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Abstract. A description of the energetic response of a continuous body to changes in geometry is crucial for
the formulation of continuum field theories and their associated variational problems. Whenever possible one
attempts to enrich such field theories by means of energetic responses that account for changes in geometry
at submacroscopic levels. We here describe such submacroscopic geometrical changes via the multiscale
geometry of structured deformations, and we introduce energy responses to changes at the microlevel near
a given point x in the body by means of a response function Ψ that depends on weighted averages of the
jump-discontinuities of deformation un throughout a neighborhood of x of a given size r. The deformation
un describes geometrical changes as viewed through a microscope with magnification power proportional
to 1

n
, and the multiscale geometry provides that un can be chosen so as to approach a given macroscopic

deformation field g and so that its gradient∇un (away from sites of discontinuities) approaches a preassigned
field G as n tends to infinity. We prove here that for a broad class of nonlinear response functions Ψ the
process of upscaling “n → ∞” results in a macroscale energy response that depends through the given
non-linear response function Ψ upon (1) the jumps [g] of the macroscopic deformation g and upon the
disarrangement field ∇g − G , upon (2) the preassigned size r of the neighborhood over which the jumps
in un were averaged, and upon (3) the weighting functions αr employed in the microscale averaging. The
term “non-local” is used here to convey the dependence of the energy upon the size parameter r and upon
the averaging functions αr both before and after upscaling. By contrast, continuum field theories that
do not account for submacroscopic changes generally are “local”, in the sense that no such size parameter
and weighting functions appear in the energy response functions. Consequently, we study here not only
the process of upscaling to the macrolevel “n → ∞” but also the process of spatial localization “r → 0”.
We prove that the energetic response after the successive processes of upscaling and of spatial localization
depends through the original function Ψ (and in some cases also through the recession function of Ψ) upon
the jumps of the macroscopic deformation g and upon the disarrangement field ∇g − G, but the upscaled
and localized response no longer depends upon r or upon the nature of the non-local averaging process. The
resulting non-linear dependence of the energy upon the disarrangement field ∇g − G has previously been
shown to be significant for the description of yielding and hysteresis in special settings, and our results show
that this significance can be studied in a far broader context than before. As an illustration we apply our
results in the context of the plasticity of single crystals. We also show that the nonlinearites of Ψ persist
after both upscaling and localization when a purely local term is added to the non-local energy response at
the microlevel.
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1. Introduction

In continuum mechanics, structured deformations [14] provide a rich tool for including the multiscale
geometry of deformations. In light of the modern developments of analytical tools for the energetic formu-
lation of mechanical phenomena, structured deformations have been cast in a variational framework in the
pioneering work of Choksi and Fonseca [11]. In their setting, a (first-order) structured deformation is a pair
(g,G), where g represents the macroscopic deformation and G represents the contribution at the macrolevel
of smooth submacroscopic geometrical changes; in order to allow the macroscopic deformation g to include
non-smooth behavior, such as slips and separations, Choksi and Fonseca required that g ∈ SBV (Ω;Rd), the
space of special functions of bounded variations (see [2]). The matrix-valued field G ∈ L1(Ω;Rd×N ) captures
the contribution of the smooth submacroscopic geometrical changes to the deformation gradient ∇g, so that
a relevant object in the theory of structured deformation is the disarrangement tensor M := ∇g −G.

The connection between structured deformations and the actual submacroscopic geometrical changes
occurring during a deformation is captured in the Approximation Theorem [11, Theorem 2.12] (which is
a counterpart of [14, Theorem 5.8]), stating that for each (g,G) ∈ SD(Ω;Rd × Rd×N ) := SBV (Ω;Rd) ×
L1(Ω;Rd×N ) there exists a sequence un ∈ SBV (Ω;Rd) such that, as n→∞,

un → g in L1(Ω;Rd) and ∇un
∗
⇀ G inM(Ω;Rd×N ). (1.1)

In the formula above, the geometrical process of upscaling from the submacroscopic to the macroscopic level
is made precise via the notions of convergence used there. In (1.1), M(Ω;Rd×N ) is the space of matrix-
valued Radon measures and the symbol ∗⇀ denotes the weak-* convergence inM(Ω;Rd×N ). (In the context
of SBV functions, the symbol ∇ is used to denote the part of the distributional derivative which is absolutely
continuous with respect to the Lebesgue measure.) The approximating functions un in (1.1) are interpreted
as a description of both smooth and non-smooth submacroscopic geometrical changes, and we may write

M = ∇
(

lim
n→∞

un
)
− lim
n→∞

∇un.

Thus, the disarrangement tensor emerges as a measure of the non-commutativity of the limit operation
and taking the absolutely continuous part of the distributional derivative; because of this, it captures the
contribution in the limit of the jump discontinuities of the un’s. Notice that the approximating sequence un
in (1.1) need not be unique.

The main issues that Choksi and Fonseca addressed were the assignment of an energy to a structured
deformation and the establishment of an integral representation for that energy. They took an initial energy
EL : SBV (Ω;Rd)→ [0,+∞) featuring a bulk energy density W : Rd×N → [0,+∞) and an interfacial energy
density ψ : Rd × SN−1 → [0,+∞) in the form

EL(u) :=

ˆ
Ω

W (∇u(x)) dx+

ˆ
Ω∩Su

ψ([u](x), νu(x)) dHN−1(x), (1.2)

where dx and dHN−1(x) denote integration with respect to the N -dimensional Lebesgue measure and the
(N − 1)-dimensional Hausdorff measures, respectively, Su is the jump set of u, [u](x) is the jump of u at
x ∈ Su, and νu(x) is the outer unit normal at x ∈ Su.

Because of the non-uniqueness of the approximating sequence un, the energy IL(g,G) for a given structured
deformation is defined as the most economical way, in terms of energies EL(un) in (1.2), to reach (g,G).
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From the mathematical point of view, this corresponds to a relaxation procedure, namely

IL(g,G) := inf
{un}⊂SBV (Ω;Rd)

{
lim inf
n→∞

EL(un) : un converges to (g,G) as in (1.1)

and sup
n
‖∇un‖Lp(Ω;Rd×N ) <∞

} (1.3)

where p > 1. The representation theorems [11, Theorems 2.16 and 2.17] state that, under suitable hypotheses
on W , ψ, and G depending upon p, there exist a certain relaxed bulk energy density H : Rd×N × Rd×N →
[0,+∞) and a certain relaxed interfacial energy density h : Rd × SN−1 → [0,+∞) such that

IL(g,G) =

ˆ
Ω

H(∇g(x), G(x)) dx+

ˆ
Ω∩Sg

h([g](x), νg(x)) dHN−1(x). (1.4)

We refer the reader to Section 5.1 for the integral representation theorem providing (1.4); the particular
hypotheses on W , ψ, and G that depend upon p will not play a role until then. As a matter of fact, we
will present a more general version where we allow the initial bulk and surface energy densities W and ψ to
depend on the space variable x.

In [16] a one-dimensional procedure inspired by that in [11] was carried out for the notion of structured
deformations introduced in [14]; there the initial energy (1.2) had the form

EL(u) =

ˆ 1

0

W (∇u(x)) dx+
∑
z∈Su

ψ([u](z)) (1.5)

and the resulting integral representation (1.4) was shown to be

IL(g,G) =

ˆ 1

0

(
W (G(x)) + λ(∇g(x)−G(x))

)
dx+

∑
z∈Sg

ψ([g](z)),

where λ := lim infζ→0+ ψ(ζ)/ζ. In this example, the contribution to the relaxed bulk energy density H of the
initial interfacial energy density ψ has a special character: as the definition of λ shows, only arbitrarily small
jumps influence the relaxed bulk response, which, in turn, is linear in the disarrangement tensor M . In [10]
and subsequently in [17, 18] a periodic dependence upon M was shown to account for yielding, hysteresis,
and hardening in single crystals undergoing two-level shears. Therefore, to include such significant non-linear
effects, the choice (1.5) of initial energy must be modified.

A proposal in [16] toward capturing a non-linear dependence on M was as follows: for each r ∈ (0, 1) let

F r(u) :=

ˆ 1

0

W (∇u(x)) dx+
∑
z∈Su

ψ([u](z)) +

ˆ 1

0

Ψ

( ∑
z∈Su∩(x−r,x+r)

[u](z)

2r

)
dx, (1.6)

where the added, non-local term includes the bounded and uniformly continuous bulk energy density
Ψ: [0,+∞)→ [0,+∞) which accounts for the average of the jumps within each interval of radius r.

Passing to structured deformations in (1.6) and then taking the limit as r → 0+ yields (see [16, Proposi-
tion 2.3 and (2.21)])

J(g,G) =

ˆ 1

0

(
W (G(x)) + λ(∇g(x)−G(x))

)
dx+

∑
z∈Sg

ψ([g](z)) +

ˆ 1

0

Ψ(∇g(x)−G(x))dx, (1.7)

where a second, possibly non-linear, dependence on the disarrangements appears through the density Ψ in
the last integral above.

The goal of this paper is to show that an analogous procedure that achieves in one dimension the energy
in (1.7) can be carried out in higher dimensions in the SBV framework of [11], by adding to the energy
EL in (1.2) a term analogous to the last term on the right-hand side of (1.6). Let Ω ⊂ RN be a bounded
connected open set with Lipschitz boundary ∂Ω; for a continuous function Ψ: Ω×Rd×N → [0,+∞) and for
u ∈ SBV (Ω;Rd), define

Eαr (u) :=

ˆ
Ωr

Ψ
(
x, (Dsu ∗ αr)(x)

)
dx, (1.8)
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where Dsu is the jump part of the distributional derivative Du = ∇uLN + Dsu; for r > 0, Ωr := {x ∈ Ω :
dist(x, ∂Ω) > r}, Br is the ball of radius r centered at the origin, and

αr(x) :=
1

rN
α
(x
r

)
, (1.9a)

where

α ∈ Cb(B1) = {α : B1 → [0,+∞) : α is continuous and bounded} and
ˆ
B1

α(x) dx = 1; (1.9b)

The symbol ∗ denotes the convolution operation (whose output is a function) of a measure with the continuous
function αr (see [2, Definition 2.1]); in particular, for x ∈ Ωr and the measure Dsu,

(Dsu ∗ αr)(x) =

ˆ
Br(x)∩Su

αr(x− y)[u](y)⊗ νu(y) dHN−1(y), (1.10)

where Br(x) = x+Br (the ball of radius r centered at x) and where we used the structure theorem for the
derivative of SBV functions (see formula (2.11) below).

Notice that we have introduced an explicit dependence on x in the non-local energy density Ψ in (1.8).
The need for such a dependence is motivated by some explicit applications to yielding, hysteresis, and crystal
plasticity that we have in mind, and that we will discuss in Sections 5.4 and 6.

Putting (1.8) and (1.10) together yields the following form for the averaged interfacial energy Eαr

Eαr (u) =

ˆ
Ωr

Ψ

(
x,

ˆ
Br(x)∩Su

αr(x− y)[u](y)⊗ νu(y) dHN−1(y)

)
dx. (1.11)

We note that in the expression above the non-local character of the averaged interfacial energy emerges
through the appearance of two iterated integrations, the inner surface integral with respect to HN−1 and
the outer volume integral with respect to LN .

Our main aim in this paper is to study the behavior of energy (1.11) under upscaling, i.e., as the field u
approaches a target structured deformation (g,G), followed by spatial localization, i.e., as r approaches 0.
The first contribution we obtain is the following strengthened version of the Approximation Theorem [11,
Theorem 2.12] that is similar in spirit to the Approximation Theorem [38, Theorem 1.2]. Here and in the
sequelM+(Ω) denotes the set of positive Radon measures on Ω.

Theorem 1.1 (Approximation Theorem). Given (g,G) ∈ SD(Ω;Rd × Rd×N ) there exists a sequence un ∈
SBV (Ω;Rd) converging to (g,G) according to (1.1) and such that

there exist scalar fields γa, γs such that Γ := γaLN + γsHN−1 Sg ∈M+(Ω)

and |Dsun|
∗
⇀ Γ inM+(Ω).

(1.12)

In particular, there exists C > 0 such that

|Dun|(Ω) 6 C
(
1 + ‖g‖BV + ‖G‖L1

)
. (1.13)

Whenever a sequence un ∈ SBV (Ω;Rd) converges to (g,G) according to (1.1) in such a way that (1.12)
holds, we write

un
SD−→ (g,G). (1.14)

Notice that convergence (1.1) and the uniform bound (1.13) alone imply that up to a subsequence

Dsun
∗
⇀ (∇g −G)LN +Dsg inM(Ω;Rd×N ). (1.15)

We state now our first result concerning the behavior of the initial energy Eαr (un) with respect to the
convergence (1.14) that here embodies the process of upscaling from submacroscopic to macroscopic levels.

Theorem 1.2. Let Ω ⊂ RN be a bounded Lipschitz domain, Ψ: Ω × Rd×N → [0,+∞) be a continuous
function, for r > 0, let αr be as in (1.9), and let Eαr be as in (1.11). Then for every (g,G) ∈ SD(Ω;Rd ×
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Rd×N ) and for every sequence un ∈ SBV (Ω;Rd) such that un
SD−→ (g,G),

lim
n→∞

Eαr (un) =

ˆ
Ωr

Ψ

(
x,

ˆ
Br(x)

αr(y − x)(∇g −G)(y) dy

+

ˆ
Br(x)∩Sg

αr(y − x)[g](y)⊗ νg(y) dHN−1(y)

)
dx

=: Iαr (g,G; Ωr).

(1.16)

After proving Theorem 1.2 in Section 3, we devote Section 4 to deducing an explicit formula for

I(g,G) := lim
r→0+

lim
n→∞

Eαr (un) = lim
r→0+

Iαr (g,G; Ωr), (1.17)

where I(g,G) represents the spatial localization of the upscaled energy Iαr (g,G; Ωr). In our main result,
we obtain an explicit formula for I(g,G) via an extension of (g,G) ∈ SD(Ω;Rd × Rd×N ) to (ḡ, Ḡ) ∈
BV (RN ;Rd) × L1(RN ;Rd×N ) such that |Dsḡ|(∂Ω) = 0 (see [26, 27]). This extension permits us to add a
term to Iαr (g,G; Ωr) such that the resulting sum I

αr
(ḡ, Ḡ; Ω) is an integral over the fixed domain Ω whose

limit can be studied via Reshetnyak continuity-type theorems, and the resulting explicit formula turns out
not to depend on the particular choice of the extension. Accordingly, we restrict our attention to functions
Ψ with at most linear growth at infinity.

