REGULARITY OF THE ONE-PHASE FREE BOUNDARIES

BOZHIDAR VELICHKOV

ABSTRACT. These notes are an introduction to the regularity theory for free boundary
problems, the focus being on the one-phase Bernoulli problem, which is of particular
interest as it deeply influenced the development of the modern free boundary regularity
theory and is still an object of intensive research. The exposition is organized around four
main theorems, which are dedicated to the one-phase functional in its simplest form. Many
of the methods and the techniques we present here are very recent and were developed
in the context of different free boundary problems. We also give the detailed proofs of
several classical results, which are based on some universal ideas and are recurrent in the
free boundary, PDE and the geometric regularity theories.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Free boundary problems: classical and variational formulations.

The free boundary problems are a special type of boundary value problems, in which the
domain, where the PDE is solved, depends on the solution of the boundary value problem.
A classical example of a free boundary problem is the Serrin problem:

Find a bounded open C2-regular connected domain Q C R?
and a function v : Q — R such that:

—Au=0 in £, u=0 and |Vul|=1 on Of.

It is well-known (see [47]) that, up to translation, the unique solution of the Serrin problem
is given by the couple (B,wg), where B is the ball of radius R = d (d is the dimension of
the space) and wp : B — R is the function wp(z) = 55 (R* — |2[?).
More generally, if D is a smooth bounded open set in R? then we can consider the
following problem. Find a couple (€2, u) such that:
e the domain (2 is contained in D
e while the function v : Q@ — R
— solves a PDE in ), which in the example below (as in the rest of these notes)
is elliptic but, in general, can also involve a time variable:

d
> ay(x awHZb )0+ c(z)u(z) = f(z) in Q (1.1)
ij=1
— satisfies a boundary condition on the fixed boundary 0D, that is,

F(z,u,Vu) =0 on 0DNoQ,; (1.2)
— satisfies an overdetermined boundary condition on the free boundary 92 N D
G(z,u,Vu) =0 and H(z,u,Vu)=0 on 9IQND, (1.3)

where the functions F, G, H : R2*! — R, as well as the elliptic operator and the right-hand
side in , are given. The aim of the free boundary regularity theory is to describe the
interaction between the free boundary 9f) and the solution u of the PDE. For instance,
it is well-known that, the solutions of boundary value problems (with sufficiently smooth
data) inherit the regularity of the boundary 9, that is, if 9Q is C1%, then |Vu| is Holder
continuous up to the boundary (see [35]). Conversely, one can ask the opposite question.
Suppose that u is a solution of the free boundary problem ——, where the
overdetermined condition on the free boundary is given by

u=0 and |Vu?=Q(z) on 9QND,

for some Holder continuous function Q. Is it true that 09 is Ch*regular? More generally,
we can ask the following question:

Is it possible to obtain information on the local structure of the free boundary, just from
the fact that the overdetermined boundary value problem admits a solution?

Notice that, here we do not impose any a priori regularity on the domain €. For an
extensive introduction to the free boundary problems, with numerous concrete examples
and applications, we refer to the book [33], while a more advanced reading is [16].

A free boundary problem of particular relevance for the theory is the so-called one-phase
Bernoulli problem, which was the object of numerous studies in the last 40 years; it also
motivated the introduction of several new tools and the development of new regularity
techniques. The problem is the following. We have given:

e a smooth bounded open set D in R?,

e a non-negative function g : 0D — R,

e a positive constant A,
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and we search for a couple (2, u), of a domain Q C D and a function u : Q — R, such that:

Au=0 in €,
u=g on 90QNID, (1.4)
u=0 and |Vul=+A on 9QnND.

We notice that a solution should depend both on the ambient domain D and the boundary
value g. Thus, we cannot hope to find explicitly the domain §2 and the function u, except
in some very special cases. In fact, even the existence of a couple (2, u) solving is
a non-trivial question. One way to solve the existence issue is to consider the variational
problem, which consists in minimizing the functional

u—r Fa(u, D) = / |Vu|? de + Al{u > 0} N D,
D

among all functions u : D — R such that
u € H' (D) and u=g on OD.

A solution to ([1.4)) can be obtained in the
following way. To any minimizer v : D — R,
we associate the domain

Qy = {u > 0},

and the free boundary 02, N D. Then, at least
formally, one can show that the couple (£, u)
is a solution to the free boundary problem (|1.4]).

the graph of u over D

the graph of u over 9D

e First, notice that the conditions oD the free boundary 012,
u=0 on 0Q,ND, FiGurE 1.1. A minimizer u and its
u=g on O,NID, free boundary; here D = Bj.

are fulfilled by construction.

e In order to show that u is harmonic in €2,, we suppose that €, is open and that u is
continuous. Let ¢ € C2°(€,) be a smooth function of compact support in €,. Then, for
any t € R sufficiently close to zero, we have

{u+ty >0} = {u> 0},
and so,

Fa(u+tp, D) = Fa(u, D) + / (IV(u+to)* = [Vul?) dz.

u

Now, the minimality of u gives that

2 Vu-Vedr =

0
< D) = 0.
0. at‘tzo}"/\(u+tg0, )=0

Integrating by parts and using the fact that ¢ is arbitrary, we get that
Au=0 in €.

e Finally, for what concerns the overdetermined condition on the free boundary, we
proceed as follows. For any compactly supported smooth vector field &€ : D — R? and any
(small) t > 0, we consider the diffeomorphism U.(z) = x + t£(x) and the test function
U = U O \Il;l. Then, by the optimality of u, we obtain

0

0= a t:OJ:A(Ut,D).



4 BOZHIDAR VELICHKOV

On the other hand, the derivative on the right-hand side can be computed explicitly (see
Lemma [9.5)). Precisely, if we assume that u and 9%, are smooth enough, we have

9 _ _ 2 ) d—1
atL:OfA(ut,D)/m (= [VulP +A) € vdn®,

Uu

where v is the exterior normal to 9€),. Since £ is arbitrary, we get that

|Vu| =vVA on 8Q,ND.

In conclusion, by minimizing the function F,, we obtain at once the function v and the
domain €2 solving . The function v is a minimizer of Fj and the set € is defined as
Q= Q, = {u > 0}. The equation in 2, and the overdetermined condition on the free
boundary 92, N D are in fact the Euler-Lagrange equations associated to the functional.
Thus, instead of studying directly the free boundary problem , in these notes, we will
restrict our attention to minimizers of F,. In order to fix the terminology and the notations
in this section, and also for the rest of these notes, we give the following definition.

Definition 1.1 (Minimizers of Fp). Let D be a bounded open set in R?. We say that the
function v : D — R is a minimizer of Fa in D, ifu € H' (D), u> 0 in D and

Fa(u, D) < Fa(v, D) for every ve HY(D) such that u—v € Hy(D).

1.2. Regularity of the free boundary. These notes are an introduction to the free
boundary regularity theory; the aim is to describe the local structure of the free boundary
08, (which is a geometric object) just by using the fact that v minimizes the functional Fy
and solves an overdetermined boundary value problem (that is, with techniques coming from
Calculus of Variations and PDEs). In fact, the free boundary regularity theory stands on
the crossroad of Calculus of Variations, PDEs and Geometric Analysis, and is characterized
by the interaction between geometric and analytic objects, which is precisely what makes
it so fascinating (and hard) field of Analysis.

Our aim in these notes is to prove a first theorem on the local structure of the free
boundary. In particular, just by using the fact that w is a minimizer of the functional Fjy,
we will prove the following facts:

e u: D — R is (locally) Lipschitz continuous;
e the set Q, := {u > 0} is open and the free boundary Q2,)
90, N D can be decomposed as the disjoint union of a  Reg(¢ «

Q

regular part, Reg(0€),), and a singular part, Sing(9€,),
0y, N D = Reg(08,) U Sing(0€,) ;

e the regular part Reg(9€),) is a C1*®*-smooth manifold
of dimension (d — 1);
e the singular part Sing(0€,) is a closed subset of

FiGure 1.2. Th l d
00, N D and its Hausdorfl dimension is at most d — 2. € reguar an

the singular parts of 08, .

The overall approach and many of the tools that we will present are universal and have
counterparts in other fields, for instance, in the regularity of area-minimizing currents, in
free discontinuity problems and harmonic maps. In fact, there are several points which are
common for the regularity theory in all these (and many other) variational problems:

— the local behavior of the solution is determined through the analysis of the so-called
blow-up sequences and blow-up limits;

— the points of the free boundary are labelled regular or singular according to the
structure of the so called blow-up limits at each point; this provides a decomposition of the
free boundary into a regular part and a singular part;
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— at regular points, the regularity of the free boundary, which might be expressed in

geometric (Theorem or energetic (Theorem and Lemma [12.14]) terms, improves
along the blow-up sequences;

— the set of singular points can become bigger when the dimension of the ambient space
is higher; the measure and the dimension of the singular set can be estimated through
the so-called dimension reduction principle, which uses the fact that the blow-up limit are
homogeneous functions; the homogeneity of the blow-up limits can be obtained through a
monotonicity formula.

We will prove four main theorems.

In Theorem (Section we prove a regularity result for minimizers of F,. We will
obtain the O regularity of the regular part of the free boundary through an improvement-
of-flatness approach, while we will only give a weak estimate on the measure of the singular
set. The proof of this theorem is carried out through Sections [2] — 8

In Theorem (Section we give an estimate on the dimension of the set of singular
points. We will use the Weiss monotonicity formula to obtain the homogeneity of the blow-
up limits and the Federer dimension reduction principle to estimate the dimension of the
singular set. The proof of this theorem is contained in Section [9] and Section

In Theorem (Section we prove a regularity theorem for functions v minimizing
Fo under the additional measure constraint |2,| = m. In this case, we show that there is
a Lagrange multiplier A such that w is a critical point for the functional Fj. In this case,
the regularity of the free boundary is a more delicate issue and the Theorems and
cannot be applied directly. The proof requires the Sections [2| — and also the specific
analysis from Section

Theorem m (Section is dedicated to the epiperimetric inequality (Theorem
approach to the regularity of the free boundary, which was introduced in [50]. In particular,
we give another proof of the fact that, if u is a local minimizer of F in dimension two, then
the (entire) free boundary is C'1* regular. The proof is based on the epiperimetric inequality
from Section [12] which replaces the improvement of flatness argument from Section [7}, but
we still use results from Section [2} Section [3] Section [4] Section [6] Section 8.2 and Section
[0 Finally, we notice that the fact that an epiperimetric inequality in dimension d implies
the regularity of the free boundary holds in any dimension (see Section .

The rest of the introduction is organized as follows. Each of the subsections [I.3]
and is dedicated to one of the main theorems 1.9 and Finally, in Section

[I.7] we briefly discuss some of the results, obtained or just reported in these notes, which
might also be of interest for specialists in the field.

1.3. The regularity theorem of Alt and Caffarelli. Alt and Caffarelli pioneered the
study of the one-phase free boundaries in [3], where they proved the following theorem.

Theorem 1.2 (Alt-Caffarelli). Let D be a bounded open set in R% and u € H*(D) be a
non-negative minimizer of Fa in D. Then u s locally Lipschitz continuous in D, the set
0y, = {u > 0} is open and the free boundary can be decomposed as:

0Q, N D = Reg(0,) U Sing(0%,),
where Reg(0€Y,) and Sing(0,) are disjoint sets such that:

(i) Reg(0Qy,) is a CY%-regular (d — 1)-dimensional surface in D, for some a > 0;
(ii) Sing(0,) is a closed set of zero (d — 1)-dimensional Hausdorff measure.

In these notes we will give a proof of this result, which is different from the original one
(see [3]) and is based on recent methods developed in several different contexts: for instance,
the two-phase problem ([4], [49]), almost-minimizers for the one-phase problem ([19], [49]),
the one-phase problem for singular operators ([I8]), the vectorial Bernoulli problems ([41],
[42]), shape optimization problems ([9], [46]). We will also use tools, which were developed
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after [3] as, for instance, viscosity solutions ([12], [13], [14], [23], [24] and [16]), monotonicity
formula ([52]) and epiperimetric inequalities ([50], [28§]).

In order to make these notes easier to read, we give the sketch of the proof in the
introduction; for the technical details and generalizations, we refer to the results from the
forthcoming sections.

Proof. In the proof of Theorem [1.2] we will use only results from Section [2] to Section

Section [2]is dedicated to the existence of minimizers and also to several explicit examples
and preliminary results that will be useful in the forthcoming sections. The existence of
minimizers for fixed boundary datum on 9D is obtained in Proposition In Lemma
and Lemma we give two different proof of the fact that the minimizers of F, are
subharmonic functions. This result has several important applications. First of all, when
we study the local behavior of v and of the free boundary 9€),, we may assume a priori
that the function « is bounded. Moreover, as for a subharmonic function, the limit

lim u(x) dx

r—0 Br(-’EO)
exists at every point zp € R, we may also assume that « (which is a priori a Sobolev function,
so defined as a class of equivalence of Lebesgue measurable functions) is defined pointwise
everywhere in D. In particular, we will always work with the precise representative of wu,
defined by

u(xp) = lim u(x) dx for every xzo € D.
r—0 BT(ZE())
In particular, the set Q, = {u > 0} and its topological boundary 9€2,, are also well-defined
(for all these results, we refer to Proposition . Moreover, in Lemma we prove that
the topological boundary coincides with the measure-theoretic one in the following sense:

o0, ND = {x €D : |B(x)NQy >0 and |B.(z)N{u=0} >0, Vr> 0}.

In Section [3| we prove that the function u : D — R is locally Lipschitz continuous in D
(Theorem [3.1). The main result of this section is more general (see Theorem as for
the Lipschitz continuity of u we only use that minimality of the function with respect to
outwards perturbations.

We give three different proofs of the local Lipschitz continuity, inspired by three different
methods, which were developed in the contexts of different free boundary problems. In
Section [3.1] we report the original proof of Alt and Caffarelli; in Section we give a
proof which is inspired from the two-phase problem of Alt-Caffarelli-Friedman and already
proved to be useful in several different contexts, for instance, for vectorial problems (see [9])
and for operators with drift (see [46]); in Section we present the proof of Danielli and
Petrosyan, which was originally introduced to deal with free boundary problems involving
the p-Laplacian (see [18]); each of these subsections can be read independently.

As a consequence of the Lipschitz continuity, we obtain that the set 2, is open. Now,
from the fact that v minimizes F,, we deduce that u is harmonic on €,:

Au=0 in Q,ND.

In particular, u is C* regular (and analytic) in €2,,.

In Section 4] (see Lemma and/or Lemma [4.5)), we prove that u is non-degenerate at
the free boundary, that is, there is a constant x > 0 such that the following claim holds:

If xg € Q, N D, then |w|| oo (B, (20)) = KT, for every r >0 such that By(xo) C D.

This means that the Lipschitz estimate from Section [3] is optimal at the free boundary.
This is a technical result, which we will use several times throughout the proof of Theorem
for instance, in Section [p] Section [6] and Section
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In Section [5| we use the Lipschitz continuity and the non-degeneracy of u to obtain several
results on the measure-theoretic structure of the free boundary. We will use this information
in Section to prove that the singular set has zero (d — 1)-Hausdorff measure. The main
results of Section [p| are the following:

e In Subsection (Lemma [5.1]), we prove that there is a constant ¢ € (0,1) such
that, for every g € D and every radius r small enough,

c|Br| < 1824 N By (o) < (1= )| By.

In particular, the free boundary cannot contain points of Lebesgue density 0 or 1.

e In Subsection (see Proposition and Corollary , we prove that the set €2,
has locally finite perimeter in D. We will use this result in Section in order to
estimate the dimension of the singular set.

e In Subsection (Proposition , we prove that the free boundary 9, N D has
locally finite (d — 1)-dimensional Hausdorff measure, which is slightly more general
result than the one from Corollary

Section [f]is dedicated to the convergence of the blow-up sequences and the analysis of the
blow-up limits; both being essential for determining the local structure of the free boundary.
The notion of a blow-up is introduced in the beginning of Section |§| (see Definition .
For convenience of the reader, we anticipate that

for every xop € 00, N D and every infinitesimal sequence (7y)n>1,

the sequence of rescalings

1
Ugg,rn (T) 1= T—u(xo + )
n

is called a blow-up sequence at zp. The (local) Lipschitz continuity of w : D — R implies
that, up to a subsequence, u, , converges to a globally defined Lipschitz continuous func-
tion up : R — R. Any function ug obtained in this way is called a blow-up limit of u at z.
Notice that the non-degeneracy of u implies that ug cannot be constantly zero. In Propo-
sition we prove that the blow-up limit ug is a global minimizer of F, (see Subsection
and that the free boundaries 0{ugz, , > 0} converge to to d{ug > 0} locally in the
Hausdorff distance (Subsection [6.2).

In Subsection we decompose the free boundary into regular and singular parts (see
Definition [6.10]), Reg(9€y) and Sing(0S2,) := (8Q,N D)\ Reg(d€Y,). Precisely, we say that
a point xg € 9, N D is regular, if there is a blow-up limit ug, of u at zg, of the form

uo(x) = VA (- v)4 (1.5)

for some unit vector v. We then prove (see Lemma that the regular part Reg(9€2,)
contains the reduced boundary 0%, N D. This is a consequence to the following two facts:
first, at points of the reduced boundary xg € 9%, N D, the support of the blow-up limits
is precisely a half-space {z : z-v > 0}; second, if ug is a global solution supported on a
half-space, then it has the form (L5)). This implies that H9!(Sing(9$,)) = 0. In fact, this
is an immediate consequence of the inclusion Reg(9€2,) C 9*€, and a well-known theorem
of Federer, which states that if 2 is a set of finite perimeter, then

#HH (00 (P U UarQ)) =,
and of the fact that 02N (Q(l) U Q(O)) = () (see Section . In particular, this completes

the proof of claim (ii) of Theorem

Section [7] and Section |§ are dedicated to the regularity of Reg(9€2,) (Theorem (1)).
We will use the theory presented in this sections both for Theorem [1.2] and Theorem [1.9
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In Subsection (Proposition we use the examples of radial solutions from Sub-
section (Proposition and Proposition [2.16]) as test functions to prove that the

minimizer u satisfies the following optimality condition in viscosity sense:
|Vu|=+vVA on 8Q,ND.

The subsections and are dedicated to the proof of the improvement-of-flatness
theorem of De Silva [23] (Theorem [7.4)), which holds for viscosity solutions. We notice that
in the two-dimensional case (Theorem all the result from this section will be replaced
by the epiperimetric inequality approach from Section

In Section [§] we show how the improvement of flatness implies the regularity of the free
boundary. Precisely, in Subsectionwe prove that the improvement of flatness (Condition
implies the uniqueness of the blow-up limit u;, at every point xy of the free boundary.
Moreover, it provides us with a rate of convergence of the blow-up sequence (Lemma .
Finally, in Subsection [8.2] we show how the uniqueness of the blow-up limit and the rate
of convergence of the blow-up sequence imply the C1® regularity of the free boundary
(Proposition , which concludes the proof of Theorem [1.2 O

Remark 1.3. The proof of the regularity of Reg(d€2,) is based on an improvement-of-flatness
argument and is due to De Silva (see [23]). Just as the original proof of Alt and Caffarelli
it is based on comparison arguments and does not make use of any type of monotonicity
formula. In order to keep the original spirit of [3], we do not use monotonicity formulas
in the proof of Theorem (Sections [2[ — . On the other hand, without a monotonicity
formula, one can prove that the singular set has zero (d—1)-dimensional Hausdorff measure.
Notice that, in [3] it was also shown that the singular set is empty in dimension two. We
postpone this result to Section [9.4] since it is a trivial consequence of the monotonicity
formula of Weiss. We also notice that the proof of Theorem [[.2]is essentially self-contained
and requires only basic knowledge on Sobolev spaces and elliptic PDEs.

1.4. The dimension of the singular set. In Theorem [I.2] we show that the singular
part of the free boundary Sing(9€2,) has the following properties:

e it is a closed subset of the free boundary 02, N D;
e it has zero Hausdorff measure, that is, ’Hd_l(Sing(aQu)) = 0; in particular, this
implies that the (Hausdorff) dimension of Sing(9d€2,) is at most d — 1.

In [52], using a monotonicity formula and the Federer dimension reduction principle, Weiss
proved the following result.

Theorem 1.4 (Weiss). Let D be a bounded open set in R? and v € H'(D) be a non-
negative minimizer of Fp in D. Let Reg(0€),) and Sing(0€2,) be the regular and singular
sets from Theorem . There exists a critical dimension d* (see Definition such that
the following holds.

(i) If d < d*, then Sing(0SY,) is empty.

(ii) If d = d*, then Sing(0SY,) is a discrete (locally finite) set of isolated points in D.
(i13) If d > d*, then Sing(0€Y,) is a closed set of Hausdorff dimension d — d*, that is,

HETTE(O0, ND) =0 for every e € (0,1).
Definition 1.5 (Definition of d*). We will denote by d* the smallest dimension d such that

there exists a function z : RY — R with the following properties:

e 2z is non-negative and one-homogeneous;
e z is a local minimizer of Fp in RY;
e the free boundary 0, is not a (d — 1)-dimensional C-regular hyper-surface in R.

Remark 1.6. The value of d* does not depend on A > 0. Without loss of generality, we
may take A = 1.
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Remark 1.7 (On the critical dimension d*). In this
notes, we prove that d* > 3 (see Subsection . Al-
ready this is a better estimate (on the dimension of the
singular set) with respect to the one from Theorem |1.2
as it means that

HEB3TE(OQ, N D) =0 for every e € (0,1).
In fact, it is now known that
d*=5,6, or 7.

Precisely, Caffarelli, Jerison and Kénig [15] proved that
there are no singular one-homogeneous global minimiz-
ers in R3 (thus, d* > 4). Later, Jerison and Savin [37] FIGURE 1.3. The free boundary
proved the same result in R* (so, d* > 5). On the other (in red) of the one-homogeneous
hand, De Silva and Jerison [25] gave an explicit example global solution wu : RT — R of De
(see Figure of a singular free boundary in dimension Silva and Jerison.

seven (which means that d* < 7).

In order to prove Theorem we will need most of the theory developed for the proof
of Theorem For instance, the Lipschitz continuity and the non-degeneracy of the
minimizers (Section [3{and Section , the convergence of the blow-up sequences (Section @
and the epsilon regularity theorem (Theorem from Section . On the other hand, we
will not need the results from Section [

The main results that we will need for the proof of Theorem are contained in Section
[9 and Section Section[J)is dedicated to the Weiss monotonicity formula from [52], which
we prove both for minimizing and stationary free boundaries. Section[10|is dedicated to the
Federer’s dimension reduction principle (see [32]). Even if the results of this section concern
the one-phase free boundaries, the underlying principle is universal and can be applied to
numerous other problems; for instance, in geometric analysis (see [32] and [48]) or to other
free boundary problems [42].

Proof of Theorem [1.4, We will first prove that all the blow-up limits of u (at any point of
the free boundary) are one-homogeneous global minimizers of F,. The global minimality
(see Deﬁnition of the blow-up limits follows from Proposition In order to prove the
one-homogeneity of the blow-up limits (Proposition we will use the Weiss” boundary
adjusted energy, defined for any function p € H'(Bj) as

Wa(p) := / |Vl do — / ? dH + A|{p > 0} N By
B OB
Let now zg € 99, N D and ug, , be the usual rescaling (blow-up sequence)

1
Up 2o (T) = ;u(a:o +rz).

If we choose r > 0 small enough, then the function wu,, , is defined on B; and so, we can
compute the Weiss energy W (ug, »). In Lemmawe compute the derivative of Wy (ug, )
with respect to r, from which we deduce that (see Proposition (9.4)):

e the function r — Wi (uy, ,) is monotone increasing in r;
e and is constant on the interval (0, R), if and only if, u is one-homogeneous in Bg(zo).

In particular, the monotonicity of 7 +— W (ug, ) and the Lipschitz continuity of w (which
gives a lower bound on Wi (ug,)) imply that the limit

L:= }1_1% WA(“J}Q,T):

exists and is finite.
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Let now v be a blow-up limit of u at z¢ and (r,,),, be an infinitesimal sequence such that

V= i

Let s > 0 be fixed. Then, the blow-up sequence vy, s, = iu(mo + srpx) converges locally

uniformly to the rescaling vs(z) := %U(sm) of the blow-up v. Now, Proposition implies
that:

e the sequence ug, 4, converges to vg strongly in H YBy);
e the sequence of characteristic functions 1y, . o} converges to Ly, 5o} in LY(By).

Thus, for every s > 0, we have

L = lim W (ugr) = Hm Wa(ugg,sr,) = Wa(vs),

r—0 n—o0
and so the function s — Wy (vs) is constant in s. Applying again Proposition we get
that v is one-homogeneous.

Theorem now follows by the more general result proved in Proposition which
can be applied to u since we have the epsilon regularity theorem (Theorem , the non-
degeneracy of u (see Section , the strong convergence of the blow-up sequences (Proposi-
tion and the homogeneity of the blow-up limits, which we proved above. O

Remark 1.8. Finally, we notice that an even better result was recently obtained by Edelen
and Engelstein (see [27]). Using the powerful method of Naber and Valtorta (see [44]),
they proved that the singular set Sing(9€),) has locally finite (d — d*) - Hausdorff measure,
which in particular implies claim (ii) of Theorem

1.5. Regularity of the free boundary for measure constrained minimizers. Let
D C R? be a smooth and connected bounded open set, m € (0,|D|) and g : D — R be a
given non-negative function in H*(D). This section is dedicated to the following variational
minimization problem with measure constraint

min {Fo(v, D) : v e H'(D), v—g € Hy(D), || =m}, (1.6)
which means
Find uw € HY(D) such that u — g € H}(D), || =m and
Fo(u, D) < Fo(v, D), for every v € H(D) such that v — g € Hi(D) and || = m.

This is the constrained version of the variational problem from Theorem and Theorem
We notice that if u is a minimizer of Fp in D, for some A > 0, then w is (obviously) a
solution to the minimization problem with m :=|,|. Conversely, if u is a solution to
the variational problem , then (as we will show in Proposition there is a Lagrange
multiplier A > 0, depending on u, such that u formally satisfies the optimality condition

Au=0 in Q,, |[Vu/=vA on 9Q,ND, (1.7)

in the sense that u is stationary for F in D (see Definition . Unfortunately, this does
not imply that u is a minimizer of F, in D. The free boundary regularity theory for
the solutions to ([1.6)) is more involved since the competitors used to prove the Lipschitz
continuity (Sec‘cio7 non-degeneracy (Section, improvement of flatness (Section and
the monotonicity formula (Proposition do not satisfy the measure constraint in .

The free boundary regularity for solutions of was first obtained by Aguilera, Alt and
Caffarelli in [I]. Our approach is different and strongly relies on the Weiss’ monotonicity
formula, from which we will deduce both:

e the optimality condition in in viscosity sense, which in turn allows to apply the
De Silva epsilon regularity theorem (Theorem and thus to obtain the C'h*-regularity
of Reg(d€),) (see Section [3));

e the estimate of the dimension of the singular set, which is a consequence of the homo-
geneity of the blow-up limits and the Federer’s dimension reduction (Section .
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Our approach is inspired by the theory developed in [46] and contains several ideas from
[41] and the work of Briangon [5] and Briangon-Lamboley [7]. Our main result is the
following.

Theorem 1.9 (Regularity of the measure constrained minimizers). Let D be a connected
smooth bounded open set in R, m € (0, |D|) be fized and g : D — R be a given non-negative
function in H' (D). Then, there is a solution to the problem . Moreover, every solution
u is non-negative and locally Lipschitz continuous in D, the set Q, = {u > 0} is open and
the free boundary can be decomposed as:

0y, N D = Reg(08,) U Sing(982,),
where Reg(0Y,) and Sing(0Y,) are disjoint sets such that:
(i) Reg(09,) is a CY*-regular (d — 1)-dimensional manifold in D, for some a > 0;

(ii) Sing(0,) is a closed set of Hausdorff dimension d—d* (where the critical dimension
d* is again given by Definition , that is,

ded“rs(agu ND)=0 forevery €€ (0,1).

Moreover, if d < d*, then Sing(0,) is empty, and if d = d*, then Sing(9€,) is a countable
discrete (locally finite) set of points in D.

Proof. We prove the existence of a solution u : D — R in Section where we also show
that u is harmonic in §2, in the following sense

/|Vu]2da:§/ |Vo?dz  for every v € H'(D)
D D

such that w—wv € HJ(D) and v=0 on D)\Q,.

In particular, applying Lemma we get that u is subharmonic in D. Thus, we can
suppose that u is defined at every point of D and that

u(x) = ][ wdH4 = ][ udx for every xo € D.
8BT(Z‘U) Br(x())

Moreover, the subharmonicity of u implies that it is locally bounded so, from now on,
without loss of generality, we will assume that u € L°°(D). Finally, we notice that the
set €2, is defined everywhere in D (not just up to a set of zero Lebesgue measure) and its
topological boundary coincides with the measure-theoretic one (see Lemma. Precisely,
this means that

xo € 0Ly if and only if 0 < |Qy N B(x9)| < |By| forevery r > 0.

In order to prove the Lipschitz continuity of u and the regularity of the free boundary
0Q, N D we proceed in several steps. Notice that we cannot apply directly the results from
Sections [3] - [10] since it is not a priori known if the solution w is a local minimizer of F for
some A > 0, that is, it is one cannot replace the constraint in by adding a Lagrange
multiplier A directly in the functional. In fact, it is only possible to prove the existence of
A for which the solution u of is stationary but not minimal for F,. From this, we will
deduce that u satisfies a quasi-minimality condition, which will allow to proceed as in the
proof of Theorem [I.2] and Theorem

Step 1. FExistence of a Lagrange multiplier. In Section we show that there exists
A > 0 such that u is stationary for the functional Fy, that is,

OFn(u, D)[€] =0 for every & e C°(D;RY),
where the first variation 0F (u, D)[¢] of Fp in the direction of the (compactly supported)
vector field £ is defined in . The existence of a non-negative Lagrange multiplier can be
obtained by a standard variational argument (see Proposition and its proof in Section

after Lemma [11.3). The strict positivity of A is a non-trivial question which requires
some fine analysis of the functions, which are stationary for Fy; we prove it in Section
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11.3| using the Almgren’s frequency function and following the proof of an analogous result
from [46], which is a (small with respect to the original result) improvement of the unique
continuation principle of Garofalo-Lin [34].

Step 2. Almost-minimality of u. Let ¢ € 0Q2,ND. In Sectionm (Proposition, we
prove that w is an almost minimizer of F, (A is the Lagrange multiplier from the previous
step) in a neighborhood of x( in the following sense. There exists a ball B, centered in x,
in which wu satisfies the following almost-minimality condition:

For every e > 0, there is r > 0 such that, for every ball B,(yo) C B, u satisfies the
following optimality conditions in By(yo):

— H)(B,

Fage(u, D) < Fare(v, D) for every v € H'(D) such that {|UQ |u<€’Q 0‘( (o). (1.8)
— H)(B,

Fa—e(u, D) < Fa_(v, D) for every v € H*(D) such that {‘UQ ‘U>E’Q 0‘( (%0)); (1.9)

The proof of Proposition [11.10] follows step-by-step the proof of the analogous result from
[46] and is based on the method of Briangon [5]. Once we have Proposition [11.10] we can
proceed as in Theorem and Theorem

Step 3. Lipschitz continuity and non-degeneracy of w. In order to prove the (local)

Lipschitz continuity of u, we notice that (1.8 leads to an outwards optimality condition.
In fact, fixed € > 0 and xg € D, there is a ball B,(zg) such that:

1
Fage(u, D) < Fare(v, D) for every v € H(D) such that {v — u € Hy(Br(20)),
Qu C Q.
(1.10)
Now, the Lipschitz continuity of u follows by and Theorem
On the other hand, for the non-degeneracy of u, we notice that, implies the following

inwards optimality condition:
Fized ¢ > 0 and xg € D, there is a ball B(xo) such that:

— HYNB,
Fa—e(u, D) < Fa_.(v, D) for every v € H*(D) such that {; ;S 0 (Br(0)),
(1.11)

The non-degeneracy of u follows by ([L.11]) and the results from Section 4| (Lemma or
Lemma .

As a consequence of the Lipschitz continuity and the non-degeneracy of u, we obtain the
following results:

e (), satisfies interior and exterior density estimates (Lemma ;
e (2, has locally finite perimeter in D (Proposition ;
e 0€, has finite (d—1)-dimensional Hausdor{f measure locally in D (Proposition [5.7).

Step 4. Convergence of the blow-up sequences and analysis of the blow-up limits. We recall
that, for any x¢p € D and any r > 0, the function
1
Ugyr(T) 1= ;u(:vo +rax),

is well-defined on the set %(—xo + D) and, in particular, on the ball of radius %dist (z9,0D)
centered in zero. By the Lipschitz continuity of u, we notice that for any zo € 9, N D and
any R > 0 the family of functions

1
{“mo,r c0<r< Edist (xo,(?D)},
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is equicontinuous and uniformly bounded on the ball B € R?. This implies that for every
sequence g, r,,, With xg € 092, N D and li_>m rn, = 0, there are a subsequence (still denoted
n—oo

by (Uzgr, )nen) and a (Lipschitz) function ug : RY — R such that, for every fixed R > 0,
the sequence ug, ,, converges uniformly to ug in the ball Br. We say that ug is a blow-up
limit of u at x¢ and ug, -, is a blow-up sequence. Recall that u is Lipschitz continuous, non-
degenerate, harmonic in {2, and satisfies the following quasi-minimality condition, which is
a direct consequence of and . For every zg € 082, N D, there are ryp > 0 and a

continuous non-negative function ¢ : [0, 7] — R, vanishing in zero and such that
Fa(u, D) <Fp(v,D)+¢e(r)|B,| forevery 0<r<rg
and every v € HY(D) suchthat u—v € H(B,(x0)).

Let ug, ., be a blow-up sequence converging locally uniformly to the blow-up limit ug. By
Proposition and the results of Section we have that, for every R > 0,

(i) the sequence uy, , converges to ug strongly in H'(BR);
(ii) the sequence of characteristic functions 1, converges to lg, in L'(Bg), where

Q= {uggr, >0} and Qo := {up > 0};
(iii) the sequence of sets Q,, converges locally Hausdorff in Bg to Qo;

Moreover, using again Proposition [6.2] we get that every blow-up limit ug of w is a global
minimizer of F). Next, since u is a critical point of F, we can apply Lemma[9.11] obtaining
that every blow-up limit of uy is one-homogeneous. We summarize this in the following
statement, with which we conclude this step of the proof:

Every blow-up of u is a one-homogeneous global minimizer of Fjy. (1.12)

Step 5. Optimality condition on the free boundary. Using the convergence of the blow-
up sequences (proved in the previous step) and the structure of the blow-up limits (claim
(1.12))), we can apply Proposition Thus, u is a viscosity solution of

Au=0 in Q, |Vu=VvA on 99Q,ND. (1.13)

in viscosity sense (see Defnition [7.6)).

Step 6. Decomposition of the free boundary into a regular and a singular parts. As in
the proof of Theorem we say that xg € Reg(0Q,) if xg € 09, N D and there exists a
blow-up limit 1y of u (at xg), for which there is a unit vector v € R? such that

uo(x) = VA (z-v), for every z e R%

The singular part of the free boundary is defined as Sing(9,,) := (02, N D) \ Reg(0%,).
The CY*-regularity of Reg(0Q,) now follows by Theorem and the fact that u is a
solution of (1.13). The estimate on the dimension of the singular set (Theorem [1.9 (ii))
now follows directly from Proposition [10.13] O

1.6. An epiperimetric inequality approach to the regularity of the free boundary
in dimension two. This section is dedicated to a recent alternative approach to the
regularity of the free boundaries based on the so-called epiperimetric inequality, which
was first introduced by Reifenberg in the contact of area-minimizing surfaces, but in the
context of the one-phase problem, it was first proved in [50]. We restrict our attention
to the two-dimensional case since the epiperimetric inequality is (for now) known to hold
only in dimension two (see Theorem and Theorem [12.3)). Precisely, we will give an
alternative proof to the following result.

Theorem 1.10 (Regularity of the free boundary in dimension two). Let D be a bounded
open set in R?. Let u: D — R be a nonnegative function and a minimizer of Fa in D.
Then:

(1) w is locally Lipschitz continuous in D and the set 0, = {u > 0} is open;
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(ii) the free boundary OS2, N D is CY%-regular.

Proof. We first notice that the Lipschitz continuity of u follows by Theorem In what
follows, without loss of generality we assume that A = 1. By the non-degeneracy of the
solutions (Section [4]) and the convergence of the blow-up sequences (Section @ Proposition
6.2)), we have that, for every free boundary point zg € 0€2,, and every infinitesimal sequence
rn, — 0, there exists a subsequence of r, (still denoted by r,) such that wg,,, converges
locally uniformly to a non-trivial blow-up limit ug : R? — R. Moreover,

e the sequence u,, ., converges to ug strongly in H 1(31);

e the sequence of characteristic functions 1y, . -0y converge to 1y, -0} in LY(By).

Next, we notice that by the Weiss monotonicity formula (Proposition the function
r — Wi(ug,,r) is monotone increasing in r and the blow-up limit ug is one-homogeneous
global minimizer of F; in R? (see Lemma . Thus, by Proposition we obtain that
ug is a half-plane solution, that is

up(z) = (z-v)4,
for some unit vector v € R2. Now, the strong convergence of the blow-up sequence and the

monotonicity formula (Proposition [9.4)) imply that

71~I>1f(; Wl(umo,r) = }13(1) Wl(uzo,r) = nh_g)lo Wl(uzo,rn) = Wi(uo) = .

po|

In conclusion, we have that:

e the energy
m

E(u) := Wi(u) — 5

is non-negative along any blow-up sequence ug, , with o € 0, N D,
T
E(Uugg,r) = Wi(ugyr) — 5 >0 forevery r>0;

e the free boundary is flat, that is, for every zo € 9Q, N D and every £ > 0, there
exists 7 > 0 and v € dBy, such that:

(x-v—e)y <ugyr(x) <(r-v+e)y forevery ze€ Bj.

Now, by the epiperimetric inequality (Theorem [12.1]) and Proposition|12.13| we obtain that,
in a neighborhood of zg, 0, is the graph of a C1® regular function. O

1.7. Further results. The main objective of these notes is to introduce the reader to
the free boundary regularity theory and to provide a complete and self-contained proof of
the regularity of the one-phase free boundaries. In this perspective, our main results are
Theorem Theorem Theorem and Theorem On the other hand, in these
notes, we also prove several other results, which might be interesting for specialists and
non. Here is a list of results, by section, which are worth to be mentioned in this context.

Section In Proposition [2.10] we give a direct proof to the fact that the half-plane
solutions are global minimizers of Fj. This is well-known, as the result can be obtained
from the following facts:

— the blow-up limits of a solution u at points of the reduced boundary 0*€2,, are half-plane
solutions (Lemma [6.11]);

— the reduced boundary 9*(2,, is non-empty as €, is a set of finite perimeter (Proposition
and for sets of finite perimeter we have the identity Per(€,) = H4~1(0*Q,) (see [43]).

In Lemma [2.15] and Lemma [2.16] we prove the existence and the uniqueness of two one-
phase free boundary problems. Moreover, we prove that the solutions are radially symmetric
and we write them explicitly.
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Section (3| and Section 4. In Proposition |3.15 and Lemma 4.5 we present the methods
of Danielli-Petrosyan ([I8], for the Lipschitz continuity) and David-Toro ([19], for the non-
degeneracy) in the simplified context of the classical one-phase Bernoulli problem. Both
methods are very robust and can be applied to more general free boundary problems.

Section [5] In Proposition [5.3] we prove that if u is a minimizer of F, in a set D, then €,
has locally finite De Giorgi perimeter in D. The method is a localized version of a global
estimate by Bucur (see [§]), on the perimeter of the optimal shapes for the eigenvalues of
the Dirichlet Laplacian.

In Proposition we prove that, if u is a minimizer of F, in a set D, then the H4!
Hausdorff measure of the free boundary 92, is locally finite in D. The method is very
general and can be applied to many different free boundary problems, for instance, to the
vectorial problem (see [42]).

Section [6] In Proposition [6.2] we give the detailed proof of the strong convergence of the
blow-up sequences, which is often omitted in the literature. Moreover, we state and prove
a general result (Lemma which can be applied to different free boundary and shape
optimization problems.

Section [7. In Proposition we prove that if u is a minimizer of Fa in D, then it is
satisfies the optimality condition

|Vu| =vVA on 9Q,ND,

in viscosity sense (Definition [7.6]). This result is well-known, but in the literature the proof
is usually omitted. Our proof of Proposition [7.1] is based on a comparison with the radial
solutions constructed in Lemma and Lemma 2.16] We give another proof of this fact
in Section [0

Section In this section we give a detailed proof of the fact that the improvement of
flatness (Condition [8.3)) implies the C1® regularity of the free boundary (see Lemma
and Proposition [8.6). In particular, in Section we explain the relation between the
uniqueness of the blow-up limits, the rate of convergence of the blow-up sequences, and the
regularity of the free boundary (Proposition .

Section [9] In Section we give another proof of the fact that, if u is a local minimizer
of Fp in D, then it satisfies the optimality condition

Vu| =vA on 0Q,ND,

in viscosity sense (see also Proposition [7.1). The method that we propose is based on the
Weiss monotonicity formula and is very robust, for instance, it applies to general operators
(see [40]) and to vectorial problems (see [41]). This method was first introduced in [41].

Section This section is an introduction to the Federer’s dimension reduction principle
in the context of free boundary problems. Our main result (Proposition(10.13)) is an estimate
on the dimension of the singular set under general conditions.

Section In Section [11.3] we combine the unique continuation principle of Garofalo-Lin
[34] with the Faber-Krahn-type inequality from [10] to prove a strong unique continuation
result for stationary functions of the Dirichlet energy Foy (see Proposition and [46]).

Section In this section we give another proof of the epiperimetric inequality (Theorem
that first appeared in [50]. We give in this notes the unpublished proof that inspired
the epiperimetric inequality at the singular points in higher dimension (see [28]).

In Lemma [12.14] we prove that the epiperimetric inequality at the flat free boundary
points in any dimension (Condition implies the regularity of the free boundary. The
proof is similar to the one in [50], but has to deal with the closeness condition in the
epiperimetric inequality (see Condition [12.12), precisely as in [28] and [29].
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In Section [12.6| we prove comparison results for minimizers of F, (Proposition and
Lemma 12.22i and for viscosity solutions (Lemma [12.21]).

In Theorem [12.3] we prove an epiperimetric inequality in dimension two without any
specific assumption on the trace on the sphere. This results covers both Theorem and
the main theorem of [50]. Both Theorem and Theorem are new results.
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2. EXISTENCE OF SOLUTIONS, QUALITATIVE PROPERTIES AND EXAMPLES

In this section, we prove that local minimizers of the functional F, do exist (Proposition
2.1)) and we give several important examples of local minimizers that can be computed

explicitly (Proposition Lemma and Lemma [2.16|).

Proposition 2.1. Let A > 0, D C R be a bounded open set and the function g € H'(D)
be fixed and such that g > 0 in D. Then, there exists a solution to the variational problem

min {F(u,D) : uwe H'(D), u—g€ Hy(D)}. (2.1)
Moreover, every solution u of (2.1)) has the following properties:
(i) u is non-negative in D;
(ii) w is locally bounded in D;
(i) there is a function @ : D — R such that @ > 0 and @ = u almost everywhere in D and

1
(o) = }1_1)1(1) B . u(z) dx for every xo € D.

Remark 2.2. From now on, we will identify any solution w of (2.1)) with its representative
u; for the sake of simplicity, we will always write u instead of .

The rest of the section is organized as follows. In Section we discuss some of the
properties (scaling and truncation) of the function Fj. Section is dedicated to the
proof of Proposition In Section and Section we discuss several examples of
local minimizers, which we will find application in the next sections.

2.1. Properties of the functional F. In this section, we discuss several basic properties
of the functional (A,t, D) — Fa(u,D). We give the precise statements in Lemma
Lemma 2.4] and Lemma 2.5

Lemma 2.3 (Scaling). Let Q C R? be an open set and v € H*(Q).
(a) Let xg € R, r > 0 and

Yy—=xo

1
Ugg,r(T) = ;u(mo +rx) and Quor = {a: = ER: ye Q} )

Then gy € H (Qy, ) and
Fa(tggr, Qagr) = rd Fa(u, Q).

