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Abstract

Given a uniformly elliptic second-order operator A on a (possibly unbounded) do-
main Ω ⊂ RN , let (T (t))t≥0 be the semigroup generated by A in L1(Ω), under homo-
geneous co-normal boundary conditions on ∂Ω. We show that the limit as t → 0 of
the L1-norm of the spatial gradient DxT (t)u0 tends to the total variation of the initial
datum u0, and in particular is finite if and only if u0 belongs to BV (Ω). This result is
true also for weighted BV spaces. A further characterisation of BV functions in terms
of the short-time behaviour of (T (t))t≥0 is also given.

Mathematics subject classification: 35K20,47D06, 49Q15
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1 Introduction

The definition of functions with bounded variation in RN , N ≥ 2, has been given by E.
De Giorgi in [9] using the convolution with the Gauss-Weierstrass kernel

gt(x) =
1

(4πt)N/2
e−

|x|2
4t .

Given u ∈ L1(RN ), he defined the total variation of u by

|Du|(RN ) = lim
t→0

∫
RN

|D(u ∗ gt)|dx,

where it is easily seen that the integral on the right hand side is a monotone function in
t, and then the limit exists. Notice that gt is the heat kernel on RN , and then, using the
language of semigroup and setting T (t)u = u ∗ gt, formula (1.1) can be written as

(1.1) |Du|(RN ) = lim
t→0

∫
RN

|DT (t)u|dx.
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Moreover, the fact that |Du|(RN ) is finite is equivalent to saying that the distributional
gradient of u is a (RN -valued) Radon measure, and this gives the equality

(1.2) |Du|(RN ) = sup
{∫

RN

udiv φ dx : φ ∈ C1
c (RN ,RN ), ‖φ‖L∞(RN ) ≤ 1

}
.

A formula analogous to (1.1) can also be used in more general contexts. The question then
arises if the connection between semigroups and total variation is more general; recently, in
[14], [6] this connection has been investigated in the setting of Riemannian manifolds with
a bound on the geometry.

Formula (1.2) can be localized in a subset Ω ⊂ RN by

(1.3) |Du|(Ω) = sup
{∫

Ω

udiv φ dx : φ ∈ C1
c (Ω,RN ), ‖φ‖L∞(Ω) ≤ 1

}
and gives the definition of total variation of u ∈ L1(Ω).

In this paper we prove that (1.1) still holds in Ω, when (T (t))t≥0 is the semigroup
generated by a second order uniformly elliptic operator with regular coefficients and suitable
boundary conditions. Concerning the monotonicity, in RN the inequality∫

RN

|DT (t)u|dx ≤ |Du|(RN ), ∀t > 0,

holds, whereas in the Riemannian case the following is true:∫
M

|DT (t)u|dµ ≤ ekt|Du|(M), ∀t > 0

where k > 0 is a constant bounding the geometry of M . Here we consider the unifomly
elliptic operator with sufficiently smooth coefficients

Au =
N∑

i,j=1

Di(AijDju) +
N∑
i=1

BiDiu+ Cu

and the initial-boundary value problem ∂tw −Aw = 0 in (0,∞)× Ω
w(0) = u0 in Ω
〈ADw, ν〉 = 0 in (0,∞)× ∂Ω.

.

Denoting again by

T (t)u0(x) =
∫

Ω

p(t, x, y)u0(y) dy

the semigroup which gives its solution, we prove that the inequality∫
Ω

|DT (t)u|dx ≤ |Du|(Ω) + c‖u‖W 1,1(Ω)t
1/2, t ∈ (0, 1),

holds for u ∈W 1,1(Ω), and deduce (1.1) by approximating in variation u ∈ BV (Ω) by W 1,1

functions, and taking the limit as t → 0. We point out that equation (1.1) holds not only
for classical BV functions, but also for weighted BV functions, see Theorem 5.2.
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A further characterisation of BV functions can be given considering in a different way
the short-time behaviour of (T (t))t≥0, namely, we prove that

(1.4) |Du|A(Ω) = lim
t→0

√
π

2
√
t

∫
Ω

∫
Ω

p(t, x, y)|u(x)− u(y)| dydx,

where |Du|A denotes the (Aij)-weighted total variation of u. This characterisation is in the
spirit of [13], [15] and [4], [8], where kernels depending on |x− y| are considered.

The paper is organized as follows; after recalling some preliminary results in Section 2,
we discuss in Section 3 the main properties of the semigroup associated with second order
partial differential operator on unbounded domains. Using these results, and after giving
the definitions and main properties of weighted BV functions in Section 4, we prove in
Section 5 the limiting formula (1.1). Section 6 is devoted to the proof of (1.4)

Acknowledgement. We thank Giorgio Metafune for some useful discussions and sugges-
tions.

2 Notations and preliminary results

We denote by 〈·, ·〉 the standard inner product on RN , by | · | its induced norm and by B%(x)
the open ball centred at x and with radius %. Moreover, given a symmetric positive definite
matrix P we introduce the norm

(2.1) |ξ|2P = |P 1/2ξ|2 = 〈Pξ, ξ〉, ∀ξ ∈ RN ;

we use the same notation even for variable matrices P . With Cb(Ω) we mean the set
of continuous and bounded functions on Ω, by Cc(Ω) the set of function u with support
strictly contained in Ω, that is suppu ⊂⊂ Ω and by Cc(Ω) the set of functions with support
a compact set contained in Ω (then not necessarily zero on ∂Ω). For functions u ∈ Ck(Ω)
we define the norms

‖u‖∞ = ‖u‖L∞(Ω), ‖ · ‖k,∞ =
∑
|α|≤k

‖Dα · ‖∞.

Moreover, given a matrix Q, we define

(2.2) CQ(Ω) =
{
u ∈ C∞(Ω) ∩ C1(Ω); 〈QDu, ν〉 = 0 on ∂Ω

}
.

Given a subset E ⊂ RN , we denote by |E| its Lebesgue measure, and by HN−1(E) its
(N − 1)-dimensional Hausdorff measure. By Lp(Ω) (p ≥ 1) we denote the Lebesgue space
of p-integrable function with respect to the Lebesgue measure and by W k,p(Ω) the space
of functions p-integrable together with their distributional derivatives up to the k-th order.
We recall that if the open set Ω has regular boundary, then the trace operator is continuous
from W 1,1(Ω) onto L1(∂Ω,HN−1) (see for instance [1, Theorem 5.3.6]), that is there exists
cΩ > 0 such that for every u ∈W 1,1(Ω) the trace v = u|∂Ω of u on ∂Ω is well defined and

(2.3) ‖v‖L1(∂Ω,HN−1) ≤ cΩ‖u‖W 1,1(Ω).

In the whole paper we denote by Ω an open subset of RN , not necessarily bounded, and we al-
ways assume that Ω has uniformly C2 boundary, that is, there are %, L > 0 such that for every
x ∈ ∂Ω the set ∂Ω∩B%(x) is the graph of a C2 function ψ with ‖D2ψ‖2,∞, ‖D2ψ−1‖2,∞ ≤ L.
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We consider the second order differential operator in divergence form

Au = div(ADu) + 〈B,Du〉+ Cu(2.4)

=
N∑

i,j=1

Di(AijDju) +
N∑
i=1

BiDiu+ Cu

and the first order operator (co-normal derivative) on ∂Ω

(2.5) Bu = 〈ADu, ν〉 =
N∑

i,j=1

AijDjuνi,

where ν is the outward unit normal vector to ∂Ω. We say that a symmetric positive definite
matrix A is λ-elliptic if there exists λ ≥ 1 such that

1
λ
|ξ|2 ≤ 〈Aξ, ξ〉 ≤ λ|ξ|2, ∀ξ ∈ RN .

In general, we say that A is elliptic if it is λ-elliptic for some λ ≥ 1. The operator A is said
to be elliptic or λ-elliptic if the matrix A is so. Let us state our standing hypotheses:

(H1) Ω ⊂ RN has uniformly C2 boundary;

(H2) A is λ-elliptic for some λ ≥ 1;

(H3) Aij ∈ C1
b (Ω), B,C ∈ L∞(Ω).

Under assumption (H3) it is then possible to define the finite quantity

M0 = max
i,j

{‖Aij‖1,∞, ‖Bi‖∞, ‖C‖∞} .

We are interested in the realization of the operator A with boundary condition B in L1(Ω);
we denote by D(A) the domain of such a realization, which is defined as the closure, in the
graph norm, of {u ∈ C2(Ω) ∩ L1(Ω) : Au ∈ L1(Ω), Bu = 0}; we also have that CA(Ω) is
a core. We recall in the next section that (A, D(A)) is sectorial and generates an analytic
semigroup in L1(Ω) which we assume to be contractive, see Remark 3.3. After recalling
some known properties of the semigroup, we show further estimates needed in the sequel.
Finally, we use the notation cn = c(x, y, . . .) with the meaning that the constant cn depends
upon the quantities x, y, etc.

3 Analytic semigroups in L1(Ω) generated by elliptic op-
erators

In this section we recall the main properties of the operator (A, D(A)) and of the semigroup
generated in L1(Ω), and derive further estimates needed in the sequel. We collect the known
results in the following statement.

Theorem 3.1 Let Ω,A,B, D(A) be as specified in Section 2. Then, (A, D(A)) is sectorial
and generates an analytic semigroup of contractions (T (t))t≥0 in L1(Ω); for the kernel
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p : (0,+∞)×Ω×Ω → R of the semigroup (T (t))t≥0 the following estimates hold; there exist
b, c0 > 0 such that for |α|, |β| < 2, x, y ∈ Ω and t > 0

(3.1) |Dα
xD

β
y p(t, x, y)| ≤

c0

t
N+|α|+|β|

2

e−b
|x−y|2

t .

