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Abstract. We study the existence of Lipschitz minimizers of integral functionals

I(u) =

∫
Ω

ϕ(x, det Du(x)) dx

where Ω is an open subset of RN with Lipschitz boundary, ϕ : Ω×(0, +∞)→ [0, +∞) is a continuous
function and u ∈ W 1,N (Ω, RN ), u(x) = x on ∂Ω. We consider both the cases of ϕ convex and
nonconvex with respect to the last variable. The attainment results are obtained passing through
the minimization of an auxiliary functional and the solution of a prescribed jacobian equation.

Key words. nonpolyconvex functional, existence of minimizers, Lipschitz regularity, prescribed
jacobian equation

AMS subject classifications. 49J10, 35J60

1. Introduction. In this paper we consider integral functionals

I(u) =
∫

Ω

ϕ(x, detDu(x)) dx ,(1.1)

where Ω is a bounded open subset of RN with a Lipschitz boundary, N ≥ 2, ϕ :
Ω× (0,+∞) → [0,+∞) is a continuous function and u ∈W 1,N (Ω,RN ).

We aim at proving the existence of Lipschitz solutions to the variational problem

min
{
I(u) : u ∈W 1,N (Ω,RN ), detDu > 0 a.e., u(x) = x on ∂Ω

}
.(1.2)

Notice that even if a growth condition from below of the type tp ≤ ϕ(x, t) (which
is common in the theory of Calculus of Variations) is assumed, no coercivity of I
follows in any Sobolev space, preventing from establishing the existence of minimizers
via the Direct Method. Nevertheless many problems of this type have a solution
and the question of fixing which conditions on ϕ ensure the existence of solutions is
worth of interest, also for its applications in physics, mainly in elasticity theory and
in the problem of the equilibrium of gases (see [17], [5], [6] and [12]). For instance,
(1.2) is the variational problem corresponding to a non homogeneous elastic material
with reference configuration Ω whose stored energy ϕ is a nonnegative, continuous
function depending on the position x in the reference configuration and the size of
the deformation of the volume element detDu(x) > 0.

It is well known that an important role is played by the convexity of ϕ with
respect to the last variable: when ϕ is convex then I is said to be a polyconvex
functional, if not then I is nonpolyconvex. The polyconvex case ϕ = ϕ(t) has been
studied by Dacorogna [5] and the nonpolyconvex case by Mascolo-Schianchi [14] and
Cellina-Zagatti [4].

In order to solve (1.2) our strategy is the following: the first step is to look for
solutions to the following variational problem (from now referred to as the auxiliary
problem)

min
{
J (v) =

∫
Ω

ϕ(x, v(x)) dx : v ∈ L1(Ω), v > 0 a.e.,
∫

Ω

v(x) dx = |Ω|
}
,(1.3)
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where |Ω| stands for theN -dimensional Lebesgue measure of Ω. Then, if v is a solution
to (1.3), the second step is to solve in W 1,N (Ω) the boundary value problem{

detDu(x) = v(x) for a.e. x in Ω,
u(x) = x on ∂Ω.(1.4)

A solution u to (1.4) is a solution to (1.2), too. In fact, if w ∈ W 1,N (Ω), w(x) = x,
on ∂Ω, then detDw ∈ L1(Ω) and

∫
Ω

detDw(x) dx = |Ω|; therefore if detDw > 0 a.e.
then

I(u) = J (v) ≤ J (detDw) = I(w) .

Following the above scheme, Mascolo in [13] proves the existence of minimizers of (1.2)
for smooth domains Ω and ϕ ∈ C2(Ω× (0,+∞)) strictly convex in the last variable.

As far as problem (1.3) is concerned, Ekeland and Temam in [8] prove a relax-
ation result and Ball and Knowles in [1] obtain an attainment result with the tool of
the Young measures, see also Friesecke [10] for related results. The boundary value
problem (1.4) may have no solution unless v is sufficiently regular. For instance, the
simple continuity of v is not a sufficient condition to get Lipschitz solutions, see the
counterexamples independently given by Burago and Kleiner [2] and by McMullen
[15]. Thus, also the regularity properties of minimizers of the auxiliary problem have
to be studied. The pioneering papers on (1.4) are due to Moser [16] and Dacorogna-
Moser [7]. In particular in [7] the authors prove that if v is in Ck,α(Ω), k ≥ 0, and
∂Ω ∈ Ck+3,α, then there exists a diffemorphism of class Ck+1,α(Ω) solution to (1.4).
Later results are due to Rivière and Ye, who prove in [18], Theorem 4, the existence of
a bi-Lipschitz homeomorphism u solution to (1.4) under less restrictive assumptions
on Ω, with v satisfying a Dini-type continuity property. In [19] Ye proves existence
results in the framework of the Sobolev spaces.

The plan of the paper is the following. In section 2 we introduce a class of open
sets, invariant under bi-Lipschitz homeomorphisms, which is slightly larger than that
of open sets with Lipschitz boundaries, see Definition 2.1. In Theorem 2.4 we state
the existence of Lipschitz solutions to (1.4) with Ω in this class of open sets and
Hölder continuous datum v. It is a variant of the above cited Theorem 4 in [18] and
in Appendix we give the details of the proof. In section 3 we deal with polyconvex
functionals. We consider the class of functions ϕ strictly convex in the last variable
satisfying, as a substitute for the growth conditions,

lim
t→0+

Dtϕ(x, t) = λ0 with λ0 ∈ R ∪ {−∞}, lim
t→+∞

Dtϕ(x, t) = +∞,(1.5)

uniformly with respect to x. In Proposition 3.1 we prove that a unique solution v
to (1.3) exists and that v is in L∞(Ω). In Proposition 3.5, under more regularity
assumptions on ϕ, we prove that v is Hölder continuous. Therefore, the Lipschitz
solution u to (1.4), which exists by Theorem 2.4, is a minimizer of (1.2), see Theorem
3.6. In section 4 we deal with a function ϕ nonconvex with respect to t, satisfying
(1.5). Denoting ϕ∗∗ the convex envelope of ϕ with respect to t, we assume that there
exist α, β ∈ L∞(Ω), β(x) > α(x), inf α > 0, such that for every x ∈ Ω

t 7→ ϕ∗∗(x, t) is affine in [α(x), β(x)]

and

ϕ(x, ·) ≡ ϕ∗∗(x, ·) and ϕ(x, ·) is strictly convex in (0, α(x)] and [β(x),+∞).
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Under these assumptions in Theorem 4.1 we prove the existence of a bounded so-
lution v to the auxiliary problem (1.3). In section 5 under regularity assumptions
on ϕ we get that v is piecewise Hölder continuous, see Theorem 5.2. In section 6
first we prove that if in (1.4) the datum v is piecewise Hölder continuous there exists
a Lipschitz solution, see Proposition 6.2. Then, solving (1.4) with v the piecewise
Hölder continuous solution to the auxiliary problem, in Theorems 6.3 and 6.4 we get
a Lipschitz continuous minimizer of functional (1.1). In section 7 we consider special
classes of nonpolyconvex functionals. First we consider the class of functionals with
a nonconvex ϕ satisfying ϕ(x, α(x)) = ϕ(x, β(x)) = 0. This class has been considered
by Zagatti [20] (see also Celada-Perrotta [3] for the case ϕ(x, u, t)) with the assump-
tion

∫
Ω
α(x) dx < |Ω| <

∫
Ω
β(x) dx. In [20] and [3] the attainment result is proved

using different arguments, as the Baire category method and the convex integration
method, respectively. Theorems 7.1 and 7.2 are attainment results including the cases∫
Ω
αdx ≥ |Ω| and

∫
Ω
β(x) dx ≤ |Ω|. Theorem 7.4 deals with a perturbation of these

functionals, see problem (7.2). We conclude the section considering functionals with
ϕ satisfying the structure condition ϕ(x, t) = ϕ̃(|x|, t). In this case the existence of
bounded radial solutions to (1.3) directly implies the existence of Lipschitz solutions
to (1.4).