In particular, if u is a minimizer of Fp in 2, then uy, ,» is a minimizer of F in Qg r.
(b) For every t > 0, we have

Fpap(tu, Q) = t2 Fo(u, Q).
In particular, if u is a minimizer of Fy in §2, then tu is a minimizer of Fyzp in Q.
Proof. The proof is a straightforward computation. O

Lemma 2.4 (Truncation). Let Q@ C R? be an open set and u € H'(Q). Then,

Fa(u, Q) — Fa(0V u, Q) :/ |Vul|® d.
{u<0}NQ
Moreover, for everyt > 0, we have
Fa(u, Q) — Fa(unt,Q) :/ |Vu|? da.
{u>t}NQ

Proof. The proof follows by the definition of F and the identities
V(uAt) =1y Vu and V(uV0) =10 Vu. O
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Lemma 2.5 (Comparison). Let Q C R? be an open set and u,v € H'(Q) be two given
functions. Then we have

FaluV o, Q)+ Fa(uAv,Q) = Fa(u,Q) + Fa(v, Q).
Proof. The proof is a straightforward computation. In fact, we have
FaluVv ', Q)+ Fa(u ', Q)

= / |V(uVu)?de + |{uVu >0} +/ IV(uAu)?de + [{urv >0}
Q Q
= / |Vu|? da +/ (V' |? dz + [{u > 0} U {u' > 0}
fuzw) fu<ur)
+/ \Vu/IQda:+/ Vul? dz + [{u > 0} 0 {u > 0}
fuzw) fu<u}
= [[1VuP e+ {u > 0+ [ V0P do+ (> 0)] = Fa(w Q) + Fa(w, )
Q Q

which concludes the proof. O

2.2. Proof of Proposition In this section we prove Proposition We will first
show that the minimizers of F, are subharmonic functions (Lemma and Lemma
and then we will deduce the claim (iii) of Proposition (see Remark [2.§8). At the end
of this section, we will complete the proof of Proposition by proving that there is a
solution to the variational problem . Finally, in Lemma we discuss the definition
of the free boundary, which can be (equivalently) defined both as the topological boundary
of the representative @ (of the function v € H'(D)) defined in Proposition and as the
measure-theoretic boundary of §2,,, which does not depend on the representative of u and
is defined as the set of points xg € D for which

|B,(20) N Q| >0 and [Q,\ By(z9)] >0 for every r > 0.

Lemma 2.6 (The minimizers of F, are subharmonic functions). Let D C R? be a bounded
open set and the non-negative function w € H'(D) be a minimizer of Fa in D. Then u is
subharmonic, Au > 0, on D in sense of distributions:

/ Vu-Veodr <0 for every ¢ e CX(D) suchthat ©>0 on D.
D

Proof. Let ¢ € C2°(D) be a given non-negative function. Suppose that ¢ > 0 and v = u—ty.
Then we have that v < wu. In particular, integrating on the support of ¢ we have

Falu, D) = / Vul?dz + Al{u > 0} A D)
D
< / Vo, | dz + Al{vy >0} N D| < / Vo2 dz + Al{u > 0} N D].

D D

This implies that

/ |Vul|? de < / |V(u— to)|* do = / |Vul|? dx — 275/ Vu-Vedr+ t2/ V|? d,
D D D D D
and the claim follows by taking the (right) derivative at ¢t = 0. O

There is also a more general result, which applies not only to minimizers, but also to
generic non-negative functions, which are harmonic where they are strictly positive. The
proof can also be found in the book of Henrot and Pierre [36].
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Lemma 2.7 (The minimizers of Fj are subharmonic functions II). Let D C R? be a
bounded open set and the non-negative function u € H'(D) be harmonic in the set Q, =
{u > 0}, that is

/ |Vu|? da </ \Vol>dx  for every v € H'(D)
D D

such that uw—v € HYD) and v=0 on D\Q,.
Then u is subharmonic, Au > 0, on D in sense of distributions.

Proof. Let ¢ € C2°(D) be a given non-negative function and let p. : R — R be given by

, ifx <

I

o ©
DO ™

pe(x) = —x, if x € [¢/2, ],
1? ifx>e
Since uy := u + t p(u)¢ is a competitor for u and for ¢ € R small enough
{u >0} ={u; > 0},

we have that for £ small enough

/|Vu]2da:§/ Vg |? d,
D D

which gives
/pg(u)Vu-V¢dx§/pé(u)]Vu\2¢d:U+/pg(u)Vu-Vqﬁd:U
D D D
— [ Vu- Ve de =0,
D

where the last inequality is due to the fact that p. is increasing. Now since p.(u) converges
to Lyys0y, as € = 0, we get that

/ Vu-Veodr <0,
D

which concludes the proof. O

Remark 2.8 (Pointwise definition of a subharmonic function). Let D be an open set and
u € H'(D) be a subharmonic function. Then, for every xo € D, we have that

the functions 7r — wdH*™' and 7 udzr are non-decreasing. (2.2)
aBr(xo) BT(IO)

As a consequence of (2.2]), we obtain that:
e u is locally bounded, u € LS (D);
e we define u: D — R as

u(zp) := lim u(z)dx for every xg € D.
r—=0% JB,.(z0)

Proof of Proposition 2.1 We first prove that a solution exists. Let u, € H'(D) be a
minimizing sequence such that u,, — g € H}(D) and

Fa(un, D) < Falg, D) for every n>1.
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2d
By Lemmawe may assume that, for every n > 1, u,, > 0 on D. Now, setting 2* = Rt
we get that

i = 613 < Ci [ 1V = )P o < 2Cu ( [ 1VunPd+ [ 9912 as )
< 2C4(Fa(un, D) + Falg, D)) < 4CyFa(g, D).
Now, we estimate,
lun = gl72(py < Hun — g # Ol = glf3 2+ )
< (H{un > 0} N D| + [{g > 0} N D|)**4CaFr(g, D) < 8C4A~ Fu(g, D)4,

which implies that the sequence w,, is uniformly bounded in H'(D). Then, up to a sub-
sequence, we may assume that u, converges weakly in H!(D) and strongly in L?(D) to a
function u € H*(D). Now, the semi-continuity of the H' norm (with respect to the weak
H' convergence) gives that

/]Vu\degliminf/ |V, |? d.
D n— o0 D

On the other hand, passing again to a subsequence, we get that u, converges point-wise
almost everywhere to u. This, implies that

Liusoy < liminf 1y, 5oy,

and so,
H{u>0}ND| < lirginf|{un >0} N DY,

which finally gives that
Fa(u, D) < liminf Fp(up, D),
n—oo

and so, u is a solution to (2.1)). Now, we notice that Lemma implies that v > 0 on D.
Lemma and Remark give the claims (ii) and (iii). O

We conclude this subsection with the following lemma, where we show that the set {2,
has a topological boundary that coincides with the measure theoretic one.

Lemma 2.9 (Topological and measure theoretic free boundaries). Let D C R? be a bounded
open set and u be a local minimizer of Fa in the open set D C R% or, more generally, let
u:D — R, ue HY(D), be a non-negative function satisfying

(a) w is harmonic in Q, = {u > 0} in the sense that
/ |Vu|? de §/ \Vol*dz  for every v e HY(D)
D D
such that uw—v € HY(D) and v=0 on D\Q,.
(b) u is defined everywhere in D and

u(zp) := lim u(z) dx for every xo € D.
r—=0% JB,.(z0)

Then, the topological boundary of ), coincides with the measure-theoretic one

99, N D = {$ €D : |B(2)N Q| >0 and |By(z)N{u=0}>0, vr> o}.
Proof. We first notice that the following inclusion holds :

890, N D > {x €D : [B(x)N Q>0 and |Br(z)N{u=0}>0, Vr> o}.

In order to prove the opposite inclusion we show that
(i) if | B, N {u = 0}| = 0, then w is harmonic in B, and B, N {u =0} = 0.
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(ii) if |[B, N {u > 0}| =0, then v =0 in B,, i.e. B, N{u >0} = 0.

In order to prove (i) we notice that u is necessarily harmonic in B,, since otherwise we can
contradict the minimality of u by replacing it with the harmonic function with the same
boundary values. By the strong maximum principle, u is strictly positive in B,.. The proof
of (ii) follows directly from (b). O

2.3. Half-plane solutions.

The so-called half-plane solutions
hy(z) = VA (z-v)4

play a fundamental role in the free boundary regular-
ity theory. In fact, in the next sections we will show
that if a local minimizer u is close to a half-plane so-
lution (at some, possibly very small, scale), then the
free boundary is Ch® regular; then, we will also prove
that at almost-every free boundary point the solution
u coincides with a half-plane solution at order 1.

FI1GURE 2.1. A half-plane solution.

In this subsection, we make a first step in this direction and we prove that the half-plane
solutions are global minimizers. This result is usually omitted in the literature since it is
implicitly contained in the fact that the blow-up limits at the points of the reduced free
boundary (of any local minimizer) are indeed half-plane solutions (we will prove this fact
later, in Lemma . The main result of this subsection is the following.

Proposition 2.10 (The half-plane solutions are local minimizers). Let v € R? be a unit
vector. Then the function H,(x) = VA (v-x)T is a global minimizer of Fa.

Definition 2.11 (Local minimizers). Let D be an open set in R?. We say that the function
u: D — R is a local minimizer of Fo in D, if u € Hlloc(D), u > 0, and for any bounded
open set Q such that Q C D, we have

Fa(u, Q) < Fa(v,Q) for every ve HL.(D) such that u—v e Hj(K).

Definition 2.12 (Global minimizers). We say that the function u : R* — R is a global
manimizer of Fa, if u is non-negative on R%, u € Hlloc(Rd) and u is a local minimizer of
Fa in R4

In order to prove the minimality of the half-plane solutions, we will need the following
lemma. We notice that it is useful also in other contexts. For instance, it allows to prove
that the solutions of (2.3)) are bounded.

Lemma 2.13. Let D C R? be a bounded smooth open set or D = R%. Let o € R% be a
given point, v € R be a unit vector and let

v(z) = hy(x — 20) = VA sup{0, (z — x¢) - v}.
Suppose that u € H(D) is a non-negative function such that u =0 on 9D N{v = 0}. Then
Fa(uANv,D) < Fa(u, D),
with an equality if and only if u = u Av.

In particular, if u is a solution to (2.3)), then u has bounded support. Precisely, u = 0
outside the set conv(D) + By, where conv(D) is the convex hull of D.
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Proof. Without loss of generality we can suppose that v = e; and zo = 0. For the sake of
simplicity, we set Hy = {xg > 0} and H_ = {4 < 0}. Then

FA(U,D)—FA(u/\v,D):/ |Vul®dz + A|H- N {u > 0}

—i—/ (IVul* = |Vv|?) da,
H+ﬂ{u>\/7\1‘d}

where (in the case when D is bounded) we assume that u is extended by zero on H_ \ D.
By the fact that v(z) = Az} is harmonic on {z4 > 0}, we get that

/ (IVul? - [VoP?) da::/ (IV(u— ) + 2V - V(u—v)) do
Hin{u>vVAza} Hin{u>zq}
—/ |V (u—v)?de —2VA udH* L.
Hin{u>vVAzg} {xq=0}

We recall that for every u € H'({z4 < 0}) we have the inequalitym

/ Vul dz+ Al{u > 0} 1 {zg < 0}] > 2VA wdH,
{zq4<0} {zq=0}

where the equality holds, if and only if, w = 0 on {z4 < 0}. Thus, we obtain

Fa(u, Q) — FaluAv,Q) 2/ |V(u—v)|*dx >0,
H+ﬂ{u>\/KId}

where the last inequality is an equality if and only if u < v on R, O
Proof of Proposition [2.10l Without loss of generality we may suppose that v = ¢4 and set
h(z) = \/Kx(';

Suppose that R > 0 and u € H} (R?) is a non-negative function such that u—h € H}(Bg).
It is sufficient to prove that Fa(h, Br) < Fa(u, Br). By Lemma we have that

]-"A(u A h, BR) < fA(u, BR).

Thus, we may suppose that v < h. Since h is harmonic in {4 > 0} we get that

Fa(u, BR) — Fa(v, BR) = /{ o 1V (u— h)\gda: — A{zq > 0} N {u =0}

|V (u—h)|* da,

/{zd>0}ﬁ{u>0}
where the last equality is due to the fact that

IV(u—h)|=|Vh|=+VvA  on the set {u = 0}.

This concludes the proof. O

Hndeed, if f: R — R is a function such that f(a) =0 for some a < 0, then we have

s = [ roasws([rora)” <L (urnaesols [ropra).
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2.4. Radial solutions. In this subsection, we give two examples of local minimizers, which
are radial functions. Despite of being ones of the few non-trivial examples of local mini-
mizers, they will also be useful in the proof (to be precise, in one of the two proofs that we
will give) of the fact that the local minimizers satisfy an overdetermined condition on the
free boundary in viscosity sense (see Definition and Proposition .

Let D be a bounded open set in R? with smooth boundary. We consider the following
variational minimization problem in the exterior domain R?\ D.

min{/ Vul?dz + [{u>0}| : ue HYRY), u=1in D} . (2.3)
R4
The "interior” version of this problem reads as
min {/ \Vul*dz + [{u>0}ND| : we H(D), u=1on aD} . (2.4)
D

We first prove that the problems (2.3]) and (2.4) admit solutions.

Lemma 2.14 (Existence of a solution). Suppose that D is a bounded open set in R? with
smooth boundary. Then the variational problems (2.3|) and (2.4]) admit solutions.

Proof. We give the proof for (2.3)), the case ([2.4)) being analogous (and easier as it does not
require the use of Lemma [2.13). Let u,, be a minimizing sequence in H'(R?). By Lemma

and Lemma we can suppose that 0 < u, <1 and supp (u,,) C conv(D) + By. Now,
up to a subsequence we may suppose that wu, converges in L?(R%) and pointwise almost
everywhere to a function u € H'(R?). The claim follows by the semicontinuity of . O

In Proposition [2.15] and Proposition [2.16] we will prove that, in the special case when
the domains D in (2.3) and (2.4)) are balls, the solution is unique and can be computed
explicitly.

Proposition 2.15 (Optimal exterior domains). Let the domain D in R? be the ball B,.
Then, there is a unique solution u, of (2.3)). Moreover, for every r, there is a radius R > r,
uniquely determined by r and d, such that u, is given by

u =1 in B, u. =0 in Rd\BR and up =h, in Bpr\ By,
where h, is a radial harmonic function. Precisely, h, is given by
|z|?2~¢ — R?—4 Inlz| —InR
hr(x)zm Zf d23, hr(.ﬁ):m Zf d=2.
Moreover, the radius R and the function w, satisfy the following properties:
(i) The radius R = R(r) is a con- u, =1on B,
tinuous function of v such that
r<R<r+1 Au, =0 |Vur| =1 on dBg
and \ 1
TETOO () = (r+ D=0 , ’ ‘J’,"““'* 0

(i) The gradient of h, is given by
Vhel(@) = (el/m) .

Proof. We first notice that taking the Schwartz symmetrization v* of any function u we get
that Fi(u*,R?) < Fi(u,R?). Thus, there is a minimizer of F; which is a radial function.
We first show that there is a unique radial function that minimizes of F; in the class of
radial functions.



24 BOZHIDAR VELICHKOV

Let d > 3. For every 0 < r < R, consider the function

1, if |z[ <,
2—d 2—d
x - R
UT,R(ZL') = |74L—d_}%2—d’ if r< ‘iL'| < R,

0, if |z|>R.
Since u, g is the unique harmonic function in Bg \ By, we get that the minimizer of F;

among the radial functions is necessarily given by a function of the form w, r. We calculate
the energy

d(d — 2)wyq
Fi(uy g, R = Vu, r|*d Br|= —71—F%— R4,
1(ur,r, RY) /BR 5 [V g|” dr + | Bg]| r2—d _ p2—d T W
_ ; .  d(d—-2) d - .
We notice that the function f(R) := ad_pod + R® is strictly convex and
li = 1 = .
A f(R) = lim f(R)=+oco

Thus, there is a unique radius R > r that minimizes f. We denote this radius by R..
Notice that, since f'(R.) =0, we have

R4 - RTY) =q-2. (2.5)
Let d = 2. For every 0 < r < R, consider the function
1, if |z[ <,

In (/1))

ur () = n (%) if r<|z| <R,
0, if |z|>R.
As in the case d > 3, we calculate the energy
2
Fi(ur,p, R 2/ Vu, gr|?dr +|Bg| = — =~ + TR>.
( s ) BR\B,.| T | | | ln (R/r)

As in the case d > 2, there is a unique R, > r that minimizes the function R — F(u, g).
Moreover, R, is such that

R.(InR, —Inr) =1. (2.6)
We notice that the claims (i) and (ii) follow by (2.5) and (2.6).

We now prove that the functions u, g, are the unique minimizers of /7 among all admis-
sible functions. Indeed, consider any minimizer u of F; and suppose that it is not radial.
We notice that the symmetrized function u* is also a solution. Since it is radial, we get that
u* = u, g: and in particular [{u > 0}| = |Bg.|. By Lemma the functions v = u A u*
and V = uVu* are also minimizers of F. If u is not radial, then we have |{v > 0}| # |Bg,|
or |[{V > 0}| # |Br.|. On the other hand the symmetrized function v* and V* are also solu-
tions and so, we must have v* = V* = «* and in particular [{v > 0}| = [{V > 0}| = |Bg.|,
which is in contradiction with the assumption that w is not radially symmetric. O

Proposition 2.16 (Optimal interior domains). Let the domain D in R? be the ball Bg.
Then, there is a dimensional constant Cy > 0 such that, for every R > Cgy, there is a unique
solution ur of (2.4). Moreover, ur is radially symmetric and has the following properties:

urp=1 on OBpg, up=0 1w B, and ur =hgr in Bgr\B,, (2.7)

where hg is a radially symmetric harmonic function. Precisely, hr is given by

’x‘2fd _ T2fd

_ Injz|—Inr

“ TRy 7472
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where the radius r depends on R and
d and has the following properties:
(i) The radius r = r(R) is a con-
tinuous function of R such that
lim |r(R)—(R—-1)|=0.

R—+o00

(i) The gradient of hr is given by
Vhg|(2) = (/).

ur =0 and |Vugr| =1 on 9B,
Proof. As in the proof of Lemma [2.15] we start by noticing that for every function u, there
is a radially symmetric function u* with lower energy. In fact, it is sufficient to consider
the function v = 1 — u and its Schwartz symmetrization v*. We define v* as v* := 1 — v*
and we notice that

Fi(u*, Br) =/

V2 da + |{u* > 0} N Byl =/ Vo2 de + |{v* < 1} N Bxl
Br

Br

g/ Vo2 dz + |{v < 1} N Bg| :/ \Vul|? dz 4 [{u > 0} N Bg| = Fi(u, Bg).
Br Br

Thus, there exists a radially symmetric minimizer u* of F. Now, since v* is harmonic in
{u* > 0}, it should be of the form u* = u, g, where u, g is given by (2.7) for some radius
r < R. Now, for any r € (0, R), the energy of u, g is given by

d(d — 2)w
fl(ur,R,BR) = / |V’LLT7R|2d:C + |BR \ Br‘ — ﬁ +wd(Rd . T‘d).
BR\Br T — R
Consider the function
d(d—2) d

It is easy to check that,
lim f(r)=0  and lim f(r) = +o0.

r—0 r—R
Moreover, for R large enough, f(£/2) < 0. We now calculate
d(d—2)*r74 g1
(r2=d — R27d)2 ’

7'r) =

Thus, f/'(r) = 0 if and only if
g(r) == (d—2)—r+ritR>4 =,
Now, the equation g(r) = 0 has at most two solutions and we have that
9(0)=g(R)=d—2>0.
On the other hand, for R large enough, we have
g(d—1)<0 and g(R—2) <0.
Thus, the equation g(r) = 0 has exactly two solutions:
r— € (0,d—1) and r4 € (R—-2,R).
Now, let My be the minimum of f in the interval [0,d — 1]. For R large enough, we have
d(d—2)
(1= 2/n)

f(R—2)=(R—2)42 (1 — — — (R— 2)2> < M,.



26 BOZHIDAR VELICHKOV

Thus, there is a unique r € (0, R) that minimizes f in (0, R). Moreover, R —2 < r < R.
Moreover, the claim (i) follows from the fact that, for every ¢ > 0, there is R, > 0 such
that if R > R., then

gR—(1-¢))<0 and g(R—(1+¢)) >0.
This implies that R — (1 +¢) < r(R) < R — (1 — ¢), which is precisely (i).

Let now d = 2. For every r € (0, R), consider the function u, r given by (2.7)) for some
r > 0. We calculate the energy

2
Fi(ur,r, Br) = / Vgl dz + |BR \ Br| = 7;; +m(R? —r?).
Bgr\B- In (R/r)
Next, we define
2 2
I = oy
we calculate 5
f(r) — 2r,

"= r(ln R —Inr)?
and we set

g(r):=1—r(InR—1Inr).
As above, g can have at most two zeros in the interval (0, R). Moreover, g(0) = g(R) =1
and for R large enough, we have

2
g(1)=1-InR <0 and g(R—Q)zl—(R—Q)ln(l—R><O.

Thus, the two zeros of g are in the intervals (0,1) and (R — 2, R), respectively. Now, for R
large enough, we have

f(R—2)=#—(R—2)2<—1<f(1).

n (1+ 7%)
Thus, for large enough R, there is a unique r that minimizes f in (0, R) and R—2 < r < R.

The claim (i) follows as in the case d > 2. The claim (ii) is immediate and follows from the
equation g(r) = 0. The uniqueness of the solution now follows as in Lemma O
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3. LIPSCHITZ CONTINUITY OF THE MINIMIZERS

In this section, we will prove that the local minimizers of F are Lipschitz continuous.
Our main result is the following.

Theorem 3.1. Let D C RY be an open set and u € H. (D). Suppose that u is a local

minimizer of Fa in D. Then, u is locally Lipschitz continuous in D.

Theorem is a consequence of the more general Theorem [3.2] which can be applied not
only to minimizers of FA (we will need this result for the proofs of Theorem Theorem
and Theorem [1.10)), but also to the case of minimizers for the problem with a measure
constraint (Theor; we notice that we will be able to apply Theorem to only
after proving that an outwards minimality property of the type holds at very small
scale (see Section [I1.H)).

Theorem 3.2. Let D be a bounded open set in R and u € H'(D) be a non-negative
function satisfying the following minimality condition:
Falu,D) < Fa(v,D) for every ve HYD) such that
u—v€HND) and Q,CQ,. (3.1)
Then, u s locally Lipschitz continuous in D.

The outwards minimality condition appeared recently in [9] in the context of a shape
optimization problem, which can be reduced to a free boundary problem for vector-valued
functions (see [41]). This property proved to be very useful only in the context of other free
boundary and shape optimization problems as, for instance, the ones involving functionals
depending on the perimeter of the set (see [21I] and [22]). In the case of Fj the outwards

minimality condition (3.1) can also be expressed in a different way. We give the precise
statement in the following lemma.

Lemma 3.3. Let D be a bounded open set in R and w € H'(D) be a given non-negative
function. Then the following are equivalent:

(i) u satisfies the minimality condition (3.1));
(ii) u is harmonic in €, in the following sense:

/|Vu|2dx§/ \Vo|?dx for every v e HY(D) such that
D D

u—veHRY and u—v=0 ae in RI\Q, (3.2)
and satisfies the minimality condition
Fa(u, D) < Fa(v,D) for every v € HY(D) such that
u—veHYD) and u<wv in D. (3.3)

Remark 3.4 (On the sign of the test functions in (3.1), (3.2) and (3.3))). Since, u > 0 in D,
we may suppose that the test functions v in (3.1)), (3.2) and (3.3]) are all non-negative.

Proof of Lemma [3.3] The fact that (3.1 implies (3.2) and (3.3) is trivial. Suppose now
that u satisfies both (3.2) and (3.3) and let v € H'(D) be a non-negative function such

that u — v € H}(D) and Q, C ©,. Then consider the test functions u A v and u V v. Since
u A v =0 outside £, by (3.2), we have that

/ Vul? da g/ IV (u A v)|? da.
D D
On the other hand, since u V v > u, (3.3) implies that

/|Vu]2dx+A|Qu|§/ |V (u V)2 de + A|Quyvol-
D D
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Summing up the two inequalities, we get
2/ﬂvm%m+Ax%hg/yvadem+/ﬁvvawdm+Amwﬂ
D D D
:1/|Vupdx+:/|VUde+JHQd,
D D

which is precisely (3.1]). O

We will give three different proofs of Theorem but in each one of them, the conclusion
(the Lipschitz continuity of u) will be a consequence of the following estimate on the growth
of the function u at the free boundary

][ wdHT' < Cr for every xo € 0¥, andevery 0<r <rg, (3.4)
OBr(x0)

where 79 > 0 and C' > 0 are universal constants depending on the distance to the boundary
0D. We give the precise statement in the following lemma.
Lemma 3.5. Suppose that u € H'(D) is a non-negative function such that:
e u is harmonic in the interior of the set Q, = {u > 0};
e u satisfies the inequality with constants C' and ro uniformly in D.
Then the set €, is open and the function u s locally Lipschitz continuous in D. Precisely,

the gradient of u can be estimated as

lull 2Dy,
[Vull oo (py) < Ca (C + % for every 0<é <,

where Cy is a dimensional constant and, for r > 0, we use the notation

D, :={z €D : dist(z,0D) > r}.

Proof. Suppose that g € D N 9. Passing to the limit as 7 — 0 the estimate (3.4]) we
obtain that u(xg) = 0. Thus Q, N 9Q, = 0 and so Q, is open.
Let now zg € Ds. We consider two cases.

e If dist(wo, Q) > 9/4, then u is harmonic in the ball B; (7o) and so, by the gradient
estimate (see for example [30]) we have

Cq
Vu(zo)] <~ / wds,
5d+1 By (o)

where Cy is a dimensional constant.
o If dist(xg,0,) < §/4, then we suppose that the distance to the free boundary is
realized by some yy € 92, and we set

r = dist(xg, 0Q) = |To — yol-

Since u is harmonic in B,.(zg), we can again apply the gradient estimate obtaining

Cq Cq
|Vu(x0)|§/ ud:cg/ udr < CyC,
T B, (o) T B (o)

where the second inequality follows by the positivity of u and the inclusion B, (xg) C
Ba,(yo). The last inequality is simply a consequence of (3.4)) and the fact that

2r
/ udx:/ ds/ wdH T O
Bar(yo) 0 9Bs(yo)



REGULARITY OF THE ONE-PHASE FREE BOUNDARIES 29

Remark 3.6 (An alternative statement of (3.4)). We notice that (3.4) is a consequence of
the following inequality

][ wdHt < Cr forevery zp€ {u=0} andevery 0<r <rg. (3.5)
OBr(x0)

This is trivial if we knew a priori that w is continuous, but is true also in general. Indeed,
by Lemma [2.9] we have that

o0, = {JCO €D : 0<|Q,NB(x9)| <|By| forevery r> O}.

Thus, every point xy € 92, can be obtained as limit of points z,, € {u = 0}, for which the
estimate (3.5)) does hold. The claim follows by the continuity of the function

T wdH 1,
8B, (z)

for every fixed r > 0, which is due to the fact that u € H'(D).

The rest of this section is dedicated to the proof of (3.4) in the hypotheses of Theorem
In the next three subsections we will give three different proofs of this fact.

e Subsection [3.1} The Alt-Caffarelli proof of the Lipschitz continuity.
In this section we present the original proof proposed by Alt and Caffarelli (see
[3]), which we divide in two steps (Lemma3.7]and Lemma [3.8)). This entire section
comes directly from [51] and we report it here for the sake of completeness.

e Subsection The Laplacian estimate.

In this section we give a proof, which is inspired from the proof of the Lipschitz
continuity of the solution to the two-phase problem, which was given by Alt, Caf-
farelli and Friedman in [4]. In our case there is only one phase (that is, the solution
u is positive), so we do not make use of the two-phase monotonicity formula of Alt-
Caffarelli-Friedman, which significantly simplifies the proof. This approach can be
used also in other situations, for instance, for functionals involving elliptic operators
(in divergence form) with non-constant coefficients (see [46]).

e Subsection The Danielli-Petrosyan approach.

This last subsection is dedicated to the method proposed by Danielli and Petrosyan
in [I8] in the context of non-linear operators. It consists of two steps. The first one
is to show that u is Holder continuous. This part of the argument is very general
and is based on classical regularity estimates for (almost-)minimizers of variational
problems. In the second step of the proof, the Lipschitz continuity is obtained
by absurd and the result of the first step is used to assure the convergence of the
sequence of minimizers produced by contradiction. This type of argument (proving
a weaker estimate and then obtaining the main result by contradiction) will be used
also in Section [§], this time to obtain the regularity of the free boundary.

3.1. The Alt-Caffarelli proof of the Lipschitz continuity. This subsection contains
the original argument proposed by Alt and Caffarelli in [3]. The main steps of the proof
are the following;:

e Comparing the energy Fa(u, B.(x¢)) of u in the ball B,.(z¢) with the one of the
harmonic extension h of u in B,(xg) we get

/ V(u— ) dx < A|{u =0} N By (x0)|.
B, (z0)
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e It is now sufficient to estimate from below the right-hand side of the above inequality.
In Lemma |3.7| we will prove that

2
1
7"2‘{“20}“37"(‘””0)‘<J[ “dﬂd‘1> <o VP
9By(w0) By (z0)

o If zy € Qy, then [{u = 0} N By(z0)| # 0. Combining the two inequalities we get

1 ][ wdH! < \/CyA.
OBy (x0)

r

We now give the details of the proof sketched above. The key ingredient is the following
trace-type inequality (Lemma, which is implicitly contained in the proof of the Lipschitz
continuity given in [3] (and can also be found in [51]) and is an interesting result by itself.

Lemma 3.7. For every u € H'(B,) we have the following estimate:

2
;‘{U:O}OBT‘<J(€ ud?—[d_l) gcd/ IV (u— )2 da, (3.6)
Br T

where:

e Cy is a constant that depends only on the dimension d;
e h is the harmonic replacement of u in B, that is, the harmonic function in B, such
that w=h on 0B,.

Proof. We report here the proof for the sake of completeness, and refer the reader to [3|
Lemma 3.2 |. We note that it is sufficient to prove the result in the case u > 0. Let
v € HY(B,) be the solution of the problem

min{/ \Vol*dx: u—v € H}(B,), v>u}.
B,

We note that v is super-harmonic on B, and harmonic on the quasi-open set {v > u}.
For each |z| < 1/2, we consider the functions u, and v, defined on B, as

ux(z) == u((r —|z[)z + z) and v(z) == v((r —|z|)z + ).

Note that both u, and v, still belong to H'(B,) and that their gradients are controlled
from above and below by the gradients of u and v. We call S, the set of all |{| = 1 such

that the set {p : g <p<r, u(pf) = O} is not empty. For £ € S, we define

) r
e :mf{p: S < p<r, uy(pé) :0}.

For almost all ¢ € S9! (and then for almost all £ € S), the functions p — Vu,(p¢) and
p — Vv, (pf) are square integrable. For those £, one can suppose that the equation

((uz(p2£) — v2(p28)) — (uz(p1§) — v2(p1€)) = " & V(uz(p€) — v(pt)) dp,

p1
holds for all p1, p2 € [0,7]. Moreover, we have the estimate

r r 1/2
Uz(rgf) = / §- V(’UZ - UZ)(,Of) dp < VT —Te (/ |V(’UZ - Uz)(ﬂf)|2 dP) .
T¢ Te

Since v is superharmonic we have that, by the Poisson’s integral formula,

T2 ’x‘Q u(y) d—1 r ’.ZL“ d—1
> [ — 7 >
v(z) > h(x) o /8 P dH(y) > cq " . wdH" ",

where h is the harmonic function such that h = u(= v) on 0B,. Taking

x = (r—re)z+rek,
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we have

va(re€) = v((r —re)z +ref) > L TTTE ][ wdptt =4 ][ u, dHO
2 o8, 2 r 9B,

Combining the two inequalities, we have

2 r
rT—r
2 : (][ Ude_l) = Cd/ V(v _UZ)‘Q(P@ dp.
r OB, Te

Integrating over £ € S, C S9!, we obtain the inequality

_ 2 ,
(] 50) (] v =, [ v

and, by the estimate that /s < r¢ < r, we have

Ll =0} N BAB ()] <][8

2
ude_1> < Cd/ IV (v, — u)|* da
By r

< Cd/ V(v — ) da.
B,

Integrating over z, we obtain (3.6)). O

Lemma 3.8. Suppose that u € Hlloc(D) be a local minimizer of Fa in the open set D C R®.

Then for every ball B,(x¢) C D we have

|{u =0} N By (x0)] <\/Cd _71”]{93,( )ud?—[d_1> > 0.

In particular, if xg € 0§y, then

][ wdH" < CyvV/Ar.
OBy (z0)

Proof. Suppose that xo = 0. Let h € H'(B,) be the harmonic function in B, such that
h =wu on dB,. By the optimality of u we get

/ |Vul® dz + Al{u > 0} N B,| < / |Vh|* dx + A|B,|.
B, B,
Now using (3.6 and the fact that

/ IV (u— )2 d = / (IVul? ~ [VhP) dz < Alfu =0} 1 B,
r By

we get

1 1
[{u=0}NB, <\/Cd - ][ ud?-[d_1> ( ch+][ ud’}-[d_1> >0,
T JoB, 9B,

r

which gives the claim. O

3.2. The Laplacian estimate. In this section, we propose a different approach to the
Lipschitz continuity of u. The method comes from the two-phase free boundary theory
and, in particular, from the work of Alt-Caffarelli-Friedman [4] and Briangon-Hayouni-
Pierre [6]. This argument was also adapted to the vectorial case in [4I] and to a one-phase
shape optimization problem in [46]. The proof consists of two steps:

e For every local minimizer u of F; we have that Aw is a positive measure.
In Lemma [3.9] we prove that the optimality of u implies the estimate

Au(B,) < Cri L.
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e In Lemma |3.10, we show that the Laplacian estimate and the classical identity

d d—1 _ Au(B;)
dr 9B wdH T dwgrd1

imply that
][ wdH < Cr,
0B

which gives the Lipschitz continuity of u by Proposition

Lemma 3.9 (The Laplacian estimate). Suppose that u is a local minimizer of F1 in D.
Then, for every ball B,(xg) such that Ba.(x9) C D we have

Au(B,(x9)) < Cri7t

Proof. Without loss of generality we can assume that xg = 0. We now notice that by
Lemma [2.6] the distributional Laplacian

Au(yp) == — /D Vu-Vedr forevery ¢ € CH(D),

is a positive Radon measure.
We first prove that

Au(p) < Cyr®le Vo2, forevery ¢ e C(B,) andevery B, CD. (3.7)

Indeed, for every ¥ € C°(B,), the optimality of u gives

/\Vu]Qd:rg/ ]Vu\zdx+|{u>0}ﬂBr|§/ IV (u+ )2 da + | B, .
By B, B

T

Developing the gradient on the right-hand side, we get
1
— | Vu -Vipdz <= </ |V¢]2d:c+wdrd> .
B, 2 \/s,

Setting 1) = r*/? HVngL2 ), we get

1+w wq d/2|
2

/ Vu-Vodr < —— ’VSOHL?(B

1
which is precisely (3.7) with Cy = + wd

Let now ¢ € C2°(By,) be such that

[\

¢>0on By, @=1onB, and [Vg|rep,) <=

ﬁ

Thus, ¢ > 1, and by the positivity of Au we have
Au(B,) < Au(p) < Cq (2r) [Vl p2(p,) < Crit. O
Now the estimate (3.4]) follows by the following lemma.

Lemma 3.10. Suppose that u € H'(BR) is a non-negative sub-harmonic function in the
ball Br € R such that u(0) = 0. Suppose that there is a constant C > 0 such that

Au(B,) < Cr¥l for every 0<r<R. (3.8)

Then we have
][ wdHt < < r  for every 0<r<R. (3.9)
9B, d

Wd
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Proof. We first notice that for every smooth u. we have

d d ou 1
— d d—1 = — € d d-1 = —
dr Jop, ue dH dr Jsp, On " dwgrd=t Jp

Aug(z)dz.

Integrating in r and passing to the limit as ¢ — 0 we get

" Au(B,
][ wdH 1 :/ 771( d—)l dr.
OB, 0o dwgr
Now, using (3.8]) we get (3.9). O

3.3. The Danielli-Petrosyan approach. Finally, in the last section dedicated to the
Lipschitz continuity of the minimizers, we present another proof, which is due to Danielli
and Petrosyan and was originally carried out in the framework of the p-laplacian (see [1§]).
In fact, this proof is very close in spirit to the one of the regularity of the free boundary
that we will present in Section It consists of two steps. The first one is to prove that
the local minimizers are Holder continuous and to find a uniform estimate on their C%¢
norm (see Lemm Lemma, and Proposition . Then, the Lipschitz continuity
(see Proposition [3.15)) follows by a contradiction argument, in which the compactness is a
consequence of the aforementioned uniform C%% estimate.

Lemma 3.11. Suppose that Q@ C R? is a bounded open set and that the function u €
HY(Q) N L>®() is such that:

(a) u is non-negative and subharmonic in €;

(b) u satisfies the minimality condition for some constant A > 0.

Then, setting

2 2
A
the following inequality does hold:

e — and C =273 By (A + HUH%OO(Q)) )

/ Vul?dr < CpT20-) for every B,(xo) € Q with p <275
By(z0)

Proof. Let r = pliis. Thus we have B, (xg) C Q. Without loss of generality we can assume
that xg = 0. Let h be the harmonic extension of u in the ball B,.. Then, u < h and, by the
optimality of u, we get

/ |V(u—h)]2dw—/ yvu\de—/ |Vh|?dz < A|B,|.
» B, By

Thus, we can estimate the gradient of u as follows

/ |Vu]2d3:<2/ |V(u—h)|2dx+2/ IV da
B 1+e B, 1+e Bi+e
2 | Byie| 2
<2 |V(u—h)|*dx+ 2 |Vh|*dx
r ‘BT/2| BT/2

< 2A|B;| + 2d+lr‘€d/ |Vh|? de,
Brj
where the second inequality follows by the fact that |Vh|? is subharmonic in B, and the
inequality 7¢ < 1/2. Now, we use the Caccioppoli inequality

/ \Vh|2dx§/ |V(hcp)]2dac—/ |Ve|? h? dx < chpy%oo/ h?dx <
By /s B, Br

r

4| B, |M?
r2

where M = ||ul| o (p) > ||| (B,) and ¢ is given by

2
o(z) =0 if |z| >r, plz)=1 if |z| < g, o(z) = ;(T —|z|) if g < lx| <.
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Since p = r1*¢ and € = 2/d we obtain

/ Vul? dz < 2A|By|pTe + 2743 By | M2p4 s < 2943|By |(A + M2)piie
P

which gives the claim. O

Lemma 3.12 (Morrey). Suppose that Q C R, u € H'(Bg) and that there are constants
C >0 and a € (0,1) such that

Vul?dz < Ot for every g € Br and every 1 < Rf2,
/3
Br(mO)
Then u € C%*(Brjs) and

2
lu(z) — u(y)| < VC <2d + ) |z —y|*  for every =,y € Bry.

o

Proof. Suppose that z,y € Brjs and let r = [z — y|.

fo® Lo
B B

= / [u(z + 2) —u(y + 2)] dz

i

/Br dz/ol(y—x).Vu(x(l—t)+ty+z)dt’

1
<le—yl | dz/o Vu(e(l —t) + ty + 2)]| dt

1
—\x—y\/ dt/ Vule(l— t) + ty + 2)| d
0 By

1
<lo-ol [Cat | val=r[ vy
0 Bgr(m) B2r($)

1/2
< r|By| ][ Vul2| < 20VE|B, .
Bar ()

Let now xg € Bry be fixed. Assume for simplicity that zo = 0. Then we have

][Tu—][su—]{gl [u(rw)—u(saﬁ)]da:—]{gl da:/:x-Vu(tx)dt
SJ{Bl d:n/sr|Vu(tm)|dt:/: dt ]{91|Vu(ta:)|d:v:/: dt Bt|Vu|dm

r 1/2 r /
g/ dt <][ |Vu|2d;z;> g/ \/Cto‘_ldtgjcra,
s B s

which concludes the proof. O

The following proposition is a direct consequence of Lemma and Lemma [3.12

Proposition 3.13 (A uniform Hoélder estimate). Suppose that the non-negative function
u € HY(By) N L>®(By) satisfies the minimality condition (3.1):

Fa(u) < Fa(v) for every v e HY(By) such that uw—wv & Hy(B1) and 4, CQ,.

Then, there is a dimensional constant Cyq and a universal numerical constant p > 0 (one
may take p = 1/8) such that

/B Vul?dz < Cy (A + HUH%OO(Bl)) ’
P
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and
1

3 2
lu(z) —u(y)| < Cq4 <A + ||u||%oo(Bl)) * o — y|7ra for every  x,y € B,.

We are now in position to prove the Lipschitz continuity of u. The idea is to reason by
contradiction. In fact, suppose that there is a sequence of functions u; that minimize the
functional Fy in By and are such that uj(0) = 0 and my, := [Jug|[ (85, ,) = +00. Then, the
)= 1.
Now, if vj, converges to some v, weakly in H' (B, 12); then vy is harmonic in B, ,. Moreover,
if the convergence is also uniform, then ve(0) = 0, Voo > 0 in Bij, and |[vso|pe(p, ) = 1,

functions v, = mj, 'uy, minimize Fafm,, and are such that v (0) = 0 and [[vg||pe< (s, ,

which is impossible. Now, there are two main difficulties that we will have to deal with.

e The first one is the compactness of the sequence v,. Notice that the L bound of vy,
in By, only assures the uniform C%® bound strictly inside B, /o On the other hand
if vy converges uniformly to zero inside B, there wouldn’t be any contradiction at
the limit. Thus, we will need an Harnack-type inequality in order to assure that vy
remains bounded from below also inside Bi,. We will solve this issue in the proof
of Proposition [3.15

e The second issue is the harmonicity of v, which will be a consequence of Lemma,

[3.14] below.

Lemma 3.14 (Convergence of local minimizers). Let B C R% and u, € H'(Bg) be a
sequence of non-negative functions such that:

(a) every u, satisfies the quasi-minimality condition
Fo(un, Br) < Fo(un+¢, Br)+en for every ¢ € HY(B,) and every r< R, (3.10)

where €y, 15 a vanishing sequence of positive constants.
(b) the sequence uy, is uniformly bounded in H'(BR), that is, for some constant C' > 0,

||un||§{1(BR) = Fo(un, Br) +/B ulde < C for every n > 1.
R
Then, there a non-negative us, € H'(BR) such that, up to a subsequence, we have

(i) w, converges us strongly in H*(B,), for every 0 < r < R;
(ii) uso is harmonic in Bg.

Proof. Up to extracting a subsequence, we can suppose that the sequence u,, converges to
a function u., € H'(Bg) weakly in H'(Bg), strongly in L?(Br) and a.e. in Bg. The weak
H'-convergence implies that for every 0 < r < R

IVusollza(s,) < liminf [ Vil z2(s,), (3.11)

with an equality, if and only if, (up to a subsequence) the convergence is strong in B,. Up
to extracting a subsequence we may assume that the limits in the right-hand side of ((3.11])
do exist. In order to prove (i), we will show that, for fixed 0 < r < R, we have

[Vuooll2(5,) = Jim Vun|lz2(B,)- (3.12)
Let n : B — R be a function such that
neC*Bgr), 0<n<1 in Br, n=1 on 0Br, n=0 on B,. (3.13)

Consider the test function @, = nu, + (1 — n)us. Since u, satisfies the (quasi-)minimality

condition ((3.10)), we have

/ |Vun|2dx§/ (Vi |2 d + 2 .
Br Br
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Next, since

‘van‘Q = |v(77un + (1 - 77)“00)}2 = ‘(un - uoo)vn + nvun + (1 - n)vuoo ?

