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Abstract. The aim of this paper is to study the existence and the re-
gularity of optimal convex domains for a large class of shape optimization
problems involving functions of the eigenvalues of the Robin-Laplacian on
convex sets. We will prove that convex solutions exist and that, under
some additional hypotheses on the functional, these optimal sets have C1

boundary.

1. Introduction

Let Ω ⊂ Rd be a bounded Lipschitz domain and β > 0 be a fixed positive real
number. A number λ ∈ R is told an eigenvalue of the Robin problem for the
Laplace operator with boundary parameter β if there exists a non-zero function
u ∈ H1(Ω) solving, in the weak sense, the problem

(1.1)

−∆u = λu in Ω
∂u

∂n
+ βu = 0 on ∂Ω

(here n is the outer normal on ∂Ω), i.e., following the approach in Chapter 6
of [3],

∀ v ∈ H1(Ω)

∫
Ω

∇u · ∇v dx+ β

∫
∂Ω

uv dHd−1 = λ

∫
Ω

uv dx.

For every k ∈ N, the k-th eigenvalue, that we will denote by the symbol
λk,β(Ω), is given by the usual Rayleigh min-max formula

(1.2) λk,β(Ω) = min
S∈Sk

max
u∈S\{0}

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

u2 dHd−1∫
Ω

u2 dx

,

where Sk denotes the family of all k-dimensional subspaces of H1(Ω).
We are interested in solving in Rd the following problem
(1.3)

min
{
F (λ1,β(Ω), . . . , λk,β(Ω)) + ΛP (Ω) : Ω ⊂ Rd bounded and convex

}
,

where Λ > 0, F : Rk → R is non decreasing and lower semicontinuous in each
variable and P (Ω) is the perimeter in the sense of De Giorgi (for Lipschitz set
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it holds P (Ω) = Hd−1(∂Ω), see [1] for details). The prototypic problem of this
family is

min
{
λ1,β(Ω) + . . .+ λk,β(Ω) + ΛP (Ω) : Ω ⊂ Rd bounded and convex

}
.

We will prove an existence result for problem (1.3) and, under slightly stronger
hypotheses on F , we will be able to gain also regularity of the optimal sets.
The main result of the paper is the following theorem.

Theorem 1.1. Let F : Rk → R be non decreasing and lower semicontinuous
in each variable. Then, problem (1.3) admits at least a solution.
Moreover, if F is differentiable and its partial derivative with respect to the
first variable is strictly positive, then every optimal solution has C1 boundary.

The result presented in the paper, up to the authors’ knowledge, is new in liter-
ature, although similar problems have already been studied in different settings
(e.g. with Dirichlet boundary conditions) and using different techniques. The
proof of existence of optimal convex shapes (Theorem 3.2) follows a standard
approach used in shape optimization problems with geometrical constraints:
the idea is to choose a suitable topology on open (or closed) sets that preserves
convexity, then to show that minimizing sequences enjoy some properties that
assure compactness in the chosen topology. The proof of the regularity of the
convex solutions (Theorem 5.3) is based on a cutting argument that allowed
us to show that, in order to minimize (1.3), it is more convenient to remove
singularity, as for instance corners in two dimensions.
The structure of the paper is the following. In Section 2 we recall the notation,
some tools and well known facts which are necessary to understand and obtain
our results; in particular, we will present a short survey on Hausdorff distances
(subsection 2.1), their good behaviour in the convex setting and their links
with the convergence in measure and of the perimeters and some properties
of λk,β(Ω) if Ω is a bounded Lipschitz domain (subsection 2.2). In Section 3
we obtain the existence of optimal convex shapes minimizing (1.3) via direct
methods of calculus of variations, proving that λk,β is lower semicontinuous
and that minimizing sequences are compact and do not degenerate or stretch
indefinitely in any direction. Then, in Section 4, we will estimate the gap
between λk,β(Ω) and λk,β(Ωε), where Ω is an admissible set with a singularity
point on the boundary and Ωε is another convex competitor obtained by a
suitable cut of Ω around the singularity point. Finally, in Section 5, we will
introduce the family of of convex energy subsolutions for (1.3), that generalizes
the definition of solutions, then we will complete the proof of Theorem 1.1
showing the regularity of the boundaries of the energy subsolutions.

2. Notation and preliminaries

In this section we will fix the notation used throughout the paper and recall
some definitions and tools which are applied in the following sections.
For x ∈ Rd and and r > 0, Br(x) will denote the ball of radius r centered in x;
when x is omitted, we consider the ball centered in the origin. For every mea-
surable set E ⊆ Rd, we will use the symbols χE for the characteristic function
of E and Ec for its complement and tE for the rescaled set {tx : x ∈ E}. As
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usual, |E| and Hs(E) (s > 0) stand respectively for the Lebesgue measure and
the Hausdorff s-dimensional measure of E; if E is a piecewise regular hypersur-
face, Hd−1(E) coincides with its area measure. We will denote by H−dim(E)
the Hausdorff dimension of the set E; for sufficiently regular sets, it coincides
with the topological dimension of the set E, e.g. if E is an open set of Rd,
H−dim(E) = d (for further details see Chapter 2, Section 8 in [1]). For every
open set Ω ⊂ Rd, we will denote by Lp(Ω) the usual Lebesgue space of (classes
of) p-summable functions, by W k,p(Ω) the Sobolev space of functions whose
(weak) derivatives are p-summable up to order k and by Hk(Ω) the (Hilbert)

space W k,2(Ω). For brevity’s sake, we will often use the symbol Rβ
Ω(u) to de-

note the Rayleigh quotient in (1.2) computed for the admissible function u on
the set Ω with boundary parameter β; when the boundary parameter does not
vary throughout the proofs, β is omitted.
In order to minimize (1.3) using the direct methods of the Calculus of Vari-
ation, we need lower semicontinuity of the Robin eigenvalues with respect to
the some compact topology on the class of convex sets of Rd; as we will see in
Subsection 2.1, a good choice for our purposes is the Haudorff topology, that
coincides with the L1-topology on suitable classes of convex sets.
The following proposition is a particular case of Proposition 2.3 in [4] and
gives us a first result that will be useful in Section 3 to obtain the lower
semicontinuity of λk,β and then to gain an existence result in any dimension d.