In addition, there are constants ci = c(Ω, λ,M0) > 0, i = 1, 2, 3 such that, since the operator
is sectorial, the following holds:

(3.2) ‖T (t)‖L(L1(Ω)) ≤ c1,
√
t‖DT (t)‖L(L1(Ω)) ≤ c2, t‖AT (t)‖L(L1(Ω)) ≤ c3,

for t > 0. Moreover, D(A) is continuously embedded in W 1,1(Ω), i.e., there exists c4 =
c(Ω, λ,M0) > 0 such that v ∈ D(A) implies v ∈W 1,1(Ω) and

(3.3) ‖v‖W 1,1(Ω) ≤ c4(‖v‖L1(Ω) + ‖Av‖L1(Ω));

Finally,

(3.4) lim
t→0

‖T (t)v − v‖W 1,1(Ω) = 0

for every v ∈ D(A).

Proof. Estimates (3.1) are proved in [17, Theorem 5.7]; from these, estimates (3.2) and
(3.3) follow. To prove (3.4), if v ∈ D(A), then T (t)Av = AT (t)v and by the strong continuity
of T (t) in L1(Ω) we get

‖DT (t)v −Dv‖L1(Ω) ≤ c4
(
‖T (t)v − v‖L1(Ω) + ‖AT (t)v −Av‖L1(Ω)

)
= c4

(
‖T (t)v − v‖L1(Ω) + ‖T (t)Av −Av‖L1(Ω)

)
and the statement is proved. �

Remark 3.2 [Neumann boundary conditions] We have stated Theorem 3.1 in the form
we most frequently use, but the estimates stated are known to hold under more general
assumptions. In particular, all non tangential boundary conditions are allowed. We denote
by cν a constant which can be used in the first two inequalities in (3.2), when Neumann
boundary conditions are associated with a general uniformly elliptic operator.

Remark 3.3 [Contractivity] We point out that the contractivity assumption on the semi-
group is not restrictive for our purposes, as we may replace A by A − ω for a suitable
ω, getting a contractive semigroup (Tω(t))t≥0 whose kernel is nothing but pω(t, x, y) =
eωtp(t, x, y). Since we are interested only in the behaviour of (T (t))t≥0 for small t, it is not
restrictive to assume contractivity from the beginning.

In order to proceed, we also need a precise L1-estimate of the second (spatial) derivatives
of T (t)u0, for u0 ∈ W 1,1(Ω). This is proved in Proposition 3.4 below. The argument used
here is similar to the one used in [10, Theorem 2.4], where Ω is bounded and different
boundary conditions are imposed.

Proposition 3.4 Let Ω,A,B be as in Section 2, but assume, in addition, A ∈ W 2,∞(Ω)
and B,C ∈W 1,∞(Ω); then, there exists c5 depending on N , λ, Ω, ‖A‖2,∞, ‖B‖1,∞, ‖C‖1,∞,
c1, c2, c3 cν such that for every t ∈ (0, 1) and u0 ∈W 1,1(Ω) we have

(3.5)
√
t‖D2T (t)u0‖L1(Ω) ≤ c5‖u0‖W 1,1(Ω).
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Proof. Set
M1 = max{‖A‖2,∞, ‖B‖1,∞, ‖C‖1,∞}.

From the regularity of the boundary ∂Ω we can consider a partition of unity {(ηh, Uh)}h∈N
such that supp ηh ⊂ Uh,

∑∞
h=0 ηh(x) = 1 for every x ∈ Ω and 0 ≤ ηh ≤ 1 for every h ∈ N,

U0 ⊂ Ω, Uh for h ≥ 1 is a ball such that {Uh}h≥1 is a covering of ∂Ω and {Uh}h∈N is a
covering of Ω with bounded overlapping, that is there is κ > 0 such that

(3.6)
∑
h∈N

χUh
(x) ≤ κ, ∀x ∈ Ω.

Moreover we choose ηh in such a way 〈A(x)Dηh(x), ν(x)〉 = 0 for every x ∈ ∂Ω. By the
uniform C2 regularity of ∂Ω, the ηh can be chosen in such a way that

M := sup
h∈N

‖ηh‖2,∞ < +∞ .

Now consider u0 ∈W 1,1(Ω) and denote by u(t) = T (t)u0 the solution of the problem

(3.7)

 ∂tw −Aw = 0 in (0,∞)× Ω
w(0) = u0 in Ω
〈ADw, ν〉 = 0 in (0,∞)× ∂Ω.

We want to estimate the L1–norm of
√
tD2u(t) by the W 1,1-norm of u0. The functions

vh(t) = u(t)ηh solve, for every h ∈ N, the problem

(3.8)

 ∂tw −Aw = Ahu in (0,∞)× Ω
w(0) = ηhu0 in Ω
〈ADw, ν〉 = 0 in (0,∞)× ∂Ω

where

(3.9) Ahu = −2〈ADηh, Du〉 − u div(ADηh)− u 〈B,Dηh〉 .

Notice that the derivative Dkvh satisfies the equation

∂t(Dkvh)−A(Dkvh) = Ak
hu

where

Ak
hu =div ((DkA)D(uηh)) + 〈(DkB), D(uηh)〉+ (DkC)uηh +Dk(Ahu)

=div ((DkA)D(uηh)) + 〈(DkB), D(uηh)〉+ (DkC)uηh(3.10)
+Dk[−2〈ADηh, Du〉 − u div(ADηh)− u 〈B,Dηh〉]

For Dkvh we consider the problem

(3.11)

 ∂tw −Aw = Ak
hu in (0,∞)× Ω

w(0) = Dk(ηhu0) in Ω
〈ADw, ν〉 = 0 in (0,∞)× ∂Ω

whose solution is

vhk(t) = T (t)Dk(ηhu0) +
∫ t

0

T (t− s)Ak
hu(s)ds
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Now we consider h = 0, i.e., we draw our attention to the inner part. Since v0 = η0u = 0 in
Ω \ U0, it turns out that Dkv0 is the solution of (3.11) with h = 0. Then

(3.12) Dkv0(t) = T (t)Dk(η0u0) +
∫ t

0

T (t− s)Ak
0u(s)ds,

where Ak
0 is the operator defined in (3.10). Then, differentiating, we obtain

D2
lkv0 = Dl[T (t)Dk(η0u0)] +

∫ t

0

Dl[T (t− s)Ak
0v(s)]ds.

by which, using (3.2),

‖D2
lkv0(t)‖L1(Ω) ≤ ‖DlT (t)Dk(η0u0)‖L1(Ω) +

∫ t

0

‖DlT (t− s)Ak
0u(s)‖L1(Ω)ds

≤ c2√
t
‖η0u0‖W 1,1(Ω) +

∫ t

0

c2√
t− s

‖Ak
0u(s)‖L1(Ω)ds.

Finally, estimating ‖Ak
0u(s)‖L1(Ω) by (3.10) we get

‖Ak
0u(s)‖L1(Ω) ≤ c ‖u(s)‖W 2,1(Ω)

where c = c(M,M1) Summing on l and k and using again (3.2), we get

(3.13) ‖D2v0(t)‖L1(Ω) ≤ c
1√
t
‖u0‖W 1,1(Ω) +

∫ t

0

c√
t− s

‖D2u(s)‖L1(Ω)ds

where c = c(M,M1, c1, c2, c3). We now consider h ≥ 1, i.e., we consider a ball intersecting
∂Ω. By the uniform C2 regularity of ∂Ω, we can consider coordinate functions ψh : Vh →
B1(0) such that ψh(Vh ∩ Ω) = B−1 (0) = {y = (y′, yN ) ∈ B1(0) : yN < 0}, ψh(Vh ∩ ∂Ω) =
{y = (y′, yN ) ∈ B1(0) : yN = 0} and d(ψh)x(A(x)ν(x)) = eN for every x ∈ ∂Ω and that
there is a constant Mψ such that

sup
h≥1

{
‖D2ψh‖2,∞, ‖D2ψ−1

h ‖2,∞
}
≤Mψ.

Notice also that there is no loss of generality assuming that for all h ≥ 1 the inclusion
Uh ⊂⊂ Vh holds, and that we can choose a C2 domain E such that ψh(Uh∩Ω) ⊂ E ⊂ B−1 (0).

Using the transformation (for a generic f defined in Ω ∩ Vh)

f̂(y) := f(ψ−1
h (y))

and since vh is the solution of (3.8), we get that for every h ≥ 1 the function v̂h(t, y) =
ηh(ψ−1

h (y))v(t, ψ−1
h (y)) is the solution of the following initial-boundary value problem with

homogeneous Neumann boundary conditions

(3.14)


∂tw − Âw = Âhv̂ in (0,+∞)× E
w(0) = η̂hû0 in E
∂w

∂ν
= 0 in (0,+∞)× ∂E
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where Â is the operator defined on B1(0) as follows

(3.15) Âw := div(ÂDw) + 〈B̂,Dw〉+ Ĉw

defined by the coefficients (here for Â and its coefficients we omit the index h for simplify
the notations and by analogy with (3.8))

Â(y) :=
(
Dψh

)
(ψ−1
h (y)) ·A(ψ−1

h (y)) ·
(
Dψh

)t(ψ−1
h (y))

(B̂(y))l :=Tr
[(
Dψh

)
(ψ−1
h (y)) ·A(ψ−1

h (y)) ·H l(ψ−1
h (y)) ·

(
Dψ−1

h

)t(y)]
+ Tr

[(
Dψh

)
(ψ−1
h (y)) ·Gj(y)

](
Dψh

)t
jl

(ψ−1
h (y))− ∂

∂yj

[
Âjl(y)

]
+
[(
Dψh

)
(ψ−1
h (y)) ·B(ψ−1

h (y))
]
l

Ĉ(y) :=C(ψ−1
h (y))

where H l
ki = D2

ki(ψh)l and Gjki = DkAij(ψ−1
h (y)) and (see (3.9))

Âhû = −2
〈
A(ψ−1

h (y))(Dψh)tDη̂h, (Dψh)tDû
〉
− û
[
div(ÂDη̂h) + 〈B̂,Dη̂h〉

]
.