2. Notations and preliminary results. In the following if Ω is a measurable
subset of RN then |Ω| stands for its N -dimensional Lebesgue measure. We write Q
in place of (0, 1)N and Br(x) denotes the ball in RN with center at x and radius
r. If ϕ : Ω × (0,+∞) → [0,+∞) then ϕ∗∗ is the convex envelope of ϕ with respect
to the second variable, i.e. t 7→ ϕ∗∗(x, t) is the greatest convex function lower than
t 7→ ϕ(x, t). For the sake of simplicity we write ϕ(x, ·) instead of t 7→ ϕ(x, t),

D−t ϕ(x, s) := lim
t→s−

ϕ(x, t)− ϕ(x, s)
t− s

, D+
t ϕ(x, s) := lim

t→s+

ϕ(x, t)− ϕ(x, s)
t− s

and ∂ϕ(x, s) := {d ∈ R : ϕ(x, t) ≥ ϕ(x, s) + d(t− s) for every t ∈ (0,+∞)}.
We define a class of bounded open subsets of RN .
Definition 2.1. We say that a bounded open set Ω of RN is of class (L) if

Ω has a covering of finitely many open sets Ωj such that for every j there exists a
bi-Lipschitz homeomorphism ψj : Ωj ∩ Ω → Q, satisfying

(a) ψj(Ωj ∩ ∂Ω) = {0} × [0, 1]N−1, whenever Ωj ∩ ∂Ω is not empty,
(b) detDψj is Lipschitz continuous and there exists A ≥ 1 such that 1

A ≤ detDψj ≤
A.

The above definition describes a larger class than that of open sets with Lipschitz
boundary, i.e. with the boundary which locally is the graph of a Lipschitz function.
This result can be proved in a similar way as Proposition A.1 in [7].

Lemma 2.2. If a bounded open set Ω of RN has a Lipschitz boundary then it is
of class (L).

An easy consequence of the chain rule for Lipschitz functions is that Definition
2.1 is invariant under bi-Lipschitz homeomorphisms.

Lemma 2.3. Let u0 : RN → RN be a bi-Lipschitz homeomorphism, with detDu0

Lipschitz continuous, 1
A ≤ detDu0 ≤ A for some A. If Ω is of class (L) then u0(Ω)

is of class (L), too.
On the contrary, there are examples of bounded open sets of RN with Lipschitz
boundary which are mapped by a bi-Lipschitz homeomorphism u : RN → RN onto
sets with a not (Lipschitz) continuous boundary, see e.g. [11], p.8-9. Therefore, the
converse of Lemma 2.2 is not true.
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Now, we state an existence result of Lipschitz solutions to{
det Du = f in Ω,
u(x) = x on ∂Ω,(2.1)

with f Hölder continuous.
Theorem 2.4. Let Ω ⊂ RN be a bounded connected open set of class (L). Let

f be a Hölder continuous function, inf f > 0,
∫
Ω
f(x) dx = |Ω|. Then there exists a

bi-Lipschitz homeomorphism u : Ω → Ω solution to (2.1).
A similar result is proved in [18], Theorem 4, with a weaker assumption on v,

which is assumed to satisfy a Dini-type continuity property, and a regular domain Ω.
In [18] the proof is given for cubes only. The proof of Theorem 2.4, based upon the
application to open sets of class (L) of the partition method due to Moser [16], is in
the Appendix.

3. Polyconvex problems: an attainment result. In this section we consider
the variational problem

min
{∫

Ω

ψ(x, detDu(x)) dx : u ∈W 1,N (Ω,RN ), detDu > 0 a.e., u(x) = x on ∂Ω
}

(3.1)
where Ω is a bounded open subset of RN with a Lipschitz boundary and ψ : Ω ×
(0,+∞) → [0,+∞) is a continuous function.

To get solutions to (3.1), we first consider the following variational problem

min
{∫

Ω

ψ(x, v(x)) dx : v ∈ L1(Ω), v > 0 a.e.,
∫

Ω

v(x) dx = a

}
, a > 0.(3.2)

As far as the problem (3.2) is concerned, the Lipschitz regularity of the boundary of
Ω can be dropped.
We prove that there exists a (unique) bounded solution to (3.2) if

(H1) t 7→ ψ(x, t) is strictly convex for all x ∈ Ω,
(H2) there exists λ0 ∈ R ∪ {−∞} such that

lim
t→0+

D+
t ψ(x, t) = λ0, lim

t→+∞
D−t ψ(x, t) = +∞, uniformly in x.

Proposition 3.1. Assume that ψ : Ω × (0,+∞) → [0,+∞) is a continuous
function satisfying (H1) and (H2). Then for every λ > λ0 there exists a unique
uλ ∈ L∞(Ω), inf uλ > 0, such that

λ ∈ ∂ψ(x, uλ(x)) ∀x ∈ Ω.(3.3)

Moreover, there exists λa > λ0 such that uλa
is the unique solution to (3.2).

Proof. We proceed as follows: at first we prove that for every λ > λ0 there exists
a function uλ such that (3.3) holds. Then, we prove that uλ is in L∞(Ω), inf uλ > 0,
and there exists λa such that

∫
Ω
uλa

dx = a. Thus, it turns out that uλa
is a solution

to (3.2) and it is unique, because of the strict convexity of the functional.

Step 1. The definition of uλ. Fixed x ∈ Ω, we define the sets

C(x) := {s ∈ (0,+∞) : D−t ψ(x, s) < D+
t ψ(x, s)} , ΩC := {x ∈ Ω : C(x) 6= ∅} .

Notice that ∂ψ(x, s) = [D−t ψ(x, s), D+
t ψ(x, s)] for all (x, s) ∈ Ω× (0,+∞).
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Suppose that x ∈ Ω\ΩC . From (H1) and the definition of ΩC , the function Dtψ(x, ·) :
(0,+∞) → (λ0,+∞) is well defined, continuous and strictly increasing. Moreover,
it is a surjective function, because of (H2). Let u(x, ·) be its inverse function, i.e.
u(x, ·) : (λ0,+∞) → (0,+∞) is such that u(x, λ) (from now on denoted by uλ(x))
is the unique positive number such that λ = Dtψ(x, uλ(x)). u(x, ·) is a well defined,
strictly increasing and continuous function.
Now let us consider x ∈ ΩC . From (H1), C(x) is (at most) a countable set, so
that we denote C(x) = {tn(x)}n∈J(x), where J(x) ⊆ N. As in the above case, if
λ 6∈ ∪n∈J(x)∂ψ(x, tn(x)) we define uλ(x) as the unique positive number such that
Dtψ(x, uλ(x)) = λ. If instead λ ∈ ∂ψ(x, tn(x)) for some n ∈ J(x), then we set
uλ(x) = tn(x). Notice that if uλ(x) is chosen greater (less) than tn(x) then λ <
D−t ψ(x, uλ(x)) (λ > D+

t ψ(x, uλ(x))). It is easy to prove that for each x ∈ ΩC the
function u(x, ·) : (λ0,+∞) → (0,+∞) is well defined, increasing and continuous.
Thus, uλ : Ω → (0,+∞) is the unique function satisfying (3.3) and it is measurable,
since

{x ∈ Ω : uλ(x) < t} = {x ∈ Ω : D−t ψ(x, t) > λ}

and D−t ψ(x, t) = suph<0(ψ(x, t+h)−ψ(x, t))/h. By the second limit in (H2) for every
λ > λ0 there exists R > 0 such that D−t ψ(x,R) > λ for every x ∈ Ω, which implies
uλ(x) < R for every x ∈ Ω. In fact, if uλ(x) ≥ R for some x, then by the convexity of
ψ with respect to the second variable it would be D−t ψ(x,R) ≤ D−t ψ(x, uλ(x)) and
by (3.3) we would obtain D−t ψ(x,R) ≤ λ, which is a contradiction. Thus, uλ is in
L∞(Ω). The first limit in (H2) implies that for each λ > λ0 there exists c(λ) > 0 such
that supy∈ΩD

+
t ψ(y, t) < λ for every t < c(λ). Therefore it cannot be uλ(x) < c(λ),

because λ ≤ D+
t ψ(x, uλ(x)), so that inf uλ > 0.

Step 2. The definition of λa. Define Ψ : (λ0,+∞) → (0,+∞), Ψ(λ) :=
∫
Ω
uλ(x) dx,

where uλ(x) = u(x, λ) is defined as in step 1. By the monotonicity of u with respect
to λ, Ψ is increasing. It holds true that limλ→λ+

0
uλ(x) = 0. In fact, suppose that

limλ→λ+
0
uλ(x) = δ(x) > 0. By (H1), the first limit in (H2) and (3.3) we get

λ0 < D−t ψ(x, δ(x)) ≤ D−t ψ(x, uλ(x)) ≤ λ .

Therefore, letting λ go to λ+
0 we get a contradiction. Analogously it can be proved

that limλ→+∞ uλ(x) = +∞. Hence,

lim
λ→λ+

0

Ψ(λ) = 0, lim
λ→+∞

Ψ(λ) = +∞.(3.4)

From the previous step λ 7→ uλ(x) is continuous and increasing for all x and uλ ∈
L∞(Ω) for all λ, therefore Ψ is a continuous function. Thus, there exists λa > λ0

such that Ψ(λa) = a. We claim that uλa
is a solution to (3.2). In fact, from (H1) and

(3.3) for every w ∈ L1(Ω) such that w > 0 and
∫
Ω
w(x) dx = a, we have that

ψ(x,w(x)) ≥ ψ(x, uλa(x)) + λa(w(x)− uλa(x)) ∀x ∈ Ω.