Proposition 2.1. Let (En)n∈N be a sequence of bounded convex sets of Rd

and let E ⊂ Rd convex such that

lim sup
n→∞

Hd−1(∂En) < +∞ and χEn
L1(Rd)−→ χE.

Let (un)n∈N ⊂ H1(Rd) and u ∈ H1(Rd) such that un ⇀ u weakly in H1(Rd).
Then

Hd−1(∂E) ≤ lim inf
n→∞

Hd−1(∂En) and

∫
∂E

u2 dHd−1 ≤ lim inf
n→∞

∫
∂En

u2
n dHd−1.

The next notion of convergence of functional spaces is very useful in shape
optimization problems and will be used to obtain ecistence of minimizers for
Problem (1.3).

Definition 2.2 (convergence in the sense of Mosco). Let X be a Banach space
and (Gn)n a sequence of closed subsets of X. We define weak upper and strong
lower limits in the sense of Kuratowski the spaces

w − lim sup
n→+∞

Gn := {u ∈ X : ∃ (nk)k, ∃ unk ∈ Gnk s.t. unk ⇀ u weakly in X} ,

s− lim inf
n→+∞

Gn := {u ∈ X : ∃ unk ∈ Gnk s.t. un → u strongly in X} .

We say that Gn converges to the closed subspace G in the sense of Mosco if

w − lim sup
n→+∞

Gn ⊆ G

and
G ⊆ s− lim inf

n→+∞
Gn,
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i.e. if

w − lim sup
n→+∞

Gn = G = s− lim inf
n→+∞

Gn.

2.1. Hausdorff convergences. Theorem 2.1 is a key result in order to obtain
lower semicontinuity of the Robin eigenvalues with respect to the L1-topology.
The only disadvantage is that no topological properties of converging sequences
can be deduced for the limit set in this framework (we imposed in the hypothe-
ses the convexity of the limit set). This difficulty may be overcome choosing
a suitable (compact) topology on the class of convex sets that, under suitable
hypotheses, coincides with the L1-topology for converging sequences. To this
aim, we introduce the Hausdorff distance between closed sets.

Definition 2.3 (Hausdorff topology on closed sets). Let A,B ⊆ Rd be closed.
We define the Hausdorff distance between A and B by

dH(A,B) := max

{
sup
x∈A

dist(x,B), sup
x∈B

dist(x,A)

}
.

The topology induced by this distance is called Hausdorff topology (or simply
H-topology) on closed sets.

The counterpart for open sets of the Hausdorff topology is defined below.

Definition 2.4 (Hausdorff topology on open sets). Let A,B ⊆ Rd be open.
We define the Hausdorff-complementary distance between A and B by

dHc(A,B) := dH(Ac, Bc).

The topology induced by this distance is called Hausdorff-complementary topol-
ogy (or simply Hc-topology) on open sets.

These topologies on turn out to be suited for our purposes as, under not so re-
strictive hypotheses on the functional, they guarantee compactness of sequence
of convex sets. The following proposition contains some results proved in [6],
Section 2.4, and shows us that Hausdorff convergences preserve convexity and
assure continuity for Lebesgue measure and perimeters of convex sets.

Proposition 2.5. The following results hold for convex sets:

(i) If A ⊆ B, then Hd−1(∂A) ≤ Hd−1(∂B);
(ii) If An, A are closed (respectively open) and convex An → A with re-

spect to the H-topology (respectively Hc-topology), then χAn → χA in
L1; moreover, if H − dim(A) = H − dim(An), then Hd−1(∂An) →
Hd−1(∂A).

(iii) |A| ≤ ρHd−1(∂A), where ρ is the radius of the biggest ball contained in
A.

(iv) If a sequence (An)n of closed convex sets H-converges to a closed set
A, then A is a closed convex set; if a sequence (Bn)n of open convex
sets Hc-converges to an open set B, then B is an open convex set.

(v) Let B ⊂ Rd a fixed compact set. Then, the class of the closed convex
sets contained in B is compact in the Hausdorff topology.
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Remark 2.6. Let An ⊂ Rd be convex and uniformly bounded with |An| ≥ m >
0 for every n ∈ N; it is easy to show that

An
H−→ A ⇔ Ån

Hc

−→ Å.

The implication “⇐” follows by Proposition 2.4.10 in [11] (applied to a se-
quence of convex sets). The converse implication follows by the definition of
uniform convergence of sets1 and its equivalence with the H-topology on com-
pact sets (see Remark 2.4.2 in [6]). Indeed, since An, A are contained in a
compact set B ⊂ Rd, we have that there exists nε ∈ N such that, for every
n ≥ nε

An ⊂ A+Bε, A ⊂ An +Bε.

Since An, A are convex, we deduce that

D \ Ån ⊂ (D \ Å) +Bε, D \ Å ⊂ (D \ Ån) +Bε.

Then D \ Ån H-converges to D \ Å and so Ån H
c-converges to Å.

In view of the previous equivalence, in the following we will speak only of
Hausdorff convergence, specifying if the involved convex sets are open or closed
only where necessary.

Hausdorff convergence of convex sets implies the convergence in the sense of
Mosco of the H1 spaces under weak hypotheses.