Now, as done before for h = 0, differentiating the equation (now Dk = ∂
∂yk

) we obtain that
Dkv̂h solves

∂t(Dkv̂h)− Â(Dkv̂h) = Âk
hû

where Âk
hv̂ can be obtained by taking the corresponding term in (3.10). Associated with

this operator, we can consider the problem
∂tw − Âw = Âk

hû in (0,∞)× E
w(0) = Dk

(
η̂hû0

)
in E

∂w

∂ν
= 0 in (0,∞)× ∂E

The function Dkv̂h satisfies the equation and the initial condition. Notice that if k 6= N also
the boundary condition is satisfied since v̂h = 0 in a neighbourhood of ∂E ∩{y ∈ RN | yN <
0}, in the other part of ∂E the operator Dk is a tangential derivative and ∂v̂h

∂yN
is constant

for yN = 0. Denote by S the semigroup which gives the solution of this problem and notice
that the estimates (3.2) hold for S(t), see Remark 3.2. Then

(3.16) Dkv̂h(t) = S(t)Dkv̂h(0) +
∫ t

0

S(t− s)Âk
hû(s)ds.

Differentiating (3.16) with respect to Dj for any j, we have then proved that the following
holds

(3.17) D2
kj v̂h(t) = DjS(t)Dkv̂h(0) +

∫ t

0

DjS(t− s)Âk
hû(s)ds.

Thus, as for v0, we have for (k, j) 6= (N,N)

‖D2
kj v̂h(t)‖L1(E) ≤

c2√
t
‖η̂hû0‖W 1,1(E) +

∫ t

0

c2√
t− s

‖Âk
hû(s)‖L1(E)ds.
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We now estimate D2
NN v̂h(t). Since

ÂNND
2
NN v̂h(t) = Âv̂h(t)−

∑
(i,j) 6=(N,N)

ÂijD
2
ij v̂h(t)−

N∑
i,j=1

(DiÂij)Dj v̂h(t)

−
N∑
i=1

B̂iDiv̂h(t)− Ĉv̂h(t).

and since λ−1 ≤ ÂNN ≤ λ, we can find a constant c (depending only on N,M1, λ) such that

‖D2
NN v̂h(t)‖L1(E) =

∥∥∥ 1
ÂNN

(
Âv̂h(t)−

∑
(i,j) 6=(N,N)

ÂijD
2
ij v̂h(t) +

−
N∑

i,j=1

(DiÂij)Dj v̂h(t)−
N∑
i=1

B̂iDiv̂h(t)− Ĉv̂h(t)
)∥∥∥

L1(E)

≤ c
[ ∑

(i,j) 6=(N,N)

‖D2
ij v̂h(t)‖L1(E) + ‖Âv̂h(t)‖L1(E) +

+‖Dv̂h(t)‖L1(E) + ‖v̂h(t)‖L1(E)

]
Summing up, arguing as for h = 0, we have

‖D2v̂h(t)‖L1(E) ≤ c′
1√
t
‖u0 ◦ ψ−1

h ‖W 1,1(E) +
∫ t

0

c√
t− s

‖D2û(s)‖L1(E)ds,

where c′ = c(M,M1,Mψ, N, cν). Coming back to Ω ∩ Uh we obtain

(3.18) ‖D2vh(t)‖L1(Ω∩Uh) ≤ c′′
1√
t
‖u0‖W 1,1(Ω∩Uh) +

∫ t

0

c′√
t− s

‖D2u(s)‖L1(Ω∩Uh)ds,

where c′′ depends on M,M1,Mψ, N, cν . Now, since (3.6) holds, we have

‖D2v(t)‖L1(Ω) = ‖D2
( ∞∑
h=0

vh(t)
)
‖L1(Ω) = ‖

∞∑
h=0

D2vh(t)‖L1(Ω)

≤ κ
[
c′′

1√
t
‖u0‖W 1,1(Ω) +

∫ t

0

c′′√
t− s

‖D2u(s)‖L1(Ω)ds
]
.

Then we can find a constant c depending on c′′, κ such that

(3.19) ‖D2v(t)‖L1(Ω) ≤ c
[ 1√

t
‖u0‖W 1,1(Ω) +

∫ t

0

1√
t− s

‖D2u(s)‖L1(Ω)ds
]
.

Now using Gronwall’s generalized inequality (see for instance [12, Lemma 7.1.1]), we get

‖D2v(t)‖L1(Ω) ≤ c5
1√
t
‖u0‖W 1,1(Ω) for every t ∈ (0, 1) .

�
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4 BV functions

Let us recall the definition and the basic properties of functions with (possibly weighted)
bounded variation on Ω. For u ∈ L1(Ω), given a symmetric positive definite matrix P =
(Pij)Ni,j=1, we can define the weighted total variation, following [3], by setting

(4.1) |Du|P (Ω) = sup
{∫

Ω

udivψdx : ψ ∈ C1
c (Ω,RN ), ‖P−1/2ψ‖∞ ≤ 1

}
and say that u has finite total weighted variation, u ∈ BVP (Ω), if |Du|P (Ω) < +∞. A
set E is said to have finite weighted perimeter if |DχE |P (Ω) < +∞. In this case, its total
variation measure is the perimeter of E and it is denoted also by PP (E,Ω) = |DχE |P (Ω).
Notice that if P has entries Pij ∈ C1(Ω), then the total variation can be equivalently defined
by

|Du|P (Ω) = sup
{∫

Ω

udiv(P 1/2φ)dx : φ ∈ C1
c (Ω,RN ), ‖φ‖∞ ≤ 1

}
.

Of course, if P is the identity matrix then |Du|P reduces to (1.2) and the weighted perimeter
reduces to the classical perimeter, and in this case we write u ∈ BV (Ω) and drop the P
everywhere. The space BVP (Ω) turns out to be a Banach space with norm

‖u‖BVP
= ‖u‖L1(Ω) + |Du|P (Ω).

The norm topology is in some respects too strong, since for instance smooth functions are
not dense with respect to it. Nevertheless, a classical weaker approximation result is given
by the Anzellotti-Giaquinta theorem, see e.g. [2, Theorem 3.9]. It states that for every
u ∈ BV (Ω) there exists a sequence of functions (un)n ⊂ C∞(Ω) such that

‖u− un‖L1(Ω) → 0,
∫

Ω

|Dun|dx→ |Du|(Ω);

such a sequence is said to converge in variation to u.
Let us recall a particular case of [7, Lemma 2.4], i.e., the following coarea formula:

(4.2) |Du|P (Ω) =
∫

R
PP ({u > τ},Ω)dτ

which we use later.
Henceforth, we assume the following:

(H4) P is a symmetric strictly positive definite matrix with Pij ∈ Cb(Ω).

Under the above hypothesis, the seminorms |Du|(Ω) and |Du|P (Ω) are equivalent.
We also notice that if u is regular, then the equality

|Du|P (Ω) =
∫

Ω

|Du(x)|P dx,

holds, where |Du(x)|P is defined in (2.1). We notice that the weighted total variation is the
supremum of the L1(Ω) continuous functionals

u 7→
∫

Ω

udivψdx

10



and therefore it is L1(Ω) lower semicontinuous, i.e.,

|Du|P (Ω) ≤ lim inf
n→+∞

|Dun|P (Ω)

for any sequence (un)n with un → u in L1(Ω). In particular, if (T (t))t≥0 is a strongly
continuous semigroup on L1(Ω), then

(4.3) |Du0|P (Ω) ≤ lim inf
t→0

∫
Ω

|DT (t)u0|P dx.

The Anzellotti-Giaquinta theorem can be adapted also to the case of weighted BV functions,
as is done in the following result.

Proposition 4.1 Let Ω, P = (Pij)Ni,j=1 be as above, and let Q = (Qij)Ni,j=1 be an elliptic
matrix with Qij ∈ C1

b (Ω). Then, for every u ∈ BVP (Ω) there exists a sequence of functions
(vn)n ⊂ CQ(Ω) such that

lim
n→∞

‖u− vn‖L1(Ω) = 0, lim
n→∞

∫
Ω

|Dvn|P dx = |Du|P (Ω).

Proof. The proof goes as the classical one, except that we have to modify the usual
approximation sequence in a neighbourhood of the boundary of Ω. The assumption on the
regularity on ∂Ω is used to modify the approximating sequence to make it constant in the
direction Qν. �

Remark 4.2 A particular case of Proposition 4.1 is given when Q = A; in this case we have
that CA(Ω) ⊂ D(A) (it is a core), and then the weighted BV functions can be approximated
in variation via functions in the domain of the operator A.

For the weighted total variation also the following continuity property under uniform
convergence holds.

Proposition 4.3 Let P = (Pij)Ni,j=1 be a symmetric λ-elliptic matrix valued function and
let (P(n))n∈N be a sequence of matrices valued functions uniformly convergent to P . Then,
for every u ∈ L1(Ω) the following holds:

(4.4) lim
n→+∞

|Du|P(n)(Ω) = |Du|P (Ω).

Proof. We denote by cn = ‖P−1/2 − P
−1/2
(n) ‖∞; by the uniform convergence, we have that

cn → 0 as n→ +∞; moreover, we may assume that the P(n) are (λ+ 1/n)-elliptic, that is

1
λ+ 1/n

|ξ|2 ≤ |P 1/2
(n) ξ|

2 ≤ (λ+ 1/n)|ξ|2,

or, simply defining w = P
1/2
(n) ξ,

1√
λ+ 1/n

|w| ≤ |P−1/2
(n) w| ≤

√
λ+ 1/n|w|.
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Then, if ψ ∈ C1
c (Ω,RN ) with ‖P−1/2

(n) ψ‖∞ ≤ 1, we get

‖P−1/2ψ‖∞ ≤ ‖P−1/2
(n) ψ‖∞ + ‖(P−1/2 − P

−1/2
(n) )ψ‖∞

≤ ‖P−1/2
(n) ψ‖∞ + cn‖ψ‖∞

≤ ‖P−1/2
(n) ψ‖∞ + cn

√
λ+ 1/n‖P−1/2

(n) ψ‖∞

≤ 1 + cn
√
λ+ 1/n.

By definition of weighted variation, we get∫
Ω

udivψdx ≤ (1 + cn
√
λ+ 1/n)|Du|P (Ω)

whence
|Du|P(n)(Ω) ≤ (1 + cn

√
λ+ 1/n)|Du|P (Ω).