We focus on two different classes of continuous functions Ψ: Ω× Rd×N → [0,+∞), namely
(E) Ψ can be extended to a function (still denoted by Ψ) belonging to C(Ω× Rd×N ) with the property

that limt→+∞Ψ(x, tξ)/t exists uniformly in x ∈ Ω and ξ with |ξ| = 1. (Such functions Ψ form the
class E(Ω× Rd×N ) defined in [29, Section 2.4].) In particular, this entails that
(i) Ψ has at most linear growth at infinity with respect to the second variable, namely there exists

CΨ > 0 such that

|Ψ(x, ξ)| 6 CΨ(1 + |ξ|) for all x ∈ Ω and ξ ∈ Rd×N ; (1.18)

(ii) for all x ∈ Ω and ξ ∈ Rd×N there exists the limit

lim
x′→x
ξ′→ξ
t→+∞

Ψ(x′, tξ′)

t
. (1.19)

(L) (i) Ψ is Lipschitz with respect to the second variable, i.e., there exists LΨ > 0 such that

|Ψ(x, ξ)−Ψ(x, ξ′)| 6 LΨ|ξ − ξ′|, for all x ∈ Ω and ξ, ξ′ ∈ Rd×N ; (1.20)

(ii) there exists a continuous function ω : [0,+∞)→ [0,+∞), with ω(s)→ 0+ as s→ 0+, such that

|Ψ(x, ξ)−Ψ(x′, ξ)| 6 ω(|x− x′|)(1 + |ξ|), for all x, x′ ∈ Ω, ξ ∈ Rd×N . (1.21)

Notice that, by fixing ξ′ ∈ Rd×N , (1.20) implies that there exists CΨ > 0 such that (1.18) holds.
Remark 2.4 offers a comment on the relationship between the classes (E) and (L).

We are now in a position to state our result concerning the limit (1.17), the spatial localization of the
upscaled energy Iαr (g,G; Ωr).

Theorem 1.3. Let Ω ⊂ RN be a bounded Lipschitz domain, let Ψ: Ω × Rd×N → [0,+∞) be a continuous
function belonging to (E) or (L), and let αr be as in (1.9). Then for any (g,G) ∈ SD(Ω;Rd × Rd×N ) we
have that the limiting energy I(g,G) in (1.17) is given by

I(g,G) =

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x), (1.22)

with

Ψ∞(x, ξ) = lim sup
x′→x
ξ′→ξ
t→+∞

Ψ(x′, tξ′)

t
(1.23)

for every x ∈ Ω, ξ ∈ Sd×N−1, and extended to Rd×N by positive 1-homogeneity.

Remark 1.4. We observe the following:
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• The function Ψ∞ defined in (1.23) is finite whenever Ψ is in (E) or (L). Notice that it is a limit if Ψ
is in (E), see (1.19).

• In Theorem 1.3, the resulting bulk energy density retains the character of the function Ψ that
defines the initial non-local energy (1.8). Moreover, we observe that since Ψ∞ vanishes in the case
of sublinear growth at infinity formula (1.22) reduces to

I(g,G) =

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx (1.24)

when Ψ has sublinear growth.

It is now natural to consider an initial energy that combines both a local contribution, described by the
functional EL in (1.2), and a non-local one, described by Eαr in (1.8). We now focus our attention on the
upscaling, in the context of [11], of the energy functional

Fαr (u) := EL(u) + Eαr (u), (1.25)

namely, we consider

Jαr (g,G) := inf
{un}⊂SBV (Ω;Rd)

{
lim inf
n→∞

Fαr (un) : un converges to (g,G) according to (1.1)

and sup
n
‖∇un‖Lp(Ω;Rd×N ) <∞

} (1.26)

where, as in (1.3), p > 1. We will prove in Theorem 5.4 that the upscaling of the sum Fαr in (1.25) is the
sum of the upscaling Iαr in (1.16) of Eαr and the relaxation IL in (1.3) of EL:

Jαr (g,G) = IL(g,G) + Iαr (g,G; Ωr), (1.27)

so that, defining
J(g,G) := lim

r→0+
Jαr (g,G) (1.28)

and keeping (1.17) into account, we obtain

J(g,G) = IL(g,G) + I(g,G). (1.29)

Eventually, from (1.4) and (1.22) the energy J(g,G) has the explicit expression (see (5.9) in Corollary 5.5)

J(g,G) =

ˆ
Ω

H(∇g(x), G(x)) dx+

ˆ
Ω∩Sg

h([g](x), νg(x)) dHN−1(x)

+

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x).

(1.30)

The formula above couples together the contributions to the total energy J(g,G) coming from the local
part IL(g,G) and from the limit I(g,G) of the non-local energy. The contribution of the singularities of g
enters the expression of J(g,G) both through the surface term of IL(g,G) and through the surface term of
I(g,G), via the function Ψ∞, thus retaining the linear character at infinity of Ψ. The effect of Ψ on the
disarrangements is encoded in the bulk term of I(g,G).

Thus, our approach to the study of non-local energies rests on two limiting processes:
1 – upscaling: Starting from a submacroscopic level at which a weighted average of disarrangements

within each neighborhood of a fixed size r > 0 determines the initial energy density, one passes
to the macrolevel, permitting disarrangements to diffuse throughout each such neighborhood. This
upscaling process determines a structured deformation as well as the non-local dependence of the
energy density on that structured deformation.

2 – spatial localization: Starting at the macrolevel from neighborhoods of the given size r above,
one passes to neighborhoods of smaller and smaller sizes to obtain in the limit r → 0 purely local
bulk and interfacial energy densities for the structured deformation identified above.

Our final result, Corollary 5.5, provides the explicit representation (1.30) and shows that the nonlinearities
introduced in the microlevel energy Eαr through Ψ persist under the two operations of upscaling and spatial
localization.

Previous research on relaxation of energies for continuous bodies has rested on one or the other, but not
on both, of these two limiting processes. In [7, 11, 12, 16, 36, 39] the first process is carried out for purely



UPSCALING OF NON-LOCAL ENERGIES 7

local energy densities, so that the parameter r does not appear, and the second process is irrelevant. The
important results in [39] (that are exemplified in [7, 12, 16, 36]) show that the relaxed bulk energies obtained
via the limiting process (1), when the initial energy is both purely local and purely interfacial, form a class
that excludes the periodic functions used in [10] to predict yielding and hysteresis.

Peridynamics provides a context in which only the second limiting process is employed: for example,
classical, local theories of elasticity and fracture are recovered in [37] and [32] from peridynamic theories
under the limiting process r → 0. In the case of peridynamics, the principal focus with respect to storage
of energy and with respect to associated field theories is the non-local case in which the “horizon” r remains
fixed, while the present approach via the two limiting processes achieves a purely local relaxed energy that,
unlike the relaxations based on process (1) alone, admits periodic relaxed energy responses in the context of
the field theories [20, 21, 34] for bodies undergoing structured deformations.

We note that there are particular classes of local initial energy densities W and ψ for which explicit
formulas are available [7, 36, 39] for the relaxed energy IL(g,G) in (1.4). Notice that formula (1.22) does
provide an explicit formula for the non-local energy I(g,G), so that an explicit formula for J(g,G) could then
be obtained via (1.29) and (1.30). Moreover, in the one-dimensional case, explicit formulas for IL are available
in [12] and [16, Part II, Sections 2.1–2.5]. The distinction between the types of dependence of the relaxed
bulk energy on the disarrangement tensor M = ∇g − G that we pointed out earlier in this introduction
(see (1.7)) for the one-dimensional results in [16] remains apparent in the multi-dimensional cases where
explicit formulas are available for both. Specifically, Remark 5.6 provides sufficient conditions in the multi-
dimensional case in order that the relaxed bulk energy density be given by the sumW (x,G(x))+Ψ(x,M(x)),
with W the initial bulk energy response function and Ψ the initial non-local bulk energy response function.

The overall plan of this work is the following: in Section 2 we fix the notation and recall some basic
results used throughout this article. In Section 3 and Section 4, we prove Theorem 1.2 and Theorem 1.3,
respectively, that are the main novel contribution of this work. In Section 5, we consider an initial energy
featuring both a local and a non-local term and discuss its relaxation and the limit for a vanishing measure
of non-locality. The brief Subsection 5.3 contains some comments on the inversion of the two limiting
procedures and discusses why, at least in the present context, we cannot expect a commutability result to
hold. In Subsection 5.4 we show how our results provide a firm foundation for the predictions of yielding
and hysteresis in earlier studies based on structured deformations; in Section 6, we turn to crystal plasticity
to present an example of bulk energies of the type recovered by our upscaling and spatial localization of
non-local energies.

2. Preliminaries

We start this section by fixing the notation used throughout this work; then we recall some results on
measure theory and give a contained presentation of special functions of bounded variation, and finally we
conclude by introducing structured deformations in the framework of [11].

2.1. Notation. We will use the following notations
- U ⊂ RN is a bounded connected open set with LN (∂U) = 0;
- Ω ⊂ RN is a bounded connected open Lipschitz set with LN (∂Ω) = 0;
- A(Ω) is the family of all open subsets of Ω; B(Ω) is the family of all Borel subsets of Ω;
- M(U) andM(U ;R`) are the sets of (signed) finite real-valued or vector-valued Radon measures on
U , respectively;M+(U) is the set of non-negative finite Radon measures on U ;

- given µ ∈M(U) or µ ∈M(U ;R`), the measure |µ| ∈ M+(U) denotes the total variation of µ;
- LN and HN−1 denote the N -dimensional Lebesgue measure and the (N − 1)-dimensional Hausdorff
measure in RN , respectively; the symbol dx will also be used to denote integration with respect to
LN , while dHN−1 will be used to denote surface integration with respect to HN−1;

- given µ ∈M(U ;Rd), we denote by µ = maLN +µs its decomposition into absolutely continuous part
with respect to the Lebesgue measure and singular part; for every A ∈ B(U), we define 〈µ〉(A) :=´
A

√
1 + |ma(x)|2 dx+ |µs|(A);

- SN−1 denotes the unit sphere in RN ;
- for any r > 0, Br denotes the open ball of RN centred at the origin of radius r; for any x ∈ RN ,
Br(x) := x + rB denotes the open ball centred at x of radius r; Q := (− 1

2 ,
1
2 )N denotes the open

unit cube of RN centred at the origin; for any η ∈ SN−1, Qη denotes the open unit cube in RN with
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two faces orthogonal to η; for any x ∈ RN and δ > 0, Q(x, δ) := x + δQ denoted the open cube in
RN centered at x with side δ;

- for any r > 0 and Ω ⊂ RN , Ωr := {x ∈ Ω : dist(x, ∂Ω) > r} and Ωr := Ω +Br;
- C represents a generic positive constant that may change from line to line;
- Cb(B1) := {α : B1 → [0,+∞) : α is continuous and bounded};
Cc(B1) := {α : B1 → [0,+∞) : α is continuous and has compact support in B1};
C0(B1) denotes the closure of Cc(B1) in the sup norm;

- for any p ∈ [1,+∞), Lp(Ω;R`) denotes the space of vector-valued functions whose p-th power is
integrable;
BV (Ω;R`) denotes the space of vector-valued functions of bounded variation;
SBV (Ω;R`) denotes the space of vector-valued special functions of bounded variation;

- the set of structured deformations is defined as SD(Ω;Rd × Rd×N ) := SBV (Ω;Rd)× L1(Ω;Rd×N ).

2.2. Measure Theory. We collect here some basic definitions and results from measure theory that will
be used throughout the paper. In particular, we introduce the notions of weak-* and 〈·〉-strict convergences
and conclude by stating the Reshetnyak Continuity Theorem.

Given U ⊂ RN a measurable set, we denote by M(U ;R`) the set of R`-valued Radon measures defined
on Ω. The Radon-Nikodým Theorem [2, Theorem 1.28] ensures that, for any µ ∈ M(U ;R`) there exists a
unique pair of Radon measures µa and µs such that µa is absolutely continuous with respect to the Lebesgue
measure LN , µs is singular with respect to LN , and µ = µa + µs. Moreover, there exists a unique function
ma ∈ L1(Ω;R`) such that µa = maLN , so that µ = maLN + µs. The singular part µs of µ is supported on
a set of Lebesgue measure zero.

Definition 2.1. Let µn = ma
nLN + µsn ∈ M(U ;R`) be a sequence of measures and let µ = maLN + µs ∈

M(U ;R`).
(i) We say that µn converges weakly-* to µ (in symbols µn

∗
⇀ µ) if

lim
n→∞

ˆ
U

ϕ(x) dµn(x) =

ˆ
U

ϕ(x) dµ(x) for every ϕ ∈ C0(U).

(ii) We say that µn converges locally weakly-* to µ if

lim
n→∞

ˆ
U

ϕ(x) dµn(x) =

ˆ
U

ϕ(x) dµ(x) for every ϕ ∈ Cc(U).

(iii) If, furthermore, µn, µ ∈ M(U ;R`), we say that µn converges 〈·〉-strictly to µ if µn
∗
⇀ µ and

〈µn〉(U)→ 〈µ〉(U), where, for every A ∈ B(U),

〈µ〉(A) :=

ˆ
A

√
1 + |ma(x)|2 dx+ |µs|(A).

Proposition 2.2 ([2, Proposition 1.62(b)]). Let µn ∈ M(U ;R`) be a sequence of bounded Radon measures
locally weakly-* converging to µ. Then, if |µn| locally weakly-* converges to Λ, then Λ > |µ|. Moreover, if
V is a relatively compact µ-measurable set such that Λ(∂V ) = 0, then µn(V ) → µ(V ) as n → ∞. More
generally, ˆ

U

u(x) dµ(x) = lim
n→∞

ˆ
U

u(x) dµn(x),

for every bounded Borel function u : U → R with compact support, such that the set of discontinuity points
is Λ-negligible.