Theorem 2.7 (see Theorem 7.2.7 in [6]). Let B ⊂ Rd a compact set and
let Ωn,Ω ⊂ B be open and convex. If Ωn Hc-converges to Ω, then H1(Ωn)
converges to H1(Ω) in the sense of Mosco.

Remark 2.8. Let us take Ωn,Ω as in Theorem 2.7 and un ∈ H1(Ωn) such
that ‖un‖H1(Ωn) < C, with C > 0 independent on n. Using Definition 2.2, it
is possible to prove that there exists u ∈ H1(Ω) such that, up to subsequences,
ũn → ũ strongly in L2(Rd) and ∇̃un → ∇̃u weakly in L2(Rd; Rd), where we

denoted by f̃ the zero extension of the function f outside its domain (Ωn and
Ω for un,∇un and u,∇u, respectively).

2.2. The Robin eigenvalues. In this section we will recall some properties
of λk,β(Ω) and remark some well known facts about it. Many proofs and details
of the results of this section could be found in [7].
By means of classical spectral theory, we can observe that (λn,β(Ω))n is an
increasing, diverging sequence of strictly positive values for every β > 0 and
Ω ⊂ Rd open, bounded and Lipschitz (as one deduce also by the formula (1.2)).
Moreover, the function β 7→ λk,β(Ω) is strictly increasing.

Remark 2.9 (Scaling property and monotonicity under dilatation). For every
t > 0, we have

λk,β(tΩ) =
1

t2
λk,tβ(Ω).

1A sequence of closed sets (Kn)n converges uniformly to a closed set K if, for every ε > 0,
there exists nε ∈ N such that, for every n ≥ nε

Kn ⊂ K + Bε, K ⊂ Kn + Bε.
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Then, the Robin eigenvalues are not scale invariant. We only have a decreasing
monotonicity under dilatation; more precisely, for every t > 1, by the scaling
property we have

(2.1) λk,β(tΩ) ≤ 1

t
λk,β(Ω) < λk,β(Ω).

By several examples (see [9] for details), one can notice that there is no gene-
ral monotonicity under inclusions, unlike it happens for other problems (e.g.
Dirichlet, Neumann, Steklov).

Remark 2.10 (Faber-Krahn inequality and global estimates on λ1,β(Br)). For
every admissible set Ω, if B is a ball with the same measure of Ω, it holds

(2.2) λk,β(B) ≤ λk,β(Ω);

the equality holds if and only if also Ω is a ball (for details see [5],[8]). Together
with this property, we will use the following estimate on the first eigenvalue on
a ball of radius r (see e.g. [10], Theorem 4.5):

(2.3)
β

4r(1 + βr)
≤ λ1,β(Br) ≤

Cdβ

r(1 + βr)
,

where Cd > 0 is a dimensional constant. This implies that λ1,β(Br) is infini-
tesimal as the radius r explodes and explodes as the radius r tends to zero.

We conclude this section giving two results regarding some properties of the
Robin-Laplacian eigenfunctions. The first proposition describes their regula-
rity.

Proposition 2.11 (Regularity of the eigenfunctions). Let Ω ⊂ Rd bounded
and Lipschitz; then every solution of (1.1) is analytic in Ω and belongs to
H1(Ω) ∩ C(Ω).

The next theorem will play a key role in proving the regularity of optimal
convex shapes. It provides a strictly positive lower bound for an eigenfunction
for the first Robin eigenvalue of a Lipschitz domain. A proof of this result is
contained in [2], Theorem 6.11(j), where the authors use a technique based on
C0-semigroups.

Theorem 2.12 (Strictly positive first eigenfunctions). Let Ω be a connected
Lipschitz domain. Then there exist α > 0 and a first Robin eigenfunction
u ∈ C(Ω) such that u ≥ α.

3. Existence of convex minimizers

In this section we will prove the existence of bounded convex minimizers for
problem (1.3) using the direct methods of calculus of variations. In view of this
strategy, we need lower semicontinuity of the functional in (1.3) with respect
a topology that ensures compactness of minimizing sequences of convex sets.
A first step is the following proposition.

Proposition 3.1 (Lower semicontinuity of λk,β). Let (Ωn)n be a sequence
of open convex sets converging to an open, non empty, convex set Ω in the
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Hausdorff topology and let Ωn,Ω be contained in a compact set B ⊂ Rd. Then,
for every k ∈ N,

λk,β(Ω) ≤ lim inf
n→+∞

λk,β(Ωn).

Proof. Without loss of generality, we can suppose lim infn→+∞ λk,β(Ωn) < +∞.
Let Vn be an admissible space for the computation of λk,β(Ωn) such that

λk,β(Ωn) = max
Vn

RΩn .

Let {un1 , . . . , unk} ⊂ H1(Ωn) an L2(Ωn)-orthonormal basis for Vn. Without loss
of generality we can suppose the sequence (λk,β(Ωn))n bounded. So, for every
i = 1, . . . , k, ∫

Ωn

|∇uni |2 dx+ β

∫
∂Ωn

(uni )2 dσ < C.