)

and since 1, — U strongly in L?(Bg), we have

limsup/ (|Vﬂn|2 — ]Vun]2) dx
Bgr

n—o0

= limsup/ (’(un — Uso) VN +nVu, + (1 — n)VuOO|2 _ |Vun|2> dx
Bgr

n—oo

n—oo

_ limsup/ (07 = DIVual? + 200~ 1)Vt - Vo + (1 = 1) Vusne ) i
Br

= limsup/ (1 — 772) (\VUOO\Q — |Vun|2> dx
Br

n—oo

< 1imsup/ <|Vuoo|2 - |Vun|2> dx +/ |Vitteo|? diz. (3.14)
{n=0} Br\{n=0}

n—oo

By the weak H'! convergence of u,, to us on the set {n =0} \ B,, we have

/ Voo | dz < liminf/ \Vun|? dz,
{n=0}\B: nee J{n=03\B,

which implies

limsup/ (]VUOO\Q - |Vun\2) dx < limsup/ (\Vuoo|2 - |Vun|2) dx
{n=0} n—oo JBy

n—o0

+ limsup/ <|Vuoo|2 - |Vun|2> dx
{n=0}\B:

n—oo
< limsup/ (\Vuoo|2 - |Vun|2> dx. (3.15)
n—oo "
On the other hand, the optimality of u,, gives
0= lim ¢, < limsup/ (\Vﬂn\z - ]Vun|2> dx . (3.16)
LA n—oo JBp

Finally, (8-14), (3-15) and (3.16) give

0 < lim (]Vuoo\Q — \Vun\Q) dx —|—/ ]Vuoo]2dx,
n— JB, {n>0}

which can be re-written as

liminf/ |Vun|2dx§/ |Vuoo|2dm+/ Vs |* da.
B, B, {n>0}

n—oo

Now, since 7 is arbitrary, we finally obtain

lim inf |Vun|2da;§/ |Vieo|? di,
B, B

n—oo
which concludes the proof of (i) .
We now prove (ii). Let 0 < 7 < R and ¢ € HJ(B,). It is enough to show that
| Wusldo< [ [+ o) do. (3.17)
Br Br

Let n : BR — R be a function that satisfies (6.5)) and is such that the set N := {n < 1} is
a ball strictly contained in Bgr. Notice that

{p#0} Cc B, c{n=0}C N ={n<1} C Bg,
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the last two inclusions being strict. We define the competitor
Uy = Up, + @ + (1 = 1) (o — un),
and we set for simplicity veo := U + ¢. Now, since ¢ =0 on By \ N, we have that:
® U, = U on the set {n = 0};
. is equivalent to /N |Vto|? dz < /N IV (oo + @)|* da .

Now, using the strong H' convergence of u,, in N, then the optimality of u, and again the
strong H' convergence from claim (i), we get

/|Vuoo|2d:c: lim / |Vun|2d:z§hminf/ ]anlzda::/ Voo | dz

which concludes the proof. O

Proposition 3.15 (Lipschitz continuity of u). Suppose that the function uw € H'(Bs) is
such that

(a) u is non-negative in By and u(0) = 0;
(b) w is harmonic in Q, = {u > 0};
(¢) u satisfies the minimality condition

Fa(u) < Fa(v) for every v€ HY(Bs) suchthat u—v € H}(Bs) and u<wv in By.
Then, there is a constant Cy, depending only on A and d, such that
[ull oo, 4) < Cha.

Proof. Let u, € H'(Bz) be a sequence of functions satisfying the hypotheses (a), (b) and
(c) above. Suppose, that u;(0) = 0 and set my, := |lug| L=, ), for k > 1.
For every k > 1, we define the set (see Figure

Wy = {aj € B; : dist(x, {ur = O}) < é(l — |x|)}

Notice that, the set W, and the function w; have the
following properties:

® Bij C W (this is due to the fact that uz(0) = 0); &
e wuy is continuous on B
e as a consequence of the previous points, we have

that the maximum of u on the (closed) set W is

achieved at a point x; € Wi N B; and we have

My, == ug(xr) = max ug(x) > my.
€W FIGURE 3.1. The two sets W
Let Qf := {ug > 0} and y € 9 be the projection of zy, and Q = {ug > 0}.

on the (closed) set 9 N By. By definition z; € Wy, we have that
. 1
ri = |z — yi| = dist (zx, 0) < 5(1 — |@k]).
Thus, we get
1 2
il < okl + fow = yel < lol + 51— Jaw]) =1 = 2 (1 = o).

This implies that |yx| < 1 and
2 1
lyp] <1 —2ry and grk < 3(1 — |yk|).
Notice that the last inequality implies that B., 5 (yx) C Wk. Indeed, for every = € By, (yr),
we have

1
dist(x, 0Q) < |v — y| < 57k
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while
1

3

(1 — [ykl) 1\ |>2 ! .
- ——-lr— =Tk — Tk = =Tk
Yk 3 yk_Sk 6k 2k

S 1)) >
In particular, we obtain that
sup  up < M. (3.18)
By, 12 (yr)
On the other hand, the function wy is harmonic in B,, (x}) so, by the Harnack inequality,

we get that
ug(zg) My, 1 7
ug(zg) > Ca C where 2 8:Bk + Syk , ( )

and Cy > 1 is a dimensional constant. Now, (3.19) and (3.18]) give
Tk

M
k< ug(zk) < Ap < My, where Ap = sup wuy and P =— .
Ca Boy (i) 4

Consider the function ( )
up (Y + prx
vp(z) = Yk T PT)

Pk ur(Cr)
and the point (; = Z’“;TZ”’C. We have that:
(1) vy satisfies the minimality condition
A|B|
up ()’
for every ¢ € H'(By) such that vy, — ¢ € H(B2) and vg < ¢ in By;
(2) vk(0) = 0 and the point (;, € By is such that

Fo(ve) < Folo) +

1
Ikl = 5 vg(Ce) =1 and sgpvk < Cyvp(Cr) = Cq ;
2

(3) v is harmonic in Bij,(() and in Q,,;
(4) vy is non-negative and subharmonic in Bs.

Now, by Proposition we have that the sequence vy, is uniformly bounded in H'(B)
and converges uniformly to a function vy in By. Thus, we have

Voo(0) =0 and Voo(Coo) =1 and (o = kli_)m Ck. (3.20)

We will next prove that v, is harmonic in B;. Let k € N be fixed and let ¢ : By — R be
a non-negative function such that ¢, = v, on B;. Then, since vy, is harmonic in €2, , we
have

/ |Vvk]2da:§/ IV (vp A é1)|? dx.
B1

B1

On the other hand, the optimality condition (1) implies that
A|B
[ wuae < [ 1900y g0Pde+ 7
B1 B1 uk((k’)
Putting together these two estimates, we get
A|B
/ |V |* < / \Vor|>dz +e;  where g := 2‘ 2l
B1 B1 uk(ck’)

Now, since €, — 0, by Proposition [3.14] we get that vy is harmonic in B;. This is a
contradiction with ((3.20]). O
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4. NON-DEGENERACY OF THE LOCAL MINIMIZERS

In this section we prove the non-degeneracy of the solutions to the one-phase problem
(2.1). Our main result is the following:

Proposition 4.1 (Non-degeneracy of the solutions: Alt-Caffarelli [3]). Suppose that D is
a bounded open set in R? and v € H'(D) is non-negative and minimizes the functional Fy
in D, for some A > 0. Then, there is a constant k > 0, depending on A and d, such that
the following claim holds:

If B, (x0) C D and xo € Qu, then ||u| oo (p, (2)) = K7

The non-degeneracy holds in particular for functions satisfying the following optimality
condition:

Fa(u, Q) < Fa(v,Q) for every v e HY(Q) suchthat v <. (4.1)

For the sake of completeness, we notice that this optimality condition can also be ex-
pressed in a different way, at least when it comes to functions u, which are harmonic on
their positivity set €2,. In fact, the following result is analogous to Lemma Moreover,
as in Lemma (see Remark , we can suppose that all the test functions v in ,

(4.3) and (4.2]) are nonnegative.

Lemma 4.2. Let D be a bounded open set in R? and u € H'(D) be a given non-negative
function. Then the following are equivalent:

(i) u satisfies the inwards minimality condition
Falu, D) < Fa(v,D) for every ve HY(D) such that
u—v € HYD) and Q,DQ,. (4.2)

1) u is harmonic in €, in the following sense:
(i) g
/ |Vu|? de < / \Vol?dx  for every v € HY(D) such that
D D
u—veHRY and u—v=0 ae in RI\Q, (43)
and satisfies the minimality condition (4.1]).

Proof. The implication (i) = (ii) is immediate. In fact, implies both and (4.1)).
In order to prove that (i) implies (i), we suppose that u satisfies and and we
consider a (non-negative) function v € H'(D) such that u — v € H3(D) and Q, C Q,. As
in the proof of Lemma we consider the test functions © A v and vV v. Since u Vv =0
on D\ Q,, the harmonicity of u implies that

/ |Vul|? de < / |V (uVv)]?de.
D D
On the other hand, we can use u A v as a test function in (4.2)). Thus
/ Vul? de + A[Qu] < / V(A )2 dz + A|Qural.

D D

Summing these inequalities and using that €, = Qua,, We obtain
2/ |Vu|? de + A|Qy| < / IV(uVo)?de + / IV (u A )2 de + A|Quaol
D D D
_ / Vul? dz +/ Vol da + A0,
D D

which concludes the proof of (4.1)). O
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Remark 4.3 (On the terminology: inwards optimality and subsolutions; outwards optimal-
ity and supersolutions). We will often call the optimality conditions and inwards
and outwards optimality condition, respectively. This is justified by the fact that the ad-
missible test functions in and have positivity sets contained in or containing €2,,.
On the other hand, we will call and suboptimality condition and superoptimality
condition, respectively, and the functions satisfying and will be called subsolu-
tions and supersolutions. The terms inwards optimality and outwards optimality come from
Geometric Analysis. The term subsolution was introduced in Shape Optimization by Bucur
[8], originally to indicate inwards optimality with respect to shape functionals. The term
supersolution appeared in the same context in several works (see for instance [51] and the
references therein) to indicate outwards optimality. In the context of the functional Fjy, it
seems more appropriate to use the terms subsolution and supersolution, when the condition
is on the test functions, and the terms inwards and outwards, when the condition is on
their (superlevel) sets. Nevertheless, being partially justified by Lemma and Lemma
we will often abuse this terminology by using subsolution and inwards-minimizing, and
supersolution and outwards-minimizing as synonyms.

We will give two different proofs of the non-degeneracy. Lemma [£.4] is due to Alt and
Caffarelli (see [3]), while Lemma is due to David and Toro, it requires the function to
be Lipschitz continuous, but the argument is more versatile and can be easily adapted, for
instance, to the case of almost-minimizers of the functional F, (see [19]).

Lemma 4.4 (Non-degeneracy: Alt-Caffarelli). Let D C R? be a bounded open set. Suppose
that u € HY(D) satisfies the condition and let xg € D. If z9 € Q, N D, then for every
ball Br(wo) C D, we have that ||ull oo (B, (z0)) = A'Pegr, where cg > 0 is a dimensional
constant.

Proof. Without loss of generality we can suppose that g = 0 and that A = 1. For r > 0,
let ¢, be the solution of

Ap, =0 in B, \ By, ¢, =0 on 0B, or=1 on 0DBs,.

Then we have ¢,(z) = ¢1 (¢/r), for every z € Ba,\ B,. We consider the function & € H} (1)
defined by

u(x), if xe€Q)\ By,
ﬂ(.%’) = U(I) A M2T¢T’) it =« S BQT \ BT7
0, if zeB,,

where My, = [|ul|po(B,,)- By the optimality of u in Ba,, we have that
Fi(u, Bay) < Fi(u, Bay),
which means that
Fi(u, By) < Fi(a, Bay) — Fi1(u, Boy \ By) = Fi(@, Bay \ By) — Fi(u, Bay \ By).
Since {u > 0} = {@ > 0} in By, \ By, we get that

‘Fl({% B2T‘\Br) _-Fl(u7 Bzr\Br) = /

\Vﬂ|2dx—/ \Vu|? dz,
BQT\BT B2r T

and so, we can estimate

Fi(u, By) < / (\vm? - |vu\2) dx
BZ'r Br

S—/ |V(u—ﬂ)|2dm—|—/ 2V - V(a — u) dz.
B, \Br B2y \Br
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Now, since
/ 2V - V(u —u)de = / 2Va - V(a — u) dz,
BQT\BT {ﬂ;ﬁu}ﬂBgr\Br
by the definition of %, we obtain
fl(u, Br) < / 2MorN ¢y - V(M2r‘¢r - u) dx
{u>M27‘d)T‘}nB2’I‘\BT‘

Mo, )
22 Hv¢1||L°°(6B,«)/ wdH da.
" OB,

On the other hand, we have the following trace inequality

1
/ wdH4 ™ < Oy (/ \vu|dm+/ uda:)
0B, r r r

M, M,
< Cy </ ‘VU|2CZZL‘+(1+ )HU>O}QBT‘> < Cy <1+ )fl(u,Br).

r r

= 2M2r/ IV, |udH  de = 4
OBy

Thus, if Fi(u, B;) > 0, then we have

2r ’

which gives the claim. O

1§Cd<1+Mr) MQT‘

Lemma 4.5 (Non-degeneracy: David-Toro). Suppose that D C R? is a bounded open set
and u: D — R is a non-negative Lipschitz continuous functions satisfying the optimality
condition . Then, there is a constant kg > 0, depending on the dimension d, the
Lipschitz constant L = ||Vul|p(py and the constant A, such that:

If xo € D andr € (O, dist (o, 8D)) are such that ][ wdH < kor,
9B, (z0)
then u = 0 in B, /(o).

Proof. The proof is a consequence of the following three claims:

Claim 1. Suppose that][ wdHY! < kor. Then,
OBr(x0)

u<rkir on Byy(xog) where k= 2%k0.
Claim 2. Suppose that u < k17 on Brjp(z0). Then,

6L + 9k

—x A

Claim 3. Suppose that ‘QUHBT/Q(:CQ)‘ < ko|Br| and ||ull (B, ,(zo)) < K17 Then, for every
Yo € Birjs(x0), there is p € [7/4,7/8] such that

‘Qu N Br/Q(a:O)‘ < Kko|By| where ko=

][ wdHT < K3p where ks = 8k ko,
8BP(ZJO)

We first prove Claim 1. Let h be the harmonic extension of w in the ball B, (z¢). By the
strong maximum principle, we have that uw < h on B,(z() (we notice that the optimality
condition trivially implies that the function w is subharmonic). On the other hand,
the Poisson formula implies that

r? — \?J|2/ u(¢) d—1 d
h(y) = ———— dH*™ < 2%kqr,
() dwar  JoB, (ze) 1y — C|? (€)= 2o

which gives Claim 1.
In order to prove Claim 2, we consider the function ¢ € C2°(B,;) such that

0<¢p<1 on B(xg), ¢$=1 on By(wo), Vol <3r 1.
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Consider the competitor v = (u— k17¢),. Then, the optimality of v in B, (xo) implies that

Al N By (w0)] < A2y N By (0)| — Al N By (x0)] < / |Vv\2da:—/ |Vul|? de
T $0) By IO)

B (
< / |V (u— m1r¢)|2dx—/ |Vu|? da
B, (z0) By (z0)
< 2/<clr/ |Vul| |[Ve|dr + R%T2/ IVo|* dz < (6k1L + 9k3) | By ],
r(Z0 By (xg

which concludes the proof of Claim 2.
Let us now prove Claim 3. We first estimate

| e < Julli sl 0 Bop(ao)] < mamal Bl
r/2 o

Now, taking yo € B.jx(z0), we have B./,(yo) \ Brs(y0) C Brjy(0), so there is p such that
r/8 < p <7/a and

d—1 8 "/ d—1 8
/ ud?-[ﬁ/ / ud?—[d:s:/ udx
9B, (yo) " Jrfs JOBs(yo) 7" J B, s (x0)

< k1 k2| By| < 8 k1 kawap?,
which concludes the proof of Claim 3.
We are now in position to conclude the proof of the lemma. We first notice that

L
Ky < 84 ky < 27d+8%,€(2)'
Choosing
) A
I‘QO :lnf{17ww}7
we get that k3 < kg. In particular, if ]é ( )ud?-ld_l < kor, then for any yo € B.s(z0)
B (xo

r r
there is a sequence p;, j < 1, such that 3 <p1 < 1 and

B < pi+1 < b and ][ udH < Kop; for every j>1.
8 4 9By, (u0)

In particular, this implies that « = 0 in Br/g(mo), which proves the claim. O
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5. MEASURE AND DIMENSION OF THE FREE BOUNDARY

This section is dedicated to the measure theoretic structure of the free boundary 0€2,,.
The results presented here are mainly a consequence of the Lipschitz continuity and the
non-degeneracy of the minimizer u (Theorem and Proposition . The section is
organized as follows:

e Subsection Density estimates for the domain Q.
This subsection is dedicated to the density estimate of 2, at the boundary 09),.
The argument presented here is precisely the one from the original work of Alt and
Caffarelli [3].

e Subsection The positivity set Q, has finite perimeter.
In this subsection we prove that the set €, has (locally) finite perimeter in the
sense of De Giorgi. We will use this result, together with the density estimate of the
previous subsection in order to prove that the singular part of the free boundary has
zero H* ! Hausdorff measure. The proof that we give here is the local counterpart
of an argument proposed by Bucur in [§] for estimating the perimeter of the optimal
sets for the higher eigenvalues of the Dirichlet Laplacian.

e Subsection Hausdorff measure of the free boundary.
In this subsection, we prove that the H9~! measure of 99, is (locally) ﬁniteﬂ Our
argument is very general and essentially uses the Lipschitz continuity and non-
degeneracy of u and the fact that the optimality condition implies that §2, has
a finite inner Minkowski content in a sense that will be specified below.

5.1. Density estimates for the domain §2,. In this section, we prove that if 4 minimizes
Fa inaset D C R? then the set 2, = {u > 0} satisfies lower and upper (Lebesgue) density
estimates at the boundary 09,. The result and the proof are due to Alt and Caffarelli [3].

Lemma 5.1 (Density estimate). Let D C R¢ be a bounded open set. Let u: D — R be a
non-negative function such that:

(a) w is Lipschitz continuous and L := ||Vu| pe(py;
(b) w is non-degenerate, that is, there is a constant ko > 0 such that

][ wdH¥ > kor for every xo € DNOQ, and every r € (O, dist(xo, OD));
OB (x0)

(¢) u is subharmonic in D;

(d) there is A > 0 such that u satisfies the optimality condition (3.3)), that is,
Fa(u, D) < Fa(v, D) for every ve HY (D) such that v > u.

There is a constant 6y € (0,1), depending on the dimension d, the Lipschitz constant L and
the non-degeneracy constant kg, such that

50|B7“ < ’QumBr(fEO)} < (1 *50)‘37"’3 (51)

for every xg € DNOQ, and every r € (O, dist (o, 8D)). In particular, (5.1)) holds for every
local minimizer of Fp in D.

Remark 5.2. Notice that the conditions (b) and (c) are fulfilled by any function satisfying
the suboptimality condition (4.1)). All the conditions (a), (b), (c) and (d) are satisfied for
functions that minimize FA in an open set I/ containing the compact set D.

Proof of Lemma [5.1] Without loss of generality we can suppose that zo = 0.
We first prove the estimate by below in (/5.1)). Indeed, since 0 € 9€2,,, the non-degeneracy

condition (b) implies that ||U||LOO(BT/2) > kog. Thus, there is a point y € B.j such that

ZNotice that this is not the consequence of Subsection as the finiteness of the (generalized) perimeter
implies only that the H%~! measure of the reduced boundary is finite.
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u(y) > ko5. Now, the Lipschitz continuity of v implies that « > 0 on the ball B,(y), where
p= gmin {1, %}, and so, we get the first estimate in (5.1)).

For the upper bound on the density, we consider the harmonic replacement A of u in the
ball B,.. Since u is subharmonic, we get that uw < h in B,. Now, the optimality condition

(3.1)), implies that

Atu=0pnB] > [ VuPdo— [ VP [ 90— )P
B, By

T

By the Poincaré inequality on the ball B, we have that

Ca Cy (1 2
V(h—u 2dxz/ h—ul?dz > </ h—uda:) )
/BT\ L L MU

The non-degeneracy of u now implies

h(0) _][ hdH®! _][ udH > Ko
OB, 0B

By the Harnack inequality applied to h, there is a dimensional constant ¢4 > 0 such that
h > ciror in the ball B ,

On the other hand, the Lipschitz continuity of v and the fact that «(0) = 0 give that
u < Ler in the ball B...

Choosing € > 0 small enough such that cyrg > %5L, we get

/(h—u)dxz/ (h —u)dx > cqgkor|Berl,

which concludes the proof. O

5.2. The positivity set (2, has finite perimeter. In this section we prove that the
(generalized) perimeter of €, is locally finite in D. In particular, this means that €2, has
locally finite perimeter. The proof that we give here was already generalized in two different
contexts: for the vectorial Bernoulli problem (see [42]) and for a shape optimization problem
with drift (see [46]). In fact, our proof is inspired by the global argument of Bucur (see
[8]) used in the context of a shape optimization problem in R%. The main result of this
subsection is the following:

Proposition 5.3 (Inwards-minimizing sets have locally finite perimeter). Suppose that D
is a bounded open set in R? and that v € H'(D) is non-negative and satisfies the following
minimality condition:

Fa(u, D) < Fa(v,D)  for every v € H (D)) such that v < u in D and u —v € Hy(D).
Then y, has locally finite perimeter in D.

As a direct consequence, we obtain that the support €, of a minimizer u of F5 has
locally finite perimeter.

Corollary 5.4 (Minimizers have locally finite perimeter). Suppose that D is a bounded
open set in R? and that the non-negative function w € H'(D) is a minimizer of Fy in D.
Then €, has locally finite perimeter in D.

We divide the proof of Proposition [5.3] in two main steps: Lemma [5.5] and Lemma [5.6]
Lemma [5.5|is a sufficient condition for the local finiteness of the perimeter of a super-level
set of a Sobolev function, while in Lemma [5.6] we will show that the subsolutions satisfy
this condition. The conclusion of the proof of Proposition [5.3]is given at the end of the
subsection.
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Lemma 5.5. Suppose that D C R% is an open set and that ¢ : D — [0, 4+00] is a function
in HY(D) for which there exist € > 0 and C > 0 such that

/ |V¢|2dx—|—A‘{0<¢§5}ﬂD‘ < Ce, forevery 0<e<E. (5.2)
{0<¢p<e}nD

Then, Per({tb > 0}; D) < CVA.
Proof. By the co-area formula, the Cauchy-Schwarz inequality and (5.2)), we have that, for

every € < g,

/EHd_l({qﬁ:t}ﬂD) dt:/ V| da
0 {

0<¢<e}nD

g\{0<¢§s}mD\1/2(/ |V¢]2daz>1/2§€C\/7\.

{0<¢<e}nD

Taking & = 1/n, we get that there is §,, € [0,1/n] such that

1/7L
HH (0 {¢ > 6,3 N D) < n/ H ({p =t} N D)dt < CVA.
0

Passing to the limit as n — oo, we obtain
H(9"{¢ > 0} N D) < CVA,
which concludes the proof of the lemma. O

Lemma 5.6. Suppose that u € H'(Bo,(xg)) is non-negative and satisfies the following
minimality condition in the ball Ba,(xg) C R<:

<wu in Ba(o),
Falu) < Fa(v) for every v e H'(Bor(xo)) such that ¢~ " 72 (o)
u=v on 0By (x0).

Then, there exists a constant C' > 0 such that

/ |Vu|2da:—|—A‘{O<u§6}ﬂBr(:E0)‘ < Ce for every 0<e<l.
{0<u<e}NBy(z0)

Precisely, one can take
C = Cq (r MVull L2y (o)) + 772 -

where Cy is a dimensional constant.
Proof. We fix a function ¢ € C*(R?) such that

¢$=0 in B, and ¢=1 in R\ By,.
For a fixed € > 0 we consider the functions

ue = (u—g)4 and e = pu+ (1 — P)ue.
We now calculate |Viic|? in the ball Ba,.

V82 = 1 fgcueet IV () 2 + Loy [V (1 — (1 — 8))
< Ljocuce} 8° | VUl® + Liysey | Vul?
+ & 1 ocuse (AVUIVY] +2IVS) + £ ey (2170l Ve] +£[VoI).

Now setting
C =2[|Vullr2(B, ) IVl 12(B,,) + HV¢||%2(32,)»
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and using the optimality of u, we get

0> / |Vu|? de —/ Ve ? dz + [{u > 0} N Bay| — [{ue > 0} N By, |
BQT BQr
— / |Vu|? dx —/ Ve’ dz + {0 <u < e} N B
BQT B2'r
2/ (1—¢2)|Vu|2dx—|—‘{O<u§6}ﬂBr‘—Cs
{O<u§a}ﬂB2T

>/ |Vu]2dw+‘{0<u§5}ﬂBr‘—C’6,
{0<u<e}nB,

which concludes the proof. O
Proof of Proposition [5.3] Lemmaimplies that ((5.3) does hold. By Lemma we obtain
that the perimeter is locally bounded. Precisely,
Per(Qy; Brjy(70)) < C for every By(wg) C D,

where C' depends on r, A and d. O
5.3. Hausdorff measure of the free boundary. In this section we prove that the (d—1)
- dimensional Hausdorff measure of 0€),, is locally finite in D. In particular, this means that
2, has locally finite perimeter and so, we recover Proposition[5.3] We will use the Lipschitz
continuity and the non-degeneracy of the solution, as well as, the inner Hausdorff content
estimate (5.4)), which is a consequence of Lemma This is a very general result, which
may find application to different free boundary problems. In fact, it already appeared

n [42], but the proof was directly exported from the present notes, which were still in
preparation at the time.

Proposition 5.7. Let D C R? be a bounded open set and v : D — R a Lipschitz continuous
function such that:

(a) u is non-degenerate, that is, there is a constants ¢ > 0 such that

sup u > cr for every wmg € 02, ND and every 0 <r < dist(zg,dD).
Br(z0)

(b) u satisfies the following (sub-)minimality condition:
Fa(u, D) < Fa(v,D)  for every v € H (D)) such that v < u in D and u —v € Hy(D).
Then, for every compact set K C Q, we have HP (K N 0Q,) < occ.

As an immediate corollary, we obtain:

Corollary 5.8 (Hausdorff measure of the free boundary). Let D be a bounded open set in
R¢ and the non-negative function v € H (D) be a minimizer of Fa in D. Then, for every
compact set K C D, we have H¥™1 (K N oQ,) < co.

The proof of Proposition [5.7]is a consequence of Lemma [5.6] and the following lemma.

Lemma 5.9. Let D C R? be an open set and u : D — R a Lipschitz continuous function
such that:

(a) w is non-degenerate, that is, there is a constants ¢ > 0 such that

sup u > cr for every wzy € 02, ND and every 0 <r < dist(zg,0D).
By (zo)

(b) there is a constant C > 0 such that u satisfies the estimate
{0<u<e}lnND|<Ce forevery e>0. (5.4)
Then, for every compact set K C Q, we have H41(K N 0Q,) < .
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Proof. Let us first recall that, for every § > 0 and every A C R¢,

J
J=1 Jj=1

HE(A) < wg1 inf{ 471 for every B, (x;) such that U By (zj) D Aandr; < 5}.

and d—1 d—1

HTH(A) = %13{1)7—[5 (A).
Let > 0 be fixed and let {B(g(a:j)}é-v:l be a covering of K N 02, such that x; € 02, for
every j = 1,...,n and the balls Bs /S(xj) are disjoint. The non-degeneracy of u implies that,
in every ball Bsy,(z;) there is a point y; such that u(y;) > <é/10. The Lipschitz continuity
of u implies that Besior(y;) C i, where L = max{1, ||Vul[z~}. On the other hand, since
u(z;) = 0, we have that

6 ¢ o
u<L ( + ) =L+ o Bujon(y)-

This implies that the balls Beso.(y;), j = 1,..., N, are disjoint and contained in the set
{o<u<(L+ 1)@}. Now, the estimate from point (b) implies that

10
N
cd clod
O+ g 2 2 on )| = Nt i
which implies that
10d—1
N dwqs® < dC——L*(L +1).
c
Since, the right-hand side does not depend on §, we get that
1091

HTHE N 00y) < dC— - LYL + 1),
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6. BLOW-UP SEQUENCES AND BLOW-UP LIMITS

Let D be an open set in R? and u : D — R be a (non-negative) local minimizer of F
in D. Recall that, by Theorem [3.1] we have that u is locally Lipschitz continuous in D.
Let xg € 92, N D be a given point on the free boundary. For every r > 0, we define the
rescaled function

1
U r(T) 1= ;u(wo +rz).

Let (75)n>1 be a vanishing sequence of positive numbers. We say that the sequence of
functions wy, ., is a blow-up sequence. We notice that ug, ,, is not defined on the entire
R (since a priori we might have that D # R?), its domain of definition being the set

1
;(—xo—FD) ={reR? : zy+rz e D}

On the other hand, since 7, converges to zero, for every fixed R > 0, there exists m > 0
such that, for every n > m, ugy, r, is defined on Bp, that is,

1
Br C —(—x0+ D).

Tn
Now since,
Vg r, () = Vu(zg 4+ rz) for every =z € Bp,
we have that
[Vtgg |l oo (Br) = VUl Lo By, (20))-

Since u is locally Lipschitz continuous and u(xg) = 0, we get that the sequence ug, ,, is
uniformly bounded and equicontinuous on Bgr. Thus, by the Theorem of Ascoli-Arzela,
we obtain that there is a subsequence of ug,, that converges uniformly in the ball Bp.
Repeating this argument for every (natural number) R > 0 and extracting a diagonal
sequence, we get that there exists a function ug : R¢ — R such that, for every R > 0, the
sequence g, », converges uniformly to ug in Bp,

nh_)rrolo tzg,rn — vollpoe(Bg) =0 for every R > 0. (6.1)

Definition 6.1 (Blow-up limit). We will say that the function ug : RY — R is a blow-up
limit of u at xo if (6.1) does hold.

We notice that every blow-up limit ug of a local minimizer v of F, is non-negative,
Lipschitz continuous (in R?) and vanishes in zero. We also stress that there might be
numerous blow-up limits, each one depending on the choice of the (sub-)sequence ug, . If
this is the case, then we simply say that the blow-up limit is not unique.

For instance, the function ¢ : By — R defined in polar coordi-

nates as (see Figure
¢(p,0) = pmax{0, cos(f +Inp)}

has infinitely many blow-up limits in zero (but it is not a local
minimizer of the functional F5). We will denote the family of
all blow-up limits of u at xg by BU,(xo). The classification of all
the possible blow-up limits and the uniqueness of the blow-up
limit at a given point zy € 0f2, are both central questions in the
free boundary regularity theory, which do not have a complete
answer yet. In this section we will decompose the free boundary
into a regular and singular parts according to the structure of
the space of blow-up limits at the points of 9€,,.

FIGURE 6.1. Ezample of
a (Lipschitz) function
with infinitely many
blow-up limits in zero.

The subsections and [6.3] are dedicated to the proof of the following result.
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Proposition 6.2 (Convergence of the blow-up sequences). Let D be an open subset of R¢
and let uw : D — R be non-negative, u € Hlloc(D) and a local minimizer of Fp in D. Let
xo € 00, N D and let r, — 0 be a vanishing sequence of positive real numbers such that the
blow-up sequence uy, r, converges locally uniformly to the blow-up limit ug : R? — R in the

sense of (6.1)). Then, there is a subsequence such that, for every R > 0, we have:

(i) the sequence uy, ., converges to ug strongly in H'(BR);
(i3) the sequence of characteristic functions lq, converges to lg, in L'(Bg), where

Q= {ugyr, >0} and Qo := {ug > 0} ;

(iii) the sequence of sets Q, converges locally Hausdorff in Br to Qo;
(iv) ug is a non-trivial local minimizer of Fa in R

In particular, Section [6.1]is dedicated to the strong convergence of the blow-up sequences
(claims (i) and (4i)) and the optimality of the blow-up limits (claim (7v)); the main result of
this section (Lemma is more general and will also be used in the proof of Theorem |1.9
Section is dedicated to the local Hausdorff convergence of the free boundaries (claim
(73)); the results of this section apply both to Theorem and Theorem In Section
[6.3] we conclude the proof of Proposition [6.2]

In Section we define the regular part Reg(0€2,) and the singular part Sing(0€,,) of
the free boundary. Moreover, we prove that the singular set Sing(d€),) has zero (d — 1)-
dimensional Hausdorff measure (Proposition . We notice that this result applies to
Theorem [1.2] Theorem and Theorem but is interesting only for Theorem [I.2] in
which we do not make use of monotonicity formulas. In fact, in Section we will obtain
better estimates on the dimension of the singular set by means of the Weiss’ monotonicity
formula, which we will apply to both Theorem and Theorem

6.1. Convergence of local minimizers. In this section we prove the strong convergence
of the blow-up sequences and the minimality of the blow-up limits at every point of the free
boundary of a local minimizer. Our result (Lemma is more general and applies also to
other free boundary problems; for instance, we will use it in the proof of Theorem

Lemma 6.3. Let A > 0 be a given constant, Bp C R? and u,, € H'(BRr) be a sequence of
non-negative functions such that:

(a) every uy, is a local minimizer of Fp in Br or, more generally, satisfies
FA(tn, Br) < Fa(un + ¢, Br) +€n for every € H&(Br) and every r <R,

where €, 18 a vanishing sequence of positive constants.
(b) the sequence u, is uniformly bounded in H'(BR), that is, for some constant C' > 0,

Hun”%ﬁ(BR) = Fo(un, Br) —f—/B ulde < C for every n>1.
R

Then, there is a function us € H*(BR) such that, up to a subsequence, we have
(i) w, converges us strongly in H*(B,), for every 0 < r < R;
(ii) the sequence of characteristic functions Ly, >0y converges to lg, oy strongly in

LY(B,) and pointwise almost-everywhere in B,., for every 0 <r < R;
(111) uso is a local minimizer of Fp in Bg.

Proof. The idea of the proof is very similar to the one in Lemma [3.14] but is more involved
due to the presence of the measure term. Up to extracting a subsequence, we can suppose
that the sequence u,, converges to a function us, € H'(Bpr) weakly in H'(Bg), strongly in
L?(Bgr) and pointwise (Lebesgue) almost-everywhere in Br. We set for simplicity

Q, = {u, >0} and Qoo = {ucc > 0}.
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The weak H'-convergence implies that for every 0 < r < R
|V ttoell (5, < liminf [ Vuan|l2(,), (6.2)

with an equality, if and only if, (up to a subsequence) the convergence is strong in B,. On
the other hand, the pointwise convergence of u,, implies that for almost-every = € Bpr

T € Noo = Uso(x) >0 = up(x) >0 forlargen = ze€Q, forlarge n.
In particular this implies that
1o, <liminflgq ,
n—o0
and so, by the Fatou Lemma, for every 0 < r < R, we have

|00 N By| <liminf [Q, N B,|, (6.3)
n—oo

with an equality, if and only if, (again, up to a subsequence) lg, converges strongly to 1q_,
in B,. Notice that, up to extracting a subsequence we may assume that the limits in the

right-hand sides of (6.3)) and (6.2) do exist.

In order to prove (i) and (ii), it is sufficient to prove that, for fixed 0 < r < R, we have

[Vuco|lz2(,) = hnniio%f |Vun| 2B, and Qe N By| = h,{%ig.}f |, N B,|. (6.4)
Let n: B — R be a function such that

ne C*Bgr), 0<n<1 in Br, n=1 on 0Br, n=0 on B,. (6.5)

Consider the test function @, = nuy, + (1 — N)u. Since u,, is a local minimizer for F, in
Bp, and since u,, = @, on 0B, we have Fj(un, Br) < Fa(tn, Br) + €p, that is,

og/ vande—/ |V, | de 4+ Al 0 Br| — A|Q, N Bg| + &,
Br Br

where we have set €, := {@, > 0}. We first estimate
[ N Br| = | N Br| = Q2 N {n = 0} — Q2 N {n = 0}
+ 1200 {n > 0} = Q0 0 {n > 0}
= Qoo N {n = 0} = |22, 01 {n = O}
+‘(QnUQoo)m{77>0}|_|Qnm{n>0}’
< Qoo N {n =0} = [Qn " {n =0} — [{n > 0}].
By the Fatou Lemma on the set {n = 0} \ B,, we have that

Qo N{n=0}\ B| < lirginf Q2 N {n =0} \ By,
and so, we get

lim sup (|Qn N Br| - |2, N BR|) < lim sup <|Qoo A B, — [, N Br|) —{n>0}]. (6.6)

n—oo n—oo

We next calculate
Viin|? = [Vun|? = [V(nun + (1 = n)uce)|” = [Vun|?
= [(un — uoe) VN + NV, + (1 — n)Vuoo|2 — |Vu,|?.
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Now since u,, — U strongly in L?(Bg), we have that

limsup/ (1Vitaf? — Vo ) d
Bgr

n—o0

= limsup/ (\(un — Uso) VN + VU, + (1 — n)Vuoo|2 — ]Vun]2> dx
Br

n—oo

= limsup/ ((772 — 1)|Vun|2 +2n(1 —n)Vuy - Vi + (1 — 7])2\Vuoo|2> dz
Br

n—oo

= limsup/ (1 - 172) <\Vuoo|2 — |VU/n|2) dx
Bgr

n—oo
< limsup/ <|Vuoo|2 — |Vun|2) dz +/ Voo |? d.
n—o00 {n=0} Bgr\{n=0}

By the weak H' convergence of u, to us on the set {n =0} \ B,, we have

limsup/ (|Vﬂn|2 — \Vun\Q) dx < limsup/ (\VUOO\Q - ]Vunlz) dx +/ |Vittoo|? diz.
Br By

n—o00 n—o00 {n>0}

This estimate, together with and the minimality of w,,, gives

n—oo

lirginffA(un, B,) = liminf/ \Vun|? do + Ay, N B, |
n—oo BT

§/ |Vuoo|2dx+A|QooﬂBr|—|—/ Voo |? dz + A|{n > 0}
B, {n>0}

= Fa(tis, BY) +/ V|2 dz + Al{n > 0}].
{n>0}

Since 7 is arbitrary, we finally obtain

lim inf Fp (up, Br) < Fa(too, Br),

n—o0
which implies (6.4 and, as a consequence, the claims (i) and (ii).
We now prove (iii). Let 0 < r < R and ¢ € H}(B,). We will show that
Fa(too, Br) < Fa(tuoo + ¢, Br). (6.7)

In order to prove([6.7), we will use the optimality of u, and we will pass to the limit. We
notice that, for a fixed n > 1, the natural competitor is simply u, + . Unfortunately, we
cannot follow this strategy since we do NOT a priori know that

lim {un + ¢ > 0} = {uso + ¢ > 0}
n—oo
Thus, we consider a function n : Bgr — R that satisfies (6.5) and is such that the set

N = {n < 1} is a ball strictly contained in Bg. Precisely, we have that the following
inclusions do hold:

{p#0} C B, c{n=0}Cc N ={n<1} C Bg,
the last two inclusions being strict. We define the competitor
Up = Up + @+ (1 - n)(uoo - un):

and we set for simplicity ve := Uoo + . Now, since ¢ = 0 on Bg\ N, we have that v, = v
on the set {n =0} and is equivalent to

Fa(ttoo, N) < Fa(voo, V). (6.8)
By the points (i) and (ii), we have that
fA(uOoaN) = nh_{goFA(un’N)
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The optimality of u, and the strong H' convergence of u, to us in N give

n—oo n—oo

lim F (tn, N) < liminf Fp(v,, N) = / |Veo|? dz + A lim inf H{on, >0} NN (6.9)
N n—oo

Moreover, since
Up = Uso on the set {n =0},

we have
H{on > 0} ONT = [{vn, >0} N {n =0} + {v, >0} N {0 <n < 1}
< Hvoo >0} NN+ {0 < n < 1},

which, together with and , gives
Fa(too, N) = nangOfA(un,N) < Fa(voo, N) 4+ {0 < < 1}].

Now, since the set {0 < n < 1} is arbitratry, we get and so, the claim (iii). O

6.2. Convergence of the free boundary. This section is dedicated to the proof of Propo-
sition (iii). In particular, we define the notion of local Hausdorff convergence (see Def-
inition below) and we prove several results, which are general and can be used in the
context of different free boundary problems.

Definition 6.4 (Local Hausdorff convergence). Suppose that X, is a sequence of closed
sets in R and Q is an open subset of R, We say that X,, converges locally Hausdorff in
Q to (the closed set) X, if for every compact set KK C Q and every open set U, such that
K CcU cCQ, we have

lim dist x (X, X) =0,

n—oo
where, for any pair of closed subset X,Y of Q, we define

distic(X,Y) := max { ax dist (z, Y NU), ygn}ggclc dist (y, X N Z/I)}

Lemma 6.5 (Hausdorff convergence of the supports). Let Br be the ball of radius R in
R?. Let u, : Bop — R be a sequence of continuous non-negative functions such that:

(a) u, converges uniformly in Baog to the continuous non-negative function ug : Bop — R;
(b) uy, is uniformly non-degenerate, that is, there is a strictly increasing function

w: [0, 4+00) — [0, +00),
such that w(0) =0 and
ltnllLoo (B, (z0)) = w(r) for every a0 € Qu, N Bsrp , 7€ (0,Rf2) and neN.
Then the sequence of closed sets (1, converges locally Hausdorff in Bg to Q.

Proof. We first prove the non-degeneracy of ug. Suppose that x € Q,, N Bg and r < R/2.
Then, there is y € B.(z) such that ug(y) > 0 and so, for n large enough we have that
un(y) > 0. By the non-degeneracy of u,, there is a point 2, € B.,(y) such that u,(z,) >
w("/2). Up to a subsequence z, converges to some z € B, (y). By the uniform convergence
of u,, we have

uo(2) = Jim () > w(r/2).

which proves that
[uol| oo (B, (2)) = w(r/2) for every € Qyu,NBr andevery r <R/,

We can now prove the local Hausdorff convergence of Q,, to ,,. Let K C Bgr be a given
compact set and U C Bg be an open set containing /. Let 6 > 0 be the distance from K to
the boundary of &. We reason by contradiction. Indeed, suppose that there is € > 0 such
that dist 1/ (ﬁun,ﬁuo) > ¢. Then, up to extracting a subsequence, we can assume that one
of the following does hold:
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(1) There is a sequence (), such that

Tp € Qu, NK  and  dist (2, Qyy NU) > e.
(2) There is a sequence (z,,), such that

T € Qo NK  and  dist (2, Qy, NU) > e.

Moreover, we can assume that 0 < e <.

Suppose that (1) holds. Since x,, € Qy, we have that there is y, € B.(xn) C U such
that w,(yn) > w(¢/2). On the other hand, (1) implies that u(y,) = 0, in contradiction with
the uniform convergence of u, to ug.

Suppose that (2) holds. By the non-degeneracy of ug we have that there is y, €
B:)y(rn) C U such that up(yn) > w(¢/4). On the other hand wu,(y,) = 0, in contradic-
tion with the uniform convergence of u,, to ug. O

Lemma 6.6 (Hausdorff convergence of the zero level sets). Let Bgr be the ball of radius R
in R%. Let u, : Bop — R be a sequence of continuous non-negative functions such that:
(a) uy, converges uniformly in Bag to the continuous non-negative function ug : Bop — R;
(b) un(0) =0 and u,, satisfies the following uniform growth condition:
un(z) > w(dist (z, {un, =0} N Bag)) for every N Br and every n €N,

where w : [0,400) — [0,400) is a strictly increasing function such that w(0) = 0.
Then the sequence of closed sets {u, = 0} converges locally Hausdorff in Br to {ug = 0}.
Proof. Let K C Bgr be a compact set and let Y C Br be an open set containing K. Let

0 > 0 be the distance from K to the boundary dU. We reason by contradiction and we
suppose that there is € € (0, ) such that

dist g ({un = 0},{uo = 0}) > e.
Then, up to a subsequence, we have one of the following possibilities:
(1) There is a sequence (), such that
xp € {up, =0} NK and dist(xy,, {up =0} NU) > .
(2) There is a sequence (), such that
Tn € {ug=0}NK and dist(z,,{u, =0} NU) > e.

Suppose first that (1) holds. Up to extracting a subsequence, we can suppose that
converges to xg € K. By the uniform convergence of u, and the continuity of ug, we have

Un(20) < Un () + [10(@n) = n ()| + [u0(20) — uo(a)| + [un(w0) — o) = 0.
Passing to the limit as n — oo, we get that ug(xo) = 0, which is a contradiction since
dist (zo, {up =0} NU) > nhﬁrgo dist (zp, {uo =0} NU) > ¢.
Suppose now that (2) holds. Now, let y, be the point in Byr N {u, = 0} that realizes

the distance from x,, to this set. There are two possibilities:

e y, € Bop \ U. In this case, we have |z, — y,| > d.
e y, € U. Then, we have dist(z,, {u, =0} NU) = |z, —yn| > €.
In both cases, we have that |z, — y,| > €. By the uniform growth condition (b), we have
Un(Tn) > W(@n — ynl) > wle),
which is a contradiction with the uniform convergence of u, to ug. O
Lemma 6.7 (Hausdorff convergence of the free boundaries). Let Br be the ball of radius

R in RY  Let u, : Bop — R be a sequence of continuous non-negative functions and
ug : Bop — R be a continuous non-negative function such that:

(a) the sequence S, converges locally Hausdorff in Br to Qy,;
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(b) the sequence {u,, = 0} converges locally Hausdorff in Br to {uy = 0}.
Then, 0, converges locally Hausdorff in Br to 0y, .
Proof. Let KK C Bpr be a fixed compact set and U C Br be a given open set. Let § > 0 be
the distance between K and oU. Let € € (0,9) be fixed.