Thus,∫
Ω

ψ(x,w(x)) dx ≥
∫

Ω

ψ(x, uλa
(x)) dx+λa

∫
Ω

(w(x)−uλa
(x)) dx =

∫
Ω

ψ(x, uλa
(x)) dx .
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Remark 3.2. The growth conditions

lim
t→0+

inf
y∈Ω

ψ(y, t) = +∞ , lim
t→+∞

inf
y∈Ω

ψ(y, t)
t

= +∞,

imply (H2). If the first limit in (H2) is not uniform with respect to x, then may
be inf uλ = 0. Moreover, the proof of Proposition 3.1 works also if we replace
limt→+∞D−t ψ(x, t) = +∞ with the more general

lim
t→+∞

D−t ψ(x, t) = λ∞, λ∞ ∈ R ∪ {+∞}.

It is easy to prove the following refinement of Proposition 3.1.
Proposition 3.3. Let ψ : Ω × (0,+∞) → [0,+∞) be a continuous function,

differentiable with respect to the last variable, Dtψ ∈ C(Ω × (0,+∞)). If (H1) and
(H2) hold then the functions uλ in Proposition 3.1 are continuous for every λ > λ0.

Proof. For every λ > λ0 let uλ ∈ L∞(Ω) be as in Proposition 3.1. uλ is lower
semicontinuous. In fact, if

lim inf
x→x0

uλ(x) < α < uλ(x0) ,(3.5)

then (H1) and (3.3) imply Dtψ(x0, α) < λ. By continuity of Dtψ there exists δ > 0
such that Dtψ(x, α) < λ for every x ∈ (x0 − δ, x0 + δ). Then, from (3.3) again we
have that Dtψ(x, α) < Dtψ(x, uλ(x)) for every x ∈ (x0 − δ, x0 + δ), which implies
α < uλ(x), in contradiction with (3.5). Analogously the upper semicontinuity of uλ

can be proved.
To get Hölder continuous solutions to (3.2) we require more regularity on ψ:

(H3) there exists 0 < σ ≤ 1 such that for every compactK ⊂ (0,+∞) and for every
t ∈ K the function x 7→ Dtψ(x, t) is of class C0,σ(Ω), with [Dtψ(·, t)]0,σ ≤ kK ,

(H4) for every m > 0 there exists cm > 0 such that

ψ(x, t) ≥ ψ(x, s) +Dtψ(x, s)(t− s) + cm|t− s|2+ε

for every t > s ≥ m, for every x ∈ Ω and some ε ≥ 0.
Remark 3.4. Assumption (H4) is equivalent to assume that for every m > 0

there exists c̃m > 0 such that

Dtψ(x, t)−Dtψ(x, s) ≥ c̃m|t− s|1+ε ∀ t > s ≥ m, ∀x ∈ Ω.(3.6)

Roughly speaking, if ψ ∈ C2 satisfies (H4), then Dttψ may vanish provided that a
suitable growth near the zeros is satisfied, see (3.a) below.
Notice that if ψ0 satisfies (H4) and ψ1 = ψ1(x, t) is such that ψ1(x, ·) is convex and
C1, then ψ = ψ0 + ψ1 satisfies (H4), too. Examples of functions ψ0 satisfying (H4)
are the following:

(1) ψ0(t) := (1 + t2)p/2, p ≥ 2. See [9] for details.

(2) ψ0(x, t) := |t− a(x)|p, with a : Ω → R and p ≥ 2,

(3) ψ0 : Ω × (0,+∞) → [0,+∞) of class C2, strictly convex with respect to t, such
that for every x there exists at most finitely many positive numbers {si(x)}, such that
Dttψ0(x, si(x)) = 0 and the following two hold:

(a) there exist ε, c > 0 such that Dttψ0(x, t) ≥ c|t − si(x)|ε, for every t in a
neighborhood of si(x),
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(b) there exists M > 0 such that inf {Dttψ0(x, t) : (x, t) ∈ Ω× [M,+∞)} > 0.
Proposition 3.5. Let ψ : Ω × (0,+∞) → [0,+∞) be a continuous function,

differentiable with respect to the last variable, satisfying (H1)–(H4). Then for each
λ > λ0, the function uλ in Proposition 3.1 is in C0,σ/(1+ε)(Ω). In particular, for
every a > 0 the unique solution uλa

to (3.2) is Hölder continuous.
Proof. Fix λ and let uλ, from now on referred to as u, be the correspondent

function as described in Proposition 3.1. From the strict convexity of ψ with respect
to the last variable and since λ = Dtψ(x, u(x)) for every x ∈ Ω it is easy to check
that u is γ-Hölder continuous with Hölder constant [u]γ if and only if

Dtψ(y, u(x) + [u]0,γ |x− y|γ)−Dtψ(x, u(x)) ≥ 0 , ∀x, y ∈ Ω.(3.7)

Fix x, y ∈ Ω. By (H4) and (3.6) there exist ε ≥ 0 and c̃ > 0 such that

Dtψ(x, t)−Dtψ(x, s) ≥ c̃(t− s)1+ε ∀ t > s ≥ inf u > 0, ∀x ∈ Ω.(3.8)

Consider the compact interval K = [inf u, ‖u‖∞] and let s and t be equal to u(x) and
u(x) +

(
k
c̃ |x− y|σ

)1/(1+ε)
, respectively, with σ and kK as in (H3). Using (3.8) and

(H3) to estimate Dtψ(y, t)−Dtψ(y, s) and Dtψ(y, s)−Dtψ(x, s), respectively, we get

Dtψ(y, t)−Dtψ(x, s) = Dtψ(y, t)−Dtψ(y, s) +Dtψ(y, s)−Dtψ(x, s) ≥ 0.

Then u is γ-Hölder continuous, with γ = σ
1+ε .

Thus, fixed a > 0, the solution uλa
to (3.2), that exists by Proposition 3.1, is Hölder

continuous.
Now we are ready to state an existence result of Lipschitz solutions to the poly-

convex problem (3.1).
Theorem 3.6. Suppose that Ω is a bounded open subset of RN with Lipschitz

boundary and let ψ : Ω× (0,+∞) → [0,+∞) be a continuous function, differentiable
with respect to the last variable, satisfying (H1)–(H4). Then there exists a Lipschitz
continuous solution to (3.1).

Proof. Set a = |Ω| and consider the variational problem (3.2). From Propositions
3.1 and 3.5 such a problem has a (unique) solution uλa ∈ C0,γ(Ω), γ > 0, and
inf uλa

> 0. Hence, from Theorem 2.4 there exists a bi-Lipschitz homeomorphism u
solving {

detDu = uλa
in Ω,

u(x) = x on ∂Ω,

and u is a solution to (3.1), too.

4. Nonpolyconvex problems: attainment result for the auxiliary prob-
lem. In this section we consider the variational problem

min
{∫

Ω

ϕ(x, v(x)) dx : v ∈ L1(Ω), v > 0 a.e.,
∫

Ω

v(x) dx = a

}
, a > 0(4.1)

where Ω is a bounded open subset of RN , ϕ : Ω× (0,+∞) → [0,+∞) is a continuous
function, nonconvex with respect to the last variable t.
Let ϕ∗∗ be the convex envelope of ϕ with respect to the second variable and define

ΩA := {x ∈ Ω : t→ ϕ(x, t) is not strictly convex}.

We assume that the following assumptions hold:
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(K1) ΩA is a (not empty) measurable set and there exist α, β ∈ L∞(ΩA), β(x) >
α(x) for all x, inf α > 0, such that ϕ(x, ·) and ϕ∗∗(x, ·) both coincide and are
strictly convex in (0, α(x)] and [β(x),+∞), for every x ∈ ΩA,

(K2) ϕ∗∗(x, ·) is affine in [α(x), β(x)] for all x ∈ ΩA, i.e. for every α(x) ≤ t ≤ β(x)

ϕ∗∗(x, t) = h(x)t+ q(x), with h(x) =
ϕ(x, β(x))− ϕ(x, α(x))

β(x)− α(x)
,

(K3) there exists λ0 ∈ R ∪ {−∞} such that

lim
t→0+

D+
t ϕ(x, t) = λ0, lim

t→+∞
D−t ϕ(x, t) = +∞, uniformly in x.