Then, supn ‖uin‖H1(Ωn) < +∞ for every i = 1, . . . , k. Moreover, by Theorem
2.7, H1(Ωn) converges to H1(Ω) in the sense of Mosco; then, by Remark 2.8,
there exist u1, . . . , uk ∈ H1(Ω) such that, up to subsequences, ũin → ui strongly

in L2(Rd) and ∇̃uni ⇀ ∇̃ui weakly in L2(Rd; Rd). Notice that u1, . . . , uk are
linearly independent in H1(Ω), since Ωn converges to Ω also in measure; hence,
the linear space V := span {u1, . . . , uk} is a competitor for the computation of
λk,β(Ω). Let w =

∑
αiui realizing the maximum of the Rayleigh quotient RΩ(·)

on V and let wn :=
∑
αiu

n
i ∈ Vn. Observe that, up to subsequences, wn → w

strongly in L2(Rd) and χΩn∇wn ⇀ χΩ∇w weakly in L2(Rd; Rd). Since Ω,Ωn

are convex, there exists a bounded operator that extends wn and w to the
whole of Rd in such a way that wn ⇀ w weakly in H1(Rd). We can thus apply
Proposition 2.1 to wn, w and ∂Ωn, ∂Ω to have the lower semicontinuity of the
boundary integrals. Finally, we have the convergence of the volume integrals at
the denominator and the lower semicontinuity of the L2-norms of the gradients
in the Rayleigh quotient. Using the fact that wn ∈ Vn, we conclude that

λk,β(Ω) ≤ max
V

RΩ = RΩ(w) ≤ lim inf
n→+∞

RΩn(wn) ≤ lim inf
n→+∞

max
Vn

RΩn

= lim inf
n→+∞

λk,β(Ωn),

obtaining the required lower semicontinuity of the eigenvalues. �

We are now in a position to prove the existence of solutions of (1.3). The key
point of the following theorem is to proof that the diameters of the sets of a
minimizing sequence are uniformly bounded and that the limit set does not
degenerate in any direction.

Theorem 3.2. Problem (1.3) admits at least a bounded convex minimizer.

Proof. Let (Ωn)n be a minimizing sequence of admissible sets. From the opti-
mality of (Ωn)n, we have that supnHd−1(∂Ωn) < +∞. Then, via isoperimetric
inequality, we also have supn |Ωn| < +∞. Without loss of generality, up to
translations and rotations we can suppose that

diam(Ωn) = H1(Ωn ∩ {x2 = . . . = xd = 0})
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and that

min
i=2,...,d

(
max

Ωn
xi −min

Ωn
xi

)
= max

Ωn
xd −min

Ωn
xd

i.e. the width of Ωn is minimal on the direction of the axe xd. We claim that
supn diam(Ωn) < +∞ and that, up to subsequences,

(3.1) lim
n

(
max

Ωn
xd −min

Ωn
xd

)
> 0.

We start proving (3.1) arguing by contradiction. Let us suppose that the limit
in (3.1) is zero; define

Ω0
n := Ωn ∩ {xd = 0}

and, for every x′ ∈ Ω0
n, the segment

ln(x′) := {(x′, xd) ∈ Ωn} .

Let us consider an admissible function u ∈ H1(Ωn) for the computation of
the Robin eigenvalues of Ωn and observe that, for every x′ ∈ Ω0

n, the function
xd 7→ u(x′, xd) is admissible for the computation of the Robin eigenvalues of
ln(x′). Then we have

R(u) =

∫
Ωn

|∇u|2 dx+ β

∫
∂Ωn

u2 dσ∫
Ωn

u2 dx

=

∫
Ωn0

dx′
∫

ln(x′)

[
|∇x′u|2 +

(
∂u

∂xd

)2
]
dxd + β

∫
Ωn0

dx′
∫

∂ln(x′)

u2(x′, xd)dH0(xd)

∫
Ωn0

dx′
∫
ln(x′)

u2 dxd

≥

∫
Ωn0

(∫
ln(x′)

(
∂u

∂xd

)2

dxd + β

∫
∂ln(x′)

u2(x′, xd) dH0(xd)

)
dx′∫

Ωn0

(∫
ln(x′)

u2 dxd

)
dx′

≥ min
x′∈Ω0

n

∫
ln(x′)

(
∂u

∂xd

)2

dxd + β

∫
∂ln(x′)

u2(x′, xd) dH0(xd)∫
ln(x′)

u2 dxd

.

(3.2)

Now, the term on the last side is a minimum computed among one dimensional
Rayleigh quotients on segments. Thanks to the monotonicity under homoth-
eties (2.1) and to the fact that all the ln(x′) are homothetical, we can conclude
that the required minimum is achieved on the longest segment lmaxn := ln(xmax),
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so

R(u) ≥

∫
lmaxn

(
∂u

∂xd

)2

dxd + β

∫
∂lmaxn

u2(xmax, xd) dH0(xd)∫
ln(x′)

u2 dxd

≥ λ1,β(lmaxn )

as u(xmax, ·) is a competitor in the computation of λ1,β(lmaxn ). Let us observe
that, as we are contradicting (3.1), the length of lmaxn tends to zero as n goes
to infinity; then, by estimates (2.3), λ1,β(lmaxn ) tends to +∞, so R(u) = +∞
for every admissible function u ∈ H1(Ωn), which is impossible.
To prove that the diameters of the Ωn sets are uniformly bounded, we argue
straightforwardly by contradiction. If the sequence of the diameters was un-
bounded, as the Ωn are convex and uniformly bounded in measure, the product

d∏
j=1

(
max

Ωn
xj −min

Ωn
xj

)
has to be uniformly bounded in measure. In view of our assumptions, as
the diameter of Ωn tends to infinity, necessarily the first term of the product
diverges and so at least the smallest among the remaining d− 1 terms has to
vanish; in other words, we would have

lim
n

(
max

Ωn
xd −min

Ωn
xd

)
= 0,

in contradiction with (3.1).
Then (Ωn)n is an equibounded sequence of convex sets which converge (up to
subsequences) to a bounded convex set Ω in the Hausdorff topology; moreover,
by Proposition 2.5, the convergence is also in measure. In addition, thanks to
(3.1), the limit set Ω is not degenerate (i.e. it has positive measure) and

P (Ω) ≤ lim inf
n→+∞

P (Ωn).