With a similar computation, we also get

|Du|P (Ω) ≤ (1 + cn
√
λ)|Du|P(n)(Ω),

and then (4.4) follows by letting n→ +∞. �

5 The first characterization of BV functions

In this section we prove that for u0 ∈ L1(Ω) the equality

(5.1) lim
t→0

∫
Ω

|DT (t)u0|P dx = |Du0|P (Ω),

holds, where (T (t))t≥0 is the semigroup generated by the operator (A, D(A)) in (2.4) and
|Du|P (Ω) is defined in (4.1).

Notice that, by the result obtained in Section 4, equality (5.1) holds for u0 ∈ D(A), see
(3.3), and moreover by semicontinuity inequality (4.3) always holds.

In this section we require more regularity on the coefficients Aij , and replace hypothesis
(H3) with the following:

(H3)′ Aij ∈W 2,∞(Ω), B,C ∈ L∞(Ω).

We need the following result, which gives a localized version of (5.1). Here we state the
proposition for an operator A such as that defined in (2.4), even if we need the result only
for operators with B and C null, i.e. for operators of the type Au = div(ADu), in the proof
of Theorem 5.2.

Proposition 5.1 Let v ∈ D(A), where A is as in (2.4), with coefficients Aij ∈ W 2,∞(Ω),
Bi, C ∈ W 1,∞(Ω). Let P = (Pij)Ni,j=1 be a non-negative λ-elliptic matrix with Pij ∈
W 1,∞(Ω) and Pij = Aij on ∂Ω. Then for every η ∈ C1

b (Ω), η non-negative, there exists a
constant

c6 = c(M1, N, ‖P‖1,∞, ‖η‖1,∞, λ)

such that

(5.2)
∫

Ω

η|DT (t)v|P dx ≤
∫

Ω

η|Dv|P dx+ c6
√
t‖v‖W 1,1(Ω)

holds for every t ∈ (0, 1).
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Proof. For v ∈ D(A) and η ∈ C1
b (Ω), η ≥ 0, we define the function Fη : (0, 1) → R by

Fη(t) =
∫

Ω

η|DT (t)v|P dx.

This function is differentiable since T (t)v is regular for every t > 0 and the equality

∂t|DT (t)v|P =
1

|DT (t)v|P
〈PDT (t)v,DAT (t)v〉

holds for a.e. x ∈ Ω. Moreover, T (t)v ∈ D(A) for every t > 0 and then

AT (t)v = T
( t

2

)
AT
( t

2

)
v;

this implies also that AT (t)v ∈ D(A). Then, thanks to (3.3) and from the fact that

|〈PDT (t)v,DAT (t)v〉|
|DT (t)u0|P

≤ |DAT (t)v|P ,

we can differentiate under the integral sign. Denoting by u(t, x) the solution (T (t)v)(x), we
obtain

F ′η(t) =
d

dt

∫
Ω

η|Du|P dx =
∫

Ω

η

|Du|P
〈PDu,DAu〉 dx

=
N∑

i,j,h,k=1

∫
Ω

η
PijDjuDi(Dh(AhkDku))

|Du|P
dx

+
N∑

i,j,h=1

∫
Ω

η
PijDjuDi(BhDhu)

|Du|P
dx+

N∑
i,j=1

∫
Ω

η
PijDjuDi(Cu)

|Du|P
dx

(I1) =
N∑

i,j,h,k=1

∫
Ω

η
PijDju(D2

ihAhkDku+DhAhkD
2
iku+DiAhkD

2
hku)

|Du|P
dx

(I2) +
N∑

i,j,h,k=1

∫
Ω

η
1

|Du|P
PijDjuAhkD

3
ihku dx

(I3) +
N∑

i,j,h,k=1

∫
Ω

η
1

|Du|P
PijDju

(
DiBhDhu+BhD

2
ihu
)
dx

(I4) +
N∑

i,j,h,k=1

∫
Ω

η
1

|Du|P
PijDju

(
DiC u+ CDiu

)
dx .

Notice that there is a constant c8 = c(N,M1, ‖η‖∞, ‖P‖∞) such that

|I1|+ |I3|+ |I4| ≤ c8‖u‖W 2,1(Ω) .
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It remains to estimate I2; integrating by parts with respect to xk, we have that

N∑
i,j,h,k=1

∫
Ω

η

|Du|P
PijDjuAhkD

3
ihku dx

(II1) =
1
2

N∑
i,j,h,k,l,m=1

∫
Ω

η

|Du|3P
PijDjuAhkD

2
ihuDkPlmDmuDlu dx

(II2) +
N∑

i,j,h,k,l,m=1

∫
Ω

η

|Du|3P
PijDjuAhkD

2
ihuPlmDmuD

2
klu dx

(II3) −
N∑

i,j,h,k=1

∫
Ω

η

|Du|P

(
DkPijDjuAhk + PijDjuDkAhk

)
D2
ihu dx

(II4) −
N∑

i,j,h,k=1

∫
Ω

η

|Du|P
PijD

2
kjuAhkD

2
ihu dx

(II5) −
N∑

i,j,h,k=1

∫
Ω

1
|Du|P

PijDjuAhkD
2
ihuDkη dx

(II6) +
N∑

i,j,h,k=1

∫
∂Ω

η

|Du|P
PijDjuAhkD

2
ihu νk dH

N−1

This implies the existence of a constant c9 = c(M1, ‖P‖1,∞, ‖η‖1,∞), such that

|II1|+ |II3|+ |II5| ≤ c9

∫
Ω

|D2u| dx .

Notice that for II2 we have

N∑
i,j,k,l,m=1

PijDjuAhkD
2
ihuPlmDmuD

2
klu =

〈
D2uAD2uPDu, PDu

〉
=
〈
P 1/2D2uAD2uP 1/2(P 1/2Du), P 1/2Du

〉
,

and for II4 we can write

N∑
i,j,h,k=1

PijD
2
kjuAhkD

2
ihu =

N∑
i,j,h,k=1

P
1/2
im P

1/2
mj D

2
kjuAhkD

2
ihu

= Tr
(
P 1/2D2uAD2uP 1/2

)
,

where Tr denotes the trace of a matrix. Then

II2 + II4 =
∫

Ω

1
|Du|P

(〈
P 1/2D2uAD2uP 1/2P

1/2Du

|Du|P
,
P 1/2Du

|Du|P

〉
−Tr

(
P 1/2D2uAD2uP 1/2

))
η dx ≤ 0(5.3)
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since P 1/2D2uAD2uP 1/2 is positive definite because〈
(P 1/2D2uAD2uP 1/2)ξ, ξ

〉
=
〈
A1/2D2uP 1/2ξ,A1/2D2uP 1/2ξ

〉
.

Finally, for the term II6, we notice that

N∑
i,j,h,k=1

PijDjuAhkD
2
ihu νk =

N∑
i=1

( N∑
h,k=1

AhkD
2
ihu νk

N∑
j=1

PijDju
)

=
N∑
i=1

N∑
h,k=1

(
Di

(
AhkDhu νk

)
−DhuDi(Ahkνk)

) N∑
j=1

PijDju(5.4)

= 〈D〈ADu, ν〉, PDu〉 − 〈D(Aν)Du,PDu〉
= −〈D(Aν)Du,PDu〉

since P ≡ A on ∂Ω. Observe that the regularity of the boundary and the ellipticity of
Aij imply that there exists a constant c10 = c(L,M1) such that |D(Aν)| ≤ c10. As a
consequence, we obtain that

∣∣∣ N∑
i,j,h,k=1

∫
∂Ω

1
|Du|P

η PijDjuAhkD
2
ihu νk dH

N−1
∣∣∣

=
∣∣∣ ∫
∂Ω

1
|Du|P

η 〈D(Aν)Du,PDu〉 dHN−1
∣∣∣

≤ c10

∫
∂Ω

η|Du|P dHN−1

≤ c10‖η‖∞
√
λ

∫
∂Ω

|Du|dHN−1

≤ c11

∫
Ω

[
|Du|+ |D2u|

]
dx ,

where c11 = c(M1, L, λ, ‖η‖∞, cΩ), where cΩ is introduced in (2.3).
Taking now into account that u(t, x) satisfies (3.2) and (3.5), we have proved there is a

constant c depending only on the dimension N , on the geometry of Ω, on the norms ‖P‖1,∞,
‖η‖1,∞ and on the constant M1, c1 such that for every t > 0 the inequality

F ′η(t) =
d

dt

∫
Ω

η|Du|P dx ≤ c

(
‖u0‖L1(Ω) +

1√
t
‖u0‖W 1,1(Ω)

)
≤ c

1√
t
‖u0‖W 1,1(Ω).

holds. Then, by integration (5.2) follows. �

Theorem 5.2 Assume (H1), (H2), (H3)′, (H4), and let (T (t))t≥0 be the semigroup gen-
erated by (A, D(A)) in L1(Ω). Then, for every u0 ∈ L1(Ω), the equality

lim
t→0

∫
Ω

|DT (t)u0(x)|P dx = |Du0|P (Ω)

holds. In particular, u0 belongs to BV (Ω) if and only if the above limit is finite.
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Proof. We start first assuming that Pij ∈ C2
b (Ω) and considering the operator Âu =

div(ADu), i.e., Bi = C = 0, i = 1, . . . N , and the generated semigroup, denoted T̂ . Thanks
to (4.3), we have only to prove that

(5.5) lim sup
t→0

∫
Ω

|DT̂ (t)u0(x)|P dx ≤ |Du0|P (Ω),

which is trivially satified if u0 ∈ L1(Ω) \BV (Ω). We then consider u0 ∈ BV (Ω). Fix ε > 0
and consider two open neighbourhoods U ⊂ V of ∂Ω with disjoint boundaries such that, if
we take S′ = Ω ∩ U and S = Ω ∩ V , we get

(5.6) |Du0|P (S) < ε.

Let then η ∈ C2(Ω) be a function such that

0 ≤ η ≤ 1, η ≡ 1 on S′, η ≡ 0 on Ω \ S

and define the matrix
PA = η2A+ (1− η2)P.