Theorem 2.3. Let µ ∈M(U ;R`) and, for r > 0, let αr be as in (1.9). Then µ ∗ αr ∈ L1(Ur;R`) and
(i) the measures µr := (µ ∗ αr)LN locally weakly-* converge to µ as r → 0+ and, for every V ⊂ Ur a

Borel set, ˆ
V

|µ ∗ αr|(x) dx 6 |µ|(V r) (2.1)

and the measures |µr| locally weakly-* converge in U to |µ|;
(ii) if |µ|(∂U) = 0, it follows that 〈µr〉(U) → 〈µ〉(U), that is µr converges 〈·〉-strictly to µ according to

Definition 2.1(iii).
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Proof. Fix r ∈ (0, 1). We start by proving that µ ∗ αr is continuous LN -a.e. in Ur. Let N(r) := {x ∈ Ur :
|µ|(∂Br(x)) > 0} and notice that LN (N(r)) = 0. For x, x′ ∈ Ur \N(r), we estimate∣∣(µ ∗ αr)(x)− (µ ∗ αr)(x′)

∣∣ 6∣∣∣∣ ˆ
U∩Br(x)

αr(y − x) dµ(y)−
ˆ
U∩Br(x′)

αr(y
′ − x′) dµ(y′)

∣∣∣∣
6
ˆ
U∩(Br(x)∩Br(x′))

|αr(y − x)− αr(y − x′)|d|µ|(y)

+

ˆ
U∩(Br(x)\Br(x′))

|αr(y − x)|d|µ|(y)

+

ˆ
U∩(Br(x′)\Br(x))

|αr(y − x′)|d|µ|(y)

=:I1(x′) + I2(x′) + I3(x′).

(2.2)

By the uniform continuity of αr there exists a function ωr : [0,+∞) → [0,+∞) such that ωr(s) → 0+ as
s→ 0+ such that

I1(x′) 6 Cωr(|x− x′|)|µ|(U). (2.3)

Assuming that δ := |x − x′| < r, and denoting by Ar+δr−δ(x) = Br+δ(x) \ Br−δ(x) the annulus centered at x
and setting Cαr = supBr |αr|, we can estimate

I2(x′) + I3(x′) 6 Cαr |µ|
(
U ∩Ar+δr−δ(x)

)
. (2.4)

Noting that δ 7→ Ar+δr−δ(x) is a monotone family of sets and that
⋂
δ>0A

r+δ
r−δ(x) = ∂Br(x),

lim
x′→x

∣∣(µ ∗ αr)(x)− (µ ∗ αr)(x′)
∣∣ 6 lim

x′→x
(I1(x′) + I2(x′) + I3(x′)) = 0

by (2.3) and (2.4), recalling that |µ|(∂Br(x)) = 0. This proves the continuity of µ ∗ αr for LN -a.e. x ∈ Ur.
Estimate (2.1) follows from an application of Fubini’s Theorem:
ˆ
V

|µ ∗ αr|(x) dx 6
ˆ
V

(ˆ
Br(x)

αr(y − x) d|µ|(y)

)
dx 6

ˆ
V r

(ˆ
Br(y)

αr(y − x) dx

)
d|µ|(y) 6 |µ|(V r). (2.5)

Recalling that the right-hand side of (2.5) is bounded above by |µ|(U), we obtain that both µr and |µr|
are uniformly bounded, hence converging weakly-* in the sense of measures, up to subsequences, to certain
measures µ∗ ∈M(U ;R`) and λ∗ ∈M+(U), respectively.

Observe that we can extend µ as a measure in M(RN ;R`) in such a way that sptµ ⊂ K, where K is
a compact set containing U + B1, and recall that, upon extension outside of Br as the zero function, the
convolution kernels αr in (1.9) converge in the sense of distributions in RN to the Dirac delta δ0 centred at
the origin as r → 0+. Thus, µr converges to µ in the sense of distributions as r → 0+ by [25, Theorem 5.1.3]
and µ∗ = µ by the uniqueness of the distributional limit. The same reasoning holds for |µr|, so that λ∗ = |µ|.
This proves (i).

The proof (ii) follows by combining the proof of [4, Proposition 2.22(iii)] with the convergence granted
by [25, Theorem 5.1.3] to replace the standard convolution kernels considered in [4, Proposition 2.22(iii)] by
our αr of (1.9). Notice that it is necessary to extend µ outside of U , but the fact that |µ|(∂U) = 0 avoids
concentration effects at the boundary. �

Given µ = maLN + µs ∈M(U ;R`) and Φ: U × R` → [0,+∞) continuous, let

I (µ) :=

ˆ
U

Φ(x,ma(x)) dx+

ˆ
U

Φ∞
(
x,

dµs

d|µs|
(x)

)
d|µs|(x), (2.6)

where Φ∞ is the recession function of Φ at infinity, defined by

Φ∞(x, ξ) := lim sup
x′→x
ξ′→ξ
t→+∞

Φ(x′, tξ′)

t
(2.7)
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for every x ∈ U , ξ ∈ S`−1 and extended to R` by positive 1-homogeneity (compare with (1.23)). We say that
Φ ∈ E(U ×R`) if Φ belongs to the class (E) defined in the introduction. Notice that if Φ ∈ E(U ×R`), then
Φ∞ is a limit, namely

Φ∞(x, ξ) = lim
x′→x
ξ′→ξ
t→+∞

Φ(x′, tξ′)

t
(2.8)

for every x ∈ U , ξ ∈ S`−1 and extended to R` by positive 1-homogeneity. We point out that (i) continuous and
positively 1-homogeneous functions and (ii) convex functions with linear growth are two classes of functions
belonging to E(U × R`) (see [30]). We refer the reader to [29, Section 2.4] for a detailed description of the
class E(U × R`). Motivated by the fact that Lipschitz functions do not necessarily belong to E(U × R`)
(see Remark 2.4 below), we considered further here the classes of functions (E) and (L) described in the
Introduction.

Remark 2.4. The two classes (E) and (L) have a non-empty intersection, but also a non-trivial symmetric
difference.
An example of a function which belongs to (E) but not to (L), with N = d = 1, is the function Ψ: R → R
defined by Ψ(ξ) =

√
1− ξ2 for ξ ∈ [−1, 1] and extended by periodicity. The limit in (1.19) exists and equals

0, but Ψ is not Lipschitz.
An example of a function which belongs to (L) but not to (E), again with N = d = 1, is given by Ψ: R → R
defined in terms of the sequence {ξn}∞n=1, defined recursively by ξ1 = 1 and ξn+1 = 2nξn, for n ∈ N \ {0},
and such that

Ψ(ξ) =


0, 0 6 ξ 6 1,

ξ − ξn, ξn 6 ξ 6
ξn + ξn+1

2
, n ∈ N \ {0},

ξn+1 − ξ,
ξn + ξn+1

2
6 ξ 6 ξn+1, n ∈ N \ {0}.

Then Ψ(ξn)/ξn = 0 for all n ∈ N \ {0} and

Ψ
(ξn + ξn+1

2

)
ξn + ξn+1

2

=
ξn+1 − ξn
ξn+1 + ξn

=
2n− 1

2n+ 1
, for n ∈ N \ {0}.

Consequently,

lim
n→∞

Ψ(ξn)

ξn
= 0 < 1 = lim

n→∞

Ψ
(ξn + ξn+1

2

)
ξn + ξn+1

2

,

so that (1.19) does not hold.

The following two results will be useful in Section 4.

Theorem 2.5 (Reshetnyak upper-semicontinuity theorem, [4, Corollary 2.11]). Let µn = ma
nLN + µsn ∈

M(U ;R`) be a sequence of measures and let µ = maLN + µs ∈ M(U ;R`) be such that µn 〈·〉-strictly
converges to µ. Let Φ: U × R` → [0,+∞) be a continuous function with linear growth at infinity (see
(1.18)). Then the functional I defined in (2.6) is upper semicontinuous, namely

I (µ) > lim sup
n→∞

I (µn).

Theorem 2.6 (Reshetnyak continuity theorem, [29, Theorem 4]). Let µn = ma
nLN + µsn ∈ M(U ;R`) be a

sequence of measures and let µ = maLN + µs ∈ M(U ;R`) be such that µn 〈·〉-strictly converges to µ. Let
Φ ∈ E(U × R`). Then Φ∞ is given by (2.8) and

I (µn)→ I (µ), as n→∞,
where

I (µ) :=

ˆ
U

Φ(x,ma(x)) dx+

ˆ
U

Φ∞
(
x,

dµs

d|µs|
(x)

)
d|µs|(x),

and analogously for I (µn).
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We conclude this subsection by proving the following property for functions Φ belonging to the class (L).

Lemma 2.7. Let Φ: U × R` → [0,+∞) belong to the class (L). Then the recession function Φ∞ defined in
(2.7) can be computed as

Φ∞(x, ξ) = lim sup
t→+∞

Φ(x, tξ)

t
, for all x ∈ Ω, ξ ∈ R`. (2.9)

Proof. Fix x ∈ U and ξ ∈ R`. The inequality Φ∞(x, ξ) > lim supt→+∞ t−1Φ(x, tξ) is obvious from the defi-
nition of lim sup. The proof of the converse inequality is a matter of a computation, using the subadditivity
of the lim sup and keeping (1.20) and (1.21) in mind. �

2.3. BV and SBV functions. We start by recalling some facts on functions of bounded variation. We
refer to [2] for a detailed treatment of this subject.

A function u ∈ L1(Ω;Rd) is said to be of bounded variation, and we write u ∈ BV (Ω;Rd), if the distri-
butional derivative Du ∈M(Ω;Rd×N ), that is, it is a (signed) finite Radon measure. The space BV (Ω;Rd)
is a Banach space when endowed with the norm ‖u‖BV (Ω;Rd) := ‖u‖L1(Ω;Rd) + |Du|(Ω). Since this norm is
too strong for practical applications, it is customary to consider the weak∗ convergence in BV , which is the
appropriate notion for compactness properties (see [2]). We say that a sequence un ∈ BV (Ω;Rd) converges
weakly-* to a function u ∈ BV (Ω;Rd), in symbols un

∗
⇀ u, if

un → u in L1(Ω;Rd) and Dun
∗
⇀ Du inM(Ω;Rd×N ).

Since Du ∈M(Ω;Rd×N ), it can be split into the sum of two mutually singular measures Dau and Dsu. By
∇u we denote the density of Dau with respect to LN , so that we can write

Du = ∇uLN +Dsu.

The measure Dsu can be further split into the sum of two contributions, Djumeasuring the discontinuities
of u and Dcu measuring the Cantor-like behavior of the distributional derivative. In particular, denoting by
Su the set of points x ∈ Ω for which there exist two vectors a, b ∈ Rd and a unit vector ν ∈ SN−1, normal to
Su at x, such that a 6= b and

lim
ε→0+

1

εN

ˆ
{y∈x+εQν :(y−x)·ν>0}

|u(y)− a|dy = 0, lim
ε→0+

1

εN

ˆ
{y∈x+εQν :(y−x)·ν<0}

|u(y)− b|dy = 0, (2.10)

the triple (a, b, ν) is uniquely determined by (2.10) up to permutation of a and b and a change of sign of ν and
is denoted by (u+(x), u−(x), νu(x)). The set Su is called the jump set of u and it is (N − 1)-rectifiable. In
conclusion, the distributional derivative Du can be written as the sum of three mutually singular measures
as

Du = ∇uLN + [u]⊗ νuHN−1 Su +Dcu,

where [u] := u+ − u−.
The space of special functions of bounded variation, SBV (Ω;Rd) is the space of functions u ∈ BV (Ω;Rd)

such that Dcu = 0; therefore, for each u ∈ SBV (Ω;Rd)

Du = ∇uLN + [u]⊗ νuHN−1 Su. (2.11)

2.4. Structured deformations. Following [11], we define the set of structured deformations as

SD(Ω;Rd × Rd×N ) := SBV (Ω;Rd)× L1(Ω;Rd×N ).

We introduce the shorthand notation ‖(g,G)‖SD(Ω;Rd×Rd×N ) := ‖g‖BV (Ω;Rd) + ‖G‖L1(Ω;Rd×N ), which we are
going to denote simply by ‖(g,G)‖SD when no domain specification is needed.

A fundamental result in the theory of structured deformations is the Approximation Theorem [14, Theo-
rem 5.8], a counterpart of which was recovered in [11, Theorem 2.12] in the SBV framework and in [38] in
a broader framework. Its proof is a consequence of the following two results.

Theorem 2.8 ([1, Theorem 3]). Let f ∈ L1(Ω;Rd×N ). Then there exist u ∈ SBV (Ω;Rd), a Borel function
β : Ω→ Rd×N , and a constant C > 0 depending only on N such that

Du = f LN + βHN−1 Su,

ˆ
Su∩Ω

|β(x)|dHN−1(x) 6 C‖f‖L1(Ω;Rd×N ). (2.12)
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Lemma 2.9 ([11, Lemma 2.9]). Let u ∈ BV (Ω;Rd). Then there exist piecewise constant functions ūn ∈
SBV (Ω;Rd) such that ūn → u in L1(Ω;Rd) and

|Du|(Ω) = lim
n→∞

|Dūn|(Ω) = lim
n→∞

ˆ
Sūn

|[ūn](x)| dHN−1(x). (2.13)

In the Introduction we stated our version of the Approximation Theorem, which we now prove.