Let ¢ € 0, N K. By the Hausdorff convergence of 2, and {u, = 0}, we get that, for
n large enough, there are points

Yn € Qu, NU and zn € {up, =0} NU,
such that
lxo —yn| < € and |xo — 2zn| < e.

Since w,, is continuous, there is a point w, on the segment [y, z,] such that w, € 9Q,, .

Moreover, by construction w, € B.(z9) C U. Since xg is arbitrary, we get that

max _dist (z,0Q,, NU) < e.
€Ny NK

Conversely, let z,, € 9Q,, N K be fixed. Using again the Hausdorff convergence of 2, and
{u, = 0}, we get that, for n large enough, there are points
Yo € Qo N U and 20 €{up=0}NU,
such that
|zn — yo| < € and |zn — 20| < €.
Now, by the continuity of ug, we get that there is a point wg on the segment [yo, zo| such

that wg € 00y, N B:(xy,). Since z,, is arbitrary, we get

max dist (z,09,, NU) < ¢,
€00, NK

which concludes the proof. Il

6.3. Proof of Proposition By the local Lipschitz continuity of u, we have that for
any fixed R > 0, the sequence u,, = g, is uniformly bounded in H'(Bg). Thus, applying
Lemma we get at once the claims (i), (ii) and (iv) of Proposition We notice that
the fact that the blow-up limit is non-trivial (ug = 0) follows by the non-degeneracy of
u, which assures that for every n > N and every R > 0, there is a point z,, € B such
that uy, r,(zn) > K, where k is a constant that depends only on A and the dimension d.
The Hausdorff convergence of the free boundary (Proposition (iii)) follows by Lemma
Lemma and finally, by Lemma Notice that the non-degeneracy condition of
Lemma follows by Proposition while the uniform growth condition of Lemma [6.6]
is a consequence of the following lemma (Lemma .

Lemma 6.8. Let u: Bop — R be a continuous non-negative function such that:

(1) u(0) =0;

(2) w satisfies the following non-degeneracy condition:
|ul| oo (B, (z)) = kT for every x € Qu,NBr and every r € (0,R),

for some given constant k > 0;
(3) u is harmonic in Q, N Bag.

Then, u satisfies the following growth condition:
u(z) > 2d%dist (x,{u =0} N Bag) for every x € Bpg.
Proof. Suppose that xg € Q, N B and let yg € 92, N Bag be such that
r:=|xg — yo| = dist (o, {u = 0} N Bag).
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Then, the non-degeneracy of u implies that there is a point 29 € B, (z0) at which
r
u(zp) > Ry

Now, since u is harmonic in €, we get

K wg rit

/7/2(20) u(:[]) dfl: Z ’BT/Q|U(ZO) Z W

Since wu is non-negative and harmonic in B,(zp) , we have that

1 Kwgrdt! K
u(zo) = / v > -
|B,| /. mo) |B | B, 2(20) wqrd 24+t 2d+1

which concludes the proof. O

As an immediate corollary, we obtain the following well-known result (see for instance
[3]), which we give here for the sake of completeness.

Corollary 6.9. Suppose that u is a (non-negative) minimizer of Fa in the ball Bop C R?
such that u(0) = 0. Then, there are constants C1 and Cs, depending only on A and d, such
that the following inequality does hold:

Cy dist (z,{u =0} N Bagr) < u(z) < Cadist (z,{u =0} N Bagr) for every x € Bp.

Proof. The first inequality follows by Lemma [6.8] while the second one is due to the Lips-
chitz continuity of u (see Theorem [3.1]). O

6.4. Regular and singular parts of the free boundary. In this section, we define the
regular and the singular parts of the free boundary.

We notice that we will use exactly the same definition of reqular and singular parts in
Theorem [1.2, Theorem [1.4, Theorem [1.9] and Theorem [1

Let D be a bounded open set in R? and let v : D — R be a non—negatlve continuous
function (in particular, one can take u to be a minimizer of Fp in D). Let xg be a fixed
point on the free boundary 9, N D, where we recall that Q, = {u > 0}.

Definition 6.10 (Decomposition of the free boundary). We say that xo is a regular point
if there exists a blow-up limit ug of u at xo (see Definition of the form
uo(z) = VA (z-v)y for every xeRY

for some unit vector v € R, We will denote the set of all regular points xg € 0Q, N D by
Reg(09y,), and we define the singular part of the free boundary as

Sing(0y,) = (0, N D) \ Reg(0£2,).

In Section we will prove that Reg(9€,) is an open subset of 92, and is a C1“-regular
surface in R?. In this section, we will prove that the reduced boundary 9*2,, is actually a
subset of the regular part Reg(0€),) and (as a consequence) that the singular set is small.
Precisely, we will show that

H1(Sing(9)) =0

We start with the following lemma.

Lemma 6.11. Let D be a bounded open set in R* and u be a minimizer of Fp in D. Let
xo € 0 N D be a free boundary point, for which there exists a unit vector v € R% and a
vanishing sequence r, — 0 such that

lg, — 1y, in Bgr for every R >0, (6.10)
where Qy, := %(—xo + Q) and H, :={x € R? : z-v>0}. Then, 2o € Reg(d5,).
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Proof. Let u, be the blow-up sequence

1
up(z) = Uzg,rn (z) = 7“(550 + rpx).
n

Notice that ©,, = {u, > 0}. By Proposition we have that, up to a subsequence and
for every R > 0, u, converges locally uniformly in Br and strongly in H' to a function
ug, which is a non-negative Lipschitz continuous global minimizer of F in R¢. Moreover,
we have that the sequence of characteristic functions lq, converges in L'(Bg) to lg,,- In
particular, this implies that €,, = H, almost everywhere. Now, the minimality of uy and
the fact that [{ugp = 0} N H,| = 0 implies that ug is harmonic in H,. By the maximum
principle, we get that Q,, = H,. Thus, ug is C* smooth up to the boundary 0H, (where
it vanishes).
We will next prove that
Vug = VAv on O0H,.
Indeed, suppose that this is not the case. Then, there are two possibilities:

(1) there is a point y € OH, such that Vug = Av for some A > /A;

(2) there is a point y € H,, such that Vug = B for some 0 < B < V/A.

Suppose that (1) holds. Let h, r be the radial solution from Proposition where r is
large enough and R = R(r) is uniquely determined by r. Recall that:

r<R, lim [R—(r+1)|=0, {hy.r > 0} = Bg,
r—00

hrr=1 on B, and |IVh, rl=1+0(1) on Bpr)\B,.

Moreover, the function VA hr.g is a local minimizer of F, in R4 \ B,. Let y, € R? be such
that the ball Br(y,) is contained in H, and is tangent to 0H, at y. Let r > 0 be fixed and

such that
A

2vVA
Then, there is € > 0 small enough, for which the function

h(z) == VA hy p(z + ev)
satisfies the following conditions:

e the support of & is not entirely contained in H,, that is, {h > 0} N {ug = 0} # 0;
e /> ug only in a small neighborhood of y, precisely, {h > g} C Bip(y).

1
|V]’LT7R| < 5 +

Next, we notice that both h and wo are minimizers of Fp in B := Bij,(y). Since, by
construction ug > h on 9B, we get that

Fa(h,B) < Falug Ah,B)  and  Fa(ug, B) < Fa(ug V h, B). (6.11)
On the other hand,
Fa(h, B) + Fa(ug, B) = ]:A(Uo Ah, B) + Fa(ug V h, B),

which means that both the inequalities in are equalities and that both the functions
h A up and hv ug are minimizers of Fj in B For instance, this means that h v up 18
harmonic in the set {h > 0} N B, which is impossible since by construction k V ug is not
C* (for instance, the gradient is not continuous on the segment [y,y,]). Thus, (1) cannot
happen. By the same argument, also (2) cannot happen, which means that

|Vuo| = VA on 0H,.

Now, by the unique continuation principle we have that ug(z) = v/A (x - v) on H,. Indeed,
the function g, defined as

to(x) =up(x) in H, and do(z) = VA(z-v) on RI\H,,
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is harmonic in the entire space R¢ and so, it should coincide everywhere with the function
x + v/A (x - v). This concludes the proof. O

Proposition 6.12 (The singular set is negligible). Let D be a bounded open set in R? and
u € HY(D) be a minimizer of Fp in D. Then, H41(Sing(99,)) = 0.

Proof. By Proposition [5.3] €, has locally finite perimeter in D. Let 9*(2, be the reduced
boundary of €,. It is well-known (see for instance [43][Theorem 5.15]) that, for every
xo € 0%y, there is a unit vector v € R? such that the property does hold. Thus, by
Lemma we have that 0*Q, C Reg(0€,). On the other hand, by the Second Theorem
of Federer (see [43]), we have that

1 (09, N D)\ () LD UG Q)) = 0. (6.12)

Recall that, by Lemma there are no points of density 1 and 0 on the free boundary,
that is,
092, nD)n (2P uaD) =0.

Thus, by
HL((092, N D)\ 9*Q,) = 0.

Now, by the definition of the singular part, we have
Sing(0Qy,) = (02, N D) \ Reg(98,) C (0, N D)\ 0*Q,,,
which concludes the proof. O
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7. IMPROVEMENT OF FLATNESS

In this section, we will prove that the regular part of the free boundary Reg(052,) (defined
in Section is O regular, for every a € (0,1/2). We will first show that the minimizers
of Fj are viscosity solutions of an overdetermined boundary value problem. Precisely, we
will prove the following result.

Proposition 7.1 (Local minimizers are viscosity solutions). Let D be a bounded open set
of R? and let u € HY (D) be a minimizer of Fy in D. Then u is a viscosity solution of

Au=0 in £, Vu| =VA on 9Q,ND, (7.1)
in the sense of Definition [7.6].

The rest of the section is dedicated to the De Silva improvement of flatness theorem
[23]. Precisely, we will prove that the (viscosity) solutions to (7.1]) have C1® regular free
boundary. The proof follows step-by-step (sometimes with minor modifications) the original
proof of De Silva [23].

Without loss of generality, we can assume that A = 1. This is due to the following remark,
which is an immediate consequence of the definition of a viscosity solution (Definition |7.6)).

Remark 7.2. The continuous nonnegative function u : By — R is a viscosity solution to
(71)), for some A > 0, if and only if the function v := A~"/2u is a viscosity solution to
Av=0 in €Q,, Vv =1 on 0, ND. (7.2)

As a consequence, it is sufficient to give the notion of flatness in the case A = 1.
Definition 7.3 (Flatness). Let u: By — R be a given function. Let € > 0 be a fized ream
number and v € R% a unit vector. We say that

u 1s e-flat, in the direction v, in B,
if
(w-v—e), <ulz)<(r-v+e), for every x € By.

Theorem 7.4 (Improvement of flatness for viscosity solutions, De Silva [23]). There are
dimensional constants Cy > 0, e9g > 0, o € (0,1) and ro > 0 such that the following holds:

If u: B1 — R be a continuous function such that:

(a) u is non-negative and 0 € 0y, ;

(b) w is a viscosity solution to "‘
Au=0 in Q,NBy, v
[Vul=1 on 90Q,NBy;

(c) there is € € (0,g¢] such that
u s e-flat in By, in the direction FIGURE 7.1. Improvement of flatness in the
of the unit vector v € R? ball By. For simplicity, we set r := rg.

Then, there is a a unit vector v € 0By C R4 such that:
(i) |0 —v| < Coe;
(i) the function uy, : B1 — R is oe-flat in By, in the direction v,

where we recall that uy, () = —u(rox).
o
Precisely, for any €9 > 0, we may take
Co = Cy, €0 ="T0 and o = Cyro,

where Cy is a dimensional constant.
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From the improvement of flatness (Theorem we will deduce the regularity of the free
boundary (see Section . The section is organized as follows:

e In Section[7.1|we give the definition of a viscosity solution and we prove Proposition
[7.1] using as competitors the radial solutions from the propositions and

e In order to prove Theorem [7.4] we will reason by contradiction. This means that
we will need a compactness result for a sequence of viscosity solutions u, : By — R
which are ¢,-flat in By (e, being an infinitesimal sequence). This will be the aim
of Section and Section In Section [7.2] we will prove the so-called Partial

Harnack inequality (see Theorem [7.7)), which we will use in Section to obtain
the compactness result (Lemma [7.15)).

e Section [7.4]is dedicated to the proof of Theorem

e The subsections[8.1]and [8.2]are dedicated to the proof of Theorem 8.1} which is based
on a classical argument and is well-known to be a consequence of the improvement
of flatness Theorem [7.4

7.1. The optimality condition on the free boundary. In this subsection, we give the
definition of a viscosity solution and we prove Proposition

Definition 7.5. Suppose that Q C R is an open set and that u is a continuous function,
defined on the closure Q). Let zo € Q. We say that the function ¢ € C®(R?) touches u
from below (resp. from above) at xg in Q if:

e u(zo) = P(x0);

e there is a neighborhood N'(zo) C R of xg such that u(z) > ¢(x) (resp. u(z) < ¢(x)),
for every € N(zo) N Q.

Definition 7.6 (Viscosity solutions). Let D C R? be an open set, A >0 and u: D — R
be a continuous function. We say that u is a viscosity solution of the problem

Au=0 in €, [Vu|=A on 09Q,ND,

if for every o € Q, N D and ¢ € C™(D), we have
o ifzg € Q, = {u>0} and
— if ¢ touches u from below at xg in Qy, then Ap(xg) < 0;
— if ¢ touches u from above at xqy in €, then Ap(xzp) > 0;
e if xg € 0, N D and
— if ¢ touches u from below at xg in Qy, then |Vo(xg)| < A;
— if ¢ touches u from above at xo in Q, then |Vo(xg)| > A.

Proof of Proposition Suppose that zg € Q, and that ¢ € C°°(D) touches u from
below in zg. Since w is harmonic (and smooth) in the (open) set §2,,, we get that A¢(zg) > 0.
The case when ¢ touches u from above at zy € €, is analogous. Let now zg € 0€2,,. Suppose
that ¢ touches u from below at xo and that |V¢(zg)| > 1. We assume that 2o = 0 and we
set

1
IVo(0)] =a  and v=- V¢(0) € 0By,
we get that, for some p > 0 small enough,
1+a

u(z) > ¢y(x) > (x-v)4 for every x € B,.

Let now r > 0 be large enough such that the radial solution w, from Lemma [2.15] satisfies

P
=1 in By, wu=0 in R\ Bpg, |vur|§% in Bp\ B,.

Let u. be the following translation of u,.

Us(z) == ur(z — (R—e)v).
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Choosing € small enough we can suppose that @.(0) > 0 but

_ 1
te(z) < —;—a (x-v)4 for every x € 0B,.
Thus,
Us VU =1u and us Au=1u. on 0B,.

Now, since both u. and u are both minimizers in B,, we get
Falte, By) < Fa(ue Au, By) and Falu, By) < Fa(ue Vu, By).
On the other hand, we have
Falte, By) + Fp(u, By) = Fa(tue Au, By) + Fa(ue V u, B,),
which gives that
Fa(te, By) = Fa(ue Au, By) and Falu, By) = Fa(ue Vu, B,).

Now, we define the function

_ u. in R\ B,,
Ve = - .
: us ANu in B,

and we set v, (z) = U:(z + (R — €)v). Thus, we get that Fj(v,, R?) = Fp(u,, R?), but
v # u,, which is a contradiction with Lemma The case when ¢ touches u from above
is analogous and follows by Lemma [2.16 OJ

7.2. Partial Harnack inequality. In this section we prove a weak version of Theorem
We will assume that u satisfies the conditions (a), (b) and (c) of Theorem which

means, in particular, that u is e-flat in some direction v:
(x-v—e)y <u(z)<(z-v+e)y forevery x€ Bj.

Then, we will prove that the flatness of u is improved in some smaller ball B,. Precisely,
we will show that

(z-v—(1- c)e)+ <u(z) < (z-v+(1—c)e), forevery z€ By, (7.3)

_l’_

for some dimensional constant ¢ € (0,1). There are two main differences wirth respect to
Theorem [T.4}

e The flatness might not really be improved in the sense of Theorem [7.4] and Fig. [7.1
Indeed, (|7.3]) only implies that the rescaled function

1
up: By = R, up(z) = —u(rz),
T

is (1 — )£ - flat in B;. Since the constants ¢ and r are small, we might have

€
1—c)- >¢,
(1-c)= >

which means that u, might not be flatter than u.

e The flatness direction does not changes (v’ = v). Notice that, without changing the
direction, the improvement of flatness (in the sense of Theorem should not hold.
In fact, the function u(z) = z} is e-flat in the direction v (whenever |V — e4] = €),
but for any r > 0, u,(z) = u(z) = z}, thus u, cannot be more than e-flat in the
direction v (the improvement is only possible if we are allowed to replace v by a
vector, which is closer to eg).

The main result of this section is the following.
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Theorem 7.7 (Partial Boundary Harnack). There are dimensional constants &€ > 0 and
c € (0,1) such that for every viscosity solution u of (7.2)) in By C R? such that 0 € Q,, we
have the following property:
If there are two real numbers ag < by such that
lbp — ap| < € and (xg+ao)+ <u(x) < (rq+bo)+ on By,
then there are real numbers aq and by such that ag < a1 < by < by,
b1 —a1| < (1 —¢)|ag — bo| and (rg+a1)y <u(x) < (zg+b1)y on By,

Proof. Since 0 € Q, we have that ag > —1/10. We consider two cases:

(1) Suppose that |ag| < 1/10. Then applying Lemma we have the claim.
(2) Suppose that ag > 1/10. Then w is harmonic in By N {zg > —1/10} (and so, in the
ball Bi/,) and the claim follows by Lemma

We next prove the two main results: Lemma [7.9] and Lemma [7.10] Section [7.2.]] is
dedicated to the proof of Lemma [7.9] which is a consequence of the classical Harnack
inequality for harmonic functions stated in Lemma [7.8] Section is dedicated to the
boundary version of the Harnack inequality (Lemma , which is due to De Silva [23].

7.2.1. Interior Harnack inequality.

Lemma 7.8 (Harnack inequality). There is a dimensional constant Cy such that for every
h : Bo,(z0) — R, a non-negative harmonic function in the ball Ba,(x¢) C R, the following
(Harnack) inequality does hold

max h < Cy min h. 7.4
Br(z0) HBT(xo) ( )

In particular, we have

h(zg) < Cy min h.
(zo) < w pmin,

Proof. The proof is an immediate consequence of the mean-value property. O

Lemma 7.9 (Improvement of flatness at fixed scale). Let Cy > 1 be the dimensional
constant from the Harnack inequality (7.4) and let cyy := (QCH)_I. Suppose that u : By, —
R is a harmonic function for which there are a constant € > 0 and a linear function
(:R* = R such that
lx) <wulx) <Ll(z)+e for every x € Bo,.
Then at least one of the following does hold :
(i) U(z) + cye <u(x) <Ll(z)+e forevery =z € By;

(ii) U(x) <wu(z) <l(x)+ (1 —cy)e for every z € B,.

Proof. We consider two cases.

Case 1. Suppose that u(0) > £(0) + ¢/2. Then the function h := u — ¢ is harmonic and
non-negative in By,. Then, by the Harnack inequality ([7.4]), we have

€
— < < 1
5 < h(0) < Oy IIllglrIl h,

which means that c

U—EZE in Br,

and so (i) holds.

Case 2. Suppose that u(0) < £(0) 4+ /2. Then the function h := £ 4+ ¢ — u is harmonic and
non-negative in By,. Then, by the Harnack inequality (7.4)), we have

€
— < < i
5 < h(0) < Cy 1%171(1 h,
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which means that

€ .
€+€—u2ﬂ in B,

and so (ii) holds. O

7.2.2. Partial Harnack inequality at the free boundary.

Lemma 7.10 (Improving the flatness at fixed scale; De Silva [23]). There are dimensional
constants € > 0 and ¢ € (0,1), for which the following does hold.

Suppose that u : By — R is a continuous nonnegative function and a viscosity solution
of in B; C R%. Then, we have the following property:

If there are real constants € and o, 0 < e <& and |o| < /10, such that

(xg+0)+ <u(z) < (xg+o+e)t for every  x € By,

then at least one of the following does hold :
(i) (xa+o+ce)y Su(x) < (zg+0+¢e)y forevery x € Bip ;

(i) (g +0)y <u(z) < (vqg+0+ (1 —cle)y  for every x € Bipy.
Proof. We set
&

5
and consider the function w : R — R,

defined as: Aw > 0 in Bsy(z) \ Bijol(Z)
w(m) =1 for z € Bl/go(«’i), w=1 in Bip(T)
w(z) =0 for x € R4 \ 33/4(@,
- o —d
w) =c(jo - - (¢4) ™),

for every x € B3/, (7) \El/zo(a?).

—20% — (4/3)"

ol

T = and

w=0 on 0B;,(%)

The set, where the function w is not
constantly vanishing, is precisely the ball
Bs,(Z) on the figure on the right.
Moreover, w has the following properties on
the annulus  Bs/,(Z) \ Bijy(Z):

(wl) Aw(z) = 2de|z — 7|~ > 2dz (45) "2 > 0.

(w2) Oy w > Cp > 0 on the half-space {xq < 1/10}. Here, Cy > 0 is an (explicit) constant
depending only on the dimension.

Following the notation from [23] we set p(z) = x4 + 0. Similarly to what we did in the
proof of Lemma we consider two cases.

Case 1. Suppose that w(z) > p(z) + ¢/2.
Since the function u — p is harmonic and non-negative in the ball Bi/,(Z), we can apply
the Harnack inequality . Thus, setting cy = (207.[)_1 we get
u(z) —p(x) > cye in Bijp(T).
We now consider the family of functions

ve(x) = p(x) + eyew(x) — eye + ext.
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We will prove that for every ¢ € [0,1), we have u(z) < v;(z) in B;. We notice that, for
t < 1 the function v; has the following properties:

(v1) v(x) < p(z) < wu(z) on By \ Bs,(T) (since the support of w is precisely Bs, (7)),
(v2) vy(x) < u(z) in By, (Z) (by the choice of the constant cy),
(v3) Avy(z) > 0 on the blue annulus Bs,(Z) \ Bij,(Z) (follows from (wl)),

(v4) [Vo(x) > Oz, ve(x) > 1+ ceCy > 1 on (33/4(56) \El/%(i")) N{xq < 1/10}.

Suppose (by absurd) that, for some ¢ € [0,1), the function u — v has local minimum in
B; in a point z € By. By (v3) and the fact that u is a viscosity solution we have that

e d Qi (33/4(33) \EI/QO@)). By (v4) we have that = ¢ 89, N (33/4(33) \E/Qo(gz)) and
¢ (B1\ Q)N (33/4@) \§1/20(:f)). Thus we get = ¢ Bz, (Z) \ Bipy(Z). By (v1) and (v2)
we conclude that

min {u(z) — v(z)} >0 whenever t <1
z€B

Thus, we obtain that u > v, on By, i.e.
u(z) > p(x) + eyew(zr) on Bj.
Now since w is strictly positive on the ball Bi,,(Z) we get that
u(z) > p(z) +cge on  Bipy,
which proves that the property (i) holds.

Case 2. Suppose that w(Z) < p(Z) + ¢/2.

Since the function p+ ¢ —u is harmonic and non-negative in the ball B1/,,(Z), we can apply
the Harnack inequality, thus obtaining that for a dimensional constant cy > 0 we have

pte—u>cye in Bip(T).

We now consider the family of functions

ve(x) = p(x) + € — eyew(x) + cye — ent,
and, reasoning as in the previous case, we get that

ve(x)T > u(x) for every  t€[0,1).
In particular, since w is strictly positive on the ball B, (7), we get that

u(z) < (p(z) + (1 —ca)e) . on  Bip(2),
which concludes the proof. g

7.3. Convergence of flat solutions. In this subsection we prove the compactness result
that we will need in the proof of Theorem The proof is entirely based on Theorem
from which we know that any (continuous, nonnegative) viscosity solution u : By — R of
satisfies the following condition.

Condition 7.11 (Partial improvement of flatness). There are constants € > 0 and ¢ € (0,1)
such that the following holds. If xog € Qy,, By(x9) C By and ag < by are such that

|bp — ap| < 1€ and (xg+ao)+ <u(x) < (rqg+bo)y on Bp(xo),
then there are real numbers ay and by such that ag < a1 < by < by,

|b1 — a1] < (1 —¢)|ag — bo| and (wg+a1)+ <u(x) < (rg+b1)+ on  Brp(wo).
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Remark 7.12. The non-negative function v : By — R satisfies Condition (with the
constants ¢ and &), if and only if, the following holds. If zy € Q,, B,(z9) C By and ag < by
are such that

lbp — ap| < 1€ and (xg+ao)+ <u(x) < (rqg+by)y on Br(zg),
then there are real numbers aq and by such that ag < a1 < by < by,

|b1 —a1| < (1 —¢)|ag — bo| and (xa+a1)y <u(x) < (zg+b1)r on  Bip(zo).

Remark 7.13. We notice that if u : By — R is a continuous non-negative function on Bj,
then, for any a < b and any set F C Bj, the inequality

(x4 +a)y <u(r) < (zg+b)y on E,
is equivalent to B
zgt+a<u(x)<zg+b on ENQ,,
Thus, an equivalent way to state Condition |7.11}is the following. The nonnegative function
u: By — R satisfies Condition [7.11} if and only if, the following holds.
If g € Qu, By(x9) C By and ag < by are such that
|bo — ap| < ré and rg+ap <u(x) <zqg+by on Bp(zo)NQy,
then there are real numbers a; and by such that ag < a1 < b1 < by,
|b1 —a1] < (1 —¢)|ag — bo and 2g+ar <u(z) <xzg+b on Bry(ze) N

The constants £ and ¢ are the same as in Condition [[.11]

Lemma 7.14. Suppose that the continuous non-negative function u : By — R satisfies
Condition with constants ¢ and €. Suppose that 0 € Q, and that there are two real
numbers ag < bg such that
g

5 and rg+ap <u(z) <zq+by on BiNQy.

€= |b0 — a[)‘ <
Then, setting
u(z) — xq

u(x) = ——— for every x € QN By,
5

for every xg € Bij,, we have the uniform estimate
ae) — aeo)| < Cle— ol for every @ € 0y 11 (Bu(ao) \ Beyo(ao),

where C' is a numerical constant and ~ depends only on c.

Proof. Let n > 0 be such that

—(1/20 < - < —(Y20)".
L) < S < L)
1 .
Let r; = 5(1/20)]. Then, we have
e <érj for every ji=0,1,...,n.

Thus, for every zo € B, we can apply the (partial) improvement of flatness in B, (xq), for
every 7 =0,1,...,n. Thus, we get that there are

ap<ap < <a; < <Lap Kby <<y << b < by
such that
bj — a5l < (1—cf|lag —bo|  and  (zq+aj)4 <u(z) < (zg+bj)+ on  By(zo),
which implies that

rq+aj; <u(x) <zqg+b; on By (x) N Qu,
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and so,
|(u(z) — 24) —aj| < (1 =c)le for z € By, (z0) N Q.
The triangular inequality implies that
|a(x) — u(zo)| < 2(1 — c)j for every z € By, (20) N Qy,
which gives the claim by choosing j such that
it < |z —zo| <7y,
and setting v to be such that (1/20)7 =1-c O

Lemma 7.15 (Compactness for flat sequences). Let € > 0 and ¢ € (0,1) be fized constants.
Suppose that up : B1 — R is a sequence of continuous non-negative functions such that

(a) uy satisfies Condition in By with constants € and c.
(b) uy is eg-flat in By, that is,

Tqg—Ep < uk(x) <xzg+er m B ﬂﬁuk-
(c) lim g, =0.
k—o0
Then there is a Hélder continuous function w: By N {xq > 0} — R and a subsequence of

() = ug(z) — g

, uk:Bl/2 ﬂﬁuk—ﬂR,
€k

that we still denote by uy, such that the following claims do hold.

(i) For every d > 0, uy converges uniformly to u on the set By, N {xq > 0},
(i) The sequence of graphs

Ty = {(z,uk(z)) : 2 €Qy NBip} C RI*L
converges in the Hausdorff distance (in R4TY) to the graph
= {(x,ﬂ(x)) :x € By N {zq > 0}}
Proof. We first prove (i). For every y € Bij, N Q,, we have that
Tq— ek S up(r) <wg+ep forevery x € Bip(y) NQy,.
Thus, by Lemma [7.14] we have that uy, satisfies
|tk (z) — ax(y)| < Clz —y|? for every € Biy(y) Ny, such that |z—y|> %k,
which, since y is arbitrary, gives
ag(z) — ar(y)] < Clz —y|” for every x,y € Bij, Ny, such that |z —y|> %k
Since, for e < §, we have that {zq > 6} N B; C Q,, N By, we get that the sequence
Uy 2 {xq > 6} N By, — R satisfies :
e iy, is equi-bounded on {z4 > d} N By,

(xqg —ex) — x4 < ug(z) — x4 < (xq+ex) — x4 —1;

€k €k €k

1=

e 7 satisfies

Y

os¢ (ks Agrr(z0) N{za > 6} N Bijy) <2077 for every r> h
5

where, for any set E C ,,,, we define:
osc (tuy; E) := sup ay, — inf ug,
E E

and, for every 0 <r < R, Ap,(zo) is the annulus
AR (w0) = Br(wo) \ Br(z0).
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Thus, by the Ascoli-Arzela Theorem, there is a subsequence converging uniformly on the
set {x4 > d} N By, to a Holder continuous function

U {SUdZé}ﬁBl/z—) [—1,1],
satisfying
lu(z) —u(y)| < Clx —y|” for every z,y € By, N{xg > 6}.

The above argument does not depend on § > 0. Thus, the function @ can be defined on
the entire half-ball {z4 > 0} N B1/,. Moreover, the constants C' and v do not depend on the
choice of § > 0. This implies that we can extend u to a Holder continuous function

a : {xqg >0} N By — [—1,1].
still satisfying the uniform continuity estimate
()~ @) < Clo—yP forevery  a,y € By {aq = 0},

We now prove (ii). Suppose that & = (z,u(x)) € T'. For every § > 0, there is a point
y € By, N{xq > 9/2} such that |z —y[ < 6. (Notice that, if z € Bij N {zgq > 9/2}, then we
can simply take y = x.) Then, setting g = (y, u(y)), we have the estimate

|7 =g = | —y* + |a(z) — a(y)|* < 6% + %6
On the other hand, for every k such that ¢ < §, we have
dist (g, Tx) < la(y) — ar(u)| < |a — gl Lo (B, s {za>o/2)-
Thus, we finally obtain the estimate
. ~ 1 ~ ~
dlSt(JZ, Fk) < ((52 + 02527) /2 + ||U — uk|’L°°(B1/zﬂ{:vd>6/2})‘

Let now 7, = (l‘k,ﬂk(l‘k)) € I'y. Let k be such that ex/z < 9/2. Let yx, € {zq > 0} N By, be
such that 92 < |z — yi| < 20 and let g5 = (yk,&k(yk)) Then, we have

& — Gl* = ok — ynl® + | (2r) — Gr(yp)|? < 46° + 4C26%.
Reasoning as above, we get
dist (T4, T) < 2(62 + C%6%) " + (1@ — Gl e (3, a5
Now, since § is arbitrary and 4y, converges to @ uniformly on {z4 > 9/2} N B, we get that
kli)rrgo disty (T, T) = 0. O
7.4. Improvement of flatness. Proof of Theorem In this subsection, we prove

Theorem Since, we will reason by contradiction, we will first study the limits of the
sequences of (flat) viscosity solutions to ([7.2) in Bj.

Lemma 7.16 (The linearized problem). Suppose that uy : By — R is a sequence of con-
tinuous non-negative functions such that:

(a) for every k, uy is a viscosity solution of
Aup =0 in Q, NBy, |Vug| =1 on 0Qy, N B;. (7.5)
(b) for every k, uy is ex-flat in By in the sense that
(g —ep)+ <up(x) < (zg+ep)+ n B;.

(c) lim g, =0.
k—o00
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Then, up to extracting a subsequence, the sequence of functions

_ o ug(w) — g
g () = T

converges (in the sense of Lemma (i) and (ii)) to a Holder continuous function
ﬂ:B1/2ﬂ{xd20}—>|R.

: Bl/Q ﬂﬁuk — R,

Moreover, we have that
(i) @ is a viscosity solution to
i
Ai=0 in Biyn{zg>0}, ——=0 on By {zg=0}, (7.6)
a’L'd
in the sense that
e i is harmonic in Bip N {zq > 0},
e If P is a polynomial touching @ from below (above) in a point xg € Bij,N{xq = 0},

oP oP
then — < —_— > .
en i (z9) <0 (3$d (z9) > O>
(it) @ € C*(Bij, N{xq > 0}) and is a classical solution of (7.6).

Proof. The existence of the limit function @ follows by Lemma [7.15]

We first prove (i). Suppose that P is a polynomial touching @ (strictly) from below in a
point xg € B, N {rg > 0}. Then there exists a sequence of points x, € Q,, such that P
touches 4y from below in z; and zp — zg as k — co. We consider two cases:

(1) Suppose that g € {x4 > 0}. Then there is some § > 0 such that zj € {xg > J},
for every k large enough. Thus, x; € € for k large enough and so, since 4 is
harmonic in Qk, AP(zy) > 0. Passing to the limit as £ — oo we get P(zg) > 0.

(2) Suppose that zg € {zg = 0}. We suppose without loss of generality that zo = 0.
We consider the family of polynomials

1
P.(z) = P(z) + gxz — exg.

In a sufficiently small neighborhood of zero, we have that Pjs still touches @ (strictly)
from below in 0. Moreover,

P 0) = 8i
drg -~ Oxg

AP >0 in a neighborhood of zero, (0) —e.
P
O0xg
e > 0 be fixed. Consider the sequence of points xj € ﬁuk such that P. touches 1y
from below in x and xp — xo as k — oo. Since AP.(xx) > 0 and ay is harmonic
in ,, we have that necessarily x;, € 0€);. By the definition of 4 = "’“57;” we get

Thus it is sufficient to show that for every ¢ > 0, we have

(0) < 0. Let now

that the polynomial Q(x) = e P.(x) + x4 touches uy from below in x. Since wuy is
a viscosity solution of (7.5]), we get that

oP. 2

8xd(xk)

0P 2 0P
12 [9Qi)P > 1+ =) =1+ 265 " (wi) + €}

£

Ld

Thus, we have (0) <0, which concludes the proof after letting ¢ — 1.

We now prove (ii). We write R? 3 = (2, 74) with 2’ € R%~! and 24 € R. We consider
the function w : R — R defined by @ and its reflexion:

w(z', zq) = w(x! xq), if x4 >0,
- (e, —zq), if xq <O0.
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We will prove that w is harmonic on R?%. Suppose that P is a polynomial touching w strictly
from below in a point xg € {z4 = 0}. Since w is harmonic on {z4 # 0} it is sufficient to
prove that AP(zg) < 0. We first notice that since w(z’,z4) = w(z', —x4) then also the
polynomial P(x’, —z4) touches w strictly from below in xy and, as a consequence, so does
the polynomial

Pz, xq) + P(2', —xq)

Q2 zq) = 5 :

which satisfies

oQ

AQ=AP and — =0 on {zg=0}.

O0xy

Consider the polynomial
Qe(z) =Q(z) +ex-eqy.

Then . touches w from below in a point x. and we have that z. — zg as ¢ — 0. We
notice that necessarily x. € {x4 > 0}. Moreover, we can rule out the case z. € {zg = 0}
since by the hypothesis on % we have that in this case we should have

S 9Qe (22) Q

~ Ozq " Ouq
which is impossible. Thus z. € {z4 > 0} and since @ is harmonic in {z4 > 0} we get that
0> AQ:(ze) = AQ(x:).
Passing to the limit as ¢ — 0, we obtain that AQ(xo) < 0, which concludes the proof. [

0

(xe) + e =¢,

Lemma 7.17 (First and second order estimates for harmonic functions). Suppose that
h: Br — R is a bounded harmonic function in Br. Then

Cy
VRl Lo (Br ) < thHLW(BR) , (7.7)
and
Cq
‘h(x) —h(0) —z - Vh(O)‘ < ﬁ|x|2”hHL°°(BR) for every T € Bry, , (7.8)
where Cy is a dimensional constant.

Proof. Let g € Bsry,. Since h is harmonic in Bry, (7o), we have that also ;h is harmonic
in the same ball Bry,(70), we have

44 44
Oih(x0) = / Oih(x) dx = / div X dx,
’ wiR Jp, (o) walR? /B, ,(xo)
where X = (0,...,h,...,0) is the vector with the only non-zero component being the ith
one, which is precisely h. Now, the divergence theorem gives

4d j/ 44
gyt A / vi()h(z) dH Y (),
wq R4 9Br4(x0) wq R OBr/4(w0)

which implies that

Bih(x0) =

4d
”8ih||L0°(B3R/4) < EHhHLOO(BR)’

and so, we obtain ([7.7). Now, by the same argument, we get that

16d?
10i 12| oe (Bryo) < —pa Il o< (B)-

Let now x € Bry, and set

f(t) = h(xt) for every ¢ € 0,1].
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Then, we have

1
h(z) = h(0) =z - VA(0) = f(1) — f(0) — f'(0) = /0 (1—1)f"(t)dt.

Since
d
F'(t) =z Vhxt) + > wu;Oh(st),
i,j=1
and
d ¢
x - Vh(xt) = Z / ziz;0ih(sT) ds,
ij=170
we get precisely ([7.8]). d

Proof of Theorem [T.4. We fix Cy and ry to be dimensional constant which will be chosen
later. In order to prove that g exists we reason by contradiction. Let &, — 0 and let
un : B1 — R be a sequence of continuous functions satisfying the conditions (a), (b) and
(c) with &,,. Without loss of generality, we may suppose that, for any n € N, u, is &, flat in
Bj in the same direction e4. Finally, we assume by contradiction that, there are no n € N
and a unit vector v satisfying the following conditions:

(i) v — ed| < Coe;

(ii) the function (un)r, : B1 — R is oe-flat in By, in the direction v.
By Lemma [7.15] we can suppose that the sequence

_Un (.CI?) — 4

Up(x) = — for x€ BiNQ,,,
n

converges (in the sense of Lemma (i) and (ii)) in Bis, to a smooth (C°°(Byy,)) function
U : Bl/2 N{zqg >0} — [—1,1]
that satisfies (7.6). We notice that

a(0) =0 and ggil(o)zo.

We set

i
Vi = ag (0), forevery i=1,...,d—1; V= (v1,...,v4-1) € R,
1

and we re-write ([7.8]) as
Vol —4Cy|z)? < a(z) < V-2l 4 40|z for every x = (2',2q) € Bijy N {xg > 0}.

We now fix r < 1/4. Since the graph I, of 4,, converges in the Hausdorff distance to the
graph I" of @ (see Lemma (ii)), we have that for n large enough

Voa —8Cr? < tp(r) <V -2’ + 8C,r? for every r=(2',2q) € B,NQy,. (7.9)
Using the definition of u, we can rewrite as
zq+ent -1 — .80y <up(z) < xg+ ent -2’ +€,8Cr?, (7.10)
which holds for every z = (2/,24) € B, N Qy,,.

We define the new flatness direction v as follows:

1
vi= —————(gy/,1) € R,

V1+e2|v|?
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By definition, we have that |v| = 1. We next estimate the distance between v and e4. Since
both v and e4 are unit vectors, we have

1
2
v—eygl“=21—-v-eg) =21 —m—— | .
| d| ( d) ( CEANE a%]y’P)

Notice that the following elementary inequality holds:

1
1 — — <2X for ever —lh <X <1/f, 7.11
= < vy / (7.11)

In order to apply this inequality to X = 2[v/|?, we first check that £2|v/|> < 1/2. In fact,
by the definition of v/ and (7.7)), we have the estimate || < 2Cy. Thus, for n large enough,
we have that £2|/|? < 1/2 and so, we can estimate

v —eal® < 2" Pep < 8CFey,
which proves that v satisfies (i), once we choose Cy = 4Cy.
Using again the inequality and the fact that
0<u,<ep+r in B,

which follows by the non-negativity and the e,-flatness of u,, we get that

2_2 . Un .
Uy, — 8CTes (1 +epn) < e < u, in B,.
Thus, dividing (7.10) by /1 + €2|V/|?, we get that
T-v— Cd(si(r +en)+ 5nr2) < up(z) <z - v+ Cyenr?,

for every z = (2/,24) € B, N Qy,, Oy being a dimensional constant. Choosing ry small
enough and gy < rg, we get that

TV —enroo < up(z) <z - v+ eproo for every r=(2,24) € By Ny,

and so the vector v satisfies (i) and (ii), in contradiction with the initial assumption. [
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8. REGULARITY OF THE FLAT FREE BOUNDARIES

This section is dedicated to the regularity of the
flat free boundaries. In particular, we will show
how the improvement of flatness (proved in previ-
ous section) implies the C1® regularity of the free
boundary. The results of this section are based on
classical arguments and are well-known to the spe-
cialists in the field. The main result of this section
is the following.

Td

Theorem 8.1 (e-regularity for viscosity solutions).
There are dimensional constants € >0 and § > 0
such that the following does hold:

If u: By — R satisfies the following conditions:

(a) u is a nonnegative continuous function and a viscosity solution of (7.1) in Bi;
(b) w is e-flat in By, that is,

(xg—¢e)y <ulx) < (zqg+¢)+ for every  x € By.
Then, there is o > 0 such that the free boundary 0Q, is CY* regular in the cylinder
Bj x (—0,0) in the following sense:
There is a function g : B§ — (—0,0) such that:
(i) g is CY® regular in the (d — 1)-dimensional ball By C R4~1;
(ii) the set 0, N (B(’g x (=4, 5)) is the supergraph of g, that is,

QN (Bs x (=6,8)) = {z = (2/,24) € By x (=8,0) : zq> g(z)}.
Moreover, g (and so, 98,) is CL regular, for any o € (0,1/2).

Proof. The existence of a function g : B§ C R, which is C1® regular, for some a > 0,
for which (ii) holds, is a consequence of:

e Theorem in which we show that the improvement of flatness (Condition
holds for viscosity solutions (with constants o = Cyk);

e Lemma [8.4] in which we show that the improvement of flatness implies the unique-
ness of the blow-up limit and the decay of the blow-up sequence:

U g — Uagllpoo(y) < Car? for every r <1/ andevery z¢€ By, (8.1)

where v is such that k7 = o;

e Proposition in which we show that if holds, then 0%, is C1® regular in

By, where oo = 17

14~
In particular, we notice that by choosing x small enough, we can take v as close to 1 (and
so, « as close to 1/2) as we want. O

As a consequence, we obtain the regularity of the free boundary for minimizers of Fju.

Corollary 8.2 (Regularity of Reg(09y)). Let D be a bounded open set in R% and let
u: D — R be a (nonnegative) minimizer of Fp in D. Then, every reqular point xo €
Reg(0Q,) C D has a neighborhood U such that 0Q, NU is a C1 regular manifold, for
every a € (0,1/2).

Proof. Notice that, up to replacing u(z) by v(z) = A~"?u(z), we may assume that A = 1.
By the definition of Reg(99,) (see Section [6.4), there is a sequence 7, — 0 such that the
blow-up sequence u,., ,,, converges uniformly (in Bj) to a function ug : R? — R of the form

uo(e) = (z-v)y
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for some unit vector v € R?. Then, by Proposition for n large enough, we have
||urn71'0 - UOHLOO(Bl) < g,
Uppzo >0 In {z-v>c} and Uppao =0 In {z-v<—c}
This means that u,, ,, is 2e-flat in By, that is,
(z-v— 26)Jr < Uy () < (2 v+ 2€)+ for every x € Bj.
Now, taking ¢ small enough and applying Theorem Proposition [7.1] and Theorem [8.1

we get the claim. (|

This section is organized as follows.

In Section we prove that the improvement of flatness (Condition implies the
uniqueness of the blow-up limit and gives a (polynomial) rate of convergence of the blow-
ups in L>°(By).

