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Abstract. We consider the kinetic Cucker-Smale model with local alignment as a meso-
scopic description for the flocking dynamics. The local alignment was first proposed by
Karper, Mellet and Trivisa [28], as a singular limit of a normalized non-symmetric align-
ment introduced by Motsch and Tadmor [31]. The existence of weak solutions to this
model is obtained in [28]. The time-asymptotic flocking behavior is shown in this article.
Our main contribution is to provide a rigorous derivation from mesoscopic to mascro-
scopic description for the Cucker-Smale flocking models. More precisely, we prove the
hydrodynamic limit of the kinetic Cucker-Smale model with local alignment towards the
pressureless Euler system with nonlocal alignment, under a regime of strong local align-
ment. Based on the relative entropy method, a main difficulty in our analysis comes from
the fact that the entropy of the limit system has no strictly convexity in terms of density
variable. To overcome this, we combine relative entropy quantities with the 2-Wasserstein
distance.

1. Introduction

This article is mainly devoted to providing a rigorous justification on hydrodynamic
limit of the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal
alignment force. In [11], Cucker and Smale introduced an agent-based model capturing
flocking phenomenon observed within the complex systems such as a flock of birds, school of
fish and swarm of insects. The Cucker-Smale (CS) model has received a extensive attention
in the mathematical community as well as the physics, biology, engineering and social
science, etc. (See for instance [7, 10, 9, 13, 14, 17, 20, 22, 33, 40] and the refereces therein.)
In [31], Motsch and Tadmor proposed a modified Cucker-Smale model by replacing the
original CS alignment by a normalized non-symmetric alignment. In [28], Karper, Mellet,
and Trivisa proposed a new kinetic flocking model as a combination of the CS alignment
and a local alignment interaction, where the latter was obtained as a singular limit of the
non-symmetric alignment introduced by Motsch and Tadmor.
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In this article, we consider the kinetic flocking model without Brownian noise, proposed
by Karper, Mellet and Trivisa in [27] on Td × Rd:

∂tf + v · ∇xf +∇v · (L[f ]f) +∇v · ((u− v)f) = 0,

L[f ](t, x, v) =

∫
Td

∫
Rd

ψ(x− y)f(t, y, w)(w − v) dw dy,

u(t, x) =

∫
Rd vfdv∫
Rd fdv

, ‖f(0)‖L1(Td×Rd) = 1.

(1.1)

Here ψ : Td → Rd is a Lipschitz communication weight that is positive and symmetric, i.e.,
ψ(x − y) = ψ(y − x). The term ∇v · (L[f ]f) describes a nonlocal alignment due to the
original Cucker-Smale flocking mechanism, while the last term ∇v · ((u − v)f) describes a
local alignment interaction, because of the averaged local velocity u. The global existence
of weak solutions to (1.1) has been proved in [27]. The flocking behaviors of (1.1), however,
are not studied so far. We here provide its time-asymptotic behavior.

As a mesoscopic description, the kinetic model (1.1) is posed in (t, x, v) ∈ R × Td × Rd,
i.e., in 2d + 1 dimensions. This feature provides a accurate description for a significant
number of particles. However, its numerical test is very costly with respect to an associated
macroscopic description. Hence, it is very important to find a suitable parameter regime
on which the complexity of (1.1) is reduced.

The main goal of this article is to show a singular limit of (1.1) in a regime of strong
local alignment:

∂tf
ε + v · ∇xf ε +∇v · (L[f ε]f ε) +

1

ε
∇v · ((uε − v)f ε) = 0,

L[f ε](t, x, v) =

∫
Td

∫
Rd

ψ(x− y)f ε(t, y, w)(w − v) dw dy,

uε =

∫
Rd vf

εdv∫
Rd f εdv

,

f ε|t=0 = f ε0 , ‖f ε0‖L1(Td×Rd) = 1.

(1.2)

As ε → 0, it is expected that the solution f ε of (1.2) converges, in some weak sense, to a
mono-kinetic distribution1

(1.3) δv=u(t,x) ⊗ ρ(t, x).

1In this paper we will use the symbol ⊗ in two different contexts: if µ is a measure on a complete metric
space X, and {νx}x∈X is a family of measures on a complete metric space Y , then νx⊗µ denotes the measure
on X × Y defined as∫

X×Y

ϕd[νx ⊗ µ] =

∫
X

(∫
Y

ϕ(x, y) dνx(y)

)
dµ(x) ∀ϕ ∈ Cc(X × Y ).

When νx is independent of x (that is, νx = ν for all x), we use the more standard notation µ ⊗ ν (instead
of ν ⊗ µ, as done before) to denote the product measure:∫

X×Y

ϕd[µ⊗ ν] =

∫
X

(∫
Y

ϕ(x, y) dν(y)

)
dµ(x) ∀ϕ ∈ Cc(X × Y ).

Finally, if a, b ∈ Rd are vectors, then a⊗ b denotes the d× d-matrix with entries

(a⊗ b)ij = aibj ∀ i, j = 1, . . . , d.

The meaning will always be clear from the context.
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Here, δv=u(t,x) denotes a Dirac mass in v centered on u(t, x). Also, as we shall explain later,
at least formally ρ and u should solve the associated limit system given by the pressureless
Euler system with nonlocal flocking dissipation:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) =

∫
Td

ψ(x− y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy,

ρ|t=0 = ρ0, u|t=0 = u0, ‖ρ0‖L1(Td) = 1.

(1.4)

The main difficulty in the justification of this limit comes from the singularity of the mono-
kinetic distribution. To the best of our knowledge, there is no general method to handle
the hydrodynamic limit from some kinetic equations to the pressureless Euler systems, no
matter what regime is considered. Indeed, there are few results on this kinds of limit,
see [24, 25, 26] (see also [?] for a general treatment of similar regimes that lead to Dirac
formation and pressureless gases equations).

It is worth mentioning that the pressureless Euler system without the nonlocal alignment
has been used for the formation of large-scale structures in astrophysics and the aggregation
of sticky particles [34, 41]. For more theoretical studies on the pressureless gases, we for
example refer to [3, 4, 5, 6, 23, 32, 39].