Proof of Theorem 1.1. Let (g,G) ∈ SD(Ω;Rd × Rd×N ) and, by Theorem 2.8, choose h ∈ SBV (Ω;Rd) such
that ∇h = ∇g − G. Furthermore, let h̄n ∈ SBV (Ω;Rd) be a sequence of piecewise constant functions
approximating h as per Lemma 2.9. Then, the sequence of functions

un := g + h̄n − h (2.14)

is easily seen to approximate (g,G) in the sense of (1.1). Invoking the triangle inequality, the inequality in
(2.12), and (2.13), we obtain

|Dun|(Ω) 6 C
(
LN (Ω) + ‖(g,G)‖SD(Ω;Rr×Rd×N )

)
, for all n ∈ N, (2.15)

which is (1.13). The uniform bound (2.15) ensures the existence of a subsequence (not relabeled) such that
|Dsun| converges weakly-* to a certain measure Γ = Γa + Γs ∈M+(Ω). Upon noting that Theorem 2.8 and
Lemma 2.9 hold in any open set U ∈ A(Ω), estimate (2.15) holds true in U as well

|Dun|(U) 6 C
(
LN (U) + ‖(g,G)‖SD(U ;Rd×Rd×N )

)
, for all n ∈ N, (2.16)

so that, by lower-semicontinuity (see, e.g., [2, Proposition 1.62(a)]),

Γ(U) 6 C
(
LN (U) + ‖(g,G)‖SD(U ;Rd×Rd×N )

)
. (2.17)

Since Γ is a Radon measure, it is outer regular on all Borel sets, so by (2.17), we have for every B ∈ B(Ω)

Γ(B) = inf
U⊃B
Uopen

Γ(U) 6 inf
U⊃B
Uopen

C
(
LN (U) + ‖(g,G)‖SD(U ;Rd×Rd×N )

)
= C

(
LN (B) + ‖(g,G)‖SD(B;Rd×Rd×N )

)
,

since the latter measure in the right hand side is also a Radon measure. The inequality above shows that Γ
is absolutely continuous with respect to the measure B(Ω) 3 B 7→ LN (B) + ‖(g,G)‖SD(B;Rd×Rd×N ), which
proves that spt(Γs) ⊆ Sg. Therefore, there must exist scalar fields γa, γs such that Γ = γaLN+γsHN−1 Sg.
This proves (1.12) and concludes the proof. �

Remark 2.10. To justify (1.15) in the Introduction, observe the following. Let un ∈ SBV (Ω;Rd) be a
sequence that converges to a structured deformation (g,G) ∈ SD(Ω;Rd × Rd×N ) in the sense of (1.1). The
convergence of un → g in L1 implies that Dun → Dg in the sense of distributions, which, together with (2.15)
and the convergence ∇un

∗
⇀ G inM(Ω;Rd×N ), entails that (up to the extraction of a further subsequence)

(1.15) holds, namely Dsun
∗
⇀ (∇g −G)LN +Dsg inM(Ω;Rd×N ).

3. Upscaling of the non-local energy Eαr

This section is devoted to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let αr be as in (1.9), let (g,G) ∈ SD(Ω;Rd × Rd×N ), and let us define µ ∈
M(Ω;Rd×N ) by the right-hand side of (1.15) and µr ∈M(Ω;Rd×N ) its convolution with αr, namely

µ := (∇g −G)LN +Dsg and µr := (µ ∗ αr)LN , (3.1)

For any sequence un ∈ SBV (Ω;Rd), let µn := Dsun. If un converges to (g,G) in the sense of (1.14), then
formula (1.15) can be written as

µn
∗
⇀ µ. (3.2)

Let us recall that Sg is a (N − 1)-rectifiable set, so that for every fixed r ∈ (0, 1), the set

Nr := {x ∈ Ωr : HN−1(∂Br(x) ∩ Sg) > 0}
has Lebesgue measure zero. Therefore, by Proposition 2.2, for every x ∈ Ωr \ Nr, (3.2) reads

Dsun(Ω ∩Br(x))→
ˆ

Ω∩Br(x)

(∇g(y)−G(y)) dy +

ˆ
Ω∩Br(x)∩Sg

[g](y)⊗ νg(y) dHN−1(y). (3.3)
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For every x ∈ Ωr \ Nr (that is, for LN -a.e. x ∈ Ωr) we define

fr,n(x) :=

ˆ
Ω∩Br(x)∩Sun

αr(y − x)[un](y)⊗ νun(y) dHN−1(y),

fr(x) :=

ˆ
Ω∩Br(x)

αr(y − x)(∇g(y)−G(y)) dy +

ˆ
Ω∩Br(x)∩Sg

αr(y − x)[g](y)⊗ νg(y) dHN−1(y).

By classical results (see, e.g., [3]), fr,n and fr are LN -measurable in Ωr if we prove that they are continuous
LN -a.e. in Ωr. Indeed, fix x, x′ ∈ Ωr \ Nr such that |Dsun|(∂Br(x)) = 0 (this happens for LN -a.e. x);
analogously to the proof of Theorem 2.3(i), we have

|fr,n(x)− fr,n(x′)| =
∣∣∣∣ˆ

Ω∩Br(x)∩Sun
αr(y − x)[un](y)⊗ νun(y) dHN−1(y)

−
ˆ

Ω∩Br(x′)∩Sun
αr(y

′ − x′)[un](y′)⊗ νun(y′) dHN−1(y′)

∣∣∣∣
6
ˆ

Ω∩(Br(x)∩Br(x′))∩Sun
|αr(y − x)− αr(y − x′)| · |[un](y)⊗ νun(y)|dHN−1(y)

+

ˆ
Ω∩(Br(x)\Br(x′))∩Sun

|αr(y − x)| · |[un](y)⊗ νun(y)|dHN−1(y)

+

ˆ
Ω∩(Br(x′)\Br(x))∩Sun

|αr(y − x′)| · |[un](y)⊗ νun(y)|dHN−1(y)

=:I1(x′) + I2(x′) + I3(x′).

By the uniform continuity of αr there exists a function ωr : [0,+∞) → [0,+∞) such that ωr(s) → 0+ as
s→ 0+ such that

I1(x′) 6 Cωr(|x− x′|)(1 + ‖(g,G)‖SD), (3.4)
where we have used (2.15). Assuming that δ := |x− x′| < r, and denoting by Ar+δr−δ(x) = Br+δ(x) \Br−δ(x)
the annulus centered at x with inner and outer radii r−δ and r+δ, respectively, and setting Cαr = supBr |αr|,
we can estimate

I2(x′) + I3(x′) 6 Cαr |Dsun|
(
Ω ∩Ar+δr−δ(x) ∩ Sun

)
. (3.5)

Noting that δ 7→ Ar+δr−δ(x) is a monotone family of sets and that
⋂
δ>0A

r+δ
r−δ(x) = ∂Br(x),

lim
x′→x

|fr,n(x)− fr,n(x′)| 6 lim
x′→x

(I1(x′) + I2(x′) + I3(x′)) = 0

by (3.4) and (3.5), recalling that |Dsun|(∂Br(x)) = 0. This proves the continuity of fr,n for LN -a.e. x ∈ Ωr.
The continuity of fr can be proved in a similar way. Moreover, recalling (2.15), we have the pointwise
uniform bound

|fr,n(x)| 6 Cαr |Dsun|(Ω) 6 CαrC(1 + ‖(g,G)‖SD) < +∞, (3.6)
which proves that fr,n ∈ L1(Ωr;Rd×N ); similarly we can conclude that also fr ∈ L1(Ωr;Rd×N ). Finally, by
(3.3), since αr ∈ Cb(Br) and hence in E ′(RN ) (the space of continuous linear forms on C∞(RN )), and by
[25, Theorem 5.1.3] we conclude that fr,n → fr in the sense of distributions. It is easily seen that the bound
in (3.6) also entails that up to a subsequence the limit is also in the sense of measures.

Defining, for x ∈ Ωr \ Nr,

f̄r,n(x) :=

ˆ
Ω∩Br(x)∩Sun

αr(y − x)|[un](y)⊗ νun(y)|dHN−1(y),

f̄r(x) :=

ˆ
Ω∩Br(x)

αr(y − x)Λa(g,G)(y) dy +

ˆ
Ω∩Br(x)∩Sg

αr(y − x)Λs(g,G)(y) dHN−1(y),

and recalling (1.12) we obtain that f̄r,n
∗
⇀ f̄r, by applying [25, Theorem 5.1.3] once again. Again by

Proposition 2.2 we get that, up to subsequences, fr,n → fr LN -a.e. in Ωr.
Let us consider a subsequence k 7→ fr,nk such that fr,nk → fr LN -a.e.in Ωr. Then

lim
k→∞

ˆ
Ωr

Ψ(x, fr,nk(x)) dx =

ˆ
Ωr

Ψ(x, fr(x)) dx. (3.7)



14 JOSÉ MATIAS, MARCO MORANDOTTI, DAVID R. OWEN, AND ELVIRA ZAPPALE

Indeed, for each such subsequence fr,nk (3.6) gives |fr,nk(x)| 6 CαrC(1 + ‖(g,G)‖SD) which, using the
continuity of Ψ provides the uniform upper bound∣∣Ψ(x, fr,nk(x)

)∣∣ 6 max
{

Ψ(x,A) : x ∈ Ωr, |A| 6 CαrC
(
1 + ‖(g,G)‖SD

)}
, (3.8)

for LN -a.e. x ∈ Ωr and for all k ∈ N. Since Ψ(·, fr,nk(·))→ Ψ(·, fr(·)) LN -a.e. in Ωr, again by the continuity
of Ψ, (3.7) follows by dominated convergence. Since every un converging to (g,G) according to (1.14) has a
subsequence unk for which the corresponding fr,nk is such that (3.7) holds, and since the right-hand side of
(3.7) is the same for every subsequence, then (1.16) holds. This concludes the proof. �

4. Spatial localization of the upscaled non-local energy

In this section we deal with the limit (1.17), that is, we find an explicit formula for the energy Iαr (g,G; Ωr)
in the limit as the measure of non-locality r tends to zero. As mentioned in the Introduction, we restrict
our attention to continuous functions Ψ: Ω×Rd×N → [0,+∞) belonging to the classes (E) or (L). As a first
step, given (g,G) ∈ SD(Ω;Rd × Rd×N ), we provide a pair (ḡ, Ḡ) ∈ BV (Ω + B1;Rd) × L1(Ω + B1;Rd×N )
satisfying

(e1) (ḡ, Ḡ)|Ω = (g,G);
(e2) |Dḡ|(Ω +B1) 6 C‖g‖BV (Ω;Rd), for some constant C > 0;
(e3) |Dsḡ|(∂Ω) = 0.

Because ∂Ω is Lipschitz and, in particular, g ∈ BV (Ω;Rd), a function ĝ ∈ BV (RN ;Rd) satisfying ĝ|Ω = g,
(e2), and (e3) is provided by [27, Theorem 1.4]. Then we can take ḡ := ĝ|Ω+B1

. Any function Ḡ ∈
L1(Ω+B1;Rd×N ) satisfying Ḡ|Ω = G provides the second element of the pair (ḡ, Ḡ) satisfying (e1-3). For any
(ḡ, Ḡ) satisfying (e1-3) and for αr as in (1.9), in analogy to (3.1), we define the measures µ̄, µ̄r ∈M(Ω;Rd×N )
by

µ̄ := (∇ḡ − Ḡ)LN +Dsḡ and µ̄r := (µ̄ ∗ αr)LN , (4.1)

and we define the functional I
αr

(ḡ, Ḡ; Ω) by

I
αr

(ḡ, Ḡ; Ω) :=

ˆ
Ω

Ψ(x, (µ̄ ∗ αr)(x)) dx. (4.2)

Noting that, by (e1), µ̄ Ω = µ (see (3.1) and (4.1)), and recalling (1.16), (4.2) can be written as

I
αr

(ḡ, Ḡ; Ω) = Iαr (g,G; Ωr) +

ˆ
Ω\Ωr

Ψ(x, (µ̄ ∗ αr)(x)) dx. (4.3)

We are now ready to prove Theorem 1.3

Proof of Theorem 1.3. Let us fix (g,G) ∈ SD(Ω;Rd × Rd×N ) and let (ḡ, Ḡ) ∈ BV (Ω + B1;Rd) × L1(Ω +

B1;Rd×N ) satisfy (e1-3). In view of (4.2) and (4.3), it suffices to show that limr→0+ I
αr

(ḡ, Ḡ; Ω) exists and
is equal to the expression for I(g,G) in (1.22), and to show that the integral in the right-hand side of (4.3)
tends to zero as r → 0+, namely

lim
r→0+

ˆ
Ω\Ωr

Ψ(x, (µ̄ ∗ αr)(x)) dx = 0. (4.4)

Because limr→0+ |Ω \ Ωr| = 0, (4.4) follows by using Fubini’s Theorem, (1.9), and (1.18) to obtain the
following chain of inequalities (recall the proof of (2.1))∣∣∣∣ˆ

Ω\Ωr
Ψ(x, (µ̄ ∗ αr)(x)) dx

∣∣∣∣ 6CΨ

ˆ
Ω\Ωr

(
1 + |(µ̄ ∗ αr)(x)|

)
dx 6 CΨ

(
|Ω \ Ωr|+

ˆ
Ω\Ωr
|(µ̄ ∗ αr)(x)|dx

)
6CΨ

(
|Ω \ Ωr|+

ˆ
Ω\Ωr

ˆ
Br(x)

αr(y − x) d|µ̄|(y)dx

)
6CΨ

(
|Ω \ Ωr|+

ˆ
(Ω\Ωr)r

(ˆ
Br(y)

αr(y − x) dx

)
d|µ̄|(y)

)
6CΨ

(
|Ω \ Ωr|+ |µ̄|

(
(Ω \ Ωr)

r
))
→ 0 as r → 0+,

(4.5)

where we used the fact that (Ω \ Ωr)
r → ∂Ω as r → 0+ and (e3).
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We now prove that

lim
r→0+

I
αr

(ḡ, Ḡ; Ω) =

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x). (4.6)

To do so, let us define the functional I : M(Ω +B1;Rd×N )→ [0,+∞) by

I (λ) :=

ˆ
Ω

Ψ
(
x,

dλ

dLN
(x)
)

dx+

ˆ
Ω∩spt(|λs|)

Ψ∞
(
x,

dλ

d|λs|
(x)
)

d|λs|(x), (4.7)

for λ ∈ M(Ω + B1;Rd×N ), where λs is the part of λ which is singular with respect to LN , |λs| is its total
variation, and Ψ∞ denotes the recession function at infinity of Ψ (see (2.7)). Keeping (4.7) in mind, we can
write I

αr
(ḡ, Ḡ; Ω) = I (µ̄r); similarly, invoking (e1), the right-hand side of (4.6) can be written as I (µ̄), so

that (4.6) is proved if we show that
lim
r→0+

I (µ̄r) = I (µ̄). (4.8)

Recalling the definitions of µ̄, µ̄r in (4.1), we argue as in (4.5) and use (e2) to obtain the estimate

|µ̄r|(Ω) 6 C
(
‖g‖BV (Ω;Rd) + ‖Ḡ‖L1(Ω+B1;Rd×N )

)
.