In Section [8.2] we prove that the uniqueness of the blow-up limit and the polynomial
rate of convergence of the blow-up sequence imply the regularity of the free boundary. We
notice that the he uniqueness of the blow-up limit and the rate of convergence of the blow-
up sequence can be obtained also by different arguments, for instance, via an epiperimetric
inequality. In fact, the result of this section can be used also in combination with Theorem
12.1] which is an alternative way to the regularity of the free boundary.

8.1. Improvement of flatness, uniqueness of the blow-up limit and rate of con-
vergence of the blow-up sequence.

Condition 8.3 (Improvement of flatness). Let u: By — R be a nonnegative function.
Suppose that there are constants k € (0,1), o € (0,1), Cy > 0 and g > 0 such that:

For every xg € 0y, N By, r < dist(zo,0B1) and € € (0,¢] satisfying
(x-v—e)y <Upgy <(x-v+e); in B,

there is U € 0By such that

| —v| < Coe and (x U — 05)+ < U zg < (m . D—f—ae) in Bj.

+

Lemma 8.4 (Uniqueness of the blow-up limit). Suppose that u : B; — R is a continuous
non-negative function satisfying Condition 8.3 Then, there are constant 1 > 0, v > 0 and
Cy > 0 (depending on eq, k, o and Cy) such that if

(x-v—e)y <u<(r-v+4+e)y in By,
for some v € OBy, then for every xo € 0y N Biy, there is a unique unit vector
Vgy € 0By C R?
such that
[Ur o — gl oo (By) < Crr” for every r<1/,
where the function uy, is defined as
Ugo () = (Vo - T) 4+ for every z e RY.
Precisely, we can take v, €1 and C1 as follows:
€0
4
Proof. Let €1 = 5. Notice that if u is e1-flat in By, then

g1 =

1
, Kl =0 and Ci = (2/»4)7 <1 + o + > €o.

l1—-0 &k

Uijy 4y 18 €0-flat in By,
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for every xg € 9y, N Bi,.
Let zg € 0Qy, N Biy, be fixed,

Ty = 5 and Uy 1= Ur, z0-
By the improvement of flatness, there is a sequence of unit vectors v, € 9B; such that
(x-un—soo”)+ <u, < (m-un+500”)+ in By,
and
|V — Unt1| < Coepo™ for every n € N.
In particular, for every 1 < n < m, we have
m—1 m—1 [e's) Che
k k _ 0 n
lvn — vm| < Z Ve — vpa] < Z Coeo” < EC()ZO' =17
k=n k=n k=n
This implies that there is a vector v, € 0B; such that
oo
. Coeo
Uoo:nh_g)loun and |Vn—Voo|§Z|Vk—Vk+1|§ o "

k=n

Thus,

‘x-uoo— (:B-Vn:tsoa”” < (1—1— 1€OU> ggo” for every T € By,

which implies that

> g0 for every T € Bj.
1—0

(@ o) s — ()] < <1+

Now, we set
uo(w) = (2 vao)1-
Let 7 < 1/2 be arbitrary and let n € N be such that
1 n+1
Tpy1 = =Kk <r < k" =1,
n+1 2 =9 n
Then, there is p € (k, 1] such that r = pry,. Since u,, 5, satisfies

(x Uy — z’;‘gan)+ < Uy o (@) < (a: “Up + aoa")+ in By,

we get that u, ;o = Upr, 2, satisfies

€0 €0 .
(33 Uy — —U”)+ < Up gy < (x cup + —0”)+ in By,
P p
which implies that
€0 €0
|tr,, 20 — Ur,:coHLoo(Bl) < ;Un < ;075

and finally gives that

Co 1

Since kY = o, we get that

from which, we deduce

[wr 2o — “OHLOO(Bl)

IN
—
=
=
SN—
2
7N\
—
+
—_
|
+
\
~_
Q)
[en}
3
=

which concludes the proof. O
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8.2. Regularity of the one-phase free boundaries.

Condition 8.5 (Uniqueness of the blow-up limit and rate of convergence of the blow-up
sequence). The function u : By — R satisfies this condition if it is non-negative and if there
are constants C1 > 0 and v > 0 such that, for every xo € 9y N By, there is a unique
function ug, : By — R such that:

(i) there is vy, € 0By such that uy,(v) = (v, - )4+ for every x € By;

(1) ||up oo — ux0||Loo(Bl) < C1r7Y for every r < 1/2.
Proposition 8.6 (The Condition implies the regularity of 9€,). Let u: By — R be a
non-negative function such that:
(a) w is Lipschitz continuous on By and L = ||Vul[pee(p,);
(b) u is non-degenerate in the sense that there is a constant n > 0 such that

if yo € QNAByy,, then ||ullps(p, () >nr, for every e (0,1/2).

(¢) u satisfies Condition [8.5 for some v > 0 and Cy > 0.
Then, there is p > 0 such that 0€), is a O manifold in B,, where o : 1+v

Precisely, there are p > 0 and a CY“-regular function g : B; (—p, p) such that, up to a
rotation of the coordinate system of R%, we have

(By x (=p.p)) NQu = {(a',t) € B, x (=p,p) : ’) <t}
(B, x (=p,p)) \Qu = {(@',1) € B’ X (=p, p) a') > t},
(B;J X (—=p,p)) NN, = {(@,t) € B’ X (=p,p) =t}.

Lemma 8.7 (Flatness of the free boundary 0€2,). Let u : By — R be a non-negative
function such that

(a) u satisfies the Condition with constants C and .
(b) w is non-degenerate, that is, there is a constant n > 0 such that

if Yo € Qu NOBijy, then ||ullpec(p,(yo)) =1, for every 1€ (0,1/2).
Then, there are constants C >0 and ro > 0 such that, for every xg € 08, N Bij, we have
QuorNB1D{z € By : w1y, >Cr'} and Qo N{z € By : z-vyy < —Cr7} =10, (8.2)
for every r € (0,rp), where Qg » = {tg, » > 0}.
Proof. In order to prove the first part of , we notice that
||u7“,:1:o - uxo”LOO(Bl) < Crr?

implies that
Up 70 (X) > (x Vg — Clr7)+ for every x € Bj.

This gives the first inclusion of (8.2)) for any constant C' > Cf.
In order to prove the second inclusion in (8.2]), we suppose that there is a point y € B;
such that

Up 20 (y) >0 and Y- Vg < —Cr7.

This implies that § := /2 € By, is such that
1
U2r 20 (7) > 0 and Y- Vgy < —§C'T'Y.
The non-degeneracy of u now implies that
1
HUQTJ;OHLOO(BP(Q)) >np where pi= 56’1"7.
Notice that u,, = 0 on B,(y). On the other hand, choosing 79 such that
Cr) <1,
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we get that p < 1/2 and so B,(§) C B;. Thus, we have that
n
2O < lluarwo = Uag |l o= (sy) < C1(20)7,
which is a contradiction, if we choose
2
C 2 7017
n

which concludes the proof by taking
C = (1+2/n)01 and Tozinf{I/Q,C_’y}. O

Lemma 8.8 (Oscillation of v). Let u: By — R be a Lipschitz continuous function and let
L = ||[Vul|peo(p,)- Suppose that u satisfies the Condition with the constants Cy and ~.
Then, there are constants R € (0,1), o and C such that

Vag — Vyo| < Clzo — yo|® for every 0,y € 00, N Bgr. (8.3)
Precisely, one can take

C=2Vd+2(L+20C), a:% and R —9-0Ct)
¥

Proof. Let o := ﬁ Let 20,90 € BRNOQ, and 7 := |xg — yo|' =% Then, for every = € By,
we have

|[T0 — yol _

1
(@) =t )] = [ + ) = (o + )] < 2O g
which gives that
[ Uyo,rHLOO(Bl) < Ll|zo — yol*.
On the other hand, Condition gives that
[tao,r = UaollLoe(my) < C1r7 and Jug e — Uy [l Lo () < Crr7.

We notice that in order to apply Condition we need that r <1/2 and R < 1/2. Thus, we
choose R such that (2R)'~® < 1/2.
Thus, by the triangular inequality and the fact that 7 = |z¢ — y|®, we obtain

[ty — tyo | oo (y) < (L +2C1) @0 — yo|®

The conclusion now follows by a general argument. Indeed, for any vi, vs € R?, we have

Wy 1/2 B 9 1/2
<d+2) vy vg\—</Bllvl x — vy - x| dm)

- </5’1 [(v1 - 2)4 — (v2 - a:)+!2dm> " I (/Bl (01 2)- — (vn- x)_dea;) "

1/2
) ( [ RS x>+|2dx) < 2 (01 - @)y — (02 - 2+ e 30,
1

which implies that
o1 —vo| < 2Vd+2]|(v1 - 2) 1 — (v2- 2) 4 || oo (3y)-
Applying the above estimate to v; = 1, and vy = v, we get (8.3). O

Proof of Proposition We first notice that, for every € > 0, there exists R > 0 such
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that, for zg € 02, N Br we have

{u >0 on CXH(z0,Va,) N Br(zo),

8.4
u=0 on C; (xo,Vz,) N Br(zo), (8.4)

where for a vector v € By, we denote by C (xg,v)
and C_ (xo, v) the cones

CE(xo,v) = {1‘ eR? . v (z—x0) > 5|x—$0|}.

Indeed, the flatness estimate (8.2) implies (8.4) by
taking R such that CR" < e, where C and + are the

constants from Lemma R

Let 19 be the normal vector at the origin 0 € 9€,. Without loss of generality we can
suppose that vy = e4. In particular, if ug(x) = (z - o)+ is the blow-up limit in zero, then

Quy = {uo > 0} = {(2/,24) ERT xR : 24 > 0}.
Let £ € (0,1) and R > 0 be as in (8.4) and set

p=R\V1-— g2 and ¢ =cR.
Let 2’ € B),. Then, by (8-4), we have: e the vertical section
8% .= {(«/,t) € Bg : u(2',t) > 0}
contains the segment
{(«';t) € BR : t>¢eR};
e the closed set
S :={(2',t) € Bg : u(z',t) =0}
contains the segment
{(2',t) € Bg : t < —€eR}.

This implies that the function
g(a) :=inf {t € R: u(2',T) > 0 for every T € (¢,p)},
is well defined for 2" € By,
Let 0 < p. Let zf, € B§ and let to := g(z). By definition, we have
zo = (2, t0) € 9y, N Bpg.

Moreover, by construction, we have

—elzg| < g(2p) < elxgl.
Thus,

o] < 0V/1+ 22 < V26

We next claim that, for 6 small enough, we have that
u>0 on C;;(xo, eq) N Br(xo) and u =0 on C,y (zo,eq) N Br(zo). (8.5)
Indeed, applying for the point xg, we have
u >0 on CH(xg,vs) N Br(zo) and u=0 on C; (zg,Vs,) N Br(xo),
so, it is sufficient to prove that

Céta(afo, ed) C Cgi(x(), on)-
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Let = € C5: (20, eq). Then,
Vgo - (& — ) = €q - (x — o) + (Vo — €q) - (z — )
> 2¢|x — o] — C(\f25)a\x — x9| > elz — x0|,
where:

e for the first inequality we used the definition of CQiE (zo,eq) and the following esti-
mate, which is a consequence of Lemma [8.8}

Vo — €a] < Clazo|® < C(V26)*;
e for the second in equality, we choose § such that C’(\/§ (5)a <e.
This proves (8.5). As a consequence, we obtain that the sections Sfr/ and Sg/ are segments:
(Bf x (—8,0)) N Q, = {(2',t) € Bj x (=6,6) : g(a) < t},
(B(’S X (—5,(5)) \ Q, = {(x/,t) € By x (—6,0) : g(z) > t},
and so, the free boundary is precisely the graph of g, that is,
(Bj x (—=0,0)) N 9y, = {(a/,t) € Bs x (=6,6) : g(z’) =t}.
We next prove that the function g : B — R is Lipschitz continuous on Bj. Also this
follows by the uniform cone condition (8.5)). Indeed, let
xllaszQ € Bz/$ y  I1 = (xllag(xll)) and g = (xl%g(xé))
Since z1 ¢ C (w2, €q), we have that
9(zh) — g(ay) = (21— x2) - eq < 2e|w1 — 2| < 2elw) — h| + 2eg(a)) — g(a3)].
Analogously, z2 & C5_ (71, €4) implies that
9(zh) — glay) < 2ela) — x| + 2elg(2]) — g(3)],
and the two estimates give
(1 - 2e) |g(a}) — g(25)] < 2elz) — a3,
and finally, choosing £ < 1/4, we get
lg()) = g(ah)] < delay — a5,
which concludes the proof of the Lipschitz continuity of g.

We will next show that g is differentiable. Indeed, let xj, € B5. Now, the improvement
of flatness at zp = (xf, g(x()) implies that

—Clz — zo|" < (2 — x0) - vy < Clz — 20'7,
for any « = (2,¢(z')) with 2’ € B§. For the sake of simplicity, we set v := vy, and
v=(V,vg) € R x R. Since
(x —@0) - vy = (&' — 2p) - V' + (9(2) — g(0)) va,
we get that

I//

C
g(a') = g(ap) — (2" —ap) - —| < —(1+&) "2’ — a7
val T vg
This implies that ¢ is differentiable at z(, and that Vg(z() = ’V’—;. Finally, the a-Holder
continuity of Vg : B§ — R follows by the v-Hélder continuity of the map = — v,.
Indeed, for any 2’,y" € B§, x = (2/,g(2')) and y = (3, g(y')) we have that
Vo =yl < Jo = yl? < (1+ €)%’ — g1,
which implies the Hélder continuity of all the components of the map Bj 3 « — v, € R?
and thus, of the gradient Vg. This concludes the proof of Proposition O
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9. THE WEISS MONOTONICITY FORMULA AND ITS CONSEQUENCES

This section is dedicated to the monotonicity formula for the boundary adjusted energy
introduced by Weiss in [52]. Precisely, for every A > 0 and every u € H'(B;) we define

W (u) ::/ |Vu2d:n—/ u? dH 4+ A|Q, N By,
By 9B
where we recall that Q, := {u > 0}. In particular, we have
Wo(u) = / |Vul|? dx — / u? dHI? and Wa(u) = Wo(u) + A|Q, N Byl
Bi 9B

This section is organized as follows:

In Section we prove several preliminary results for the Weiss’ boundary adjusted
energy, which hold for a general Sobolev function u defined on an open set D C R¢.

In particular, in Lemma[9.1] we prove that the function (o, r) — W (ug, ) is continuous
(where it is defined), where we recall that ug, , (z) := lu(zo+rz); in Lemma we compute
the derivative of W (ug, ) with respect to r and we prove that

0 d 1
5WA(uwo,T) = ;(WA(Z%,T) - WA(Umom)) + ;D(“wom)a

where z., , is the one-homogeneous extension defined in Lemma while the deviation
D(ug, ) is defined as

D(uIO,T) = / EX Vg, — Uzo,r‘Q de_la
0By

and measures at what extent the function is not one-homogeneous (see Lemma and
controls the oscillation of u from scale to scale, that is, the norm ||ug,,r — Uszg,s]| L2 oB1)-
Finally, in Proposition as a direct consequence of the Weiss formula (Lemma |9. , we
obtain that, if u is a (local) minimizer of F, in D, then the Weiss energy W(umo, ) is
monotone increasing in 7.

In Section we introduce the notion of stationary free boundary, that is, the free
boundary 92, N D of a function u : D — R, which is stationary for the functional F5 with
respect to internal perturbations with vector fields compactly supported in D. In Lemma
we compute the variation of the energy JFa with respect to a compactly supported
vector field € € C°(D;R?), which is simply defined as

0Fa(u, D)[E] Fa(ug, D),

= il
where u; : D — R is defined through the identity u(x + t&(x)) = u(z). We say that a
function is stationary (see Definition [9.7)), if the first variation is zero with respect to any
vector field, that is, if

0Fa(u,D)[E] =0 for every £ € C®(D;RY).

In Lemma we show that if v is a minimizer of F) in D, then it is stationary in D.
Then, in Lemma we prove that every stationary function satisfies an equipartition-of-
the-energy identity; in Lemma[0.9] we prove that the equipartition of the energy is sufficient
for the monotonicity of the Weiss energy. In particular, the monotonicity formula holds
for stationary free boundaries. The result of Section are fundamental for the proof of
Theorem but we do not need them in the proof of Theorem where we can use
directly Proposition

In Section we give the sufficient conditions for the homogeneity of the blow-up limits
of a function v : D — R (Lemma . We then apply this result to minimizers of Fy
(Proposition , but we will also use it in the context of Theorem This is why the
exposition contains the intermediate Lemma [9.11
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In Section we prove that the only one-homogeneous global solutions in dimension two
are the half-plane solutions (see Proposition [9.13)). In particular, this means that d* > 3.

In Section [9.5| we give another proof of the fact that the minimizers of F, are viscosity
solutions (Proposition|7.1)). Our main result is Proposition which applies to minimizers
of Fa, but also in the context of Theorem

Finally, in Section[0.6] we use the Weiss monotonicity formula to relate the energy density
lim W
TI_I>I(1) <u$0 5T )7

of a minimizer u of Fy, to the Lebesgue density

lim €2 N By (20)|

r—0 |BT|
of the set €, at every point of the free boundary zy € 99, (Lemma . Moreover, we
characterize the regular part of the free boundary Reg(0f2,) in terms of the energy and
the Lebesgue densities (Lemma . We will not use the results from this section in the
proofs of the theorems and but they remain an interesting application
of the monotonicity formula and the homogeneity of the blow-up limits and were used, for
instance, in the analysis of the vectorial free boundaries (see [41]).

)

9.1. The Weiss boundary adjusted energy. Let u € H'(B,.(xg)) be a given function
on the ball B,.(xg) C R? and consider the rescaling

1
Uy € H' (By) where w4 (2) = ;u(xo +ra).

We notice that the different terms of the energy Wy have the following scaling properties:

1 1
/ |Vt |? dv = —~ \Vul|? dx | / uz 4, dHT! = 1 / u? dH!
B 7" JB.(0) oB, r 9By (x0)

1
and [{tzy,r >0} N By| = T—dHu > 0} N By (w0)] -

Thus, we have

1 1 . A
WA(Umo,r):Td/B( )Vu|2dx—rd+1/aB( )u2d7-ld 1+T—d{{u>o}m3r(xo)|.
r(Z0 r{Z0

In particular, since u is a Sobolev function, the function (zg,r) — Wa (uy, ») is continuous,
where it is defined. We give the precise statement in the following lemma.

Lemma 9.1 (Continuity of the function (zg,7) — Wa(uz,r)). Let D be a bounded open
set in R? and let w € HY(D). Let § > 0 and let Ds be the set

Ds:={x e D : dist(z,0D) < §}.
Then, the function
®, : Ds x (0,0) > R, D, (z0,7) := Wa(Uag,r)s
18 continuous.

Proof. The continuity of the terms
1 1
(zo,r) — d/ \Vu|? da and (zo,r) — —d‘{u >0} N Br(xo)‘,
r By(z0) r
follows by the fact that if f : D — R is a function in L!(D), then the map

(zo,7) f(z) dx,
Br(z0)
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is continuous, which in turn follows by the dominated convergence theorem. In order to
prove the continuity of the function

1
(zo,r) — / u? d?—[d_l,
L JoB, (20)

we consider the sequence to (z,,r,) € Dsx (0,d) converging to a point (xg,79) € Dsx (0, 6).
We first notice that reasoning as above, we have

T (Vg 2o = (Vs rollzamy  and 1 g, rllz2gs) = Itz rollzz(e)

Next, we notice that wu,, ,, converges weakly in H Y(By) to Uzorg- 11 fact, for any ¢ €
C2°(By) we have

lim / Vo -Vug, ,, dv = lim Vo(z) - Vu(x, + rpz) de
By 1

n—oo n—oo B

~ lim ng(y_xn)-Vu(y)dy:/B Vo (L") - Vuly) dy

n—oo Bl ’]”‘n TO

= Vé - Vg, r, de.
B

Now, since the norm of u,, ,, converges to the norm of ugz, ,,, we get that
Uz v — Uz strongly in HY(B)).
By the trace inequality, we have that
Uz —> Uz strongly in L2(831),
which concludes the proof. O

Lemma 9.2 (Derivative of the Weiss’ energy). Let D be a bounded open set in R? and let
u € HY(D). Let xg € D and § = dist(wg,0D). Then, the function ®,(xo,-) is differentiable
almost everywhere on (0,0) and for (almost) every r € (0,0), we have

0

d 1 _
KWA(UI()J) = 7(WA(Z$07T) - WA(uaco,r)) + / |$ : vuxo,r - uxo,r|2 de 1, (91)
T T T 8B

where 2z, : B — R is the one-homogeneous extension of uy, , in Bi:
Zroﬂ"(fc) = ’x‘ Ugg,r (x/m) .

Proof. Without loss of generality we can assume xg = 0. We recall that u, := ug .
We first notice that the function r — |, N B,| is differentiable almost everywhere and that
for almost every r € (0,40) we have

0 (1 d 1
— < |2, mBr|> = _Wm“ N B,|+ T—defl(Qu NoB,),

or \rd
which can be written as
o (zaln Br1) = =210, n 8l + Sl 0 Bl (0.2
In fact, we have
1 1 pd—1
Q. NB| = /0 HEYQ,, NOB)r dr = E’H,d‘l(ﬂm NoBy) = — HH(Q, NOB,).

Thus, (9.2) implies that it is sufficient to prove (9.1]) in the case A = 0.

As above, we notice that the function r — / |Vu|? dz is differentiable almost-everywhere

T
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and that we have

0 (1 2 d 2 1 2 1qyd—1
(= dr ) = ——%_ dz + — d
B (Td/BT|Vu x) TdH/BT|vu x+rd/aBTVu| H

d / 9 1/ 2 17,d—1
= ——— Vul* dx + - Vu,|*dH". 9.3
=ol AR B 93)

In order to deal with the boundary term, we first compute

% <rd1_1 /aBr W2(z) de—1($)> _ % /331 u(ry)? dH ()

:2/ u(ry)y - Vu(ry) dH ! (y)
0B

= 27‘/ uy (- Vu,) dHT ()
0B,

Thus, we have

0 1 2 10,d—1 2 9 1q,d—1 , 2 / d—1
— d = — d - (2 s d . A4
a3 (Tdﬂ/a&u H Td+2/<93Tu H +r 8Blu (- Vu,)dH (9.4)

Now, we notice that for every r such that u, = z, € H'(0B1), we can write the function
2z, : By — R in polar coordinates p € (0,1], § € S¥! as z,.(p,0) = p 2-(1,6) and we have

Wo(zr) = / V2|2 da —/ 22 dH!
B 0By

1
= [ [ 00 Ve Py a0 [ 200 d0
0 Sd—l

§d—1
1 -1
= / (Vo2 |? df — -1 22(1,0)df
d S§d—1 d sd—1
1 2 2 i1 d-1 2 j9.d—1
== (IVur|* = (z - Vuy)?) dH ™ — —— uy dH (9.5)
d 8B d 0By

Now, putting together (9.3]), (9.4) and (9.5)), we get that

0 d 1 _
87W0(uxo,r) = *(Wo(zzo,r) - WO(U:L"O,T)) + / |z - Vg, r — uzo,r|2 dH? 17
r r r Jon,
which concludes the proof. O

We now define the deviation D as
D)= [ oo oP i
0B,

Thus, (9.1) can be written as
0
Wi tr) =

In the next lemma we show that the deviation D(ug, ) controls the oscillation of w.

d 1
(WA(ZJ:O,T) - WA(Uzo,r)) + ;D(uxoﬁ)-

r

Lemma 9.3 (The deviation controls the oscillation of the blow-up sequence). Let D be a
bounded open set in R% and let w € H (D). Let o € D and § = dist(xg,dD). Then, for
almost every 0 < r < R < §, we have

1 R
|z, R — uxo,TH%Q(@Bl) < T/ D(tgy,s) ds.
T

In particular, if D(ug,s) = 0 for every s € (0,0), then the function uy,s : Bi — R is
one-homogeneous, that is

u(zo + 1) =ru(zo +x) for every |z| <o andevery r <1.
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Proof. We set for simplicity, z¢g = 0 and u, := ugy, . For any € 9B;, we have

u(Rx) u(rz) _ /TR (gg (Vu)(sz) u($$)> ds — i/TR (z - Vus(z) — us(z)) ds.

R r s 52

Integrating over the sphere dB; and using the Cauchy-Schwarz inequality, we obtain

Rq 2
/ ]uRfur|2d7-ld_1 < / (/ —|z - Vus u5|d8> dH
0B1 0B1 r S
R R
< / </ 82d8) (/ |z - Vug — u5|2ds> dH!
0B1 r r
1 1 R
= <T — R> /r D(US) dS.

which concludes the proof. O

We conclude this subsection with the following proposition.

Proposition 9.4 (Weiss monotonicity formula). Let D be a bounded open set in R% and
let w € HY(D) be a minimizer of Fp in D. Let zg € D and 6., = dist(xg,0D). Then the
function v — Wy (ug,r) is non-decreasing on the interval (0, 04,).

Proof. By Lemma [9.2] we have that

0 d
EWA(U:EO,T) > ;(WA(ZfﬂOﬂ") - WA(uon,T))'
Now, since ugz,, is a minimizer of F, in By and since by definition 2, , = g, , on 0B,
0
we get that a—WA(uxw) > 0, which concludes the proof. O
7

9.2. Stationary free boundaries. In this subsection we introduce the notion of a sta-
tionary free boundary (Definition [9.7]) and we prove a monotonicity formula for the Weiss

energy (Proposition .

Lemma 9.5 (First variation of the energy). Suppose that D C R is a bounded open set
and that u € HY(D). Let ¢ € C°(D; R%) be a given vector field with compact support in D
and let W, be the diffeomorphism

Uy (z) =z +t{(x) forevery x€ D.
Then,

(i) for t small enough, ¥y : D — D is a diffeomorphism and setting ®; := \I/;l, the
function ug := u o ®; is well-defined and belongs to H'(D);

(ii) the function t — / \Vug|? da is differentiable at t =0 and
D
9 2 2 3
—] Vu2de = | (~2VuDE - Vu + |Vul2div € ) da;
Ot lt=0 D D
(iii) the function t — |y, N D| is differentiable at t = 0 and
0
= Q,, ND| = div ¢ dx.
8t‘t:0| ¢ ‘ /QuﬂD 1V§ o
(iv) if Q is open, if Oy, is a C? regular in D and if u € C?(S,), then
0 0
o Vu|? do = — v | Vul? dHd?t d 7‘ Q, ND| = v dHe 1
ilio [ ultdr = [ corwupanttand - J] jewnni= [ cvantt,

where v(x) is the exterior normal to 0L at the point x € OS.
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Proof. The first claim follows by the fact that £ is smooth and compactly supported in D.
Thus, we start directly by proving (ii). Notice that the gradient of u; = uo ®, is given by
Vug(z) = Vu(®y(z)) DPy(z).
By the change of variables y = ®;(x) (thus, x = U(y)), we get

/ Vg (x) dir = / Vu(y) DB, (W4(y)) [D2,(Ty(y))] "Vuly)" |det DT (y)]| dy
D D

- /D Vu(y) [DW:()] " [DVu(y)] " Vuly)” |det DW4(y)| dy

We now notice that
DU, = Id +tD¢ , (DU, "' =1d —tDé+o(t),  det DU, =1+tdivé+o(t) ,

and we calculate
/ |Vug)? da —/ \vu|2da;+t/ (|Vu|*divé — 2Vu DE - V) dz + oft),
D D D

which concludes the proof of (ii).
In order to prove (iii), we notice that
x€Qy, & w(x) >0 & Dyz) € Q.

This means that 1g,, = lg, o @, and so, we can compute

2, ] = /D Lo, (B4(2)) d = /D Lo, ()] det D, (y)| dy
:/ (1+tdiv§(y)—|—0(t))dy:|Qu|+t/ div&dx + o(t),

which proves (iii).
We now prove (iv). Assume that u is C? in the open set €2,,. Then, setting & = (&1, ...,&y)
and using the convention for summation over the repeating indices, we compute

]Vu|2divf —2Vu D¢ - Vu = 0ju 0;u 05 & — 20;u 0;&; Oju
= Oju Oju 0;&; — 20;(Oju&; Oju) + 20;5u &;05u + 20;€; 0;5u
= 0;ud;jud;&; — 20;(0iu&; Oju) + 20;;u & Oju
= Oju Oju 0;&; — 20;(Oju&; Oju) + 0;(0jué; Oju) — dju 0;; Oju
= —20;(0;u&; Oju) + 0;(0u&; Oju)
= div (|Vu|2§ —2(¢ - Vu)Vu).
Integrating by parts we obtain

/ div (|vu\2§ —9(¢ - Vu)vu) dz = / (\vuP(g V) — 26 - Vu)(Vu - y)) dH
Q, 0,
Since u = 0 on 0%, and positive in €, we have that Vu = v|Vu|. Thus,

/ div (\vu|2g —9(e- vu)vu) dz = —/ IVul2(€ - v) dHE,

Qu Oy

which proves the first part of the claim (iv). The second part of (iv) follows by a simple
integration by parts in €. O

As a consequence of Lemma we obtain that for every A € R, v € H'(D) and vector
field ¢ € C°(D;R%) we can define the first variation of Fp at u in the direction & as

SFa(u, D)[E] == /D (—2Vu D¢ - Vu + |Vul*divE + A 1, divEé) da. (9.6)
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Lemma 9.6 (The minimizers have zero first variation). Let D be a bounded open set in RY
and let w € HY (D) be a minimizer of Fa in D. Then,

dFA(u,D)[E] =0 for every vector field € € C°(D;RY).
If, moreover, 0€Y, is C? smooth in D, then
Vu|=vVA  on  8Q,ND. (9.7)

Proof. The first part of the statement follows directly by Lemma[9.5] In order to prove the
second part, we notice that in the case when 9, is smooth, we have

6Fn(u, D)[€] = /{m (A —|Vul?) € - vdHi,

for every vector field ¢ € C2°(D;R?). This implies (9.7). O

Definition 9.7 (Stationary free boundaries). Let D C R% be a bounded open set and
u € HY(D) be a non-negative function such that

0Fa(u, D)[E] =0 for every vector field £ € C®(D;RY).
Then, we say that the function u and the free boundary 0§, are stationary for Fa.
As a consequence of Lemma [9.6] we obtain the following.

Lemma 9.8 (Equipartition of the energy). Suppose that D is a bounded open set in R% and
u € HY(D) is a non-negative function which is stationary for Fa (in the sense of Definition
. Then, for every xy € D and every 0 < r < dist(xg, D), we have

1
Wi(err) = Walttngr) = 5 [ 1 Vit =g P, 98)
1

where we recall that ug, () = %u(xo—i-m“) and that zg, ,» is the one-homogeneous extension
0f Uzgr i By, that is, 2z, (2) = |T|tg, . (T/l2]).

Proof. Without loss of generality, we assume that zg = 0. For every € > 0, we consider a
function ¢. € CZ°(B,) such that

. 1z .
¢e=1 in B(lfs)r ) Vqﬁa(ar) = _Em + 0(6) in B, \ B(lfs)r

Taking the vector field & (z) = x¢p-(z) we get that
divé(z) = do:(x) + - Ve (),
Dfa(l‘) = QSE(J:)Id +r® v¢€($)
Thus, the stationarity of w impies that

0= 6Fn(u, D)[§] = /D (—2Vu D¢ - Vu + [Vu’divE + A 1o, divE) da

= / (—2¢E|Vu]2 —2(x - Vu)(Voe - Vu) + (doe + x - V¢5)(|Vu|2 + A ]lgu)) dx
D

1 2
= / ((d — 2)|Vu|2 + dA]lQu>¢5 dr + / 2 (m . Vu) - |Vu|2 - A]lQu dx,
T 2 BT\B(lfs)'r' ’{I;‘

which passing to the limit as ¢ — 0 implies that

(d—2)/ \Vu]deerA\QuﬂBA—r/ (1Yl = [Vou? + Alg, ) ar'". (99)
By

r

Since Au = 0 on €, we have that
2/ \Vu?dz =2 [ div(uVu)dz = 2/ u(v - Vu) dH* 1,
r By 0By

which together with implies . (|
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Proposition 9.9 (Monotonicity formula for stationary free boundaries). Suppose that D
is a bounded open set in R? and u € H' (D) is a non-negative function which is stationary
for Fa (in the sense of Definition 0.7). Let o € D and 65, = dist (z9,dD). Then the
Junction v — Wy (ug,r) is non-decreasing on the interval (0,04,) and we have

0 2
8—WA(uzO,r) > / |2 - Vtgg » — Uggr |2 dHIL. (9.10)
T T 8B
Proof. By Lemma and Lemma we obtain precisely (9.10)). O

9.3. Homogeneity of the blow-up limits. In this section, we use the Weiss’ monotonic-
ity formula to prove that the blow-up limits of u are one-homogeneous functions. The most
general result is given in Lemma We then prove the homogeneity of the blow-up
limits of stationary functions (Lemma and the homogeneity of the blow-up limits of
minimizers of Fj (Proposition .

Lemma 9.10. Suppose that D is a bounded open set in R? and w € H'(D) is a non-
negative function. Let xog € D and 65, = dist (xo,0D). Let r, — 0 be an infinitesimal
sequence and let Uy, == Uy, z, € HY(By). Suppose that

(a) the limit
L := lim WA(ur,mo)y

r—0
exists and is finite;
(b) uy, converges strongly in H'(By) to a function us, € H'(By);
(c) 1q,, converges strongly in L'(By) to lg,__;
(d) ueo is stationary for Fp in Bj.

Then us s one-homogeneous.

Proof. Without loss of generality, we suppose that xg = 0 and we write u, 5, = u,. More-
over, we set for simplicity v := us. By the hypothesis (a), we have that,

L= ILm W (usy,) for every s<0<1

On the other hand, the strong convergence of u, and 1q, implies that

h_)m WA(Usrn) = WA(U8)7

1
where we recall that vg(x) = gv(s:p). This implies that

Wha(vs) =L for every s € (0,1],
and, by Lemma [9.10] we obtain that
0 2
0= —Whr(vs) > / |z - Vug — vs|2 dH
Js s Jop,
which, by Lemma [9.3] gives that v is one-homogeneous. O

Lemma 9.11 (Homogeneity of the blow-up limits). Suppose that D is a bounded open set
in R? and w € HY(D) is a non-negative function which is stationary for Fa (in the sense

of Definition . Suppose that

(a) w, converges strongly in H'(By) to a function us € H'(By);
(b) Lq, converges strongly in L'(By) to 1o, __ .

Then us s one-homogeneous.

Proof. Since u is stationary, Lemma implies that the function r — Wy (ug,,) is non-
decreasing in r. Thus, the limit

L= ll_r)% WA(uxo,r) = ;I;g WA(uxo,T)a
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does exist and so the hypothesis (a) of Lemma is fulfilled. Now, the strong convergence
of u, and 1o, to us and lg, in Bi, and the definition of the first variation 0FA(+, D)
imply that us is also stationary in By. Thus, hypothesis (d) of Lemma is also fulfilled
and, so the claim follows by Lemma [9.10) g

Proposition 9.12 (Homogeneity of the blow-up limits). Suppose that D is a bounded open
set in R and u € H' (D) is a non-negative function and a local minimizer of Fa in D. Let
xg € D. Then every blow-up limit ug € BU,(z0) is one-homogeneous.

Proof. By Lemmal[9.6] every minimizer of F, is stationary for F5. Moreover, by Proposition
we have that the conditions (a) and (b) of Lemma are fulfilled. This concludes
the proof. O

9.4. Regularity of the free boundaries in dimension two. The main result of this

section is the following.

Proposition 9.13 (One-homogeneous global minimizers in dimension two). Let z : R? — R
be a one-homogeneous global minimizer of Fy in R2. Then, there is v € R? such that

2(x) =VA(x-v)y forevery zeR2

In particular, we obtain that the critical dimension d* is at least 3 (see Definition [1.5)).
The proof of Proposition [0.13]is based on the following lemma.

Lemma 9.14. Let z € H}

loc([R{d) be a continuous and non-negative one-homogeneous func-
tion in RY. Then,

Az=0 in €,
if and only if, the trace c = z|pp, € H'(0B1) is such that
—Asc = (d—1)c in the (open) set Q.NOB;.
Proof. The proof follows simply by writing the Laplacian in polar coordinates. In fact, we
have that z(r,8) = rc(0) and
d—1 1
Az(r,0) = Oprz(r,0) + T&z(r, 0) + T—ZAgz(r,H)
1

= ;((d —1)c(0) + Agc(ﬁ)),
which concludes the proof of Lemma O

Proof of Proposition [9.13. Let z(r,0) = rc(6) and let Q. C S* be the set {c > 0}. Since
¢ is continuous (see Section , we have that €. is open and so it is a countable union of
disjoint arcs (which we identify with segments on the real line). Notice that €. # S! since
z(0) = 0 and z minimizes locally Fp (the local minimizers cannot have isolated zeros, for
instance, by the density estimates from Section . Now, Lemma implies that on
each arc Z C )., the trace c is a solution of the PDE

") =c(0) in T, c>0 in I, c=0 on OJI.

Thus, up to a translation Z = (0, 7) and ¢(0) is a multiple of sin @ on Z. Thus, €2, is a union
of disjoint arcs, each one of length 7. Thus, these arcs can be at most two. Now, by Lemma
and the fact that 0 € 9., we get that |Q, N By| < |B1| = 7 and so, H'(Q) < 27. This
means that . is an arc of length 7 and that z is of the form z(x) = a(x - v), for some
constant ¢ > 0. Since z is a local minimizer in R% and 952, is smooth, Lemma implies
that @ = v/A, which concludes the proof. O
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9.5. The optimality condition on the free boundary: a monotonicity formula
approach. The aim of this subsection is to give an alternative proof to the fact that the
(local) minimizers of F, are viscosity solutions to the problem

Au=0 in Q,, Vu| =vVA on 09,.

The main result of the subsection is Proposition which can be applied not only to
minimizers, but also to measure constrained minimizers (see Theorem and Section .
It can also be applied to a large class of problems in which a monotonicity formula does
hold. In fact, the proof is quite robust and can be applied to almost-minimizers (see for
instance [46]) and to vectorial problems (see [41]), for which the construction of competitors
is typically more involved. The proof of Proposition [9.18] is based on the following two
lemmas. Before we give the two statements, we recall that, for any d > 2, we identify the
(d—1)-dimensional sphere S¢~! with the boundary of the unit ball 9B; in R%. In particular,
we will use the notation

Sjl__l ={z:=(21,...,24) €0B;1 C RY : 24> 0}.
Lemma 9.15. Suppose that c € H'(S%1) is a continuous non-negative and non-constantly-
vanishing function, satisfying the following conditions:

a) Q. C S where as usual Q. :={c>0};
( ) 4+ )
(b) Asc+ (d—1)c=0 in Q..

Then, Q. = Sfffl and there is a constant o > 0 such that
c(z) =a(r-eq)+ for every x € 0Bs.

Lemma 9.16. Suppose that c € H(S%™1) is a continuous non-negative function, satisfying
the following conditions:

(a) ST C Q. = {c>0};

(b) Asc+ (d—1)c=0 in Q..

Then, c is given by one of the following functions:
(1) c(z) = a(z - eq)+, where o > 0 is a positive constant;
(i1) c(z) = a(z - eq)+ + B(z - eq)—, where a >0 and B > 0.

In the proofs of Lemma[9.15 and Lemma [9.16] we will use the following well-known result,
whose proof we the leave to the reader.

Lemma 9.17 (Variational characterization of the principal eigenvalue). Let Q C S%1 be
a connected open subset of the unit sphere. Let ¢ € HL(Q) be a given non-zero function.
Then, the following are equivalent:

(i) ¢ >0 in Q, / $#%df =1, and there is A\ > 0 for which ¢ solves the PDE
Q
—Asp=Xp in

i the usual weak sense:
/ Voo - Vondf = /\/ ¢ndh  for every mn € HY(Q);
Q Q

(ii) ¢ is the unique (up to a sign) solution of the variational problem
mm{/ Vol|2do : € HL(Q), / W2 do = 1}.
Q Q

Proof of Lemma [9.15. Since the linear functions are one-homogeneous and harmonic in R¢,
we have that the function

¢1(0) = (0 - ea)+,

defined on the sphere solves the equation

—Ag(ﬁl = (d - 1)(]51 in Sfli__l.
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-1
In particular, setting oy := < qb% d9> , we get that ag¢ is the unique minimizer of
-1

sd
d—1:min{/§dl Vot|2do = o € HE (ST, Ld1¢2d9:1}.
+ +

On the other hand, ¢ € H}(ST™) and solves the equation —Asc = (d — 1)c in Q. Thus,

/d 1yv(,c|2d9=/ \Vgc|2d0:(d1)/ c2de=(d1)/d 102d9,
ST Q S
+ ¢ ¢ +

which means that (up to a multiplicative constant) ¢ is a solution of the same problem.
Thus, the uniqueness of ¢ gives the claim. (|

Proof of Lemma [9.16] Let Q. be the connected component of {2, containing Siﬁl; and let
¢ be the restriction of ¢ to Q.. Thus, Q. = {¢ > 0} and ¢ solves the PDE

~Asc=(d—1)¢ in €.

Thus, ¢ is the unique minimizer of
d—1= min{/~ IVo|2do : o € HY(S,), /~ W2 do = 1}.
Qe Qe

Thus, reasoning as in the proof of Lemma we get that ﬁc = Si_l and that there is a
constant o > 0 such that

&) = a(0 - ea)+-
We now consider two cases. If 2. has only one connected component, then . = §~20 and

¢ = ¢, which concludes the proof. If 2. has more than one connected components, then
Q¢ \ Q¢ is non-empty and is contained in the half-sphere

ST ={z = (21,...,24) € 9B; CR* : 24 <0}.

Thus, applying Lemma we get that the restriction of ¢ on Q. \ (NZC should be of the
form B(6 - eq)—, for some positive constant 3, which concludes the proof. O

Proposition 9.18. Suppose that D C R? is a bounded open set and that w € H' (D) is a
continuous non-negative function such that:

(a) u is harmonic in Q, = {u > 0}.

(b) Q satisfies the upper density bound

Q. N B,
lim sup —| N Br (o)

<1 for every xo € 00, N D.
r—0 ’Br|

(c) For every xzog € D and every infinitesimal sequence rn, — 0, there is a subsequence (that
we still denote by ry,) such that the blow-up sequence uy,, 4, converges uniformly in By
to a blow-up limit uy : By — R (as usual, we will say that uy € BU,(xp)).

(d) Every blow-up limit BU,(xo) 3 up : B1 = R is a one-homogeneous non-identically-zero
function, which is stationary for the functional Fy.

Then u satisfies the optimality condition
Vul =VA on 9Q,ND,
1n viscosity sense.
Proof. Suppose first that the function ¢ touches u from below in zg € 02, and assume
that g = 0. Consider the blow-up sequences
1 1

un(x) = au(rnx) and on(x) = Egp(rnm),
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as r, — 0, the condition (c) implies that, up to a subsequence, we have
up = lim up(x) and wo = lim @, (x), (9.11)
n—o0 n—oo

the convergence being uniform in Bj. In particular, since u, are harmonic in 2, , the
uniform convergence of u, to ug implies that also u¢ is harmonic on 2.

Notice that, as ¢ is smooth, we have pg(x) = & - z, where the vector & € R? is precisely
the gradient Vip(0). Without loss of generality we may assume that £ = Aey for some
constant A > 0, thus

IVe(0)] = [Veo(0)| = A and  po(z) = Azg. (9.12)

Moreover, we can assume that A > 0 since otherwise the inequality |Ve| < /A holds
trivially.

Now, since ug > g, we obtain that ug > 0 on the set {xgy > 0}. Thus, up is a 1-
homogeneous harmonic function on the cone {ug > 0} O {z4 > 0}. By Lemma there
are only two possibilities:

ug(z) = az} or up(z) = az} + Bz .

The second case is ruled out since it contradicts (b). Thus,

ug(z) = azx) for every z € By. (9.13)
Now, the stationarity of ug (condition (d)) and Lemma imply that o = v/A. By the
inequality uo > g, we get that VA > A.

