EXISTENCE OF MINIMIZERS FOR POLYCONVEX AND NONPOLYCONVEX PROBLEMS

GIOVANNI CUPINI AND ELVIRA MASCOLO *

Abstract. We study the existence of Lipschitz minimizers of integral functionals

$$
\mathcal{I}(u)=\int_{\Omega} \varphi(x, \operatorname{det} D u(x)) d x
$$

where Ω is an open subset of \mathbb{R}^{N} with Lipschitz boundary, $\varphi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ is a continuous function and $u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right), u(x)=x$ on $\partial \Omega$. We consider both the cases of φ convex and nonconvex with respect to the last variable. The attainment results are obtained passing through the minimization of an auxiliary functional and the solution of a prescribed jacobian equation.

Key words. nonpolyconvex functional, existence of minimizers, Lipschitz regularity, prescribed jacobian equation

AMS subject classifications. 49J10, 35J60

1. Introduction. In this paper we consider integral functionals

$$
\begin{equation*}
\mathcal{I}(u)=\int_{\Omega} \varphi(x, \operatorname{det} D u(x)) d x \tag{1.1}
\end{equation*}
$$

where Ω is a bounded open subset of \mathbb{R}^{N} with a Lipschitz boundary, $N \geq 2, \varphi$: $\Omega \times(0,+\infty) \rightarrow[0,+\infty)$ is a continuous function and $u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right)$.

We aim at proving the existence of Lipschitz solutions to the variational problem

$$
\begin{equation*}
\min \left\{\mathcal{I}(u): u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right), \operatorname{det} D u>0 \text { a.e., } u(x)=x \text { on } \partial \Omega\right\} \tag{1.2}
\end{equation*}
$$

Notice that even if a growth condition from below of the type $t^{p} \leq \varphi(x, t)$ (which is common in the theory of Calculus of Variations) is assumed, no coercivity of \mathcal{I} follows in any Sobolev space, preventing from establishing the existence of minimizers via the Direct Method. Nevertheless many problems of this type have a solution and the question of fixing which conditions on φ ensure the existence of solutions is worth of interest, also for its applications in physics, mainly in elasticity theory and in the problem of the equilibrium of gases (see [17], [5], [6] and [12]). For instance, (1.2) is the variational problem corresponding to a non homogeneous elastic material with reference configuration Ω whose stored energy φ is a nonnegative, continuous function depending on the position x in the reference configuration and the size of the deformation of the volume element $\operatorname{det} D u(x)>0$.

It is well known that an important role is played by the convexity of φ with respect to the last variable: when φ is convex then \mathcal{I} is said to be a polyconvex functional, if not then \mathcal{I} is nonpolyconvex. The polyconvex case $\varphi=\varphi(t)$ has been studied by Dacorogna [5] and the nonpolyconvex case by Mascolo-Schianchi [14] and Cellina-Zagatti [4].

In order to solve (1.2) our strategy is the following: the first step is to look for solutions to the following variational problem (from now referred to as the auxiliary problem)

$$
\begin{equation*}
\min \left\{\mathcal{J}(v)=\int_{\Omega} \varphi(x, v(x)) d x: v \in L^{1}(\Omega), v>0 \text { a.e., } \int_{\Omega} v(x) d x=|\Omega|\right\} \tag{1.3}
\end{equation*}
$$

[^0]where $|\Omega|$ stands for the N-dimensional Lebesgue measure of Ω. Then, if v is a solution to (1.3), the second step is to solve in $W^{1, N}(\Omega)$ the boundary value problem
\[

$$
\begin{cases}\operatorname{det} D u(x)=v(x) & \text { for a.e. } x \text { in } \Omega, \tag{1.4}\\ u(x)=x & \text { on } \partial \Omega .\end{cases}
$$
\]

A solution u to (1.4) is a solution to (1.2), too. In fact, if $w \in W^{1, N}(\Omega), w(x)=x$, on $\partial \Omega$, then $\operatorname{det} D w \in L^{1}(\Omega)$ and $\int_{\Omega} \operatorname{det} D w(x) d x=|\Omega|$; therefore if $\operatorname{det} D w>0$ a.e. then

$$
\mathcal{I}(u)=\mathcal{J}(v) \leq \mathcal{J}(\operatorname{det} D w)=\mathcal{I}(w)
$$

Following the above scheme, Mascolo in [13] proves the existence of minimizers of (1.2) for smooth domains Ω and $\varphi \in C^{2}(\bar{\Omega} \times(0,+\infty))$ strictly convex in the last variable.

As far as problem (1.3) is concerned, Ekeland and Temam in [8] prove a relaxation result and Ball and Knowles in [1] obtain an attainment result with the tool of the Young measures, see also Friesecke [10] for related results. The boundary value problem (1.4) may have no solution unless v is sufficiently regular. For instance, the simple continuity of v is not a sufficient condition to get Lipschitz solutions, see the counterexamples independently given by Burago and Kleiner [2] and by McMullen [15]. Thus, also the regularity properties of minimizers of the auxiliary problem have to be studied. The pioneering papers on (1.4) are due to Moser [16] and DacorognaMoser [7]. In particular in [7] the authors prove that if v is in $C^{k, \alpha}(\bar{\Omega}), k \geq 0$, and $\partial \Omega \in C^{k+3, \alpha}$, then there exists a diffemorphism of class $C^{k+1, \alpha}(\bar{\Omega})$ solution to (1.4). Later results are due to Rivière and Ye, who prove in [18], Theorem 4, the existence of a bi-Lipschitz homeomorphism u solution to (1.4) under less restrictive assumptions on Ω, with v satisfying a Dini-type continuity property. In [19] Ye proves existence results in the framework of the Sobolev spaces.

The plan of the paper is the following. In section 2 we introduce a class of open sets, invariant under bi-Lipschitz homeomorphisms, which is slightly larger than that of open sets with Lipschitz boundaries, see Definition 2.1. In Theorem 2.4 we state the existence of Lipschitz solutions to (1.4) with Ω in this class of open sets and Hölder continuous datum v. It is a variant of the above cited Theorem 4 in [18] and in Appendix we give the details of the proof. In section 3 we deal with polyconvex functionals. We consider the class of functions φ strictly convex in the last variable satisfying, as a substitute for the growth conditions,

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} D_{t} \varphi(x, t)=\lambda_{0} \quad \text { with } \lambda_{0} \in \mathbb{R} \cup\{-\infty\}, \quad \lim _{t \rightarrow+\infty} D_{t} \varphi(x, t)=+\infty \tag{1.5}
\end{equation*}
$$

uniformly with respect to x. In Proposition 3.1 we prove that a unique solution v to (1.3) exists and that v is in $L^{\infty}(\Omega)$. In Proposition 3.5, under more regularity assumptions on φ, we prove that v is Hölder continuous. Therefore, the Lipschitz solution u to (1.4), which exists by Theorem 2.4, is a minimizer of (1.2), see Theorem 3.6. In section 4 we deal with a function φ nonconvex with respect to t, satisfying (1.5). Denoting $\varphi^{* *}$ the convex envelope of φ with respect to t, we assume that there exist $\alpha, \beta \in L^{\infty}(\Omega), \beta(x)>\alpha(x), \inf \alpha>0$, such that for every $x \in \Omega$

$$
t \mapsto \varphi^{* *}(x, t) \text { is affine in }[\alpha(x), \beta(x)]
$$

and

$$
\varphi(x, \cdot) \equiv \varphi^{* *}(x, \cdot) \quad \text { and } \quad \varphi(x, \cdot) \text { is strictly convex } \quad \text { in }(0, \alpha(x)] \text { and }[\beta(x),+\infty)
$$

Under these assumptions in Theorem 4.1 we prove the existence of a bounded solution v to the auxiliary problem (1.3). In section 5 under regularity assumptions on φ we get that v is piecewise Hölder continuous, see Theorem 5.2. In section 6 first we prove that if in (1.4) the datum v is piecewise Hölder continuous there exists a Lipschitz solution, see Proposition 6.2. Then, solving (1.4) with v the piecewise Hölder continuous solution to the auxiliary problem, in Theorems 6.3 and 6.4 we get a Lipschitz continuous minimizer of functional (1.1). In section 7 we consider special classes of nonpolyconvex functionals. First we consider the class of functionals with a nonconvex φ satisfying $\varphi(x, \alpha(x))=\varphi(x, \beta(x))=0$. This class has been considered by Zagatti [20] (see also Celada-Perrotta [3] for the case $\varphi(x, u, t)$) with the assumption $\int_{\Omega} \alpha(x) d x<|\Omega|<\int_{\Omega} \beta(x) d x$. In [20] and [3] the attainment result is proved using different arguments, as the Baire category method and the convex integration method, respectively. Theorems 7.1 and 7.2 are attainment results including the cases $\int_{\Omega} \alpha d x \geq|\Omega|$ and $\int_{\Omega} \beta(x) d x \leq|\Omega|$. Theorem 7.4 deals with a perturbation of these functionals, see problem (7.2). We conclude the section considering functionals with φ satisfying the structure condition $\varphi(x, t)=\tilde{\varphi}(|x|, t)$. In this case the existence of bounded radial solutions to (1.3) directly implies the existence of Lipschitz solutions to (1.4).
2. Notations and preliminary results. In the following if Ω is a measurable subset of \mathbb{R}^{N} then $|\Omega|$ stands for its N-dimensional Lebesgue measure. We write Q in place of $(0,1)^{N}$ and $B_{r}(x)$ denotes the ball in \mathbb{R}^{N} with center at x and radius r. If $\varphi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ then $\varphi^{* *}$ is the convex envelope of φ with respect to the second variable, i.e. $t \mapsto \varphi^{* *}(x, t)$ is the greatest convex function lower than $t \mapsto \varphi(x, t)$. For the sake of simplicity we write $\varphi(x, \cdot)$ instead of $t \mapsto \varphi(x, t)$,

$$
D_{t}^{-} \varphi(x, s):=\lim _{t \rightarrow s^{-}} \frac{\varphi(x, t)-\varphi(x, s)}{t-s}, \quad D_{t}^{+} \varphi(x, s):=\lim _{t \rightarrow s^{+}} \frac{\varphi(x, t)-\varphi(x, s)}{t-s}
$$

and $\partial \varphi(x, s):=\{d \in \mathbb{R}: \varphi(x, t) \geq \varphi(x, s)+d(t-s)$ for every $t \in(0,+\infty)\}$.
We define a class of bounded open subsets of \mathbb{R}^{N}.
Definition 2.1. We say that a bounded open set Ω of \mathbb{R}^{N} is of class (L) if $\bar{\Omega}$ has a covering of finitely many open sets Ω_{j} such that for every j there exists a bi-Lipschitz homeomorphism $\psi_{j}: \overline{\Omega_{j} \cap \Omega} \rightarrow \bar{Q}$, satisfying
(a) $\psi_{j}\left(\bar{\Omega}_{j} \cap \partial \Omega\right)=\{0\} \times[0,1]^{N-1}$, whenever $\bar{\Omega}_{j} \cap \partial \Omega$ is not empty,
(b) $\operatorname{det} D \psi_{j}$ is Lipschitz continuous and there exists $A \geq 1$ such that $\frac{1}{A} \leq \operatorname{det} D \psi_{j} \leq$ A.
The above definition describes a larger class than that of open sets with Lipschitz boundary, i.e. with the boundary which locally is the graph of a Lipschitz function. This result can be proved in a similar way as Proposition A. 1 in [7].

Lemma 2.2. If a bounded open set Ω of \mathbb{R}^{N} has a Lipschitz boundary then it is of class (L).

An easy consequence of the chain rule for Lipschitz functions is that Definition 2.1 is invariant under bi-Lipschitz homeomorphisms.

Lemma 2.3. Let $u_{0}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a bi-Lipschitz homeomorphism, with $\operatorname{det} D u_{0}$ Lipschitz continuous, $\frac{1}{A} \leq \operatorname{det} D u_{0} \leq A$ for some A. If Ω is of class (L) then $u_{0}(\Omega)$ is of class (L), too.
On the contrary, there are examples of bounded open sets of \mathbb{R}^{N} with Lipschitz boundary which are mapped by a bi-Lipschitz homeomorphism $u: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ onto sets with a not (Lipschitz) continuous boundary, see e.g. [11], p.8-9. Therefore, the converse of Lemma 2.2 is not true.

Now, we state an existence result of Lipschitz solutions to

$$
\begin{cases}\operatorname{det} D u=f & \text { in } \Omega \tag{2.1}\\ u(x)=x & \text { on } \partial \Omega\end{cases}
$$

with f Hölder continuous.
THEOREM 2.4. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded connected open set of class (L). Let f be a Hölder continuous function, $\inf f>0, \int_{\Omega} f(x) d x=|\Omega|$. Then there exists a bi-Lipschitz homeomorphism $u: \bar{\Omega} \rightarrow \bar{\Omega}$ solution to (2.1).

