
Vol.:(0123456789)

Annali di Matematica Pura ed Applicata (1923 -) (2022) 201:801–822
https://doi.org/10.1007/s10231-021-01138-x

1 3

Curvature‑dimension conditions under time change

Bang‑Xian Han1 · Karl‑Theodor Sturm2 

Received: 8 July 2020 / Accepted: 21 June 2021 / Published online: 4 August 2021 
© The Author(s) 2021

Abstract
We derive precise transformation formulas for synthetic lower Ricci bounds under time 
change. More precisely, for local Dirichlet forms we study how the curvature-dimension 
condition in the sense of Bakry–Émery will transform under time change. Similarly, for 
metric measure spaces we study how the curvature-dimension condition in the sense of 
Lott–Sturm–Villani will transform under time change.

Keywords Metric measure space · Curvature-dimension condition · Time change · Bakry–
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1 Introduction

A. Bakry and Émery [5] formulated a powerful criterion for obtaining equilibration and 
regularity results for the Markov semigroups associated with local Dirichlet forms. Let us 
briefly recall their concept. A Dirichlet form E , densely defined on some L2(X,�) , satisfies 
the BE(k, N) condition with some function k ∈ L∞

loc
(X,�) and some number N ∈ [2,∞] if

for all suitable functions f and � ≥ 0 on X. Here, Δ denotes the generator associated with 
E and Γ the carré du champ operator. Estimate (1) can be regarded as an abstract formula-
tion of Bochner’s inequality on Riemannian manifolds. Thus, in this Eulerian approach to 
curvature-dimension conditions, k(x) will be considered as a synthetic lower bound for the 
“Ricci curvature at x ∈ X ” and N as an upper bound for the “dimension” of X.

(1)
1

2 � Γ(f )Δ� d� − � Γ(f ,Δf )� d� ≥ �
(
k Γ(f ) +

1

N
(Δf )2

)
� d�.
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From the very beginning of this theory, the transformation formula for the Bakry–Émery 
condition BE(k,N) under drift transformation played a key role. Most importantly in the 
case N = ∞ , this states that the Dirichlet form

satisfies BE(k∗,∞) with k∗ ∶= k + hV where hV (x) ∶= inff
1

Γ(f )

[
Γ
(
Γ(V , f ), f

)
−

1

2
Γ
(
Γ(f ),V

)]
 

denotes the lower bound for the Hessian of V at x ∈ X for any sufficiently regular function 
V on X.

The goal of this paper now is to analyze the transformation property of the 
Bakry–Émery condition under time change. That is, we will pass from the original Dir-
ichlet form E on L2(X,�) to a new one defined as

for some w ∈ L∞
loc
(X,�) . Our main result provides a Bakry–Émery condition for this trans-

formed Dirichlet form provided the original Dirichlet form satisfies a Bakry–Émery condi-
tion with finite N. We remark that it is possible to weaken the curvature-dimension condition 
adopted in this theorem to a milder distributional condition, in the spirit of the papers [11, 27].

Theorem  1 Assume that E satisfies the BE(K,∞) condition for some K ∈ ℝ and the 
BE(k,N) condition for some k ∈ L∞

loc
 and some N ∈ [1,∞) , and that w ∈ Dloc(�) ∩ L∞

loc
 

with �w = �singw + Δacw� and �singw ≤ 0 . Then, for any N� ∈ (N,∞] and k� ∈ L∞
loc

 , the 
time-changed Dirichlet form E′ on L2(X,��) satisfies the BE(k�,N�) condition provided

�-a.e. on X.

Corollary 1 If in addition k′ is bounded from below, say k′ ≥ K′ for some K� ∈ ℝ , then 
the time-changed Dirichlet form E′ and the associated heat semigroup (P�

t
)t≥0 satisfy the fol-

lowing gradient estimate

Remark 1 Generator and carré du champ operator of the time-changed Dirichlet form E′ on 
L2(X,��) are given by

Moreover, the associated Brownian motion (ℙ�
x
,B�

t
) (cf. Chapter 6 [12]) is given by ℙ�

x
= ℙx and

Note that heat semigroup (P�
t
)t≥0 and Brownian motion (ℙ�

x
,B�

t
) are linked to each other by

E
∗(u) ∶= ∫ Γ(u) d�∗ on L2(X,�∗) with �∗ ∶= e−V �

E
�(u) ∶= ∫ Γ(u) d� on L2(X,��) with �� ∶= e2w �

(2)k� ≤ e−2w
[
k −

(N − 2)(N� − 2)

N� − N
Γ(w) − Δacw

]

(3)Γ�(P�
t
f ) +

1 − e−2K
�t

N�K�
(Δ�P�

t
f )2 ≤ e−2K

�tP�
t

(
Γ�(f )

)
.

Δ� = e−2wΔ, Γ� = e−2wΓ.

(4)B�
t
= B�t

, �t = ∫
t

0

e−2w(B
�
s
)ds, �t = ∫

t

0

e2w(Bs) ds, Bt = B�
�t
.

P�
t
f (x) = �

�
x
[f (B�

2t
)].
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B. A different approach, the so-called Lagrangian approach, to synthetic lower Ricci 
bounds was proposed in the works of Lott and Villani [19] and Sturm [23]. Here, the 
objects under consideration are metric measure spaces. Such a space (X, d,�) satisfies the 
curvature-dimension condition CD(K,∞)—meaning that its Ricci curvature is bounded 
from below by K—if the Boltzmann entropy Ent(.,�) is weakly K-convex on the Wasser-
stein space P2(X) . More refined curvature-dimension conditions CD(K, N) and CD∗(K,N) 
with finite N ∈ [1,∞) were introduced in [23, 24]. Combined with the requirement of Hil-
bertian energy functional, this led to the conditions RCD(K, N) and RCD∗(K,N) [2], which 
fortunately turned out to be equivalent to each other [7].

Also from the very beginning of this theory, the transformation formula for the cur-
vature-dimension conditions CD(K, N), CD∗(K,N) RCD(K, N) under drift transformation 
played a key role. Most easily formulated in the case N = ∞ , it states that the condition 
CD(K,∞) for a given metric measure space (X, d,�) and the L-convexity of V on X imply 
the condition CD(K + L,∞) for the transformed metric measure space (X, d, e−V�) . The 
same holds with RCD in the place of CD.

Subject of the investigations in this paper is the time-changed metric measure space 
(X, d�,��) where �� = e2w� for some w ∈ L∞

loc
(X,�) and

for x, y ∈ X . Assuming that w is continuous �-a.e. on X this allows for a dual representa-
tion as

where w̄(x) ∶= lim supy→x w(y) denotes the upper semicontinuous envelope of w. Our main 
result provides the transformation formula for the curvature-dimension condition under 
time change.

Theorem 2 Let (X, d,�) be an RCD(K,N) space for some K ∈ ℝ and N ∈ [1,∞) , and let 
w ∈ Dloc(�) ∩ L∞

loc
(X) be continuous �-a.e.  with �w = �singw + Δacw� and �singw ≤ 0 . 

Then, the time-changed metric measure space (X, d�,��) satisfies the RCD(K�,N�) condi-
tion for any N� ∈ (N,∞) and K� ∈ ℝ such that

Theorem 2 is a more or less immediate consequence of Theorem 1 and the fact that the 
Eulerian and the Lagrangian curvature-dimension conditions, BE(K, N) and RCD(K, N), 
are equivalent to each other as proven in [10].

