 2)} ⊂ R× R and consider

W (ξ, ζ) = dist2((ξ, ζ),K) for (ξ, ζ) ∈ R× R,

with respect to any norm on R × R. Then L0(Ŵ ) = L̂0(W ) = K̂ = {(2, 2)}, which is already
separately convex, whereas L0(W )sc = Ksc = {0} × [−1, 1] ∪ [−1, 1] × {0} ∪ {(2, 2)} turns after

diagonalization into K̂sc = {(0, 0), (2, 2)}.
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5. Counterexamples for preservation of double-integral character

In this section, we present and analyze two examples to disprove that the relaxation of a
double-integral yields again a double-integral. In both cases, the integrand W of IW as in (1.1)
with m = 1 is given by a function measuring the distance to a compact set K in the 1-norm. This
choice of norm turns out to make calculations particularly simple. The conceptual difference

between the two densities is that for the first, minW 6= min Ŵ , while the second satisfies

minW = min Ŵ .

5.1. First counterexample. Let W : R× R→ R be the function defined by

W (ξ, ζ) = dist2
1((ξ, ζ),K)(5.1)

for (ξ, ζ) ∈ R× R with K = {(±1, 0), (0,±1)} and the underlying norm ‖ · ‖1.
Recalling (2.3), we know that the separately convex envelope of W coincides with the sepa-

rately level convex one and is given by

W sc(ξ, ζ) = dist2
1((ξ, ζ),Ksc) for (ξ, ζ) ∈ R× R,

where Ksc = {0} × [−1, 1] ∪ [−1, 1]× {0}.
In terms of sublevel sets, W and W sc can be expressed as follows: For c ∈ R,

Lc(W ) =


⋃

(ξ,ζ)∈K B
1√
c
(ξ, ζ) for 0 ≤ c ≤ 1,

B1
1+
√
c
(0, 0) for c ≥ 1,

∅ for c < 0,

(5.2)

and

Lc(W
sc) = Lc(W )sc =


Lc(W ) ∪ [(−

√
c,
√
c)× (−1, 1)] ∪ [(−1, 1)× (−

√
c,
√
c)] for 0 ≤ c ≤ 1,

Lc(W ) for c ≥ 1,

∅ for c < 0,

(5.3)

see also Figure 5.1. After diagonalization, (5.2) and (5.3) turn into

L̂c(W ) =

{
[−
√
c,
√
c]2 for c ≥ 1,

∅ for c < 1,
and ̂Lc(W sc) =

{
[−
√
c,
√
c]2 for c ≥ 0,

∅ for c < 0,
(5.4)

for c ∈ R. Observe in particular that L̂0(W ) = K̂ = ∅. In view of (4.1) and (5.4), one can
deduce explicit expressions for the diagonalizations of W and W sc, that is,

Ŵ (ξ, ζ) = dist2
∞((ξ, ζ), [−1, 1]2) + 1 and Ŵ sc(ξ, ζ) = ‖(ξ, ζ)‖2∞

for (ξ, ζ) ∈ Rm, where ‖ · ‖∞ stands for the maximum norm.
The above computations allow us to conclude that

minW = 0 < 1 = min Ŵ and min Ŵ sc = minW sc = minW = 0.(5.5)

Thus, according to Corollary 4.7, separate convexification of the double-integrand W fails to
give a representation for Irlx

W . The next result provides even more, namely that the relaxation
of IW is not of double-integral form at all.

Proposition 5.1. Let W : R× R→ R as in (5.1). There exists no symmetric, lower semicon-
tinuous double-integrand function G : R× R→ R with quadratic growth such that Irlx

W = IG.