Theorem 4.1. Assume (K1), (K2) and (K3). Then there exist λa > λ0 and
vλa ∈ L∞(Ω), inf vλa > 0, such that

(i) vλa(x) /∈ (α(x), β(x)) for every x ∈ ΩA,

(ii) λa ∈ ∂ϕ∗∗(x, vλa
(x)) for every x ∈ Ω,

(iii)
∫
Ω
vλa

(x) dx = a.
In particular, vλa

is a solution to (4.1). Moreover, if Ω = B1(0) and ϕ(x, t) = ϕ̃(|x|, t)
then vλa is a radial function.

We postpone the proof of Theorem 4.1 to the following lemma.
Lemma 4.2. Let O be a bounded measurable subset of RN . Let α, β ∈ L1(O) be

such that α(x) ≤ β(x) for a.e. x and suppose∫
O

α(x) dx < κ <

∫
O

β(x) dx .(4.2)

Then there exists r > 0 such that Θ : O → R, Θ(x) := α(x) if x ∈ O ∩ Br(0) and
Θ(x) := β(x) else, satisfying

∫
O

Θ(x) dx = κ.
Proof. Let R be such that O ⊂ BR(0). Consider the functions θρ : O → R,

0 ≤ ρ ≤ R, defined as follows: θ0 := β and if ρ 6= 0 then θρ(x) := α(x) if x ∈ O∩Br(0)
and θρ(x) := β(x) else. The continuity of ρ→

∫
O
θρ(x) dx and (4.2) imply that there

exists 0 < r < R such that
∫

O
θr(x) dx = κ.

We are now ready to prove Theorem 4.1.
Proof. [Proof of Theorem 4.1.] We divide the proof into three steps. In step 1 we

define a family of functions v−λ : Ω → (0,+∞), λ > λ0, such that

v−λ (x) /∈ (α(x), β(x)) ∀x ∈ ΩA, ∀λ > λ0,(4.3)

and

λ ∈ ∂ϕ∗∗(x, v−λ (x)) ∀x ∈ Ω, ∀λ > λ0.(4.4)

In step 2 we define a function vλa
satisfying (i), (ii) and (iii). Finally, in step 3 we

consider the case ϕ(x, t) = ϕ̃(|x|, t).

Step 1. The definition of v−λ . Let us define the function ψ : Ω× (0,+∞) → [0,+∞),
such that ψ ≡ ϕ in (Ω \ ΩA)× (0,+∞) and

ψ(x, t) :=

 ϕ(x, t) if x ∈ ΩA, 0 < t ≤ α(x),
ϕ(x, t+ β(x)− α(x))−
−ϕ(x, β(x)) + ϕ(x, α(x)) if x ∈ ΩA, t > α(x).

(4.5)



EXISTENCE OF MINIMIZERS FOR POLYCONVEX... 9

(K1) and (K2) imply that for every x ∈ ΩA

D−t ϕ(x, α(x)) ≤ h(x) =
ϕ(x, β(x))− ϕ(x, α(x))

β(x)− α(x)
≤ D+

t ϕ(x, β(x))(4.6)

and that ψ satisfies (H1). Moreover, for every x /∈ ΩA and every t > 0 we have
∂ψ(x, t) = ∂ϕ(x, t) = ∂ϕ∗∗(x, t). If instead x ∈ ΩA then

∂ψ(x, t) =

 ∂ϕ(x, t) if 0 < t < α(x),
∂ϕ∗∗(x, α(x)) ∪ ∂ϕ∗∗(x, β(x)) if t = α(x),
∂ϕ(x, t+ β(x)− α(x)) if t > α(x).

(4.7)

We claim that (K3) implies that ψ satisfies (H2).
The first limit in (K3) and the assumption inf α > 0 imply limt→0+ D+

t ψ(x, t) = λ0,
uniformly. Let us prove that ψ satisfies the property on the second limit in (H2).
Since α, β ∈ L∞(ΩA) then for every x ∈ Ω and t > ‖α‖L∞(ΩA)

inf
y∈Ω

D−t ϕ(y, t) ≤ min{ inf
y∈ΩA

D−t ϕ(y, t+ β(y)− α(y)), inf
y∈Ω\ΩA

D−t ϕ(y, t)} =

= inf
y∈Ω

D−t ψ(y, t) ≤ D−t ψ(x, t) ≤ D−t ϕ(x, t+ ‖β − α‖L∞(ΩA)),

so that by (K3) as t goes to +∞ we get

lim
t→+∞

inf
y∈Ω

D−t ψ(y, t) = lim
t→+∞

D−t ψ(x, t) = +∞ , ∀x ∈ Ω.

Since ψ satisfies the assumptions of Proposition 3.1 then for every λ > λ0 there exists
uλ ∈ L∞(Ω), inf uλ > 0, satisfying (3.3). Moreover, for every x ∈ ΩA

uλ(x) < α(x) if λ < D−t ϕ(x, α(x)),
uλ(x) = α(x) if λ ∈ [D−t ϕ(x, α(x)), D+

t ϕ(x, β(x))],
uλ(x) > α(x) if λ > D+

t ϕ(x, β(x)).
(4.8)

Let us define v−λ : Ω → (0,+∞),

v−λ (x) := uλ(x) + (β(x)− α(x))χ{y∈ΩA : h(y)<λ}(x).

Since uλ ∈ L∞(Ω) and α, β ∈ L∞(ΩA), then v−λ ∈ L∞(Ω). From (3.3), (4.6), (4.7)
and (4.8) if x ∈ ΩA the following implications hold:

• if λ < D−t ϕ(x, α(x)) then v−λ (x) = uλ(x) < α(x) and λ ∈ ∂ψ(x, uλ(x)) =
∂ϕ(x, v−λ (x)),

• if λ ∈ [D−t ϕ(x, α(x)), h(x)] then v−λ (x) = uλ(x) = α(x) and λ ∈ ∂ϕ∗∗(x, α(x)),
• if λ ∈ (h(x), D+

t ϕ(x, β(x))] then v−λ (x) = β(x) and λ ∈ ∂ϕ∗∗(x, β(x)),
• if λ > D+

t ϕ(x, β(x)) then v−λ (x) = uλ(x) + β(x) − α(x) > β(x) and λ ∈
∂ψ(x, uλ(x)) = ∂ϕ(x, v−λ (x)).

Thus (4.3) holds and

λ ∈ ∂ϕ∗∗(x, v−λ (x)),(4.9)

for every x ∈ ΩA and λ > λ0. When x 6∈ ΩA, the equality v−λ (x) = uλ(x) and (3.3)
imply (4.9). Therefore (4.4) holds true.
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Step 2. The definition of λa and vλa
. Let us define Φ : (λ0,+∞) → (0,+∞),

Φ(λ) :=
∫

Ω

v−λ (x) dx =
∫

Ω

(
uλ(x) + (β(x)− α(x))χ{y∈ΩA : h(y)<λ}(x)

)
dx.

As in the proof of (3.4) we have that limλ→λ+
0

Φ(λ) = 0 and limλ→+∞Φ(λ) = +∞.
For each λ > λ0 define v+

λ : Ω → (0,+∞),

v+
λ (x) := uλ(x) + (β(x)− α(x))χ{y∈ΩA : h(y)≤λ}(x).

For every µ > λ0

lim
λ→µ−

Φ(λ) = Φ(µ) , lim
λ→µ+

Φ(λ) =
∫

Ω

v+
µ (x) dx.

Thus, Φ is discontinuous at µ if and only if | {y ∈ ΩA : h(y) = µ} | > 0.
Only one of the following cases is possible:

1. there exists λa > λ0 such that Φ(λa) = a,
2. there exists λa > λ0 such that Φ(λa) < a = limλ→λ+

a
Φ(λ),

3. there exists λa > λ0 such that Φ(λa) < a < limλ→λ+
a

Φ(λ).
Case 1. As proved in step 1, v−λa

satisfies (i), (ii) and inf v−λa
≥ inf uλa

> 0. Moreover,
by definition of λa, (iii) holds. Thus, define vλa

= v−λa
.

Case 2. As above, v−λa
satisfies (i), (ii) and inf v−λa

≥ inf uλa
> 0. It is easy to check

that a property analogous to (i) is satisfied by v+
λa

and that inf v+
λa
≥ inf v−λa

> 0. By
the very definition of v+

λa
we have also

∫
Ω
v+

λa
dx = a.

Let us prove that λa ∈ ∂ϕ∗∗(x, v+
λa

(x)) for every x. If x /∈ ΩA or if x ∈ ΩA and
h(x) 6= λa then v−λa

(x) = v+
λa

(x) and the above inclusion follows. Suppose that
x ∈ ΩA and h(x) = λa. Then v−λa

(x) = α(x) < β(x) = v+
λa

(x) and (K2) implies
λa ∈ ∂ϕ∗∗(x, β(x)) = ∂ϕ∗∗(x, v+

λa
(x)).