By Proposition 4.1 there exists a sequence

(un)n ⊂
{
v ∈ C∞c (Ω) : 〈ADv, ν〉 = 0 on ∂Ω

}
=
{
v ∈ C∞c (Ω) : 〈PADv, ν〉 = 0 on ∂Ω

}
⊂ D(A)

such that un → u0 in L1(Ω) and

lim
n→+∞

∫
Ω

|Dun|P dx = |Du0|P (Ω).

Notice that since P and A are λ-elliptic we get∫
Ω

|Dun|dx ≤
√
λ

∫
Ω

|Dun|P dx

and then there exists M > 0 such that

(5.7) ‖un‖W 1,1(Ω) ≤M.

Since Ω \ S is an open set, by lower semicontinuity we have

|Du0|P (Ω \ S) ≤ lim inf
n→+∞

∫
Ω\S

|Dun|P dx

and also ∫
S

|Dun|P dx =
∫

Ω

|Dun|P dx−
∫

Ω\S
|Dun|P dx

whence

lim sup
n→+∞

∫
S

|Dun|P dx ≤ lim
n→+∞

∫
Ω

|Dun|P dx− lim inf
n→+∞

∫
Ω\S

|Dun|P dx

≤ |Du0|P (Ω)− |Du0|P (Ω \ S) = |Du0|P (S).
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This proves that

(5.8) lim sup
n→+∞

∫
S

|Dun|P dx ≤ |Du0|P (S);

by the λ-ellipticity of A and P , the following holds:

lim sup
n→+∞

∫
S

|Dun|Adx = lim sup
n→+∞

∫
S

〈ADun, Dun〉1/2dx

= lim sup
n→+∞

∫
S

〈
AP−1PDun, Dun

〉1/2
dx

≤ λ lim sup
n→+∞

∫
S

|Dun|P dx,

whence by (5.8) and (5.6)

(5.9) lim sup
n→+∞

∫
S

|Dun|Adx ≤ λε.

We also notice that

|ξ|2P = 〈Pξ, ξ〉 = 〈PAξ, ξ〉+ 〈(P − PA)ξ, ξ〉
= 〈PAξ, ξ〉+ η2〈(P −A)ξ, ξ〉
= |ξ|2PA

+ η2〈(P −A)ξ, ξ〉

and, since P , A and A−1 are λ-elliptic,

|〈(P − PA)ξ, ξ〉| ≤ 2λ|ξ|2 ≤ 2λ2〈Aξ, ξ〉, ∀ξ ∈ RN .

We have then obtained that |ξ|P ≤ |ξ|PA
+ λ

√
2η|ξ|A and as a consequence∫

Ω

|DT̂ (t)un|P dx ≤
∫

Ω

|DT̂ (t)un|PA
dx+ λ

√
2
∫

Ω

η|DT̂ (t)un|Adx.

We can apply Proposition 5.1 to both terms in the right hand side in order to obtain, using
(5.7), that∫

Ω

|DT̂ (t)un|P dx ≤
∫

Ω

|Dun|PA
dx+ λ

√
2
∫

Ω

η|Dun|Adx+ (1 + λ
√

2)c9M
√
t.

By definition of PA, we have that

|ξ|2PA
= η2|ξ|2A + (1− η2)|ξ|2P , ∀ξ ∈ RN ,

and then ∫
Ω

|Dun|PA
dx ≤

∫
Ω

η|Dun|Adx+
∫

Ω

√
1− η2|Dun|P dx

≤
∫
S

|Dun|Adx+
∫

Ω

|Dun|P dx.
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We have then obtained the following estimate∫
Ω

|DT̂ (t)un|P dx ≤
∫

Ω

|Dun|P dx+ (1 + λ
√

2)
∫
S

|Dun|Adx+ (1 + λ
√

2)c9M
√
t.

Using (5.9) and the fact that T̂ (t)un → T̂ (t)u0 in L1(Ω) as n→ +∞, we get∫
Ω

|DT̂ (t)u0|P dx ≤ lim inf
n→+∞

∫
Ω

|DT̂ (t)un|P dx ≤ lim sup
n→+∞

∫
Ω

|DT̂ (t)un|P dx

≤ |Du0|P (Ω) + λ(1 + λ
√

2)ε+ (1 + λ
√

2)c9M
√
t

and the result for P regular then follows by letting t → 0, since ε is arbitrary. The case
with Pij ∈ Cb(Ω) is a consequence of the approximation result given in Proposition 4.3.

Finally, we consider non zero coefficients Bi and C and Au = div(ADu)+ 〈B,Du〉+Cu
with Bi, C ∈ L∞(Ω), i = 1, . . . N . Notice that the boundary operators associated with
A and Â as in (2.5) coincide, and then the set CA(Ω) defined in (2.2) is a core both for
(A, D(A)) and (Â, D(Â)). We denote by (T (t))t≥0 the semigroup generated by A, D(A)).
Notice that if we define û(t) := T̂ (t)u0 and u = T (t)u0 the function w := û − u is the
solution of the problem ∂tw −Aw = Eû := −〈B,Dû〉 − Cû in (0,∞)× Ω

w(0) = 0 in Ω
〈ADw, ν〉 = 0 in (0,∞)× ∂Ω .

Thus, since w(t) =
∫ t

0

T (t− s)Eû(s)ds, we get

Dw(t) = D(û− u)(t) =
∫ t

0

DT (t− s)Eû(s)ds

and then using (3.2)

‖Dû(t)−Du(t)‖L1(Ω) ≤ c2‖Eû‖L1(Ω)

∫ t

0

1√
t− s

ds

≤ 2c2
√
t
(
‖B‖∞‖Dû(t)‖L1(Ω) + ‖C‖∞‖û(t)‖L1(Ω)

)
.

Since ‖û(t)‖L1(Ω) → ‖u0‖L1(Ω) and by what seen before lim supt→0 ‖Dû(t)‖L1(Ω) is bounded
we can conclude that limt→0 ‖Dû(t)−Du(t)‖L1(Ω) = 0 and consequently, for v ∈ CA(Ω), it
follows

lim sup
t→0

∫
Ω

|DT (t)v|P dx ≤

≤ lim sup
t→0

∫
Ω

|DT (t)v|P dx+ lim
t→0

∫
Ω

|DT̂ (t)v −DT (t)v|P dx

≤
∫

Ω

|Dv|P dx.
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The thesis then follows from the density of CA(Ω) in BVP (Ω) (see Proposition 4.1); given
u0 ∈ BVP (Ω), we take a sequence (un) ⊂ CA(Ω) approximating u0 in P -variation. Then

|Du0|P (Ω) ≤ lim inf
t→0

∫
Ω

|DT (t)u0|P dx ≤ lim inf
t→0

lim inf
n→+∞

∫
Ω

|DT (t)un|P dx

≤ lim sup
t→0

lim sup
n→+∞

(∫
Ω

|Dun|P dx+ c6
√
t‖un‖W 1,1

)
≤ lim sup

t→0

(
|Du0|P (Ω) + c6M

√
t
)

= |Du0|P (Ω).

�
We end with the discussion of the simplest application of Theorem 5.2.

Example 5.3 Of course, the simplest case is with A = P = I, B = C = 0, i.e., (T (t))t≥0

is the heat semigroup generated by the Neumann Laplacian and the total variation is the
classical (nonweighted) one. In this case, it is easily seen that F (t) = ‖DT (t)u0‖L1(Ω) is
decreasing (as is the case if Ω = RN ), provided that Ω is convex. In fact, our computations
significantly simplify and go as follows, where as in the proof of Theorem 5.2 we set u(x, t) =
(T (t)u0)(x):

F ′(t) =
∫

Ω

∂t|Du| dx =
∫

Ω

1
|Du|

〈Du,D∂tu〉 dx =
∫

Ω

1
|Du|

∑
i,k

DiuDiD
2
kku dx

=
∫
∂Ω

1
|Du|

∑
i,k

DiuD
2
ikuνk dH

N−1 −
∫

Ω

∑
i,k

Dk
Diu

|Du|
D2
iku dx

= −
∫
∂Ω

1
|Du|

〈DνDu,Du〉 dHN−1 −
∫

Ω

[∣∣∣D2u
Du

|Du|

∣∣∣2 − Tr (D2u)2
]
dx ≤ 0

where we have taken into account (5.3), (5.4) and the fact that if Ω is convex then all the
curvatures (i.e., the eigenvalues of the matrix Dν) are non-negative.

Notice that it has been proved in [11, Theorem 2.16] that there is a (nonconvex) Ω such
that F ′(0) > 0.

6 A second characterization of BV functions

In this section we give a characterization of BV functions using in a different way the
semigroup generated by the operator A, in the spirit of [15]; more precisely, we prove that
for every u ∈ L1(Ω) equality (1.4) holds. The right hand side there significantly simplifies
if u = χE is the characteristic function of a measurable set E ⊂ RN of finite perimeter, and
reads

(6.1) lim
t→0

√
π

t

∫
Ec∩Ω

T (t)χEdx =
∫

FE∩Ω

|A1/2(x)νE(x)|dHN−1(x),

where FE is the reduced boundary of E. Indeed, we first prove (6.1), and then, using it in
connection with the coarea formula, we deduce (1.4). Let us recall some of the main notions
on sets of finite perimeter; for a detailed description see for instance [2]. We denote by FE
the reduced boundary of E, defined as the set

FE =
{
x ∈ supp |DχE | : ∃ lim

%→0

DχE(B%(x))
|DχE |(B%(x))

= νE(x), and |νE(x)| = 1
}
.
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Moreover, we denote by Eα the set of points of RN with density α at x, that is

Eα =
{
x ∈ RN : ∃ lim

%→0

|E ∩B%(x)|
|B%(x)|

= α

}
;

the essential boundary is then defined as ∂∗E = RN \ (E0 ∪ E1). The main properties of
sets of finite perimeter we need are that FE ⊂ E1/2 and that HN−1(∂∗E \ FE) = 0.