Suppose now that ¢ touches u from above at a point xp and assume that o = 0. Again,
we consider the blow-up limits Uy and ¢g defined in and we assume that g is given
by (9.12). Since ug is not identically zero (assumption (d)), we get that a > 0. Since
up < ¢p we have that the set {up > 0} is contained in the half-space {zy > 0}. By the
one-homogeneity of 4y and Lemma we obtain that necessarily {ug > 0} = {zg > 0}.
Thus, ug is of the form for some a > 0. Now, the stationarity of ug implies that
necessarily o = v/A and, since uy < g, we get that |[Vp(0)| = A > /A, which concludes
the proof. O

9.6. Energy and Lebesgue densities. In this section, we prove that if u is a (local)
minimizer of Fj, then at every boundary point zg € 0f2, the Lebesgue density of the
set €2, is well-defined. Moreover, we characterize the regular part of the free boundary in
terms of the Lebesgue density. Most of the ideas in this section come from [41], where we
used a similar characterization of the regular part of the vectorial free boundaries. In the
case of the one-phase problem, we will not use this result in the proofs of neither of the
Theorems nor we give it here only for the sake of completeness. The
precise statement is the following:

Proposition 9.19. Suppose that D C R? is a bounded open set and that w € H' (D) is a
non-negative function, a local minimizer of Fp in D. Then, the limit

lim 192 0 By (20)| exists, for every xg€ 02, ND. (9.14)
r—0 |B,«|
Thus, we can write
o,nD= |J o)nD. (9.15)
1<yt

The regular and the singular parts of the free boundary are given by

Reg (0,)ND =0 ND and  Sing (0Q,) N D = U onD. (9.16)
1
§<'}/<1
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Moreover, for every v € [1/2,1), we have

onD = {x € 00,ND : |QuNB1| = wgy, for every blow-up limit uy € Buu(x)}. (9.17)

Proof. The claims (9.14)), (9.15)) and (9.17) follow directly by Lemma below. The claim
(19.16)), follows by Lemma O

Lemma 9.20 (Energy and Lebesgue densities). Suppose that D C R? is a bounded open
set and that uw € HY(D) is a continuous non-negative function such that:
(a) For every xy € D and every infinitesimal sequence r, — 0, there is a subsequence (that
we still denote by r,) such that:
® Uy, 1= U, 4, converges strongly in H'(By) to a function ug : By — R;
e 1o, converges in L*(By) to Lo, -
(As usual, we say that ug is a blow-up limit of u, and we note uy € BU,(z0).)
(b) Every blow-up limit BU,(z¢) > uo : By — R is a one-homogeneous non-identically-zero
function such that Aug =0 in €, N By.
(c) For every xy € 9, N D, the limit

O(u, ) = }li)l%) W (trz) ,
does exist.
Then, for every xg € 02, N D, we have that

1 o QN By (20)]
Ry Ol o) = limy ="
Moreover, for every uy € BU,(xo), we have that
1 ’Qu N Bl‘ 1
—0 = 0 = w, )
Proof. We first notice that (b) implies that
Wi (up) = Ay, N By.

Let g € 09, N D and the infinitesimal sequence r, — 0 be given. Then, by (a), up to a
subsequence, Uy, 5, converges to a blow-up limit ug. Using (c) and then again (a), we get

}}_I)% W (Ur,xo) = nlggo WA(Urn,wo) = Wa(uo).

On the other hand, the strong H'(B;) convergence of u,., 4, to ug implies that
lim Wg(urmm) = W()(ZL()) =0.

n—o0

Then, we have
I, . . [ N By, (o)
0, 1Bl = Jim Wa(tr ) = i [{u, e, > 0} N B1| = lim St
which con concludes the proof. (|
In the proof of Lemma [9.22] we will use the following result.

Theorem 9.21 (The spherical caps minimize A\; on the sphere). For any (quasi-)open
spherical set Q C S¥1 we define the first eigenvalue A\ (Q) as

A(Q) = inf{/ Voc?do / 2O)dh =1, ce Hol(fz)}.
Q Q
For every open set @ C S such that H¥1(Q) < $dwq we have that

A(Q) > M(sEh),
with equality if and only if, up to a rotation, Q) = Si_l.
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Lemma 9.22 (Characterization of the regular part of the free boundary). Suppose that
D c R? is a bounded open set and that w € H'(D) is as in Lemma [9.20. Then,

.|y N By(zo)| S 1

}grll) B 23 for every xo € 002, ND. (9.18)
Moreover,
lim |0, N By (z0)] 1 7
r—0 ’BT’ 2
if and only if, every blow-up limit ug € BU,(xo) is of the form
up(z) = (v o)+ for some v e R% (9.19)

In particular, if u is a minimizer of Fa in D, then Reg(0,) = Q(ul/Q) in D.
Proof. Suppose that xg € 9, N D and let
QN Br(0)]
T B,

Let r,, — 0 be an infinitesimal sequence. Then, by the assumption Lemma (a), up to
extracting a subsequence, we can suppose that u,,, , converges to a blow-up limit wug : R¢ —
R. By the hypothesis Lemma (b), we get that ug is one-homogeneous and harmonic in
Qu, N By. This implies that, on the sphere 0B1, ug solves the PDE

Asug = (d — 1)u0 in Quo NoBj.
Thus, Theorem implies that

dwd

Hd_l(Qu N 631) > 7,

which by the homogeneity of ug gives that
QN B1| 2 5

Now, the convergence of 2 , to £y, implies that

Ury,,x
Q,NB Q N B
y =t 20 B0l ey VB [0 0B L
% (B, % |By Bl -2
which concludes the proof of the lower bound ({9.18)). In the case of equality v = 1/2, we have

that ug 0B is precisely the first eigenvalue on the half-sphere Sj_l, whose one-homogeneous
1
extension is precisely (9.19)). d
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10. DIMENSION OF THE SINGULAR SET

In this section, we prove Theorem As in the original work of Weiss (see [52]), we
will use the so-called Federer’s dimension reduction principle, which first appeared in [32].
This section is organized as follows.

e In Section [10.1] we give the definitions of the Hausdorff measure and Hausdorff dimen-

sion; we also state and prove the main properties of the Hausdorff measure, which we will
need for the proof of Theorem

e In Section [10.2] we give a general result for the convergence of the singular sets of a
sequence of functions.

e In Section [10.3|we study the structure of the singular set of the one-homogeneous global
minimizers of Fy.

e Finally, in Section we use the results of the previous subsections (Lemma [10.7]
and Lemma [10.12)) to prove Theorem

10.1. Hausdorff measure and Hausdorff dimension. In this section we define the no-
tions of Hausdorff measure and Hausdorff dimension and we also give their main properties.
For more details, we refer to the book [31].

We recall that, for every s > 0, § € (0, +o0] and every set E C RY,

o0
HI(E) = % inf {Z (diam U;)* : for every family of sets {U;}32,
i=1 (10.1)
o
such that F C U U; and diam U; < ¢, for every j > 1},
j=1
where, for any s € (0, 4+00), the constant ws is defined as
775/2 oo s—1 x
ws 1= O] where I'(s) ::/0 ¥ e dx.

Definition 10.1 (Hausdorff measure). For any s > 0, H*(E) denotes the s-dimensional
Hausdorff measure of a set E C R% and is defined as:

H¥(E) := lim Hj(E) =sup Hj(E).
004 6>0

Remark 10.2. The constant in is chosen in such a way that we have

HUB,) = |B,| =wgr® and  HYYOB,) = dwgrd .

Definition 10.3. The Hausdorff dimension of a set E C R? is defined as
dimy E :=inf {s >0 : H*(E)=0}.

The following elementary properties of the Hausdorff measure are an immediate conse-
quence of the definitions of H*, H3 and HZ_.

Proposition 10.4 (Properties of the Hausdorff measure).

(i) For everys >0 and ¢ € (0,00], the set functionals H® and Hj are translation invariant
and increasing with respect to the set inclusion. Moreover, we have

HE(rE) = r*H5(E) and M (rE)=1r"HS (E) forany ECR? and r>0.
(it) The function 6 — H3 is decreasing in 8. In particular, we have
HE(E) < HY(E) < HS(E) forany ECRY andany 6> 0.
(iii) Given s >0 and E C R, we have that
H(E) =0 if and only if Hi (E)=0.
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(iv) Given a sequence of sets Ej C RY, s >0 and 6 € (0, 400] we have that
oo o
H3(E) < Z’Hg(E]) where  E = U E;.
— .

In particular, H*(E) = 0 if and only if H*(E;) =0, for every j > 1.

Lemma 10.5 (Existence of points of positive density). Let s > 0 and let K C R? be a
given set. If H*(K) > 0, then there is a point zo € K such that

lim sup i (K N Br(:co))

r—0 e

> 0. (10.2)

Proof. Suppose that (10.2]) does not hold. Then, we have
. HE (K N Br(l’o))
lim sup

r—0 [

=0. (10.3)

Let Ks. C K be the set
Ks.={z €K : H¥(KNB,(x)) <er® forevery r<d}.
By (10.3)), we have that

U Kse = U Ksa), = for every fixed e>0. (10.4)
6>0

Let now ¢ and ¢ be fixed and let {U;};>1 be a family of sets of diameter diam U; < ¢ such
that Ks. C U U;. Then, the subadditivity of H3§ gives that

7

oo o o o
MHy(Kse) Y H3UNKs) <Y H(UiNEK;) <> H(UNK) <Y e(diam Uy)
i=1 i=1 i=1 i=1
where the last inequality holds since the set U; N K is contained in a ball of radius
Taking the infimum over all coverings C; with sets of diameter less than or equal to §, we
get that
23
H5(Kse) < e — Hi(Kse),
S

and so, for € small enough, H5(Ks.) = 0, which implies that H*(Ks.) = 0. Finally, (10.4)
and the subadditivity of H* imply that H®(K) = 0, which is a contradiction. O

Lemma 10.6 (Dimension reduction. Lemma I). Let s >0. Let £ C R be a given set
and let E=E xR C RY If H*(E) = 0, then also H*T(E) = 0.

Proof. We will prove that H5*(E x [0,7T]) = 0 for every T > 0. In fact, this implies that
H5HY(E x [-T,T]) = 0 and since E = U E x [T, T], we get H*+1(E) = 0.
>0
Since H*(E) = 0, for every € > 0, there is a family of balls B, (z;) C R¢"! such that

e}

E C U B, () and er <e.

i>1 i=1

Let now T be fixed. For every i € N, we consider the point z;; € R? of coordinates
zik = (x4, kry), for k =0,1,..., K;, where K; := [T/r;]+1 and the family of balls Ba,, (z; ).
Notice that

' x[0,T] C UBQW (xik) for every x' € B) (z;) C R,
k
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Thus, the family of balls {Bay, (x; k) }ik is a covering of E x [0,T]. We now estimate,

oo K; oo K;
HEHE X [0,7]) <)) (@2r) T =271 )y 2y et

i=1 k=1 i=1 k=1

_ os+1 +1 +1 +1

= 2PN (K + et <2ty it
i=1 i=1 "

where the last inequality follows by the fact that, for T' large enough,

T 2T
Ki+1<—+2< —.
T3 T3
Thus, we get
oo
HITH(E x [0,T]) < 27T " rf < 2727,
i=1
which concludes the proof. O

10.2. Convergence of the singular sets. In this section we will prove a general result
(Lemma for the convergence of the singular sets, which applies both to minimizers of
Fa (Theorem and to measure-constrained minimizers (Theorem . Recall that, if
D c R%is an open set, u : D — R a given (continuous and nonnegative) function, then for
every ball B, (xg) C D, we define

Ugor : B1 = R, Ugr(T) = %u(l‘o +rx).

We say that a boundary point xg € 9§, N D is regular (and we write xg € Reg(9€,)), if
there is a sequence r, — 0 such that

nh_)ngo ||uwo,rn - huHLN(Bl) =0,

where for simplicity we set
holw) = VA (2 v)s

and we recall that

[z, — hVHLoo(Bl) = ||u(z) — hy(z — xO)”LgO(BT(xo))-
We say that a point xg is singular if it is not regular, that is, if
xo € Sing(0y,) = (0, N D) \ Reg(0y,).

Lemma 10.7 (Convergence of the singular sets). Suppose that D C R? is a bounded open
set. Let up, : D — R be a sequence of continuous mon-negative functions satisfying the
following conditions:
(a) Uniform e-regularity. There are constants € > 0 and R > 0 such that the following
holds:
ifn €N, zg € 0y, ND and r € (0, R) are such that By(z9) C D and

|un — hu (- = 20)|| oo (B, (o)) < €T for some v € OBy,

then 08y, = Reg (0,,) in By (xo).

(b) Uniform non-degeneracy. There are constants k > 0 and r9 > 0 such that the
following holds: if n € N, xg € 9y, N D and r € (0,rg) are such that By(z9) C D,
then

|unll oo (B, (z0)) = KT

(¢) Uniform convergence. The sequence u,, converges locally uniformly in D to a (con-
tinuous and non-negative) function ug : D — R.
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Then, for every compact set K C D, the following claim does hold:

For every open set U C D containing Sing (0€,,) N K,
there exists ng € N such that: (10.5)
Sing (0, ) NK C U for every n > ny.

In particular, for every s > 0,

H3, (Sing (0,) N K) > limsup HS, (Sing (0,,,) N K). (10.6)

n—oo

Proof. The semicontinuity of the Hausdorff measure ([10.6)) follows by (10.5) and the defi-
nition of H3 . Thus, it is sufficient to prove ([10.5). Arguing by contradiction, we suppose
that there are a compact set K C D and an open set U C D such that

Sing (0Q,,) N K C U,
but (up to extracting a subsequence of u,) there is a sequence
T, € Sing (0Q,,) N K N (RY\ U).
Up to extracting a further sequence we may assume that there is a point xg such that

zo € KN (RY\U) and xo = lim x,.

n—oo

We claim that z¢ € 0€,,. Indeed, the uniform convergence of w,, implies that ug(xg) = 0.
On the other hand, the non-degeneracy hypothesis (b) implies that, for every r > 0 small
enough,

10l 205, oy = N inf (il o 5. )y — = 00ll 5, )
.. r
2 iminf [[un[| oo (B, 2n)) 2 K55

which gives that z¢ € 0y, .
Now, we notice that, since U contains Sing(9€,,) N K and x¢ ¢ U, we have that

xo € Reg(0Qy,).

By definition of Reg(0%2,,), there is a sequence r, — 0 and a unit vector v € 9B such that

1
Tlim_ a||uo — hu (- = o)l Loo(B,., (20)) = O-

In particular, there exists r € (0, R) such that B,(x¢) C D and

€
luo(z) — hu (- — 20l Loo (B, (20)) < 3"

By the continuity of ug and h,, we get that, for n large enough,
lluo = ho (- = )| Lo (B (zn)) < 57 -

Since, u, converges to ug locally uniformly in D, we get that, for n large enough,
|wn — hy (- — xn)HLN(BT(a:n)) <er.

Thus, (a) implies that x, € Reg (0, ), in contradiction with the initial assumption. O
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10.3. Dimension reduction. In this section, we study the singularities of the global one-
homogeneous minimizers of F,. In particular, we prove Theorem in the case when u
is one-homogeneous. This (significant) simplification is essential for the proof of Theorem
since we already know that the blow-up limits of a local minimizer are global one-
homogeneous minimizers and we will prove (see Lemma that the dimension of the
singular set of a blow-up limit does not decrease if we choose the free boundary point to
have non-zero Hausdorff density (see Lemma [10.5).

Remark 10.8 (The singular set of a one-homogeneous function is a cone). Suppose that
z: R% - R is a non-negative one-homogeneous local minimizer of F, in R%. Then, for any
singular free boundary point zg € Sing (0€2,)\{0}, we have that {tz¢ : t € R} C Sing (012,).
This claim follows by the fact that Reg (02,) is a cone. and that

Sing (092;) = 09, \ Reg (0£2,).

Lemma 10.9 (Blow-up limits of one-homogeneous functions). Let z : R? — R be a one-
homogeneous locally Lipschitz continuous function. Let 0 # xog € 9S),. Let r, — 0 and
Zrn.zo b€ @ a blow-up sequence converging locally uniformly to a function zg : R? - R.
Then zy is invariant in the direction xg, that is,

20(z + txg) = z0(x) for every z € R and every t e R.

Proof. Let t € R be fixed. Then, we have
. . 1
zo(x + txg) = nh—>Holo 2y 20 (X + t20) = nh_}rgo Ez(mo + oz + ta:o))

1+ tr”z(mo + a:) = lim i2(3:0 + rna:) = zp(x),

Tn 1+tr, n—00 T,

= lim
n—oo

where the third inequality follows by the homogeneity of z and the fourth inequality follows
by the Lipschitz continuity of z. Precisely, setting L = ||[Vz||oc(B, (2,)), We have

1+tr, Tn 1 ‘
‘ - z(:co + T trnx) Tnz(xg + rnx)
<t|z| (w0 + "n x)—i—i z(wo + "n x)—z(xg—krnx)’
- 1+tr, Tn 1+tr,
<4 rnL| ] itriLm‘]’
-~ 14+tr, rol+tr,
which converges to zero as n — oco. O

Lemma 10.10 (Translation invariant global minimizers). Let u : R¥™1 — R be a non-
negative function, u € Hlloc([Rd_l) and let @ : R* — R be the function defined by

a(z) = u(z’) for every x= (2',z4) € R

Then, u a local minimizer of Fa in R¥™1 if and only if @ a local minimizer of Fa in R?.

Proof. Suppose first that @ is not a local minimizer of F5. Then, there is a function
o : RY — R such that @ = 9 outside the cylinder Cg := B x (—R, R) C R%"! x R and such
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that Fa(a,Cr) > Fa(0,Cr).

Fa(u, Bl) :/ Vo ul? da’ + A | Bl {u> 0}
B,

_ 1 72 - _ 1 _

=55 </CR |Va| d:):—i—A‘CRﬁ{u > 0}|> = 2]__{]—'A(U,CR)
R | » i

> —2RfA(v,CR) =5R </CR |Vl dx+A‘CRﬂ{v > 0}‘)

R
> 21R/ (/ Vo 5(2', 24)|* d’ + A | B N {D(:, 24) > 0}‘) dxg
~r \/BY,
> / Vo (2, t)[* da’ + A | B N {o(-,t) > 0}/,
Bg
for some t € (=R, R), which exists due to the mean-value theorem. Thus, also u is not a
local minimizer of Fjy.
Conversely, suppose that u is not a local minimizer of F. Then, there is a function
v : R9"! — R such that u = v outside a ball By C R! and Fy(u, By) > Fa(v, By). We
now define the function
(2, xq) = v(@)(za),
where for any ¢ > 0, we define the function ¢; : R — [0, 1] as
1 it |xg] <t,
0 if |zgq >t+1,
rg+t+1 if —t—1<uz4< -1,
zg—t if t<zg<t+1.

di(xq) ==

Then,
|vx77|2 < |V U|2 + U2:H'CR,t+1\CR,t’
|Cri+1 N {0 >0} =2(t +1)|Br N {v >0},
where Cr; := B}y x (—t,t). Thus, we have
Fa(0,Crir1) = / IV5|*dz + A|CRry+1 N {D > 0}

CR,t+1

< 2tFa(v, BR) + 2/ v?dz’ + 2| B N {v > 0}|.
Bg
Choosing t large enough, we have that

2tFa (v, By) + 2/ v*da’ + 2| B N {v > 0} < 2tF,(u, BR).
Bl

R
Since,
fA(ﬂ, CR7t+1) = Q(t + 1)]:/\(u, B}?,)v
we get that
FAa(0,Crt+1) < Fa(@, Cri+1),
which concludes the proof. O

Lemma 10.11 (Singular one-homogeneous global minimizers in R"). Let z : R4 — R be
a non-negative one-homogeneous local minimizer of Fy in RY. Then, one of the following
does hold:

(1) z(z) = VA (x-v) for some v € RT (in this case Sing (90,) = 0);

(2) Sing (9€2;) = {0}
In other words, Sing (0€2,) \ {0} = 0. In particular, this means that dimy Sing (0€2,) = 0.
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Proof. Suppose that there is a point 2o € R?\ {0} such that zo € Sing (952,). Then, by
Remark we have that txo € Sing (0€2,) for every t € R. In particular, we can suppose
that |zo| = 1 and, without loss of generality, we set z9 = e4. Let now zy be a blow-up limit
of z at xg. Then, zy is a one-homogeneous local minimizer of F5. Moreover, by Lemma
we have that zq(2/,t) = zo(2',0) for every 2’ € R4~!. Now, Lemma implies that
the function 2} := 20(+,0) : R~! — R is still a local minimizer of Fx. Moreover, the origin
0’ € R%! is a singular point for 8QZ6 in contradiction with the definition of d*. O

Lemma 10.12 (Dimension reduction. Lemma II). Suppose that d > d* and that z : R — R
is a non-negative one-homogeneous local minimizer of Fa in R%. Then,

4qd—d"+s (Sing (@QZ)) =0 for every s>0.

Proof. Let s > 0 be fixed. The claim in the case d = d* follows by Lemma We
will prove the claim by induction. Indeed, suppose that the claim holds for d — 1 > d*
and let z : R — R be a non-negative one-homogeneous local minimizer. If such that
HI=+5(Sing (9€)) > 0, then, by Lemma there is a point zg € Sing (0€2,), a constant
€ > 0 and a sequence 1, — 0 such that

HA-d s (Sing (092.) N By, (z0)) > grd=d'+s for every n e N,

n
which can be re-written as
HE 5 (Sing (09,,) N By) > e for every neN, (10.7)

where we have set z,(z) := %z(mo + 1),

Without loss of generality, we can assume that xo = e4. Now, up to a subsequence, z,
converges to a blow-up limit zg of z. By Lemma [10.9] and Lemma [10.10} we have that:

(1) z0(z',24) = 20(2',0) for every 2’ € R and every x4 € R;

(2) 2} := 20(+,0) : R~! — R is one-homogeneous local minimizer of F, in R4~1.
By hypothesis, we have that

HA S (Sing (09,,)) = 0.
The translation invariance of zy now implies that
Sing (9€2,) = Sing (0%2,;) x R,
so, Lemma [I0.6] gives
H4 T (Sing (09,)) = 0,

which is a contradiction with of Lemma and . U

10.4. Proof of Theorem In this subsection, we will give an estimate on the dimension
of the singular set. The result is more general and applies to different situations, for instance
to almost-minimizers and measure-constrained minimizers.

Proposition 10.13 (Dimension of the singular set). Let D C R? be a bounded open set and
u: D — R a continuous non-negative function. Let the reqular and singular sets Reg(9€Y,)
and Sing(0€,) of the free boundary 00, N D be defined as in the beginning of Section m
Suppose that u satisfies the following hypotheses:

(a) e-regularity. There are constants € > 0 and R > 0 such that the following holds:
If vo € 02, N D and r € (0, R) are such that By(z¢) C D and

|u(z) — VA ((z — x0) - V)4l nee (B (z0)) S €7 for some v € OBy, (10.8)

then 98, = Reg (082,) in B. (o).
(b) Non-degeneracy. There are constants k > 0 and ro > 0 such that the following holds:
ifneN, zg € 00, ND and r € (0,79) are such that B,(xz¢) C D, then

1wl Loo (B, (20)) = KT



REGULARITY OF THE ONE-PHASE FREE BOUNDARIES 99
(¢) Convergence of the blow-up sequences. Fvery blow-up sequence

Uy () = (o + ),
n

with xg € 02, N D and r,, — 0, admits a subsequence that converges locally uniformly
to a blow-up limit up : R4 — R.
(d) Homogeneity and minimality of the blow-up limits. Every blow-up limit of u is
a one-homogeneous global minimizer of Fy in R<.
Then,
(i) if d < d*, then Sing (0,,) is empty;
(ii) if d = d*, then Sing (0,) is locally finite;
(iii) if d > d*, then dimy Sing (0Q,) < d — d*.
Proof. Suppose first that d < d*. Let g € 9, N D and let r, — 0 be a infinitesimal
sequence such that u, ,, converges locally uniformly to a blow-up limit ug (such a sequence
exists by the hypothesis (b)). By (c), up is a one-homogeneous local minimizer of F, in
RY. By definition of d*, we get that Sing (9§,,) = 0. This means that every blow-up limit
of ug is of the form v/A (z-v), for some v € dB;. In particular, it holds for every blow-up
limit in zero. Since ug is one-homogeneous, the blow-up of ug in zero is ug itself and so,

up(z) = VA (z - v) 1 for some v € 0B.
Thus, for n large enough, we get that
[ty 20 () = VA (- V)illre (s < e,
which, by the definition of u,, 5, gives precisely . Thus, by (a), we get that x¢ is a
regular point, z¢ € Reg (9€,). Since zg is arbitrary, we conclude that Sing (992,,) = 0.

Let now d = d*. Suppose by contradiction that there is a sequence of points z, €
Sing (0€2,,) converging to a point g € DNSing (0€,). Let ry, := |z, —x¢|. Up to extracting
a subsequence, we can assume that the blow-up sequence u,, := u,,, 5, converges to a blow-
up limit ug : R? — R. By (c), uo is a one-homogeneous local minimizer of Fx in R%. On the
other hand, notice that for every n > 0 the point &, = *2=*¢ € 9By is a singular point for
uy. Up to extracting a subsequence, we may assume that &, converges to a point & € dB;.
By Lemma we get that &, € Sing (0, ), in contradiction with Lemma

Finally, let d > d*. Let s > 0 be fixed. We will prove that H% 4" (Sing (62,)) = 0.
Suppose that this is not the case and H4~% +%(Sing (9Q,)) > 0. By Lemma we have
that there is a point z¢ € Sing (0€2,) and a sequence 7, — 0 such that

HA—d s (Sing (8Q) N By, (w0)) > erd=d'+s,
Taking, u, = ur, z,, we get that
HE T4 (Sing (09, ) N By) > ¢.

Using (b), we can suppose that, up to extracting a subsequence, u,, converges to a blow-up

limit up. By (c), up is a one-homogeneous minimizer of F, in R?. Now, Lemma we
get that H4~%" 5 (Sing (082,) N B1) > €, which is in contradiction with Lemma [10.12, [
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11. REGULARITY OF THE FREE BOUNDARY FOR MEASURE CONSTRAINED MINIMIZERS

Let D be a connected bounded open set in R? and let v € H'(D) be a given non-negative
function. This section is dedicated to the problem

min {fo(u,D) . we HY(D), u—wv e HY(D), |0, ND| = m}, (11.1)

where m € (0, |D]) is a fixed constant and we recall that
Fo(u, D) —/ |Vu|? da.
D

In this section, we give the main steps of the proof of Theorem
e Subsection [I1.1] Ewistence of minimizers.
In this subsection, we prove that admits a solution and that every solution
is a nonnegative subharmonic function (see Proposition [11.1]).
e Subsection [I1.2] Euler-Lagrange equations.
In this subsection, we prove that if u is a solution to , then there exists a
Lagrange multiplier A > 0 such that the first variation of F, vanishes, that is,

SFn(u,D)[E] =0 for every & e C®(D;RY).

e Subsection Strict positivity of the Lagrange multiplier.
In this subsection we prove that A > 0.

e Subsection [I1.4, Convergence of the Lagrange multipliers.
In this subsection, we prove a technical lemma, that we will use several times in
the next subsection. Roughly speaing, we show that if u,, is a sequence of solutions
converging to a solution u, then also the sequence of Lagrange multipliers converge
to the Lagrange multipliers of u.

e Subsection [I1.5] Almost optimality of u at small scales.
In this subsection, we show that if u is a solution to , then it minimizes JFy
in every ball B,, up to an error that depends on the radius r and vanishes as
r — 0. At this point, the regularity of the free boundary (Theorem follows by
the same arguments that we used for Theorem [I.2] and Theorem [I.4] the necessary
modifications being pointed out in the sketch of the proof given in the introduction.

11.1. Existence of minimizers. In this section we prove that there is a solution to the
problem ([11.1). This follows by a standard argument which can be divided in two steps.
We will first show that there is a solution u to the auxiliary problem

min {fo(u,p)  we HY(D), u—v e H(D), |Qf ND| < m} (11.2)

and then we will prove that the constraint is saturated, that is, every solution w of ({11.2])
is such that |, = m. We give the details in the following proposition.

Proposition 11.1 (Existence of minimizers). Let D be a connected bounded open set in
R, v € HY(D) be a non-negative function and 0 < m < |D|. Then,

(i) there is a solution to the variational problem (L1.1);

(ii) the function u € HY(D) is a solution to if and only if it is a solution to (11.2);

(iii) every solution (to (11.1) and (11.2)) is a non-negative subharmonic function in D
and, in particular, is defined at every point of D.

Proof. We will proceed in several steps.

Step 1. There is a solution to the auziliary problem (11.2). This follows by a direct
argument. Indeed, let u, be a minimizing sequence for , that is, u, —v € H(D),
1 N D] <m and

lim Fo(un, D) = inf{fo(u, D) : ue H(D), u—v e HY(D), |9 nD| < m}
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Then, up to a subsequence, u, converges weakly in H!(D), strongly in L?(D) and pointwise
a.e. in D to a function us € H'(D) such that us — v € HE (D). Then, we have

Fo(too, D) < lirginffg(un, D),

and, by the pointwise convergence of u, t0 U,

Luso) <lminflg, o) and  [{us > 03] < liminf [{u, > 0}| <m,

which means that u., is a solution to (|11.2)).

Step 2. Every solution u to (11.2]) is non-negative. Indeed, this follows simply by the fact
that if u = uy —wu_ is a solution to (11.2)), then the function u4 still satisfies the constraints
uy —v € H}(Q) and |Q,, | < m, and we have

Fo(u, D) = Fo(us, D) + Fo(u—, D) < Fo(us, D),
with an equality if and only if u_ = 0.
Step 3. Every solution u to is subharmonic. This follows by the fact that
Fo(u, D) < Foly, D),

for every ¢ < u with the same boundary values as u. In particular, this means that u is
defined pointwise. In fact, we simply consider the representative of u defined as

u(xp) := lim u(z) de = lim wdHL.
r—0 By (x0) r—0 OB, (x0)

Step 4. FEvery solution u to satisfies the condition |€,| = m. Indeed, suppose
that this is not the case. Let rg > 0 be such that |B,,| < m — |Q,|. Take z¢p € D and
r < min {ro, dist(zo,0D)}. Let h be the harmonic extension of u in By(z), that is, h is a
solution of the PDE

Ah =0 in B,(xp), h=u on 30B(xg).
Then, let u be the competitor defined as
u=nh in By(xp), u=u in D)\ B,(xg).

Then, |Qz| < m and so, the optimality of u gives

0 > Fo(u, D) — Fo(u, D) :/ |Vh]2dx—/ |Vu]2dx:/ |V (u — h)|? dz,
T(IO) BT(mO) BT(xO

B
which means that h = u in B,(zp). In particular, we get that the set {u > 0} is open: if
u(xg) > 0, then UCBT(wo) u(x)dx > 0 for some r small enough, but then v > 0 in B,(xg)

because it coincides with its (non-zero) harmonic extension.On the other hand {u > 0} is
also closed. Indeed, if there is a sequence of points z,, converging to xg such that u(z,) > 0,
then the harmonic extension of u in B,(xg) is non-zero, so it is strictly positive, and so,
u(zp) > 0. Since D is connected, this means that {u > 0} = D, which is a contradiction
with the fact that [Q,| <m < |D].

Step 5. w € HY(D) is a solution to (11.2) if and only if it is a solution to (11.1]). This is a
trivial consequence of Step 4. O

In the rest of this section, without loss of generality, we will only consider functions
u € H'(D), which are non-negative and satisfy the following optimality condition:

v—u € H}(D),

(11.3)
’Qu’ = |Qv|

Fo(u,D) < Fo(v,D) for every v & H'(D) such that {
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11.2. Euler-Lagrange equation. In this subsection, we will prove the existence of a
Lagrange multiplier for functions satisfying (11.3). We will follow step-by-step the proof
from [46]. Our main result is the following.

Proposition 11.2 (Euler-Lagrange equation). Let D C R? be a connected bounded open
set and let the nonnegative function u : D — R be a solution of (11.3). Then, there is a
constant A, > 0 such that

dFo(u, D)[€] + Au/Q divéde =0  for every €€ CX(D;RY). (11.4)

We start with the following lemma.

Lemma 11.3 (Variation of the measure). Let D be a connected open set in R and let
Q2 C D be a Lebesgue measurable set such that 0 < || < |D|. Then, there is a smooth
vector field ¢ € C°(D;R?) such that

/ divédr = 1.
Q

Proof. Assume, by contradiction, that we have
/ divédr =0 for every £ € C*(D;RY). (11.5)
Q

In particular, for every ball B,(x¢) C D, we may choose £ to be the vector field

§(z) = (z — 20)Pe(2),

where
14+e¢ep

0<¢.<1 and |V < in  By(xo),

¢ =1 in B,q_c(0) and ¢ =0 on 0B,(xo).
By (11.5)), we have

0= /Qdivgdx = /Q (doe(z) + (z — x0) - Voo (z)) dx.

Passing to the limit as € — 0, we obtain

d|QN By(zo)| — pHT (2N OB, (20)) = 0.

In particular, we get that
9 (120 B, _
dp p? ’
which means that the function p — p~¢|Q N B,(z¢)| is constant. In particular, if 7o € B, is

a point of zero Lebesgue density for €2, then 2 has zero Lebesgue measure in a neighborhood
of 9. Precisely, setting r(z) := dist (2, R? \ D) we have that

If 20€Q® | then [QN B,y (z0)] =0. (11.6)
Now, notice that ((11.6)) is both an open and a closed subset of D. Since, by hypothesis, D
is connected, we have that Q) = D or Q) = (§, which concludes the proof. OJ

Proof of Proposition [T1.2. Let ¢ € C°(D;R%). Using the notations from Lemma for
any (small enough) ¢t € R, we set

\I’t:Id—f—tg, q)t:\l’t_l and UtZZUO\Ift.
By Lemma 9.5, we have that

10, = |0 +t/ div&dx + o(t) and Fo(ug, D) = Fo(u, D) + t 6Fo(u, D)[E] + o(t).

u
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Now, let the vector field & € C°(D;R%) be such that

/ divégdr = 1.
Qy
We are now going to prove that (11.4) holds with

Ay = —0Fo(u, D)[&o].
We fix £ € C°(D;R?) and we consider two cases.
Case 1. / divédx = 0.
Qy

Let & (=& —n&y , where n > 0 is a real constant. Then, we have

/ divéy de = —n.
Qo

Setting u; = u o @, where ®; := (Id + t&) !, we have that, for ¢+ > 0 small enough,
ug € HY(D)  and Q] < |Qu].
By Proposition (see Step 5 of the proof), we have that
Fo(u, D) < Fo(ut, D).

Taking the derivative at t = 0, we obtain

6Fo(u, D)[&] = 0,
which can be re-written as

6Fo(u, D)[§] = 1 6Fo(u, D)[So]-

Since 7 is arbitrary, we can deduce that

dFo(u, D)[¢] > 0.
Finally, repeating the same argument for —¢ instead of £, we obtain that

6.Fo(u, D)[¢] = 0,
which concludes the proof of in this case.

Case 2. / divédx # 0.
Qy

Let & =€ — 50/ div & dx. Then / div&s dx = 0 and, by Case 1, we obtain

u Qu

0= 67y(u, D)[&2) = 6Fu(u, D)E] ~ 6Fo(u, D)l&o) | divedo

u

= 0Fo(u, D)[E] + Ay [ divEda,
Qy

which concludes the proof of ((11.4)).

It only remains to prove that A, > 0. Indeed, let u; = u o ®;, where ®; = (Id — t&)~ L.
For ¢t > 0 small enough, we have that |Q,,| < [Q,|. We reason as in Case 1. By Proposition
we get that Fo(u, D) < Fo(u, D). Then, taking the derivative at ¢ = 0, we deduce

Au = (5]:0(’11,, D)[—fo] Z 0.

The strict positivity of A, is more involved and follows by Proposition which we prove
in the next subsection. (|
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11.3. Strict positivity of the Lagrange multiplier. In this section we prove that the
Lagrange multiplier from Proposition [11.2]is strictly positive. Precisely, we will show that a
function, which is critical for the functional F{ has a monotone Almgren frequency function
N(r). Now, the monotonicity of the frequency function implies that u cannot decay too fast
around the free boundary points. On the other hand, if w is harmonic in €,, then we can
use a Caccioppoli inequality to show that if the Lebesgue density of €2, is too small, then
the decay of v on the balls of radius r should be very fast. The combination of these two
estimates implies that the Lebesgue density of €2, should be bounded from below at every
point of D. In particular, there cannot be points of zero Lebesgue density for €2, in D. The
results from this subsection come directly from [46], but this unique-continuation argument
goes back to the work of Garofalo and Lin [34]. The main result of this subsection is the
following.

Proposition 11.4. Let D be a connected open set in RY. Suppose that u € H' (D) is a
non-identically-zero function such that

(a) u is a solution of the equation
Au=0 in Q,={u#0}
(b) u satisfies the extremality condition
§Fo(u)[§] =0 for every &€ CX(D;RY),
where 6 Fo(u)[€] is the first variation of Fy in the direction £ and is given by

§Fo(u)[€] := /D [2vu - DE(Vu) — |Vu|2div£} dz. (11.7)

Then, |D \ Q,| = 0.

Remark 11.5. It is sufficient to prove Proposition in the case u > 0. In fact, if
u : D — R satisfies the hypotheses (a) and (b) above, then the function |u| : D — R
satisfies the same hypotheses.

In the proof of Proposition we will use the following Faber-Krahn-type inequality,
which was first proved in [10] (we report here the original proof).

Lemma 11.6 (A Faber-Krahn inequality, [10]). There is a dimensional constant Cy > 0
such that for every ball B, C R and every function v € HY(B,) satisfying

0B, _ 1
B "2

we have the inequality

2/d
/ v?dr < Cyr? (W) / \Vo|? de, (11.8)

where we recall that Q, = {v # 0}.

Proof. We first notice that:

e We can assume that v is non-negative in B,.. In fact, for every v € H'(B,), we have
that |v| € H'(B,) and the following identities do hold:

Qu = Q| v? = |v]? and |Vol? = | V||

e We can assume that » = 1. Indeed, setting v,(z) = v(rz), we have that

\QvﬂBT|:rd\QwﬂBl|, / UQd{L‘:?“d/ vfdx,
B, B

/ |Vv\2dx—rd_2/ Vo, | dz .
B, B
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We now proceed with the proof of (11.8]) in the case r =1 and v > 0 on Bj.

Step 1. We claim that there is a dimensional constant Cjs, > 0 such that

- 1
|Q]d71 < Ciso Per(2; By) for every QC B, with [Q] < 5]3r|, (11.9)

where Per(2; B;) is the relative perimeter in the sense of De Giorgi. The claim follows by
a standard compactness argument.

Step 2. Let n € N and let D,, = {x-v; > 0} N{z-v2 > 0} be the unbounded domain
formed by the intersection of the two hyperplanes {z -1 = 0} and {z - vy = 0} forming (an
interior) angle 27/n. We claim that, for every Q C B; satisfying Q| < %¢, there is a radius
p > 0 such that

|B, N Dy| = |9 and Per(B,N Dy; Dy) < Per(§; By). (11.10)

Indeed, for every (2, there is a unique p > 0 such that [B,ND,| = |2|. We set Q* := B, N D,,.

Then, we have

(d—1) —(d—1) (d—1) n_(d ~V/a nl/‘i
QT =y [B,|“ VM = Per(B,) = —— Per(Q*; D).
P 1/a P 1/a
o T
wd wd

Now, the isoperimetric inequality (11.9)) implies

1/d
Per(; D) > Cl|0" Vi = cpljan“ V= ot

150 180 1/4
dw d/

Per(Q2; Dy,).

Taking n large enough, such that n'/¢ > Cj,, dw;/d, we get P(Q2; D) > Per(Q*; D,), which
proves ((11.10)).

Step 3. For every non-negative function v € H'(B;) we define the symmetrized function
v. € HY(D,,) obtained through the symmetrization of each level of v, that is,

{ve >t} ={v>t}* for every t>0.

We claim that

/ vfdx:/ v? dx and / ]Vv*|2d:c§/ |Vol? dz . (11.11)
n Bl n Bl

The first part of (11.11)) follows by the area formula

/ vfd:v:/ t!{v*>t}|dt:/ t|{v>t}|dt:/ o dz,
D, 0 0 B1

while for the second part we will use the co-area formula. Indeed, setting

f@) = {v >t} = [{v" > t}],
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we have

/Bl |Vo|? dz = /;oo (/{Ut} \Vv]d’Hd‘1> dt
Z/W(/ \Vv]‘ld%d_l)A(Hd_l({v:t}ﬂD))th
0+oo {v=t} 2
:/ FO (M (e =0 B) d
0
> /O+°° e (del({y* =t}n Dn)>2 dt

+oo
:/ (/ |VU*\dH1> dt:/ Vo, |2 dz,
0 {v«=t} D,

where the first inequality follows by Cauchy-Schwartz and the second one is a consequence

of (TT1.10).

Step 4. We claim that there is a constant Cy, > 0, depending only on d and n, such
that

/ vidx < Cyp [{vs > 0}|2/d/ |V, |? da . (11.12)
Dy,

n

Let 0y : R? — R be the radially decreasing function defined by

/6* (3]') - ’U*(y>7
where y € D,, is any point such that |z| = |y|. By the classical Faber-Krahn inequality in
R?, there is a dimensional constant Cy; such that

/ 72 de < Cg|{5, > o}f/d/ IV, | da .
R4 Rd

which gives that

/ v2de < C’an/d‘{v* > 0}‘2/(1/ Vv, |? dz,
Dy,

which is precisely (11.12)). This, together with (11.11)), concludes the proof. U

In the next lemma, we prove that the Almgren frequency function is monotone. This is
a classical result, which was first proved by Almgren [2].

Lemma 11.7 (Almgren monotonicity formula). Let u € H'(Bg). Forr € (0, R], we define
H(r):= / uw? dH! and D(r):= / |Vul|? de
0B, B,

and, if H(r) # 0, we define the Almgren frequency function
(r):="2 ((:)) .
Suppose that u is a solution of the equation
Au=0 in Q,={u#0};
and satisfies the extremality condition
§Fo(u)[§] =0 for every &€ C°(Br;RY),

where 0 Fo(u)[€] is given by (11.7)). If, moreover, H > 0 on the interval (a,b) C (0, R), then
the frequency function N is non-decreasing on (a,b).
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Proof. We first calculate the derivative of H

H'(r) = d- 1H(7") + Td_la/ uw?(re) dH 1 (2)
r or Jog,
_d- 1H(7’) + 2/ u%d?-ld*1 = EH(r) + 2/ \Vu|? dz,
T oB, n T B,
which we rewrite as g1
H'(r) = ——H(r) +2D(r). (11.13)
r

Next, we notice that the extremality condition 0.Fy(u) = 0 gives that the following equipar-
tition of the energy does hold:

2
0=—(d— 2)/ |Vul? dz + 7“/ |Vau|? dHT — 21“/ (8“> dH
” 8B7‘ 8Br an

which can be rewritten as

—(d—2)D(r) +rD'(r) = 2r /BBT (an>2 A

We now compute the derivative of V.
D(r)H(r) 4+ rD'(r)H(r) — rD(r)H'(r)

N = )
_ D(r)H(r) 4+ rD'(r)H(r) — rD(r) (#H(r) + 2D(7“))
H2(r)
_ —(d—2)D(r)H(r) +rD'(r)H(r) — 2rD*(r)
H2(r)
_ 2 @ ? d—1 _ 12
— 7H2(r) <H(r) /8& <8n) dH D (r)) . (11.14)

Notice that, since u is harmonic in €2,, we have

D(r):/ |Vu|2da::/ u@ dH 1,
. P

on
B,
and so, by the Cauchy-Schwarz inequality and (11.14) we obtain N’(r) > 0. a
Remark 11.8 (The derivative of In H). Notice that, by (11.13), we get that
d H(r) N(r)
— |1 =2—. 11.15
dr [Og<rd—1>] r ( )

We are now in position to prove Proposition [T1.4]

Proof of Proposition [11.4] Let zp = 0 € D. We set H(r), D(r) and N(r) to be as in
Lemma [11.7] and Remark [11.8] Let 79 > 0 be such that By, (z¢) C D and H(rg) > 0. Since
u € H'(D), there is some € > 0 such that H > 0 on the interval (rg — &,79). Then, the
function r — N(r) is non-decreasing in r and so

N(r) < N(rg) forevery rog—e<r <.

d [log (H(r)ﬂ _ LN _ 2N(r), (11.16)

r rd—1

By (11.15)), we have

T r

U

and integrating we get

H H
o (2400 g (H)) <o ()2 ey mme <

d—1 d—
o r
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This means that, for every € > 0, H is bounded from below by a positive constant on the
interval [ro — €, 79]. In particular, H > 0 on (0, rg]. Thus, we can take £ = ry.