In turn, arguing as in the proof of Theorem 2.3(i), this entails that

µ̄r
∗
⇀ µ̄ inM(Ω;Rd×N ), and |µ̄r|

∗
⇀ |µ̄| inM+(Ω).

In particular, we have

|µ̄r|
∗
⇀ |∇ḡ − Ḡ|LN + |Dsḡ| inM+(Ω). (4.9)

Finally, since |µ̄|(∂Ω) = 0, by Theorem 2.3(ii) we obtain that 〈µ̄r〉(Ω) → 〈µ̄〉(Ω), yielding that µ̄r 〈·〉-strict
converges to µ̄ (see Definition 2.1(iii)).

If Ψ belongs to the class (E), since the lim sup in the definition of Ψ∞ is indeed a limit (see Remark 1.4)
we can apply Theorem 2.6, to obtain (4.8). In turn (4.6) is proved and therefore (1.22), which concludes the
proof.

If Ψ belongs to the class (L), Theorem 2.5 provides the upper bound

lim sup
r→0+

ˆ
Ω

Ψ
(
x, (µ̄ ∗ αr)(x)

)
dx 6

ˆ
Ω

Ψ
(
x, (∇ḡ − Ḡ)(x)

)
dx+

ˆ
Ω∩Sḡ

Ψ∞
(
x,

dDsḡ

d|Dsḡ|
(x)
)

d|Dsḡ|(x)

=

ˆ
Ω

Ψ
(
x, (∇g −G)(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x),

(4.10)

where the equality holds by (e1). We now prove thatˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x) 6 lim inf
r→0+

ˆ
Ω

Ψ
(
x, (µ̄ ∗ αr)(x)

)
dx (4.11)

To this end, set {θ̄r} ⊂ M+(Ω) by θ̄r := Ψ(·, (µ̄ ∗ αr)(·))LN . Since this is a bounded sequence of Radon
measures, it converges weakly-* to some positive measure θ̄. We obtain (4.11) if we show that

dθ̄

dLN
(x) > Ψ

(
x, (∇g −G)(x)

)
for LN -a.e. x ∈ Ω, (4.12a)

dθ̄

d|Dsg|
(x) > Ψ∞

(
x,

dDsg

d|Dsg|
(x)
)

for HN−1-a.e. x ∈ Sg. (4.12b)

We start with (4.12a). By the linearity of the convolution operator and the definition of µ̄r, we know that,
as r → 0+, (

(∇ḡ − Ḡ)LN ∗ αr
)
LN ∗

⇀ (∇g −G)LN and (Dsḡ ∗ αr)LN
∗
⇀ Dsg, (4.13)

inM(Ω;Rd×N ) and, by [28, Corollary 2.1.17], we have

(∇ḡ − Ḡ)LN ∗ αr → (∇g −G)(x) for LN -a.e. x ∈ Ω. (4.14)
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Let us fix x0 ∈ Ω \ Sg which is a Lebesgue point for ∇g −G and let us compute

dθ̄

dLN
(x0) = lim

k→∞

θ̄(Q(x0; δk))

LN (Q(x0; δk))
= lim
k→∞

lim
r→0+

θ̄r(Q(x0; δk))

δNk
= lim
k→∞

lim
r→0+

1

δNk

ˆ
Q(x0;δk)

Ψ(x, (µ̄ ∗ αr)(x)) dx

= lim
k→∞

lim
r→0+

1

δNk

ˆ
Q(x0;δk)

Ψ
(
x, ((∇ḡ − Ḡ)LN ∗ αr)(x) + (Dsḡ ∗ αr)(x)

)
dx

> lim
k→∞

lim
r→0+

1

δNk

ˆ
Q(x0;δk)

Ψ
(
x, ((∇ḡ − Ḡ)LN ∗ αr)(x)

)
dx− lim

k→∞
lim
r→0+

LΨ

δNk

ˆ
Q(x0;δk)

|(Dsḡ ∗ αr)(x)|dx,

where we have used (1.20). Since, by the second convergence in (4.13), the last integral is the Radon-Nikodým
of |Dsḡ| with respect to LN , it vanishes, so that we have

dθ̄

dLN
(x0) > lim

k→∞
lim
r→0+

1

δNk

ˆ
Q(x0;δk)

Ψ
(
x, ((∇ḡ − Ḡ)LN ∗ αr)(x)

)
dx

> lim
k→∞

1

δNk

ˆ
Q(x0;δk)

Ψ
(
x, (∇g −G)(x)

)
dx

> lim
k→∞

ˆ
Q

Ψ
(
x0 + δky, (∇g −G)(x0 + δky)

)
dy > Ψ

(
x0, (∇g −G)(x0)

)
,

where we have used the continuity of Ψ, (4.14), and Fatou’s Lemma in the second inequality, a change of
variables and (1.20) and (1.21) in the subsequent estimates. This proves (4.12a).

To prove (4.12b), let us fix x0 ∈ Sg and let τ(x0) :=
dDsg

d|Dsg|
(x0). By Lemma 2.7, the recession function

Ψ∞(x0, τ(x0)) can be computed using formula (2.9). Let now {tk} be a sequence diverging to +∞ as k →∞
along which the lim sup in (2.9) is indeed a limit, that is,

Ψ∞(x0, τ(x0)) = lim
k→∞

Ψ(x0, tkτ(x0))

tk
.

Since Ψ is Lipschitz continuous, a reasoning analogous to that of [4, Lemma 4.2] grants that the sequence
{tk} can be chosen as

tk :=
|Dsḡ|(Q(x0; δk))

δNk
, (4.15)

with {δk} a vanishing sequence such that θ̄(∂Q(x0; δk)) = 0. Then

dθ̄

d|Dsg|
(x0) = lim

k→∞

θ̄(Q(x0; δk))

|Dsg|(Q(x0; δk))
= lim
k→∞

lim
r→0+

θ̄r(Q(x0; δk))

|Dsg|(Q(x0; δk))

= lim
k→∞

lim
r→0+

ˆ
Q(x0;δk)

Ψ
(
x, (µ̄ ∗ αr)(x)

)
dx

|Dsg|(Q(x0; δk))

= lim
k→∞

lim
r→0+

1

tk

ˆ
Q

Ψ
(
x0 + δky, (µ̄ ∗ αr)(x0 + δky)

)
dy

where the last equality follows by a change of variables, taking (4.15) into account. Defining

w̄k,r(y) :=
(µ̄ ∗ αr)(x0 + δky)

tk
,
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we can continue the chain of equalities above as follows

dθ̄

d|Dsg|
(x0) = lim

k→∞
lim
r→0+

1

tk

ˆ
Q

Ψ
(
x0 + δky, (µ̄ ∗ αr)(x0 + δky)

)
dy

= lim
k→∞

lim
r→0+

1

tk

ˆ
Q

Ψ
(
x0 + δky, tkw̄k,r(y)

)
dy

> lim
k→∞

lim
r→0+

[
1

tk

ˆ
Q

Ψ
(
x0, tkτ(x0)

)
dy − LΨ

ˆ
Q

∣∣w̄k,r(y)− τ(x0)
∣∣ dy

− 1

tk

ˆ
Q

ω(δk|y|)(1 + tk|τ(x0)|) dy

]
= Ψ∞(x0, τ(x0)),

where we have used (1.20) and (1.21) and where the last two terms in the square bracket vanish since
limk→∞ limr→0+

´
Q
wk,r(y) dy = τ(x0) by (4.15) and by the properties of the modulus of continuity ω. This

concludes the proof of (4.12b) and, consequently, of (4.11). Combining (4.10) and (4.11) yields a chain of
equalities, which is precisely (1.22). The theorem is proved. �

Recalling (2.11), the limiting energy I(g,G) in (1.22) can be written as

I(g,G) =

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x, [g](x)⊗ νg(x)

)
dHN−1(x) (4.16)

Moreover, as a particular case of Ψ with sublinear growth, one can consider a bounded Ψ. In this case, the
formula above reduces clearly to (1.24) (since Ψ∞ = 0).

5. Coupling local and non-local energies

In this section we extend the results first proved in the pioneering paper [11] to the case of x-dependent
energy densities. The integral representation results [11, Theorems 2.16 and 2.17] are expected to hold
with the obvious modifications, namely with the relaxed energy densities depending on x as well. This
generalization is somewhat natural and can be obtained with minor modifications to the original proofs,
but since it is not presented elsewhere, we highlight here the adaptation of the proofs from [11] for sake of
completeness.

5.1. Relaxation of the local energy EL. In this subsection we present the relaxation results for local
energies, like EL defined in (1.2), contained in the pioneering paper [11]. We start by introducing the
assumptions on the bulk and interfacial energy densitiesW and ψ. Let p > 1 and letW : Ω×Rd×N → [0,+∞[
and ψ : Ω× Rd × SN−1 → [0,+∞[ be continuous functions satisfying the following conditions
(W1)p there exists C > 0 such that, for all x ∈ Ω and A,B ∈ Rd×N ,

|W (x,A)−W (x,B)| 6 C|A−B|
(
1 + |A|p−1 + |B|p−1

)
(W2) there exists a continuous function ωW : [0,+∞) → [0,+∞) with ωW (s) → 0 as s → 0+ such that,

for every x0 ∈ Ω and A ∈ Rd×N ,

|W (x,A)−W (x0, A)| 6 ωW (|x− x0|)(1 + |A|p);
(W3) there exist C, T > 0 and 0 < α < 1 such that, for all x ∈ Ω and A ∈ Rd×N with |A| = 1,∣∣∣∣W∞(x,A)− W (x, tA)

t

∣∣∣∣ 6 C

tα
, for all t > T ,

where W∞ denotes the recession function at infinity of W (with respect to A), see (2.9);
(ψ1) there exist c, C > 0 such that, for all x ∈ Ω, λ ∈ Rd, and ν ∈ SN−1,

c|λ| 6 ψ(x, λ, ν) 6 C|λ|;
(ψ2) (positive 1-homogeneity) for all x ∈ Ω, λ ∈ Rd, ν ∈ SN−1, and t > 0

ψ(x, tλ, ν) = tψ(x, λ, ν),

(ψ3) (sub-additivity) for all x ∈ Ω, λ1, λ2 ∈ Rd, and ν ∈ SN−1,

ψ(x, λ1 + λ2, ν) 6 ψ(x, λ1, ν) + ψ(x, λ2, ν).
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(ψ4) there exists a continuous function ωψ : [0,+∞)→ [0,+∞) with ωψ(s)→ 0 as s→ 0+ such that, for
every x0 ∈ Ω, λ ∈ Rd, and ν ∈ SN−1,

|ψ(x, λ, ν)− ψ(x0, λ, ν)| 6 ωψ(|x− x0|)|λ|.

Given W and ψ as above, and u ∈ SBV (Ω;Rd), we defined the initial energy EL(u) as

EL(u) :=

ˆ
Ω

W (x,∇u(x)) dx+

ˆ
Ω∩Su

ψ(x, [u](x), νu(x)) dHN−1(x) (5.1)

and, given (g,G) ∈ SD(Ω;Rd × Rd×N ), we defined the relaxed energies Ip(g,G) as

Ip(g,G) := inf
{un}⊂SBV (Ω;Rd)

{
lim inf
n→∞

EL(un) : un → (g,G) in the sense of (1.14),

(1− δ1(p)) sup
n
‖∇un‖Lp(Ω;Rd×N ) <∞

}
.

(5.2)

In the formula above, and in what follows, we use the symbol δ1(p) as the Kronecker delta computed at p,
namely δ1(p) = 1 if p = 1 and zero otherwise, and use it as a selector between the cases p = 1 and p > 1. In
particular, in (5.2), the control on the Lp norm of |∇un| does not appear in the formula if p = 1, since in
that case 1− δ1(p) = 0.

We introduce now the classes of competitors for the cell formulae for the relaxed bulk and surface energy
densities. For A,B ∈ Rd×N let

Cbulk
p (A,B) :=

{
u ∈ SBV (Q;Rd) : u|∂Q(x) = Ax,

ˆ
Q

∇udx = B, |∇u| ∈ Lp(Q)

}
(5.3)

and for λ ∈ Rd and ν ∈ SN−1 let

Csurface
p (λ, ν) :=

{
u ∈ SBV (Qν ;Rd) : u|∂Qν (x) = uλ,ν(x), δ1(p)C1(u) + (1− δ1(p))C(u)

}
,

where the function uλ,ν is defined by

uλ,ν(x) :=

{
λ if x · ν > 0,
0 if x · ν < 0,

and the conditions C1(u) and C(u) are

C1(u)⇐⇒
ˆ
Q

∇udx = 0 and C(u)⇐⇒ ∇u(x) = 0 for LN -a.e. x ∈ Qν (5.4)

We state now the integral representation theorem for the relaxed energies Ip defined in (5.2). It generalizes
the results contained in [11, Theorems 2.16 and 2.17] to the inhomogeneous case considered here. For the sake
of being concise, we give a unified statement through the use of the selector δ1(p), which takes into account
the different nuances between the case p = 1 and the case p > 1. Note that the formulae for the relaxed
energy densities Hp and hp are obtained via the blow-up method [6, 23, 24] and involve the contributions of
both W and ψ for Hp, and of ψ and possibly W∞ for hp.