A similar result is proved in [18], Theorem 4, with a weaker assumption on v, which is assumed to satisfy a Dini-type continuity property, and a regular domain Ω. In [18] the proof is given for cubes only. The proof of Theorem 2.4, based upon the application to open sets of class (L) of the partition method due to Moser [16], is in the Appendix.
3. Polyconvex problems: an attainment result. In this section we consider the variational problem
$\min \left\{\int_{\Omega} \psi(x, \operatorname{det} D u(x)) d x: u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right), \operatorname{det} D u>0\right.$ a.e., $u(x)=x$ on $\left.\partial \Omega\right\}$ (3.1)
where Ω is a bounded open subset of \mathbb{R}^{N} with a Lipschitz boundary and $\psi: \Omega \times$ $(0,+\infty) \rightarrow[0,+\infty)$ is a continuous function.

To get solutions to (3.1), we first consider the following variational problem

$$
\begin{equation*}
\min \left\{\int_{\Omega} \psi(x, v(x)) d x: v \in L^{1}(\Omega), v>0 \text { a.e., } \int_{\Omega} v(x) d x=a\right\}, a>0 \tag{3.2}
\end{equation*}
$$

As far as the problem (3.2) is concerned, the Lipschitz regularity of the boundary of Ω can be dropped.
We prove that there exists a (unique) bounded solution to (3.2) if
(H1) $t \mapsto \psi(x, t)$ is strictly convex for all $x \in \Omega$,
(H2) there exists $\lambda_{0} \in \mathbb{R} \cup\{-\infty\}$ such that

$$
\lim _{t \rightarrow 0^{+}} D_{t}^{+} \psi(x, t)=\lambda_{0}, \quad \lim _{t \rightarrow+\infty} D_{t}^{-} \psi(x, t)=+\infty, \quad \text { uniformly in } x
$$

Proposition 3.1. Assume that $\psi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ is a continuous function satisfying (H1) and (H2). Then for every $\lambda>\lambda_{0}$ there exists a unique $u_{\lambda} \in L^{\infty}(\Omega), \inf u_{\lambda}>0$, such that

$$
\begin{equation*}
\lambda \in \partial \psi\left(x, u_{\lambda}(x)\right) \quad \forall x \in \Omega \tag{3.3}
\end{equation*}
$$

Moreover, there exists $\lambda_{a}>\lambda_{0}$ such that $u_{\lambda_{a}}$ is the unique solution to (3.2).
Proof. We proceed as follows: at first we prove that for every $\lambda>\lambda_{0}$ there exists a function u_{λ} such that (3.3) holds. Then, we prove that u_{λ} is in $L^{\infty}(\Omega), \inf u_{\lambda}>0$, and there exists λ_{a} such that $\int_{\Omega} u_{\lambda_{a}} d x=a$. Thus, it turns out that $u_{\lambda_{a}}$ is a solution to (3.2) and it is unique, because of the strict convexity of the functional.

Step 1. The definition of u_{λ}. Fixed $x \in \Omega$, we define the sets

$$
C(x):=\left\{s \in(0,+\infty): D_{t}^{-} \psi(x, s)<D_{t}^{+} \psi(x, s)\right\}, \quad \Omega_{C}:=\{x \in \Omega: C(x) \neq \emptyset\} .
$$

Notice that $\partial \psi(x, s)=\left[D_{t}^{-} \psi(x, s), D_{t}^{+} \psi(x, s)\right]$ for all $(x, s) \in \Omega \times(0,+\infty)$.

Suppose that $x \in \Omega \backslash \Omega_{C}$. From (H1) and the definition of Ω_{C}, the function $D_{t} \psi(x, \cdot)$: $(0,+\infty) \rightarrow\left(\lambda_{0},+\infty\right)$ is well defined, continuous and strictly increasing. Moreover, it is a surjective function, because of (H2). Let $u(x, \cdot)$ be its inverse function, i.e. $u(x, \cdot):\left(\lambda_{0},+\infty\right) \rightarrow(0,+\infty)$ is such that $u(x, \lambda)$ (from now on denoted by $u_{\lambda}(x)$) is the unique positive number such that $\lambda=D_{t} \psi\left(x, u_{\lambda}(x)\right) . u(x, \cdot)$ is a well defined, strictly increasing and continuous function.
Now let us consider $x \in \Omega_{C}$. From (H1), $C(x)$ is (at most) a countable set, so that we denote $C(x)=\left\{t_{n}(x)\right\}_{n \in J(x)}$, where $J(x) \subseteq \mathbb{N}$. As in the above case, if $\lambda \notin \cup_{n \in J(x)} \partial \psi\left(x, t_{n}(x)\right)$ we define $u_{\lambda}(x)$ as the unique positive number such that $D_{t} \psi\left(x, u_{\lambda}(x)\right)=\lambda$. If instead $\lambda \in \partial \psi\left(x, t_{n}(x)\right)$ for some $n \in J(x)$, then we set $u_{\lambda}(x)=t_{n}(x)$. Notice that if $u_{\lambda}(x)$ is chosen greater (less) than $t_{n}(x)$ then $\lambda<$ $D_{t}^{-} \psi\left(x, u_{\lambda}(x)\right)\left(\lambda>D_{t}^{+} \psi\left(x, u_{\lambda}(x)\right)\right)$. It is easy to prove that for each $x \in \Omega_{C}$ the function $u(x, \cdot):\left(\lambda_{0},+\infty\right) \rightarrow(0,+\infty)$ is well defined, increasing and continuous.
Thus, $u_{\lambda}: \Omega \rightarrow(0,+\infty)$ is the unique function satisfying (3.3) and it is measurable, since

$$
\left\{x \in \Omega: u_{\lambda}(x)<t\right\}=\left\{x \in \Omega: D_{t}^{-} \psi(x, t)>\lambda\right\}
$$

and $D_{t}^{-} \psi(x, t)=\sup _{h<0}(\psi(x, t+h)-\psi(x, t)) / h$. By the second limit in (H2) for every $\lambda>\lambda_{0}$ there exists $R>0$ such that $D_{t}^{-} \psi(x, R)>\lambda$ for every $x \in \Omega$, which implies $u_{\lambda}(x)<R$ for every $x \in \Omega$. In fact, if $u_{\lambda}(x) \geq R$ for some x, then by the convexity of ψ with respect to the second variable it would be $D_{t}^{-} \psi(x, R) \leq D_{t}^{-} \psi\left(x, u_{\lambda}(x)\right)$ and by (3.3) we would obtain $D_{t}^{-} \psi(x, R) \leq \lambda$, which is a contradiction. Thus, u_{λ} is in $L^{\infty}(\Omega)$. The first limit in (H2) implies that for each $\lambda>\lambda_{0}$ there exists $c(\lambda)>0$ such that $\sup _{y \in \Omega} D_{t}^{+} \psi(y, t)<\lambda$ for every $t<c(\lambda)$. Therefore it cannot be $u_{\lambda}(x)<c(\lambda)$, because $\lambda \leq D_{t}^{+} \psi\left(x, u_{\lambda}(x)\right)$, so that $\inf u_{\lambda}>0$.
Step 2. The definition of λ_{a}. Define $\Psi:\left(\lambda_{0},+\infty\right) \rightarrow(0,+\infty), \Psi(\lambda):=\int_{\Omega} u_{\lambda}(x) d x$, where $u_{\lambda}(x)=u(x, \lambda)$ is defined as in step 1 . By the monotonicity of u with respect to λ, Ψ is increasing. It holds true that $\lim _{\lambda \rightarrow \lambda_{0}^{+}} u_{\lambda}(x)=0$. In fact, suppose that $\lim _{\lambda \rightarrow \lambda_{0}^{+}} u_{\lambda}(x)=\delta(x)>0$. By (H1), the first limit in (H2) and (3.3) we get

$$
\lambda_{0}<D_{t}^{-} \psi(x, \delta(x)) \leq D_{t}^{-} \psi\left(x, u_{\lambda}(x)\right) \leq \lambda
$$

Therefore, letting λ go to λ_{0}^{+}we get a contradiction. Analogously it can be proved that $\lim _{\lambda \rightarrow+\infty} u_{\lambda}(x)=+\infty$. Hence,

$$
\begin{equation*}
\lim _{\lambda \rightarrow \lambda_{0}^{+}} \Psi(\lambda)=0, \quad \lim _{\lambda \rightarrow+\infty} \Psi(\lambda)=+\infty \tag{3.4}
\end{equation*}
$$

From the previous step $\lambda \mapsto u_{\lambda}(x)$ is continuous and increasing for all x and $u_{\lambda} \in$ $L^{\infty}(\Omega)$ for all λ, therefore Ψ is a continuous function. Thus, there exists $\lambda_{a}>\lambda_{0}$ such that $\Psi\left(\lambda_{a}\right)=a$. We claim that $u_{\lambda_{a}}$ is a solution to (3.2). In fact, from (H1) and (3.3) for every $w \in L^{1}(\Omega)$ such that $w>0$ and $\int_{\Omega} w(x) d x=a$, we have that

$$
\psi(x, w(x)) \geq \psi\left(x, u_{\lambda_{a}}(x)\right)+\lambda_{a}\left(w(x)-u_{\lambda_{a}}(x)\right) \quad \forall x \in \Omega .
$$

Thus,
$\int_{\Omega} \psi(x, w(x)) d x \geq \int_{\Omega} \psi\left(x, u_{\lambda_{a}}(x)\right) d x+\lambda_{a} \int_{\Omega}\left(w(x)-u_{\lambda_{a}}(x)\right) d x=\int_{\Omega} \psi\left(x, u_{\lambda_{a}}(x)\right) d x$.

REmark 3.2. The growth conditions

$$
\lim _{t \rightarrow 0^{+}} \inf _{y \in \Omega} \psi(y, t)=+\infty, \quad \lim _{t \rightarrow+\infty} \inf _{y \in \Omega} \frac{\psi(y, t)}{t}=+\infty
$$

imply (H2). If the first limit in (H2) is not uniform with respect to x, then may be $\inf u_{\lambda}=0$. Moreover, the proof of Proposition 3.1 works also if we replace $\lim _{t \rightarrow+\infty} D_{t}^{-} \psi(x, t)=+\infty$ with the more general

$$
\lim _{t \rightarrow+\infty} D_{t}^{-} \psi(x, t)=\lambda_{\infty}, \quad \lambda_{\infty} \in \mathbb{R} \cup\{+\infty\}
$$

It is easy to prove the following refinement of Proposition 3.1.
Proposition 3.3. Let $\psi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, differentiable with respect to the last variable, $D_{t} \psi \in C(\Omega \times(0,+\infty))$. If (H1) and (H2) hold then the functions u_{λ} in Proposition 3.1 are continuous for every $\lambda>\lambda_{0}$.

Proof. For every $\lambda>\lambda_{0}$ let $u_{\lambda} \in L^{\infty}(\Omega)$ be as in Proposition 3.1. u_{λ} is lower semicontinuous. In fact, if

$$
\begin{equation*}
\liminf _{x \rightarrow x_{0}} u_{\lambda}(x)<\alpha<u_{\lambda}\left(x_{0}\right) \tag{3.5}
\end{equation*}
$$

then (H1) and (3.3) imply $D_{t} \psi\left(x_{0}, \alpha\right)<\lambda$. By continuity of $D_{t} \psi$ there exists $\delta>0$ such that $D_{t} \psi(x, \alpha)<\lambda$ for every $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. Then, from (3.3) again we have that $D_{t} \psi(x, \alpha)<D_{t} \psi\left(x, u_{\lambda}(x)\right)$ for every $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$, which implies $\alpha<u_{\lambda}(x)$, in contradiction with (3.5). Analogously the upper semicontinuity of u_{λ} can be proved.