Remark 2 The first derivation of the transformation formula for the (Eulerian) curvature-
dimension condition BE(K,  N) under conformal transformation as well as under time 
change was presented in [26] by the second author in the setting of regular Dirichlet 
forms admitting a nice core of sufficiently smooth functions (“Γ-calculus in the sense of 
Bakry–Émery–Ledoux”).

Combining the techniques and results in [14, 20], the first author [15, 16] proved the 
transformation formula for the Lagrangian curvature-dimension condition RCD(K,N) 
under conformal transformation when the reference function w is bounded and smooth 

d�(x, y) ∶= sup
{
�(x) − �(y) ∶ � ∈ Dloc(E) ∩ C(X), |D�| ≤ ew �-a.e. in X

}

d�(x, y) = inf
{
∫

1

0

ew̄(𝛾s) |�̇�s| ds ∶ 𝛾 ∈ AC([0, 1],X), 𝛾0 = x, 𝛾1 = y
}

K� ≤ e−2w
[
K −

(N − 2)(N� − 2)

N� − N
|Dw|2 − Δacw

]
.
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enough. Together with the well-known transformation formula for RCD(K,N) under drift 
transformations, this result also provides a transformation formula for RCD(K,N) under 
time change.

The focus of the current paper is on proving the transformation formula for the (Eule-
rian or Lagrangian) curvature-dimension condition under time change in a setting of great 
generality (Dirichlet forms or metric measure spaces) and with minimal regularity and 
boundedness assumptions on w.

C. One of the important applications of time-change is the “convexification” of non-
convex subsets Ω ⊂ X of an RCD(K, N)-space (X, d,�) as introduced by the second author 
and Lierl [18]. For sublevel sets of regular semi-convex functions V, they proved convex-
ity after suitable conformal transformations, while control of the curvature bound under 
these transformations follows from the work [15] of the first author. Unfortunately, these 
previous results do not apply to the most natural potential, the signed distance function 
V = d(.,Ω) − d(.,X⧵Ω) due to lack of regularity. The more general results of the current 
paper will apply to a suitable truncation of the signed distance function and thus provide 
the following convexification theorem.

Theorem 3 Let (X, d,�) be an RCD(K,N) space and Ω be a bounded �-convex domain 
in (X, d) with �(�Ω) = 0 and �+(𝜕Ω) < ∞ . Then, for any N� ∈ (N,+∞], there exists a 
Lipschitz function w such that the time-changed metric measure space (Ω, dw,�w) is a 
RCD(K�,N�) space for some K� ∈ ℝ.

2  Time change and the Bakry–Émery condition

This section is devoted to study synthetic lower Ricci bounds under time change in the set-
ting of Dirichlet forms. More precisely, we will derive the transformation formula for the 
Bakry–Émery condition under time change.

2.1  Dirichlet forms and the BE(K,N) condition

In this part, we recall some basic facts about Dirichlet form theory and the Bakry–Émery 
theory. Firstly we make some basic assumptions on the Dirichlet form, see also [21] for 
examples satisfying these conditions.

Assumption 1 We assume that 

(a) (X, �) is a topological space, (X,B) is a measurable space and � is a �-finite Radon 
measure with full support (i.e., supp� = X ); B is the �-completion of the Borel �
-algebra generated by � ; and Lp(X,�) will denote the space of Lp-integrable functions 
on (X,B,�);

(b) E(⋅) ∶ L2(X,�) → [0,∞] is a strongly local, quasi-regular, symmetric Dirichlet form 
with domain � ∶= D(E) =

{
f ∈ L2(X,�) ∶ E(f ) < ∞

}
 ; denote by (Pt)t>0 the heat semi-

group generated by E;
(c) there exists an increasing sequence of (“cut-off”) functions with compact support 

(𝜒
�
)
�≥1 ⊂ �  such that 0 ≤ �

�
≤ 1 , Γ(�

�
) ≤ C for all � and �

�
→ 1 , Γ(�

�
) → 0 �-a.e. 

as � → ∞ , cf. [22];
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(d) E satisfies the Bakry–Émery condition BE(K,∞) for some K ∈ ℝ.

To formulate the latter, recall that �∞ ∶= D(E) ∩ L∞(X,�) is an algebra with respect to 
pointwise multiplication. We say that E admits a carré du champ if there exists a quadratic 
continuous map Γ ∶ � → L1(X,�) such that

By polarization, we define Γ(f , g) ∶=
1

4

(
Γ(f + g) − Γ(f − g)

)
 and obtain 

E(f , g) = ∫ Γ(f , g) d� for all f , g ∈ �  . It is known that Γ is local in the sense that 
Γ(f − g) = 0 �-a.e. on the set {f = g}.

The Dirichlet form E induces a densely defined self-adjoint operator Δ ∶ D(Δ) ⊂ � → L2 
satisfying E(f , g) = − ∫ gΔf d� for all g ∈ �  . Put

and D(Γ2) ∶=
{
(f ,�) ∶ f ,� ∈ D(Δ), Δf ∈ � , �,Δ� ∈ L∞

}
.

Definition 1 (Bakry–Émery condition) Given a function k ∈ L∞ and a number 
N ∈ [1,∞] , we say that the Dirichlet form E satisfies the BE(k, N) condition if it admits a 
carré du champ and if

for all (f ,�) ∈ D(Γ2) , � ≥ 0.

Remark 3 Since by our standing assumption the Dirichlet form E satisfies BE(K,∞) for 
some K ∈ ℝ , the “space of test functions”

is dense in �  (cf. Section 2 [3] and Remark 2.5 therein). Hence, the BE(k, N) condition 
will follow if (5) holds true for all f ∈ TestF(E) and all non-negative � ∈ D(Δ) ∩ L∞ with 
Δ� ∈ L∞.

Lemma 1 For every f ∈ D(Δ) , we have Γ(f )1∕2 ∈ �  and

Proof By self-improvement, the Bakry–Émery inequality BE(K,∞) as introduced above 
implies the stronger L1-version

for all f ,� ∈ D(Δ) with Δf ∈ �  , see [20]. Choosing � = Pt(Γ(f )
1∕2) and then letting t → 0 

yields the claim for f ∈ D(Δ) with Δf ∈ �  . Since the class of these f’s is dense in D(Δ) , 
the claim follows.   ◻

∫X

Γ(f )� d� = E(f , f�) −
1

2
E(f 2,�) for all f ∈ � ,� ∈ �∞.

Γ2(f ;�) ∶=
1

2 ∫ Γ(f )Δ� d� − ∫ Γ(f ,Δf )� d�

(5)
1

2 � Γ(f )Δ� d� − � Γ(f ,Δf )� d� ≥ �
(
kΓ(f ) +

1

N
(Δf )2

)
� d�.

TestF(E) ∶=
{
f ∈ D(Δ) ∶ Δf ∈ �

∞, Γ(f ) ∈ L∞
}

E

(
Γ(f )1∕2

) ≤ � (Δf )2 d� − K ⋅ E(f ).

� Γ(f )1∕2Δ� d� − �
1

Γ(f )1∕2
Γ(f ,Δf )� d� ≥ K � Γ(f )1∕2� d�.
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Definition 2 (i) We say that f ∈ �
e if there exists a Cauchy sequence (fn)n ⊂ �  w.r.t. the 

semi-norm E(⋅) and such that fn → f  �-a.e. Then, we define E(f ) ∶= limn→∞ E(fn) . Simi-
larly, Γ can be extended to � e.

(ii) We say that f ∈ �loc if for any bounded open set U, there is f̄ ∈ �  such that f = f̄  on 
U. Then, a function Γ(f ) ∈ L1

loc
(X,�) can be defined unambiguously by Γ(f ) ∶= Γ(f̄ ) on U.