The macroscopic flocking model (1.4) or its variants have been formally derived under a
mono-kinetic ansatz (1.3), and studied in various topics (see for example [12, 18, 19, 16, 35]).
In [18], the authors have shown the global well-posedness of (1.4) with a suitably smooth
and small initial data, and the time-asymptotic flocking behavior. In [19], the authors dealt
with a moving boundary problem of (1.4) with compactly supported initial density. We
also refer to [16] on a reformulation of (1.4) into hyperbolic conservation laws with damping
in one dimension.

In [29], the author have shown the hydrodynamic limit of the kinetic flocking model (1.1)
with Brownian motion, that is, Vlasov-Fokker-Planck type equation, under the regime of
strong local alignment and strong Brownian motion:

∂tf
ε + v · ∇xf ε +∇v · (L[f ε]f ε) +

1

ε
∇v · ((uε − v)f ε)− 1

ε
∆vf

ε = 0.(1.5)

In this case, as ε → 0, f ε converges to a smooth local equilibrium given by a local
Maxwellian, contrary to (1.3). There, the authors used the relative entropy method, heavily
relying on a strict convexity of the entropy of the isothermal Euler system (as a limit system
of (1.5)):

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇ρ =

∫
Td

ψ(x− y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy.

The relative entropy method based on a strict convex entropy has been successfully used
to prove the hydrodynamic limit of Vlasov-Fokker-Planck type equations, we refer to [2, 8,
15, 30, 36].

On the other hand, the pressureless Euler system (1.4) has a convex entropy given by

(1.6) η(ρ, ρu) = ρ
|u|2

2
,

which is not strictly convex with respect to ρ. For this reason, the associated relative entropy
(1.6) is not enough to control the convergence of the nonlocal alignment term (compare
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with [26], where the nonlocal alignment is not present). To overcome this difficulty, we first
estimate a L2-distance of characteristics generated by vector fields uε and u, that controls
the 2-Wasserstein distance of densities, and then combine the estimates of the relative
entropy and the L2-distance of characteristics.

As a related work on (1.5), we refer to [8], where the authors studied the flocking behavior
and hydrodynamic limit of a coupled system of (1.5) and fluid equations via drag force.

The rest of this paper is organized as follows. In Section 2, we mention different scales
of Cucker-Smale models from microscopic level to macroscopic level, and then specify some
known existence results on the two descriptions (1.1) and (1.4). In Section 3, we present
our main theorem on the hydrodynamic limit, and collect some useful results on the relative
entropy method and the optimal transportation theory that are used in the proof of the main
theorem in Section 5. In the Appendix, we provide the proof of the long time-asymptotic
flocking dynamics for the kinetic model (1.1).

2. Various scales of Cucker-Smale models

In this section we first present various scales of Cucker-Smale models, from microscopic
level to macroscopic level. Then we state some known results on global existence of weak
solutions to the kinetic description (1.1), and local existence of smooth solutions to the limit
system (1.4). Those results are crucially used in the proof of the main theorem. Finally, in
Theorem 2.2, we present the time-asymptotic flocking behavior of the kinetic model (1.1).

2.1. Variants of Cucker-Smale models. In this subsection, we briefly present the kinetic
CS model and its variants. Cucker and Smale in [11] proposed a mathematical model to
explain the flocking phenomenon:

dxi
dt

= vi, i = 1, · · · , N,

dvi
dt

=
1

N

N∑
j=1

ψ(xj − xi)(vj − vi),
(2.1)

where xi, vi ∈ Rd denote the spatial position and velocity of the i-th particle for an ensemble
of N self-propelled particles. The kernel ψ(|xj − xi|) is a communication weight given by

(2.2) ψ(xj − xi) =
λ

(1 + |xj − xi|2)β
, β ≥ 0, λ > 0.

The system (2.1) with (2.2) was used as an analytical description of the Vicsek model [37]
without resorting to the first principle of physics.

When the number of particles is sufficiently large, the ensemble of particles can be de-
scribed by the one-particle density function f = f(t, x, v) at the spatial-velocity position
(x, v) ∈ Rd × Rd at time t. Then, the evolution of f is governed by the following Vlasov
type equation:

∂tf + v · ∇xf +∇v · (L[f ]f) = 0,

L[f ](t, x, v) =

∫
R2d

ψ(x− y)f(t, y, w)(w − v) dw dy.
(2.3)
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This was first introduced by Ha and Tadmor [22] using the BBGKY Hierarchy from the
particle CS model (2.1). A rigorous mean-field limit was given in [21].

In [31], Motsch and Tadmor recognized a drawback of the CS model (2.1), which is due
to the normalization factor 1

N . More precisely, when a small group of agents are located far
away from a much larger group of agents, the internal dynamics of the small group is almost
halted since the total number of agents is relatively very large. To solve this issue, they
replaced the nonlocal alignment L[f ] by a normalized non-symmetric alignment operator:

L[f ](t, x, v) :=

∫
R2d K

r(x− y)f(t, y, w)(w − v) dw dy∫
R2d Kr(x− y)f(t, y, w) dw dy

,

where the kernel Kr is a communication weight and r denotes the radius of influence of Kr.
In [28], the authors considered the case when the communication weight is extremely con-
centrated nearby each agent, so that the alignment term L[f ] corresponds to a short-range
interaction. More precisely, they rigorously justified the singular limit r → 0, i.e., as Kr

converges to the Dirac distribution δ0, in which case L[f ] converge to a local alignment
term:

L[f ](t, x, v)→
∫
Rd f(t, x, w)(w − v) dw∫

Rd f(t, x, w) dw
= u(t, x)− v,

where u(t, x) denotes the averaged local velocity defined as u(t, x) =
∫
Rd vf(t,x,v)dv∫
Rd f(t,x,v)dv

. Hence,

their new model became (1.1), which consists of two kinds of alignment force: a nonlocal
alignment due to the original CS model, plus a local alignment.

2.2. Existence of weak solutions to (1.2). In [27], the authors showed the existence
of weak solutions to the kinetic Cucker-Smale model with local alignment, noise, self-
propulsion, and friction:

∂tf + v · ∇xf +∇v · (L[f ]f) +∇v · ((u− v)f)

= σ∆vf −∇v · ((a− b|v|2)vf),

L[f ] =

∫
R2d

ψ(x− y)f(t, y, w)(w − v) dw dy,

(2.4)

where the kernel ψ is the same as (1.2) and a, b, and σ are nonnegative constants. By
their result applied with a = b = σ = 0 inside the periodic domain Td, we obtain exis-
tence of solutions for (1.2). To precisely state such existence result, we need to define a
(mathematical) entropy F(f ε) and kinetic dissipations D1(f ε), D2(f ε) for (1.2):

F(f ε) :=

∫
Rd

|v|2

2
f εdv,

D1(f ε) :=

∫
Td×Rd

f ε|uε − v|2 dv dx,

D2(f ε) :=
1

2

∫
T2d×R2d

ψ(x− y)f ε(x, v)f ε(y, w)|v − w|2 dx dy dv dw.