We have so proved that λa ∈ ∂ϕ∗∗(x, v+
λa

(x)) for every x ∈ Ω. Thus, define vλa
:= v+

λa
.

Case 3. Define O := {x ∈ ΩA : λa = h(x)} and κ := a −
∫
Ω\O v

−
λa

(x) dx. The
assumption Φ(λa) < a < limλ→λ+

a
Φ(λ) implies∫

O

α(x) dx =
∫

O

v−λa
(x) dx < κ <

∫
Ω

v+
λa

(x) dx−
∫

Ω\O
v−λa

(x) dx =
∫

O

β(x) dx.

From Lemma 4.2 there exists Θ : O → R, Θ(x) ∈ {α(x), β(x)} such that
∫

O
Θ(x) dx =

κ. Define vλa
: Ω → R, vλa

(x) = v−λa
(x) if x /∈ O and vλa

(x) = Θ(x) else.
It is easy to prove that vλa

satisfies (i), (ii), (iii) and inf vλa
> 0.

Since ϕ ≥ ϕ∗∗, then for every v ∈ L1(Ω), such that v > 0 a.e. and
∫
Ω
v dx = a, we

have that∫
Ω

ϕ(x, v(x)) dx ≥
∫

Ω

ϕ∗∗(x, v(x)) dx ≥(4.10)

≥
∫

Ω

ϕ∗∗(x, vλa
(x)) dx+ λa

∫
Ω

(v(x)− vλa
(x)) dx =

∫
Ω

ϕ(x, vλa
(x)) dx.

Thus, vλa
is a solution to (4.1).
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Step 3. The case ϕ(x, t) = ϕ̃(|x|, t). Assume that Ω is the unit ball B1(0) and that
ϕ has the radial structure ϕ(x, t) = ϕ̃(|x|, t). It is easy to prove that ϕ∗∗(x, t) =
(ϕ̃)∗∗(|x|, t) and that α, β, h are radial functions. Moreover, the sets ΩA, {y ∈ ΩA :
h(y) < λ} and {y ∈ ΩA : h(y) = λ} are symmetric sets with respect to the origin.
If ψ is defined as in step 1 above, then it immediately follows that ψ(x, t) = ψ̃(|x|, t).
Looking at the first step of the proof of Proposition 3.1, it turns out that uλ, satisfying
∂ψ(x, uλ(x)) = λ, is a radial function for all λ. All these facts allow us to conclude that
whenever the cases 1 or 2 in step 2 hold, i.e. Φ(λa) = a or Φ(λa) < a = limλ→λ+

a
Φ(λ),

respectively, then vλa is a radial function. To prove that vλa is radial in the third case
it is sufficient to notice that the sets O, O ∩Br(0) and O \Br(0) are symmetric with
respect to the origin and consequently the function Θ is radial.

5. Nonpolyconvex problems: regularity result for the auxiliary prob-
lem. In this section we prove a regularity result for solutions to the nonconvex varia-
tional problem (4.1). Let Ω be a bounded open subset of RN and let ϕ : Ω×(0,+∞) →
[0,+∞) be a continuous function, differentiable with respect to the last variable,
Dtϕ ∈ C0,δ(Ω×K), 0 < δ ≤ 1, for every compact K in (0,+∞), such that

(A1) there exist α, β ∈ C0,δ(Ω), β(x) > α(x) for every x, inf α > 0, such that
ϕ(x, ·) and ϕ∗∗(x, ·) both coincide and are strictly convex in (0, α(x)] and
[β(x),+∞), for every x ∈ Ω,

(A2) t → ϕ∗∗(x, t) is affine in [α(x), β(x)] for every x ∈ Ω, i.e. for every α(x) ≤
t ≤ β(x)

ϕ∗∗(x, t) = h(x)t+ q(x), with h(x) =
ϕ(x, β(x))− ϕ(x, α(x))

β(x)− α(x)
.

Moreover,

|∂{x : h(x) = λ}| = 0 , ∀λ ∈ R,

(A3) there exists λ0 ∈ R ∪ {−∞} such that

lim
t→0+

Dtϕ(x, t) = λ0 , lim
t→+∞

Dtϕ(x, t) = +∞, uniformly in x.

(A4) for every m > 0 there exists cm > 0 such that

ϕ(x, t) ≥ ϕ(x, s) +Dtϕ(x, s)(t− s) + cm|t− s|2+ε

for every s, t ≥ m, such that s < t ≤ α(x) or β(x) ≤ s < t, for every x ∈ Ω
and some ε ≥ 0.

The following result is in the same spirit of Lemma 4.2.
Lemma 5.1. Let O be an open set in RN . Let α, β ∈ L1(O) be such that α(x) ≤

β(x) for a.e. x and suppose that∫
O

α(x) dx < κ <

∫
O

β(x) dx.(5.1)

Then there exists a finite number of balls Bρj
(yj), j = 1, ...,m, satisfying

(1) Bρj
(yj) ⊂⊂ O, j = 1, ...,m,

(2) Bρi
(yi) ∩Bρj

(yj) = ∅ for every i 6= j,
(3)

∫
O

Θ(x) dx = κ,
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where Θ(x) := α(x) if x ∈ ∪1≤j≤mBρj
(yj) and Θ(x) := β(x) else.

Proof. Since O is open, there exist (at most) countably many pairwise disjoint
balls

{
BRj

(yj)
}

j∈J
in O, and a negligible set N such that O = N ∪

(⋃
j∈J BRj

(yj)
)
.

Without loss of generality we assume J = {1, 2, ...,m} if cardJ = m ∈ N and J = N
if J is countable. For every n ∈ J , let us define the function θn : O → R,

θn(x) :=

 α(x), if x ∈
⋃

1≤j≤n

BRj (yj),

β(x), else.

If J is finite then (5.1) implies
∫

O

θm(x) dx < κ. If J = N, it is easy to check that

lim
n→+∞

∫
O

θn(x) dx < κ , thus, there exists m ∈ N such that∫
O

θm(x) dx =
∫
∪1≤j≤mBRj

(yj)

α(x) dx+
∫

O\∪1≤j≤mBRj
(yj)

β(x) dx < κ .

Aiming at (1) and (2), we slightly reduce the radius of the previously selected balls{
BRj (yj)

}
1≤j≤m

. This can easily be done by noticing that

lim
ε→0+

∫
∪m

j=1BRj
(yj)\BRj−ε(yj)

(β(x)− α(x)) dx = 0.

Thus there exists 0 < ε < min{Rj : 1 ≤ j ≤ m} such that∫
∪1≤j≤mBRj−ε(yj)

α(x) dx+
∫

O\∪1≤j≤mBRj−ε(yj)

β(x) dx < κ .(5.2)

Set R := max {Rj − ε : 1 ≤ j ≤ m} and define θ : O × [0, R] → R, θ(x, 0) := β(x)
and

θ(x, ρ) :=

 α(x) if x ∈
⋃

1≤j≤m

(
BRj−ε(yj) ∩Bρ(yj)

)
,

β(x) else,

for every ρ > 0. From (5.2) we have that∫
O

θ(x,R) dx < κ <

∫
O

θ(x, 0) dx =
∫

O

β(x) dx.

Since ρ→
∫

O
θ(x, ρ) dx is a continuous function, there exists ρ such that

∫
O

θ(x, ρ) dx =

κ. The claim of the theorem follows by defining Θ(x) := θ(x, ρ) and ρj := min{Rj −
ε, ρ}, 1 ≤ j ≤ m.

Let h be as in (A2). For every λ > λ0 we define

Ω+
λ := {x : h(x) > λ}, Ω−λ := {x : h(x) < λ}, Ω=

λ := {x : h(x) = λ}.(5.3)

Under (A1)–(A4) there exists a piecewise Hölder continuous solution to (4.1).
Theorem 5.2. Let ϕ : Ω× (0,+∞) → [0,+∞) be a continuous function, differ-

entiable with respect to the last variable, Dtϕ(x, t) in C0,δ(Ω×K) for every compact
K ⊂ (0,+∞). Suppose that (A1)–(A4) hold. Then, fixed a > 0 there exist λa > λ0

and vλa
∈ L∞(Ω), inf vλa

> 0, satisfying the following properties:
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(i) Dtϕ
∗∗(x, vλa

(x)) = λa for every x ∈ Ω,
(ii)

∫
Ω
vλa

(x) dx = a

(iii) vλa
is Hölder continuous in Ω+

λa
∪ Ω−λa

,
(iv) vλa(x) < α(x) for all x ∈ Ω+

λa
, and vλa(x) > β(x) for all x ∈ Ω−λa

,
(v) in Ω=

λa
either vλa ≡ α or vλa ≡ β or

vλa(x) =
{
α(x) if x ∈

⋃
1≤j≤mBρj

(yj),
β(x) if x ∈ Ω=

λa
\

⋃
1≤j≤mBρj (yj),

(5.4)

with Bρj (yj) ⊂⊂ intΩ=
λa

, j = 1, ...,m, such that Bρi(yi) ∩ Bρj (yj) = ∅, if
i 6= j.