Similarly, we define the spaces Dloc(Δ) and TestFloc(E).

Definition 3 (Local weak Bakry–Émery condition) Given a function k ∈ L∞
loc

 and a num-
ber N ∈ [1,∞] , we say that the Dirichlet form E satisfies the BEloc(k,N) condition if it 
admits a carré du champ and if

for all f ∈ Dloc(Δ) ∩ L∞
loc

 with Δf ∈ �loc and all non-negative � ∈ �
∞ with compact sup-

port and Γ(�) ∈ L∞.

Note that our standing assumption BE(K,∞) implies that Γ(f )1∕2 ∈ �loc for each 
f ∈ Dloc(Δ) . Thus, for functions f and � as above, the term − 1

2
∫ Γ

(
Γ(f ),�

)
d� is well 

defined.

Lemma 2 E satisfies BE(k,N) for k ∈ L∞ if and only if it satisfies BEloc(k,N).

Proof Assume that BE(k, N) holds true and let f and � be given as in Definition 3. Choose 
f � ∈ D(Δ) ∩ L∞ with Δf � ∈ �  such that f = f � on a neighborhood of {� ≠ 0} . Choose uni-
formly bounded, nonnegative �n ∈ D(Δ) with Γ(�n),Δ�n ∈ L∞ such that �n → � a.e. on 
X and in �  as n → ∞ . (For instance, put �n = P1∕n� .) Then, (5) implies

for all n. Passing to the limit n → ∞ yields (6) with f ′ in the place of f. Since by assump-
tion f = f � on a neighborhood of {� ≠ 0} , this yields the claim (6).

Conversely, assume that BEloc(k,N) holds true and let f and � be given as in Defini-
tion 1. Put �n = P1∕n� and �

𝓁,n = �
𝓁
⋅ P1∕n� with (�

�
)
�
 being the cut-off functions from 

assumption 1. According to the BEloc(k,N) assumption, (6) holds with �
�,n in the place of 

� . Passing to the limit � → ∞ yields (6) with �n in the place of � ( ∀n ). This, however, is 
equivalent to (5), again with �n in the place of � . Finally passing to the limit n → ∞ yields 
(5) for the given � .   ◻

Remark 4 From the proof of the preceding lemma, it is obvious that the class of f’s to be 
considered for (6) can equivalently be restricted to f ∈ Dloc(Δ) ∩ L∞

loc
 with Δf ∈ �loc ∩ L∞

loc
.

2.2  Self‑improvement of the Bakry–Émery condition

The formulation of the subsequent results on the self-improvement property will require 
the theory of differential structures of Dirichlet forms as introduced by Gigli [14]. In order 
to shorten the length of the paper, we will skip the introduction of (co)tangent modules, list 
the results directly and ignore subtle differences.

(6)−
1

2 � Γ
(
Γ(f ),�

)
d� − � Γ(f ,Δf )� d� ≥ �

(
kΓ(f ) +

1

N
(Δf )2

)
� d�.

−
1

2 � Γ
(
Γ(f �),𝜑n

)
d� − � Γ(f �,Δf �)𝜑n d� ≥ �

(
kΓ(f �) +

1

N
(Δf �)2

)
𝜑n d� > −∞
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Proposition 1 (Section  2.2, [14]) Given a strongly local, symmetric Dirichlet form E 
admitting a carré du champ Γ defined on � e as above. Then, there exists an L∞-Hilbert 
module L2(TX) satisfying the following properties.

 (i) L2(TX) is a Hilbert space equipped with the norm ‖ ⋅ ‖ such that the following cor-
respondence (embedding) holds

 (ii) L2(TX) is a module over the commutative ring L∞(X,�).
 (iii) The norm ‖ ⋅ ‖ is induced by a pointwise inner product ⟨⋅, ⋅⟩ satisfying

 and 

for any f , g ∈ �
e and h ∈ L∞(X,�).

 (iv) L2(TX) is generated by {∇g ∶ g ∈ �
e} in the following sense. For any v ∈ L2(TX) , 

there exists a sequence vn =
∑Mn

i=1
an,i∇gn,i with an,i ∈ L∞ and gn,i ∈ �

e , such that 
‖v − vn‖ → 0 as n → ∞.

By Corollary 3.3.9 [14], for any f ∈ D(Δ) there is a continuous symmetric L∞(M)

-bilinear map Hessf (⋅, ⋅) defined on [L2(TX)]2 , with values in L0(X,�) . In particular, if 
f , g, h ∈ TestF(E) (cf. Lemma 3.2 [20], Theorem 3.3.8 [14]), Hessf (⋅, ⋅) is given by the 
following formula:

Combining Theorem  1.4.11 and Proposition 1.4.10 in [14], we obtain the following 
structural results. As a consequence, we can compute Hessf (⋅, ⋅) and Γ(⋅, ⋅) using local 
coordinates.

Proposition 2 Denote by L2(TX) the tangent module associated with E . Then, there exists 
a unique decomposition (up to �-null sets) {En}n∈ℕ∪{∞} of X such that

(a) For any n ∈ ℕ and any B ⊂ En with positive measure, L2(TX) has an orthonormal basis 
{ei,n}

n
i=1

 on B,
(b) For every subset B of E∞ with finite positive measure, there exists an orthonormal basis 

{ei,B}i∈ℕ∪{∞} ⊂ L2(TX)|B which generates L2(TX)|B,

where we say that a countable set {vi}i ⊂ L2(TX) is orthonormal on B if ⟨vi, vj⟩ = �ij �
-a.e. on B. By definition, the local dimension dimloc(x) ∈ ℕ ∪ {∞} is n if x ∈ En.

Proposition 3 Let E be a Dirichlet form satisfying the BE(k,N) condition for some 
k ∈ L∞ and some number N ∈ [1,∞] and let {En}n∈ℕ∪{∞} be the decomposition given by 
Proposition 2. Then, �(En) = 0 for n > N , and for any (f ,�) ∈ D(Γ2) , we have

�
e ∋ f → ∇f ∈ L2(TX), ‖∇f‖2 = ∫ Γ(f ) d�.

⟨∇f ,∇g⟩ = Γ(f , g) �-a.e.

⟨h∇f ,∇g⟩ = h⟨∇f ,∇g⟩ �-a.e.

(7)2Hessf (∇g,∇h) = Γ(g,Γ(f , h)) + Γ(h,Γ(f , g)) − Γ(f ,Γ(g, h)).
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where 1

N−dimloc

(trHessf − Δf )2 is taken 0 on EN by definition.
The same estimate (8) also holds true for all f ∈ Dloc(Δ) ∩ L∞

loc
 with Δf ∈ �loc and 

all non-negative � ∈ �
∞ with compact support and Γ(�) ∈ L∞ provided E satisfies the 

BEloc(k,N) condition for some k ∈ L∞
loc

 and N ∈ [1,∞].

Proof The proof for constant k = K was given in [16], Proposition 3.2 and Theorem 3.3. In 
fact, the proof there only relies on a so-called self-improvement technique in Bakry–Émery 
theory, which can also be applied to BE(k, N) case without difficulty. Also the extension 
via localization is straightforward.   ◻

In order to proceed, we briefly recall the notion of measure-valued Laplacian � as 
introduced in [13, 20]. We say that f ∈ D(�) ⊂ �

e if there exists a signed Borel measure 
� = �+ − �− charging no capacity zero sets such that

for any � ∈ �  with quasi-continuous representative � ∈ L1(X, |�|) . If � is unique, we 
denote it by �f  . If �f ≪ � , we also denote its density by Δf  if there is no ambiguity.