(2.5)

Proposition 2.1. For any ε > 0, assume that f ε0 satisfies

(2.6) f ε0 ≥ 0, fε0 ∈ L1 ∩ L∞(R2d), |v|2f ε0 ∈ L1(R2d).
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Then there exists a weak solution f ε ≥ 0 of (1.2) such that

f ε ∈ C(0, T ;L1(R2d)) ∩ L∞((0, T )× R2d),

|v|2f ε ∈ L∞(0, T ;L1(R2d)),
(2.7)

and (1.2) holds in the sense of distribution, that is, for any ϕ ∈ C∞c ([0, T )×R2d), the weak
formulation holds:∫ t

0

∫
R2d

f ε
(
∂tϕ+ v · ∇xϕ+ L[f ε] · ∇vϕ+

1

ε
(uε − v) · ∇vϕ

)
dv dx ds

+

∫
R2d

f ε0ϕ(0, ·) dv dx = 0.

(2.8)

Moreover, f ε preserves the total mass and satisfies the entropy inequality∫
Td

F(f ε)(t) dx+
1

ε

∫ t

0
D1(f ε)(s) ds+

∫ t

0
D2(f ε)(s) ds ≤

∫
Td

F(f ε0 ) dx.(2.9)

The entropy inequality (2.9) is crucially used in the proof of Theorem 3.1.

2.3. Flocking behavior of the kinetic model (1.1). We now present the time-asymptotic
flocking behavior of solutions to the kinetic model (1.1). For that, we define the following
two Lyapunov functionals:

E1(t) :=

∫
Td×Rd

f(t, x, v)|u(t, x)− v|2 dv dx,

E2(t) :=

∫
T2d

ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy,

where ρ(t, x) =
∫
Rd f(t, x, v)dv. We remark that E1 measures a local alignment, and E2

measures alignment of the averaged local velocities. Then, for the flocking estimate, we
combine the two functionals as follows:

(2.10) E(t) := E1(t) +
1

2
E2(t).

Theorem 2.2. Let f be a solution to (1.1). Then, we have the time-asymptotic flocking
estimate

(2.11) E(t) ≤ E(0) exp
(
− 2 min{1, ψm}t

)
, t > 0,

where ψm is the minimum communication weight:

ψm := min
x,y∈Td

ψ(x− y) > 0.

In addition, if u is uniformly Lipschitz continuous on a time interval [0, T ], namely `T :=
supt∈[0,T ] ‖∇xu‖L∞(Td) <∞, then

(2.12) E1(t) ≤ E1(0)e2(`T−1) ∀ t ∈ [0, T ].

Proof. We postpone the proof to the Appendix. �

Remark 2.3. As an interesting consequence of (2.12) one obtains that, for smooth so-
lutions, E1(0) = 0 implies that E1(t) = 0 for all t ∈ [0, T ]. In other words, monokinetic
initial conditions remain monokinetic as long as the velocity field is Lipschitz. One can
note that monokinetic solutions to (1.1) simply correspond to solutions of the pressureless
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Euler system (1.4), hence the short time existence of Lipschitz solutions is guaranteed by
Proposition 2.4 and Remark 2.5 below.

2.4. Formal derivation of the hydrodynamic Cucker-Smale system (1.4). We con-
sider the hydrodynamic variables ρε :=

∫
Rd f

εdv and ρεuε :=
∫
Rd vf

εdv.
First of all, integrating (1.2) with respect to v, we get the continuity equation ∂tρ

ε +∇x ·
(ρεuε) = 0. Multiplying (1.2) by v, and then integrating it with respect to v, we have

∂t(ρ
εuε) +∇x ·

(∫
Rd

v ⊗ vf εdv
)

=

∫
Td

ψ(x− y)ρε(t, x)ρε(t, y)(uε(t, y)− uε(t, x)) dy,

where we used uε =
∫
Rd vf

εdv∫
Rd f

εdv
.

Then, we rewrite the system for ρε and uε as

∂tρ
ε +∇x · (ρεuε) = 0,

∂t(ρ
εuε) +∇x · (ρεuε ⊗ uε + P ε) =

∫
Td

ψ(x− y)ρε(t, x)ρε(t, y)(uε(t, y)− uε(t, x)) dy,

(2.13)

where P ε is the stress tensor given by

P ε :=

∫
Rd

(v − uε)⊗ (v − uε)f εdv.

If we take ε→ 0 in (1.2), the local alignment term ∇v · ((uε − v)f ε) converges to 0. Hence,
if ρε → ρ and ρεuε → ρu for some limiting functions ρ and u, we have that f ε → δv=u ⊗ ρ
(in some suitable sense). Hence, the stress tensor P ε should vanish in the limit, since∫

Rd

(v − u)⊗ (v − u)δv=uρ dv = 0.

Therefore, at least formally, the limit quantities ρ and u satisfy the pressureless Euler system
with nonlocal alignment:

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) =

∫
Td

ψ(x− y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy.

2.5. Existence of classical solutions to (1.4). We present here the local existence of
classical solutions to the pressureless Euler system (1.4).

Proposition 2.4. Assume that

(2.14) ρ0 > 0 in Td and (ρ0, u0) ∈ Hs(Td)×Hs+1(Td) for s >
d

2
+ 1.

Then, there exists T∗ > 0 such that (1.4) has a unique classical solution (ρ, u) satisfying

ρ ∈ C0([0, T∗];H
s(Td)) ∩ C1([0, T∗];H

s−1(Td)),

u ∈ C0([0, T∗];H
s+1(Td)) ∩ C1([0, T∗];H

s(Td)).
(2.15)

Remark 2.5. Since s > d
2 +1, by Sobolev inequality it follows that (ρ, u) ∈ C1([0, T∗]×Td).

Proposition 2.4 has been proven in [18]. There, the authors obtained also a global well-
posedness of classical solutions, provided an initial datum is suitably smooth and small.
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3. Main result and Preliminaries

In this section, we first present our main result on the hydrodynamic limit of (1.2). We
next present useful results on the relative entropy method and the optimal transportation
theory, which are used as main tools in the next section.