Theorem 5.1. Let p > 1 and let W : Ω × Rd×N → [0,+∞[ and ψ : Ω × Rd × SN−1 → [0,+∞[ be con-
tinuous functions satisfying hypotheses (W1)p, (W2), δ1(p)(W3), (ψ1), (ψ2), (ψ3), and (ψ4); let (g,G) ∈
SD(Ω;Rd × Rd×N ) and let Ip(g,G) be given by (5.2). Then there exist Hp : Ω × Rd×N × Rd×N → [0,+∞)
and hp : Ω× Rd × SN−1 → [0,+∞) such that

Ip(g,G) =

ˆ
Ω

Hp(x,∇g(x), G(x)) dx+

ˆ
Ω∩Sg

hp(x, [g](x), νg(x)) dHN−1(x). (5.5)

For all x0 ∈ Ω and A,B ∈ Rd×N ,

Hp(x0, A,B) := inf

{ˆ
Q

W (x0,∇u(x)) dx+

ˆ
Q∩Su

ψ(x0, [u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
p (A,B)

}
; (5.6)

for all x0 ∈ Ω, λ ∈ Rd, and ν ∈ SN−1,

hp(x0, λ, ν) := inf

{
δ1(p)

ˆ
Qν

W∞(x0,∇u(x)) dx+

ˆ
Qν∩Su
ψ(x0, [u](x), νu(x)) dHN−1(x) : u ∈ Csurface

p (λ, ν)

}
, (5.7)
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with W∞ defined in (2.9).

Remark 5.2. Theorem 5.1 collects the content of Theorems 2.16 and 2.17 in [11] in a compact form. In
particular, the form of the integral representation of the relaxed energies (5.2) provided by formula (5.5) is
structurally the same both for p = 1 and for p > 1: it features a bulk energy and an interfacial energy.

We make the following observations.

• The condition |∇u| ∈ Lp(Q) in (5.3) is redundant if p = 1 (see [11, Remark 2.15]);

• If p = 1, hypothesis (W3) is required and we notice that in formula (5.7) the recession function at
infinity W∞ defined in (2.9) appears, to account for concentration phenomena arising when taking
the limit of functions in L1.

• In (5.4), condition C1 contains condition C, so that, for every λ ∈ Rd and ν ∈ SN−1, we have the
inclusion Csurface

p>1 (λ, ν) ⊂ Csurface
1 (λ, ν).

• The cell formula (5.7) for p > 1 corrects formula (2.17) in [11], where the dependence on the normal
ν was mistakenly omitted, as already noted in [36, Theorem 3] and [39, formula (4)].

We point out the following final remarks.

• Hypothesis (W1)p could be strengthened to include coercivity (p-growth from below). Although this
would be a strong restriction from the mechanical point of view, it would make the proofs easier.
We refer the reader to [11, Step 1 in the proof of Proposition 2.22] for a discussion on this.

• If p > 1, hypotheses (ψ1) and (ψ2) can be relaxed. We refer the reader to [11, Remark 3.3] for a
discussion on this.

• If p > 1, Theorem 5.1 provides a representation of the relaxed energy density Ip(g,G) only in the
case G ∈ Lp(Ω;Rd×N ) (see again [11, Remark 2.15]).

These final remarks pave the way for a statement of Theorem 5.1 under the minimal set of hypotheses.

Sketch of the proof of Theorem 5.1. Formula (5.5) is obtained by using the blow-up method [6, 23, 24] to
prove that the energy densities (5.6) and (5.7) provide upper and lower bound for the Radon-Nikodým deriva-
tives of suitable measures associated with Ip(g,G) with respect to LN and |[g]|HN−1 Sg. The dependence
on x is not involved in this process, and the existence of the moduli of continuity ωW and ωψ is a strong
enough assumption to estimate the error when passing from the evaluation of the energy densities at generic
x ∈ Q(x0, δ) to the evaluation at x0. A similar strategy was undertaken in [8], in the spirit of [6]. �

We remark that Theorem 5.1 does not address effects such as the bending due to jumps in ∇un, that are
captured by second-order structured deformations [8, 22, 35].

5.2. Relaxation of the total energy EL + Eαr . We now address the relaxation of the total energy
including both the local initial energy EL and the non-local initial energy Eαr . Lemma 5.3 below allows us
to perform the relaxation of EL and the upscaling of Eαr as two separate processes.

Lemma 5.3. Given (g,G) ∈ SD(Ω;Rd × Rd×N ), there exists a sequence of functions un ∈ SBV (Ω;Rd)
admissible for the relaxation process of Theorem 5.1 and satisfying (1.14).

Proof. Let us fix a structured deformation (g,G) ∈ SD(Ω;Rd×Rd×N ) and let us consider a recovery sequence
un for the energy (5.2) underlying Theorem 5.1; then un converges to (g,G) in the sense (1.1). By property
(ψ1), i.e., the coercivity of the surface energy density ψ, |Dsun| is bounded uniformly with respect to n and
therefore (up to a subsequence) it converges weakly-* to a measure Γ = Γa + Γs ∈M+(Ω), as in the second
line of (1.12). Arguing as in Remark 2.10, we obtain (1.15), while the very definitions of Hp and hp (see (5.6)
and (5.6)) yield an estimate like (2.16), and we obtain (2.17) invoking [2, Proposition 1.62(a)] again. Then
the same argument as in the final part of the proof of Theorem 1.1 proves (1.12) from which we conclude
that un converges to (g,G) as in (1.14). �

Theorem 5.4. Under the conditions of Theorem 1.2 and Theorem 5.1, the relaxation (1.26) of the initial
energy (1.25) admits the integral representation (1.27), where, for any (g,G) ∈ SD(Ω;Rd × Rd×N ), the
relaxed energy IL(g,G) of the local initial energy EL in (1.2) is given by (5.5) and the upscaled energy
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Iαr (g,G; Ωr) of the non-local initial energy Eαr is provided by Theorem 1.2. In particular,

Jαr (g,G) =

ˆ
Ω

Hp(x,∇g(x), G(x)) dx+

ˆ
Ω∩Sg

hp(x, [g](x), νg(x)) dHN−1(x)

+

ˆ
Ωr

Ψ
(
x, ((∇g −G) ∗ αr)(x) + (Dsg ∗ αr)(x)

)
dx.

(5.8)

Proof. The representation formula (5.8) is an immediate consequence of Theorem 1.2, Theorem 5.1, Lemma 5.3,
and the superadditivity properties of the lim inf. �

Corollary 5.5. Under the conditions of Theorem 1.3 and Theorem 5.4, for any (g,G) ∈ SD(Ω;Rd×Rd×N ),
the functional J(g,G) defined in (1.28) admits the integral representation in (1.29), namely,

J(g,G) =

ˆ
Ω

Hp(x,∇g(x), G(x)) dx+

ˆ
Ω∩Sg

hp(x, [g](x), νg(x)) dHN−1(x)

+

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x, [g](x)⊗ νg(x)

)
dHN−1(x).

(5.9)

Proof. The result follows immediately by Theorem 1.3 and Theorem 5.4. �

As noticed in the last bullet of Remark 5.2, if p > 1 Theorem 5.4 and Corollary 5.5 provide integral
representation results only for fields G ∈ Lp(Ω;Rd×N ).

5.3. On the reverse order of the limits. After the presentation of the iterated limiting procedure carried
out in Sections 3 and 4, a legitimate question is whether the two operations commute, namely, whether we
obtain the same result if we reverse the order in which the two limits are taken: first letting r → 0 and then
letting n→∞. The problem is a relevant one in the scientific community and a similar question was studied
in [9] for a problem of dimension reduction in the context of structured deformations. In the following few
lines, we will give a brief explanation of why in the present case a commutability result does not hold.

Under the hypotheses of the previous sections on W , ψ, and Ψ, let us consider the reversed iterated
limiting procedure for an initial energy of the type EL + Eαr , with EL as in (5.1) and Eαr as in (1.8).
We first let the measure of non-locality tend to zero and then relax to structured deformations, namely we
consider, for u ∈ SBV (Ω;Rd)

IL(u) := lim
r→0

(
EL(u) + Eαr (u)

)
(5.10)

and then we relax this energy as in (5.2), for (g,G) ∈ SD(Ω;Rd × Rd×N ):

I(R)
p (g,G) := inf

{un}⊂SBV (Ω;Rd)

{
lim inf
n→∞

IL(un) : un → (g,G) in the sense of (1.14),

(1− δ1(p)) sup
n
‖∇un‖Lp(Ω;Rd×N ) <∞

}
.

(5.11)

Given that EL is independent of r, it is easy to deal with (5.10). Since Ψ belongs to the class (E) or (L), an
application of the Reshetnyak Continuity Theorem 2.6 with Φ = Ψ gives

lim
r→0

Eαr (u) = lim
r→0

ˆ
Ω

Ψ
(
x, (αr ∗Dsu)(x)

)
dx =

ˆ
Ω

Ψ(x, 0) dx+

ˆ
Ω∩Su

Ψ∞
(
x,

dDsu

d|Dsu|
(x)
)

d|Dsu|(x)

=

ˆ
Ω

Ψ(x, 0) dx+

ˆ
Ω∩Su

Ψ∞
(
x, [u](x)⊗ νu(x)

)
dHN−1(x).

The chain of equalities above is justified upon extending the function u outside of Ω, as it was done in
Section 4 for the function g (through the application of [27, Theorem 1.4]), and recalling that the energy
does not depend on the chosen extension in the limit as r → 0 (see also (4.5)). Therefore, in (5.10) we obtain

IL(u) = EL(u) +

ˆ
Ω

Ψ(x, 0) dx+

ˆ
Ω∩Su

Ψ∞
(
x, [u](x)⊗ νu(x)

)
dHN−1(x).

Now, it is easy to prove that if Ψ is in the class (L), then also Ψ∞ is in the class (L). Therefore, for either (i) Ψ
belonging to (L) or (ii) Ψ belonging to (E) with Ψ∞ Lipschitz in the second variable uniformly with respect
to the first one, it is immediate to see that Ψ∞ is a surface energy density that satisfies hypotheses (ψ1),
(ψ2), and (ψ3) (see [11, Remark 3.3] and [33, Remark 3.1]). Thus, the relaxation process (5.11) is the same
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as that of Theorem 5.1 for a local energy of the type (5.1) whose densities are W̃ (x,A) := W (x,A) + Ψ(x, 0)

and ψ̃(x, λ, ν) := ψ(x, λ, ν) + Ψ∞(x, λ⊗ν). The cell formulas (5.6) and (5.7) imply that only the behavior of
Ψ(x,A) at A = 0 or as |A| → ∞ can influence the relaxed energy in (5.11), whereas the presence of the third
integral in (5.9) shows that all of the values of Ψ(x,A) can influence the relaxed energy J(g,G) in (5.9).

5.4. Bulk relaxed densities of the form F1(x,G(x)) +F2(x,∇g(x)−G(x)). The representation (5.9) of
the relaxed energy J(g,G) established in Corollary 5.5 contains the bulk partˆ

Ω

(
Hp(x,∇g(x), G(x)) + Ψ(x,∇g(x)−G(x))

)
dx,

in which the bulk relaxed density is a sum of the contribution Hp(x,∇g(x), G(x)) from the initial local energy
EL(u) in (5.1) and the contribution Ψ(x,∇g(x)−G(x)) from the initial non-local energy Eαr in (1.11). The
second term Ψ(x,∇g(x)−G(x)) has the distinction of capturing a bulk energy density due to disarrangements
alone through its sole dependence on the deformation due to disarrangements M(x) = ∇g(x)−G(x), while
the first term H(x,∇g(x), G(x)) can be written as H(x,G(x) + M(x), G(x)) and so depends in general on
both the deformation due to disarrangements M(x) and the deformation without disarrangements G(x).
This situation leads naturally to the question of finding conditions on the initial local energy EL(u) that
imply that the term Hp(x,G(x) +M(x), G(x)) depends on G(x) alone or, more generally, that

Hp(x,G(x) +M(x), G(x)) = H\(x,G(x)) +Hd(x,M(x)), (5.12)

in which case the bulk relaxed density becomes

Hp(x,G(x) +M(x), G(x)) + Ψ(x,M(x)) = H\(x,G(x)) + (Hd(x,M(x)) + Ψ(x,M(x))), (5.13)

a function H\ of deformation without disarrangements plus a function Hd + Ψ of deformation due to disar-
rangements.

The existence of a decomposition of the form (5.12) was raised in [11] and [10] and was shown not to
be available, in general, in the study [31]. A modified form of (5.12) was established in [5]: there the
x-dependence was absent, and the term H\(x,G(x)) in (5.13) was replaced by H\(G(x),∇G(x)). In the
context of plasticity addressed in the articles [10, 13, 17], the availability of (5.12) was shown to provide a
variational basis for describing and predicting the phenomena of yielding, hysteresis, and hardening observed
in both single crystals and in polycrystalline materials.

In this subsection we verify that conditions on the initial local energy EL(u) in (5.1) that were identified
in [11, pages 100-101] guarantee the validity of the special additive decomposition (5.12) for the bulk relaxed
energy density H1 and provide explicit formulas for the functions H\ and Hd in that decomposition. Because
no proof of the special additive decomposition (5.12) is given in [11], we provide a proof in the context of
the following remark that employs the recent results in [39].

Remark 5.6. For the initial local energy EL(u) in (5.1), assume that W : Ω×RN×N → R is a continuous,
convex function that satisfies (W1)1 and (W2) and that ψ : Ω×RN×SN−1 → [0,+∞) is continuous, satisfies
(ψ1)–(ψ4), and is such that ψ(−λ,−ν) = ψ(λ, ν). It follows that the cell formula (5.6) for p = 1 becomes

H1(x0, A,B) = W (x0, B) + inf

{ ˆ
Q∩Su

ψ(x0, [u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
1 (A,B)

}
(5.14)

for every x0 ∈ Ω and A,B ∈ RN×N . Moreover, the infimum on the right-hand side is given by the expressions

H1(x0, A,B)−W (x0, B) = sup
{

Θ(x0, A−B) : Θ(x0, ·) : RN×N → [0,+∞) is subadditive and

Θ(x0, λ⊗ ν) 6 ψ(x0, λ, ν) for all λ ∈ RN and ν ∈ SN−1
}
.