Proposition 4 (See Lemma 3.2 [20]) Let E be a Dirichlet form satisfying the BEloc(k,N) 
condition. Then, for any f ∈ TestFloc(E) , we have Γ(f ) ∈ Dloc(�) and

In particular, the singular part of the measure �Γ(f ) is non-negative.

2.3  BE(K,N) condition under time change

We define the time change of the Dirichlet form E in the following way.

Definition 4 (Time change) Given a function w ∈ L∞
loc
(X,�) , define the weighted meas-

ure �w ∶= e2w� and the time-changed Dirichlet form Ew on L2(X,�w) by

with D(Ew) ∶= �
w ∶= �

e ∩ L2(X,�w) . Note that indeed Ew(f ) does not depend on w and 
(�w)e = �

e.

We leave it to the reader to verify the following simple but fundamental properties.

(8)Γ2(f ;�) ≥�
(
kΓ(f ) + |Hessf |2HS + 1

N − dimloc

(trHessf − Δf )2
)
� d�

∫ � d� = −∫ Γ(�, f ) d�

1

2
�Γ(f ) − Γ(f ,Δf )� ≥ (

kΓ(f ) + |Hessf |2HS + 1

N − dimloc

(trHessf − Δf )2
)
�.

E
w(f ) ∶= ∫ Γ(f ) d� ∀f ∈ �

w
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Lemma 3 

 (i) E
w is a strongly local, symmetric Dirichlet form.

 (ii) E
w admits a carré du champ defined on (�w)loc = �loc by Γw ∶= e−2wΓ.

 (iii) Furthermore, Dloc(Δ
w) = Dloc(Δ) and Δwf = e−2wΔf .

 (iv) If in addition w ∈ �loc then TestFloc(E
w) = TestFloc(E).

Our first main result will provide the basic estimate for the Bakry–Émery condition 
under time change.

Theorem 4 Let w ∈ Dloc(�) ∩ L∞
loc

 be given and assume that E satisfies BEloc(k,N) condi-
tion for some N ∈ [2,∞) and k ∈ L∞

loc
 . Then, for any N� ∈ (N,∞] , any f ∈ TestFloc(E) and 

any non-negative � ∈ �∞ with compact support, we have

where

Proof By Lemma 3 we know

(9)
− �

[
1

2
Γw

(
Γw(f ),�

)
+ Γw

(
f ,Δwf

)
�
]
d�w

≥ � Γw(f )� d� +
1

N� � (Δwf )2� d�w

� ∶= e−2w
(
k −

(N − 2)(N� − 2)

N� − N
Γ(w)

)
�w − �w.

−
1

2 ∫ Γw
(
Γw(f ),�

)
d�w − ∫ Γw(f ,Δwf )� d�w

= −
1

2 ∫ Γ
(
e−2wΓ(f ),�

)
d� − ∫ Γ(f , e−2wΔf )� d�

=
(
−

1

2 ∫ Γ
(
Γ(f ),�

)
e−2w d� + ∫ Γ(f )Γ(w,�)e−2w d�

)
−
(
∫ Γ(f ,Δf )e−2w� d�

− 2∫ ΔfΓ(f ,w)e−2w� d�
)

=
(
−

1

2 ∫ Γ
(
Γ(f ), e−2w�

)
d� − ∫ Γ

(
Γ(f ),w

)
e−2w� d�

)
+ ∫ Γ(f )Γ(w,�)e−2w d�

− ∫ Γ(f ,Δf )e−2w� d� + 2∫ ΔfΓ(f ,w)e−2w� d�

=
{
−

1

2 ∫ Γ
(
Γ(f ), e−2w�

)
d� − ∫ Γ(f ,Δf )e−2w� d�

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Γ2(f ;e

−2w�)

+
(
∫ Γ

(
w, e−2wΓ(f )�

)
d�

− ∫ Γ
(
w, e−2wΓ(f )

)
� d�

)
− ∫ Γ

(
Γ(f ),w

)
e−2w� d� + 2∫ ΔfΓ(f ,w)e−2w� d�

= Γ2(f ;e
−2w�) + ∫ Γ

(
w, e−2wΓ(f )�

)
d� −

(
∫ Γ

(
w,Γ(f )

)
�e−2w d� − 2∫ Γ(w)Γ(f )e−2w� d�

)

− ∫ Γ
(
Γ(f ),w

)
e−2w� d� + 2∫ ΔfΓ(f ,w)e−2w� d�

= (I) + (II) + (III) + (IV) −
[
∫

(N − 2)(N� − 2)

N� − N
Γ(w, f )2e−2w� d� + ∫ �Γw(f ) d�w

]
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where

and

By Proposition 4 we obtain

By Lemma 4, we get

As for the last term (IV), it can be checked that the function in the bracket is positive defi-
nite, so (IV) ≥ 0.

Combining the computations above, we complete the proof.   ◻

Lemma 4 For any f ∈ TestFloc(E) , we have

where

and

Proof By Proposition 3, there exists an orthonormal basis {ei}i ⊂ L2(TX) . Then, we denote 
Hessf (ei, ej) by (Hessf )ij and denote ⟨∇g, ei⟩ by gi for any g ∈ �

e . We define a matrix 
H ∶= (Hij) by Hij = (Hessf )ij − wifj − wjfi + Γ(f ,w)�ij . Then, we have

(I) =Γ2(f ;e
−2w�) − ∫

(
|Hessf |2HS + 1

N − dimloc

(Δf − trHessf )
2
)
�e−2w d�,

(II) =∫
(
|Hessf |2HS + 2Γ(f )Γ(w) + (dimloc − 2)Γ(f ,w)2 − 2Γ

(
w,Γ(f )

)

+ 2Γ(f ,w)trHessf

)
�e−2w d�,

(III) =
1

N� − dimloc
∫

(
Δf − trHessf + (2 − dimloc)Γ(f ,w)

)2

�e−2w d�,

(IV) =∫
[(

1

N − dimloc

−
1

N� − dimloc

)
(Δf − trHessf )

2

+ 2
(
1 −

2 − dimloc

N� − dimloc

)
(Δf − trHessf )Γ(f ,w)

+
( (N − 2)(N� − 2)

N� − N
− (dimloc −2) −

(dimloc −2)
2

N� − dimloc

)
Γ(f ,w)2

]
�e−2w d�.

(I) ≥ � kΓ(f )e−2w� d�.

(II) + (III) ≥ 1

N� �
(
Δf

)2
�e−2w d�.

A1 +
1

N� − dimloc

A2
2
≥ 1

N�

(
Δf

)2
�-a.e.

A1 ∶=|Hessf |2HS + 2Γ(f )Γ(w) + (dimloc − 2)Γ(f ,w)2

−2Γ(w,Γ(f )) + 2Γ(f ,w)trHessf

A2 ∶= Δf − trHessf − (dimloc − 2)Γ(f ,w).
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where trHessf =
∑

i(Hessf )ii . It can also be seen that

Finally, we obtain

which is the thesis.   ◻

Theorem  5 (BEloc(k,N) condition under time change) Let E be a Dirichlet form satis-
fying the BEloc(k,N) condition for some N ∈ [2,∞) and k ∈ L∞

loc
(X,�) . Assume that 

w ∈ Dloc(�) ∩ L∞
loc

 with �w = �singw + Δacw� and �singw ≤ 0 . Moreover, assume that for 
some N� ∈ (N,∞] and k� ∈ L∞

loc
 it holds

�-a.e.  on X. Then, the time-changed Dirichlet form Ew on L2(X,�w) satisfies the 
BEloc(k

�,N�) condition.
In particular, if there are some N� ∈ (N,∞] and K� ∈ ℝ such that

�-a.e. on X, we have the following gradient estimate

for all f ∈ D(Ew).