3.1. Main result. For the hydrodynamic limit, we consider a well-prepared initial data f ε0
satisfying (2.6) and

• (A1):
∫
Td

∫
Rd

(
f ε0
|v|2
2 − ρ0

|u0|2
2

)
dv dx = O(ε),

• (A2): ‖ρε0 − ρ0‖L1(Td) = O(ε),

• (A3): ‖uε0 − u0‖L∞(Td) = O(ε).

We now specify our main result on the hydrodynamic limit.

Theorem 3.1. Assume that the initial data f ε0 and (ρ0, u0) satisfy (2.6), (2.14), and (A1)-
(A3). Let f ε be a weak solution to (1.2) satisfying (2.9), and (ρ, u) be a local-in-time smooth
solution to (1.4) satisfying (2.15) up to the time T∗. Then, there exists a positive constant
C∗ (depending on T∗) such that, for all t ≤ T∗,∫

Td

ρε(t)|(uε − u)|2(t) dx+W 2
2 (ρε(t), ρ(t)) ≤ C∗ε,(3.1)

where ρε =
∫
Rd f

εdv, ρεuε =
∫
Rd vf

εdv, and W2 denotes the 2-Wasserstein distance.
Therefore, we have

(3.2) f ε ⇀ δv=u(t,x) ⊗ ρ(t, x) in M((0, T∗)× Td × Rd),

whereM((0, T∗)×Td×Rd) is the space of nonnegative Radon measures on (0, T∗)×Td×Rd.

The proof of this result is postponed to Section 5. In the next subsections we collect
some preliminary facts that will be used later in the proof.

3.2. Relative entropy method. First of all, we rewrite the limit system (1.4) in an
abstract form using the notation

P = ρu, U =

(
ρ

P

)
, A(U) =

(
P T

P⊗P
ρ

)
,

F (U) =

(
0∫

Td ψ(x− y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy

)
.

Then we can rewrite (1.4) as the balance law

(3.3) ∂tU + divxA(U) = F (U).

We consider the relative entropy and relative flux:

η(V |U) = η(V )− η(U)−Dη(U) · (V − U),

A(V |U) = A(V )−A(U)−DA(U) · (V − U),
(3.4)

where DA(U) · (V − U) is a matrix defined as

(DA(U) · (V − U))ij =
d+1∑
k=1

∂Uk
Aij(U)(Vk − Uk), 1 ≤ i ≤ d+ 1, 1 ≤ j ≤ d.
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By the theory of conservation laws, the system (3.3) has a convex entropy η(U) = ρ |u|
2

2
with entropy flux G given by the identity:

∂UiGj(U) =
d+1∑
k=1

∂Uk
η(U)∂UiAkj(U), 1 ≤ i ≤ d+ 1, 1 ≤ j ≤ d.

Since η(U) = |P |2
2ρ , and

(3.5) Dη(U) =

(
Dρη

DP η

)
=

(− |P |2
2ρ2

P
ρ

)
=

(
− |u|

2

2

u

)
,

for given V =
(
q
qw

)
, U =

(
ρ
ρu

)
, we have

η(V |U) =
q

2
|w|2 − ρ

2
|u|2 +

|u|2

2
(q − ρ)− u(qw − ρu)

=
q

2
|u− w|2.

(3.6)

The next proposition provides a cornerstone to verify the hydrodynamic limit through
the relative entropy method. For its proof, we refer to the proof of Proposition 4.2 in [29]
(See also [36]).

Proposition 3.2. Let U be a strong solution to a balance law (3.3), and V any smooth
function. Then, the following holds:

d

dt

∫
Td

η(V |U) dx =
d

dt

∫
Td

η(V ) dx−
∫
Td

∇x
(
Dη(U)

)
: A(V |U) dx

−
∫
Td

Dη(U) · [∂tV + divxA(V )− F (V )] dx

−
∫
Td

[
D2η(U)F (U)(V − U) +Dη(U)F (V )

]
dx.

3.3. Wasserstein distance and representation formulae for solutions of the conti-
nuity equation. For p ≥ 1, the p-Wasserstein distance between two probability measures
µ1 and µ2 on Rd is defined by

W p
p (µ1, µ2) := inf

ν∈Λ(µ1,µ2)

∫
R2d

|x− y|2 dν(x, y),

where Λ(µ1, µ2) denotes the set of all probability measures ν on R2d with marginals µ1 and
µ2, i.e,

π1#ν = µ1, π2#ν = µ2,

where π1 : (x, y) 7→ x and π2 : (x, y) 7→ y are the natural projections from Rd × Rd to Rd,
and π#ν denotes the push forward of ν through a map π, i.e., π#ν(B) := ν(π−1(B)) for

any Borel set B. This same definition can be extended to measures on the torus Td with
the understanding that |x− y| denotes the distance on the torus.

To make a connection between the L2-distance of velocities and the 2-Wasserstein distance
of densities (see Lemma 5.2), we will use two different representation formulas for solutions
to the continuity equation

(3.7) ∂tµt + divx(utµt) = 0.
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Let us recall that, if the velocity field ut : Rd → Rd is Lipschitz with respect to x, uniformly
in t, then for any x there exists a global-in-time unique characteristic X generated by ut
starting from x,

Ẋ(t, x) = ut(X(t, x)), X(0, x) = x,

and the solution µt of (3.7) is the push forward of the initial data µ0 through X(t), i.e.,

(3.8) µt = X(t)#µ0

(e.g., see [1, Proposition 8.1.8]). On the other hand, if the velocity field ut is not Lipschitz
with respect to x, the uniqueness of the characteristics is not guaranteed anymore. Still,
a probabilistic representation formula for solutions to (3.7) holds (recall that a curve of
probability measures in Rd is said narrowly continuous if it is continuous in the duality
with continuous bounded functions):

Proposition 3.3. For a given T > 0, let µt : [0, T ] → P(Rd) be a narrowly continuous
solution of (3.7) for a Borel vector field ut satisfying∫ T

0

∫
Rd

|ut(x)|pdµt(x)dt <∞, for some p > 1.