Proof. We argue by contradiction, and suppose therefore that

0 ≤ IWsc ≤ Irlx
W = IG ≤ IW(5.6)

for some G : R× R→ R as in the statement. A comparision of (5.2) and (5.3) yields that W sc

coincides with W outside of (−1, 1)2, that is,

W = W sc on [(−1, 1)2]c,
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ζ

ξ1

W

ζ

ξ1

W sc

ζ

ξ1

Ŵ = Ŵ sc

ζ

ξ1

Ŵ sc

Figure 1. Illustration of the sublevel sets of W , Ŵ , W sc, and Ŵ sc for the levels
c = 0 (violet), c = 1

4 (purple), c = 1 (red), c = 5
4 (orange), c = 3

2 (yellow).

which enables us to invoke Proposition 4.6. Hence,

G = W sc = W on [(−1, 1)2]c,

and especially, G = 0 on K. On the other hand, we know in light of (5.6) and Lemma 4.4
that G(0, 0) ≥ W sc(0, 0) = 0. Consequently, the L2-weakly lower semicontinuity of IG = Irlx

W ,
which implies the separate convexity of G (see e.g. [4, Theorem 1.1]), leads us to conclude that
G vanishes {0} × [−1, 1] ∪ [−1, 1]× {0} = Ksc; in particular, G(0, 0) = 0.

This proves that minu∈L2(Ω) IG(u) = IG(0) = 0, in view of (5.6). As IG coincides with the
relaxation of IW by assumption, one has that

inf
u∈L2(Ω)

IW (u) = min
u∈L2(Ω)

Irlx
W (u) = min

u∈L2(Ω)
IG(u) = 0.(5.7)

However, by Proposition 4.2 in combination with (5.5), infu∈L2(Ω) IW (u) > minW = 0, which
contradicts (5.7) and concludes the proof. �
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Remark 5.2. Alternatively, there is also a direct and self-contained argument for the last step
in the proof above, meaning, one that does not make use of Proposition 4.2. Following along the
lines of [19, Section 3], we argue by contradiction and let infu∈L2(Ω) IW (u) = 0, so that

IW (uj) =

∫
Ω

∫
Ω
W (vuj ) dx dy → 0(5.8)

for some sequence (uj)j ⊂ L2(Ω). Due to W ≥ 0, we know that (vuj )j needs to concentrate
around L0(W ) = K, and since K is finite, it has to concentrate partially around at least one
point, without loss of generality (1, 0). Then there exists a set ω ⊂ Ω of positive measure where
(uj)j concentrates around 1, which again entails that (vuj )j concentrates around (1, 1) on ω×ω.
Finally, we derive a contradiction with (5.8) by concluding that∫

ω

∫
ω
W (vuj ) dx dy →W (1, 1)|ω × ω| > 0.

Indeed, the limit is strictly positive because (1, 1) /∈ K = L0(W ) and ω × ω has non-vanishing
L2n-measure.

Not only do homogeneous double-integrals fail to provide an explicit representation for the
L2-weak lower semicontinuous envelope of IW , allowing for inhomogeneous double-integrands
does not help in obtaining correct relaxation formulas either.

Remark 5.3. In generalization of Proposition 5.1, one can show that it is not possible to express
Irlx
W with W as in (5.1) in terms of

L2(Ω) 3 u 7→
∫

Ω

∫
Ω
G(x, y, u(x), u(y)) dx dy,

where G : Ω× Ω× R× R→ R is a symmetric and normal function with quadratic growth, i.e.,
G satisfies

(i) G(x, y, ξ, ζ) = G(y, x, ξ, ζ) and G(x, y, ξ, ζ) = G(x, y, ζ, ξ) for all x, y ∈ Ω and ξ, ζ ∈ R;
(ii) G(x, y, ·, ·) is lower semicontinuous for a.e. (x, y) ∈ Ω×Ω and G(·, ·, ξ, ζ) is measurable

for all (ξ, ζ) ∈ R× R;
(iii) |G(x, y, ξ, ζ)| ≤ C(a(x, y) + |ξ|2 + |ζ|2) for all (x, y) ∈ Ω × Ω and (ξ, ζ) ∈ R × R with a

constant C > 0 and a ∈ L1(Ω× Ω).

To see this, it suffices to substitute G in the proof of Proposition (5.1) by

G(ξ, ζ) :=

∫
Ω

∫
Ω
G(x, y, ξ, ζ) dx dy for (ξ, ζ) ∈ R× R,

and to use [19, Theorem 2.5] in place of [4, Theorem 1.1].