For every t > 0 and x0 ∈ Ω, we set

Ωt,x0 =
Ω− x0√

t
=
{
y ∈ RN : x0 +

√
ty ∈ Ω

}
and, given f : Ω → R,

f t,x0(y) = f(x0 +
√
ty);

with this notation, we define the operator At,x0 on Ωt,x0 by

At,x0(y)v(y) = div(At,x0(y)Dv(y)) +
√
t
〈
Bt,x0(y), Dv(y)

〉
+ tCt,x0(y)v(y)

=
N∑

h,k=1

Ahk(x0 +
√
ty)

∂2v

∂yh∂yk
(y)

+
√
t

N∑
k=1

(
N∑
h=1

DhAhk(x0 +
√
ty)

)
∂v

∂yk
(y)

+
√
t

N∑
h=1

Bh(x0 +
√
ty)

∂v

∂yh
(y) + tC(x0 +

√
ty)v(y),

and the operator Ax on RN by

Axv(y) =
N∑

h,k=1

Ahk(x)
∂2v

∂yh∂yk
(y).

By setting x = x0 +
√
ty, it is easily seen that At,x0(y) = tA(x). We have the following

Lemma.

Lemma 6.1 Setting u(s, x) = T (s)u0(x), we can define the function v : (0,+∞)×Ωt,x0 →
R by v(s, y) = u(ts, x0 +

√
ty); then v is the solution of the problem

(6.2)


∂sw = At,x0(y)w in (0,+∞)× Ωt,x0

w(0, y) = ut,x0
0 (y) in Ωt,x0

〈At,x0Dw, ν〉 = 0 in (0,+∞)× ∂Ωt,x0 .

Proof. By definition, we have v(0, y) = u(0, x0+
√
ty) = u0(x0+

√
ty) = ut,x0

0 (y). Moreover,
if we set x = x0 +

√
ty, we have that ∂/∂yh =

√
t∂/∂xh and also that the unit outward

normal to ∂Ωt,x0 at y coincides with the unit outward normal to ∂Ω at x; therefore,〈
At,x0(y)Dyv(s, y), ν(y)

〉
=
√
t〈A(x)Dxu(ts, x), ν(x)〉 = 0,

In the same way, we have

∂sv(s, y) = tu′(ts, x0 +
√
ty) = tu′(ts, x)

= tA(x)u(ts, x) = At,x0(y)v(s, y),
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where u′ denotes the derivative of u with respect to its first variable, and this concludes the
proof. �

We also denote by (T t,x0(s))s≥0 the semigroup associated with problem (6.2) and by
pt,x0(s, y, z) its kernel. We also denote by (T x0(s))s≥0 the semigroup associated with the
problem {

∂sw(s, y) = Ax0(y)w(s, y) in (0,+∞)× RN
w(0, y) = w0(y) in RN

and by px0(s, y, z) its kernel.

Lemma 6.2 For the kernels the following holds

(6.3) p(s, x, y) = t−N/2pt,x0

(s
t
,
x− x0√

t
,
y − x0√

t

)
.

Proof. The proof of Lemma 6.1 gives that v(s, y) = T t,x0(s)ut,x0
0 (y) = T (ts)u0(x0 +

√
ty);

using the kernels, we get that∫
Ω

p(s, x, y)u0(y)dy = T (s)u0(x) = T t,x0

(s
t

)
ut,x0

0

(
x− x0√

t

)
=

∫
Ωt,x0

pt,x0

(
s

t
,
x− x0√

t
, z

)
u0(x0 +

√
tz)dz

= t−N/2
∫

Ω

pt,x0

(
s

t
,
x− x0√

t
,
y − x0√

t

)
u0(y)dy.

The arbitrarity of u0 gives the thesis. �
We have the following result.

Proposition 6.3 For every f ∈ L1(RN ), let ut,x(s, ξ) be the solution of the problem
∂sw(s, ξ) = At,x(ξ)w(s, ξ) in (0,+∞)× Ωt,x〈
A(x+

√
tξ)Dw(s, ξ), νΩt,x(ξ)

〉
= 0 in (0,+∞)× ∂Ωt,x

w(0, ξ) = f(ξ) in Ωt,x

and let ux(s, ξ) be the solution of the problem{
∂sw(s, ξ) = Ax(ξ)w(s, ξ) in (0,+∞)× RN
w(0, ξ) = f(ξ) in RN .

Then for every s > 0 we have that ut,x(s, ·) converges to ux(s, ·) in L1
loc(RN ) as t→ 0.

Proof. We start by taking f ∈ Cc(RN ) and denote by ut,x(s, ξ) the solution of the problem

(6.4)

 ∂sw(s, ξ) = Ax(ξ)w(s, ξ) in (0,+∞)× Ωt,x

〈At,x(ξ)Dξw(s, ξ), ν(ξ)〉 = 0 in (0,+∞)× ∂Ωt,x

w(0, ξ) = f(ξ) in Ωt,x.

Since ut,x is a classical solution, for every regular function ϕ : [0, s0] × RN → R with
ϕ(s0, ·) = 0, the following holds:

−
∫

Ωt,x

f(ξ)ϕ(0, ξ)dξ =
∫ s0

0

∫
Ωt,x

{
ut,x(s, ξ)

(
∂sϕ(s, ξ) + tCt,x(ξ)

)
+
∂ut,x(s, ξ)

∂ξk

[
−At,xhk (ξ)

∂ϕ(s, ξ)
∂ξh

+
√
tϕ(s, ξ)Bt,xk (ξ)

]}
dξds.(6.5)
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Moreover, notice that tCt,x → 0, At,xhk → Ahk(x),
√
tBt,xk → 0 uniformly on compact sets as

t→ 0.
As an auxiliary tool, let us use the L2 theory, see e.g. [17, Section 5.4], recalling that

there is M > 0 such that

(6.6) ‖ut,x(s)‖L2(Ωt,x) ≤M‖f‖L2(Ωt,x) ≤M‖f‖L2(RN ),

(6.7) ‖Dut,x(s)‖L2(Ωt,x) ≤
M√
s
‖f‖L2(Ωt,x) ≤

M√
s
‖f‖L2(RN ),

and

(6.8) ‖D2ut,x(s)‖L2(Ωt,x) ≤
M

s
‖f‖L2(Ωt,x) ≤

M

s
‖f‖L2(RN ).

These conditions imply that for every bounded open set K ⊂ RN , s > 0 fixed and t0 small,
the family (ut,x(s, ·))0<t<t0 is bounded in W 2,2(K), and then, up to subsequences, it is
strongly convergent in W 1,2(K) and also in W 1,1(K).

We can now fix a dense countable set D ⊂ [0, s0] in such a way that uth,x(s, ·) converges
to some g(s, ·) in W 1,1(K) for every s ∈ D and some sequence th → 0. By Theorem 3.1 we
get that

‖ut,x(s2, ·)− ut,x(s1, ·)‖L1(Ωt,x) =
∥∥∥∫ s2

s1

∂su
t,x(s, ·)ds

∥∥∥
L1(Ωt,x)

≤
∫ s2

s1

‖At,xut,x(s, ·)‖L1(Ωt,x)ds

≤ c2‖f‖L1(Ωt,x)

∫ s2

s1

1
s
ds ≤ c2‖f‖L1(RN ) log

s2
s1
,

that is, the function s 7→ ut,x(s, ·) is continuous from (0, s0) to L1(Ωt,x); in particular, if we
consider s1, s2 ∈ D, then the inequality

‖g(s2, ·)− g(s1, ·)‖L1(K) ≤‖g(s2, ·)− uth,x(s2, ·)‖L1(K) + ‖uth,x(s2, ·)− uth,x(s1, ·)‖L1(K)

+ ‖uth,x(s1, ·)− g(s1, ·)‖L1(K)

holds and the convergence of ut,x on D shows that we can extend g to a continuous map
from (0, s0) to L1

loc(RN ); we also notice that by (3.2) we deduce also that g(s, ·) ∈W 1,1(K)
for every s ∈ (0, s0). By continuity, and by the convergence of uth,x(s, ·) on D we deduce
that uth,x(s, ·) → g(s, ·) in L1

loc(RN ) for every s ∈ (0, s0). In addition, conditions (3.2) allow
us to apply the dominated convergence theorem, and then, taking the limit in (6.5), we get

−
∫
K

f(ξ)ϕ(0, ξ)dξ =
∫ s0

0

∫
K

(
g(s, ξ)∂sϕ(s, ξ)− 〈A(x)Dξϕ(s, ξ), Dξg(s, ξ)〉

)
dξds

for all ϕ as above, and then (see e.g. [16, Prop. 2.1, Ch. III]) g(s, ·) is the solution of the
problem {

∂sw(s, ξ) = Ahk(x) ∂2w
∂ξh∂ξk (s, ξ) in (0, s0)× RN

w(0, ξ) = f(ξ) in RN
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for every f ∈ Cc(RN ). Then, it follows that

g(s, ξ) = ux(s, ξ) =
∫

RN

px(s, ξ, z)f(z)dz,

where using the Fourier transform the kernel px is given by

(6.9) px(s, ξ, z) =
1

(4πs)N/2|detA1/2(x)|
exp

(
−
〈
A−1(x)(ξ − z), (ξ − z)

〉
4s

)
.

From the density of Cc in L1 we conclude. �
The following statement is an immediate consequence of Proposition 6.3.

Corollary 6.4 For every s > 0, ξ ∈ RN , the measures dµt,x = pt,x(s, ξ, ·)dLN Ωt,x are
weakly∗ convergent to the measure dµx = px(s, ξ, ·)dLN as t → 0, that is, for every ϕ ∈
Cc(RN ) the following equality holds

lim
t→0

∫
Ωt,x

ϕ(z)pt,x(s, ξ, z)dz =
∫

RN

ϕ(z)px(s, ξ, z)dz.

Henceforth, given the function p(s, ξ, z), we shall denote by D1p(s, ξ, z) the gradient with
respect to the first spatial variables ξ and by D2p(s, ξ, z) the gradient with respect to the
second spatial variables z.

Proposition 6.5 For every s > 0 and every ξ ∈ RN , the equality

(6.10) lim
t→0

∫
Ωt,x

〈D2p
t,x(s, ξ, z), ϕ(z)〉dz =

∫
RN

〈D2p
x(s, ξ, z), ϕ(z)〉dz

holds for every ϕ ∈ Cc(RN ,RN ).