Finally, thanks to the lower semicontinuity of the Robin eigenvalues (Proposi-
tion 3.1) and to the monotonicity and lower semicontinuity of the function F
in each variable, we obtain

F (λ1,β(Ω), . . . , λk,β(Ω)) ≤ lim inf
n→+∞

F (λ1,β(Ωn), . . . , λk,β(Ωn)),

so we can conclude that Ω is a minimizer of (1.3). �

Remark 3.3. The previous existence theorem is still valid if, instead of penal-
izing the perimeter as in Problem (1.3), we impose an uniform constraint on
the measures, on the perimeters or on the diameters of the admissible convex
sets and minimize only the functional F (λ1,β(Ω), . . . , λk,β(Ω)).

4. Estimates on the cut set

The aim of the following part of the work is to show that, under some additional
hypotheses, the optimal convex shapes have C1 boundary. We will prove this
regularity result for a larger class of sets, the so-called energy subsolutions for
Problem (1.3) (see Definition 5.1); we will see that optimal sets for Problem
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(1.3) are also energy subsolutions. The technique to prove the regularity of
the boundary is rather intuitive: supposing, by contradiction, that an energy
subsolution Ω has a singularity point x0 for its boundary, we can cut a suitable
“ε-neighbourhood” of x0, obtaining a convex competitor Ωε; then, comparing
the values of (1.3) for Ω and Ωε, we can observe that there exists a cut set
strictly better than the optimal set Ω, obtaining a contradiction. The key
point of this approach is to estimate the gap between λh,β(Ω) and λh,β(Ωε), for
every h ∈ N.
We will distinguish between the case d = 2 and d > 2, since the arguments
used are based on 2-dimensional sections and on a lower bound on the ratio
between two surface areas; in dimension larger than two this is not immediate
as in R2.

4.1. The case d = 2. In the planar setting, many assumptions can be done.
First of all, as the boundary of a convex 2-dimensional set is a Lipschitz curve,
the only singularity points for the outer normal are sharp corners, in which we
can distinguish two different tangent lines. In the following, without loss of
generality, we will assume that Ω has only a singularity point coinciding with
the origin, that Ω lies in the halfplane {x1 > 0} and that the bisector of the
corner between the distinguished tangent lines is {x2 = 0}.
In any dimension d the situation is more involved. In this case, the singularity
set for the outer normal is at most a (d−2)-dimensional locally Lipschitz variety
and it can happen that we have in every singularity point more than one couple
of distinguished tangent hyperplanes (e.g., in R3 the vertex of a circular cone
has infinite couples of tangent planes). In every case, without loss of generality,
we can assume that, chosen a singularity point for the boundary, it coincides
with the origin and that Ω lies in the halfspace {x1 > 0}; moreover, we can
rotate Ω and chose one of the couples of distinguished tangent hyperplanes in
such a way that their bisector is the hyperplane {xd = 0}.
Under these assumptions, for every dimension d and every ε > 0, we define
the following sets:

(4.1) Ωε := Ω∩{x1 > ε} , mε := Ω\Ωε, σε := Ω∩{xd = ε} , sε := ∂Ω\∂Ωε.

Let us observe that, in view of our choice, the origin turns out to realize the
maximum

max
x∈mε

dist(x, σε) = ε.

In the following lemma we show how the first eigenvalues decreases after a
small cut.

Lemma 4.1. Let Ω ⊂ R2 be an admissible set for (1.3) with a singularity
point for the outer normal. Then, there exist ε0 > 0 and C = C(Ω) > 0 such
that for every 0 < ε < ε0, we have

(4.2) λ1,β(Ωε) ≤ λ1,β(Ω)− Cε.
Proof. First of all let us remark that both H1(σε) and H1(sε) are infinitesimal
of the same order of ε and that |mε| is infinitesimal of the same order of ε2 as
ε goes to 0; moreover, there exists a constant C1 > 1, depending only on the
set Ω, such that H1(sε) ≥ C1H1(σε).
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Figure 1. Cutting procedure in dimension d = 2.

Under the same assumptions of the beginning of the section and using the
same notation as in (4.1), let us compare λ1,β(Ωε) with λ1,β(Ω). Let us consider
u ∈ H1(Ω) a L2(Ω)-normalized eigenfunction for λ1,β(Ω) positively bounded
from below (it exists in view of 2.12); its restriction on Ωε is a test function
for λ1,β(Ωε) and it holds

λ1,β(Ωε) ≤

∫
Ωε

|∇u|2 dx+ β

∫
∂Ωε

u2 dσ∫
Ωε

u2 dx

≤

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

u2 dσ + β

∫
σε

u2 dσ − β
∫
sε

u2 dσ

1−
∫
mε

u2 dx

≤
[
λ1,β(Ω) + β

∫
σε

u2 dσ − β
∫
sε

u2 dσ

](
1 + 2

∫
mε

u2 dx

)
≤ λ1,β(Ω) + β

(∫
σε

u2 dσ −
∫
sε

u2 dσ

)
+ C2ε

2

(4.3)

for ε small enough. Fixed δ > 0, with (u(0) + δ)2 ≤ C1(u(0)− δ)2, there exists
ε0 > 0 such that

0 < u(0)− δ < u(x) < u(0) + δ

for every x ∈ mε0 , since u ∈ C(Ω) and u(0) > 0. In particular, as mε is
decreasing in ε with respect to inclusions, we can choose ε0 small enough to
satisfy (4.3). Then we obtain

λ1,β(Ωε) ≤ λ1,β(Ω) + β
(
H1(σε)(u(0) + δ)2 −H1(sε)(u(0)− δ)2

)
+ C2ε

2

≤ λ1,β(Ω) + βH1(σε)
(
(u(0) + δ)2 − C1(u(0)− δ)2

)
+ C2ε

2

≤ λ1,β(Ω)− βC3ε+ C2ε
2 ≤ λ1,β(Ω)− Cε,
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where the last constant C takes into account all the previous constants and
depends only on the domain Ω. �

The behaviour of higher order eigenvalues is studied in the following lemma.