Moreover, vλa is a solution to (4.1).
Proof. Let ψ : Ω× (0,+∞) → [0,+∞) be defined as

ψ(x, t) :=

 ϕ(x, t) if 0 < t ≤ α(x) , x ∈ Ω,
ϕ(x, t+ β(x)− α(x))−
−ϕ(x, β(x)) + ϕ(x, α(x)) if t > α(x) , x ∈ Ω.

(5.5)

It holds true that ψ is a continuous function, differentiable with respect to the last
variable, satisfying (H1)–(H4) in section 3, with possibly different constants. By
Proposition 3.5 for every λ > λ0, there exists uλ such that uλ ∈ C0,γ(Ω) for some
0 < γ ≤ 1, inf uλ > 0 and

Dtψ(x, uλ(x)) = λ, ∀x ∈ Ω.(5.6)

Moreover, see (4.6) and (4.8)

uλ < α in Ω+
λ , uλ = α in Ω=

λ , uλ > α in Ω−λ .(5.7)

Let Φ : (λ0,+∞) → R be the left-continuous function defined as

Φ(λ) :=
∫

Ω

(
uλ(x) + (β(x)− α(x))χΩ−λ

(x)
)
dx , λ > λ0.

We have three different cases:
1. there exists λa > λ0 such that Φ(λa) = a,
2. there exists λa > λ0 such that Φ(λa) < a = limλ→λ+

a
Φ(λ),

3. there exists λa > λ0 such that Φ(λa) < a < limλ→λ+
a

Φ(λ).
Let us consider the first two cases: since (A1)–(A3) imply (K1)–(K3) then by pro-
ceeding as in Theorem 4.1 there exists vλa

∈ L∞(Ω), inf vλa
> 0, which satisfies (i)

and (ii). Moreover if case 1 holds then vλa
:= uλa

+ (β − α)χ{h<λa}, i.e.

vλa
:= uλa

in Ω+
λa
, vλa

:= α in Ω=
λa
, vλa

:= uλa
+ β − α in Ω−λa

,

if instead case 2 holds then vλa
:= uλa

+ (β − α)χ{h≤λ}, i.e.

vλa
:= uλa

in Ω+
λa
, vλa

:= β in Ω=
λa
, vλa

:= uλa
+ β − α in Ω−λa

,

Therefore, from the Hölder continuity of α and β, (5.6) and (5.7) it follows that vλa

satisfies (iii), (iv) and (v). Moreover, reasoning as in (4.10) we get that vλa
is a

solution to (4.1).
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Suppose the third case holds. We define vλa
as in the proof of Theorem 4.1, but using

Lemma 5.1 instead of Lemma 4.2. Precisely, since∫
Ω=

λa

α(x) dx < κ <

∫
Ω=

λa

β(x) dx,

with

κ := a−
∫

Ω\Ω=
λa

(
uλa

(x) + (β(x)− α(x))χΩ−λa

(x)
)
dx,

then from Lemma 5.1 there exist m balls Bρj (yj) ⊂⊂ intΩ=
λa

, j = 1, ...,m, Bρi(yi) ∩
Bρj

(yj) = ∅ for every i 6= j, such that Θ : intΩ=
λa
→ R,

Θ := α in
⋃

1≤j≤mBρj (yj), Θ := β in int Ω=
λa
\

⋃
1≤j≤mBρj (yj),

satisfies
∫
intΩ=

λa

Θ(x) dx = κ .
Define vλa

as follows:

vλa
(x) :


uλa

(x) if x ∈ Ω+
λa
,

α(x) if x ∈
⋃

1≤j≤mBρj (yj),
β(x) if x ∈ Ω=

λa
\

⋃
1≤j≤mBρj

(yj),
uλa(x) + β(x)− α(x) if x ∈ Ω−λa

.

We have that vλa
∈ L∞(Ω), inf vλa

> 0, and it satisfies (i)–(v). Moreover vλa
is a

solution to (4.1).

6. Nonpolyconvex problems: attainment result in a general setting. In
this section we consider the variational problem

min
{∫

Ω

ϕ(x, detDu(x)) dx : u ∈W 1,N (Ω,RN ), detDu > 0 a.e., u(x) = x on ∂Ω
}
,

(6.1)
where Ω is a bounded open subset of RN with Lipschitz boundary and ϕ : Ω ×
(0,+∞) → [0,+∞) is a nonconvex function with respect to the second variable.
Before stating an attainment result for (6.1), we need some preliminary results.

Lemma 6.1. Let Ω be a bounded open set with Lipschitz boundary and let Ω =
∪m

i=1Ωi, with {Ωi} pairwise disjoint open connected sets with Lipschitz boundary.
Consider αi > 0, i = 1, ...,m, with

∑m
i=1 αi = |Ω|. Then there exists a bi-Lipschitz

homeomorphism u0 : Ω → Ω such that detDu0 ∈ C∞(Ω), infdetDu0 > 0 and

u0(x) = x on ∂Ω, |u0(Ωi)| = αi, i = 1, ...,m.(6.2)

Moreover, u0(Ωi) is an open set of class (L) for every i.
Proof. Fix 0 < δ < min {αi/|Ωi| : i = 1, ..,m}. For every 1 ≤ i ≤ m let ηi ∈

C∞c (Ωi) be such that
∫
Ωi
ηi(x) dx = 1. Define

f(x) = δ +
m∑

i=1

(αi − δ|Ωi|)ηi(x), x ∈ Ω.

Hence, f ∈ C∞(Ω), inf f > 0,
∫
Ωi
f(x) dx = αi for every i, and

∫
Ω
f(x) dx = |Ω|.

From Theorem 2.4 there exists a bi-Lipschitz homeomorphism u0 : Ω → Ω such that

detDu0 = f in Ω, u0(x) = x on ∂Ω.
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Therefore

|u0(Ωi)| =
∫

Ωi

detDu0(x) dx =
∫

Ωi

f(x) dx = αi, i = 1, ...,m;

moreover Lemma 2.3 implies that u0(Ωi) is an open set of class (L) for each i.
Proposition 6.2. Let Ω and Ωi, i = 1, ...,m, be as in Lemma 6.1. Suppose

that gi : Ωi → [c0,+∞), with c0 > 0, i = 1, ...,m, are Hölder continuous functions
satisfying

m∑
i=1

∫
Ωi

gi(x) dx = |Ω|.

Then there exists a Lipschitz continuous function u : Ω → Ω, such that

u(x) = x on ∂Ω, detDu(x) = gi(x) ∀x ∈ Ωi, ∀i = 1, ...,m.(6.3)

Proof. By Lemma 6.1 there exists a bi-Lipschitz homeomorphism u0 : Ω → Ω
such that

u0(x) = x on ∂Ω, |u0(Ωi)| =
∫

Ωi

gi(x) dx,

and u0(Ωi) is of class (L), for each i = 1, ...,m. Moreover f := detDu0 is of class
C∞(Ω) and inf f > 0. Since gi

f ◦ u−1
0 is Hölder continuous in u0(Ωi) and it satisfies∫

u0(Ωi)

gi

f
◦ u−1

0 (y) dy =
∫

Ωi

gi(x) dx = |u0(Ωi)|,

then from Theorem 2.4 there exists a bi-Lipschitz homeomorphism zi : u0(Ωi) →
u0(Ωi) such that {

det Dzi =
gi

f
◦ u−1

0 in u0(Ωi),

zi(y) = y on ∂u0(Ωi),

Thus, ui = zi ◦ u0 is a Lipschitz homeomorphism such that{
det Dui = gi in Ωi,
ui = u0 on ∂Ωi.

Hence, the Lipschitz continuous function u : Ω → Ω such that u(x) = ui(x) for every
x ∈ Ωi, i = 1, ...,m, satisfies (6.3).

We are in position to state an existence result for the nonpolyconvex problem
(6.1). The sets Ω+

λ , Ω−λ and Ω=
λ are defined in (5.3).