Let now, r € (0,70/2]. Integrating the inequality (11.16]) from r to 2r, we get
H(2
log <H((:))> < (d—1)log 2 + 2log 2 N (ro).

This implies that

H(2r) < 247 14N0o) () for every 0<r< %0.

Integrating once more in r we get

/ u?dr < 2d_14N(TO)/ u? dx for every 0<r< %. (11.17)
Bay

r

We next prove a Caccioppoli inequality for  in the ball By,. Indeed, let ¢ € C2°(RY) be a
cut-off function such that

¢=1 in B., ¢$=0 on R4\ By, 0<¢<1 and |V$| <2/ in By \B,.

Since, u is harmonic in £2,, the following Caccioppoli inequality does hold:

/ |Vu|? da < / |V (ug)|* dx = / (W?|Vo|* + Vu - V(ug?®)) d
T Ba Bar

4
:/ u2|V¢)]2dm—/ u¢? Au dx :/ u?|Vo|* de < 2/ u? dx.
B2r B2r BQT r BQT
On the other hand, by Lemma there is a dimensional constant Cy; > 0 such that:

Q/d
9 9 |QumB,,|> / 9 Q. NB| 1
wdr < Cyr| ———— Vul|* dx whenever —_— < -
e < (B v B =2
This, together with the Caccioppoli and the doubling inequality (11.17]), gives that

2/d
/ w?dr < Oy <W> 4N (o) u?dx.
: | Br| B,

Since, / u? dx > 0, we get that there is a dimensional constant Cy such that

. 1 1 ’QuﬁBT’ 0
mln{Q’Cd2N(T0)d} < B for every O0<r< CR

In particular, we have a lower density bound for €2, at every point of D, which implies that
|D\ Q| = 0 and concludes the proof. O

11.4. Convergence of the Lagrange multipliers. In this subsection we prove that the
Lagrange multipliers, associated to the solutions of variational problems with measure con-
straint in a fixed connected open set D C R?, are continuous with respect to variations of
the constraint. This fact will be used several times in the proof of the optimality of the
blow-up limits. In the next Lemma, which comes directly from [46], we will use the notation

dVol (2)[¢] ::/divfd:c,

Q
for every Lebesgue measurable set 2 C R? and every vector field £ € C°(R%; R?).

Lemma 11.9 (Convergence of the Lagrange multipliers). Let D be a connected bounded
open set in R and let u € HZ (D) be a non-negative function for which does hold.
Let A, be the Lagrange multiplier from inD.

Let B C D be a connected bounded open set such that 0 < m := |, N B| < |B].
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Let (my),>; be a sequence such that hm myp = m and let u, € H'(B) be a solution (which
exists due to Proposition _) to the problem

min {fo(v,B) cv€ HY(B), v—u€ H}(B), |Q| = mn} (11.18)

Then, we have:

(i) for every m, there is a Lagrange multiplier A, > 0 for which

6Fo(tn, B)[€] + Ay, 0Vl (Q,)[E] =0 for every € € C(B;RY), (11.19)
(ii) for every n, there is a vector field &, € C°(B;R?) such that
0 Fo(un, B)[&n] + Ay, =0 and  6Vol (Qy,,)[&n] = 1. (11.20)

(i4i) u, converges strongly in H(D) and pointwise almost everywhere to a function e,
which is a solution to the problem

min {]:O(U,B) . ve HY(B), v—ue HB), |0 :m}; (11.21)

(iv) the sequence of characteristic functions 1, converges to lq,_  pointwise almost ev-
erywhere and strongly in L*(D);

(v) li_>m Ay, = Ay, where Ay > 0 is the Lagrange multiplier of us in B, that is,
n—oo

6Fo(tso, B)[E] + Ay 0VOL(Q, )[E] =0 for every € € CX(B;RY), (11.22)
(vi) Suppose that B # D and that there is a connected component C of D\ B such that
0<|Q,NC|l<|C],
then Ay = Ay.
Proof. The existence of a solution u, follows from Proposition [11.1] The existence of a

Lagrange multiplier A, and a vector field &, € C®(B;RY) with the properties (11.20])
follows by Proposition Let & € C°(B;RY) be a vector field such that

5fo(u, B)[fo] +A,=0 and  §Vol(Q,)[E] =1.
Setting u; :=wo (Id+ tgo)_l, we get that, for ¢ small enough, u; — u € H&(D). Moreover,

to every n large enough, we can associate a unique t,, € R such that
u —uy, € Hy(B) and Q| = My = |Quyy, |-

Thus, we can use u, as a test function in (11.18). Thus, there is a constant C' depending
only on u and £y such that, for every n large enough (say n > ng for some ng € N), we have

Fo(un, B) < Fo(uy,,B) < C.

Then the sequence (uy),~; is uniformly bounded in H*(B) and so, up to a subsequence,
uy, converges weakly in H' ! strongly in L? and pointwise almost everywhere to a function
Uoo € H'(B) such that us —u € H}(B). In particular, the pointwise convergence of u,, to
Uso implies that
]lQuoo < lim inf ]lQUn

Thus, we get that

|| < liminfm, =m,
and so, the minimality of «w implies that

Fo(u, B) < Fo(too, B).
On the other hand, the weak H' convergence of u,, gives that

Fo(uso, B) < lirr_l)inffo(un,B) < lirginffo(utn,B) = Fo(u, B),
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so, we get Fp(uso, B) = Fo(u,B). Thus, us is a solution to (11.21) and [Q,_| = m.
Moreover, using again the optimality of u,, and the fact that u;, converges to u, we obtain
lim sup Fo(un, B) < limsup Fo(us,, B) = Fo(u, B) < Fo(uoo, B) < liminf Fo(uy, B),
n—o00 n—00

n— o0
which gives that
lim Fo(up, B) = Fo(tso, B).
n—oo
Since u,, converges strongly in L?(B) and weakly in H'(B) to us, we get that the conver-
gence of U, t0 Uy is strong in H'(B).
We next prove (iv). We will first show that 1o, convergence strongly in L*(B) to 1q,__.

Indeed, we first notice that, up to a subsequence, there is h € L?*(B) such that 1o, — h
weakly in L?(B). On the other hand, the pointwise convergence of u,, to us implies that

lg, <liminflq, .
o n—00 n

Thus, for any non-negative function ¢ € L?(B), the Fatou Lemma implies that

/]lguOogpd:L‘S/liminfﬂgu"gpdxgliminf/ ]lguncpdx:/ hpdz ,
B B B B

which yields 1, < h. In particular,
102205 > Q] = m.
On the other hand, the weak L? convergence of Lq,, to h gives that
2 .. 2 .
1Pl122(5) < liminf g, [[72(p) = lim my, =m.
As a consequence,
1413205y = lm ||, 32z = m.
which implies that 1, converges to h strongly in L?(B). Now, since
lg,, <h and HhHQm(B) = [Qu.| =m,

we get that h = 1g, , from which we conclude that 1, converges to 1, strongly in
L?(B), and so, up to a subsequence Ig,, converges to 1q, —pointwise almost everywhere.

We now prove (v). We first notice that u and us are both solutions of (11.21)). By
Proposition there is a Lagrange multiplier Ay := A,_ > 0 such that (11.22)) does

hold. Moreover, by (iii) and (iv), we get that, for every fixed £ € C>°(B;RY),
0Fo(uoo, B)[E] = 1i_>m dFo(un, B)[¢] and oVol (2,.)[¢] = li_>m dVol (2y,,)[]-

Now, choosing any & € C°(B; R%) such that / div&dx # 0 and using ((11.22)) and ((11.19))

Uoo

we get that A, converges to As.
We prove the last claim (vi). Indeed, since

Fo(u, B) = Fo(uso, B) and || = QN Bl =m,
we get that the function
- {uoo in B
U=

w in D\ B,
is in H1(D) and is a solution to the problem
min {}"o(v,D) . ve HY(D), v—ue HH D), Q| = ]Qu]}.
In particular, u is a critical point of Fj__ in the entire D, that is,
6Fo(U, D)[€] + AoodVOl (Q3)[€] =0 for every € € C°(D;RY).
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On the other hand, in the connected component C, we have that w = v and so, there is a
vector field &) € C2°(C; RY) such that 6Vol (2,,)[€)] = 6Vol (Q7)[£)] = 1. This implies that

Ao = AsodVOlL (Q3)[£0] = —6F0(w, D)[E)] = —6Fo(u, D)[E)] = AudVol (Q2,)[E])] = A,
which concludes the proof. O

11.5. Almost optimality of v at small scales. Let D C R? be a connected bounded
open set and v : D — R be a non-negative function satisfying . In this subsection, we
will prove the following result, which is analogous to the results of Briancon [5], Briangon-
Lamboley [7], and the more recent [46], which are all dedicated to different (and technically
more involved) free boundary problems arising in Shape Optimization.

Proposition 11.10. Let D be a connected bounded open set in R? and let u € H'(D) be a
non-negative function satisfying . Let A > 0 be the corresponding Lagrange multiplier,
that is, A is such that 0Fa(u, D) = 0. Let B C D be a ball such that:

e 0<|QNB|<|B|;

e D\ B is connected:

e 0<|Q,ND\B|<|D\B|.
Then, for every € > 0, there exists v > 0 such that u satisfies the following optimality
conditions in every By(xg) C B:

—u € Hj(B,

Fage(u, D) < Fare(v, D) for every v € H' (D) such that {|UQ |U<E‘Q 0‘( (20)), (11.23)
— H} (B,

Fa—e(u, D) < Fa_o(v,D) for every v e H' (D) such that {rQ |u>€|Q 0|( (z0)), (11.24)

Remark 11.11. An immediate consequence of the inwards (11.24]) and the outwards ((11.23|)
optimality is that u satisfies the following almost-minimality condition:

Fa(u, D) < Fa(v, D) +¢|B,| for every v € HY(D) such that v —u € H} (B, (x0)).

In order to prove Proposition [11.10| we will use the contradiction argument of Briancon
[5]. The proof presented here follows step-by-step the exposition from [46] and uses only
the existence of a Lagrange multiplier, variations with respect to smooth vector fields and
elementary variational arguments. Roughly speaking, the main idea is to replace the local-
ization condition u — v € H}(B,) in (11.24) and (11.23) by a bound on the measure of €,
12, < |9y| + 6, for which the passages to the limit are somehow easier. Proposition
is a direct consequence of Proposition

Remark 11.12. We notice that we work in the ball B C D only because of the fact that we
will use several times the convergence of the Lagrange multipliers associated to solutions of
auxiliary problems. Indeed, in order to assure the convergence of these Lagrange multipliers
to A (the Lagrange multiplier of the solution ), we need to work strictly inside the domain

D (see Lemma claim (vi)).

Definition 11.13 (Upper and lower Lagrange multipliers). We fiz u, D and B to be as
in Proposition [11.10L. We set m := |, N B|. For any constant § > 0, we define the upper
Lagrange multiplier p4(6) as follows:

t+(0) = inf {,u >0 for which (11.25)) does hold} , where

u—v € H}(B),

(11.25)
m < Q| <m+4.

Fu(u,B) < Fu(v,B)  for every ve& H'(B) such that {

Analogously, we define the lower Lagrange multiplier p_(0):
p—(6) = sup {,u >0 for which (11.26]) does hold} , where
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u—v € H}(B),

(11.26)
m—0<|Q <m.

Fu(u,B) < Fu(v,B) for every v € H'(B) such that {

Lemma 11.14. Suppose that D is a connected bounded open set in R and that u € H'(D)
18 a given non-negative function such that:

(a) u#0 and |D \ Q,| > 0;
(b) w is stationary for Fu, that is,

dFA(u,D)[E] =0 for every £ € C°(D;RY).
Then, we have the following claims:

(i) Suppose that there are 6 > 0 and p > 0 such that u satisfies (11.25). Then, A < p.
(ii) Suppose that there are § > 0 and p > 0 such that u satisfies (11.26]). Then, A > pu.

Proof. Let us first prove claim (i). By Lemma and the hypothesis (a), we get that
there is a vector field & € C°(D;R?) such that

d
oVol (Qu)[f] = a)t:0|9ut| = ]-7

where u; = uo (Id +t€)~!. Since for ¢ small enough, we have that |Q,| < [Qy,| < [Qu] + 6,
the minimality of u gives that
Fu(u, D) < Fu(ug, D).

Thus, taking the derivative at t = 0, we get that

d d d
o< .D)=2 D —A—’ Q| = i — A,
—dt t:o}—“(ut ) dt t:o}—A(ut )+ )dt t:O‘ | =n
which proves (i). The proof of (ii) is analogous. O

As an immediate corollary, we obtain the following lemma.

Lemma 11.15 (u_ < Ay < py). Let D be a connected bounded open set in R and
u € H'(D) be a non-negative function such that (11.3)) holds. Let m = |Q,| and A, > 0 be
the Lagrange multiplier of w in D, that is,

dFo(u, D)[€] + Ayd Vol (2,)[€] for every £ € C®(D;RY).
Let B, pu4(9) and p—(0) be as in Definition . Then, for every 6 > 0, we have
p—(6) < Ay < 1 (6).
Notice that we still might have p_(8) = 0 and p4 () = +o00. In Proposition [11.16] below

we will prove that this cannot occur.

Proposition 11.16 (Convergence of the upper and the lower Lagrange multipliers). Let D
be a connected bounded open set in R, Let u € H' (D) be a non-negative function satisfying
the minimality condition i D and let Ay, > 0 be the Lagrange multiplier of u in D,
giwen by Proposition [I1.2. Let B C D be as in Proposition [11.10} Then, we have

lim 414.(6) = lim pi_(6) = Ay

Proof. We will work only in the ball B. The presence of the larger domain D is only
necessary to assure the convergence of the Lagrange multipliers (see Lemma for the
different auxiliary problems that we will use below. We will proceed in three steps.

Step 1. We will first prove that u4(9) < +oo, for every § > 0. This is equivalent to prove
that there is some p > 0, for which the minimality condition is satisfied. Assume,
by contradiction, that for every n > 0, there exists some function u,, € H'(B) such that

Fn(tn, B) < Fp(u, B), u, —u € Hy(B) and  m <|Q,,|<m+o0.
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Thus, if v, is a solution of the auxiliary problem
min { Fo(v, B) + (|| —m), : ve H(B), v—ue Hy(B), || <m+4}, (11.27)
then, we have that

Fo(vn, B) < Fo(vn, B) +n(|Q,| = m) , < Fulun, B) +n(|Qu,| —m) (11.28)

< Fo(u, B) + n(|Q] — m)Jr = Fo(u, B).
Thus, by Proposition (Step 5 of the proof), we obtain [, | > m. Thus, we may assume
m<|Q,|<m+9d for every neN.
Using again (11.28]), we obtain
Fo(vn, B) + n(|Qvn| — m) < Fo(u, B),

which, in particular, implies that

1
|2y, | — m < —Fo(u, B) and lim [, | =m.
n

n—o0

Now, notice that, setting m,, := [, |, we have that v,, is a solution of
min {Fy(v,B) : ve€ H'(B), v—u € H)(B), [Q|=m,}.
In particular, there is a Lagrange multiplier A,,, such that
6Fo(vn, B)[€] + Ay, VOl (2,)[€] =0 for every ¢ € C°(B;RY),
and a vector field &, € C2°(B;R?) such that
oVol (2y,)[¢n] = 1.
We set vl = v, o (Id +t&,)~ . Choosing t > 0 small enough and n € N big enough, we get

1
vl —u € H}(B) and m < |Qut | <m+ —Fo(u,B) <m+9.
n n

Then, by , we have
Fo(n, B)+n(|Q0,| — m) < Fo(vh, B) +n(|Qy | —m)
= Fo(vn, B) 4+ t 0Fo(vy, B)[&n] + n (|, | 4 t8V0l (y,)[6n] — m) + o(t)
= Fo(vn, B) — tAy, +n(|Qu, | +t —m) + o(t),
which implies n < A,, . On the other hand, Lemma implies that
lim A,, = A, < o0,

n—oo

which is a contradiction. This concludes the proof of Step 1.

Step 2. In this step, we prove that %iH(l] pt(0) = Ay
—

Let 9, be an infinitesimal decreasing sequence. We will prove that h_)m Pt (0n) = Ay
n—oo
Fix € € (0,A,) and set «,, to be

0 < ap = py(0n) —e < pug(n).
We will show that, for n big enough, a,, < Ay. Let u,, € H'(B) be solution to the auxiliary
problem

min {Fo(v,B) +on (|| —m), 1 ve HYB), v—ue HYD), || < m+5n}. (11.29)

+
We consider two cases:

Case 1 (of Step 2). Suppose that |2y, | < m. Then, the optimality of u gives
Fo(u, B) < Fo(un, B).
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On the other hand, the optimality of u,, gives
Fo(u, B) + an(‘QU‘ - m) = Fo(u, B) + an(mu, - m)+ < Fo(un, B) + an(|Qun| - m)
< Fo(v, B) + an(|QU| — m)+ = Fo(v,B) + an(mv\ - m),

+

for every v € H(B) such that u — v € H}(B) and m < [Q,| < m + §,, which contradicts
the definition of 4 (dy).

Case 2 (of Step 2). Suppose that m < |§,, | < m + 0. Notice that, setting m, = [Qy,, |,
the solution u,, to is also a solution to the problem
min {fo(v,B) ve HY(B), v—ue HNB), || = mn}
By Proposition there is a Lagrange multiplier A,,, > 0 such that
6 Fo(tn, B)[€] + Ay, 6Vol (Q,,)[€] =0 for every ¢ € C°(B,;RY),

and a vector field &, € C2°(B,; RY) such that 6Vol (,,)[¢,] = 1.
We set ul, := u, o (Id+t&,)"!. By the minimality of u,, for t < 0 small enough, we have

Foltn, B)+an (|, | —m) < Fo(ul, B) + an(|Qye | —m)
= Fo(un, B) + t 6Fo(un, B)[&n] + o (|Qu, | + 1 VOl (Qu,, ) [€n] — m) + o(2)
= Fo(un, B) — tAy, + o (|Qu, |+t —m) + o(t),
from which we deduce that A,, > a,. Now, by Lemma we get that
nlg]go ps(0p) =+ nh_)r{)lo op < e+ nh_)rgoAun =+ Ay,
Since Ay < p4(d,) and € > 0 is arbitrary, we get the claim of Step 2.
Step 3. In this last step we will prove that %ii% p—(0) = Ay.

It is sufficient to show that, for aby decreasing infinitesimal sequence &, — 0, we have
Ay = lim g (65),

Precisely, we will show that for any fixed constant € > 0, we have A, —e < lim u_(dy).
n—oo

Let ), := p—(0,) + € and u, be a solution of the problem
min { Fo(v, B) + Bu (1] = (m = 8,)), + v e H'(B), v—u e HY(B), || <m}.

We consider three cases:

Case 1 (of Step 3). Suppose that |y, | = m.

By the minimality of u, we have that Fy(u, B) < Fo(un, B). Now, the minimality of u,,
gives that, for every v € H'(B) such that v —u € H}(B) and m — &, < || < m, we have

F()(U,B) + /Bn‘Qu‘ < fO(uan) + /Bn’Qun| < FO(U)B) + Bn|Qv|7

which contradicts the definition of p_(d,).
Case 2 (of Step 3). Suppose that |y, | < m — o,.
Then we have
Fo(un, B) < Folun + te, B),

for every ¢ € C°(B) with sufficiently small compact support. This implies that w, is
harmonic in B. By the strong maximum principle, we obtain that either u, =0 or u, >0
in B, which is impossible for n large enough.

Case 3 (of Step 3). Suppose that m — 0p < |Qy,,| < m.

We set my, := |y, |. Then, u,, is a solution to the problem

min{]—"o(v,B) . ve HY(B), v—u e HY(B), || :mn}.
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By Proposition there is a Lagrange multiplier A,,, > 0 such that
6Fo(un, B)[€] + Ay, 0Vol (Q,,)[€] =0 for every ¢ € C°(B;RY),

and a vector field &, € C2°(B;RY) such that §Vol (Qy, )[&,] = 1.
We set ul, := up o (Id + t&,)~!. Let t > 0 be small enough. Then u}, is such that

ul, — v € H}(B) and Q| = mp < Qe | =mp +t+0() <m.
Thus, by the minimality of u,, we get
Folun, BY+Bn (19| — (m = 82)) < Fo(uby, B) + Ba(|s] — (m — 6,))
< Fol(uly, B) + t 6 Fo(un, B)[€n] + B (|, |+t 5VOL (Q4,)[€n] — (m — 8,)) + o(t)
— Fo(ttn, B) = Ayt + B (9| + £ = (m = 8,)) + o(t),
which implies that

Finally, by Lemma [11.9] we get
Ay = lim Ay, < lim p_(d,) + ¢,
n—oo

n—oo

which concludes the proof. O
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12. AN EPIPERIMETRIC INEQUALITY APPROACH TO
THE REGULARITY OF THE ONE-PHASE FREE BOUNDARIES

Throughout this section, we will use the notation
Wo(u) = / |Vu|® de — / w?dHIY and  W(u) = Wolu) + [{u > 0} N By,
B 0By

where Bj is the unit ball in R%, d > 2 and v € H'(By).

The aim of this section is to prove an epiperimetric inequality for the energy W in
dimension two. As a consequence, we will obtain the C™® regularity of the one-phase free
boundaries in dimension two (see Proposition [12.13)). Our main result is the following.

Theorem 12.1 (Epiperimetric inequality for the flat free boundaries). There are constants
S0 > 0 and € > 0 such that: if c € H'(0B1) is a non-negative function on the boundary of
the disk By C R2 and

77—50§”H1({c>0}0831) <7+,

then, there exists a (non-negative) function h € H*(By) such that h = ¢ on OBy and
s T
— =< — — — .
W)~ T <o (We - 1), (12.1)

z € HY(By) being the one-homogeneous extension of ¢ in By, that is, z(x) = |z|c (/j«]).

Ficure 12.1. The positiv- ——
ity sets Qp, and Q,. Here,
0= the trace c¢ s a multiple
of the first eigenfunction on
0 the arc (0,7 + ), 6] < do
(0 < 0 on the left and § > 0
on the right); the competi-
! tor is obtained by moving the =
i the free boundary O, to-

on 0B; ‘

wards the line {za = 0}.

Remark 12.2. On the figures in this section, we will use the following convention:

- [ is the support Q, = {h > 0} of the competitor h;

- is the support Q, = {z > 0} of the one-homogeneous function z;
-/ is the boundary 0Qp,;

-/ is the boundary 99, ;

-/ is the common boundary 9, N 02,.

In Theorem the main assumption on the trace c is that the set Q. C 0By is close
to the half-sphere. In [50, Theorem 1] the epiperimetric inequality was proved under the
different assumption that the trace is non-degenerate. In fact, the epiperimetric inequality
holds without any assumption on the trace ¢ : dB; — R or its free boundary
0, C 0Bj. Indeed, in the Appendix, we will prove the following result, which covers both
Theorem and [50, Theorem 1].

Theorem 12.3 (Epiperimetric inequality). There is a constant € > 0 such that:
If c € HY(OBy) is a non-negative function on the boundary of the disk By C R? then, there
exists a (non-negative) function h € H'(By) such that (12.1) holds and h = ¢ on OB;.

Remark 12.4 (The epiperimetric inequality in dimension d > 2). In higher dimension, the
epiperimetric inequality for the one-phase energy is still an open problem. We expect that
it will still be true under the assumption that the spherical set €. is close to the half-sphere
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with respect to the Hausdorff distance. Indeed, it is an immediate consequence from the
results in [28] that the epiperimetric inequality holds when the free boundary Q. is a C%
regular graph (in the sphere) over the equator.

We stress that in higher dimension the epiperimetric inequality can hold only under some
additional assumption on the distance from the trace to the half-plane solution. Indeed, if
this was not the case (and so, the epiperimetric inequality was true in dimension d without
any assumption on the trace), then the singular set would be empty in any dimension. This
is due to the following remark.

Remark 12.5 (The epiperimetric inequality implies regularity in any dimension). We claim
that if w is a local minimizer of F, in a neighborhood of xg and

Yd o (1-¢) (W(zr,xo) - ﬂ), (12.2)

W(Ur,xo) T 9 = 9

holds, for every r > 0, then xg is a regular point. This is due to the following facts:

e A point xy € 99, is regular, of and only if, the Lebesgue density of €, at zg is
precisely equal to 1/2 (see Lemma [9.22)).
e There are no points of Lebesgue density smaller than 1/2 (Lemma [9.22)).
e The function r — W (u, 4,) is non-decreasing and the limit
lim W (uy 4, )

r—0

is precisely the Lebesgue density of Q,, at 2y (see Lemma [9.20)); in particular
Wty zy) —wif2 >0 for every r > 0.

e Suppose that the epiperimetric inequality (12.2) holds for every r» > 0. Then, by
the Weiss formula (Lemma we obtain the following bound on the energy

Wty z,) —wifz < Cre,

for some o > 0 depending on ¢ (this was proved in ((12.28)), which is the first step
of the proof of Lemma [12.14). Since W (u,4,) — ¢ is non-negative, we get that

. wd

1 = —.

rl_l;l’(l) W(uﬁﬂfo) 2
In particular, z( is a point of Lebesgue density 1/2 and so, it should be a regular
point, as mentioned in the first bullet above.

As a consequence of Remark at the singular points of the free boundary
cannot hold, which means that in higher dimension the epiperimetric inequality can only
be true under the additional assumption that the trace on 0B is close (in some sense) to
a half-plane solution.

In this section, we will prove Theorem and we will show that it implies the regularity
of the free boundary (Proposition . The proof of Theorem will be a consequence
of the following two lemmas. The first one (Lemma is based on a PDE argument
which does not depend on the geometry of the free boundary; this lemma is proved Section
and holds in any dimension d > 2. The second lemma (Lemma reflects the
interaction of the free boundary with the Dirichlet energy; we prove it in Section [12.3.3]
and the prove strongly uses the fact that we work in dimension two, even if the main idea
can be used also in dimension d > 2. Precisely, we use the Slicing Lemma (Lemma
to write the total energy as an integral of an energy defined on the spheres 0B,. Then, we
prove the epiperimetric ineqaulity by writing the second order expansion of the spherical
energy for sets which are graphs over the equator (that is, arcs of length close to ).
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Lemma 12.6. Let 0B; be the unit sphere in dimension d > 2. For every k > 0, there are
constants p € (0,1), € € (0,1) and o > 1, depending only on k and d such that:
If v € HY(OBy) satisfies the inequality

[ Ve antt = @1 [ utan,
0B1 9B,
then, we have

Wolhy) < (1—e)Wolz)  and  W(h,) < (1—e)W(2), (12.3)

where in polar coordinates the functions z, h, : By — R are given by

2(r,0) = r(0) and hy(r,0) = (max{r _ ), 0})04(11!)_(92)&‘

Precisely, we can take

3
K
cTPT (32d2(2m+1)> '

Lemma 12.7 (Epiperimetric inequality for principal modes - the flat free boundary case).
Let By be the unit ball in R%. There are constants 6y > 0 and € > 0 such that:

If the continuous non-negative function ¢ : 0B — R, ¢ € HY(0By), is a multiple of the
first eigenfunction on {c > 0} C 0By and

7T—50§’H1({C>0}ﬂ831) < @+ o,
then, there erists a (non-negative) function h € H*(By) such that h = ¢ on OBy and

win) -2 <1-a) (W) -3),

z € HY(By) being the one-homogeneous extension of ¢ in By. Moreover, up to a rotation of
the coordiante system, we can assume that the function c is of the form

c(f) = c; sin (%)1(0m+5)(0) for some ¢1 >0 and some 9§ € (—0dyp,do).

Then the one-homogeneous extension is given by z(r,0) = rc(0) and the competitor h can
be chosen as (the support of h is illustrated on Figure m

FH@»)) Lo,ntt(r))(0) ,  where t(r) = (1 —3(1 - r)e)é.

h(r, 9) =Cr sin (71—_|_t

12.1. Preliminary results. In this section we prove several preliminary results that we
will use in the proof of Theorem [12.1] (and also in the proof of Theorem [12.3).

This section is organized as follows:

e In Lemma and Lemma, we discuss the scale-invariance and the decomposition
of the energy in orthogonal directions; both these results are implicitly contained in [50].

e The Slicing Lemma (Lemma [12.10) shows how to desintegrate the energy along the
different spheres 0B,, 0 < r < 1. This result appeared for the first time in [28] and was

crucial for the analysis of the free boundary around isolated singularities. We will use it in
the proof of Lemma [12.7] (Subsection [12.3) and also in Subsection [12.2]

We start with the following result, which states that once we have a competitor for z in
By, then we can rescale it and use it in any ball B, (p < 1) by attaching it to z at 0B,.

Lemma 12.8 (Scaling). Suppose that z : By — R, z(r,0) = rc(0) is a one-homogeneous
function and that h € H'(By) is such that h = ¢ = z on OBy. For every p € (0,1), we se

| z(r0) i relp ),
0= {ph(’"/p, 0) if rel0pl
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then, we have
W(hy) — W (=) = (W (R) — W(2).

Proof. We first compute

Wo(h,) — Wo(z) = |Vhp]2dx—/ yv,dex_/ |Vhp|2dx—/ IVz|? da
B1 Bl BP

By

= ([ s [ 9sPae) = gt (Wa(h) - Wal2).
B B
On the other hand, for the measure term, we have
{hy > 0} Bi| = [{z > 0} 1 B| = [{h, > 0} N B,| - |{z > 0} N B,
= p'(I{h > 0} N Bi| = [{z > 0} N Bi]),
which concludes the proof. O

Lemma 12.9 (Decomposition of the energy). Suppose that the functions hy,hy € H'(B)
are such that, for every r € (0,1], we have

Vol (r,0) - Voha(r, 0) db — / ha (. 8)ha(r, 0) df =

Sd-1 §d—1

Then
Wo(h1 + ha) = Wo(h1) + Wo(h2).

Proof. The claim follows directly from the definition of Wy and the formula

1
|Vh|? de = / rdldr/ (|0rh|* + 72| Voh|?) dO
B1 0 0By
which holds for any h € H'(By). O

Lemma 12.10 (Slicing lemma). Let 31 be the unit ball in R?. Let ¢ : (0,1] x S! — R be
a function such that ¢ € H'((0,1] x S'). Then, setting ¢(r,0) = ¢.(0), we have

Wo(re, (0 / Fo(or) rdr—l—/ / Orgr (0 T,
W (re. (0 / F(or) rdr—i—/ /Sl Orpr (0 r, (12.4)

where, for any ¢ € HY(S), we set
Fo(p) = /1 (1090|> — ¢*) aH'  and  F(¢) = Fo(s) + H' ({¢ >0} nS?).

Proof. Let ¢ :]0,1] x 0B; — R. Then,

2 2
Wo(ré(0 / /S (8 +70,6,) + (900,)") dordr - | dte)as

and

- / (62 + 10, (6) + r2(0r0)? + (900,)°) dOvdr — | 63(6)do
0 Jst St

Integrating by parts, we get that

1 1
/ 20, (¢2) dr = % — 2 / 2 rdr,
0 0

Wotror) = [ Fasrar+ [ [ (@0

which implies that
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In order to prove ((12.4)), it is sufficient to notice that

1
{h >0}N By| = / H! ({¢r > 0} NS rdr,
0
where h(r,0) = r¢.(0). O

Remark 12.11 (The energy of a one-homogeneous function). As an immediate consequence
of Lemma [12.10} we get that if ¢ € H(0B) and z : By — R is the one homogeneous
extension of ¢ in By, that is, z(r,0) = rc(0), then

Wo(z):%fo(c) and  W(2) = 27 (c).

12.2. Homogeneity improvement of the higher modes. Proof of Lemma [12.6
Let p € (0,1) be fixed. We will first compute the energy of h,. For this purpose, we will
use the Slicing Lemma, for every r € [p, 1], we set

(max{'r P 0})a Y(0)
r (1—=p)*

¢r(‘9) =

and we compute
)2(1

Folon) = g o) and

2 p\2 (r—p)** > 2
Op|“dl = a—14+ =) ————— do.
/§1 10r¢x| (a + 7“) r2(1 — p)?@ Js1 v
Integrating in r, we obtain
1
/FOd)r dldr— / p)2erd=3dr
p
' 1 Fo(¥)
20hd=3 gy < LNV 12.5
/pr "= o0t d—2(1—p)e (125)

We now compute
/1/ |0r 2d9rd+1dr:/1 (a—1+p)2W rdttdr Y?do
o Jsa—1 o r/ r2(1—p)2e sd—1
< 2 / 1 (@—1)%+ 7Y 2oty W? df.
T (- p)2a p r? Sd-t

Integrating in r € [p, 1] and using that & > 1 and d > 2, we get

1 2 2 2
-1
/ ((a - 1)2 p2> P < < ) : <
P r 4

T 2a+d—2 2a+d-—

N | =
/
(o}
—
S~—
[N}

+

o}
I =
—_
N————

Together with the inequality
1
W df < —Fo(v),
sd—1 K
which we have by hypothesis, this implies
2

' 1
2 d+1 2 P
/p /gd—l ‘aﬂbr‘ do rldr < m ((Ck - 1) + — 1) fo(i/)) (12.6)

Furthermore, it is immediate to check that for every a < 2 and p < % we have

1 1 1

In particular,
(1—p)=2 < 1+128p
20+d—-27 2a+d—-2 " 2a+d—2

+ 64p,
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which, together with (12.5) implies:

/lf(qs) =gy < <1~|—64 >f(¢) (12.7)
, Y =00 - +d p)Iotw): :

Analogously, from (12.6)), we deduce

2

! 2 d+1 16 2 P
/ /Sd_l |0rpr|” dO r® ™ dr < — ((a —1)%+ )J:OW)- (12.8)
p

a—1
We are now in position to estimate the difference Wy(h,) — Woy(z). First of all, we set
0:=a—1.

Using the identity (see Remark [12.11])

Wo(2) = GFo(v),

and the inequalties (12.7)) and ((12.8)), we estimate

1 s P
Wo(hp)—W()( )_(25 d+64d,0—|— <5 + 5)—1>Wo(2)
2
< (=2 4 6adp+ 29 (521 22 Y Wi, (12.9)
d K 1)
We now choose
p=05" and 5 !

T 32d2(2+ k)
Substituting in (12.9), we obtain

26

: 32d
Wo(hy) — Wo(z) < <—d + 64d6°" +

H52> Wo(z)
<46 <c21 +32d(2 + 1/n)51/2) Wo(z) < —%Wo(z).

In particular, the first inequality in (12.3)) holds for any ¢ < ¢/a. In order to prove the
second inequality in ((12.3)), we notice that, by the definition of h,, we have

[{h, >0} N By| = (1—p)|{z >0} N By|.

Thus,
W(h,) — W(z) = Wo(h,) — Wo(2) + [{hy, > 0} N B1| — [{z > 0} N By
< —gWo(z) — p‘{z >0}N Bl‘.
Choosing

£:= 48",
we have that ¢ < §/d and so, we obtain
W(hy) = W () < —eW(2),
which concludes the proof of . O
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12.3. Epiperimetric inequality for the principal modes. Proof of Lemma [12.7]
We suppose that the spherical set {c¢ > 0} is the arc (0,7 + §), where 6 € R (and it might
change sign). We recall that in Lemma we asssume that |§] < dp. Then, we can write
the trace ¢ in the following form

c(0) =c1¢5(0) where ¢; >0 and ¢s(0) = sin (%) for 6 € [0, 7+ 0].
™

Next, for every t € R, we define the function ¢; : S' — R as

O

$(0) = sin <

Then set

) for e€l0,m+1], ¢t(0) =0 for 6¢[0,7+t].

10:= [ (100n0) = 620)) do + 7 (> 0))
1

and

o) = [ joron() .

0By

We consider the function

t(r) == (1 =3(1 = r)e)éd,
and define the competitor hs as

hs(r,0) = 194y (0), (12.10)

which we will use in both Lemma, and Lemma [A2]

We will show that for € > 0 and J > 0 small enough, we have

W (crhs) — g <(1—¢) (W(cm) - g) (12.11)

where z;5 is the one-homogeneous extension of ¢g5 in By
z5(r, 0) = ros(0). (12.12)

12.3.1. Reduction to the case c; = 1. Let hs and zs be defined by (12.10) and (12.12)). We
claim that if, for some § > 0 and € > 0, we have

™

Wihs) = 5 < (1=2) (W) - ), (12.13)

2
then (12.11)) does hold for every ¢; > 0.
Indeed, using the homogeneity of Wy, we get that

Wo(crzs) = iWo(zs)  and  Wo(erhs) = ciWo(hs).
On the other hand, we have that

[{u>0}NBy| = /OlHl({u >0} N OB, dr,
for every (continuous) function w : By — R. Thus,
[{zs >0} N By| = /017{1({% >0} NIB,)dr = /Olﬂl({¢5 >0} NOBy) rdr = %(W-ﬁ-é).
The analogous computation for the competitor hs gives

1 1
[{hs > 0} 1 By| :/ H ({u) >0}ﬂ831)rdr:/ (7 + t(r)) rdr.
0 0
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Putting together these computations, we obtain
T

(W(clh(g) - g) (1—¢) (W(cm) - g) — 2 [(W(hg) - 5) (1) (W(z(;) - g)}

(- </01t(r)rdr— (1—¢) /Olérdr>

™

=& (W) -F) - =2 (W) -3)| <0,

where we used that the function ¢(r) is chosen in such a way that, for any § and &, we have
1 1
/ (t(r) — (1 —e)d)rdr = 5/ (1=3(1=r)e)—(1—¢))rdr
0 0
1
= 55/ (37’2 —2r)dr = 0.
0

The rest of Section is dedicated to the proof of (12.13)).
12.3.2. An estimate on the energy gain. The Slicing Lemma (Lemma [12.10]) implies that

1 1
W) = [ seyrars [ WP and W) = 310)

1
We first notice that the error term / |t (r)[2g(t(r)) r3dr is lower order. Precisely, we have
0

1 1
/ it (r) g (t(r)) r3 dr = 952(52/ (1 —7)%g(t(r) r3dr < Ce262,
0

0
where C' is a universal numerical constant. Thus, we get
(W(hg) - g) —(1-e) (W(25) - g) < F(8) + C26?, (12.14)

where we have set

1
P(t) ::/0 (F((1 =301 = 12)1) — (1 )1 (1))rar. (12.15)

We will show that F' is always negative in a neighborhoods of ¢ = 0. First of all, we notice
that the function f can be explicitely computed.

12.3.3. Computation of f. We now compute

o= [ () o (L) =i (L)) oo

T 2
= LH ((L) cos? 0 — sin? 0) do +t
T Jo T+

- () )+
= (%5 () 1) )

T 1 T X? s X3
= (— 14+ X)== =2 (x2_
2<1+X * > 214+ X 2( 1+X>’

where we set for simplicity X = t/r. In particular, this implies that

1
f0O)=f(0)=0 and  f'(0)=—. (12.16)
T
Moreover, we have that
f(t) — ﬁ < @ for ever —1p <t <1p (12.17)
2r| — w2 Y - - '
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12.3.4. Conclusion of the proof of Lemma [12.7| Notice that, by using (12.16)) and taking
the derivative under the sign of the integral, we get that

F(0) = F'(0) = 0.

Moreover, for the second derivative, we obtain
1
F"(0) = / 1—3 (1—r)e )2—(1—5))rdr
1
/ 6(1—7)e+9(1—r) €2+5>7‘d7‘
0

1
/ — Bre 4 6r2e + 9(1 — )252r> dr = —C.f"(0),
0

where we have set

€ 3e
c.=5(1-%)
2 2
Thus, the second order Taylor expansion of F' in zero is given by
1 C
F(0)+ F'(0)t + =F"(0)t? = — == 2.
2 27
We will next show that
C
‘F(t) + 2—5752 <[t®  for every —1p<t<1p. (12.18)
T
Indeed, using (12.17]) we can compute
C: , t2

1
P+ | <| [ (0 -30-n00 - S0 3090 )rar

1 2
| (1051 ©)rar
0 2
]t]?’ 1 3 1 |t|3
< 7r2 (1-3(1—r)e)'rdr+(1—¢) [ rdr S?,
0 0
which gives (12.18]).
Now, using ((12.14]}), we estimate

(W(h(;) - g) —(1—¢) (W(25) - g) < F(6) + C=242

+(1—-¢)

1 3¢ € o9 3 22
< ——(1——) =0+ +
2( 2) 0 9] Ce*d

g( 2;(1—3;) 46+ Ce >52,

where C' is the numerical constant from ((12.14]) and we recall that, by hypothesis, 6| < d.

We now choose ¢ and 9.

1 3 1
We set € = 16mdgy. In particular, if 0 < §p < ——, then 1 — o > —, and so
481 2 2
1 3
—27<1 2€>2+60+CE — 280 + 8o + C=2 < —o + 25672062,
T

1

which is negative, whenever §y < 956 This means that in the end, choosing

25672C"
5 md ! 1 d 1676,
= Imin —_—, an g = v
0 487 25672C 0

(12.13)) holds for every ¢ such that |§| < §p. This concludes the proof of Lemma g
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12.4. Proof of Theorem [12.11

Since ¢ € H'(0B1), we have that c is contin-
uous and so, the set {¢ > 0} is a countable
union of disjoint intervals (arcs), that is,

{e>0y =[]z

Jj=1

7y

where, by hypothesis, we have Ty
T —dp SZ\IJ'\ <7 + do,
§>1
where |Z;| = H'(Z;) denotes the length of the
interval Z;. Now, we consider two cases:

~
I
I
I
I
I
I
I
I
I
N
I
I
I
I
I
I
I

0!

Case 1. There is one interval, say Zj, of
length [Z;| > 7 — &y. See Figure[12.2]

Case 2. All the intervals are shorter than
™ — dp, that is, |Z;| < 7 — do, for every j > 1.

|
|
!
|
|
-1 -
!
!
|
|
!
!
|
|
|
|

See Figure [12.3] FIGURE 12.2. The supports of the one ho-
We first notice that if ¢ € Ho +), then mogeneous extension z (in red) and the com-
petitor h (in blue); the trace ¢ falls in Case

/ |V9¢|2 do > |I ‘2 / $% do. 1; the length of I is smaller than .

In particular, if |Z;| < 7 — ¢, then

/\V9<252d9><1+ )/ ¢° do.

Thus, if we are in Case 2, then the epiperimet-
ric inequality is an immediate consequence of

Lemma [12.6] with & = d/r.

Suppose that we are in Case 1. Let {¢;};>1
be a complete orthonormal system of eigen-
functions on the interval Z;. For every j > 1,
we set ¢; to be the Fourier coefficient

¢ i /8 0y, (0)ab

Then, we can decompose the trace c as

c(0) = c161(0) + 1(0) + 2(6), FiGure 12.3. The supports of the one ho-
mogeneous extension z (in red) and the com-
petitor h (in blue) in Case 2.

where
(o.)
0) =D c;jt; ()
and 9 is the restriction of ¢ on the set U Z;. We first claim that, for ¢ = 1,2, we have
Jj>2

/\ng/zi|2d02(1+m)/ W2 de, (12.19)
St St

where £ > 0 is a constant depending only on dp. Indeed, since 1o is supported on U Z;
Jj=>2
and since |Z;| < 2dg, for j > 2, we have that
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2
/ Voiba|? b > ”2/ W2 do. (12.20)
St 4(50 sl
On the other hand, v; contains only higher modes on the interval Z;. Thus,
472
Vo|2do > ——— [ ¢?de. 12.21
I | | (7 +00)2 Jg, ( )

Now, choosing ¢y small enough (for instance, dyp < 7/3), (12.20) and ((12.21)) imply (12.19)).

Let now p > 0 and £, > 0 be the constants from Lemma corresponding to the constant
x from (12.19). Let hy, and hy, be the competitors from Lemma associated to the
traces 11 and 19, respectively. Thus, we have

Wo(hy,) < (1 —ep)Wolzy,)  and  Wi(hy,) < (1 —ep)W(zy,), (12.22)
where zy, (1,0) := 21;(0).
Let h be the competitor from Lemma associated to the trace ci¢1, and let
Z(r,0) :=rc1¢1(0).

i | Er,0) it rep 1],
hp(r,0) = {pB(T/p,Q) it rel0,p)].