Lemma 4.2. Let Ω ⊂ R2 be an admissible set for (1.3) with a singularity
point for the outer normal. Then, for every h ∈ N, h ≥ 2,

(4.4) λh,β(Ωε) ≤ λh,β(Ω) + o(ε).

Proof. Let us consider h eigenfunctions for the Laplacian Robin, say u1, . . . , uh,
associated to λ1,β(Ω), . . . , λh,β(Ω) such that they form an L2-orthonormal ba-
sis of S := span {u1, . . . , uh}. Let us consider S as a test space for the
computation of λh,β(Ωε); precisely, we can restrict ourselves to the subset of

span {u1|Ωε , . . . , uh|Ωε} of functions of the form
∑h

i=1 α
ε
iui with

∑h
i=1 (αεi )

2 = 1.
This compactness hypothesis on the coefficients ensures us that, up to subse-
quences, αεi → αi ∈ [−1, 1] and

h∑
i=1

αεiui −→
h∑
i=1

αiui

strongly inH1(Ω). In the following we will denote by (αε1, . . . , α
ε
h) and (α1, . . . , αh)

two h-ple of coefficients that maximizes Rβ
Ωε

and Rβ
Ω in S. We claim that

αεi → 0 if λi,β(Ω) < λh,β(Ω). To prove this claim, observe first that λh,β(Ω) =
maxu∈S R(u), since at least uh ∈ S is associated to λh,β(Ω). Then we have

λh,β(Ω) = max
α1,...,αh∈R∑

i α
2
i=1

∫
Ω

∣∣∣∑
i

αi∇ui
∣∣∣2 dx+ β

∫
∂Ω

(∑
i

αiui

)2

dσ∫
Ω

(∑
i

αiui

)2

dx

=
∑
i,j

αiαj

(∫
Ω

∇ui · ∇uj dx+ β

∫
∂Ω

uiuj dσ

)(4.5)

Let us compute the quantity between brackets using the Robin boundary con-
ditions, integrating by parts and recalling that the ui and uj belong to an
orthonormal basis of eigenfunctions:∫

Ω

∇ui · ∇uj dx+ β

∫
∂Ω

uiuj dσ =

∫
Ω

∇ui · ∇uj dx−
∫
∂Ω

ui
∂uj
∂n

dσ

= −
∫

Ω

ui∆uj dx = λj,β(Ω)

∫
Ω

uiuj dx = λj,β(Ω)δij.

So, by (4.5), we obtain

λh,β(Ω) =
∑
i,j

αiαjλj,β(Ω)δij =
∑
i

α2
iλi,β(Ω),

that implies that all the coefficients related to λi,β(Ω) < λh,β(Ω) have to be 0.
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In view of this remark, for any ε > 0 sufficiently small, we estimate λh,β(Ωε)
using S as a test space:

λh,β(Ωε) = max
αε1,...,α

ε
h
∈R∑

i(α
ε
i )

2=1

∫
Ωε

∣∣∣∑
i

αεi∇ui
∣∣∣2 dx+ β

∫
∂Ωε

(∑
i

αεiui

)2

dσ∫
Ωε

(∑
i

αεiui

)2

dx

≤

∫
Ω

∣∣∣∑
i

αεi∇ui
∣∣∣2 dx+ β

∫
∂Ω

(∑
i

αεiui

)2

dσ

1−
∫
mε

(∑
i

αεiui

)2

dx

+

β

∫
σε

(∑
i

αεiui

)2

dσ − β
∫
sε

(∑
i

αεiui

)2

dσ

1−
∫
mε

(∑
i

αεiui

)2

dx

≤ λh,β(Ω) + β

∫
σε

(∑
i

αεiui

)2

dσ − β
∫
sε

(∑
i

αεiui

)2

dσ + C|mε|.

(4.6)

Observe that, for every i = 1, . . . , h, αεi − αi → 0; moreover, following the
remark at the beginning of Lemma 4.1 about the infinitesimal order of H1(σε),
H1(sε) and |mε|, by (4.6) we have

λh,β(Ωε) ≤ λh,β(Ω) + β

[∫
σε

(∑
i

(αεi − αi)ui + αiui

)2

dσ

−
∫
sε

(∑
i

(αεi − αi)ui + αiui

)2

dσ

]
+ Cε2

≤ λh,β(Ω) + β

(∫
σε

(∑
i

αiui

)2

dσ −
∫
sε

(∑
i

αiui

)2

dσ

)
+ o(ε).

(4.7)

To estimate the boundary integrals in the last term, we have to distinguish
two cases. If (∑

i

αiui(0)
)2

6= 0,

then, for any sufficiently small ε, we can proceed as in Lemma 4.1 and conclude
that ∫

σε

(∑
i

αiui

)2

dσ −
∫
sε

(∑
i

αiui

)2

dσ ≤ 0.

If (∑
i

αiui(0)
)2

= 0,
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the uniform continuity of the eigenfunctions ui on mε implies that both inte-
grands go to zero as ε goes to zero and so the boundary integrals are infinites-
imal of higher order than ε. In both cases, by (4.7) we obtain

λh,β(Ωε) ≤ λh,β(Ω) + o(ε).

�

Remark 4.3. Let us compare the results of the previous lemmas. In Lemma
4.1 we proved that, after a small cut, the first eigenvalue decreases by a term of
the same order as the perimeter. On the other hand, in Lemma 4.2, we proved
that a small cut could at most increase λh,β (h ≥ 2) by a term infinitesimal of
higher order than the perimeter. In other words, the possible increase of λh,β
(h ≥ 2) is infinitesimal of higher order than the decrease of λ1,β.