Theorem 6.3. Let Ω be a bounded open subset of RN with Lipschitz boundary
and let ϕ : Ω×(0,+∞) → [0,+∞) be a continuous function, differentiable with respect
to the last variable, Dtϕ ∈ C0,δ(Ω×K), 0 < δ ≤ 1, for every compact K ⊂ (0,+∞).
Suppose that (A1)–(A4) hold and assume that, for every λ > λ0, Ω+

λ , Ω−λ and intΩ=
λ

are either empty or connected open sets with Lipschitz boundary. Then the variational
problem (6.1) has a Lipschitz continuous solution.
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Proof. From Theorem 5.2, applied with a = |Ω|, there exist λa > λ0 and a solution
vλa

to (4.1), with inf vλa
> 0. Throughout we write v instead of vλa

.
From Theorem 5.2 v is Hölder continuous in Ω+

λa
∪ Ω−λa

. If intΩ=
λa

is empty we get
the thesis applying Proposition 6.2 with Ω1 = Ω+

λa
, Ω2 = Ω−λa

and replacing g1 and
g2 with the continuous extension of v to Ω+

λa
and to Ω−λa

, respectively.
If int Ω=

λa
is not empty, correspondingly to (v) of Theorem 5.2 we have to consider

three cases.
If v = α in Ω=

λa
the thesis follows by applying Proposition 6.2 with m = 3, choosing

Ω1 = Ω+
λa

, Ω2 = Ω−λa
, Ω3 = int Ω=

λa
and replacing, as above, g1 and g2 with the

continuous extension of v to Ω+
λa

and Ω−λa
, respectively, and g3 with α. Analogously,

we proceed if v = β in Ω=
λa

, but defining g3 = β.
Now suppose that (5.4) holds. In this case the thesis follows by Proposition 6.2
choosing Ω1 = Ω+

λa
, Ω2 = Ω−λa

, Ω3 = intΩ=
λa
\ ∪1≤j≤nBρj

(yj), Ω3+i = Bρi
(yi) for

every i = 1, ..., n and g1 = v, g2 = v, g3 = β, g3+i = α, for every i = 1, ..., n.
With obvious changes in the proof above, it follows:
Theorem 6.4. Let Ω and ϕ be as in Theorem 6.3. Suppose that (A1)–(A4) hold

and assume that for every λ > λ0

Ω+
λ =

h⋃
i=1

Ai , Ω−λ =
k⋃

i=h+1

Ai , intΩ=
λ =

l⋃
i=k+1

Ai ,(6.4)

with Ai either empty or pairwise disjoint open connected sets with Lipschitz boundary.
Then the variational problem (6.1) has a Lipschitz continuous solution.

Remark 6.5. Examples of sets Ω and functions h : Ω → R such that for every
λ ∈ R (6.4) holds with either empty or disjoint open sets {Ai} with Lipschitz boundary
are the following:

(a) Ω is a bounded and convex set and h is strictly convex in Ω and constant on ∂Ω,

(b) Ω = B1(0) and h is a radial function, h(x) = h̃(|x|), with h̃ piecewise monotone,
i.e. there exists 0 = s0 < s1 < ... < sm = 1 such that h̃|[si,si+1] is monotone for all i.

7. Nonpolyconvex problems: some special cases. In this section we con-
sider particular classes of the variational problem (6.1), where Ω is a bounded open
subset of RN with Lipschitz boundary and ϕ : Ω× (0,+∞) → [0,+∞) is a continuous
function satisfying (A1) and (A2). We begin considering the case of functions ϕ such
that h in (A2) is a constant. See [20] and [3] for related results.

Theorem 7.1. Let ϕ : Ω×(0,+∞) → [0,+∞) be a continuous function satisfying
(A1) and (A2), with h constant. If

∫
Ω
α(x) dx ≤ |Ω| ≤

∫
Ω
β(x) dx, then (6.1) has a

Lipschitz continuous solution.
Proof. Consider the auxiliary problem (4.1) with a = |Ω|. If

∫
Ω
α(x) dx is equal

to |Ω| then α solves (4.1). Then from Theorem 2.4 there exists a Lipschitz homeomor-
phism u solution to (2.1) with f = α. Moreover, u is a solution of (6.1). The same
argument works if

∫
Ω
β(x) dx is equal to |Ω|. Of course in this case choose f = β.

Suppose
∫
Ω
α(x) dx < |Ω| <

∫
Ω
β(x) dx. Then using Lemma 5.1 with O = Ω,

we get that a Lipschitz continuous solution u to (4.1) exists, with u ≡ α on pairwise
disjoint balls Bρj

(yj) ⊂⊂ Ω, j = 1, ..., n, and with u ≡ β outside these balls. The
thesis follows by Proposition 6.2 with m = n + 1, Ωj = Bρj (yj) and gj = α if
j = 1, ...,m− 1, and with Ωm = Ω \

⋃n
j=1Bρj (yj), gm = β.
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Theorem 7.2. Let ϕ : Ω× (0,+∞) → [0,+∞) be a continuous function, differ-
entiable with respect to the last variable, Dtϕ ∈ C0,δ(Ω × K), 0 < δ ≤ 1, for every
compact K ⊂ (0,+∞). Suppose that (A1), (A2) with h constant, (A3) and (A4) hold.
If

∫
Ω
α(x) dx > |Ω| or

∫
Ω
β(x) dx < |Ω| then (6.1) has a Lipschitz continuous solu-

tion.
Proof. Let a = |Ω|. From Theorem 5.2 there exist λa > λ0 and vλa

∈ L∞(Ω)
satisfying

vλa(x) 6∈ (α(x), β(x)), Dtϕ
∗∗(x, vλa(x)) = λa,

∫
Ω

vλa(x) dx = |Ω|.(7.1)

(A1), (A2) and (A3) imply h = Dtϕ(x, α(x)) = Dtϕ(x, β(x)) and the definition
of {vλ} (see the proofs of Theorems 4.1 and 5.2) gives that λ < h if and only if
vλ(x) < α(x) for all x, λ > h if and only if vλ(x) > β(x) for all x. Therefore, if∫
Ω
α(x) dx > |Ω|, then λa < h and vλa(x) < α(x). Thus, using the notations in (5.3),

Ω+
λa

= Ω. Analogously, if
∫
Ω
β(x) dx < |Ω| then λa > h and vλa

(x) > β(x), so that
Ω−λa

= Ω. Therefore Theorem 5.2 implies that vλa
is Hölder continuous in Ω. A

Lipschitz continuous solution u to{
detDu = vλa

in Ω,
u(x) = x on ∂Ω ,

solution also to (6.1), exists because of Theorem 2.4.
In Propositions 7.3 and 7.4 we deal with a variant of functionals considered above,

precisely

min
{∫

Ω

Φ(x,detDu(x)) dx : u ∈W 1,N (Ω,RN ), detDu > 0 a.e., u(x) = x on ∂Ω
}
.

(7.2)
with Φ(x, t) = ϕ(x, t) + f(x)t.

Proposition 7.3. Let Ω be a bounded open convex set in RN and let ϕ : Ω ×
(0,+∞) → [0,+∞) satisfy the assumptions of Theorem 7.2, with λ0 = −∞ in (A3).
Suppose that f : RN → (0,+∞) is a strictly convex function, constant on ∂Ω. Then
there exists a Lipschitz solution to (7.2).

Proof. It is easy to see that Φ satisfies the assumptions of Theorem 6.3. Since
Φ∗∗(x, t) = ϕ∗∗(x, t) + f(x)t for every x ∈ Ω, then in (0, α(x)] and in [β(x),+∞)
we have that Φ(x, ·) = Φ∗∗(x, ·). Moreover, for every t ∈ [α(x), β(x)] it holds true
that Φ∗∗(x, t) = H(x)t + q(x), with H(x) := µ + f(x) and the super-level, sub-
level and level sets of H satisfy the assumptions in Theorem 6.3. (A3) implies that
DtΦ(x, t) = Dtϕ(x, t) + f(x) goes to −∞ as t → −∞ and goes to +∞ as t → +∞,
uniformly with respect to x. The thesis easily follows from Theorem 6.3.

From now on, Ω is the unit ball B in RN centered at the origin.
Proposition 7.4. Let ϕ : B × (0,+∞) → [0,+∞) satisfy the assumptions of

Theorem 7.2, with λ0 = −∞ in (A3). Let f ∈ C0,γ([0, 1]), 0 < γ ≤ 1, f(s) > 0 for
every s, f piecewise monotone. Then there exists a Lipschitz continuous solution to
(7.2), with Φ(x, t) = ϕ(x, t) + f(|x|)t.

Proof. Proceeding as in the proof of Proposition 7.3, the thesis easily follows from
Remark 6.5 (b) and from Theorem 6.4 applied to Φ(x, t) = ϕ(x, t) + f(|x|)t.