Thus, Lemma [12.7] and Lemma [2.3] imply that

We set

W(h,) — g < (1- p%) (W(z) - g) (12.23)

€ being the constant from Lemma We now define the competitor h : By — R as:

o h=zif W(z) <7/, where z = Z + 2y, + 2y, is the 1-homogeneous extension of c;

e h=2z+ h¢1 + h¢2 if W(Z) > 7"/27 but W(E) < 7"/2;

o h=h4 hy, + hy, if W(z) >k and W(Z) > 7.
The first case is trivial and the second one follows directly by . We will prove
the epiperimetric inequality in the most interesting third case. We first notice that the
decomposition lemma (Lemma implies that

W(z) = W(Z) + Wo(zy,) + W(zy, ),

and
W(h) = W(hy) +Wolhy,) + W (hy, ),
where in the second decomposition, we use the fact that hy, = hy, = 0 in B, and that
h = % outside B,. Now, setting
e = min{p’&, ey},

the epiperimetric inequality (12.1]) follows by (12.22)) and ([12.23]). O

12.5. Epiperimetric inequality and regularity of the free boundary. In this section
we will show how the epiperimetric inequality implies the C1® regularity of the free
boundary. The main result of this section is Proposition [12.13] which we prove under the
following assumption.

Condition 12.12 (Epiperimetric inequality in dimension d > 2). We say that the epiperi-
metric inequality holds in dimension d if there are constants 6q > 0 and €4 > 0 such that,
for every non-negative one-homogeneous function = € H'(By), which is 64-flat in the ball
B in some direction v € 0B1, that is

(x-v—>0g)+ <z(x) < (z-v+dq)+ forevery x€ By,

there exists a mon-negative function h : By — R such that z = h on 0By and
wq Wd
W(h) — 22 < (1—eg)(W(z) = =2). .
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Proposition 12.13 (e-regularity via epiperimetric inequality). Suppose that the epiperi-
metric inequality holds in dimension d (that is, Condition holds). Then, there is a
constant € > 0 such that if v : By — R is a non-negative minimizer of F1 in By and is
e-flat in By in some direction v € 0B

(x-v—e)y <u(z)<(x-v+e)y forevery x€ By,
then the free boundary 0K, is C regular in By,.

Proof. The claim is a consequence of Lemma [12.18] Lemma [12.14] and the results of the
previous sections. By Condition [12.12] and Lemma [12.18] we have that the epiperimetric

inequality (|12.24]) holds whenever

lur = o llL2(By\By)
is small enough for some half-plane solution h,,.
Using this, together with the Weiss’ monotonicity formula (Lemma, we get that the
energy
Wwq

E(u) :=W(u) — >

satisfies the hypotheses of Lemma Thus, we obtain the uniqueness of the blow-up
limit and the decay of the blow-up sequences at every point of the free boundary in B,

that is, for every zg € By, there is a function ug, : R? — R such that

Ugy = }1_1}(1) Ur,zo and Huhwo — Uz HL2(8B1) =0.

Moreover, ug, is a global minimizer of F; in R% (Proposition [6.2) and is one-homogeneous

(Proposition [9.12). Using again Lemma [12.14] (see the energy-decay estimate (12.28) in the
first step of the proof), we get that

. wa\
i (V) ) =0

Thus, the strong convergence of the blow-up sequence w, 5, (Proposition [6.2]) implies that
Wq

5 = Hm Wty o) = W(tg)-

r—0

By Lemma we get that u,, is a half-plane solution. Thus, by Proposition we get
that the free boundary is a Ch® regular in B, Jo- O

The idea that a purely variational inequality as encodes the local behavior of the
free boundary goes back to Reifenberg [45] who proved the regularity of the area-minimizing
surfaces via an epiperimetric inequality for the area functional. Weiss was the first to prove
an epiperimetric inequality in the context of a free boundary problem; in [53] he proved
such an inequality for the obstacle problem and recovered the C1® regularity of the (regular
part of the) free boundary in any dimension, which was first proved by Caffarelli [I1]. In
[50], together with Luca Spolaor, we proved for the first time an epiperimetric inequality
for the one-phase problem; in this case the interaction between the geometry of the free
boundary and the Dirichlet energy functional is very strong and induced us to introduce
the different constructive approach, which was the core of the previous section. In all these
different contexts, once we have the epiperimetric inequality, we can obtain the regularity
of the free boundary essentially by the same argument that we will describe in this section.
The key result of this subsection is Lemma which we attribute to Reifenberg, who
was also the first to relate the variational epiperimetric inequality to the regularity of the
local behavior of the free boundary (or area-minimizing surface).

Vocabulary and notations. We recall that, for any v : By — R and » < 1, we use the

notation u, to indicate the one-homogeneous rescaling of u

up(x) = ;u(mj)
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Then, if £ : H'(B;) — R is a given energy (for instance, &(u) = Wi (u) — %), we will use
the following terminology:

e By variation of the energy we mean the variation, with respect to r, of the energy
& of the rescaling u,. In other words, the variation of the energy is simply
0

ES(UT)'

e The energy deficit of a function v : By — R is the difference
E(v) = E(u),

where u : By — R is a minimizer of £ among all functions such that u = v on 9B;.
e The deviation of a function u : By — R (from being one-homogeneous) is

D(u) := /83 |z - Vu(z) — u(z)|? dH T (z).

We notice that a function
u € H'(By) is one-homogeneous <«  D(u,) =0 for almost-every 7 € (0,1).

Lemma 12.14 (Reifenberg [45]). Suppose that the function u € H'(By) and the energy
functional £ : H*(B1) — R are such that:

(i) Minimality. u, € H'(B;) minimizes € in By, for every 0 < r < 1, that is,
E(uy) < E(v) for every v e Hl(Bl), v=u, on ODBj.

(ii) The variation of the energy controls the deviation. The function r — E(u,) is
non-negative, differentiable and there is a constant Coy > 0 such that

0 Cy
- > =
Tg(ur) , D(ur) jor every 0 <r< ].,

where D is given by
D(u) := / |z - Vu(z) — u(z)|? dH T (z).
0By

(ii) The variation of the energy controls the energy deficit of the homogeneous
extension. There is a constant C3 > 0 such that

ig(ur) > %(5(2’,,) — €(u,,)) for every O<r<l,

where z, : B — R is the one-homogeneous extension of the trace u,|op,, that is,
zr(@) = [@|up (%/1a)).

(iv) Epiperimetric inequality. There is a one-homogeneous function b : R — R such
that, if u, is close to b in By \ By, then an epiperimetric inequality holds in Bj.
Precisely, there are constants € > 0 and d4 > 0 such that:

For every r € (0,1/2] satisfying

ur — bllL2(By\By) < 04, (12.25)
there is a function h, € H'(By) such that h, = u, = z, on 0By and
E(hy) < (1—¢)E(z). (12.26)

Under the hypotheses (i), (ii), (iii) and (iv), there is 6 > 0 such that, if u satisfies

VE(u) + lur = bl 2(8,\B, ) < 6

then there is a unique ug € H'(By) such that
lur —uol[z2(am,) < Cr7 for every 0<r<1p, (12.27)
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where the constants v and C' can be chosen as
1
v = 5603 and C = é4.

Remark 12.15. If the epiperimetric inequality (12.26]) holds without the closeness assump-

tion (|12.25]), then the Step 4 of the proof of Lemma :12.14 can be omitted.

Remark 12.16. The energy to which we will apply Lemma [12.14] is the Weiss’ boundary
adjusted energy

£ = m(w = |

B
In this case, both (%) and (iii) are implied by the Weiss’ formula (Lemma [9.2).

|Vu|2dx—/ w? dH + |{u > 0} N By
1 0B1

Remark 12.17. In our case, the function b from assumption (iv) is the half-plane solution
b(x) = (x - v)4 for some v € IB;. Notice, that this does not mean that the blow-up limit
ug of u, is equal to b. In fact, it may happen that the blow-up limit is another half-plane
solution b(x) = (x - )4, with 7, which is close to v. More generally, this lemma can be
applied to situations in which ug is not just a rotation of b, but is a completely different
function. This happens for instance at isolated singularities in higher dimension (see [2§]).

Proof of Lemma [12.14]. Let now 0 < p < 1/2 be the smallest non-negative number such that
lur = bllL2(By\By) < 04 for every r € (p,1/2],
and so, we can apply the epiperimetric inequality (12.26) for every u, with r € (p,1/2].

Notice that, since b is 1-homogeneous, a simple change of variables gives that

(d+2) H

lur = bl 2 g5y =7 u = bllZ2 (5,0 5,)-

Thus, by choosing § < 492§, we get that

_d+2 d+2
lur = bllL2(Bo\By) =77 2 llu=bll2(By\5,) < 477 (lu = bllL2(8,\B, )
for every 18 <r < 1/2. Thus, p < 1/s.

We divide the proof in several steps.

Step 1. The epiperimetric inequality implies the decay of the energy.

Let r € (p,1/2]. By (iii), (iv) and the minimality of u, (assumption (i)), we have
0 C
5y Elur) > 73(5(%) — E(uy))

> S (e (hy) + e E(z) — E(ur)) = S ().

r T

0 (E(uy)
37’( r2v > 20,

E(ur) <47 (urp) 27 for every r € (p,1/2]. (12.28)

1
Setting v = 556’3, we get that

and so,

Step 2. The energy controls the deviation. We set
e(r) = &(uy) and f(r)=D(u).
By (ii), we get that

%f(r) < e'r(:) _ % <e(7“)> + :1(:)7 < % (ig?) oy dte(1f) P21,

rY
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which implies that for every p < r; < ro < 1/2, we have the estimate

2

" f(r) e(ra)  e(r1) Y
C2 s dr < g +4e(12)(r3 —r])

e(ra) +4%e(1R)r] < 247e(1f)ry.

5
Ty

IN

Step 3. The deviation controls the oscillation of the blow-up sequence u,..
Let x € 0B; be fixed. Then, we have

o (@) = 5 (M0

Integrating in 7, we get that, for every 0 < r; <19 <1,

- SMD) L o) - ur(a).

u(rx)) v Vu(rz) u(rz) 1

i, (2) — 1, ()] < / %\gg Yy () — ()| dr-

T1

Integrating in x € 0By, and taking p < r; < re < 1/2, we obtain

79 1 2
/ |ty — iy, |* dHTE < / (/ — |z - Vu, —uy,| dr) dH!
0B1 0B1 r T
T2 T2
< / </ -1 dt> (/ P |z - Vu, — ur|2 dr) dH!
0B, 1 1

—o3- ([ s )

1,1 1
< =) 2 e0p) r] < Be( /2)7«3”. (12.29)

Step 4. The blow-up sequence remains close to b.

Taking 7o € (1/4,1/2) and 1 =7 € (p,72) in (12.29), we get

8e(l/2)
lur = bl 298,y < lur — s llp20By) + ltry = bll208;) < Gy + lury = bllz2(08,)-

Now, since

1/2
/ ]u—b\Qda::/ / lu —b|? dH* 1t dt
Bl/2\Bl/4 1/4 aBt

2 d+1 2 —(d+1) v 2
= t Hut — bHL2(8B1) dt > 4 y ”Ut - bHLQ(aBl) dt’
4

1/4

we can choose ry € (1/4,1/2) such that

41 / lu— b2 dz > ur, — bll2255,)-
B1/2\B1/4
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On the other hand, taking 1 = r € (p,72/2), we obtain

2 2
Up — Tr = Up — T dt = t Upt — 2 t
/ | b|*d / / | b dH* " d / ) OlI720m,) d
B2\ B1 1 JoB; 1 !

5
d
<2 +1/1 [urt = bllZ2(0m,) dt

se(1/2)
< 242 ( 0y + [Jury — b”LQ(aBI)>

2

2

8e(1/2)
< 9d+2 < G + 28|y — bHL2(B1/2\Bl/4)>

This implies that if u = u is such that
8e(l/f2)
d+2 d+1y,,
2 < ~Ch + 27 lu = bl 2B, ,\B. ) | <04,

then p = 0, that is, the epiperimetric inequality (12.26]) can be applied to every r € (0, 1].
Step 5. Conclusion. As a consequence of the previous step, the decay estimate ((12.29)) holds
on the whole interval (0, 1]:

8e(l
try — ur || 220B,) < eé ) Ty for every 0<ry <rg<lh. (12.30)
72

Thus, there is ug € L?(0B1), which is the strong L?(0B1)-limit of the blow-up sequence wu,

lim u, = uyg.

r—0
Finally, taking 7o = r € (0,1) and passing to the limit as 7 — 0 in (12.30]), we obtain
(12.27). This concludes the proof. O

In order to prove Proposition [12.13] under the Condition [12.12] we will need the following
lemma.

Lemma 12.18. For every € > 0 there is § > 0 such that the following holds.
If u: By — R is a (non-negative) minimizer of Fi in By satisfying

|w = hullp2(Bo\By) <0 for some v € 0By,

where hy, is the half-plane solution h,(x) = (x - v)4,
then u is e-flat in the direction v in the ball By, that is,

(x-v—e)yr<u(z)<(z-v+e)s for every x € By. (12.31)
Proof. We will first prove that there is € > 0 such that u is e-flat on dBs,, that is,
(r-v—e)y <ulx)<(z-v+e); for every T € OBs),. (12.32)
From this, we will deduce that u is e-flat in Bj.

In order to prove ((12.32), we start by noticing that that, since v minimizes F; in B,
it is L-Lipschitz continuous in By, for some L > 1 depending only on the dimension (see
Theorem . Then, also the function

’U,p—hyiB7/4—>R
is (2L)-Lipschitz continuous. Thus, there is a dimensional constant Cy such that
d_ 725 2
lup — hollzoe (B < CaL Tty — | 325, ) < Cadr,
We now choose § > 0 such that )
Cyodz <efo. (12.33)
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Thus,
lup = hull Lo (B, 0\ Bs ) < &/2- (12.34)

Now, using , we obtain the estimate from below

(x-v—e)y <u(x) forevery € B\ Bs,
while from above we only have

w(@) < (z-v+e)p forevery ze{z-v>—c21N (B \ Bsy).
Indeed, if = - v > —¢/2, then
ww<m+mawﬂ@+@wh<{i;&?ﬂ;ﬁﬁf%iwyziﬂ

Thus, in order to prove that it is sufficient to show that

u=0 on the set {7 v <~} NOBs,. (12.35)

On the other hand, u is also non-degenerate in the annulus A := B/, \ Bs,, that is, there
is a dimensional constant 0 < k < 1 such that (see Proposition 4.1

10 € ANQy = |lullpeo(s,(zo)) = K for every r <1/

Suppose by absurd that there is a point

zo € QuN{z-v < —/2} NOBs),.
Then, taking r = ¢/2, we get that there there is

Yo € Br(wo) C {x-v <0} N By \ Bsy,

such that

[ulaw) — hu(z0)] = ul) > gre
If we choose d such that

Cy072 < %me, (12.36)

then we reach a contradiction. Notice that, since k < 1, implies ((12.33)).
This concludes the proof of . The conclusion now follows by Proposition O

12.6. Comparison with half-plane solutions. In this subsection, we prove the following
result, which we use in the proof of Lemma [[2.18} but is also of general interest.

Proposition 12.19. Let D C R? be a bounded open set and let u : D — R be a non-
negative continuous function and a minimizer of the functional Fp in D. Let c € R be a
constant, v € R% be a unit vector and

h(l’):\/K(l"V—I—C)+

be a half-plane solution. Then, the following claims do hold.

(i) If u < h on 0D, then u < h in D.
(ii) If u > h on OD, then w > h in D.

Remark 12.20. Up to replacing v and h by A~"2u and A=A (which are minimizers of F;
in D), we may assume that A = 1.

We will give two different proofs to Proposition [12.19, The first one is more natural, but
is based on the notion of viscosity solution and so it requires the results from Section [7.1
The second proof is direct and is based on a purely variational argument in the spirit of

Lemma 2.13]
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Proof I of Proposition [12.19|. By Proposition u is a viscosity solution (see Definition

79 o
Au=0 in Q,ND, [Vu|=1 on 0Q,ND.

The conclusion now follows by Lemma bellow. O
Proof II of Proposition [12.19, We only prove the first claim, the proof of the second one
being analogous. For every t > 0, consider the half-plane solution

hi(z)=(x-v+c+it);.
Then, for every x € 9D N Q,, we have that h(zx) > u(x) > 0 and so,

u(z) < h(z) < hy(x) —t.
Thus, we can apply Lemma to w and h, obtaining that u < h; in D. Since t is

arbitrary, we obtain claim (i). O

Lemma 12.21 (Comparison of a viscosity and a half-plane solution). Let D be a bounded
open set in R? and let uw : D — R be a non-negative continuous function and a viscosity
solution (see Definition to

Au=0 in Q,ND, [Vu|=1 on 0Q,ND.
Let ¢ € R be a constant, v € R? be a unit vector and h(z) = (I v+ C)Jr be a half-plane
solution. Then, the following claims do hold.
(i) If u > h on 0D, then u > h in D.
(ii) If u < h on OD, then u < h in D.

Proof. We first prove (i). Let M = [|h| oo (py-
For any t > 0, we define the real function f; : R — R as
fi(s) = (1 +t) max{s, 0} + ¢ (max{s, 0})2,
for every s € R. Then, it is immediate to check that the function
ve(z) = fi(z-v+c— MM+ 1)t)
satisfies the following conditions:
(1) Av, > 0 in the set {v; > 0};
(2) Vo] > 1 on {v; > 0};
(3) v(z) < h(z) < wu(z) for every z € 9D.
Indeed, the first two conditions are immediate, since h is the positive part of an affine
function. In order to prove (3), we notice that the inequality is trivial whenever = - v + ¢ —
M(M + 1)t <0. The case - v+ c— M(M + 1)t > 0 is a consequence of the following
estimate, which holds for any S :=xz-v+c¢> M(M + 1)t.
Fi(S = M(M +1)t) = (14 1)(S — M(M +1)t) + (S — M(M + 1)t)?
< (1+¢)(S— M(M+1)t) + Mt(S — M(M +1)t)
:S+t<—M(M+1)+S—M(M+1)t+MS—M2(M+1)t)
<S+t(-MM+1)+SM+1)) <S.

We next claim that vy < u on D. Indeed, suppose that this is not the case and let T > 0
be the smallest real number such that (v; —T)+ < u on D. Then, there is zg € Q, such
that v (zg) — T = u(zg) and (ve(z) — T)4 < u(x), for every other x € D, that is, the test
function (v —T')+ touches from below u at (. Since u is a viscosity solution (see Definition

and Proposition of
Au=0 in Q,ND, [Vul|=1 on 09,ND,



134 BOZHIDAR VELICHKOV

we have that zo ¢ OS2, N Bsj, and o ¢ 2. Then, the only possibility is that zo € 0D, but
this is also impossible since (v; —T') 4+ < vy < u on dD. This proves that v; < uw on D. Now,
letting ¢ — 0, we get that
u(x) > h(z) in D,

which concludes the proof of (i).

The proof of claim (ii) is analogous. We give the proof for the sake of completeness. For
any t > 0, we define the real function

g¢(s) = (1 — et) max{s, 0} — et (max{s, 0})2 for every s €eR,
where € > 0 will be chosen below. We set
M, = diam (D) + [¢| + [[ul|pepy ~ and My = ||h]| g~ (D)
The test function
wi(z) = ge(x-v+c+t)

satisfies the following conditions:

(1,) we > 0 for every 0 < t < M, and every s < Mp;

(24) Aw; < 0 in the open set {w; > 0};

(3w) |Vwe < 1 on the closed set {w; > 0};

(4) wi(xz) > h(xz) > u(x) for every x € 9D and every t < M,,.

We start with (1,,). We notice that
g¢(s) = (1 — et) max{s, 0} — et (max{s, O})2 >1— (MM, + MuM,?)

Thus, in order to have (1,,), we choose
e < (M My + M, M)

Again (2,,) and (3,,) are trivial, while for (4,,) we will need the following estimate, which
holds for every S > 0 and ¢ > 0.

G(S+1) = (1 —et)(S+1t) —et(S+1t)°
> (1—et)(S+t) —etS(S+1)
:S+t(1—55—5t—582—58t>

-1

>S+t(1-e(S+1t+5%+5T)). (12.37)
In order to have (4,,), we choose
e < (Mp, + My + M + M,M,,) (12.38)

We next complete the proof of (4,,). First, notice that the second inequality is always true
by hypothesis. Since w; > 0, the the first inequality is trivial whenever x - v 4 ¢ < 0. Thus,
we only need to prove that w;(x) > h(z), whenever = - v + ¢ > 0. This follows by
and the second bound on ¢ (12.38). This concludes the proof of (1) — (4).

We now consider the set

I::{tE[O,Mu] D wg>u on D}.

-1

We notice that I; is non-empty since M, € I;. Let
=infI.
If T > 0, then there is a point =g € €, such that wr touches v from above in xy. But this

contradicts (2,) — (4w). Indeed, (2,,) implies that xg ¢ Q,ND, (3,,) gives that xg ¢ 9Q,ND
and (4,) gives that ¢ ¢ 0D. Thus, T' = 0, which concludes the proof. O

Lemma 12.22 (Comparison of minimizers). Let D be a bounded open set in R% and u,v :
D — R be continuous non-negative functions and minimizers of Fp in D. Suppose that:
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(a) u<wv on dD;

(b) the above inequality is strict on the set Q, N OD, that is, min (v —u) =m > 0.
Qu.NOD

Then, u <wv in D.

Proof. Let Q := {z € D : u(z) > v(z)}. We will prove that Q@ = (). We first claim that ©
is strictly contained in D, that is

o0 NID = 0.
Suppose that this is not the case. Then, there is a sequence z,, € {2 converging to some
xg € 0D. Since u and v are continuous, we get that
v(xo) — u(zo) = 0.
On the other hand, for every n € N, we have
u(zp) > v(wn) 20,
which gives that x,, € €. Then, z,, € , and thus, x¢ € 0€2,. This is a contradiction with

the assumption (b).
We will next prove that

QuNo{u>v}=Q,NHu>v}=0.
We consider the competitors
u Vv =max{u,v} and u A v =min{u,v}.

Since

uVv=v on 0D and uAv=u on 0D,
the minimality of u and v implies that

Fa(v,D) < Fa(uVwv,D) and Fa(u, D) < Fa(u Av, D). (12.39)

On the other hand, we have

Fa(uVu,D)+ Fa(uAv,D) = Fp(u, D) + Fa(v, D).
Thus, both inequalities in are in fact equalities and so u A v is a minimizer of Fj in

D. Suppose that
xg € Q, N O

Then, u(zg) = v(zg) > 0 and by the continuity of v and v, there is a ball B, (xg) such that
By (x0) C Qy and B, (x0) C Q.

Thus, both the functions u and u A v are positive and harmonic in B,(xp). Thus, the
strong maximum principle implies that u = u A v in B,(xp). This is contradiction with the
assumption that zg € d{u > v}.

We are now in position to prove that Q = (). Indeed, suppose that this is not the case.
Then, for every zo € 9, we have that u(xzg) = 0. Thus, we consider the function

- u(x) if xeD\Q,
0 if zeQ.
Then, % = u on dD and u € H'(D) (this follows, from instance from the facts that u

is Lipschitz continuous on the compact subsets of D and that Q C D). Thus, @ is an
admissible competitor for u and we have

0 > Fa(u, D) — Fa(u, D) :/ |Vu|? dz + A|Q N Q.
Q

In particular,
Q] ={u>v} ={u>vin{u>0}=|2NQ, =0,
and so, Q = (), which concludes the proof. O
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APPENDIX A. THE EPIPERIMETRIC INEQUALITY IN DIMENSION TWO

In this section we prove the general epiperimetric inequality, which was stated in Theorem
We show that both the flatness condition from Theorem [12.1|and the non-degeneracy
assumption from [50] are unnecessary. We also give an estimate on the H! norm of the
competitor A, which is useful when one deals with almost-minimizers of the one-phase
problem (see for instance [49]).

Theorem A.1 (Epiperimetric inequality). There is a constant ¢ > 0 such that: if ¢ €
H'(0By) is a non-negative function on the boundary of the disk By C R? then, there exists
a (non-negative) function h € H'(By) such that h = ¢ on OBy and

W(h)—n<(1—e)(W(z)—7), (A.1)
2z € H'(By) being the one-homogeneous extension of ¢ in By, that is, z(x) = |z|c(%/|z]).
Moreover, we can choose the competitor h such that

1Pl 1 (1) < Cllz 178,y
where C' is a universal numerical constant.

In order to prove Theorem [12.3] we will still use Lemma Lemma|12.7|and the results
from Subsection Moreover, we will need the following results:

Lemma A.2 (Epiperimetric inequality for principal modes - large intervals). Let By be the
unit ball in R%2. There is a constant € > 0 such that: if ¢ : 0B1 — R, ¢ € HY(By), is a
multiple of the first eigenfunction on {¢ > 0} C 9B;1 and

m <H'({c>0}NadBy) < 2r,
then, there exists a (non-negative) function h € H'(By) such that h = ¢ on OBy and
W(h)—m<(1—e)(W(z)—m),
z € HY(By) being the one-homogeneous extension of ¢ in By.

Lemma A.3 (Homogeneity improvement of the large cones). Let By be the unit ball in
RY, d > 2. There exist dimensional constants ng > 0 and € > 0 such that: If c € H'(0By)

18 non-negative and such that
1

—H ({e>0}N0By) > 1,

dwy

then we have
Wd Wd

Wik -2 <1-2) (W) -3,

where z is the one-homogeneous extension of ¢ in By, while h is given by hy or ha, where

(i) hy is the harmonic extension of ¢ in By;
(ii) ha: By — R is given by

ha(r,6) = (max{0,r — p})a(l_i

where a > 1 and p € (0,1) are dimensional constants.

In both cases, there is a dimensional constant Cy > 0 such that

1”3y < Callellmrom,)-
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A.1. Proof of Theorem [12.3L

As in the proof of Theorem we decompose the
open set {¢ > 0} C 9B; as a countable union of
disjoint arcs, that is,
{C > 0} = U Ij .
j>1
We recall that |Z;| denotes the length of the arc Z;.

Let 09 > 0 be a (small) constant that will be chosen
later. We consider four cases:

Case 1. There is one arc, say Z;, which is big, that
is,

=00 < || <7+ do
while all the other arcs are small:

|Z;| <7 —6g forall j>2.

FiGURE A.1. The supports of the
This is precisely Case 1 from the proof of Theorem  ope homogeneous extension z (in

(Section Figure [12.2)). red) and the competitor h (in blue)
Case 2. All the arcs are small, that is, i Case 3; the length of the arc I;
;| <7 —68 forall j>1. is bigger than ™+ dp.

This is Case 2 from the proof of Theorem (Section m Figure .
Case 3 (Figure . The arc 7Z; is very big, that is,
T+ 00 < |Zh| < 27 — do.

As a consequence, the other arcs are small:

IZ;| <7 —6& forall j>2.
Case 4. The support of ¢ is very big, that is,

21 — 200 < H'({c > 0}) < 2m.
In this case the competitor is given precisely by Lemma

Thus, it is sufficient to consider Case 3. We argue precisely as in the proof of Case 1.
Let {¢;};>1 be a complete orthonormal system of eigenfunctions on Z;, and let ¢; be the
Fourier coefficient

cj = / c(0)¢p;(0)do for every j > 2.
0B,
We decompose the trace c as

c(0) = c101(0) + 11(0) + 12(0),

where

Pi(0) = iy (6),
j=2

and )9 is the restriction of ¢ on the set U Z;. Since 1)y is supported on U Z; and |Z;| <
j>2 j>2
m — dg, for j > 2, we have that

71_2

2 > 2 ]
/Sl ’v6’¢2| o = (7‘1’ — 50)2 st ,(/JQ do
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For what concerns 11, since its Fourier expansion contains only higher modes on Z; and
since |Z;| < 27 — 0, we obtain

472
/”|va¢12dez o [ wiao.
Il Il

(27’[‘ — 50)
Thus, there is £ depending only on dg such that

/\vmﬁdez(un)/ Yido  for  i=1,2
St St

Let p > 0 and £, > 0 be the constants from Lemma corresponding to the constant &
from (12.19)); let hy, and hy, be the competitors from Lemma associated to the traces
Y1 and )9, respectively. Thus, setting zy, (r,6) := z1);(#), we have

Wolhy,) < (1 —eg)Wolzy,)  and  Wi(hy,) < (1= ey)W(zy,). (A.2)
Let h be the competitor from Lemma with trace c1¢1 and let Z(r, 0) := rci¢1(0). We

set
i | Er,0) it rep 1],
hp(r,0) = {pfl(r/p, 0) if relo,p).

Thus, Lemma and Lemma [2.3] imply that
W(hp) —m < (1 - p’&)(W(2) — ), (A.3)

€ being the constant from Lemma Finally, we define the competitor h : B; — R as:
o h=zif W(z) <7, where z = Z + 2y, + 2y, is the 1-homogeneous extension of ¢;
 h =2+ hy, + hy, if W(z) >, but W(2) <
o hh="h+ hy, + hy, if W(z) >mand W(Z) > .
Notice that the only non-trivial case is the third one: W(z) > m and W(Z) > m. By the
decomposition lemma (Lemma [12.9)), we have
W(z) =W(z) + WO(Z%) + W(Z%)v
and
W(h) = W(hp) + Wo(hy, ) + W (hy,).
Setting
e = min{p2, ey},
we obtain the epiperimetric inequality (A.1) as a consequence of (A.2)) and (A.3)). This

concludes the proof in Case 3. U

A.2. Proof of Lemma We will use the notations from Subsection In this case,
we have that 6 € (0, 7). The infinitesimal argument used in the proof of Lemma[I2.7] cannot
be applied here. Thus, we directly compute F () (defined in (12.15)) by using the identity
from Subsection 12.3.31

_ [ e0x)® (5/x)°
F(5)—/0 <1+t(r)/7r—(1—5)1+6/7r)7‘dr
_ /1 (m+0)t(r)? — (m + t(r))(1 — 6)62rdr
0 3 (1 + 1) /x) (14 9/x)

((w +8) (H0/5)2 — (x + t(r)) (1 — 5>) rdr.

52 1
<
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Now, since #(r)/s =1 — 3(1 — r)e, we get that
(m +8) (0% — (m + t(r))(1 — )
=(m+6)(1-3(1— r)€)2 —(r+0-3(1—r)ed)(1—¢)
= —e(m+06)(5—6r)+ 93+ 0)(1 — )2 +3(1 —r)ed(1 — ¢)
< —e(m+8)(5 — 6r) + 187e? + 3(1 — r)ed.
Thus, multiplying by r and integrating over [0, 1], we get

52 1 9 1 6>
<—(-= Zed ) =— - .
F(§) < 3 < 25(7r+ d) + 9me* + 255) 5.2 (1—18¢)
Thus, using (12.14]), we get
T ™ £d? 2
) (1= I I A _ .
<W(h5) 2) (1-¢) <W(25) 2) < — 5 (1— 182 —21°Ck)

Choosing € > 0 small enough, we get (12.13]). This concludes the proof of Lemma O

A.3. Epiperimetric inequality for large cones. Proof of Lemma We write the
trace c¢ in Fourier series on the sphere 0B as

c(8) = codo + c11(0) + > c;64(6),
=2

where:
e ¢p is the constant (dwg)~"/?;
e ¢ : 9B — R is an eigenfunction of the Laplacian on the sphere, the respective

eigenvalue being (d — 1) and 2 dh = 1;
0B1
e ¢;, for j > 2 are eigenfunctions orthonormal in L?(0By) with eigenvalues Aj > 2d

on the sphere 0Bj.

We now set
o0

(0) == ¢jp;(0).
j=2
Since the Fourier expansion of v contains only eigenfunctions associated to eigenvalues
> 2d, we get that

/ Vo> do > Qd/ W de.
§d—1 Sd—l

Let k = d+ 1 and py, €, and «, be the constants from Lemma let zx(r,0) = ry(0)
and h, be the competitor from Lemma We choose

P = Px and a = Q.
We consider the functions
2(r,0) = corgo + c1rd1(0) + z4(r, 0)
hi(r,0) = codo + rc161(0) + hi(r,6).
(r—p) (r—p)%

(1_p)(—j:co¢0 + WCMbI(G) + hﬁ(r, 9)

Step 1. We first calculate the terms
Wo(do), Wo(reo), Wo(r¢1(0)), Wo((r —p)F¢e) and Wo((r —p)Sé1(6)).

Since ¢ is a constant, we have that

Wo(¢o) = — - P2 do = —1.

hQ(T’, 9) =
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Since r¢1(0) is one homogeneous, we get
1 d—1 d—1
Wi = —Fo(¢o) = ——— bdo = ———.
o(r¢o) = - F0(d) T Jon b5 ¥
Analogously, we obtain

Watron) = gaton) = 3 ([ 1WaenPao (-1 [

9B

P d@) =0,

since ¢ is a (d — 1)-eigenfunction on the sphere. For the last two terms, we use the formula

1 )2«
Wo((r — p)?ﬁ(ﬁi(e)) = / r&1ldr /8B (ag(r — p)zo‘_zqﬁ% + (r?agp)\VMbi\Q) do
p 1

—(1=p)? | ¢7do
0By

1 2 2 2
< — i|2do | — (1 — p)“™.
_2a+d_2(04 +/8B1|V9¢| ) (L—p)

Since 1 < a < 2, / |Vodo|? dd = 0 and / |Voo12df = d — 1, we get
0By

0B,
Wo((r—p)40g) <1-(1=p)** and  Wy((r—p)31(0)) <2—(1-p)*.
Step 2. Consider the competitor hy. We set

1

0= HEL{e =0} NOBy),

Wd

and we calculate
1 -
W(hl) — W(Z) S W()(hl) — W()(Z) + g?] S W()(hl) — W()(Z) + wdn

= (C%Wo((bo) + C%WO (T¢1(9)) + Wo(hk)) — (C%Wo(?“(ﬁo) + C%WO(T(ﬁl) + W()(Z,.;)) + wyn
2
¢
= & (Walo) = Wo(ré0)) + (Wolhw) = Wo(zn) ) + 2 < =L — e, Wo(z) +wan.
Step 3. For the competitor ho we calculate

W(hg) — W(z) = Wy(ha) — Wo(z) + |{he > 0} N B1| — |{z > 0} N By

= & (G allr — p136) ~ Watron))

+ci <(1_1p)2aW0((7“ —p)Sd1) — WO(T¢1)>
+ (Wo(hk) - Wo(z,i)) —|{z>0}N B,

2 2, 2 d
S W(CO + Cl) - 5kWO(Zn) — Wqp (1 — 77) .
Now, since
o] = ‘/B (6)é1 d@‘ = H¢1”L°°(831)/B c(0) db < [|¢1]| Lo (a8,) dwaco,
E 1

there is a dimensional constant Cy > 0 such that

W(hy) —W(z) < Cacf — e Wolze) — wap® (1 —1).
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Step 4. Conclusion of the proof. We calculate the energy

W(z) — 24 = RWo(rdo) + EWolrér) + Wolzx) +

2
d—1

= — 7 C(2)+W0(Z,.;)+wd(1/2—77).

Since Wy(zx) > 0, for every € € (0,e,), we have that the inequality

c? d—1
D (G- wth o),

Wy
- —Ww
5 d"l

implies that
W(hi) — W(z) < —¢ (W(z) - %) .

Analogously,

— 103 —wq (12— n)) :

implies that
w
W (hs) — W(z) < —¢ (W(z) - ?d) .
Now, (A.4) is implied by
dwa(n +e¢) < 3.

while if we assume that ny < 1/4, we get that (A.5) is implied by
Cact < %(pd —e).
Now, if both (A.6) and (A.7)) were false, then we would have

w,
dwd(T] + €)Cd > C’dcg > Ed(pd — E),

and finally
1 d
> ——(p*—e(l+2d
Finally, we notice that the choice
€= 7pd and no = 7pd
4dCq + 2 2dCy’

makes (A.8]) impossible and concludes the proof of Lemma
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(A.4)

(A.5)
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APPENDIX B. NOTATIONS AND DEFINITIONS

Euclidean space, topology and distance

RE | z-y | dist(z,K) | disty(Ky,Ks) | diamK | B.(z) | Q | 9Q

d is the dimension of the space.
e (; denotes a positive constant that depends only on the dimension;
C4 may change from line to line and even within the same line.

e 2 = (z1,...,24) denotes a generic point in R?; we will also write
x = (2/,24), where 2’ = (z1,...,24_1) is a point in R
e We denote by z -y := Z?Zl x;y; the scalar product of two vectors x = (x1,...,2q)

and y = (y1,...,yq) in R%; |2| = \/z - = is the euclidean norm of z in R,
e The standard orthonormal basis of R? will be denoted by {e1,...,eq};
eq is the unit vector with coordinates (0,...,0,1).
e By dist(z, K) we denote the euclidean distance from a point = € R% to aset K C R

dist(z, K) = min |z — y|.
ist(z, K) ;gl;;lx yl

e Given two sets K7 and K5 in [Rd, we denote by disty (K7, K2) the Hausdorff distance
between K; and Ko, that is,

disty (K7, Ko) = { dist(z, Ks) , max dist(y, K }
sty (K1, K2) = max max dis (z, Ks) max dis (y, K1)

e diam K stands for the diameter of a set K C R?
diam K :=sup {|z —y| : z,y € K}.
e B,(z) is the ball of radius r and center z; B, is the ball of radius r and center 0.

e For any set Q C R? we denote by Q its closure and by 99 its boundary;

Measure and integration

| owe | QW ] Ry | R | WS | dimy |

e |Q] is the Lebesgue measure of a (Lebesgue measurable) set Q C R?.

e By wy we denote the Lebesgue measure of the unit ball in R,

e For any Q € R? and a € [0,1], we define the set Q(®) as the set of points at which
) has Lebesgue density equal to «a, that is,

Q@) = {xoeRd : }%W:a}
We recall that
o\ oW =100\ Q=0 and [2nQO|=0.
e For every s > 0, 6 € (0, 4+00] and every set E C R?, we define

H3(E) == % inf {Z (diam Uj)* : for every family of sets {U;}22,
j=1

o
such that £ C U U; and diamU; < 5},

j=1

where, if s € N, then w; is the measure of the unit ball in R®, and we recall that w;

can be defined for any s € (0, 4+00) as

7'('8/2 h F( ) /+Oo s—1 z 4
Wy = ——— where s) = x® et dx.
T T(s)24 1) 0
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e For any s > 0, H*(F) denotes the s-dimensional Hausdorff measure of a set £ C R
H(E) = lim Hi(F) =sup Hi(E).
604 §>0
For instance, we have
HYB,) = |B,| = wgr? and HITHOB,) = dwgr®™?.
e The Hausdorff dimension of a set £ C R? is defined as
dimy E =inf {s >0 : H*(E) =0}.

e By ][ ¢ dp we will indicate the mean value of the function ¢ on the set Q0 with
Q

1
respect to the measure u, that is, ][ odu = / o du.
Q 1(€2) Jo

Perimeter and reduced boundary

| 0*Q | Per(Q) | Per(2;D) |

o Let © C R? be a Lebesgue measurable set in R?. We say that Q is a set of finite
perimeter (in the sense of De Giorgi) if

Per(Q) := Sup{/ divédr : € € CHRERY), [€]] Loo (Rey < 1} < +o00.
Q
Analogously, we define the relative perimeter of € in the open set D C R¢ as
Per(; D) := sup{/ divédr : € € CH(D;RY), 1€l oo (D) < 1}.
Q

e Equivalently, Q@ C R? is a set of finite perimeter if there is an R%valued Radon
measure g such that

/ Vo(z)dr = / ¢ dug for every ¢ € CHRY).
Q Rd
With this notations, we have
Per() =|pol(RY)  and  Per(; D) = |ual(D),
where by |u| we denote the total variation of a measure pu.
e The reduced boundary 0*() is defined as

0" Q= {:13 e R? : the limit v(z) := lim Ho(Br(@)
r=0 |po|(Br(z))

vq is called a measure theoretic outer normal at x. The following are well-known
facts about the reduced boundary of a set of finite perimeter (we refer to the recent
book [43], which is an excellent introduction to this topic):
(1) po = voH10*Q;
(2) 9 c QUP);
(3) setting

exists and |vg(x)| = 1};

Q= %(Q—x) — {10 yeal,

we have that the characteristic functions 1g, , converge (as r — 0) in L},

to the characteristic function of the half-space {y € R? : y-vg(z) < 0};
(4) Hi-1 ([Rd \ (W U@ U a*Q)) ~0.

(RY)
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Unit sphere and polar coordinates

S| 0 | Ve | As | df

e S% 1 is the unit (d—1)-dimensional sphere; we will indicate by 6 the points on sd-1
and we will often identify S?~! with B;, where B; is the unit ball in R%; we will
sometimes use df to indicate the surface measure on the sphere, thus

$(0)db $(0)do and ¢ dHI!
Sd-1 0B1 0B1

all denote the integral of the function ¢ : 9B; — R on the unit sphere 9B; in R
e For a function ¢ : 0B; — R, we denote by Vy¢ its gradient on the sphere 9B;.
e We denote by H'(0B;) the Sobolev space of functions (on the sphare) which are
square integrable and have a square integrable gradient. Precisely, H'(0Bj) is the
closure of C*°(0B;) with respect to the norm

1/2
Il om) = (1613108 + Voo i 0m,))

e By As¢ we denote the (distributional) spherical Laplacian of a Sobolev function
¢ € H'(0B1); we have the following integration by parts formula

VAspdl = — Vetp - Voo df for every 1 € H (0B).
831 831

e If u: Brp — R is a function expressed in polar coordinates as u = u(r,#), then
IVul? = (8u)? + 12| Voul?,
and

d—1 1
Au =779, (r* 1 0,u) + r2Asu = Oppu + ——Opu + —Asu.
T T

Moreover, we recall that

R
/ wdzr :/ / u(r, 0) d r@=1 dr.
BR 0 Sd-1
Functions and sets.

uAv | uVo | oup | ou- | {u>0} | Q | QF | Q, | 1lg

u

e Given two real-valued functions v and v defined on the same domain, we denote by
u A v and u V v the functions

(u Av)(x) = min{u(z),v(z)} and (uVv)(x) =max{u(z),v(zr)}.
e up =uV0and u_ = (—u)VO0. Thus, we have u = uy —u_ and |u| = uy +u_.

We do not distinguish between uy and u™, nor between u_ and u™.

e By {u > 0} we mean the set {x € R : u(zx) > 0}; the sets {u = 0}, {u # 0} and
{u < 0} are defined analogously. For any u, we set

Qu={u#0}, Qf ={u>0} and Q, = {u<0}.
e By 1o we denote the characteristic functions of the set €2, that is,

1 if z€0
lo(z) = :
2() {o itz ¢ Q.
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The one-phase functional and related quantities

Urao | Falu,D) | Reg(0Q,) | Sing(0Q) | W(u) [ Wolu) [ 6Fa(u, D)

e For any r > 0 and z¢ € R%, we denote by Ur 2, and u, the functions
1 1
Up 30 () = —u(xo + r2X) and ur(z) = —u(re).
r r

e For any constant A > 0, open set D C R? and function « € H'(D), the one-phase
functional F(u, D) is defined as

Fa(u, D) :/ |Vul|? dx + Al{u > 0} N D|.
D

e The so-called regular part Reg(0S,) of the free boundary 0f, (see Section is
defined as the set of points xg € 0€2,, for which there exist:
— an infinitesimal sequence 7, — 0;
— a unit vector v € R%;
such that the blow-up sequence

1
un: By = R, up(x) = T—u(xg + rpz), (B.1)
n

converges uniformly in B; to a blow-up limit
hy:B =R,  hy(z)=VA-v),. (B.2)

e The singular part Sing(9€),) of the free boundary 0, is defined simply as the
complementary of Reg(9€,)

Sing(0Q,) = 0y, \ Reg(0,).
For some fine results on the structure of the singular set we refer to Section

e By W) we denote the Weiss’ boundary adjusted energy (in the ball By), that is, for
every u € H'(By), we set

Wo(u) = /B |Vul|? dx — /83 w?dHI and Wi (u) = Wo(u) + Al{u > 0} N By
1 1

For the related Weiss monotonicity formula see Lemma, Only in Section [12] and
in the Appendix [A] we use the shorter notation W := Wj.

e Let D be an open subset of R? and v € H'(D) be nonnegative. By .4 (u, D)[¢] we
denote the first variation of the functional Fj (-, D) (calculated at u) in the direction
of the compactly supported smooth vector field ¢ € C°(D;R?). Precisely,

5]:A(U7D)[€ fA(uo\Il;l’D)’

0
I= ot ‘t:O
where Ui(z) = = + t&(x).
Remark. An explicit formula for the first variation is given in Lemma
Definition. We say that w is stationary for F5 in D (see Section if

SFn(u,D)[E] =0 for every & e C®(D;RY).
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