4.2. The case d > 2. The case of higher dimension is quite different. Re-
calling the notation introduced in (4.1), the key point is to prove that the
ratio Hd−1(sε)/Hd−1(σε) has a lower bound strictly greater than 1, as in the
planar case. It is not trivial at a first sight, but fortunately this obstacle can
be overcome taking into account suitable 2-dimensional sections of Ω around
the singularity point of the boundary. We will get the required lower estimate
in the following lemmas, the first holding in dimension 3, the second holding
in any dimension. We chose to expose separately the cases of dimension d = 3
and of higher dimension for a better clarity for the reader, although the proofs
are quite similar.

Lemma 4.4. Let Ω ⊂ R3 be an admissible set for (1.3) with a singularity
point at the origin for the outer normal and let us consider sε and σε as in
(4.1). Then there exists C > 1 such that H2(sε)/H2(σε) ≥ C for every ε > 0.

Proof. Let us use the same convention as in (4.1), so that the origin is a
singularity point for ∂Ω, and let us assume that the outer normal to ∂Ω is
discontinuous in the origin with respect to the direction of the x2 axe. Let
us consider two distinguished tangent hyperplanes at the singularity point;
without loss of generality we can assume that the bisector of the two planes
is the plane {x2 = 0} their intersection V is the line {x1 = x2 = 0, }. Under
these assumptions, the orthogonal projection Vε of V onto σε is a segment on
the line {x1 = ε, x2 = 0}, and it can be expressed by

x1 = 0

x2 = 0

aε ≤ x3 ≤ bε

with aε ≤ 0 ≤ bε. Moreover, the orthogonal space V ⊥ is a 2-dimensional plane
and the section cε := sε ∩V ⊥ is given by a Lipschitz curve with a corner point
in the origin. Notice that

V ⊥ = {x3 = 0}
and that, denoting by lε the segment σε ∩ V ⊥, the curve cε is the graph of
a concave function defined on lε. So, as in the planar setting (see 4.1), there
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exists α > 0 such that

(4.8)
H1(cε)

H1(lε)
≥ 1 + α

for every ε > 0 sufficiently small.
The idea to estimate H2(σε) in terms of H2(sε) is based on the Fubini’s the-
orem: we will split the 2-dimensional surface integral in two 1-dimensional
integrals in the variables x2, x3 and we will estimate uniformly from above
the 1-dimensional sections of sε with the 1-dimensional sections of σε. Let us
define

lε(x3) := σε ∩ (V ⊥ + x3)

the 1-dimensional slice of σε passing through (0, 0, x3) and parallel to lε = lε(0).
If we denote by

cε(x3) := σε ∩ (V ⊥ + x3),

then cε(0) = cε. Moreover, by continuity and (4.8), the above constant α > 0
can be chosen in such a way that

(4.9)
H1(cε(x3))

H1(lε(x3))
≥ 1 + α

for every aε/2 ≤ x3 ≤ bε/2. Let us remark that, in every case, the ratio above
is greater or equal than 1 for every x3 ∈]aε, bε[.
Recalling that sε is the graph of a concave function φ = φ(x2, x3) on σε, let us
estimate from below the area of sε ∩ {x3 ≥ 0}:

H2(sε ∩ {x3 ≥ 0})

=

∫
σε∩{0≤x3≤bε/2}

√
1 + |∇φ|2 dx2 dx3 +H2(sε ∩ {bε/2 ≤ x3 ≤ bε})

≥
∫ bε/2

0

dx3

∫
lε(x3)

√
1 + |∇φ|2 dx2 +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})

≥
∫ bε/2

0

dx3

∫
lε(x3)

√
1 + (∂x2φ)2 dx2 +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})

≥
∫ bε/2

0

H1(cε(x3)) dx3 +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})

≥ (1 + α)

∫ bε/2

0

H1(lε(x3)) dx3 +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})

≥ (1 + α)H2(σε ∩ {0 ≤ x3 ≤ bε/2}) +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})
= H2(σε ∩ {x3 ≥ 0}) + αH2(σε ∩ {0 ≤ x3 ≤ bε/2}).

(4.10)

Let us notice that, as σε ∩ {x3 ≥ 0} is convex, there exists a positive constant
γ < 1 depending only on Ω such that

H2(σε ∩ {0 ≤ x3 ≤ bε/2}) ≥ γH2(σε ∩ {x3 ≥ 0}).
Then, replacing the estimate in (4.10), we obtain

(4.11) H2(sε ∩ {x3 ≥ 0}) ≥ (1 + αγ)H2(σε ∩ {x3 ≥ 0}).
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Reasoning for x3 ≤ 0 as above we obtain

H2(sε ∩ {x3 ≤ 0}) ≥ (1 + αγ)H2(σε ∩ {x3 ≤ 0}),
that combined with (4.11) gives us the thesis (with C = 1 + αγ). �

In higher dimension we obtain the same result, after noticing that we can
reason similarly to the previous Lemma on each dimension that is orthogonal
to a suitable 2-dimensional section.

Lemma 4.5. Let Ω ⊂ Rd (d > 3) be an admissible set for (1.3) with a
singularity point at the origin and let us consider sε and σε as in (4.1). Then,
there exists C > 1 such that Hd−1(sε)/Hd−1(σε) ≥ C for every ε > 0.