5.2. Second counterexample. The double-integrand for our second example is qualitatively
different from the first, in the sense that its minimum does not change under diagonalization.

Proposition 5.4. Let K = ∂B1
1(0, 0) = {(ξ, ζ) ∈ R× R : |ξ|+ |ζ| = 1} and W : R× R→ R be

defined by

W (ξ, ζ) = dist2
1((ξ, ζ),K) for (ξ, ζ) ∈ R× R.(5.9)

There exists no symmetric, lower semicontinuous double-integrand G : R×R→ R with quadratic
growth such that Irlx

W = IG.

Proof. Arguing by contradiction, we suppose that Irlx
W = IG with G as in the statement, and

split the proof into two steps. First, Step 1 shows that necessarily G = W sc, and then, we
conclude in Step 2 that Irlx

W 6= IW sc , which yields the desired contradiction.

Step 1: G = W sc. Since W sc(ξ, ζ) = dist2
1((ξ, ζ),Ksc) for (ξ, ζ) ∈ R × R with Ksc = Kco =

B1
1(0, 0), the functions W and W sc coincide outside of Ksc. A comparison between G with W

and W sc along the diagonal therefore gives

W sc(ξ, ξ) = G(ξ, ξ) = W (ξ, ξ) for ξ ∈ R with |ξ| ≥ 1
2 .
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In view of Proposition 4.6, W sc ≤ G ≤W on [(−1
2 ,

1
2)]c, and thus in particular,

G = W sc on B1
1(0, 0)c.(5.10)

Next, we prove that

G = W sc on [−1
2 ,

1
2 ]2.(5.11)

The argument is based on the observation that K̂ = {−1
2 ,

1
2}

2, and therefore K̂sc = K̂co =

[−1
2 ,

1
2 ]2.

For (ξ, ζ) ∈ [−1
2 ,

1
2 ]2, let v = ξ1Ωξ + ζ1Ω\Ωξ with a measurable set Ωξ ⊂ Ω of measure λ|Ω|

with λ ∈ (0, 1). By Lemma 2.2, one can find a sequence (vj)j ∈ S∞(Ω) oscillating suitably
between the values ±1

2 such that vj ⇀
∗ v in L∞(Ω). As

0 ≤ IW sc(v) = Irlx
W (v) = IG(v) ≤ lim sup

j→∞
IW (vj) = 0

due to W = 0 on K̂ ⊂ K, it follows that

λ2G(ξ, ξ) + (1− λ)2G(ζ, ζ) + 2λ(1− λ)G(ξ, ζ) = 0 for all λ ∈ (0, 1).

Letting λ→ 0 and λ→ 1 yields first that G(ξ, ξ) = G(ζ, ζ) = 0, and eventually, also G(ξ, ζ) = 0.
This finishes the proof of (5.11).

We can now infer from (5.10) and (5.11) that G coincides with W sc on the diagonal, and
since IW sc ≤ Irlx

W = IG, Lemma 4.4 implies that G ≥ W sc ≥ 0. Since G has to be separately
convex (see e.g. [4, Theorem 1.1]),

G = 0 = W sc on Ksc = B1
1(0, 0).

In combination with (5.10), this shows G = W sc.
Step 2: Irlx

W 6= IW sc. Considering the simple function v = 1Ω1 , where Ω1 ⊂ Ω is a set of
positive Lebesgue measure, we aim to show that

Irlx
W (v) 6= IW sc(v).