Proof Given the estimate (9) from the previous theorem, we iteratively will extend the 
class of functions for which it holds true.

(i) Our first claim is that (9) holds for all f ∈ Dloc(Δ) ∩ L∞
loc

 with Δf ∈ �loc and all com-
pactly supported, nonnegative � ∈ �

∞ with Γ(�) ∈ L∞ . Indeed, given such f and � , choose 
f � ∈ D(Δ) ∩ L∞ with Δf ∈ �  such that f = f � on a neighborhood of {� ≠ 0} . Choose 
fn ∈ TestF(E) with fn → f ′ in D(Δ) and Δfn → Δf � in �  . (For instance, put fn = P1∕nf

� .) 
Applying (9) with fn in the place of f and passing to the limit n → ∞ yields the claim. 
Indeed,

∑
i,j

H2
ij
=
∑
i,j

(
(Hessf )ij − wifj − wjfi + Γ(f ,w)�ij

)2

=|Hessf |2HS + 2Γ(f )Γ(w) + (dimloc − 2)Γ(f ,w)2

− 2Γ(w,Γ(f )) + 2Γ(f ,w)trHessf = A1

trH =
∑
i

Hii = trHessf + (dimloc − 2)Γ(f ,w) = Δf − A2.

A1 +
1

N� − dimloc

A2
2
=‖H‖2

HS
+

1

N� − dimloc

�
trH − Δf

�2

≥ 1

dimloc

�
trH

�2
+

1

N� − dimloc

�
trH − Δf

�2 ≥ 1

N�

�
Δf

�2

(10)k� ≤ e−2w
[
k −

(N − 2)(N� − 2)

N� − N
Γ(w) − Δacw

]

(11)K� ≤ e−2w
[
k −

(N − 2)(N� − 2)

N� − N
Γ(w) − Δacw

]

Γw(Pw
t
f ) +

1 − e−2K
�t

N�K�
(ΔwPw

t
f )2 ≤ e−2K

�tPw
t

(
Γw(f )

)
�w-a.e.
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which according to Lemma 1 for n → ∞ converges to

since fn → f  in D(Δ).
(ii) Our next claim is that (9) holds for all f ∈ Dloc(Δ

w) ∩ L∞
loc
(�w) with Δwf ∈ (�w)∞

loc
 

and all compactly supported, nonnegative � ∈ (�w)∞ with Γw(�) ∈ L∞(�w) . Indeed, the 
conditions on f and on � will not depend on w as long as w ∈ �

∞
loc

 which is the case by 
assumption. This is obvious in the case of the conditions on � . For the conditions on f, note 
that Δw = e−2wΔ and Γw(Δw) ≤ 2e−4w

[
Γ(Δf ) + 4(Δf )2 Γ(w)

]
.

(iii) Taking into account the assumptions on �w and on k′ , according to Lemma 2 
together with Remark 4 the assertion of the second claim already proves BEloc(k

�,N�).
(iv) The gradient estimate is a standard consequence of BE(K�,N�) , see [10].   ◻

Remark 5 Let e2w = � and N� = ∞ in Theorem 5. Then, condition (11) becomes

Furthermore, when N = 2 , the condition is K�� ≤ K −
1

2
Δ ln �.

3  Time change and the Lott–Sturm–Villani condition

In this section, we will study synthetic lower Ricci bounds under time change in the setting 
of metric measure spaces. More precisely, we will derive the transformation formula for the 
curvature-dimension condition of Lott–Sturm–Villani under time change.

3.1  Metric measure spaces and time change

Assumption 2 In this section we will assume that the metric measure space (X, d,�) 
fulfils the following conditions: 

 (i) (X, d) is a complete and separable geodesic space;
 (ii) � is a d-Borel measure and supp� = X;
 (iii) (X, d,�) satisfies the Riemannian curvature-dimension condition RCD(K,N) for 

some K ∈ ℝ and N ∈ [1,∞).

Given such a metric measure space (X, d,�) , the energy is defined on L2(X,�) by

Γw(Γw(fn),�) = e−4w
[
Γ(Γ(fn),�) − 2Γ(fn) ⋅ Γ(w,�)

]

e−4w
[
Γ(Γ(f ),�) − 2Γ(f ) ⋅ Γ(w,�)

]
= Γw(Γw(f ),�)

K� ≤ K�−1 +
1

2
Δ�−1 − NΓ(�−

1

2 ) = �−
N

2

(
K −

1

N − 2
Δ
)
�

N

2
−1.

E(f ) ∶= inf
{
lim inf
n→∞ ∫X

lip(fn)
2d� ∶ fn ∈ Lipb(X), fn → f in L2(X,�)

}

=∫X

||Df |2 d�
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where lip(f )(x) ∶= lim supy→x |f (x) − f (y)|∕d(x, y) denotes the local Lipschitz slope and 
|Df |(x) denotes the minimal weak upper gradient at x ∈ X . We refer to [1] for details. As 
a part of the definition of RCD condition, E(⋅) is a quadratic form. By polarization, this 
defines a quasi-regular, strongly local, conservative Dirichlet form admitting a carré du 
champ Γ(f ) ∶= |Df |2 . We use the notations W1,2(X, d,�) = � = D(E) and S2(X, d,�) = �

e

.

Definition 5 Given w ∈ L2
loc
(X,�) , the time-changed metric measure space is defined as 

(X, dw,�w) where �w ∶= e2w� and dw is given by

for any x, y ∈ X.

Remark 6 There are various alternative definitions for the distance function under time 
change. The first of them is

Since Liploc(X) ⊂ �loc ∩ C(X) and |D�| ≤ lip(�) for � ∈ Liploc(X) , obviously dw ≤ dw . 
It is easy to see that in both of these definitions, the class of functions under con-
sideration can equivalently be restricted to those with compact supports. In other 
words, dw(x, y) = sup

{
�(x) − �(y) ∶ � ∈ � ∩ Cc(X), |D�| ≤ ew �-a.e. in X

}
 and 

dw(x, y) = sup
{
�(x) − �(y) ∶ � ∈ Lipc(X), lip(�) ≤ ew �-a.e. in X

}
.

Moreover, we consider the metric ew ⊙ d defined in a dual way by

Of particular interest is the metric ew̄ ⊙ d with w replaced by its upper semicontinuous 
envelope w̄ defined by

Lemma 5 Assume that w is continuous a.e. on X. Then, each of the metrics dw, dw , ew ⊙ d 
and ew̄ ⊙ d induces the same minimal weak upper gradient |Dwf | = e−w|Df | �-a.e. on X 
for each f ∈ L2

loc
(X). In particular,

where here and henceforth Γw denotes the carré du champ operator induced by the metric 
measure space (X, dw,�w).

Proof Assume that w is continuous at x ∈ X . Then, for each 𝜀 > 0 there exists 𝛿 > 0 such 
that |w(x) − w(y)| < 𝜀 for y ∈ B�(x) . Hence, by using appropriate truncation arguments it is 
easy to see that for each d∗ ∈

{
dw, dw, e

w ⊙ d, ew̄ ⊙ d
}
 and all y ∈ B�(x)

(12)dw(x, y) ∶= sup
{
�(x) − �(y) ∶ � ∈ �loc ∩ C(X), |D�| ≤ ew �-a.e. in X

}

(13)dw(x, y) ∶= sup
{
�(x) − �(y) ∶ � ∈ Liploc(X), lip(�) ≤ ew �-a.e. in X

}
.