To get Hölder continuous solutions to (3.2) we require more regularity on ψ :
(H3) there exists $0<\sigma \leq 1$ such that for every compact $K \subset(0,+\infty)$ and for every $t \in K$ the function $x \mapsto D_{t} \psi(x, t)$ is of class $C^{0, \sigma}(\Omega)$, with $\left[D_{t} \psi(\cdot, t)\right]_{0, \sigma} \leq k_{K}$,
(H4) for every $m>0$ there exists $c_{m}>0$ such that

$$
\psi(x, t) \geq \psi(x, s)+D_{t} \psi(x, s)(t-s)+c_{m}|t-s|^{2+\varepsilon}
$$

for every $t>s \geq m$, for every $x \in \Omega$ and some $\varepsilon \geq 0$.
Remark 3.4. Assumption (H4) is equivalent to assume that for every $m>0$ there exists $\tilde{c}_{m}>0$ such that

$$
\begin{equation*}
D_{t} \psi(x, t)-D_{t} \psi(x, s) \geq \tilde{c}_{m}|t-s|^{1+\varepsilon} \quad \forall t>s \geq m, \quad \forall x \in \Omega \tag{3.6}
\end{equation*}
$$

Roughly speaking, if $\psi \in C^{2}$ satisfies (H4), then $D_{t t} \psi$ may vanish provided that a suitable growth near the zeros is satisfied, see (3.a) below.
Notice that if ψ_{0} satisfies (H4) and $\psi_{1}=\psi_{1}(x, t)$ is such that $\psi_{1}(x, \cdot)$ is convex and C^{1}, then $\psi=\psi_{0}+\psi_{1}$ satisfies (H4), too. Examples of functions ψ_{0} satisfying (H4) are the following:
(1) $\psi_{0}(t):=\left(1+t^{2}\right)^{p / 2}, p \geq 2$. See [9] for details.
(2) $\psi_{0}(x, t):=|t-a(x)|^{p}$, with $a: \Omega \rightarrow \mathbb{R}$ and $p \geq 2$,
(3) $\psi_{0}: \bar{\Omega} \times(0,+\infty) \rightarrow[0,+\infty)$ of class C^{2}, strictly convex with respect to t, such that for every x there exists at most finitely many positive numbers $\left\{s_{i}(x)\right\}$, such that $D_{t t} \psi_{0}\left(x, s_{i}(x)\right)=0$ and the following two hold:
(a) there exist $\varepsilon, c>0$ such that $D_{t t} \psi_{0}(x, t) \geq c\left|t-s_{i}(x)\right|^{\varepsilon}$, for every t in a neighborhood of $s_{i}(x)$,
(b) there exists $M>0$ such that $\inf \left\{D_{t t} \psi_{0}(x, t):(x, t) \in \Omega \times[M,+\infty)\right\}>0$.

Proposition 3.5. Let $\psi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, differentiable with respect to the last variable, satisfying (H1)-(H4). Then for each $\lambda>\lambda_{0}$, the function u_{λ} in Proposition 3.1 is in $C^{0, \sigma /(1+\varepsilon)}(\Omega)$. In particular, for every $a>0$ the unique solution $u_{\lambda_{a}}$ to (3.2) is Hölder continuous.

Proof. Fix λ and let u_{λ}, from now on referred to as u, be the correspondent function as described in Proposition 3.1. From the strict convexity of ψ with respect to the last variable and since $\lambda=D_{t} \psi(x, u(x))$ for every $x \in \Omega$ it is easy to check that u is γ-Hölder continuous with Hölder constant $[u]_{\gamma}$ if and only if

$$
\begin{equation*}
D_{t} \psi\left(y, u(x)+[u]_{0, \gamma}|x-y|^{\gamma}\right)-D_{t} \psi(x, u(x)) \geq 0, \quad \forall x, y \in \Omega \tag{3.7}
\end{equation*}
$$

Fix $x, y \in \Omega$. By (H4) and (3.6) there exist $\varepsilon \geq 0$ and $\tilde{c}>0$ such that

$$
\begin{equation*}
D_{t} \psi(x, t)-D_{t} \psi(x, s) \geq \tilde{c}(t-s)^{1+\varepsilon} \quad \forall t>s \geq \inf u>0, \quad \forall x \in \Omega \tag{3.8}
\end{equation*}
$$

Consider the compact interval $K=\left[\inf u,\|u\|_{\infty}\right]$ and let s and t be equal to $u(x)$ and $u(x)+\left(\frac{k}{\tilde{c}}|x-y|^{\sigma}\right)^{1 /(1+\varepsilon)}$, respectively, with σ and k_{K} as in (H3). Using (3.8) and (H3) to estimate $D_{t} \psi(y, t)-D_{t} \psi(y, s)$ and $D_{t} \psi(y, s)-D_{t} \psi(x, s)$, respectively, we get

$$
D_{t} \psi(y, t)-D_{t} \psi(x, s)=D_{t} \psi(y, t)-D_{t} \psi(y, s)+D_{t} \psi(y, s)-D_{t} \psi(x, s) \geq 0
$$

Then u is γ-Hölder continuous, with $\gamma=\frac{\sigma}{1+\varepsilon}$.
Thus, fixed $a>0$, the solution $u_{\lambda_{a}}$ to (3.2), that exists by Proposition 3.1, is Hölder continuous.

Now we are ready to state an existence result of Lipschitz solutions to the polyconvex problem (3.1).

Theorem 3.6. Suppose that Ω is a bounded open subset of \mathbb{R}^{N} with Lipschitz boundary and let $\psi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, differentiable with respect to the last variable, satisfying (H1)-(H4). Then there exists a Lipschitz continuous solution to (3.1).

Proof. Set $a=|\Omega|$ and consider the variational problem (3.2). From Propositions 3.1 and 3.5 such a problem has a (unique) solution $u_{\lambda_{a}} \in C^{0, \gamma}(\Omega), \gamma>0$, and $\inf u_{\lambda_{a}}>0$. Hence, from Theorem 2.4 there exists a bi-Lipschitz homeomorphism u solving

$$
\begin{cases}\operatorname{det} D u=u_{\lambda_{a}} & \text { in } \Omega \\ u(x)=x & \text { on } \partial \Omega\end{cases}
$$

and u is a solution to (3.1), too.
4. Nonpolyconvex problems: attainment result for the auxiliary problem. In this section we consider the variational problem

$$
\begin{equation*}
\min \left\{\int_{\Omega} \varphi(x, v(x)) d x: v \in L^{1}(\Omega), v>0 \text { a.e., } \int_{\Omega} v(x) d x=a\right\}, a>0 \tag{4.1}
\end{equation*}
$$

where Ω is a bounded open subset of $\mathbb{R}^{N}, \varphi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ is a continuous function, nonconvex with respect to the last variable t.
Let $\varphi^{* *}$ be the convex envelope of φ with respect to the second variable and define

$$
\Omega_{A}:=\{x \in \Omega: t \rightarrow \varphi(x, t) \text { is not strictly convex }\} .
$$

We assume that the following assumptions hold:
(K1) Ω_{A} is a (not empty) measurable set and there exist $\alpha, \beta \in L^{\infty}\left(\Omega_{A}\right), \beta(x)>$ $\alpha(x)$ for all $x, \inf \alpha>0$, such that $\varphi(x, \cdot)$ and $\varphi^{* *}(x, \cdot)$ both coincide and are strictly convex in $(0, \alpha(x)]$ and $[\beta(x),+\infty)$, for every $x \in \Omega_{A}$,
$(\mathrm{K} 2) \varphi^{* *}(x, \cdot)$ is affine in $[\alpha(x), \beta(x)]$ for all $x \in \Omega_{A}$, i.e. for every $\alpha(x) \leq t \leq \beta(x)$

$$
\varphi^{* *}(x, t)=h(x) t+q(x), \quad \text { with } \quad h(x)=\frac{\varphi(x, \beta(x))-\varphi(x, \alpha(x))}{\beta(x)-\alpha(x)}
$$

(K3) there exists $\lambda_{0} \in \mathbb{R} \cup\{-\infty\}$ such that

$$
\lim _{t \rightarrow 0^{+}} D_{t}^{+} \varphi(x, t)=\lambda_{0}, \quad \lim _{t \rightarrow+\infty} D_{t}^{-} \varphi(x, t)=+\infty, \quad \text { uniformly in } x
$$

Theorem 4.1. Assume (K1), (K2) and (K3). Then there exist $\lambda_{a}>\lambda_{0}$ and $v_{\lambda_{a}} \in L^{\infty}(\Omega), \inf v_{\lambda_{a}}>0$, such that
(i) $v_{\lambda_{a}}(x) \notin(\alpha(x), \beta(x))$ for every $x \in \Omega_{A}$,
(ii) $\lambda_{a} \in \partial \varphi^{* *}\left(x, v_{\lambda_{a}}(x)\right)$ for every $x \in \Omega$,
(iii) $\int_{\Omega} v_{\lambda_{a}}(x) d x=a$.

In particular, $v_{\lambda_{a}}$ is a solution to (4.1). Moreover, if $\Omega=B_{1}(0)$ and $\varphi(x, t)=\tilde{\varphi}(|x|, t)$ then $v_{\lambda_{a}}$ is a radial function.

We postpone the proof of Theorem 4.1 to the following lemma.
Lemma 4.2. Let O be a bounded measurable subset of \mathbb{R}^{N}. Let $\alpha, \beta \in L^{1}(O)$ be such that $\alpha(x) \leq \beta(x)$ for a.e. x and suppose

$$
\begin{equation*}
\int_{O} \alpha(x) d x<\kappa<\int_{O} \beta(x) d x \tag{4.2}
\end{equation*}
$$

Then there exists $r>0$ such that $\Theta: O \rightarrow \mathbb{R}, \Theta(x):=\alpha(x)$ if $x \in O \cap B_{r}(0)$ and $\Theta(x):=\beta(x)$ else, satisfying $\int_{O} \Theta(x) d x=\kappa$.

Proof. Let R be such that $O \subset B_{R}(0)$. Consider the functions $\theta_{\rho}: O \rightarrow \mathbb{R}$, $0 \leq \rho \leq R$, defined as follows: $\theta_{0}:=\beta$ and if $\rho \neq 0$ then $\theta_{\rho}(x):=\alpha(x)$ if $x \in O \cap B_{r}(0)$ and $\theta_{\rho}(x):=\beta(x)$ else. The continuity of $\rho \rightarrow \int_{O} \theta_{\rho}(x) d x$ and (4.2) imply that there exists $0<r<R$ such that $\int_{O} \theta_{r}(x) d x=\kappa$.

We are now ready to prove Theorem 4.1.
Proof. [Proof of Theorem 4.1.] We divide the proof into three steps. In step 1 we define a family of functions $v_{\lambda}^{-}: \Omega \rightarrow(0,+\infty), \lambda>\lambda_{0}$, such that

$$
\begin{equation*}
v_{\lambda}^{-}(x) \notin(\alpha(x), \beta(x)) \quad \forall x \in \Omega_{A}, \quad \forall \lambda>\lambda_{0} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \in \partial \varphi^{* *}\left(x, v_{\lambda}^{-}(x)\right) \quad \forall x \in \Omega, \quad \forall \lambda>\lambda_{0} \tag{4.4}
\end{equation*}
$$

In step 2 we define a function $v_{\lambda_{a}}$ satisfying (i), (ii) and (iii). Finally, in step 3 we consider the case $\varphi(x, t)=\tilde{\varphi}(|x|, t)$.
Step 1. The definition of v_{λ}^{-}. Let us define the function $\psi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$, such that $\psi \equiv \varphi$ in $\left(\Omega \backslash \Omega_{A}\right) \times(0,+\infty)$ and

$$
\psi(x, t):= \begin{cases}\varphi(x, t) & \text { if } x \in \Omega_{A}, 0<t \leq \alpha(x) \tag{4.5}\\ \varphi(x, t+\beta(x)-\alpha(x))- & \text { if } x \in \Omega_{A}, t>\alpha(x) .\end{cases}
$$

(K1) and (K2) imply that for every $x \in \Omega_{A}$

$$
\begin{equation*}
D_{t}^{-} \varphi(x, \alpha(x)) \leq h(x)=\frac{\varphi(x, \beta(x))-\varphi(x, \alpha(x))}{\beta(x)-\alpha(x)} \leq D_{t}^{+} \varphi(x, \beta(x)) \tag{4.6}
\end{equation*}
$$

and that ψ satisfies (H1). Moreover, for every $x \notin \Omega_{A}$ and every $t>0$ we have $\partial \psi(x, t)=\partial \varphi(x, t)=\partial \varphi^{* *}(x, t)$. If instead $x \in \Omega_{A}$ then

$$
\partial \psi(x, t)= \begin{cases}\partial \varphi(x, t) & \text { if } 0<t<\alpha(x) \tag{4.7}\\ \partial \varphi^{* *}(x, \alpha(x)) \cup \partial \varphi^{* *}(x, \beta(x)) & \text { if } t=\alpha(x) \\ \partial \varphi(x, t+\beta(x)-\alpha(x)) & \text { if } t>\alpha(x)\end{cases}
$$