Proof. We start by considering ϕ ∈ C1
c (RN ,RN ); we choose t0 > 0 in such a way that

suppϕ ⊂ Ωt,x for all t ≤ t0; then∫
Ωt,x

〈D2p
t,x(s, ξ, z), ϕ(z)〉dz = −

∫
Ωt,x

pt,x(s, ξ, z)divϕ(z)dz

and then, by Corollary 6.4

lim
t→0

∫
Ωt,x

〈D2p
t,x(s, ξ, z), ϕ(z)〉dz = lim

t→0
−
∫

Ωt,x

pt,x(s, ξ, z)divϕ(z)dz

= −
∫

RN

px(s, ξ, z)divϕ(z)dz

=
∫

RN

〈D2p
x(s, ξ, z), ϕ(z)〉dz.

For an arbitrary ϕ ∈ Cc(RN ,RN ) we use an approximation procedure; we select ϕε ∈
C1
c (RN ,RN ) such that ‖ϕ− ϕε‖∞ ≤ ε and then∫

Ωt,x

〈D2p
t,x(s, ξ, z), ϕ(z)〉dz =

∫
Ωt,x

〈D2p
t,x(s, ξ, z), ϕε(z)〉dz

+
∫

Ωt,x

〈D2p
t,x(s, ξ, z), (ϕ(z)− ϕε(z))〉dz
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Taking into account that pt,x(s, ξ, z) = tN/2p(ts, x+
√
tξ, x+

√
tz) and also that

D2p
t,x(s, ξ, z) = Dzt

N/2p(ts, x+
√
tξ, x+

√
tz)

= t(N+1)/2D2p(ts, x+
√
tξ, x+

√
tz)

by (3.1) we obtain∣∣∣ ∫
Ωt,x

〈D2p
t,x(s, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣
≤ t(N+1)/2‖ϕ− ϕε‖∞

∫
Ωt,x

|D2p(ts, x+
√
tξ, x+

√
tz)|dz

≤ Cε

with C independent of t. Of course, the inequality∣∣∣ ∫
RN

〈D2p
x(s, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣ ≤ Cε

holds as well, and then

lim
t→0

∣∣∣ ∫
Ωt,x

〈D2p
t,x(s, ξ, z), ϕ(z)〉dz −

∫
RN

〈D2p
x(s, ξ, z), ϕ(z)〉dz

∣∣∣
≤ lim
t→0

∣∣∣ ∫
Ωt,x

〈D2p
t,x(s, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣
+ lim
t→0

∣∣∣ ∫
Ωt,x

〈D2p
t,x(s, ξ, z), ϕε(z)〉dz −

∫
RN

〈D2p
x(s, ξ, z), ϕε(z)dz〉

∣∣∣
+ lim
t→0

∣∣∣ ∫
RN

〈D2p
x(s, ξ, z), (ϕ(z)− ϕε(z))〉dz

∣∣∣ ≤ Cε

and the thesis follows from the arbitrariness of ε. �
The main step in the proof of (1.4) is the following result, where an asymptotic formula

relating two sets of finite perimeter is shown. In the statement, we assume that E has finite
measure in order to give a meaning to the left hand side in (6.11). But, notice that, since
E has finite peimeter in Ω, then by the relative isoperimetric inequality in Ω

min{|E ∩ Ω|, |Ω \ E|} ≤ cP (E,Ω)N/N−1,

either |E ∩ Ω| or |Ω \ E| is finite. Therefore, if |E ∩ Ω| is infinite, then |Ω \ E| is finite and
(6.11) applies with Ω \ E in place of E.

Theorem 6.6 Assume (H1), (H2), (H3), and let (T (t))t≥0 be the semigroup generated
by (A, D(A)) in L1(Ω); then, if E,F ⊂ RN are sets of finite perimeter in Ω, the following
holds

(6.11) lim
t→0

√
π

t

∫
Ω∩F

(χE(x)− T (t)χE(x))dx =
∫

Ω∩FF∩FE

〈A(x)νE(x), νF (x)〉dHN−1(x).
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Proof. We have∫
Ω∩F

(T (t)χE(x)− χE(x))dx =
∫

Ω∩F

∫ t

0

d

ds
T (s)χE(x)dsdx(6.12)

=
∫ t

0

∫
Ω∩F

AT (s)χE(x)dxds

=
∫ t

0

(∫
Ω∩F

divx(A(x)DxT (s)χE(x))dx(6.13)

+
∫

Ω∩F
〈B(x), DxT (s)χE(x)〉dx

+
∫

Ω∩F
C(x)T (s)χE(x)dx

)
ds.

For the last term we have that∣∣∣∣∫
Ω∩F

C(x)T (s)χE(x)dx
∣∣∣∣ ≤ ‖C‖∞ min{|Ω ∩ E|, , |Ω ∩ F |}

and then

lim
t→0

1√
t

∫ t

0

∫
Ω∩F

C(x)T (s)χE(x)dxds = 0.

For the second term in (6.12), we notice that∣∣∣∣∫
Ω∩F

∫
Ω∩E

〈B(x), Dxp(s, x, y)〉dydx
∣∣∣∣ ≤ ‖B‖∞ min{|Ω ∩ E|, |Ω ∩ F |}

∫
Ω

|Dxp(s, x, y)|dx

and using Gaussian estimates (3.1) we get∫
Ω

|Dxp(s, x, y)|dx ≤
c√
s

for some constant c depending only on the operator A and the dimension N . We introduce
now the kernel p∗(s, x, y) of the semigroup generated by the adjoint operator A∗ of A; by
the symmetry of the matrix A, the second order part of A∗ is the same as A. In this way
we have that p(s, x, y) = p∗(s, y, x) (see for instance [17, Theorem 5.6]) and since

∂

∂xi
p(s, x, y) = lim

h→0

p(s, x+ hei, y)− p(s, x, y)
h

= lim
h→0

p∗(s, y, x+ hei)− p∗(s, y, x)
h

= s−N/2 lim
h→0

ps,x∗ (1, y−x√
s
, hei√

s
)− ps,x∗ (1, y−x√

s
, 0)

h

= s−(N+1)/2Di
2p
s,x
∗

(
1,
y − x√

s
, 0
)

where Di
2 denotes the i-th component of the gradient with respect to the second variables.
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Then Dxp(s, x, y) = s−(N+1)/2D2p
s,x
∗ (1, y−x√

s
, 0); hence∫

Ω∩F
〈B,DxT (s)χE〉dx =

∫
Ω∩F

dx

∫
Ω∩E

〈B(x), Dxp(s, x, y)〉dy

= s−(N+1)/2

∫
Ω∩F

dx

∫
Ω∩E

〈
B(x), D2p

s,x
∗

(
1,
y − x√

s
, 0
)〉

dy

=
1√
s

∫
Ω∩F

dx

∫
Ωs,x∩Es,x

〈B(x), D2p
s,x
∗ (1, z, 0)〉dz

=
1√
s

∫
Ω∩F

dx

∫
RN

〈B(x), D2p
s,x
∗ (1, z, 0)〉dµs,x(z).

where we have denoted by µs,x the measure

µs,x = LN (Ωs,x ∩ Es,x) .

These measures verify the following properties:

1. µs,x ⇀∗ 0 if x ∈ E0:

2. µs,x ⇀∗ LN if x ∈ E1;

3. µs,x ⇀∗ LN HνE(x) for x ∈ FE, where HνE(x) = {z ∈ RN : 〈z, νE(x)〉 ≤ 0}.

These facts imply that, for x ∈ E0,∫
RN

〈B(x), D2p
s,x
∗ (1, z, 0)〉dµs,x(z) → 0;

moreover, for x ∈ E1∫
RN

〈B(x), D2p
s,x
∗ (1, z, 0)〉dµs,x(z) → B(x) ·

∫
RN

D2p
x
∗(1, z, 0)dz = 0.

Taking into account that |F \ (E0 ∪E1)| = 0 and the dominated convergence Theorem, we
have then obtained that

lim
t→0

1√
t

∫ t

0

∫
Ω∩F

∫
Ω∩E

〈B(x), Dxp(s, x, y)〉dydxds = 0

It remains to study the first term of (6.12); with an integration by parts and recalling that
HN−1(∂∗E \ FE) = 0, we get∫

Ω∩F
div(ADxT (s)χE(x))dx =

∫
Ω∩FF

〈DxT (s)χE(x), A(x)νF (x)〉dHN−1(x)

=
∫

Ω∩FF

∫
Ω∩E

s−(N+1)/2

〈
D2p

s,x
∗

(
1,
y − x√

s
, 0
)
, A(x)νF (x)

〉
dydHN−1(x)

= − 1√
s

∫
Ω∩FF

∫
Ωs,x∩Es,x

〈D2p
s,x
∗ (1, z, 0), A(x)νF (x)〉dzdHN−1(x)

= − 1√
s

∫
Ω∩FF

∫
RN

〈D2p
s,x
∗ (1, z, 0), A(x)νF (x)〉dµs,x(z)dHN−1(x).
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With the same argument previously used, we can deduce that for x ∈ E0 ∪E1, the limit of
the above integral as t→ 0 vanishes; then we can only consider points x ∈ FF ∩FE; in this
case we obtain that∫

RN

〈D2p
s,x
∗ (1, z, 0), A(x)νF (x)〉dµs,x(z) −→

∫
HνE(x)

〈D2p
x
∗(1, z, 0), A(x)νF (x)〉dz.

Taking into account (6.9) and the symmetry of A, we get that

D2p
x
∗(1, z, 0) = − 1

2(4π)N/2|detA1/2(x)|
exp

(
−
〈
A−1(x)z, z

〉
/4
)
A−1(x)z,

and then, since for x ∈ FF ∩ FE we have νF (x) = 〈νE(x), νF (x)〉νE(x)∫
HνE(x)

〈D2p
x
∗(1, z, 0), A(x)νF (x)〉dz =

= − 〈νE(x), νF (x)〉
2(4π)N/2|detA1/2(x)|

∫
HνE(x)

exp
(
−
〈
A−1(x)z, z

〉
/4
)
〈z, νE(x)〉dz

= −〈νE(x), νF (x)〉
πN/2

∫
H

A1/2(x)νE(x)

e−|z|
2
〈
z,A1/2(x)νE(x)

〉
dz.