Let ΓT denote the space of continuous curves from [0, T ] into Rd. Then, there exists a
probability measure η on ΓT × Rd satisfying the following properties:
(i) η is concentrated on the set of pairs (γ, x) such that γ is an absolutely continuous curve
solving the ODE

γ̇(t) = ut(γ(t)), for a.e. t ∈ (0, T ), with γ(0) = x;

(ii) µt satisfies∫
Rd

ϕ(x)dµt(x) =

∫
ΓT×Rd

ϕ(γ(t))dη(γ, x), ∀ϕ ∈ C0
b (Rd), t ∈ [0, T ].

Again, this result readily extends on the torus.
Note that, in the case when ut is Lipschitz, there exists a unique curve γ solving the

ODE and starting from x (i.e., γ = X(·, x)), so the measure η is given by the formula

dη(γ, x) = δγ=X(·,x) ⊗ dµ0(x).

We refer to [1, Theorem 8.2.1] for more details and a proof.

3.4. Useful inequality. We here present a standard inequality that is used in the proof
of Lemma 5.2, for the convenience of the reader:

Lemma 3.4. Let ρ1, ρ2 : Td → R be two probability densities. Then

W 2
2 (ρ1, ρ2) ≤ d

8
‖ρ1 − ρ2‖L1(Td).

Proof. The idea is simple: to estimate the transportation cost from ρ1 to ρ2 it suffices
to consider a transport plan that keeps at rest all the mass in common between ρ1 and
ρ2 (namely min{ρ1, ρ2}) and sends ρ1 −min{ρ1, ρ2} onto ρ2 −min{ρ1, ρ2} in an arbitrary
way. For instance, assuming without loss of generality that ρ1 6= ρ2 (otherwise the result is
trivial), we set

m := ‖ρ1 −min{ρ1, ρ2}‖L1(Td) = ‖ρ2 −min{ρ1, ρ2}‖L1(Td) =
1

2
‖ρ1 − ρ2‖L1(Td) > 0.
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Then, a possible choice of transport plan between ρ1 and ρ2 is given by

π(dx, dy) := δx=y(dy)⊗min{ρ1(x), ρ2(x)}dx

+
1

m
[ρ1(x)−min{ρ1(x), ρ2(x)}]dx⊗ [ρ2(y)−min{ρ1(y), ρ2(y)}]dy.

Since the diameter of Td is bounded by
√
d/2, we deduce that the W 2

2 -cost to transport
ρ1 −min{ρ1, ρ2} onto ρ2 −min{ρ1, ρ2} is at most∫

T2d

|x− y|2dπ(x, y)

=
1

m

∫
T2d

|x− y|2(ρ1(x)−min{ρ1(x), ρ2(x)})(ρ2(y)−min{ρ1(y), ρ2(y)}) dx dy

≤ d

4
‖ρ1 −min{ρ1, ρ2}‖L1(Td) =

d

8
‖ρ1 − ρ2‖L1(Td),

as desired. �

4. Structural lemma

In a general system, we first present some structural hypotheses to provide a Gronwall-
type inequality on the relative entropy that is also controlled by 2-Wasserstein distance.
• Hypotheses: Let f ε be a solution to a given kinetic equation KEε scaled with ε > 0
corresponding to a initial data f ε0 . Let U ε and U ε0 consist of hydrodynamic variables of f ε

and f ε0 respectively.
Let U be a solution to a balance law (as a limit system of KEε):

∂tU + divxA(U) = F (U), U |t=0 = U0.

• (H1): The kinetic equation KEε has a kinetic entropy F such that
∫
F(f ε)(t) dx ≥ 0

and∫
F(f ε)(t) dx+

1

ε

∫ t

0
D1(f ε)(s) ds+

∫ t

0
D2(f ε)(s) ds ≤

∫
Td

F(f ε0 ) dx,

where D1, D2 ≥ 0 are some dissipations.

• (H2): There exists a constant C > 0 (independent of ε) such that∫
η(U ε0 |U0) dx ≤ Cε,

∫ (
F(f ε0 )− η(U ε0 )

)
dx ≤ Cε,

∫
Td

F(f ε0 ) dx ≤ C.

• (H3): The balance law has a convex entropy η, and the minimization property holds:

η(U ε) ≤ F(f ε).

• (H4): There exists a constant C > 0 (independent of ε) such that∣∣∣ ∫ ∇x(Dη(U)
)

: A(U ε|U) dx
∣∣∣ ≤ C ∫ η(U ε|U) dx.

• (H5): There exists a constant C > 0 (independent of ε) such that∣∣∣ ∫ Dη(U) · [∂tU ε + divxA(U ε)− F (U ε)] dx
∣∣∣ ≤ CD1(f ε).
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• (H6): Let ρε be the hydrodynamic variable of f ε as the local mass, and ρ be the
corresponding variable for the balance law. Then,

−
∫ [

D2η(U)F (U)(U ε − U) +Dη(U)F (U ε)
]
dx

≤ D2(f ε) + CW 2
2 (ρε, ρ) + C

∫
η(U ε|U)dx.

• (H7): There exists a constant C > 0 (independent of ε) such that

W 2
2 (ρε, ρ)(t) ≤ C

∫ t

0

∫
η(U ε|U)dxds+ Cε.

Remark 4.1. 1. The hypotheses (H1)-(H5) provide a basic structure in applying the rela-
tive entropy method to hydrodynamic limits as in previous results (for example, [26, 29, 30]).
On the other hand, the hypotheses (H6)-(H7) provide a crucial connection between the rel-
ative entropy and Wasserstein distance.
2. The (kinetic) entropy inequality (H1) plays an important role in controlling the dissipa-
tions D1, D2 in (H5) and (H6).
3. (H2) is related to a kind of well-prepared initial data.

Lemma 4.2. Assume the hypotheses (H1)-(H7). Then, for a given T > 0, there exists a
constant C > 0 such that∫

η(U ε|U)(t)dx+W 2
2 (ρε, ρ)(t) ≤ Cε, t ≤ T.

Proof. First of all, using Proposition 3.2, we have∫
Td

η(U ε|U)(t) dx ≤ I1 + I2 + I3 + I4 + I5,

I1 :=

∫
Td

η(U ε0 |U0) dx,

I2 :=

∫
Td

(
η(U ε)(t)− η(U ε0 )

)
dx,

I3 := −
∫ t

0

∫
Td

∇x
(
Dη(U)

)
: A(U ε|U) dxds,

I4 := −
∫ t

0

∫
Td

Dη(U) · [∂tU ε + divxA(U ε)− F (U ε)] dxds,

I5 := −
∫ t

0

∫
Td

[
D2η(U)F (U)(U ε − U) +Dη(U)F (U ε)

]
dxds.