We claim that (K3) implies that ψ satisfies (H2).
The first limit in (K3) and the assumption inf $\alpha>0$ imply $\lim _{t \rightarrow 0^{+}} D_{t}^{+} \psi(x, t)=\lambda_{0}$, uniformly. Let us prove that ψ satisfies the property on the second limit in (H2). Since $\alpha, \beta \in L^{\infty}\left(\Omega_{A}\right)$ then for every $x \in \Omega$ and $t>\|\alpha\|_{L^{\infty}\left(\Omega_{A}\right)}$

$$
\begin{aligned}
& \inf _{y \in \Omega} D_{t}^{-} \varphi(y, t) \leq \min \left\{\inf _{y \in \Omega_{A}} D_{t}^{-} \varphi(y, t+\beta(y)-\alpha(y)), \inf _{y \in \Omega \backslash \Omega_{A}} D_{t}^{-} \varphi(y, t)\right\}= \\
= & \inf _{y \in \Omega} D_{t}^{-} \psi(y, t) \leq D_{t}^{-} \psi(x, t) \leq D_{t}^{-} \varphi\left(x, t+\|\beta-\alpha\|_{L^{\infty}\left(\Omega_{A}\right)}\right),
\end{aligned}
$$

so that by (K3) as t goes to $+\infty$ we get

$$
\lim _{t \rightarrow+\infty} \inf _{y \in \Omega} D_{t}^{-} \psi(y, t)=\lim _{t \rightarrow+\infty} D_{t}^{-} \psi(x, t)=+\infty, \quad \forall x \in \Omega
$$

Since ψ satisfies the assumptions of Proposition 3.1 then for every $\lambda>\lambda_{0}$ there exists $u_{\lambda} \in L^{\infty}(\Omega), \inf u_{\lambda}>0$, satisfying (3.3). Moreover, for every $x \in \Omega_{A}$

$$
\begin{align*}
& u_{\lambda}(x)<\alpha(x) \quad \text { if } \quad \lambda<D_{t}^{-} \varphi(x, \alpha(x)), \\
& u_{\lambda}(x)=\alpha(x) \quad \text { if } \quad \lambda \in\left[D_{t}^{-} \varphi(x, \alpha(x)), D_{t}^{+} \varphi(x, \beta(x))\right] \text {, } \tag{4.8}\\
& u_{\lambda}(x)>\alpha(x) \quad \text { if } \quad \lambda>D_{t}^{+} \varphi(x, \beta(x)) \text {. }
\end{align*}
$$

Let us define $v_{\lambda}^{-}: \Omega \rightarrow(0,+\infty)$,

$$
v_{\lambda}^{-}(x):=u_{\lambda}(x)+(\beta(x)-\alpha(x)) \chi_{\left\{y \in \Omega_{A}: h(y)<\lambda\right\}}(x) .
$$

Since $u_{\lambda} \in L^{\infty}(\Omega)$ and $\alpha, \beta \in L^{\infty}\left(\Omega_{A}\right)$, then $v_{\lambda}^{-} \in L^{\infty}(\Omega)$. From (3.3), (4.6), (4.7) and (4.8) if $x \in \Omega_{A}$ the following implications hold:

- if $\lambda<D_{t}^{-} \varphi(x, \alpha(x))$ then $v_{\lambda}^{-}(x)=u_{\lambda}(x)<\alpha(x)$ and $\lambda \in \partial \psi\left(x, u_{\lambda}(x)\right)=$ $\partial \varphi\left(x, v_{\lambda}^{-}(x)\right)$,
- if $\lambda \in\left[D_{t}^{-} \varphi(x, \alpha(x)), h(x)\right]$ then $v_{\lambda}^{-}(x)=u_{\lambda}(x)=\alpha(x)$ and $\lambda \in \partial \varphi^{* *}(x, \alpha(x))$,
- if $\lambda \in\left(h(x), D_{t}^{+} \varphi(x, \beta(x))\right]$ then $v_{\lambda}^{-}(x)=\beta(x)$ and $\lambda \in \partial \varphi^{* *}(x, \beta(x))$,
- if $\lambda>D_{t}^{+} \varphi(x, \beta(x))$ then $v_{\lambda}^{-}(x)=u_{\lambda}(x)+\beta(x)-\alpha(x)>\beta(x)$ and $\lambda \in$ $\partial \psi\left(x, u_{\lambda}(x)\right)=\partial \varphi\left(x, v_{\lambda}^{-}(x)\right)$.
Thus (4.3) holds and

$$
\begin{equation*}
\lambda \in \partial \varphi^{* *}\left(x, v_{\lambda}^{-}(x)\right), \tag{4.9}
\end{equation*}
$$

for every $x \in \Omega_{A}$ and $\lambda>\lambda_{0}$. When $x \notin \Omega_{A}$, the equality $v_{\lambda}^{-}(x)=u_{\lambda}(x)$ and (3.3) imply (4.9). Therefore (4.4) holds true.

Step 2. The definition of λ_{a} and $v_{\lambda_{a}}$. Let us define $\Phi:\left(\lambda_{0},+\infty\right) \rightarrow(0,+\infty)$,

$$
\Phi(\lambda):=\int_{\Omega} v_{\lambda}^{-}(x) d x=\int_{\Omega}\left(u_{\lambda}(x)+(\beta(x)-\alpha(x)) \chi_{\left\{y \in \Omega_{A}: h(y)<\lambda\right\}}(x)\right) d x
$$

As in the proof of (3.4) we have that $\lim _{\lambda \rightarrow \lambda_{0}^{+}} \Phi(\lambda)=0$ and $\lim _{\lambda \rightarrow+\infty} \Phi(\lambda)=+\infty$. For each $\lambda>\lambda_{0}$ define $v_{\lambda}^{+}: \Omega \rightarrow(0,+\infty)$,

$$
v_{\lambda}^{+}(x):=u_{\lambda}(x)+(\beta(x)-\alpha(x)) \chi_{\left\{y \in \Omega_{A}: h(y) \leq \lambda\right\}}(x) .
$$

For every $\mu>\lambda_{0}$

$$
\lim _{\lambda \rightarrow \mu^{-}} \Phi(\lambda)=\Phi(\mu), \quad \lim _{\lambda \rightarrow \mu^{+}} \Phi(\lambda)=\int_{\Omega} v_{\mu}^{+}(x) d x
$$

Thus, Φ is discontinuous at μ if and only if $\left|\left\{y \in \Omega_{A}: h(y)=\mu\right\}\right|>0$.
Only one of the following cases is possible:

1. there exists $\lambda_{a}>\lambda_{0}$ such that $\Phi\left(\lambda_{a}\right)=a$,
2. there exists $\lambda_{a}>\lambda_{0}$ such that $\Phi\left(\lambda_{a}\right)<a=\lim _{\lambda \rightarrow \lambda_{a}^{+}} \Phi(\lambda)$,
3. there exists $\lambda_{a}>\lambda_{0}$ such that $\Phi\left(\lambda_{a}\right)<a<\lim _{\lambda \rightarrow \lambda_{a}^{+}} \Phi(\lambda)$.

Case 1. As proved in step $1, v_{\lambda_{a}}^{-}$satisfies (i), (ii) and $\inf v_{\lambda_{a}}^{-} \geq \inf u_{\lambda_{a}}>0$. Moreover, by definition of λ_{a}, (iii) holds. Thus, define $v_{\lambda_{a}}=v_{\lambda_{a}}^{-}$.
Case 2. As above, $v_{\lambda_{a}}^{-}$satisfies (i), (ii) and $\inf v_{\lambda_{a}}^{-} \geq \inf u_{\lambda_{a}}>0$. It is easy to check that a property analogous to (i) is satisfied by $v_{\lambda_{a}}^{+}$and that $\inf v_{\lambda_{a}}^{+} \geq \inf v_{\lambda_{a}}^{-}>0$. By the very definition of $v_{\lambda_{a}}^{+}$we have also $\int_{\Omega} v_{\lambda_{a}}^{+} d x=a$.
Let us prove that $\lambda_{a} \in \partial \varphi^{* *}\left(x, v_{\lambda_{a}}^{+}(x)\right)$ for every x. If $x \notin \Omega_{A}$ or if $x \in \Omega_{A}$ and $h(x) \neq \lambda_{a}$ then $v_{\lambda_{a}}^{-}(x)=v_{\lambda_{a}}^{+}(x)$ and the above inclusion follows. Suppose that $x \in \Omega_{A}$ and $h(x)=\lambda_{a}$. Then $v_{\lambda_{a}}^{-}(x)=\alpha(x)<\beta(x)=v_{\lambda_{a}}^{+}(x)$ and (K2) implies $\lambda_{a} \in \partial \varphi^{* *}(x, \beta(x))=\partial \varphi^{* *}\left(x, v_{\lambda_{a}}^{+}(x)\right)$.
We have so proved that $\lambda_{a} \in \partial \varphi^{* *}\left(x, v_{\lambda_{a}}^{+}(x)\right)$ for every $x \in \Omega$. Thus, define $v_{\lambda_{a}}:=v_{\lambda_{a}}^{+}$.
Case 3. Define $O:=\left\{x \in \Omega_{A}: \lambda_{a}=h(x)\right\}$ and $\kappa:=a-\int_{\Omega \backslash O} v_{\lambda_{a}}^{-}(x) d x$. The assumption $\Phi\left(\lambda_{a}\right)<a<\lim _{\lambda \rightarrow \lambda_{a}^{+}} \Phi(\lambda)$ implies

$$
\int_{O} \alpha(x) d x=\int_{O} v_{\lambda_{a}}^{-}(x) d x<\kappa<\int_{\Omega} v_{\lambda_{a}}^{+}(x) d x-\int_{\Omega \backslash O} v_{\lambda_{a}}^{-}(x) d x=\int_{O} \beta(x) d x
$$

From Lemma 4.2 there exists $\Theta: O \rightarrow \mathbb{R}, \Theta(x) \in\{\alpha(x), \beta(x)\}$ such that $\int_{O} \Theta(x) d x=$ κ. Define $v_{\lambda_{a}}: \Omega \rightarrow \mathbb{R}, v_{\lambda_{a}}(x)=v_{\lambda_{a}}^{-}(x)$ if $x \notin O$ and $v_{\lambda_{a}}(x)=\Theta(x)$ else.
It is easy to prove that $v_{\lambda_{a}}$ satisfies (i), (ii), (iii) and $\inf v_{\lambda_{a}}>0$.
Since $\varphi \geq \varphi^{* *}$, then for every $v \in L^{1}(\Omega)$, such that $v>0$ a.e. and $\int_{\Omega} v d x=a$, we have that

$$
\begin{align*}
& \int_{\Omega} \varphi(x, v(x)) d x \geq \int_{\Omega} \varphi^{* *}(x, v(x)) d x \geq \tag{4.10}\\
\geq & \int_{\Omega} \varphi^{* *}\left(x, v_{\lambda_{a}}(x)\right) d x+\lambda_{a} \int_{\Omega}\left(v(x)-v_{\lambda_{a}}(x)\right) d x=\int_{\Omega} \varphi\left(x, v_{\lambda_{a}}(x)\right) d x
\end{align*}
$$

Thus, $v_{\lambda_{a}}$ is a solution to (4.1).

Step 3. The case $\varphi(x, t)=\tilde{\varphi}(|x|, t)$. Assume that Ω is the unit ball $B_{1}(0)$ and that φ has the radial structure $\varphi(x, t)=\tilde{\varphi}(|x|, t)$. It is easy to prove that $\varphi^{* *}(x, t)=$ $(\tilde{\varphi})^{* *}(|x|, t)$ and that α, β, h are radial functions. Moreover, the sets $\Omega_{A},\left\{y \in \Omega_{A}\right.$: $h(y)<\lambda\}$ and $\left\{y \in \Omega_{A}: h(y)=\lambda\right\}$ are symmetric sets with respect to the origin. If ψ is defined as in step 1 above, then it immediately follows that $\psi(x, t)=\tilde{\psi}(|x|, t)$. Looking at the first step of the proof of Proposition 3.1, it turns out that u_{λ}, satisfying $\partial \psi\left(x, u_{\lambda}(x)\right)=\lambda$, is a radial function for all λ. All these facts allow us to conclude that whenever the cases 1 or 2 in step 2 hold, i.e. $\Phi\left(\lambda_{a}\right)=a$ or $\Phi\left(\lambda_{a}\right)<a=\lim _{\lambda \rightarrow \lambda_{a}^{+}} \Phi(\lambda)$, respectively, then $v_{\lambda_{a}}$ is a radial function. To prove that $v_{\lambda_{a}}$ is radial in the third case it is sufficient to notice that the sets $O, O \cap B_{r}(0)$ and $O \backslash B_{r}(0)$ are symmetric with respect to the origin and consequently the function Θ is radial.
5. Nonpolyconvex problems: regularity result for the auxiliary problem. In this section we prove a regularity result for solutions to the nonconvex variational problem (4.1). Let Ω be a bounded open subset of \mathbb{R}^{N} and let $\varphi: \Omega \times(0,+\infty) \rightarrow$ $[0,+\infty)$ be a continuous function, differentiable with respect to the last variable, $D_{t} \varphi \in C^{0, \delta}(\Omega \times K), 0<\delta \leq 1$, for every compact K in $(0,+\infty)$, such that
(A1) there exist $\alpha, \beta \in C^{0, \delta}(\Omega), \beta(x)>\alpha(x)$ for every x, $\inf \alpha>0$, such that $\varphi(x, \cdot)$ and $\varphi^{* *}(x, \cdot)$ both coincide and are strictly convex in $(0, \alpha(x)]$ and $[\beta(x),+\infty)$, for every $x \in \Omega$,
(A2) $t \rightarrow \varphi^{* *}(x, t)$ is affine in $[\alpha(x), \beta(x)]$ for every $x \in \Omega$, i.e. for every $\alpha(x) \leq$ $t \leq \beta(x)$

$$
\varphi^{* *}(x, t)=h(x) t+q(x), \quad \text { with } \quad h(x)=\frac{\varphi(x, \beta(x))-\varphi(x, \alpha(x))}{\beta(x)-\alpha(x)} .
$$