(14)
(
ew ⊙ d

)
(x, y) ∶= inf

{
∫

1

0

ew(𝛾s) |�̇�s| ds ∶ 𝛾 ∈ AC([0, 1],X), 𝛾0 = x, 𝛾1 = y
}
.

w̄(x) ∶= lim sup
y→x

w(y).

Γw = e−2w Γ on �loc = �
w
loc

ew(x)−� ⋅ d(x, y) ≤ d∗(x, y) ≤ ew(x)+� ⋅ d(x, y).
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Hence, lip∗(f )(x) = e−w(x) lip(x) for the respective local Lipschitz constants associated with 
d∗.

To obtain the respective minimal weak upper gradient for f ∈ L2(X,�) associated with 
d∗ , one has to consider the relaxations of lip∗(f ) w.r.t. the measure �w = e2w� . This, how-
ever, amounts to study the relaxations of the original lip(f ) w.r.t. the measure � . Thus, the 
claimed identify Γw(f ) = e−2w Γ(f ) �-a.e. on X follows.   ◻

In the following lemma, we show the coincidence of dw and ew̄ ⊙ d , see [17] for related 
results.

Lemma 6 Assume that w is continuous a.e. on X. Then,

In particular, dw is a geodesic metric.

Proof (i) Let us first prove that dw is a geodesic metric. Since X is locally compact 
w.r.t.  the metric d and since the metrics dw and d are locally equivalent, the space X is 
also locally compact w.r.t. the metric dw . Therefore, it suffices to prove that dw is a length 
metric. Assume this is not the case. Then, there exist points x ≠ y with dw(x, y) < 2r and 
Bw
r
(x) ∩ Bw

r
(y) = � . Put

It is easy to verify that Γw(f ) ≤ 1 and obviously f is continuous. Hence, by the very defini-
tion of dw

which is in contradiction to our initial assumption.
(ii) Now let us consider the particular case where w is continuous on all of X. Then, 

dw = ew ⊙ d . Indeed, both metrics are geodesic metrics on X and coincide up to multiplica-
tive pre-factors e±� on suitable neighborhoods B�(x) of each point z ∈ X.

(iii) To deal with the general case, let us choose a decreasing sequence of continuous 
functions wn with wn ↓ w̄ as n → ∞ . Then, dwn = ewn ⊙ d for each n by the preceding case 
ii) and thus by monotonicity for all x, y

iv) To prove the reverse estimate, for given x ∈ X observe that f = (ew̄ ⊙ d)(x, .) is con-
tinuous and obviously lipw(f )(y) ≤ 1 in each point y of continuity of w. Thus, in particular, 
Γw(f ) ≤ 1 �w-a.e. on X. This indeed implies that dw(x, z) ≥ |f (x) − f (z)| = (ew̄ ⊙ d)(x, z) for 
each z ∈ X .   ◻

Lemma 7 Assume that w is continuous a.e. on X. Then, the metric measure space 
(X, dw,�w) has the Sobolev-to-Lipschitz property.

Proof Assume that f ∈ �loc is given with Γw(f ) ≤ 1 �w-a.e. on X. By truncation one can 
achieve on each bounded set B that f = fB a.e. on B for some fB with bounded support and 
with Γw(fB) ≤ 1 �w-a.e.  on X. Since w ∈ L∞

loc
 , moreover, Γ(fB) ≤ C �-a.e.  on X. By the 

Sobolev-to-Lipschitz property of the original metric measure space (X, d,�) it follows that 

dw = ew̄ ⊙ d.

f = dw(.,X⧵Br(x)) − dw(.,X⧵Br(y)).

dw(x, y) ≥ f (x) − f (y) = 2r

dw(x, y) ≤ inf
n
dwn (x, y) = inf

n
(ewn ⊙ d)(x, y) = (ew̄ ⊙ d)(x, y).
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f = f̄B a.e. on B for some f̄B with Lip(f̄B) ≤ C . In particular, f̄B is continuous and Γw(f̄B) ≤ 1 
�w-a.e. on X. Hence,

for all x, y ∈ X by the very definition of the metric dw . In other words, f̄B ∈ Lipw(X) with 
Lipw(f̄B) ≤ 1 . Considering these constructions for an open covering of X by such sets B, it 
follows that there exists f̄ ∈ Lipw(X) with f = f̄  �-a.e. on X and Lipw(f̄ ) ≤ 1 .   ◻

Finally, we can prove the transformation formula for the RCD(K,N) condition under 
time change.

Theorem 6 Let (X, d,�) be an RCD(K,N) space for some K ∈ ℝ and N ∈ [1,∞) , and let 
w ∈ Dloc(�) ∩ L∞

loc
(X) be continuous �-a.e. with �w = �singw + Δacw� and �singw ≤ 0 . 

Then, the time-changed metric measure space (X, dw,�w) satisfies the RCD(K�,N�) condi-
tion for any N� ∈ (N,∞) and K� ∈ ℝ such that �-a.e. on X

A particular consequence of the theorem is that the time-changed metric measure space 
(X, dw,�w) satisfies the squared exponential volume growth condition:

∃C ∈ ℝ, z ∈ X:

Proof From the work of [3, 10], we know that the curvature-dimension condition 
RCD(K,  N) implies the Bakry–Émery condition BE(K,  N) for the Dirichlet form E on 
L2(X,�) induced by the measure space (X, d,�) . According to Theorem 5, this implies the 
Bakry–Émery condition BE(K�,N�) for the Dirichlet form Ew on L2(X,�w) . Due to Lemma 
5, the latter indeed is the Dirichlet form induced by the metric measure space (X, dw,�w) . 
Finally, again by [3, 10], BE(K�,N�) for the Dirichlet form induced by (X, dw,�w) will 
imply RCD∗(K�,N�) provided the volume-growth condition (16) is satisfied and the 
Sobolev-to-Lipschitz property holds. The latter was proven in Lemma 7. To deal with the 
former, we proceed in two steps.

i)  Let us first consider the case w ∈ L∞(X) . Then, the volume-growth condition (16) 
for (X, dw,�w) obviously fellows from that for (X, d,�) which in turn follows from the 
RCD(K,N) assumption.

ii) Now let general w ∈ L∞
loc
(X) be given as well as K′ and N′ such that (15) is satisfied. 

Given z ∈ X , define wl = w ⋅ �
𝓁
 with suitable cut-off functions (�

�
)
�∈ℕ (cf. [4],  Lemma 

6.7) such that for all � ∈ ℕ

• w
�
= w on B

�
(z)

• w
� is bounded on X

• e−2w�

[
K −

(N−2)(N�−2)

N�−N
|Dw

�
|2 − Δacw�

] ≥ K� − 1.

Then, according to part i) of this proof, the metric measure space (X, dw� ,�w
� ) satisfies 

RCD(K� − 1,N�) . This in particular implies that there exists a constant C (which indeed 
can be chosen independent of � ) such that

dw(x, y) ≥ |f̄B(x) − f̄B(y)|

(15)K� ≤ e−2w
[
K −

(N − 2)(N� − 2)

N� − N
|Dw|2 − Δacw

]
.

(16)�w(Bw
r
(z)) ≤ C eCr

2

(∀r > 0).
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for all r > 0 . Since �w
�

(
B
w
�

r (z)
)
= �w

(
Bw
r
(z)

)
 for all r ≤ � , this finally proves the 

requested volume growth condition.   ◻

It might be of certain interest to analyze the validity of the volume growth condition (16) 
under time change without referring to curvature bounds. We will still assume that w is �-a.e. 
continuous.