Assume to the contrary that Irlx
W (v) = IW sc(v). Then, by the definition of the relaxed functional,

there exists a sequence (uj)j ⊂ L2(Ω) such that uj ⇀ v in L2(Ω) and

lim
j→∞

IW (uj) = IW sc(v) = |Ω1|2W sc(1, 1) + |Ω \ Ω1|2W sc(0, 0) = |Ω1|2W (1, 1) = |Ω1|2;(5.12)

here, we have used that W sc(1, 1) = W (1, 1) = 1 and W sc(0, 0) = 0. On the other hand, along
with for the weak convergence of the restrictions of (uj)j to Ω1 and Ω \ Ω1, i.e. uj |Ω1 ⇀ 1 in
L2(Ω1) and uj |Ω\Ω1

⇀ 0 in L2(Ω \ Ω1), as well as the symmetry and non-negativity of W ,

lim
j→∞

IW (uj) ≥ lim
j→∞

(∫
Ω1

∫
Ω1

W (uj(x), uj(y)) dx dy +

∫
Ω\Ω1

∫
Ω\Ω1

W (uj(x), uj(y)) dx dy

+ 2

∫
Ω1

∫
Ω\Ω1

W (uj(x), uj(y)) dx dy
)

≥W sc(1, 1)|Ω1|2 +W sc(0, 0)|Ω \ Ω1|2 + 2 lim inf
j→∞

∫
Ω1

∫
Ω\Ω1

W (uj(x), uj(y)) dx dy(5.13)

= |Ω1|2 + 2 lim inf
j→∞

∫
Ω1

∫
Ω\Ω1

W (uj(x), uj(y)) dx dy ≥ |Ω1|2.

Comining (5.13) with (5.12) turns all equalities in (5.13) into equalities. Hence, after passing to
a suitable (not relabelled) subsequence,

lim
j→∞

∫
Ω1

∫
Ω1

W (uj(x), uj(y)) dx dy = |Ω1|2,(5.14)
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lim
j→∞

∫
Ω\Ω1

∫
Ω\Ω1

W (uj(x), uj(y)) dx dy = 0,(5.15)

and

lim
j→∞

∫
Ω1

∫
Ω\Ω1

W (uj(x), uj(y)) dx dy = 0.(5.16)

We conclude from (5.15) that the sequence (uj |Ω\Ω1
)j ⊂ L2(Ω \ Ω1) concentrates around

±1
2 , while (5.14) shows that this is not the case for (uj |Ω1)j ⊂ L2(Ω1). Now, let ω ⊂ Ω \ Ω1

and ω1 ⊂ Ω1 be sets of positive Ln-measure and ε > 0 such that (uj |ω)j concentrates around
1
2 , and (uj |ω1)j concentrates on the complement of (1

2 − ε, 1
2 + ε) ∪ (−1

2 − ε,−1
2 + ε). Such

sets exist without loss of generality, otherwise replace 1
2 by −1

2 for the set of concentrations of
(uj |ω)j . With ν ∈ L∞w (ω1;Pr(R)) the Young measure generated by a suitable (non-relabelled)
subsequence of (uj |ω1)j , it follows that

lim
j→∞

∫
ω

∫
ω1

W (uj(x), uj(y)) dx dy = |ω|
∫
ω1

∫
R
W (ξ, 1

2) dνx(ξ) dx > 0,(5.17)

which contradicts (5.16). The estimate in (5.17) makes use of the fact that by the choice of
ω1, ±1

2 /∈ supp νx for a.e. x ∈ ω1, along with the observation that W (ξ, 1
2) = 0 if and only if

ξ ∈ {−1
2 ,

1
2}. �

Remark 5.5. We notice that condition (4.15) from Proposition 4.8, which is necessary for
structure-preserving relaxation of double-integrals via separate convexification in the scalar set-
ting, is in general not sufficient.

Indeed, for the double-integrand W from (5.9), one has that L0(W ) = K with K̂ = {1
2 ,

1
2}

2

and Ksc = B1
1(0, 0), and therefore,

(L0(W )∧)sc = K̂sc = [−1
2 ,

1
2 ]2 = B1

1(0, 0)∧ = K̂sc = (L0(W )sc)∧,

which verifies (4.15). However, we have just proven in Proposition 5.4 that Irlx
W 6= IW sc.

6. Examples of structure-preserving relaxation

In this last section, we provide examples of non-trivial relaxation where the double-integral
structure is preserved and the integrands result from taking the separately convex envelope.