Moreover,

$$
|\partial\{x: h(x)=\lambda\}|=0, \quad \forall \lambda \in \mathbb{R}
$$

(A3) there exists $\lambda_{0} \in \mathbb{R} \cup\{-\infty\}$ such that

$$
\lim _{t \rightarrow 0^{+}} D_{t} \varphi(x, t)=\lambda_{0}, \quad \lim _{t \rightarrow+\infty} D_{t} \varphi(x, t)=+\infty, \quad \text { uniformly in } x
$$

(A4) for every $m>0$ there exists $c_{m}>0$ such that

$$
\varphi(x, t) \geq \varphi(x, s)+D_{t} \varphi(x, s)(t-s)+c_{m}|t-s|^{2+\varepsilon}
$$

for every $s, t \geq m$, such that $s<t \leq \alpha(x)$ or $\beta(x) \leq s<t$, for every $x \in \Omega$ and some $\varepsilon \geq 0$.
The following result is in the same spirit of Lemma 4.2.
Lemma 5.1. Let O be an open set in \mathbb{R}^{N}. Let $\alpha, \beta \in L^{1}(O)$ be such that $\alpha(x) \leq$ $\beta(x)$ for a.e. x and suppose that

$$
\begin{equation*}
\int_{O} \alpha(x) d x<\kappa<\int_{O} \beta(x) d x \tag{5.1}
\end{equation*}
$$

Then there exists a finite number of balls $B_{\rho_{j}}\left(y_{j}\right), j=1, \ldots, m$, satisfying
(1) $B_{\rho_{j}}\left(y_{j}\right) \subset \subset O, j=1, \ldots, m$,
(2) $\overline{B_{\rho_{i}}\left(y_{i}\right)} \cap \overline{B_{\rho_{j}}\left(y_{j}\right)}=\emptyset$ for every $i \neq j$,
(3) $\int_{O} \Theta(x) d x=\kappa$,
where $\Theta(x):=\alpha(x)$ if $x \in \cup_{1 \leq j \leq m} B_{\rho_{j}}\left(y_{j}\right)$ and $\Theta(x):=\beta(x)$ else.
Proof. Since O is open, there exist (at most) countably many pairwise disjoint balls $\left\{B_{R_{j}}\left(y_{j}\right)\right\}_{j \in J}$ in O, and a negligible set \mathcal{N} such that $O=\mathcal{N} \cup\left(\bigcup_{j \in J} B_{R_{j}}\left(y_{j}\right)\right)$. Without loss of generality we assume $J=\{1,2, \ldots, m\}$ if $\operatorname{card} J=m \in \mathbb{N}$ and $J=\mathbb{N}$ if J is countable. For every $n \in J$, let us define the function $\theta_{n}: O \rightarrow \mathbb{R}$,

$$
\theta_{n}(x):= \begin{cases}\alpha(x), & \text { if } x \in \bigcup_{1 \leq j \leq n} B_{R_{j}}\left(y_{j}\right) \\ \beta(x), & \text { else }\end{cases}
$$

If J is finite then (5.1) implies $\int_{O} \theta_{m}(x) d x<\kappa$. If $J=\mathbb{N}$, it is easy to check that $\lim _{n \rightarrow+\infty} \int_{O} \theta_{n}(x) d x<\kappa$, thus, there exists $m \in \mathbb{N}$ such that

$$
\int_{O} \theta_{m}(x) d x=\int_{\cup_{1 \leq j \leq m} B_{R_{j}}\left(y_{j}\right)} \alpha(x) d x+\int_{O \backslash \cup_{1 \leq j \leq m} B_{R_{j}}\left(y_{j}\right)} \beta(x) d x<\kappa
$$

Aiming at (1) and (2), we slightly reduce the radius of the previously selected balls $\left\{B_{R_{j}}\left(y_{j}\right)\right\}_{1 \leq j \leq m}$. This can easily be done by noticing that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\cup_{j=1}^{m} B_{R_{j}}\left(y_{j}\right) \backslash B_{R_{j}-\varepsilon}\left(y_{j}\right)}(\beta(x)-\alpha(x)) d x=0 .
$$

Thus there exists $0<\varepsilon<\min \left\{R_{j}: 1 \leq j \leq m\right\}$ such that

$$
\begin{equation*}
\int_{\cup_{1 \leq j \leq m} B_{R_{j}-\varepsilon}\left(y_{j}\right)} \alpha(x) d x+\int_{O \backslash \cup_{1 \leq j \leq m} B_{R_{j}-\varepsilon}\left(y_{j}\right)} \beta(x) d x<\kappa . \tag{5.2}
\end{equation*}
$$

Set $R:=\max \left\{R_{j}-\varepsilon: 1 \leq j \leq m\right\}$ and define $\theta: O \times[0, R] \rightarrow \mathbb{R}, \theta(x, 0):=\beta(x)$ and

$$
\theta(x, \rho):= \begin{cases}\alpha(x) & \text { if } x \in \bigcup_{1 \leq j \leq m}\left(B_{R_{j}-\varepsilon}\left(y_{j}\right) \cap B_{\rho}\left(y_{j}\right)\right) \\ \beta(x) & \text { else },\end{cases}
$$

for every $\rho>0$. From (5.2) we have that

$$
\int_{O} \theta(x, R) d x<\kappa<\int_{O} \theta(x, 0) d x=\int_{O} \beta(x) d x
$$

Since $\rho \rightarrow \int_{O} \theta(x, \rho) d x$ is a continuous function, there exists $\bar{\rho}$ such that $\int_{O} \theta(x, \bar{\rho}) d x=$ κ. The claim of the theorem follows by defining $\Theta(x):=\theta(x, \bar{\rho})$ and $\rho_{j}:=\min \left\{R_{j}-\right.$ $\varepsilon, \bar{\rho}\}, 1 \leq j \leq m$.

Let h be as in (A2). For every $\lambda>\lambda_{0}$ we define

$$
\begin{equation*}
\Omega_{\lambda}^{+}:=\{x: h(x)>\lambda\}, \quad \Omega_{\lambda}^{-}:=\{x: h(x)<\lambda\}, \quad \Omega_{\lambda}^{=}:=\{x: h(x)=\lambda\} . \tag{5.3}
\end{equation*}
$$

Under (A1)-(A4) there exists a piecewise Hölder continuous solution to (4.1).
THEOREM 5.2. Let $\varphi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, differentiable with respect to the last variable, $D_{t} \varphi(x, t)$ in $C^{0, \delta}(\Omega \times K)$ for every compact $K \subset(0,+\infty)$. Suppose that (A1)-(A4) hold. Then, fixed $a>0$ there exist $\lambda_{a}>\lambda_{0}$ and $v_{\lambda_{a}} \in L^{\infty}(\Omega), \inf v_{\lambda_{a}}>0$, satisfying the following properties:
(i) $D_{t} \varphi^{* *}\left(x, v_{\lambda_{a}}(x)\right)=\lambda_{a}$ for every $x \in \Omega$,
(ii) $\int_{\Omega} v_{\lambda_{a}}(x) d x=a$
(iii) $v_{\lambda_{a}}$ is Hölder continuous in $\Omega_{\lambda_{a}}^{+} \cup \Omega_{\lambda_{a}}^{-}$,
(iv) $v_{\lambda_{a}}(x)<\alpha(x)$ for all $x \in \Omega_{\lambda_{a}}^{+}$, and $v_{\lambda_{a}}(x)>\beta(x)$ for all $x \in \Omega_{\lambda_{a}}^{-}$,
(v) in $\Omega_{\bar{\lambda}_{a}}$ either $v_{\lambda_{a}} \equiv \alpha$ or $v_{\lambda_{a}} \equiv \beta$ or

$$
v_{\lambda_{a}}(x)= \begin{cases}\alpha(x) & \text { if } x \in \bigcup_{1 \leq j \leq m} B_{\rho_{j}}\left(y_{j}\right), \tag{5.4}\\ \beta(x) & \text { if } x \in \Omega_{\lambda_{a}}^{=} \backslash \bigcup_{1 \leq j \leq m} B_{\rho_{j}}\left(y_{j}\right),\end{cases}
$$

with $B_{\rho_{j}}\left(y_{j}\right) \subset \subset \operatorname{int} \Omega_{\lambda_{a}}^{\overline{=}}, j=1, \ldots, m$, such that $\overline{B_{\rho_{i}}\left(y_{i}\right)} \cap \overline{B_{\rho_{j}}\left(y_{j}\right)}=\emptyset$, if $i \neq j$.
Moreover, $v_{\lambda_{a}}$ is a solution to (4.1).
Proof. Let $\psi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ be defined as

$$
\psi(x, t):= \begin{cases}\varphi(x, t) & \text { if } \quad 0<t \leq \alpha(x), x \in \Omega \tag{5.5}\\ \varphi(x, t+\beta(x)-\alpha(x))- & \\ -\varphi(x, \beta(x))+\varphi(x, \alpha(x)) & \text { if } t>\alpha(x), x \in \Omega\end{cases}
$$

It holds true that ψ is a continuous function, differentiable with respect to the last variable, satisfying (H1)-(H4) in section 3, with possibly different constants. By Proposition 3.5 for every $\lambda>\lambda_{0}$, there exists u_{λ} such that $u_{\lambda} \in C^{0, \gamma}(\Omega)$ for some $0<\gamma \leq 1, \inf u_{\lambda}>0$ and

$$
\begin{equation*}
D_{t} \psi\left(x, u_{\lambda}(x)\right)=\lambda, \quad \forall x \in \Omega \tag{5.6}
\end{equation*}
$$

Moreover, see (4.6) and (4.8)

$$
\begin{equation*}
u_{\lambda}<\alpha \text { in } \Omega_{\lambda}^{+}, \quad u_{\lambda}=\alpha \text { in } \Omega_{\lambda}^{=}, \quad u_{\lambda}>\alpha \text { in } \Omega_{\lambda}^{-} \tag{5.7}
\end{equation*}
$$

Let $\Phi:\left(\lambda_{0},+\infty\right) \rightarrow \mathbb{R}$ be the left-continuous function defined as

$$
\Phi(\lambda):=\int_{\Omega}\left(u_{\lambda}(x)+(\beta(x)-\alpha(x)) \chi_{\Omega_{\lambda}^{-}}(x)\right) d x, \quad \lambda>\lambda_{0}
$$

We have three different cases:

1. there exists $\lambda_{a}>\lambda_{0}$ such that $\Phi\left(\lambda_{a}\right)=a$,
2. there exists $\lambda_{a}>\lambda_{0}$ such that $\Phi\left(\lambda_{a}\right)<a=\lim _{\lambda \rightarrow \lambda_{a}^{+}} \Phi(\lambda)$,
3. there exists $\lambda_{a}>\lambda_{0}$ such that $\Phi\left(\lambda_{a}\right)<a<\lim _{\lambda \rightarrow \lambda_{a}^{+}} \Phi(\lambda)$.

Let us consider the first two cases: since (A1)-(A3) imply (K1)-(K3) then by proceeding as in Theorem 4.1 there exists $v_{\lambda_{a}} \in L^{\infty}(\Omega), \inf v_{\lambda_{a}}>0$, which satisfies (i) and (ii). Moreover if case 1 holds then $v_{\lambda_{a}}:=u_{\lambda_{a}}+(\beta-\alpha) \chi_{\left\{h<\lambda_{a}\right\}}$, i.e.

$$
v_{\lambda_{a}}:=u_{\lambda_{a}} \text { in } \Omega_{\lambda_{a}}^{+}, \quad v_{\lambda_{a}}:=\alpha \text { in } \Omega_{\lambda_{a}}^{=}, \quad v_{\lambda_{a}}:=u_{\lambda_{a}}+\beta-\alpha \text { in } \Omega_{\lambda_{a}}^{-},
$$

if instead case 2 holds then $v_{\lambda_{a}}:=u_{\lambda_{a}}+(\beta-\alpha) \chi_{\{h \leq \lambda\}}$, i.e.

$$
v_{\lambda_{a}}:=u_{\lambda_{a}} \text { in } \Omega_{\lambda_{a}}^{+}, \quad v_{\lambda_{a}}:=\beta \text { in } \Omega_{\lambda_{a}}^{=}, \quad v_{\lambda_{a}}:=u_{\lambda_{a}}+\beta-\alpha \text { in } \Omega_{\lambda_{a}}^{-},
$$

Therefore, from the Hölder continuity of α and β, (5.6) and (5.7) it follows that $v_{\lambda_{a}}$ satisfies (iii), (iv) and (v). Moreover, reasoning as in (4.10) we get that $v_{\lambda_{a}}$ is a solution to (4.1).