Lemma 8 Suppose there exist non-negative p, q ∈ L∞
loc
(ℝ+) with

Then, (X, dw,�w) satisfies the squared exponential volume growth condition: 
∃C ∈ ℝ, x0 ∈ X:

provided the function f (r) ∶= ∫ r

0
e−q(s)ds satisfies

 (i) lim infr→∞
1

r
f (r) > 0 and

 (ii) lim supr→∞
1

r2
p
(
f −1(r)

)
< ∞.

In particular, if q is bounded and limr→∞
p(r)

r2
< ∞ , then (X, dw,�w) satisfies the squared 

exponential volume growth condition.

Proof From Lemma 6, we know

for any y ∈ X . Since f −1 is strictly increasing, this implies

Hence,

Recall that the RCD(K,∞) condition implies the squared exponential volume growth con-
dition, so there exist M, c > 0 such that

Note that (i) implies lim supr→∞
1

r
f −1(r) < ∞ . Hence, together with (ii), this implies the 

squared exponential volume growth condition for (X, dw,�w) .   ◻

�w
�

(
B
w
�

r (z)
) ≤ C eC r2

−q(d(⋅, x0)) ≤ w(.) ≤ p(d(⋅, x0)) �-a.e. on X.

(17)�w(Bw
r
(x0)) ≤ C eCr

2

(∀r > 0)

dw(x0, y) ≥ �
d(x0,y)

0

exp
(
− q(r)

)
dr = f (d(x0, y))

Bw
R
(x0) ⊂ Bf−1(R)(x0), ∀ R > 0.

�w
(
Bw
R
(x0)

) ≤ exp
(
2p(f −1(R))

)
�
(
Bf−1(R)(x0)

)
.

�w
(
Bw
R
(x0)

) ≤ M exp
(
2p(f −1(R)) + c

(
f −1(R)

)2)
.
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3.2  Convexity transform

Firstly we introduce the notion of local �-convexity (i.e., semi-convexity) in non-smooth 
setting. Such notion is derived from [18] by the second author and Lierl (see Definition 2.6 
and Definition 2.9 therein).

Definition 6 (�-convex functions, Definition 2.6 [18]) Given � ∈ ℝ , we say that a func-
tion V is �-convex on a closed subset Z ⊂ X if there exists a convex open covering ∪iXi ⊃ Z 
such that each V|Xi

∶ Xi → (−∞,+∞] is �-geodesically convex, in the sense that for each 
x0, x1 ∈ Xi , there exists a geodesic � ∶ [0, 1] → X from x0 to x1 such that

Definition 7 (Locally �-convex sets, Definition 2.9 [18]) Let Ω ⊂ X be an open sub-
set and let V ∶= d(.,Ω) − d(.,X⧵Ω) denote the signed distance from the boundary, in the 
sequel also briefly denoted by ±d(., �Ω).

Given ell < 0 , we say that Ω is locally �-convex if for each 𝛿 > 0 there exists r > 0 , 
such that V is (� − �)-convex and −V  is 0-convex on Ωr

−r
 with |DV| ≥ 1 − � where 

Ωr
−r

∶= {−r < V < r}.

Remark 7 Assume that X is a smooth Riemannian manifold, and Ω is a bounded open sub-
set of X with smooth boundary. It is proved in Proposition 2.10 [18] that the real-valued 
second fundamental form on �Ω is negative and bounded from below by � if and only if Ω 
is locally �-convex.

Remark 8 If Ω = {V < 0} for some 0-geodesically convex function V (i.e., a geodesically 
convex function), then Ω is geodesically convex in (X, d) . In order to study convex trans-
form, we just need to analyze the ‘pure concave’ part of �Ω . This is the reason why we 
require that −V  is 0-convex in Definition 7. Moreover, this condition is necessary in the 
proof of Lemma 11 below.

Then, we can convexify locally �-convex sets using time change and the following con-
vexification technique developed in [18] (see Theorem 2.17 therein).

Lemma 9 (Convexification Theorem) Let Ω be a locally �-convex subset in X for some 
� < 0 . Then, Ω is locally geodesically convex in (X, d−��V ) for any �′ < �.

Next we recall some important results concerning L1-optimal transport and measure 
decomposition. This theory has proven to be a powerful tool in studying the fine structure 
of metric measure spaces. We refer the readers to the lecture note [6] for an overview of 
this topic and the bibliography.

Lemma 10 (Localization for RCD(K,N) spaces, Theorem 3.8 and Theorem 5.1 [8]) Let 
(X, d,�) be an essentially non-branching metric measure space with supp� = X , and sat-
isfying RCD(K,N) condition for some K ∈ ℝ and N ∈ (1,∞) . Then, for any 1-Lipschitz 
function u on X and the transport set �u associated with u (up to�-measure zero set, �u 
coincides with {|∇u| = 1}), there is a disjoint family of unparameterized geodesics {Xq}q∈� 
such that

V(𝛾(t)) ≤ (1 − t)V(𝛾(0)) + tV(𝛾(1)) −
�

2
t(1 − t)|�̇�t|2, ∀t ∈ [0, 1].
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and there is a probability measure � on � such that

Furthermore, for �-a.e. q ∈ � , �q is a Radon measure with �q ≪ H
1|Xq

 and (Xq, d,�q) 
satisfies RCD(K,N) . In particular, �q = hqH

1|Xq
 for some CD(K,N) probability density hq.

Lemma 11 Let Y be a locally �-convex domain in X for some ell < 0, and �(�Y) = 0 . 
Then, the transport set �V associated with the signed distance function V has full measure 
in X. There is a disjoint family of unparameterized geodesics {Xq}q∈� satisfying (18) and 
(19) in Lemma 10, and a constant r0 > 0 such that

where aq = aq(Xq), bq = bq(Xq) are the end points of Xq.

Proof Firstly, recall that RCD(K,N) condition yields local compactness, so for any 
x ∈ X⧵�Y  , there is z ∈ �Y  such that d(x, z) = d(x, �Y) and thus x ∈ �V . So 𝔪(X⧵�V ) = 0.

Secondly, by Definition 7, V is semi-convex on Y0
−r0

 for some r0 > 0 . By the main theo-
rem of [25], for each x0 ∈ Y0

−r0
 there exists a unique gradient flow for V (and −V  ) starting 

in x0 . In particular, there is a maximal transport (geodesic) line 𝛾 ⊂ �V satisfying 
V(�1) − V(�0) = d(�0, �1) , V(�1) ≥ V(x0) and V(�0) ≤ −r0.

By Theorem 10 there is a disjoint family of unparameterized geodesics {Xq}q∈� such 
that 𝔪(�V⧵ ∪ Xq) = 0 . In addition, Xq ∩ {V ≤ −r0} ≠ � and Xq ∩ {V ≥ 0} ≠ � for any 
q ∈ � . Therefore 𝔪(X⧵ ∪ Xq) = 0 , V(aq) ≥ 0 and V(bq) ≤ −r0 .   ◻

Proposition 5 (Convexification) Let Ω be a locally �-convex domain in (X, d) for some 
� < 0 , and �(�Ω) = 0 . Then, for any �′ < � , there exist r0 > 0 and a Lipschitz function w 
such that Ω is locally geodesically convex in (X, dw) and w ∈ D(�,X⧵�Ω) with

where the function cotK,N ∶ [0,+∞) → [0,+∞) is defined by

Proof Let V ∶= ±d(⋅, �Y) be the signed distance from the boundary and r0 > 0 be 
the constant in Lemma 11. Given �′ < � ≤ 0 , we can find a smooth cut-off function 
� ∶ ℝ → [0, r0] satisfying

(18)𝔪(�u⧵ ∪ Xq) = 0,

(19)�|�u
= ∫�

�q d�(q), �(�) = 1 and �q(Xq) = 1 �-a.e. q ∈ �.