It follows from (H2) that I1 ≤ Cε.
We decompose I2 as

I2 =

∫
Td

(η(U ε)(t)−F(f ε)(t)) dx︸ ︷︷ ︸
=:I12

+

∫
Td

(F(f ε)(t)−F(f ε0 )) dx︸ ︷︷ ︸
=:I22

+

∫
Td

(F(f ε0 )− η(U ε0 )) dx︸ ︷︷ ︸
=:I32

.

(4.1)
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First, I1
2 ≤ 0 by (H3).

Since (H1) yields

I2
2 ≤ −

∫ t

0
D2(f ε)ds,

it follows from (H6) that

I2
2 + I5 ≤ C

∫ t

0
W 2

2 (ρε, ρ)ds+ C

∫ t

0

∫
Td

η(U ε|U)dxds.

By (H2), I3
2 ≤ Cε.

It follows from (H4) that

I3 ≤ C
∫ t

0

∫
Td

η(U ε|U)dxds.

Since (H1) and (H2) imply ∫ t

0
D1(f ε)(s) ds ≤ Cε,

we have I4 ≤ Cε.
Therefore, we have∫

η(U ε|U)(t)dx ≤ Cε+ C

∫ t

0

[ ∫
η(U ε|U)(s)dxds+W 2

2 (ρε, ρ)
]
ds.

Hence, combining it with (H7), and using Gronwall’s inequality, we have the desired result.
�

5. Proof of Theorem 3.1

The main part of the proof consists in proving the estimate (3.1).

5.1. Proof of (3.1). This will be done by verifying the hypotheses (H1)-(H7), and then
completed by Lemma 4.2.

5.1.1. Verification of (H1): (H1) is satisfied thanks to Lemma 5.1 below. There we show
that one can replace the nonlocal dissipation D2 in the kinetic entropy inequality (2.9) by

another dissipation D̃2 defined in terms of the hydrodynamic variables ρε and uε.

Lemma 5.1. For any ε > 0, assume that f ε0 satisfies

f ε0 ∈ L1 ∩ L∞(Td × Rd), |v|2f ε0 ∈ L1(Td × Rd).

Then the weak solution f ε in Proposition 2.1 also satisfies∫
Td

F(f ε)(t) dx+
1

ε

∫ t

0
D1(f ε)(s) ds+

∫ t

0
D̃2(f ε)(s) ds ≤

∫
Td

F(f ε0 ) dx,(5.1)

where F and D1 as in (2.5), and

D̃2(f ε) :=
1

2

∫
T2d

ψ(x− y)ρε(t, x)ρε(t, y)|uε(t, x)− uε(t, y)|2 dx dy.
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Proof. Recalling (2.9), it is enough to show D̃2(f ε) ≤ D2(f ε). We first rewrite D̃2(f ε) in
terms of the mesoscopic variables as follows: using ψ(x− y) = ψ(y − x), we have

D̃2(f ε) =
1

2

∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)(v − w) · (uε(t, x)− uε(t, y)) dv dw dx dy

=

∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)(v − w) · uε(t, x) dv dw dx dy

=

∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)(v − w) · v dv dw dx dy︸ ︷︷ ︸
=:I1

+

∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)(v − w) · (uε(t, x)− v) dv dw dx dy︸ ︷︷ ︸
=:I2

.

First, we have

I1 =
1

2

∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)|v − w|2 dx dy dv dw = D2(f ε).

We next claim I2 ≤ 0.
Indeed, since

ρε|uε|2 =

( ∫
Rd vf

εdv
)2∫

Rd f εdv
≤
∫
Rd

|v|2f εdv,(5.2)

we have∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)|v|2 dv dw dx dy

≥
∫
T2d

ψ(x− y)ρε(t, y)ρε(t, x)|uε(t, x)|2 dx dy.

Then, since∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)uε(t, x) · w dv dw dx dy

=

∫
T2d

ψ(x− y)ρε(t, x)ρε(t, y)uε(t, x) · uε(t, y) dx dy,

∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)uε(t, x) · v dv dw dx dy

=

∫
T2d

ψ(x− y)ρε(t, x)ρε(t, y)|uε(t, x)|2 dx dy,

∫
T2d×R2d

ψ(x− y)f ε(t, x, v)f ε(t, y, w)v · w dv dw dx dy

=

∫
T2d

ψ(x− y)ρε(t, x)ρε(t, y)uε(t, x) · uε(t, y) dx dy,

we conclude that I2 ≤ 0, as desired. �
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5.1.2. Verification of (H2): We show that the assumptions (A1)-(A3) for initial data
imply (H2). Using (3.6) and assumption (A3), we have∫

Td

η(U ε0 |U0) dx =
1

2

∫
Td

ρε0|uε0 − u0|2dx ≤ Cε2

∫
Td

ρε0 dx ≤ Cε2.

Since it follows from (A1)-(A3) that∫
Td

(F(f ε0 )− η(U0)) dx = O(ε),

and ∫
Td

(η(U0)− η(U ε0 )) dx =
1

2

∫
Rd

(
ρ0|u0|2 − ρε0|uε0|2

)
≤ 1

2

∫
Td

|ρ0 − ρε0||u0|2 +
1

2

∫
Td

ρε0
∣∣|uε0|2 − |u0|2

∣∣ = O(ε),

we have ∫
Td

(
F(f ε0 )− η(U ε0 )

)
dx = O(ε).

It is obvious that (A1) implies ∫
Td

F(f ε0 ) dx ≤ Cε.

5.1.3. Verification of (H3): It follows from (5.2) that

(5.3) η(U ε) = ρε
|uε|2

2
≤
∫
Rd

|v|2

2
f εdv = F(f ε).

5.1.4. Verification of (H4): Since

A(U) =

(
P T

P⊗P
ρ

)
,

we have

DA(U) · (U ε − U) = DρA(U)(ρε − ρ) +DPiA(U)(P εi − Pi)

=

(
(P ε − P )T

−ρε−ρ
ρ2

P ⊗ P + 1
ρP ⊗ (P ε − P ) + 1

ρ(P ε − P )⊗ P

)
,

which yields

A(U ε|U) =

(
0

1
ρεP

ε ⊗ P ε − 1
ρP ⊗ P + ρε−ρ

ρ2
P ⊗ P − 1

ρP ⊗ (P ε − P )− 1
ρ(P ε − P )⊗ P

)
=

(
0

ρε(uε − u)⊗ (uε − u)

)
.