Suppose the third case holds. We define $v_{\lambda_{a}}$ as in the proof of Theorem 4.1, but using Lemma 5.1 instead of Lemma 4.2. Precisely, since

$$
\int_{\Omega_{\bar{\lambda}}^{=}} \alpha(x) d x<\kappa<\int_{\Omega_{\overline{\lambda_{a}}}} \beta(x) d x
$$

with

$$
\kappa:=a-\int_{\Omega \backslash \Omega_{\bar{\lambda}_{a}}}\left(u_{\lambda_{a}}(x)+(\beta(x)-\alpha(x)) \chi_{\Omega_{\lambda_{a}}^{-}}(x)\right) d x
$$

then from Lemma 5.1 there exist m balls $B_{\rho_{j}}\left(y_{j}\right) \subset \subset \operatorname{int} \Omega_{\lambda_{a}}^{=}, j=1, \ldots, m, \overline{B_{\rho_{i}}\left(y_{i}\right)} \cap$ $\overline{B_{\rho_{j}}\left(y_{j}\right)}=\emptyset$ for every $i \neq j$, such that $\Theta: \operatorname{int} \Omega_{\bar{\lambda}_{a}}^{=} \rightarrow \mathbb{R}$,

$$
\Theta:=\alpha \quad \text { in } \bigcup_{1 \leq j \leq m} B_{\rho_{j}}\left(y_{j}\right), \quad \Theta:=\beta \quad \text { in int } \Omega_{\bar{\lambda}_{a}}^{=} \backslash \bigcup_{1 \leq j \leq m} B_{\rho_{j}}\left(y_{j}\right)
$$

satisfies $\int_{\text {int } \Omega_{\bar{\lambda}}}=\Theta(x) d x=\kappa$.
Define $v_{\lambda_{a}}$ as follows:

$$
v_{\lambda_{a}}(x): \begin{cases}u_{\lambda_{a}}(x) & \text { if } x \in \Omega_{\lambda_{a}}^{+}, \\ \alpha(x) & \text { if } x \in \bigcup_{1 \leq j \leq m} B_{\rho_{j}}\left(y_{j}\right), \\ \beta(x) & \text { if } x \in \Omega_{\lambda_{a}}^{=} \backslash \bigcup_{1 \leq j \leq m} B_{\rho_{j}}\left(y_{j}\right), \\ u_{\lambda_{a}}(x)+\beta(x)-\alpha(x) & \text { if } x \in \Omega_{\lambda_{a}}^{\lambda_{a}} .\end{cases}
$$

We have that $v_{\lambda_{a}} \in L^{\infty}(\Omega), \inf v_{\lambda_{a}}>0$, and it satisfies (i)-(v). Moreover $v_{\lambda_{a}}$ is a solution to (4.1).
6. Nonpolyconvex problems: attainment result in a general setting. In this section we consider the variational problem
$\min \left\{\int_{\Omega} \varphi(x, \operatorname{det} D u(x)) d x: u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right)\right.$, $\operatorname{det} D u>0$ a.e., $u(x)=x$ on $\left.\partial \Omega\right\}$, (6.1)
where Ω is a bounded open subset of \mathbb{R}^{N} with Lipschitz boundary and $\varphi: \Omega \times$ $(0,+\infty) \rightarrow[0,+\infty)$ is a nonconvex function with respect to the second variable.
Before stating an attainment result for (6.1), we need some preliminary results.
Lemma 6.1. Let Ω be a bounded open set with Lipschitz boundary and let $\bar{\Omega}=$ $\cup_{i=1}^{m} \bar{\Omega}_{i}$, with $\left\{\Omega_{i}\right\}$ pairwise disjoint open connected sets with Lipschitz boundary. Consider $\alpha_{i}>0, i=1, \ldots, m$, with $\sum_{i=1}^{m} \alpha_{i}=|\Omega|$. Then there exists a bi-Lipschitz homeomorphism $u_{0}: \bar{\Omega} \rightarrow \bar{\Omega}$ such that $\operatorname{det} D u_{0} \in C^{\infty}(\bar{\Omega})$, inf $\operatorname{det} D u_{0}>0$ and

$$
\begin{equation*}
u_{0}(x)=x \quad \text { on } \partial \Omega, \quad\left|u_{0}\left(\Omega_{i}\right)\right|=\alpha_{i}, \quad i=1, \ldots, m \tag{6.2}
\end{equation*}
$$

Moreover, $u_{0}\left(\Omega_{i}\right)$ is an open set of class (L) for every i.
Proof. Fix $0<\delta<\min \left\{\alpha_{i} /\left|\Omega_{i}\right|: i=1, . ., m\right\}$. For every $1 \leq i \leq m$ let $\eta_{i} \in$ $C_{c}^{\infty}\left(\Omega_{i}\right)$ be such that $\int_{\Omega_{i}} \eta_{i}(x) d x=1$. Define

$$
f(x)=\delta+\sum_{i=1}^{m}\left(\alpha_{i}-\delta\left|\Omega_{i}\right|\right) \eta_{i}(x), \quad x \in \bar{\Omega}
$$

Hence, $f \in C^{\infty}(\bar{\Omega}), \inf f>0, \int_{\Omega_{i}} f(x) d x=\alpha_{i}$ for every i, and $\int_{\Omega} f(x) d x=|\Omega|$. From Theorem 2.4 there exists a bi-Lipschitz homeomorphism $u_{0}: \bar{\Omega} \rightarrow \bar{\Omega}$ such that

$$
\operatorname{det} D u_{0}=f \text { in } \Omega, \quad u_{0}(x)=x \text { on } \partial \Omega
$$

Therefore

$$
\left|u_{0}\left(\Omega_{i}\right)\right|=\int_{\Omega_{i}} \operatorname{det} D u_{0}(x) d x=\int_{\Omega_{i}} f(x) d x=\alpha_{i}, \quad i=1, \ldots, m
$$

moreover Lemma 2.3 implies that $u_{0}\left(\Omega_{i}\right)$ is an open set of class (L) for each i. \square
Proposition 6.2. Let Ω and $\Omega_{i}, i=1, \ldots, m$, be as in Lemma 6.1. Suppose that $g_{i}: \overline{\Omega_{i}} \rightarrow\left[c_{0},+\infty\right)$, with $c_{0}>0, i=1, \ldots, m$, are Hölder continuous functions satisfying

$$
\sum_{i=1}^{m} \int_{\Omega_{i}} g_{i}(x) d x=|\Omega|
$$

Then there exists a Lipschitz continuous function $u: \bar{\Omega} \rightarrow \bar{\Omega}$, such that

$$
\begin{equation*}
u(x)=x \quad \text { on } \partial \Omega, \quad \operatorname{det} D u(x)=g_{i}(x) \quad \forall x \in \Omega_{i}, \quad \forall i=1, \ldots, m \tag{6.3}
\end{equation*}
$$

Proof. By Lemma 6.1 there exists a bi-Lipschitz homeomorphism $u_{0}: \bar{\Omega} \rightarrow \bar{\Omega}$ such that

$$
u_{0}(x)=x \text { on } \partial \Omega, \quad\left|u_{0}\left(\Omega_{i}\right)\right|=\int_{\Omega_{i}} g_{i}(x) d x
$$

and $u_{0}\left(\Omega_{i}\right)$ is of class (L), for each $i=1, \ldots, m$. Moreover $f:=\operatorname{det} D u_{0}$ is of class $C^{\infty}(\bar{\Omega})$ and $\inf f>0$. Since $\frac{g_{i}}{f} \circ u_{0}^{-1}$ is Hölder continuous in $\overline{u_{0}\left(\Omega_{i}\right)}$ and it satisfies

$$
\int_{u_{0}\left(\Omega_{i}\right)} \frac{g_{i}}{f} \circ u_{0}^{-1}(y) d y=\int_{\Omega_{i}} g_{i}(x) d x=\left|u_{0}\left(\Omega_{i}\right)\right|,
$$

then from Theorem 2.4 there exists a bi-Lipschitz homeomorphism $z_{i}: \overline{u_{0}\left(\Omega_{i}\right)} \rightarrow$ $\overline{u_{0}\left(\Omega_{i}\right)}$ such that

$$
\begin{cases}\operatorname{det} D z_{i}=\frac{g_{i}}{f} \circ u_{0}^{-1} & \text { in } u_{0}\left(\Omega_{i}\right) \\ z_{i}(y)=y & \text { on } \partial u_{0}\left(\Omega_{i}\right)\end{cases}
$$

Thus, $u_{i}=z_{i} \circ u_{0}$ is a Lipschitz homeomorphism such that

$$
\begin{cases}\operatorname{det} D u_{i}=g_{i} & \text { in } \Omega_{i}, \\ u_{i}=u_{0} & \text { on } \partial \Omega_{i} .\end{cases}
$$

Hence, the Lipschitz continuous function $u: \bar{\Omega} \rightarrow \bar{\Omega}$ such that $u(x)=u_{i}(x)$ for every $x \in \bar{\Omega}_{i}, i=1, \ldots, m$, satisfies (6.3).

We are in position to state an existence result for the nonpolyconvex problem (6.1). The sets $\Omega_{\lambda}^{+}, \Omega_{\lambda}^{-}$and $\Omega_{\lambda}^{=}$are defined in (5.3).

THEOREM 6.3. Let Ω be a bounded open subset of \mathbb{R}^{N} with Lipschitz boundary and let $\varphi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, differentiable with respect to the last variable, $D_{t} \varphi \in C^{0, \delta}(\Omega \times K), 0<\delta \leq 1$, for every compact $K \subset(0,+\infty)$. Suppose that (A1)-(A4) hold and assume that, for every $\lambda>\lambda_{0}, \Omega_{\lambda}^{+}, \Omega_{\lambda}^{-}$and int $\Omega_{\lambda}^{=}$ are either empty or connected open sets with Lipschitz boundary. Then the variational problem (6.1) has a Lipschitz continuous solution.

Proof. From Theorem 5.2, applied with $a=|\Omega|$, there exist $\lambda_{a}>\lambda_{0}$ and a solution $v_{\lambda_{a}}$ to (4.1), with $\inf v_{\lambda_{a}}>0$. Throughout we write $v \operatorname{instead}$ of $v_{\lambda_{a}}$.
From Theorem $5.2 v$ is Hölder continuous in $\Omega_{\lambda_{a}}^{+} \cup \Omega_{\lambda_{a}}^{-}$. If int $\Omega_{\lambda_{a}}^{\bar{\sigma}_{a}}$ is empty we get the thesis applying Proposition 6.2 with $\Omega_{1}=\Omega_{\lambda_{a}}^{+}, \Omega_{2}=\Omega_{\lambda_{a}}^{-}$and replacing g_{1} and g_{2} with the continuous extension of v to $\Omega_{\lambda_{a}}^{+}$and to $\Omega_{\lambda_{a}}^{-}$, respectively.
If int $\Omega_{\bar{\lambda}_{a}}$ is not empty, correspondingly to (v) of Theorem 5.2 we have to consider three cases.
If $v=\alpha$ in $\Omega_{\bar{\lambda}_{a}}$ the thesis follows by applying Proposition 6.2 with $m=3$, choosing $\Omega_{1}=\Omega_{\lambda_{a}}^{+}, \Omega_{2}=\Omega_{\lambda_{a}}^{-}, \Omega_{3}=\operatorname{int} \Omega_{\bar{\lambda}_{a}}^{=}$and replacing, as above, g_{1} and g_{2} with the continuous extension of v to $\Omega_{\lambda_{a}}^{+}$and $\Omega_{\lambda_{a}}^{-}$, respectively, and g_{3} with α. Analogously, we proceed if $v=\beta$ in $\Omega_{\lambda_{a}}^{=}$, but defining $g_{3}=\beta$.
Now suppose that (5.4) holds. In this case the thesis follows by Proposition 6.2 choosing $\Omega_{1}=\Omega_{\lambda_{a}}^{+}, \Omega_{2}=\Omega_{\lambda_{a}}^{-}, \Omega_{3}=\operatorname{int} \Omega_{\lambda_{a}}^{=} \backslash \cup_{1 \leq j \leq n} B_{\rho_{j}}\left(y_{j}\right), \Omega_{3+i}=B_{\rho_{i}}\left(y_{i}\right)$ for every $i=1, \ldots, n$ and $g_{1}=v, g_{2}=v, g_{3}=\beta, g_{3+i}=\alpha$, for every $i=1, \ldots, n$. \square

With obvious changes in the proof above, it follows:
Theorem 6.4. Let Ω and φ be as in Theorem 6.3. Suppose that (A1)-(A4) hold and assume that for every $\lambda>\lambda_{0}$

$$
\begin{equation*}
\overline{\Omega_{\lambda}^{+}}=\bigcup_{i=1}^{h} \overline{A_{i}}, \quad \overline{\Omega_{\lambda}^{-}}=\bigcup_{i=h+1}^{k} \overline{A_{i}}, \quad \operatorname{int} \Omega_{\lambda}^{=}=\bigcup_{i=k+1}^{l} A_{i} \tag{6.4}
\end{equation*}
$$

with A_{i} either empty or pairwise disjoint open connected sets with Lipschitz boundary. Then the variational problem (6.1) has a Lipschitz continuous solution.