6.1. Integrands of distance type. Let K = A × A with a compact set A ⊂ Rm and p > 1.
We consider functions W : Rm × Rm → R defined via

W (ξ, ζ) = distp((ξ, ζ),K) = distp((ξ, ζ), A×A) for (ξ, ζ) ∈ Rm × Rm,(6.1)

cf. (2.1).
Owing to Ksc = Kco = Aco ×Aco, the separately convex envelope of W is identical with the

convex one, that is,

W sc(ξ, ζ) = W co(ξ, ζ) = distp((ξ, ζ), Aco ×Aco) = (dist2(ξ, Aco) + dist2(ζ,Aco))
p
2

for (ξ, ζ) ∈ Rm × Rm, see (2.3) and (2.2). Under the additional hypothesis on A that

dist2(ξ, Aco) = dist2(ξ, A) for all ξ /∈ Aco,(6.2)

one can express the (separate) convexification of W in the following way: With any α, β ∈ A,

W sc(ξ, ζ) =


0 if ξ ∈ Aco and ζ ∈ Aco,

W (ξ, ζ) if ξ /∈ Aco and ζ /∈ Aco,

W (α, ζ) if ξ ∈ Aco and ζ /∈ Aco,

W (ξ, β) if ξ /∈ Aco and ζ ∈ Aco,

(6.3)
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for (ξ, ζ) ∈ Rm × Rm. Notice that the condition (6.2) is always satisfied for A if m = 1; a
sufficient condition for (6.2) in the vectorial case m > 1 is for instance that A ⊂ Rm is of the
form A = B \ C with B ⊂ Rm compact and convex and C ⊂ B open.

Due to the use of the Euclidean distance in the definition of W , clearly W 6= Ŵ and W sc 6=
Ŵ sc; yet the necessary condition for Irlx

W = IW sc in (4.15) holds. One can even prove the following
statement.

Proposition 6.1. Let W as in (6.1) and suppose that A satisfies the condition in (6.2). Then,
Irlx
W = IW sc.

Proof. SinceW sc is separately convex, and hence IW sc Lp-weakly lower semicontinuous (see e.g. [17,
Theorem 1.1], [19, Theorem 2.6]), it is clear that Irlx

W ≥ IW sc . To prove the reverse inequality, let
u ∈ Lp(Ω;Rm), which we approximate by a sequence of simple functions (uk)k such that uk → u
in Lp(Ω;Rm). In view of the continuity and p-growth of W sc, the Vitali-Lebesgue convergence
theorem yields that IW sc(u) = limk→∞ IW sc(uk).

It remains to find for any simple function

v =

n∑
j=1

ξ(j)
1Ω(j)(6.4)

with ξ(j) ∈ Rm and {Ω(j)}j a decomposition of Ω into measurable subsets, a sequence (vi)i ⊂
Lp(Ω;Rm) such that vi ⇀ v in Lp(Ω;Rm), and

lim sup
i→∞

IW (vi) ≤ IW sc(v);(6.5)

the claim follows then from a diagonalization argument.
In the following, we take v as in (6.4) and detail the construction of (vi)i with the desired

properties. If ξ(j) ∈ Aco, let (v
(j)
i )i ⊂ Lp(Ω(j);Rm) be a sequence that converges weakly to v in

Lp(Ω(j);Rm) and takes values only in A, meaning,

v
(j)
i ∈ A a.e. in Ω(j) for all i ∈ N,(6.6)

cf. Lemma 2.2. If ξ(j) /∈ Aco, let v
(j)
i for any i ∈ N be the constant function on Ω(j) with value

ξ(j). With these definitions, consider the sequence (vi)i ⊂ Lp(Ω;Rm) given by

vi :=
n∑
j=1

v
(j)
i 1Ω(j) for i ∈ N.