Now, we deal with one more class of nonpolyconvex functionals, characterized by
an integrand ϕ with radial structure ϕ(x, t) = ϕ̃(|x|, t). Precisely, we deal with the
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variational problem

min
{∫

B

ϕ̃(|x|,detDu(x)) dx : u ∈W 1,N (B,RN ), detDu > 0 a.e., u(x) = x on ∂B

}
,

(7.3)
and ϕ̃ : [0, 1)× (0,+∞) → [0,+∞) is a continuous function.

Theorem 7.5. Let ϕ̃ : [0, 1) × (0,+∞) → [0,+∞) be a continuous function
satisfying the following assumptions:

(i) there exist a, b ∈ L∞(0, 1), b(s) > a(s) > 0 for every s, inf a > 0, such
that ϕ̃(s, ·) and ϕ̃∗∗(s, ·) both concide and are strictly convex in (0, a(s)] and
[b(s),+∞), for all s ∈ [0, 1),

(ii) ϕ̃∗∗(x, ·) is affine in [a(s), b(s)] for all s ∈ [0, 1),
(iii) there exists λ0 ∈ R ∪ {−∞} such that

lim
t→0+

D+
t ϕ̃(s, t) = λ0, lim

t→+∞
D−t ϕ̃(s, t) = +∞, uniformly in s.

Then there exists a Lipschitz solution to (7.3).
Proof. Let us define ϕ(x, t) := ϕ̃(|x|, t) for every x ∈ B. Notice that ϕ∗∗(x, t) =

ϕ̃∗∗(|x|, t) and that assumptions (K1), (K2) and (K3) of Theorem 4.1 holds, with
Ω = ΩA = B, α(x) = a(|x|) and β(x) = b(|x|). Let v ∈ L∞(B), inf v > 0, be the
radial solution of (4.1). It is a known fact (see e.g. [15]) that there exists a bi-Lipschitz
solution u to (2.1) with f = v and Ω = B. Thus, u is a solution to (7.3), too.

Appendix A. Proof of Theorem 2.4. In the following we use the arguments
of the proof of Lemma 1 in [16] and the fact, proved in [18], that if Ω = (0, 1)N and
f is Hölder continuous then there exists a bi-Lipschitz homeomorphism solution to
(2.1). We divide the proof into steps.

Step 1.
Let Ω be a bounded open connected subset of RN of class (L). Thus, there exist m
open sets Ωj such that Ω ⊂ ∪jΩj and m bi-Lipschitz homeomorphisms ψj : Σj → Q,
with Σj = Ω∩Ωj andQ = (0, 1)N , such that detDψj ∈ Lip(Σj) and 1

A < detDψj < A
for some A ≥ 1. Consider a partition of unity {φj}m

j=1 subordinate to such a covering
of Ω: {φj}m

j=1 is a family of smooth and nonnegative functions,
∑

j φj(x) = 1 for
every x ∈ Ω and

suppφj ⊂⊂ Ωj , ∀ j = 1, ...,m.(A.1)

Since Ω = ∪m
j=1Σj and Ω is connected, we can assume that for every k = 2, ...,m

there exists ρ(k) < k such that Σk ∩ Σρ(k) is not empty. Define the matrix (αhk),
1 ≤ h ≤ m, 2 ≤ k ≤ m,

αhk =

 1 ifh = k,
−1 ifh = ρ(k),
0 else.

Each of the m − 1 columns contains exactly one pair +1, −1 so that
∑m

k=2 αhk = 0
for every h.
Define ηk ∈ C∞c (Σk ∩Σρ(k)), such that

∫
Ω
ηk(x) dx = 1. Let g ∈ C0,α(Ω) be such that∫

Ω
g(x) dx = 0. Define the Hölder continuous functions gh : Ω → R, 1 ≤ h ≤ m,

gh := gφh|Ω −
m∑

k=2

λkαhkηk,
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where λ2, ..., λm are real numbers solutions of the following system of m equations

m∑
k=2

λkαhk =
∫

Ω

gφh dx, h = 1, ...,m.(A.2)

Since the rank of (αhk) is m−1 and both
∑m

h=1

∑m
k=2 λkαhk and

∑m
h=1

∫
Ω
gφh dx are

equal to 0, then system (A.2) is uniquely solvable.
We claim that supp gh ⊆ Σh. In fact supp φh|Ω ⊆ Σh and, since αhk 6= 0 if and only
if h = k or h = ρ(k),

suppλkαhkηk ⊂ Σk ∩ Σρ(k) ⊆ Σh,

for every k = 2, ...,m. Moreover, from (A.2) there exists M > 0 depending on Ω,
{φj}j and {ηj}j only, such that sup |gh| ≤M sup |g|.

Step 2.
Let Ω, {Σj}j , {ψj}j , {φj}j , {ηj}j , m and M be as above. Let f in (2.1) be such
that sup |f − 1| < m−1M−1. Define m Hölder continuous functions gh reasoning as
in the previous step, with g replaced by f − 1. For every j = 1, ...,m + 1 define
fj : Ω → (0,+∞),

fj(x) :=
{

1 if j = 1,
1 +

∑j−1
h=1 gh(x) if j > 1.

In particular fm+1 = f . Notice that each fj is a Hölder continuous function and,
since sup |f − 1| < m−1M−1, then inf fj > 0. Fixed j = 1, ...,m we have that

fj+1−fj = 0 in Ω \ Σj ,

∫
Ω

fj(x) dx = |Ω|,
∫

Σj

fj+1(x) dx =
∫

Σj

fj(x) dx.(A.3)

Define f∗j , f
∗
j+1 : Q→ (0,+∞),

f∗j := fj(ψ−1
j )detDψ−1

j , f∗j+1 := fj+1(ψ−1
j )detDψ−1

j ,

so that f∗j , f
∗
j+1 ∈ C0,α(Q) and

∫
Q
f∗j dx =

∫
Q
f∗j+1 dx.

As proved in [18] there exist two bi-Lipschitz homeomorphisms vj , wj : Q → Q solu-
tions to{

det Dvj = f∗j∫
Q

f∗j dx
in Q,

vj(y) = y on ∂Q,
and

{
det Dwj = f∗j+1∫

Q
f∗j dx

in Q,

wj(y) = y on ∂Q,

respectively. Let us consider ϕj : Q→ Q, ϕj(y) := (v−1
j ◦ wj)(y). Then

detDϕj(y) = detDv−1
j (wj(y)) detDwj(y) =

f∗j+1(y)
f∗j (ϕj(y))

, ∀ y ∈ Q

so that

fj((ψ−1
j ◦ϕj)(y)) detDψ−1

j (ϕj(y)) detDϕj(y) = fj+1(ψ−1
j (y)) detDψ−1

j (y), ∀ y ∈ Q.

Using the the invertibility of ψj the equality above implies that

fj(uj(x)) detDuj(x) = fj+1(x), ∀x ∈ Σj ,(A.4)
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where uj : Σj → Σj is the Lipschitz continuous function defined as uj(x) := (ψ−1
j ◦

ϕj ◦ ψj)(x).
Since ϕj(ψj(x)) = ψj(x) for all x ∈ ∂Σj , we have that uj(x) = x, for every x ∈ ∂Σj .
Then ũj : Ω → R, j = 1, ...,m,

ũj(x) :=
{
uj(x) if x ∈ Σj ,
x else,

is Lipschitz continuous and from (A.3) and (A.4)

fj(ũj(x)) detDũj(x) = fj+1(x), ∀x ∈ Ω.

Iterating this argument on j and recalling that f1 = 1 and fm+1 = f , we get that
ũ1 ◦ · · · ◦ ũm is a Lipschitz solution to (2.1).

Step 3.
Now we suppose that f in (2.1) satisfies sup |f − 1| ≥ m−1M−1. There exists c1 > 0
and 0 < t1 < 1 such that

∫
Ω
c1f

t1(x) dx = |Ω| and sup |c1f t1 − 1| < m−1M−1.
Applying the same arguments described in step 2 to g := c1f

t1 − 1, we obtain a
Lipschitz function u1 satisfying (2.1) with f replaced by c1f

t1 . Applying again this
procedure to g := c2f

t2 − c1f t1 , with a suitable choice of c2 and t2 in such a way that
t1 < t2 ≤ 1,

∫
Ω
c2f

t2 dx = |Ω| and sup |c2f t2 − c1f
t1 | < m−1M−1, we get u2 Lipschitz

solution to {
c1f

t1(u2)detDu2 = c2f
t2 in Ω,

u2(x) = x on ∂Ω.

Hence, u1 ◦ u2 solves (2.1) with f replaced by c2f
t2 . It can be proved that the

exponents {ti} can be chosen such that in finitely many steps, say n, we get tn = 1.
The existence of a Lipschitz continuous solution to (2.1) follows.
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