REMARK 6.5. Examples of sets Ω and functions $h: \Omega \rightarrow \mathbb{R}$ such that for every $\lambda \in \mathbb{R}$ (6.4) holds with either empty or disjoint open sets $\left\{A_{i}\right\}$ with Lipschitz boundary are the following:
(a) Ω is a bounded and convex set and h is strictly convex in Ω and constant on $\partial \Omega$,
(b) $\Omega=B_{1}(0)$ and h is a radial function, $h(x)=\tilde{h}(|x|)$, with \tilde{h} piecewise monotone, i.e. there exists $0=s_{0}<s_{1}<\ldots<s_{m}=1$ such that $\left.\tilde{h}\right|_{\left[s_{i}, s_{i+1}\right]}$ is monotone for all i.
7. Nonpolyconvex problems: some special cases. In this section we consider particular classes of the variational problem (6.1), where Ω is a bounded open subset of \mathbb{R}^{N} with Lipschitz boundary and $\varphi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ is a continuous function satisfying (A1) and (A2). We begin considering the case of functions φ such that h in (A2) is a constant. See [20] and [3] for related results.

ThEOREM 7.1. Let $\varphi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ be a continuous function satisfying (A1) and (A2), with h constant. If $\int_{\Omega} \alpha(x) d x \leq|\Omega| \leq \int_{\Omega} \beta(x) d x$, then (6.1) has a Lipschitz continuous solution.

Proof. Consider the auxiliary problem (4.1) with $a=|\Omega|$. If $\int_{\Omega} \alpha(x) d x$ is equal to $|\Omega|$ then α solves (4.1). Then from Theorem 2.4 there exists a Lipschitz homeomorphism u solution to (2.1) with $f=\alpha$. Moreover, u is a solution of (6.1). The same argument works if $\int_{\Omega} \beta(x) d x$ is equal to $|\Omega|$. Of course in this case choose $f=\beta$.

Suppose $\int_{\Omega} \alpha(x) d x<|\Omega|<\int_{\Omega} \beta(x) d x$. Then using Lemma 5.1 with $O=\Omega$, we get that a Lipschitz continuous solution u to (4.1) exists, with $u \equiv \alpha$ on pairwise disjoint balls $B_{\rho_{j}}\left(y_{j}\right) \subset \subset \Omega, j=1, \ldots, n$, and with $u \equiv \beta$ outside these balls. The thesis follows by Proposition 6.2 with $m=n+1, \Omega_{j}=B_{\rho_{j}}\left(y_{j}\right)$ and $g_{j}=\alpha$ if $j=1, \ldots, m-1$, and with $\Omega_{m}=\Omega \backslash \bigcup_{j=1}^{n} B_{\rho_{j}}\left(y_{j}\right), g_{m}=\beta$.

THEOREM 7.2. Let $\varphi: \Omega \times(0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, differentiable with respect to the last variable, $D_{t} \varphi \in C^{0, \delta}(\Omega \times K), 0<\delta \leq 1$, for every compact $K \subset(0,+\infty)$. Suppose that (A1), (A2) with h constant, (A3) and (A4) hold. If $\int_{\Omega} \alpha(x) d x>|\Omega|$ or $\int_{\Omega} \beta(x) d x<|\Omega|$ then (6.1) has a Lipschitz continuous solution.

Proof. Let $a=|\Omega|$. From Theorem 5.2 there exist $\lambda_{a}>\lambda_{0}$ and $v_{\lambda_{a}} \in L^{\infty}(\Omega)$ satisfying

$$
\begin{equation*}
v_{\lambda_{a}}(x) \notin(\alpha(x), \beta(x)), \quad D_{t} \varphi^{* *}\left(x, v_{\lambda_{a}}(x)\right)=\lambda_{a}, \quad \int_{\Omega} v_{\lambda_{a}}(x) d x=|\Omega| . \tag{7.1}
\end{equation*}
$$

(A1), (A2) and (A3) imply $h=D_{t} \varphi(x, \alpha(x))=D_{t} \varphi(x, \beta(x))$ and the definition of $\left\{v_{\lambda}\right\}$ (see the proofs of Theorems 4.1 and 5.2) gives that $\lambda<h$ if and only if $v_{\lambda}(x)<\alpha(x)$ for all $x, \lambda>h$ if and only if $v_{\lambda}(x)>\beta(x)$ for all x. Therefore, if $\int_{\Omega} \alpha(x) d x>|\Omega|$, then $\lambda_{a}<h$ and $v_{\lambda_{a}}(x)<\alpha(x)$. Thus, using the notations in (5.3), $\Omega_{\lambda_{a}}^{+}=\Omega$. Analogously, if $\int_{\Omega} \beta(x) d x<|\Omega|$ then $\lambda_{a}>h$ and $v_{\lambda_{a}}(x)>\beta(x)$, so that $\Omega_{\lambda_{a}}^{-}=\Omega$. Therefore Theorem 5.2 implies that $v_{\lambda_{a}}$ is Hölder continuous in Ω. A Lipschitz continuous solution u to

$$
\begin{cases}\operatorname{det} D u=v_{\lambda_{a}} & \text { in } \Omega, \\ u(x)=x & \text { on } \partial \Omega,\end{cases}
$$

solution also to (6.1), exists because of Theorem 2.4. \square
In Propositions 7.3 and 7.4 we deal with a variant of functionals considered above, precisely
$\min \left\{\int_{\Omega} \Phi(x, \operatorname{det} D u(x)) d x: u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right), \operatorname{det} D u>0\right.$ a.e., $u(x)=x$ on $\left.\partial \Omega\right\}$.
with $\Phi(x, t)=\varphi(x, t)+f(x) t$.
Proposition 7.3. Let Ω be a bounded open convex set in \mathbb{R}^{N} and let $\varphi: \Omega \times$ $(0,+\infty) \rightarrow[0,+\infty)$ satisfy the assumptions of Theorem 7.2, with $\lambda_{0}=-\infty$ in (A3). Suppose that $f: \mathbb{R}^{N} \rightarrow(0,+\infty)$ is a strictly convex function, constant on $\partial \Omega$. Then there exists a Lipschitz solution to (7.2).

Proof. It is easy to see that Φ satisfies the assumptions of Theorem 6.3. Since $\Phi^{* *}(x, t)=\varphi^{* *}(x, t)+f(x) t$ for every $x \in \Omega$, then in $(0, \alpha(x)]$ and in $[\beta(x),+\infty)$ we have that $\Phi(x, \cdot)=\Phi^{* *}(x, \cdot)$. Moreover, for every $t \in[\alpha(x), \beta(x)]$ it holds true that $\Phi^{* *}(x, t)=H(x) t+q(x)$, with $H(x):=\mu+f(x)$ and the super-level, sublevel and level sets of H satisfy the assumptions in Theorem 6.3. (A3) implies that $D_{t} \Phi(x, t)=D_{t} \varphi(x, t)+f(x)$ goes to $-\infty$ as $t \rightarrow-\infty$ and goes to $+\infty$ as $t \rightarrow+\infty$, uniformly with respect to x. The thesis easily follows from Theorem 6.3.

From now on, Ω is the unit ball B in \mathbb{R}^{N} centered at the origin.
Proposition 7.4. Let $\varphi: B \times(0,+\infty) \rightarrow[0,+\infty)$ satisfy the assumptions of Theorem 7.2, with $\lambda_{0}=-\infty$ in (A3). Let $f \in C^{0, \gamma}([0,1]), 0<\gamma \leq 1, f(s)>0$ for every s, f piecewise monotone. Then there exists a Lipschitz continuous solution to (7.2), with $\Phi(x, t)=\varphi(x, t)+f(|x|) t$.

Proof. Proceeding as in the proof of Proposition 7.3, the thesis easily follows from Remark 6.5 (b) and from Theorem 6.4 applied to $\Phi(x, t)=\varphi(x, t)+f(|x|) t$.

Now, we deal with one more class of nonpolyconvex functionals, characterized by an integrand φ with radial structure $\varphi(x, t)=\tilde{\varphi}(|x|, t)$. Precisely, we deal with the
variational problem
$\min \left\{\int_{B} \tilde{\varphi}(|x|, \operatorname{det} D u(x)) d x: u \in W^{1, N}\left(B, \mathbb{R}^{N}\right), \operatorname{det} D u>0\right.$ a.e., $u(x)=x$ on $\left.\partial B\right\}$, (7.3)
and $\tilde{\varphi}:[0,1) \times(0,+\infty) \rightarrow[0,+\infty)$ is a continuous function.
THEOREM 7.5. Let $\tilde{\varphi}:[0,1) \times(0,+\infty) \rightarrow[0,+\infty)$ be a continuous function satisfying the following assumptions:
(i) there exist $a, b \in L^{\infty}(0,1), b(s)>a(s)>0$ for every s, $\inf a>0$, such that $\tilde{\varphi}(s, \cdot)$ and $\tilde{\varphi}^{* *}(s, \cdot)$ both concide and are strictly convex in $(0, a(s)]$ and $[b(s),+\infty)$, for all $s \in[0,1)$,
(ii) $\tilde{\varphi}^{* *}(x, \cdot)$ is affine in $[a(s), b(s)]$ for all $s \in[0,1)$,
(iii) there exists $\lambda_{0} \in \mathbb{R} \cup\{-\infty\}$ such that

$$
\lim _{t \rightarrow 0^{+}} D_{t}^{+} \tilde{\varphi}(s, t)=\lambda_{0}, \quad \lim _{t \rightarrow+\infty} D_{t}^{-} \tilde{\varphi}(s, t)=+\infty, \quad \text { uniformly in } s
$$

Then there exists a Lipschitz solution to (7.3).
Proof. Let us define $\varphi(x, t):=\tilde{\varphi}(|x|, t)$ for every $x \in B$. Notice that $\varphi^{* *}(x, t)=$ $\tilde{\varphi}^{* *}(|x|, t)$ and that assumptions (K1), (K2) and (K3) of Theorem 4.1 holds, with $\Omega=\Omega_{A}=B, \alpha(x)=a(|x|)$ and $\beta(x)=b(|x|)$. Let $v \in L^{\infty}(B), \inf v>0$, be the radial solution of (4.1). It is a known fact (see e.g. [15]) that there exists a bi-Lipschitz solution u to (2.1) with $f=v$ and $\Omega=B$. Thus, u is a solution to (7.3), too.

Appendix A. Proof of Theorem 2.4. In the following we use the arguments of the proof of Lemma 1 in [16] and the fact, proved in [18], that if $\Omega=(0,1)^{N}$ and f is Hölder continuous then there exists a bi-Lipschitz homeomorphism solution to (2.1). We divide the proof into steps.

Step 1.