Therefore, using (3.5) and (3.6), we have∣∣∣ ∫ ∇x(Dη(U)
)

: A(U ε|U) dx
∣∣∣ =

∣∣∣ ∫ t

0

∫
Td

ρε(uε − u)⊗ (uε − u) : ∇xu dx ds
∣∣∣

≤ C‖∇xu‖L∞((0,T∗)×Td)

∫ t

0

∫
Td

η(U ε|U) dx ds.
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5.1.5. Verification of (H5): For a weak solution f ε to (1.2), it follows from (2.13) that

U ε =
(
ρε

P ε

)
solves the system:

(5.4) ∂tU
ε + divxA(U ε)− F (U ε) = divx

(
0

−
∫
Rd(v − uε)⊗ (v − uε)f εdv

)
.

where the equality holds in the sense of distributions (see (2.8)). Therefore, we have∣∣∣ ∫ Dη(U) · [∂tU ε + divxA(U ε)− F (U ε)] dx
∣∣∣

=
∣∣∣ ∫

Td

∇xu :
(∫

Rd

(v − uε)⊗ (v − uε)f εdv
)
dx
∣∣∣

≤ C‖∇xu‖L∞((0,T∗)×Td)

∫
Td×Rd

|v − uε|2f εdv dx = C‖∇xu‖L∞((0,T∗)×Td)D1(f ε).

5.1.6. Verification of (H6): From the proof of Proposition 4.2 in [29], we see

−
∫
Td

[
D2η(U)F (U)(U ε − U) +Dη(U)F (U ε)

]
dx = K1 +K2 +K3,

where

K1 := −1

2

∫
T2d

ψ(x− y)ρε(x)ρε(t, y)
∣∣(uε(x)− u(x))− (uε(y)− u(y))

∣∣2 dx dy,
K2 :=

1

2

∫
T2d

ψ(x− y)ρε(x)ρε(y)|uε(x)− uε(y)|2 dx dy,

K3 :=

∫
T2d

ψ(x− y)ρε(x)(ρε(y)− ρ(y))(u(y)− u(x))(uε(x)− u(x)) dx dy.

Notice that K1 ≤ 0, and K2 = D̃2(f ε) where D̃2(f ε) is in Lemma 5.1.
To estimate K3, we separate it into two parts:

K3 =

∫
Td

(∫
Td

ψ(x− y)u(y)(ρε(y)− ρ(y))dy
)
ρε(x)(uε(x)− u(x)) dx

−
∫
Td

(∫
Td

ψ(x− y)(ρε(y)− ρ(y))dy
)
u(x)ρε(x)(uε(x)− u(x)) dx.

Since ψ and u are Lipschitz, we use the Kantorovich-Rubinstein Theorem (see [38, Theorem
5.10 and Particular Case 5.16]) to estimate

K3 ≤W1(ρε, ρ)
(

sup
x∈Td

‖ψ(x− ·)u‖L∞(0,T∗;W 1,∞(Td))

+ ‖ψ‖L∞(0,T∗;W 1,∞(Td))‖u‖L∞((0,T∗)×Td)

)∫
Td

ρε(x)|uε(x)− u(x)| dx.

Therefore, since W1(ρε, ρ) ≤W2(ρε, ρ), we obtain

K3 ≤ C
(
W 2

2 (ρε, ρ) +

∫
Td

ρε(x)|uε(x)− u(x)|2dx
)
.

Hence we have verified (H6).
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5.1.7. Verification of (H7): This will be shown by Lemma 5.2 below. We first derive
some estimates for the characteristics generated by the velocity fields uε and u.
For the velocity u in the limit system (1.4), let X be a characteristic generated by it, that
is

(5.5) Ẋ(t, x) = u(t,X(t, x)), X(0, x) = x.

Then, thanks to the smoothness of u, it follows from (3.8) that

X(t)#ρ0(x) dx = ρ(t, x) dx.

On the other hand, since uε is not Lipschitz w.r.t x, we use a probabilistic representation
for ρε as a solution of the continuity equation in (3.3). More precisely, (5.3) and (2.9) imply∫

Td

|uε(t)|2ρε(t) dx ≤
∫
Td

F(f ε)(t) dx ≤
∫
Td

F(f ε0 ) dx <∞,

so it follows from Proposition 3.3 that there exists a probability measure ηε in ΓT∗ × Td
that is concentrated on the set of pairs (γ, x) such that γ is a solution of the ODE

(5.6) γ̇(t) = uε(γ(t)), γ(0) = x,

and

(5.7)

∫
Td

ϕ(x)ρε(t, x) dx =

∫
ΓT∗×Td

ϕ(γ(t)) dηε(γ, x), ∀ϕ ∈ C0(Td), t ∈ [0, T∗].

In particular, this says that the time marginal of the measure ηε at time 0 is given by
ρε(0) = ρε0. Hence, by the disintegration theorem of measures (see for instance [1, Theorem
5.3.1] and the comments at the end of Section 8.2 in [1]), we can write

dηε(γ, x) = ηεx(dγ)⊗ ρε0(x) dx,

where {ηεx}x∈Td is a family of probability measures on ΓT ∗ concentrated on solutions of (5.6).

For the flow X in (5.5), we also consider the densities ρ̃ε(t) defined as

(5.8) ρ̃ε(t, x) dx = X(t)#ρ
ε
0(x) dx.

Note that, since

‖ρ(t)− ρ̃ε(t)‖L1(Td) = sup
‖ϕ‖∞≤1

∫
Td

ϕ(x)[ρ(t, x)− ρ̃ε(t, x)] dx

= sup
‖ϕ‖∞≤1

∫
Td

ϕ(X(t, x))[ρ0(x)− ρε0(x)] dx ≤ ‖ρε0 − ρ0‖L1(Td).

we have

(5.9) ‖ρ(t)− ρ̃ε(t)‖L1(Td) ≤ ‖ρε0 − ρ0‖L1(Td).

We now consider the measure νε on ΓT∗ × ΓT∗ × Td defined as

dνε(γ, σ, x) = ηεx(dγ)⊗ δX(·,x)(dσ)⊗ ρε0(x) dx.