Proof. Let us start remarking that, in view of the assumptions below (4.1),
the intersection V between two distinguished tangent (d− 1)-dimensional hy-
perplanes at the singularity point is a (d − 2)-dimensional hyperplane whose
orthogonal projection onto σε, say Vε, is a convex, (d − 2)-dimensional set.
Let us observe also that cε := sε ∩ V ⊥ is given by a Lipschitz curve with a
corner point in the origin and that, told lε := σε ∩ V ⊥, there exists a constant
α > 0 such that the same estimate as in (4.8). To achieve the thesis, it is
enough to repeat the same argument in the second part of 4.4 on each of d− 2
(orthogonal) segments passing by the orthogonal projection of the origin onto
σε and parallel to the first d− 2 Cartesian axes. �

Now we are in a position to state the analogous of 4.1 and 4.2; we omit the
proof as it is straightforward, replacing ε by the surface area Hd−1(σε).

Lemma 4.6. Let Ω ⊂ Rd be an admissible set for (1.3) with a singularity
point for the outer normal. Then, there exists ε0 > 0 ad C = C(Ω) > 0 such
that, for every 0 < ε < ε0, we have

λ1,β(Ωε) ≤ λ1,β(Ω)− CHd−1(σε).

Moreover, for every h ∈ N, h ≥ 2

λh,β(Ωε) ≤ λh,β(Ω) + o(Hd−1(σε)).

5. Regularity of optimal convex shapes

The aim of this section is to prove a regularity result for the optimal shape
whose existence has been proved in 3, to complete the proof of Theorem 1.1.
We will prove a more general result, i.e. the C1-regularity of the boundary for
a larger class of sets.

Definition 5.1 (Energy subsolutions). Let Ω ⊂ Rd be a convex bounded set. Ω
is said an energy subsolution for problem (1.3) if, for every convex set Ω̃ ⊆ Ω,
it holds

F (λ1,β(Ω), . . . , λk,β(Ω)) ≤ F (λ1,β(Ω̃), . . . , λk,β(Ω̃)).

Remark 5.2. Intuitively, a convex set Ω is an energy subsolution when its
“energy” F (λ1,β(Ω), . . . , λk,β(Ω)) is minimal compared to his convex subsets.
Roughly speaking, thanks to the monotonicity of F and of λh,β under dilata-

tions, if Ω̃ ⊂ Ω is an admissible set and we focus only on the energy term, it
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is convenient to rescale Ω̃ to obtain a wider convex set with lower energy; on
the other hand, this increases the perimeter term in (1.3), as the two terms
seems to be in competition. This behaviour suggests us that a convex solution
should balance the two competing terms with the lowest energy possible. In
view of this, let us remark that every minimizer Ω of (1.3) is also an energy
subsolution; in fact, for every Ω̃ ⊂ Ω, using the monotonicity of the perimeter
of convex sets under inclusions, we have

F (λ1,β(Ω), . . . , λk,β(Ω)) + ΛP (Ω)

≤ F (λ1,β(Ω̃), . . . , λk,β(Ω̃)) + ΛP (Ω̃) ≤ F (λ1,β(Ω̃), . . . , λk,β(Ω̃)) + ΛP (Ω),

that implies F (λ1,β(Ω), . . . , λk,β(Ω)) ≤ F (λ1,β(Ω̃), . . . , λk,β(Ω̃)).

The following theorem will give us the required regularity for energy subsolu-
tions. To prove it, we will argue by contradiction, supposing that an energy
subsolution Ω has at least a singularity point for the outer normal and cutting a
piece of Ω around this point; the obtained cut subset will give a strictly smaller
energy than Ω, in contradiction with the definition of energy subsolution.

Theorem 5.3 (regularity of the energy subsolutions). Let F : Rk → R satisfy
the same hypotheses as in (1.3) and, in addition, let it be differentiable in each
variable each variable with strictly positive derivative with respect to the first
variable. Then, every energy subsolution for problem (1.3) has C1 boundary.

Proof. Let Ω be an energy subsolution for (1.3) and consider Ωε and σε as in
(4.1). Considering a Taylor expansion of F and the results in Lemma 4.6, we
obtain for sufficiently small ε

F (λ1,β(Ωε), . . . , λk,β(Ωε))

= F (λ1,β(Ω), . . . , λk,β(Ω)) +
k∑

h=1

∂F

∂xh
(λ1,β(Ω), . . . , λk,β(Ω)) · (λh,β(Ωε)− λh,β(Ω))

+ o(Hd−1(σε))

≤ F (λ1,β(Ω), . . . , λk,β(Ω))− ∂F

∂x1

(λ1,β(Ω), . . . , λk,β(Ω)) · (CHd−1(σε)) + o(Hd−1(σε))

< F (λ1,β(Ω), . . . , λk,β(Ω))

in contradiction with the fact that Ω is an energy subsolution. �

Proof of Theorem 1.1. Problem (1.3) admits a convex bounded solution Ω
thanks to 3.2; by Remark 5.2, this solution is also an energy subsolution, then,
under the additional hypotheses of F , by Theorem 5.3, Ω has C1 boundary. �

5.1. Further remarks. Using analogous techniques, it is possible to prove an
existence and regularity result for the problem

min {λ1,β(Ω) : Ω ⊆ D,Ω bounded and convex, |Ω| = m} ,
where D is a fixed bounded open set and m > 0. In this case, if the ball
of measure m is not contained in D, the problem is not trivially solved: the
existence is due to a standard compactness argument for a priori uniformly
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bounded convex sets of fixed measure and lower semicontinuity of the Rayleigh
quotient, the regularity arises from the same argument used in Theorem 4.1,
which remains valid in every dimension. In a similar way, the problem

min {λk,β(Ω) + ΛP (Ω) : Ω bounded and convex} ,
with Λ > 0, has a C1 solution. The existence is gained with the same argu-
ments in 3.2. The regularity is obtained by contradiction as a consequence of
4.6: the gap between P (Ω) and P (Ωε) decreases to zero more slowly than the
difference λk,β(Ω)− λk,β(Ωε).
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