Let Ω be a bounded open connected subset of \mathbb{R}^{N} of class (L). Thus, there exist m open sets Ω_{j} such that $\bar{\Omega} \subset \cup_{j} \Omega_{j}$ and m bi-Lipschitz homeomorphisms $\psi_{j}: \bar{\Sigma}_{j} \rightarrow \bar{Q}$, with $\Sigma_{j}=\Omega \cap \Omega_{j}$ and $Q=(0,1)^{N}$, such that $\operatorname{det} D \psi_{j} \in \operatorname{Lip}\left(\Sigma_{j}\right)$ and $\frac{1}{A}<\operatorname{det} D \psi_{j}<A$ for some $A \geq 1$. Consider a partition of unity $\left\{\phi_{j}\right\}_{j=1}^{m}$ subordinate to such a covering of $\bar{\Omega}:\left\{\phi_{j}\right\}_{j=1}^{m}$ is a family of smooth and nonnegative functions, $\sum_{j} \phi_{j}(x)=1$ for every $x \in \bar{\Omega}$ and

$$
\begin{equation*}
\operatorname{supp} \phi_{j} \subset \subset \Omega_{j}, \quad \forall j=1, \ldots, m \tag{A.1}
\end{equation*}
$$

Since $\Omega=\cup_{j=1}^{m} \Sigma_{j}$ and Ω is connected, we can assume that for every $k=2, \ldots, m$ there exists $\rho(k)<k$ such that $\Sigma_{k} \cap \Sigma_{\rho(k)}$ is not empty. Define the matrix $\left(\alpha_{h k}\right)$, $1 \leq h \leq m, 2 \leq k \leq m$,

$$
\alpha_{h k}= \begin{cases}1 & \text { if } h=k, \\ -1 & \text { if } h=\rho(k), \\ 0 & \text { else. }\end{cases}
$$

Each of the $m-1$ columns contains exactly one pair $+1,-1$ so that $\sum_{k=2}^{m} \alpha_{h k}=0$ for every h.
Define $\eta_{k} \in C_{c}^{\infty}\left(\Sigma_{k} \cap \Sigma_{\rho(k)}\right)$, such that $\int_{\Omega} \eta_{k}(x) d x=1$. Let $g \in C^{0, \alpha}(\bar{\Omega})$ be such that $\int_{\Omega} g(x) d x=0$. Define the Hölder continuous functions $g_{h}: \bar{\Omega} \rightarrow \mathbb{R}, 1 \leq h \leq m$,

$$
g_{h}:=\left.g \phi_{h}\right|_{\bar{\Omega}}-\sum_{k=2}^{m} \lambda_{k} \alpha_{h k} \eta_{k},
$$

where $\lambda_{2}, \ldots, \lambda_{m}$ are real numbers solutions of the following system of m equations

$$
\begin{equation*}
\sum_{k=2}^{m} \lambda_{k} \alpha_{h k}=\int_{\Omega} g \phi_{h} d x, \quad h=1, \ldots, m \tag{A.2}
\end{equation*}
$$

Since the rank of $\left(\alpha_{h k}\right)$ is $m-1$ and both $\sum_{h=1}^{m} \sum_{k=2}^{m} \lambda_{k} \alpha_{h k}$ and $\sum_{h=1}^{m} \int_{\Omega} g \phi_{h} d x$ are equal to 0 , then system (A.2) is uniquely solvable.
We claim that $\operatorname{supp} g_{h} \subseteq \bar{\Sigma}_{h}$. In fact supp $\left.\phi_{h}\right|_{\bar{\Omega}} \subseteq \bar{\Sigma}_{h}$ and, since $\alpha_{h k} \neq 0$ if and only if $h=k$ or $h=\rho(k)$,

$$
\operatorname{supp} \lambda_{k} \alpha_{h k} \eta_{k} \subset \Sigma_{k} \cap \Sigma_{\rho(k)} \subseteq \Sigma_{h}
$$

for every $k=2, \ldots, m$. Moreover, from (A.2) there exists $M>0$ depending on Ω, $\left\{\phi_{j}\right\}_{j}$ and $\left\{\eta_{j}\right\}_{j}$ only, such that sup $\left|g_{h}\right| \leq M \sup |g|$.
Step 2.
Let $\Omega,\left\{\Sigma_{j}\right\}_{j},\left\{\psi_{j}\right\}_{j},\left\{\phi_{j}\right\}_{j},\left\{\eta_{j}\right\}_{j}, m$ and M be as above. Let f in (2.1) be such that $\sup |f-1|<m^{-1} M^{-1}$. Define m Hölder continuous functions g_{h} reasoning as in the previous step, with g replaced by $f-1$. For every $j=1, \ldots, m+1$ define $f_{j}: \bar{\Omega} \rightarrow(0,+\infty)$,

$$
f_{j}(x):= \begin{cases}1 & \text { if } j=1 \\ 1+\sum_{h=1}^{j-1} g_{h}(x) & \text { if } j>1\end{cases}
$$

In particular $f_{m+1}=f$. Notice that each f_{j} is a Hölder continuous function and, since sup $|f-1|<m^{-1} M^{-1}$, then $\inf f_{j}>0$. Fixed $j=1, \ldots, m$ we have that
(A.3) $f_{j+1}-f_{j}=0 \quad$ in $\bar{\Omega} \backslash \bar{\Sigma}_{j}, \quad \int_{\Omega} f_{j}(x) d x=|\Omega|, \quad \int_{\Sigma_{j}} f_{j+1}(x) d x=\int_{\Sigma_{j}} f_{j}(x) d x$.

Define $f_{j}^{*}, f_{j+1}^{*}: \bar{Q} \rightarrow(0,+\infty)$,

$$
f_{j}^{*}:=f_{j}\left(\psi_{j}^{-1}\right) \operatorname{det} D \psi_{j}^{-1}, \quad f_{j+1}^{*}:=f_{j+1}\left(\psi_{j}^{-1}\right) \operatorname{det} D \psi_{j}^{-1}
$$

so that $f_{j}^{*}, f_{j+1}^{*} \in C^{0, \alpha}(\bar{Q})$ and $\int_{Q} f_{j}^{*} d x=\int_{Q} f_{j+1}^{*} d x$.
As proved in [18] there exist two bi-Lipschitz homeomorphisms $v_{j}, w_{j}: \bar{Q} \rightarrow \bar{Q}$ solutions to

$$
\left\{\begin{array} { l l }
{ \operatorname { d e t } D v _ { j } = \frac { f _ { j } ^ { * } } { J _ { Q } f _ { j } ^ { * } d x } } & { \text { in } Q , } \\
{ v _ { j } (y) = y } & { \text { on } \partial Q , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\operatorname{det} D w_{j}=\frac{f_{j+1}^{*}}{J_{Q} f_{j}^{*} d x} & \text { in } Q \\
w_{j}(y)=y & \text { on } \partial Q
\end{array}\right.\right.
$$

respectively. Let us consider $\varphi_{j}: \bar{Q} \rightarrow \bar{Q}, \varphi_{j}(y):=\left(v_{j}^{-1} \circ w_{j}\right)(y)$. Then

$$
\operatorname{det} D \varphi_{j}(y)=\operatorname{det} D v_{j}^{-1}\left(w_{j}(y)\right) \operatorname{det} D w_{j}(y)=\frac{f_{j+1}^{*}(y)}{f_{j}^{*}\left(\varphi_{j}(y)\right)}, \quad \forall y \in \bar{Q}
$$

so that
$f_{j}\left(\left(\psi_{j}^{-1} \circ \varphi_{j}\right)(y)\right) \operatorname{det} D \psi_{j}^{-1}\left(\varphi_{j}(y)\right) \operatorname{det} D \varphi_{j}(y)=f_{j+1}\left(\psi_{j}^{-1}(y)\right) \operatorname{det} D \psi_{j}^{-1}(y), \quad \forall y \in \bar{Q}$.
Using the the invertibility of ψ_{j} the equality above implies that

$$
\begin{equation*}
f_{j}\left(u_{j}(x)\right) \operatorname{det} D u_{j}(x)=f_{j+1}(x), \quad \forall x \in \bar{\Sigma}_{j} \tag{A.4}
\end{equation*}
$$

where $u_{j}: \bar{\Sigma}_{j} \rightarrow \bar{\Sigma}_{j}$ is the Lipschitz continuous function defined as $u_{j}(x):=\left(\psi_{j}^{-1} \circ\right.$ $\left.\varphi_{j} \circ \psi_{j}\right)(x)$.
Since $\varphi_{j}\left(\psi_{j}(x)\right)=\psi_{j}(x)$ for all $x \in \partial \Sigma_{j}$, we have that $u_{j}(x)=x$, for every $x \in \partial \Sigma_{j}$. Then $\tilde{u}_{j}: \bar{\Omega} \rightarrow \mathbb{R}, j=1, \ldots, m$,

$$
\tilde{u}_{j}(x):= \begin{cases}u_{j}(x) & \text { if } x \in \bar{\Sigma}_{j} \\ x & \text { else },\end{cases}
$$

is Lipschitz continuous and from (A.3) and (A.4)

$$
f_{j}\left(\tilde{u}_{j}(x)\right) \operatorname{det} D \tilde{u}_{j}(x)=f_{j+1}(x), \quad \forall x \in \bar{\Omega}
$$

Iterating this argument on j and recalling that $f_{1}=1$ and $f_{m+1}=f$, we get that $\tilde{u}_{1} \circ \cdots \circ \tilde{u}_{m}$ is a Lipschitz solution to (2.1).

Step 3.

Now we suppose that f in (2.1) satisfies $\sup |f-1| \geq m^{-1} M^{-1}$. There exists $c_{1}>0$ and $0<t_{1}<1$ such that $\int_{\Omega} c_{1} f^{t_{1}}(x) d x=|\Omega|$ and $\sup \left|c_{1} f^{t_{1}}-1\right|<m^{-1} M^{-1}$. Applying the same arguments described in step 2 to $g:=c_{1} f^{t_{1}}-1$, we obtain a Lipschitz function u_{1} satisfying (2.1) with f replaced by $c_{1} f^{t_{1}}$. Applying again this procedure to $g:=c_{2} f^{t_{2}}-c_{1} f^{t_{1}}$, with a suitable choice of c_{2} and t_{2} in such a way that $t_{1}<t_{2} \leq 1, \int_{\Omega} c_{2} f^{t_{2}} d x=|\Omega|$ and $\sup \left|c_{2} f^{t_{2}}-c_{1} f^{t_{1}}\right|<m^{-1} M^{-1}$, we get u_{2} Lipschitz solution to

$$
\begin{cases}c_{1} f^{t_{1}}\left(u_{2}\right) \operatorname{det} D u_{2}=c_{2} f^{t_{2}} & \text { in } \Omega \\ u_{2}(x)=x & \text { on } \partial \Omega\end{cases}
$$

Hence, $u_{1} \circ u_{2}$ solves (2.1) with f replaced by $c_{2} f^{t_{2}}$. It can be proved that the exponents $\left\{t_{i}\right\}$ can be chosen such that in finitely many steps, say n, we get $t_{n}=1$. The existence of a Lipschitz continuous solution to (2.1) follows.

REFERENCES

[1] J.M. Ball, G. Knowles: Young measures and minimization problems of mechanics, Elasticity. Mathematical methods and applications, The Ian N. Sneddon 70th Birthday (1990), 1-20.
[2] D. Burago, B. Kleiner: Separated nets in Euclidean space and Jacobians of biLipschitz maps, Geom. Funct. Anal. 8 (1998), 304-314
[3] P. Celada, S. Perrotta: Vectorial Hamilton-Jacobi equations with rank-one affine dependence on the gradient, Nonlinear Anal. Ser. A: Theory Methods, 41 (2000), 383-404.
[4] A. Cellina, S. Zagatti: An existence result in a problem of the vectorial case of the calculus of variations, SIAM J. Control Optim. 33 (1995), 960-970.
[5] B. Dacorogna: A relaxation theorem and its applications to the equilibrium of gases, Arch. Rat. Mech. Anal. 77 (1981), 359-385.
[6] B. Dacorogna: Direct methods in the Calculus of Variations, Appl. Math. Sci. 78, Springer, Berlin, 1989.
[7] B. Dacorogna, J. Moser: On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 1-26.
[8] I. Ekeland, R. Temam: Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, 1974.
[9] I. Fonseca, N. Fusco, P. Marcellini: An existence result for a nonconvex variational problem via regularity, ESAIM Control Optim. Calc. Var. 7 (2002), 69-95.
[10] G. Friesecke: A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Roy. Soc. Edinburgh 124 (1994), 437-471.
[11] P. Grisvard: Elliptic problems in nonsmooth domains, Monographs and studies in mathematics 24, Pitman, Boston, 1985.
[12] P. Marcellini: The stored-energy for some discontinuous deformations in nonlinear elasticity, Partial differential equations and the calculus of variations, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1989, 767-786.
[13] E. MASCOLO: Existence results for a class of noncoercive polyconvex integrals, B.U.M.I. 5-A (1991), 97-107.
[14] E. Mascolo, R. Schianchi: Existence theorems for non convex problems, J. Math. Pures Appl. 62 (1983), 349-359.
[15] C.T. McMullen: Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8 (1998), 304-314.
[16] J. Moser: On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286294.
[17] R.W. Odgen: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids, Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 328 (1972), 567-583.
[18] T. Rivière, D. Ye: Resolution of the prescribed volume form equation, NoDEA Nonlinear Differential Equations Appl. 3 (1996), 323-369.
[19] D. Ye: Prescribing the Jacobian determinant in Sobolev spaces. Ann. Inst. H.Poincaré Anal. Non Linéaire 11 (1994), 275-296.
[20] S. Zagatti: On the Dirichlet problem for vectorial Hamilton-Jacobi equations, SIAM J. Math. Anal. 29 (1998), 1481-1491.

[^0]: *Dipartimento di Matematica "U. Dini", Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy (cupini@math.unifi.it, mascolo@math.unifi.it).