By construction, vi ⇀ v in Lp(Ω;Rm), and

IW (vi) =

∫
Ω

∫
Ω
W (vi(x), vi(y)) dx dy =

n∑
j,k=1

∫
Ω(j)

∫
Ω(k)

W (v
(j)
i (x), v

(k)
i (y)) dx dy

=
n∑

j,k=1

W sc(ξ(j), ξ(k))|Ω(j)| |Ω(k)| = IW sc(v)

for all i ∈ N, which implies (6.5) and concludes the proof. The third identity follows from the
observation that for any i ∈ N and l, k ∈ {1, . . . , n},

W (v
(j)
i (x), v

(k)
i (y)) = W sc(ξ(j), ξ(k)) for a.e. (x, y) ∈ Ω(j) × Ω(k).(6.7)

To see the latter, we distinguish three different cases. If ξ(j), ξ(k) /∈ Aco, the functions v
(j)
i

and v
(k)
i are constant, and W sc(ξ(j), ξ(k)) = W (ξ(j), ξ(k)) by (6.3). For ξ(j), ξ(k) ∈ Aco, both

expressions in (6.7) are zero (almost everywhere) according to (6.6) and (6.3). In the case

ξ(j) ∈ Aco and ξ(k) /∈ Aco, we invoke again (6.3) to obtain that W sc(ξ(j), ξ(k)) = W (α, ξ(k)) for

any α ∈ A; hence, (6.7) holds in light of (6.6). For ξ(j) /∈ Aco and ξ(k) ∈ Aco, the reasoning is
analogous. �
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6.2. Indicator functionals. For a symmetric, diagonal and compact set K ⊂ Rm × Rm, we
define the associated indicator functional JK via

L∞(Ω;Rm) 3 u 7→ JK(u) := IχK (u) =

∫
Ω

∫
Ω
χK(u(x), u(y)) dx dy,(6.8)

where χK is the characteristic function of K in the sense of convex analysis, i.e., χK(ξ, ζ) = 0
if (ξ, ζ) ∈ K and χK = ∞ otherwise in Rm × Rm. Note that JK can be expressed in terms of
nonlocal inclusions as

JK(u) =

{
0 if u ∈ AK ,

∞ otherwise,

for u ∈ L∞(Ω;Rm); recall the definition of AK in Section 3.
According to [13, Corollary 6.2] and Theorem 3.3, the Young measure relaxation of JK is

JYK(ν) =

{
0 supp ν ⊗ ν ⊂ K̂ a.e. in Ω× Ω,

∞ otherwise,

=

{
0 supp ν ⊗ ν ⊂ P a.e. in Ω× Ω with P ∈ PK ,

∞ otherwise,

=

{
0 supp ν ⊂ A a.e. in Ω with A×A ∈ PK ,

∞ otherwise,

for ν ∈ L∞w (Ω;Pr(Rm)), and (3.4) provides a representation formula for the relaxation of JK
with respect to the L∞-weak* topology; precisely, for u ∈ L∞(Ω;Rm),

J rlx
K (u) := inf{lim inf

j→∞
JK(uj) : uj ⇀

∗ u in L∞(Ω;Rm)}(6.9)

=

{
0 if u ∈ A∞K ,

∞ otherwise,
=

{
0 if u ∈ Aco a.e. in Ω with A×A ∈ PK ,

∞ otherwise,

=

∫
Ω

∫
Ω
χ[⋃

A×A∈PK
Aco×Aco

](u(x), u(y)) dx dy = JKrlx ,

with Krlx :=
⋃
A×A∈PK A

co ×Aco.

It is generally not true that Krlx coincides with the separately convex hull of K (see [13,
Example 4.6 b)]); yet, under the additional assumption that

K̂sc =
⋃

(α,β)∈K

[α, β]× [α, β],

which is for instance satisfied for m = 1 (see [13, Lemma 4.7]), it was shown in [13, Corollary 6.1]

that J rlx
K = JKsc . Whether this identity holds in general, or equivalently, if Krlx = K̂sc without

further assumptions on K, remains unknown.
In conclusion, we have seen that the relaxation of indicator functionals of the type (6.8) is

always structure preserving.
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D.I.In., Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
E-mail address: ezappale@unisa.it