(5.15)

Proof. It is convenient to omit the explicit appearance of the point x0 ∈ Ω on both sides of the desired
decomposition and that remains fixed throughout the proof. Let A,B ∈ RN×N and u ∈ Cbulk

1 (A,B) be
given. The cell formula (5.6) along with the convexity and continuity of W yield the inequalitiesˆ
Q

W (∇u(x)) dx+

ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) >W

(ˆ
Q

∇u(x) dx

)
+

ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x)

>W (B) + inf

{ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
1 (A,B)

}
,
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and, therefore, also yield the lower bound

H1(A,B) >W (B) + inf

{ ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
1 (A,B)

}
. (5.16)

To obtain an upper bound for H1(A,B) we note that Cbulk
1 (A,B) ⊃

{
u ∈ SBV (Q,RN ) : u|∂Q = Ax, ∇u =

B LN -a.e. on Q
}

=: C(A,B), so that

H1(A,B) = inf

{ ˆ
Q

W (∇u(x)) dx+

ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
1 (A,B)

}
6 inf

{ ˆ
Q

W (∇u(x)) dx+

ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ C(A,B)

}
=W (B) + inf

{ ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ C(A,B)

}
=W (B) + inf

{ ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ SBV (Q,RN ), u|∂Q = (A−B)x,∇u = 0 a.e.
}

=W (B) + inf

{ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ SBV (Q,RN ), u|∂Q = (A−B)x,

ˆ
Q

∇u = 0

}
,

where the last equality is established in [39, Theorem 2.3(iii) and (iv)]. It is now easy to see that the upper
bound (5.17) and lower bound (5.16) just obtained for H1(A,B) are the same. The relation (5.15) follows
from (5.14) and from [39, Theorem 2.3(i)]. �

6. Example from crystal plasticity

We turn to the subject of the mechanics of single crystals to identify an example of bulk energies of the
type recovered in the volume integral in (1.22) through our relaxation of non-local energies. The example
emerges within the special class of invertible structured deformations (g,G) in which the tensors G and
K(g,G) in (6.2) below play the role of F e and (F p)−1 in the standard treatments of crystal plasticity.

6.1. Invertible structured deformations. The main mechanisms of deformation in single crystals are
the distortion without disarrangements of the crystalline lattice and the shearing due to disarrangements.
The articles [14, 19] show that the class of invertible structured deformations is appropriate for capturing
such multiscale geometrical changes. In the present setting, we can identify (g,G) as an invertible structured
deformation when (see [14] for a broader setting for this notion)

(I1) g is a diffeomorphism of class C1 for which ∇g and (∇g)−1 are Lipschitzian,
(I2) G is continuous on Ω with invertible values,
(I3) the macroscopic volume change multiplier det∇g and the multiplier for volume change without

disarrangements detG are equal: det∇g = detG.
For an open set Ω ⊂ R3, we define

ISD(Ω;R3 × R3×3) :=
{

(g,G) ∈ SD(Ω;R3 × R3×3) : (I1), (I2), and (I3) hold
}
.

Invertible structured deformations turn out to be a useful setting for understanding some kinematical ingre-
dients in continuum models of single crystals undergoing plastic deformations, partly because the relation
det∇g = detG reflects the fact that the disarrangements occurring in single crystals typically do not involve
changes in volume, i.e., arise without the formation of submacroscopic voids.

One useful mathematical property of invertible structured deformations rests on the notion of composition
of invertible structured deformations: if (g,G) ∈ ISD(Ω;R3 × R3×3) and (h,H) ∈ ISD(g(Ω)), then the
composition (h,H) � (g,G) is defined by

(h,H) � (g,G) := (h ◦ g, (H ◦ g)G). (6.1)

It is easy to show that (h,H) � (g,G) ∈ ISD(Ω;R3 × R3×3) and each (g,G) ∈ ISD(Ω;R3 × R3×3) has the
factorization

(g,G) = (g,∇g) � (i,K(g,G)) (6.2)
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where i := x 7→ x is the identity mapping on Ω and K(g,G) := (∇g)−1G. The factor (g,∇g) ∈ ISD(Ω;R3 ×
R3×3) carries all of the macroscopic deformation and is a classical deformation, i.e., it causes no disarrange-
ments becauseM(g,∇g) := ∇g−∇g = 0. The factor (i,K(g,G)) ∈ ISD(Ω;R3×R3×3) is purely submacroscopic,
i.e., it causes no macroscopic deformation, and carries the disarrangements

M(i,K(g,G)) := ∇i−K(g,G) = I − (∇g)−1G = (∇g)−1(∇g −G) = (∇g)−1M(g,G). (6.3)

Moreover, both factors in (6.2) are invertible structured deformations, because detK(g,G) = detG/det∇g =
1 = det∇i and, trivially, det∇g = det∇g.

6.2. Slip systems for single crystals; crystallographic structured deformations. For a single crystal
in the reference configuration Ω the crystallographic data required for the analysis of crystallographic slip
consists of pairs of orthogonal unit vectors (sa,ma) for a = 1, . . . , A, with A the number of potentially active
slip systems. For crystallographic slip, the discontinuity in deformation arises only across a limited family
of slip planes identified via the slip systems. The unit vector sa provides the direction of slip, while the unit
vector ma is a normal to the slip plane for the ath slip-system (sa,ma). For the case of face-centered cubic
crystals, the vectors ma are chosen from the normals to the faces of a preassigned regular octahedron and
the slip vectors sa are chosen to be one of the directed edges of the face associated with ma.

We wish next to identify a collection of invertible structured deformations for which the disarrangements
arise only through the action of the slip systems of a give crystal. To this end, we recall [15] that for each
structured deformation (g,G) in the sense of [14] and, hence, for each invertible structured deformation there
exists a sequence of injective, piecewise smooth deformations fn such that

fn → g in L∞(Ω;R3), ∇fn → G in L∞(Ω;R3×3),

and, for every such sequence and for every x ∈ Ω, the disarrangement tensor M(g,G) is given by the identifi-
cation relation

M(g,G)(x) := ∇g(x)−G(x) = lim
r→0

lim
n→∞

1

V3(r)

ˆ
Br(x)∩Sfn

[fn](y)⊗ νfn(y) dHN−1(y), (6.4)

and the deformation without disarrangements G by the identification relation

G(x) = lim
r→0

lim
n→∞

1

V3(r)

ˆ
Br(x)

∇fn(y) dy. (6.5)

In both (6.4) and (6.5), V3(r) denotes the volume of the three-dimensional ball of radius r. Suppose now
that the approximating deformations fn are such that the dyadic fields [fn]⊗ νfn are compatible with the A
slip-systems of the crystal in the sense that for every n ∈ N and for every r > 0 there exist continuous fields
γan(·, r) : Ω→ R for a = 1, . . . , A such that

ˆ
Br(x)∩Sfn

[fn](y)⊗ νfn(y) dHN−1(y) =

A∑
a=1

V3(r)γan(x, r)∇g(x)sa ⊗ma, (6.6)

and such that limr→0 limn→∞ γan(x, r) =: γa(x) exists for every x ∈ Ω and for a = 1, . . . , A. Under these
assumptions, the identification relation (6.4) becomes

M(g,G)(x) =

A∑
a=1

γa(x)∇g(x)sa ⊗ma,

so that the first relation in (6.3) becomes

M(i,K(g,G)) (x) = I −K(g,G)(x) =

A∑
a=1

γa(x)sa ⊗ma (6.7)

and

K(g,G)(x) = I −
A∑
a=1

γa(x)sa ⊗ma (6.8)

We have provided through (6.6) sufficient conditions that the disarrangement tensor field M(i,K(g,G)) for
the purely submacroscopic part (i, (∇g)−1G) of (g,G) is a linear combination of the (spatially constant)
crystallographic slip dyads sa ⊗ma for a = 1, . . . , A associated with the given crystal. In this context we



24 JOSÉ MATIAS, MARCO MORANDOTTI, DAVID R. OWEN, AND ELVIRA ZAPPALE

may say that the invertible structured deformation (g,G) generates disarrangements only in the form of
crystallographic slips or, more briefly, that (g,G) is crystallographic. We note in passing that the article
[19] provided a precise sense in which one may consider approximations by crystallographic slips of the
disarrangement matrix M(g,G) = ∇g − G of any invertible structured deformations. Since we here restrict
our attention to those invertible structured deformations for which (6.7) holds, the approximations in [19]
become exact in the present context.

For a crystallographic structured deformation (g,G) and a point x ∈ Ω we say that a slip-system a is
active at x if γa(x) 6= 0, and we say that single slip occurs at x if there is only one slip-system that is
active at x. If more than one slip system is active at x we say that multiple slip occurs at x. If (g,G) is
crystallographic, so that (6.6), (6.7), and (6.8) hold, we may use the relations tr(sa ⊗ma) = sa ·ma = 0
for all a and detK(g,G) = detG/det∇g to conclude from (6.8) and the definition of invertible structured
deformations that

trK(g,G) = 3 and detK(g,G) = 1. (6.9)
Consequently, the crystallographic structured deformations are among those for which K(g,G) = (∇g)−1G
satisfies (6.9). We note that a slip system a is active at x for (g,G) if and only if a is active at x for the
purely submacroscopic part (i,K(g,G)) of (g,G).

Examples of crystallographic structured deformations that undergo single slip at every point are the
two-level shears (gaµ,xo , G

a
ν) for a = 1, . . . , A, for µ, ν ∈ R and for xo ∈ Ω:

gaµ,xo(x) := xo + (I + µsa ⊗ma)(x− xo)
Gaν(x) := I + νsa ⊗ma,

(6.10)

for which it can be verified [14] via the “deck of cards” family of approximations fn that (6.6) is satisfied,
and for which

∇gaµ(x) = I + µsa ⊗ma, (6.11a)
M(gaµ,xo ,G

a
ν)(x) = (µ− ν)sa ⊗ma, (6.11b)

and
K(gaµ,xo ,G

a
ν)(x) = I + (ν − µ)sa ⊗ma = I −M(gaµ,xo ,G

a
ν)(x). (6.12)

The “deck of cards” approximations fn show that each two-level shear (gaµ,xo , G
a
ν) is approximated for each n

by smooth shears of amount ν of the crystal lattice between n− 1 slip planes, along with slip-discontinuities
in the direction sa across the n−1 planes, each slip-discontinuity of amount µ−ν

n times a reference dimension
in the direction ma. By virtue of the “deck of cards” approximations fn and, in view of (6.11a), (6.10)2,
(6.11b), and the trivial relation

µ = ν + (µ− ν),

we may then call µ the macroscopic shear, ν the shear without slip, and µ− ν the shear due to slip for the
two-level shear (gaµ,xo , G

a
ν). Of particular interest is the case ν = 0, i.e., the two-level shear (gaµ,xo , I), in

which the region between slip planes undergoes no shear and the macroshear µ arises entirely from slips on
slip-system a.

6.3. Slip-neutral two-level shears. We now summarize arguments provided in [10] in a more limited
setting that are based on the observation that crystallographic slip is physically activated within very thin
bands, the so-called slip-bands, whose thickness is typically of the order 102 atomic units, while the separation
of active slip-bands is typically of order 104 atomic units. The arguments in [10] indicate the following: for
each a = 1, . . . , A, there is a number pa > 0 such that a two-level shear (gaµ,xo , G

a
ν) for which the shear due

to slip µ − γ is an integral multiple of pa gives rise to submacroscopic slips equal to an integral number of
atomic units in the direction of slip sa. The dimensionless number pa equals a shift of one atomic unit in
the direction of slip sa divided by the separation 104 in the direction ma of consecutive active slip-bands
associated with system a (measured in the same atomic units). Consequently, pa is of the order of 10−4, and
a two-level shear (gaµ,xo , G

a
ν) with

µ− γ = npa, with n ∈ Z, (6.13)
produces a shift of n atomic units and so does not produce a misfit of the crystalline lattice across the active
slip bands, no matter what the amount of shear without slip ν. Thus, when (6.13) holds, the disarrangements
due to slip are not revealed by the deformed positions under the two-level shear attained by the lattice points
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away from the slip bands. We refer to a two-level shear (gaµ,xo , G
a
ν) satisfying (6.13) as slip-neutral for the

slip-system a. In particular, when ν = 0 we have Gaν = I, and the two-level shear (gaµ, I) is slip-neutral if the
macroshear µ = µ−ν is an integral multiple of pa. Although a slip-neutral shear of the form (ganpa , I) causes
a macroscopic shearing of the body, not only does it cause no misfit of the lattice across slip bands, it also
causes no distortion of the lattice. Consequently, we call the two-level shear (ganpa , I) completely neutral for
the slip-system a.

We suppose now that the given body undergoes a completely neutral two-level shear (gaµ,xo , I) with
µ = npa, starting from the region Ω, and suppose further that (gaµ,xo , I) is then followed by a crystallographic
deformation (g,G), so that we have the composition and factorization as in (6.1) and (6.2):

(g,G) � (gaµ,xo , I) = (g ◦ gaµ,xo , G ◦ g
a
µ,xo) = (g ◦ gaµ,xo ,∇(g ◦ gaµ,xo)) �

(
i,K(g◦gaµ,xo ,G◦g

a
µ,xo

)

)
,

with K(g◦gaµ,xo ,G◦g
a
µ,xo

) given by

K(g◦gaµ,xo ,G◦g
a
µ,xo

) = (∇(g ◦ gaµ,xo))
−1(G ◦ gaµ,xo) =

(
(∇g ◦ gaµ,xo)∇g

a
µ,xo

)−1
(G ◦ gaµ,xo)

= (∇gaµ,xo)
−1(∇g ◦ gaµ,xo)

−1(G ◦ gaµ,xo) =
(
(∇gaµ,xo)

−1(∇g)−1G
)
◦ gaµ,xo

=
(
∇gaµ,xo)

−1K(g,G)

)
◦ gaµ,xo

and with K(gaµ,xo ,I)
given by (6.12):

K(gaµ,xo ,I)
= I − µsa ⊗ma = (∇gaµ,xo)

−1.