For the computation of this last integral, we consider an orthonormal basis {e1, . . . , eN} of
RN with

eN =
A1/2(x)νE(x)
|A1/2(x)νE(x)|

;

we then obtain∫
H

A1/2(x)νE(x)

〈
z,A1/2(x)νE(x)

〉
e−|z|

2
dz = |A1/2(x)νE(x)|

∫
H

A1/2(x)νE(x)

zNe
−|z|2dz

= π(N−1)/2|A1/2(x)νE(x)|
∫ 0

−∞
zNe

−z2NdzN

= −π
(N−1)/2

2
|A1/2(x)νE(x)|.

At the end, we have obtained that

lim
t→0

√
π

t

∫
Ω∩F

(T (t)χE − χE)dx = −
∫

Ω∩FF∩FE

〈νE , νF 〉|A1/2νE |dHN−1.

�
Specializing the above result for F = Ec we get the following

Corollary 6.7 Assume (H1), (H2), (H3), and let (T (t))t≥0 be the semigroup generated
by (A, D(A)) in L1(Ω); then, if E ⊂ RN is a set with finite perimeter in Ω, the following
equality holds:

(6.14) lim
t→0

√
π

t

∫
Ω∩Ec

T (t)χEdx =
∫

Ω∩FE

|A1/2(x)νE(x)|dHN−1(x).
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Remark 6.8 Using an argument similar to the one used in [15, Theorem 3.4], it is possible
to prove that if E is a set with finite measure such that

lim inf
t→0

1√
t

∫
Ec∩Ω

T (t)χE(x)dx < +∞,

then E has finite perimeter in Ω, that is χE ∈ BV (Ω). In fact, denoting by

|DνχE |(z) = lim inf
t→0

|E∆(E −
√
tz)|

t
,

we get∫
Ω

∫
RN

|z|px(1, 0, z)|D z
|z|
χE |(z)dzdx ≤ lim inf

t→0

∫
Ω

∫
Ωt,x

|z|pt,x(1, 0, z) |E∆(E −
√
tz)|√

tz
dzdx

= lim inf
t→0

1√
t

∫
Ω×Ω

χE(y)χEc(x)p(t, x, y)dxdy < +∞,

and this implies that almost every directional derivative of χE is a finite measure, that is
|DχE |(Ω) < +∞.

We are now in a position to prove the main result of this section, namely, the announced
characterization of BV functions (1.4). The strategy is the same as for RN , see [15], and is
based on (4.2).

Theorem 6.9 Assume (H1), (H2), (H3), and let (T (t))t≥0 be the semigroup generated
by (A, D(A)) in L1(Ω) and let u ∈ L1(Ω); then u ∈ BV (Ω) if and only if

lim inf
t→0

1√
t

∫
Ω×Ω

|u(x)− u(y)|p(t, x, y)dxdy < +∞;

moreover, in this case the following equality holds

(6.15) |Du|A(Ω) = lim
t→0

√
π

2
√
t

∫
Ω×Ω

|u(x)− u(y)|p(t, x, y)dxdy.

Proof. We start by considering u ∈ L1(Ω); for τ ∈ R we denote by Eτ = {u > τ} and,
since the semigroup is positive and contractive, we obtain that

0 ≤
∫

R
lim inf
t→0

1√
t

∫
Ec

τ∩Ω

T (t)χEτ dxdτ

≤ lim inf
t→0

1√
t

∫
R

∫
Ec

τ∩Ω

T (t)χEτ dxdτ

≤ lim inf
t→0

1√
t

∫
Ω×Ω

∫
R
|χEτ (x)− χEτ (y)|p(t, x, y)dxdydτ

= lim inf
t→0

1√
t

∫
Ω×Ω

|u(x)− u(y)|p(t, x, y)dxdy < +∞

and then, thanks to Remark 6.8, almost every level Eτ has finite perimeter and equation
(6.14) holds. Then, using coarea formula (4.2), we get

|Du|A(Ω) =
∫

R
PA(Eτ ,Ω)dτ =

∫
R

lim
t→0

√
π

t

∫
Ec

τ∩Ω

T (t)χEτ
dxdτ

≤ lim inf
t→0

√
π

t

∫
Ω×Ω

|u(x)− u(y)|p(t, x, y)dxdy < +∞
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that is u ∈ BVA(Ω). The other implication follows from (6.15). To prove (6.15), we define
the function

gt(τ) =
√
π

t

∫
Ec

τ∩Ω

T (t)χEτ
(x)dx.

For this function we have the following estimate

|gt(τ)| =
√
π

t

∣∣∣ ∫ t

0

∫
Ec

τ∩Ω

AT (s)χEτ
dxds

∣∣∣
=
√
π

t

∣∣∣ ∫ t

0

(∫
FEτ∩Ω

〈ADT (s)χEτ
, νEτ

〉dHN−1 +
∫
Ec

τ∩Ω

〈B,DT (s)χEτ
〉dx

+
∫
Ec

τ∩Ω

CT (s)χEτ
)dx
)
ds
∣∣∣

≤
√
π

t

∫ t

0

(
‖A‖∞

∫
FEτ

|DT (s)χEτ
|dHN−1

+ ‖B‖∞
∫
Ec

τ∩Ω

∫
Eτ∩Ω

|Dxp(s, x, y)|dxdy

+ ‖C‖∞
∫
Ec

τ∩Ω

∫
Eτ∩Ω

|p(s, x, y)|dxdy
)
ds

≤cM0(P (Eτ ,Ω) + min{|Eτ ∩ Ω|, |Ecτ ∩ Ω|}) = h(τ)

where the last inequality follows from the estimates (3.1) on the kernel p(s, x, y). We have
that h ∈ L1(R) since ∫

R
P (Eτ ,Ω)dτ = |Du|(Ω)

and, denoted by u+ = max{u, 0} and u− = max{−u, 0},∫
R

min{|Eτ ∩ Ω|, |Ecτ ∩ Ω|}dτ ≤
∫ +∞

0

|Eτ ∩ Ω|dτ +
∫ 0

−∞
|Ecτ ∩ Ω|dτ

=
∫ +∞

0

∫
Ω

χEτ
dxdτ +

∫ 0

−∞

∫
Ω

χEc
τ
dxdτ

=
∫

Ω

∫ +∞

0

χ{u>τ}dτdx+
∫

Ω

∫ +∞

0

χ{−u≥τ}dτdx

=
∫

Ω

u+dx+
∫

Ω

u−dx =
∫

Ω

|u|dx.

Then we can apply Corollary 6.7 and Lebesgue dominated convergence to the functions gt
in order to obtain

|Du|A(Ω) =
∫

R
PA(Eτ ,Ω)dτ =

∫
R

lim
t→0

√
π

t

∫
Ec

τ∩Ω

T (t)χEτ dx

= lim
t→0

√
π

t

∫
R

∫
Ω×Ω

(χEτ
(y)− χEτ

(y)χEτ
(x))p(t, x, y)dxdydτ

= lim
t→0

√
π

t

∫
Ω×Ω

(u(y)−min{u(y), u(x)})p(t, x, y)dxdy
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since χEτ (y)χEτ (x) 6= 0 iff τ < min{u(x), u(y)}; noticing that

min{u(y), u(x)} =
1
2
(u(x) + u(y)− |u(x)− u(y)|),

the assertion follows. �
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[4] Häım Brézis. How to recognize constant functions. Connections with Sobolev spaces.
Russian Math. Surveys, 57:693-708, 2002.

[5] Paul Leo Butzer, Hubert Berens. Semigroups of operators and approximation. Springer,
1967.

[6] Andrea Carbonaro, Giancarlo Mauceri. A note on bounded variation and heat semi-
group on Riemannian manifolds. Bull. Australian Math. Soc., to appear.

[7] Gianni Dal Maso. Integral representation on BV (Ω) of Γ-limits of variational integrals.
Manuscripta math., 30(4):387-416, 1980.

[8] Juan Diego Dávila. On an open question about functions of bounded variation. Calc.
Var. 15:519-527, 2002.

[9] Ennio De Giorgi. Su una teoria generale della misura (r−1)-dimensionale in uno spazio
ad r dimensioni. Ann. Mat. Pura Appl., (4) 36:191-213, 1954, and also Ennio De Giorgi:
Selected Papers, (L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S.Spagnolo eds.)
Springer, 2006, 79-99. English translation, Ibid., 58-78.

[10] Gabriella Di Blasio. Analytic semigroups generated by elliptic operators in L1 and
parabolic equations. Osaka J. Math., 28(2):367–384, 1991.

[11] Marina Ghisi, Massimo Gobbino. Gradient estimates for the Perona-Malik equation
Math. Ann. 337:557-590, 2007.

[12] Daniel Henry. Geometric theory of semilinear parabolic equations, volume 840 of Lecture
Notes in Mathematics. Springer, Berlin, 1981.

[13] Michel Ledoux. Semigroup proofs of the isoperimetric inequality in Euclidean and
Gauss space. Bull. Sci. Math. 118:485-510, 1994.

[14] Michele Miranda Jr., Diego Pallara, Fabio Paronetto and Marc Preunkert. Heat semi-
group and functions of bounded variation on Riemannian manifolds. J. Reine Ang.
Math., forthcoming.

30



[15] Michele Miranda Jr., Diego Pallara, Fabio Paronetto and Marc Preunkert. Short-time
heat flow and functions of bounded variation in RN . Ann. Fac. Sci. Toulouse Math.,
16(1): 125–145, 2007.

[16] Ralph Edwin Showalter. Monotone operators in Banach space and nonlinear partial
differential equations. Mathematical Surveys and Monographs 49, American Mathe-
matical Society, 1997.

[17] Hiroki Tanabe. Functional analytic methods in partial differential equations. Marcel
Dekker, 1997.

31