V(aq) ≥ 0, V(bq) ≤ −r0 �-a.e. q ∈ �

�w|X⧵�Ω ≤ −��
(
cotK,N(r0∕4) +

2

r0

)
𝔪|X⧵�Ω.

cotK,N(x) ∶=

⎧
⎪⎪⎨⎪⎪⎩

√
K(N − 1) cot

��
K

N−1
x

�
, if K > 0,

(N − 1)∕x, if K = 0,
√
−K(N − 1) coth

��
−K

N−1
x

�
, if K < 0.
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with 0 ≤ �′ ≤ 1 , |���| ≤ −
2

��r0
 on ℝ . Then, we define w ∶= �(−��V) . By Convexification 

Theorem (cf. Theorem 2.17 [18]) we know Ω is locally geodesically convex in (X, dw).
By chain rule (cf. Proposition 4.11 [13]) and Corollary 4.16 [9] we have 

w ∈ D(�,X⧵�Ω) , and

In addition, by Corollary 4.16 [9] and the fact ��� ≤ −
2

��r0
 , we obtain

Furthermore, we know ��(−��V) = 0 on {V ≤ −
3

4
r0} ∪ {V ≥ 3

4
r0} . So from Lemma 11 we 

can see that

Combining with the monotonicity of cotK,N we obtain

which is the thesis.   ◻

Combining Theorem 6 and Proposition 5 we can prove the main theorem of this sec-
tion. Recall that the Minkowski content of a set Z ⊂ X is defined by

where Z𝜖 ⊂ X is the �-neighborhood of Z defined by Z𝜖 ∶= {x ∶ d(x, Z) < 𝜖}.

Theorem 7 Let (X, d,�) be an RCD(K,N) space and Ω be a bounded �-convex domain 
in (X, d) with �(�Ω) = 0 and �+(𝜕Ω) < ∞ . Then, for any N� ∈ (N,+∞] , there exists a 
Lipschitz function w such that (Ω, dw,�w) is a RCD(K�,N�) space for some K� ∈ ℝ.

Proof Let w be the reference function obtained in Proposition 5. Denote by � the trivial 
extension of �w|X⧵�Ω on whole X. To apply Lemma 6 and Proposition 5, it suffices to show 
that w ∈ D(�) and �w ≤ �.

Given an arbitrary non-negative Lipschitz function � ∈ Lip(X, d) with bounded support. 
For any 𝜖 > 0 , there exists a Lipschitz function �� ∈ Lip(ℝ) satisfying

�(t) ∶=

⎧
⎪⎨⎪⎩

t, if t ∈ [
1

4
�
�r0,−

1

4
�
�r0]

−
1

2
�
�r0, if t ∈ [−

3

4
�
�r0,+∞)

1

2
�
�r0, if t ∈ (−∞,

3

4
�
�r0]

(20)�w|X⧵�Ω = − �
���(−��V)�V|X⧵�Ω + (��)2���(−��V)|DV|2 𝔪|X⧵�Ω.

�w|X⧵�Ω
≤ −����(−��V)�V|X⧵�Ω −

2��

r0
|DV|2 𝔪|X⧵�Ω

≤ −����(−��V)
(
cotK,N(d(x, bq))𝔪|X⧵�Ω + �𝔔

hq�bq d𝔮(q)
)
−

2��

r0
𝔪|X⧵�Ω.

��(−��V)∫�

hq�bq = 0.

�w|X⧵�Ω ≤ −��
(
cotK,N(r0∕4) +

2

r0

)
𝔪|X⧵�Ω

�+(Z) ∶= lim inf
�→0

�(Z�) −�(Z)

�
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Define �̄�𝜖 ∶= 𝜙𝜖(d(⋅, 𝜕Ω))𝜑 . By Leibniz rule and chain rule we know �̄�𝜖 ∈ Lip(X, d) , and 
supp �̄�𝜖 ⊂ X⧵𝜕Ω . Therefore by Proposition 5 and monotone convergence theorem we get

By Theorem 10 we have a measure decomposition d� = d�q d�(q) associated with the 
signed distance function ±d(⋅, �Ω) . Thus,

Notice that

Therefore, we obtain

By Riesz–Markov–Kakutani Representation theorem, we know w ∈ D(�).

��(t) ∶=

⎧
⎪⎨⎪⎩

0, if t ∈ [0,
�

2
]

2

�
(t −

�

2
), if t ∈ [

�

2
, �]

1, if t ∈ [�,+∞)

∫ 𝜑 d𝜇 = lim
𝜖→0∫ �̄�𝜖 d�w|X⧵𝜕Ω

= − lim
𝜖→0∫X⧵𝜕Ω

Γ(�̄�𝜖 ,w) d𝔪

= − lim
𝜖→0∫ 𝜙𝜖(d(⋅, 𝜕Ω))Γ(𝜑,w) d𝔪 − lim

𝜖→0∫ 𝜑Γ(𝜙𝜖(d(⋅, 𝜕Ω)),w) d𝔪

= − ∫ Γ(𝜑,w) d𝔪 − lim
𝜖→0∫ 𝜑Γ(𝜙𝜖(d(⋅, 𝜕Ω)),w) d𝔪.

lim
�→0∫ �Γ(��(d(⋅, �Ω)),w) d�

= lim
�→0∫Ω

−�∕2
−�

�Γ(��(d(⋅, �Ω)),w) d� + lim
�→0∫Ω�

�∕2

�Γ(��(d(⋅, �Ω)),w) d�

= lim
�→0

2𝓁�

�

(
∫Ω

−�∕2
−�

� d� − ∫Ω�
�∕2

� d�

)

= lim
�→0

2𝓁�

� ∫�

(
∫Ω

−�∕2
−� ∩Xq

� d�q − ∫Ω�
�∕2

∩Xq

� d�q

)
d�(q).

�+(�Ω) = lim inf
�→0

�
(
(�Ω)�

)
�

= lim inf
�→0

1

�

(
∫Ω0

−�

1 d� + ∫Ω�
0

1 d�

)
.

||||� Γ(�,w) d�
||||

≤ ||||� � d�
|||| +

||||lim�→0� �Γ(��(d(⋅, �Ω)),w) d�
||||

≤ max |�|
{

|�|(supp�) + lim
�→0

2|𝓁�|
�

(
�Ω0

−�

1 d� + �Ω�
0

1 d�

)}

≤ max |�|{|�|(supp�) − 2𝓁��+(�Ω)
}
.
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Since �q = hqH
1|Xq

 for some CD(K,N) probability density hq , we know hq and (ln hq)� 
are bounded. So for any Xq such that Ω−�∕2

−� ∩ Xq ≠ � and Ω�
�∕2

∩ Xq ≠ � for � small enough, 
we have

Hence by Lemma 11 and Fatou’s lemma, we obtain

In conclusion, we obtain

Therefore, �w ≤ � , by Proposition 5 we know �singw ≤ 0 and 
(
Δacw)

+ ∈ L∞ . Then, by 
Theorem 6 we know (Ω, dw,�w) is a RCD(K�,N�) space.   ◻
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