Therefore, we have the relation

K(g,G)�(ga
mpa

,I) = K(gaµ,xo ,I)
(K(g,G) ◦ gaµ,xo),

and the relations M(i,K(g,G)) = I −K(g,G), (6.8), (6.11b), and (6.12) then yield

I −M(i,K(g,G)�(ga
mpa

,I)) = K(g,G)�(ga
mpa

,I) = K(gaµ,xo ,I)
(K(g,G) ◦ gaµ,xo)

= (I −M
(gaµ,xo

,I)
)(I −M(i,K(g,G)) ◦ g

a
µ,xo)

= I −M(i,K̇(g,G))
◦ gaµ,xo −M(gaµ,xo ,I)

+M
(gaµ,xo

,I)
M(i,K(g,G)) ◦ g

a
µ,xo

= I −M(i,K̇(g,G))
◦ gaµ,xo −M(gaµ,xo ,I)

+ µ(sa ⊗ma)M(i,K(g,G)) ◦ g
a
µ,xo

= I −M(i,K̇(g,G))
◦ gaµ,xo −M(gaµ,xo ,I)

+ µsa ⊗ (MT
(i,K(g,G))

◦ gaµ,xo)m
a.

(6.14)

When µ 6= 0 the last term in (6.14) vanishes at a point x if and only if MT
(i,K(g,G))

(gaµ,xo(x))ma = 0, and,
because gaµ,xo(xo) = xo, we conclude from (6.7) the following remark.

Remark 6.1. The disarrangement tensor M(i,K(g,G)�(gaµ,xo ,I)
)(xo) at xo ∈ Ω for the submacroscopic part

of the composition (g,G) � (gaµ,xo , I) of a crystallographic deformation (g,G) with the completely neutral
two-level shear (gaµ,xo , I), where µ = npa, is given by

M(i,K(g,G)�(gaµ,xo ,I)
)(xo) = M(i,K(g,G))(xo) +M(gaµ,xo ,I)

(xo) (6.15)

if and only if
A∑
b=1

γb(x)(sb ·ma)mb = MT
(i,K(g,G))

(xo)m
a = 0. (6.16)

The identification relation (6.4) forM shows that the vanishing ofMT
(i,K(g,G))

(xo)m
a in (6.16) is the statement

that, on average, as n→∞ and r → 0, the jumps in approximating deformations fn must be parallel to the
slip plane for the ath slip system. A sufficient condition on the crystallographic deformation (g,G) in order
that the sum in (6.16) vanish is the following: every slip system b that is active at xo for (g,G) satisfies
sb ·ma = 0, i.e., the slip plane for the completely neutral two-level shear (ganpa , I) contains every slip direction
sb of every slip system b, active at xo for (g,G). In particular, if (g,G) is a double slip at xo with active
slip systems (s1,m1) and (s2,m2), then (6.15) holds for every a such that s1 · ma = s2 · ma = 0. Such
double slips (g,G) include the case of “cross slip” in which (s1,m1) = (sa,m1) and (s2,m2) = (sa,m2) with
ma = m1 6= m2 in which slips in one and the same direction sa occur in two different slip systems at xo.
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Our discussion above of the relationship between the disarrangement tensor M(i,K(g,G)�(gaµ,xo ,I)
) for the

purely submacroscopic part of the composition (g,G) � (gaµ,xo , I) and the disarrangement tensor M(i,K(g,G))

for the purely submacroscopic part of (g,G) is of particular interest for energetics, because (gaµ,xo , I) was
assumed to be completely neutral for the slip-sytem a, i.e., µ = npa with n an integer. In that case, the
lattice on which (g,G) acts when following (gaµ,xo , I) differs from that on which (g,G) acts when not fol-
lowing (gaµ,xo , I) only by undetectable translations of the lattice between active slip-planes for system a.
Consequently, the submacroscopic kinematical states of the crystal attained by means of the two purely
submacroscopic structured deformations (i,K(g,G)�(gaµ,xo ,I)

) and (i,K(g,G)) are indistinguishable. Therefore,
the energetic responses to the corresponding disarrangement fields M(i,K(g,G)�(gaµ,xo ,I)

) and M(i,K(g,G)) would
be indistinguishable, so that the validity of (6.15) would have significant implications with respect to prop-
erties of the energetic response of the crystal. We now provide specific circumstances under which the
relaxed energies recovered in Corollary 5.5 would be subject to those implications, and we set the stage by
highlighting the role of M(i,K(g,G)), the disarrangement tensor for the purely submacroscopic deformation
(i,K(g,G)), in providing constitutive relations for the energetic response to crystallographic deformation that
are frame-indifferent (independent of observer).

6.4. Frame-indifferent energetic responses. We noted in the text above the relation (6.3) that contains
the formulas

M(i,K(g,G)) = I −K(g,G) = (∇g)−1M(g,G),

relating M(g,G), the disarrangement tensor for an invertible structured deformation (g,G), and M(i,K(g,G)),
the disarrangement tensor for the purely submacroscopic deformation (i,K(g,G)) in (6.2). Because ∇g and
M both are premultiplied by a rotation Q under a change of observer associated with the rotation Q, the
tensor field K(g,G) as well as the disarrangement tensor M(i,K(g,G)) are unchanged under such a change of
observer. Therefore, for a function Ψi : R3×3 → R the mapping

x 7→ Ψi(M(i,K(g,G))(x)) = Ψi((∇g(x))−1M(g,G)(x))

has the property that its dependence on the structured deformation (g,G) is independent of observer. The
function Ψi specifies the energetic response of a body from the reference cofiguration Ω to the disarrangements
arising in purely submacroscopic deformations.

If we define for the given macroscopic deformation g the mapping Ψg : Ω× R3×3 → R by,

Ψg(x, L) := Ψi((∇g(x))−1L), for all L ∈ R3×3, (6.17)

then the mapping x 7→ Ψg(x,M(g,G)(x)) = Ψi((∇g(x))−1M(g,G)(x)) also has the property that its depen-
dence on (g,G) is independent of observer. The following constitutive assumption for the dependence on
invertible structured deformations (g,G) of ψ : Ω → R, the free energy density due to disarrangements,
namely,

ψ(x) = Ψi(M(i,K(g,G))(x)) = Ψi((∇g(x))−1M(g,G)(x)) = Ψg(x,M(g,G)(x)), x ∈ Ω, (6.18)

then is independent of observer and carries the assumption that the free energy density due to disarrange-
ments depends only on the disarrangements associated with the submacroscopic factor (i,K(g,G)) in (6.2).
When (g,G) is a crystallographic deformation, then the response functions Ψi and Ψg determine the free
energy density due to crystallographic slip as a function of the disarrangement tensorsM(i,K(g,G)) andM(g,G),
respectively.

6.5. Periodic properties of the energetic response Ψi to crystallographic slip. Let xo ∈ Ω, a ∈
{1, . . . , A}, µ = npa with n ∈ Z, and a crystallographic structured deformation (g,G) be given. We argued
above that the lattice on which (g,G) acts, when following the completely neutral two-level shear (gaµ,xo , I),
differs from that on which (g,G) acts, when not following (gaµ,xo , I), only by the undetectable transla-
tions of the lattice between active slip bands for system a. Consequently, the submacroscopic kinematical
states of the crystal lattice attained by means of the two purely submacroscopic structured deformations
(i,K(g,G)�(gaµ,xo ,I)

) and (i,K(g,G)) are indistinguishable. We invoke this indistinguishability to assert that
the free energy density ψ(xo) due to crystallographic slip should be the same for (i,K(g,G)�(gaµ,xo ,I)

) and for
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(i,K(g,G)) at the fixed point xo of gaµ,xo . Under the constitutive assumption (6.18) applied to the point xo
this assertion means that, for every µ = npa with n ∈ Z,

Ψi(M(i,K(g,G)�(gaµ,xo ,I)
)(xo)) = Ψi(M(i,K(g,G))(xo)). (6.19)

We wish to translate (6.19) into a property of the response function Ψi : R3×3 → R by invoking the
additivity property (6.15) in Remark 6.1. This property requires that we restrict attention to matrices
M ∈ R3×3 of the form

M =

A∑
b=1

βbsb ⊗mb (6.20)

with β1, . . . , βA ∈ R such that
M>ma = 0, (6.21)

and such that
det(I −M) = 1. (6.22)

If we define
Ma := {M ∈ R3×3 : (6.20), (6.21), (6.22) hold},

then it is easy to show that if there exists b ∈ {1, . . . , A}, s ∈ R3, ξ ∈ R, such that s ·ma = 0 and

M = s⊗ma + ξ(ma ×mb)⊗mb (6.23)

then M ∈ Ma. When mb = ±ma then the matrix M in (6.23) reduces to s ⊗ ma and represents disar-
rangements arising from slips in the crystallographic plane with normal ma, but not necessarily in one of
the slip directions in the list of slip systems for the crystal. When mb 6= ±ma, sa = ma × mb = s, and
ξ 6= 0, M represents disarrangements of the previous type along with slips in the direction ma ×mb in the
crystallographic plane with normal mb and so corresponds to the cross-slip described in Remark 5.6.

Suppose now that (g,G), a, and xo are such that M(i,K(g,G))(xo) ∈ Ma. By Remark 6.1, (6.15) holds for
every completely neutral two-level shear (ganpa,xo , I), i.e.,

M(i,K(g,G)�(ga
npa,xo

,I))(xo) = M(i,K(g,G))(xo) +M(ga
npa,xo

,I)(xo)

which by (6.11b) we may write in the following form

M(i,K(g,G)�(gaµ,xo ,I)
)(xo) = M(i,K(g,G))(xo) + npasa ⊗ma.

Consequently, whenM(i,K(g,G))(xo) ∈Ma, this formula and the constitutive restriction (6.19) on the response
function Ψi yield the relation

Ψi

(
M(i,K(g,G))(xo) + npasa ⊗ma

)
= Ψi

(
M(i,K(g,G))(xo)

)
, for every n ∈ Z. (6.24)

For matrices M ∈ Ma satisfying (6.23) this restriction takes the form

Ψi((s+ npasa)⊗ma + ξ(ma ×mb)⊗mb) = Ψi(s⊗ma + ξ(ma ×mb)⊗mb) (6.25)

for every s ∈ {ma}⊥, b ∈ {1, . . . , A}, ξ ∈ R, and n ∈ Z. In other terms, (6.25) is the assertion that for each
b ∈ {1, . . . , A} and ξ ∈ R the mapping

s 7→ Ψi(s⊗ma + ξ(ma ×mb)⊗mb) (6.26)

is periodic on {ma}⊥ with (vector) period pasa. Thus, the presence of completely neutral two-level shears
(gapa , I) has led via (6.24) to the identification of a family of affine subspaces

Ma
b,ξ := {s⊗ma + ξ(ma ×mb)⊗mb : s ∈ {ma}⊥}

of R3×3, each two-dimensional and on each of which the restriction of Ψi is periodic with corresponding
period pasa.
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6.6. Form of the initial non-local energy appropriate for crystalline plasticity. In this subsection
we take the basic constitutive assumption (6.18) and the property (6.24) of Ψi that reflects the complete
neutrality of certain two-level shears, and we identify additional properties of Ψi that permit the application
of our principal relaxation result Theorem 1.3 when Ψg appears in place of Ψ in the formula (1.11) for the
averaged interfacial energy. The following theorem provides conditions on Ψi and (g,G) sufficient for the
application of Theorem 1.3 in the context of crystal plasticity. We note in advance that the fact that the
macroscopic deformation g for a crystallographic structured deformation (g,G) is smooth (as is the case,
more generally, for (g,G) ∈ ISD(Ω;R3 × R3×3)) means that the singular part Dsg of the distributional
derivative Dg is zero and, consequently, that the term in (1.22) involving the recession function Ψ∞g is zero.
(This would not be the case were one to use the original definition of invertible structured deformation in
[14] in which g is allowed to be discontinuous.)

Theorem 6.2. Let Ω ⊂ R3 be a bounded Lipschitz domain, and let Ψi : R3×3 → R be a sublinear Lipschitz
continuous mapping satisfying, for each a, b ∈ {1, . . . , A} and for each ξ ∈ R, the periodicity condition (6.26).
Moreover, for each crystallographic structured deformation (g,G), let Ψg : Ω× R3×3 → R be given in terms
of Ψi by (6.17), and for each u ∈ SBV (Ω;R3) define as in (1.8) the averaged interfacial energy

Eαrg (u) :=

ˆ
Ωr

Ψg(x, (D
su ∗ αr)(x)) dx.

Then for each mollifier α ∈ C0(B1), for each r > 0, and for the convergence in (1.14), the upscales energy
Iαr (g,G; Ωr) in (1.16) is given by

Iαr (g,G; Ωr) =

ˆ
Ωr

Ψg

(
x, ((∇g −G) ∗ αr)(x)

)
dx, (6.27)

and the spatially localized, upscaled energy I(g,G) in (1.17) takes the form given in (1.24)

I(g,G) = lim
r→0+

Iαr (g,G; Ωr) =

ˆ
Ω

Ψg(x,∇g(x)−G(x)) dx =

ˆ
Ω

Ψi(I −∇g(x)−1G(x)) dx

=

ˆ
Ω

Ψi

(
I −K(g,G)(x)

)
dx =

ˆ
Ω

Ψi

(
M(i,K(g,G))(x)

)
dx.

(6.28)

In particular, the spatially localized, upscaled bulk energy density retains the periodicity property (6.26).

Proof. We note that for each (g,G) ∈ ISD(Ω;R3 × R3×3) there also holds (g,G) ∈ SD(Ω;R3 × R3×3).
Moreover, the Lipschitz continuity of (∇g)−1 and the assumed Lipschitz continuity of Ψi imply that Ψg

satisfies (L), so that we may invoke not only Theorem 1.2 to obtain (6.27) but also Theorem 1.3 to obtain
(6.28). �
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