If we consider the evaluation map

Et : ΓT∗ × ΓT∗ × Td → Td × Td, Et(γ, σ, x) = (γ(t), σ(t)),
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it follows that the measure πεt := (Et)#ν
ε on Td×Td has marginals ρε(t, x) dx and ρ̃ε(t, y) dy

for all t ≥ 0. Therefore, we have∫
ΓT∗×Td

|γ(t)−X(t, x)|2ηεx(dγ)⊗ ρε0(x) dx =

∫
ΓT∗×ΓT∗×Td

|γ(t)− σ(t)|2dνε(γ, σ, x)

=

∫
T2d

|x− y|2dπεt (x, y)

≥W 2
2 (ρε(t), ρ̃ε(t)).

(5.10)

We now use the above results to prove the following lemma.

Lemma 5.2. Under the same assumptions as in Theorem 3.1, we have that

(5.11) W 2
2 (ρε(t), ρ(t)) ≤ CeT∗

∫ t

0

∫
Td

|uε(s, x)− u(s, x)|2ρε(s, x) dx ds+O(ε), t ≤ T∗.

Proof. Let ρ̃ε be defined as (5.8). We begin by observing that, thanks to Lemma 3.4, (5.9),
and assumption (A2), it follows that

W 2
2 (ρ̃ε(t), ρ(t)) ≤ O(ε).

Hence, to prove (5.11), it is enough to bound W 2
2 (ρε(t), ρ̃ε(t)).

To this aim, we try to get a Gronwall-type inequality on∫
ΓT∗×Td

|γ(t)−X(t, x)|2ηεx(dγ)⊗ ρε0(x) dx.

Since

γ̇(t)− Ẋ(t, x) =
(
uε(γ(t))− u(γ(t))

)
+
(
u(γ(t))− u(X(t, x))

)
,

(by (5.5) and (5.6)), we have

1

2

d

dt

∫
ΓT∗×Td

|γ(t)−X(t, x)|2dηεx(γ)⊗ ρε0(x) dx

≤
∫

ΓT∗×Td

|uε(γ(t))− u(γ(t))|2dηεx(γ)⊗ ρε0(x) dx

+

∫
ΓT∗×Td

|u(γ(t))− u(X(t, x))|2dηεx(γ)⊗ ρε0(x) dx

+ 2

∫
ΓT∗×Td

|γ(t)−X(t, x)|2dηεx(γ)⊗ ρε0(x) dx.

Notice that, thanks to (5.7),∫
ΓT∗×Td

|uε(γ(t))− u(γ(t))|2dηεx(γ)⊗ ρε0(x) dx =

∫
Td

|uε(t, x)− u(t, x)|2ρε(t, x) dx.

Moreover, since∫
ΓT∗×Td

|u(γ(t))− u(X(t, x))|2dηεx(γ)⊗ ρε0(x) dx

≤ ‖u‖L∞(0,T∗;W 1,∞(Td))

∫
ΓT∗×Td

|γ(t)−X(t, x)|2dηεx(γ)⊗ ρε0(x) dx,
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we have

d

dt

∫
ΓT∗×Td

|γ(t)−X(t, x)|2dηεx(γ)⊗ ρε0(x) dx

≤ C
∫

ΓT∗×Td

|γ(t)−X(t, x)|2dηεx(γ)⊗ ρε0(x) dx+

∫
Td

|uε(t, x)− u(t, x)|2ρε(t, x) dx.

Therefore, using Gronwall’s inequality together with γ(0) = X(0, x) = x for ηεx-a.e. γ, we
obtain∫

ΓT∗×Td

|γ(t)−X(t, x)|2dηεx(γ)⊗ ρε0(x) dx

≤ CeT∗
∫ t

0

∫
Td

|uε(s, x)− u(s, x)|2ρε(s, x) dx ds, t ≤ T∗.

Hence, using (5.10) we get the desired control on W 2
2 (ρε(t), ρ̃ε(t)), which concludes the

proof. �

5.2. Proof of (3.2). Here we use the estimate (3.1) to show the convergence (3.2).
First, since (5.1) and (A1) imply ∫ t

0
D1(f ε)(s) ds ≤ Cε,

using (3.1), we have∫ T∗

0

∫
Td×Rd

f ε|v − u|2 dx dv ds ≤ 2

∫ T∗

0

∫
Td×Rd

f ε(|v − uε|2 + |uε − u|2) dx dv ds

≤ C(1 + T∗)ε.

(5.12)

Then, for any φ ∈ C1
c ((0, T∗)× Td × Rd),∫ T∗

0

∫
Td×Rd

φ(s, x, v)f ε dx dv ds−
∫ T∗

0

∫
Td×Rd

φ(s, x, v)ρ δu(dv) dx ds

=

∫ T∗

0

∫
Td×Rd

φ(s, x, v)f ε dx dv ds−
∫ T∗

0

∫
Td

φ(s, x, u)ρ dx ds

=

∫ T∗

0

∫
Td×Rd

f ε
(
φ(s, x, v)− φ(s, x, u)

)
dx dv ds︸ ︷︷ ︸

=:Iε1

+

∫ T∗

0

∫
Td

φ(s, x, u)(ρε − ρ) dx ds︸ ︷︷ ︸
=:Iε2

.

Using (5.12), we have

Iε1 ≤ ‖∇vφ‖∞
∫ T∗

0

∫
Td×Rd

f ε|v − u| dx dv ds

= ‖∇vφ‖∞
(∫ T∗

0

∫
|v−u|≤

√
ε
f ε|v − u| dx dv ds+

∫ T∗

0

∫
|v−u|>

√
ε
f ε|v − u| dx dv ds

)
≤ ‖∇vφ‖∞

(√
εT∗ +

1√
ε

∫ T∗

0

∫
|v−u|>

√
ε
f ε|v − u|2dv dx ds

)
≤ C(1 + T∗)

√
ε.
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Since W1(ρε, ρ) ≤W2(ρε, ρ)→ 0 by (3.1), we also have Iε2 → 0 as ε→ 0.
Hence, this completes the proof of (3.2).

Appendix A. Proof of Theorem 2.2

We first estimate d
dtE1 as follows:

d

dt
E1 = 2

∫
Td×Rd

f(u− v)∂tu dv dx+

∫
Td×Rd

∂tf |u− v|2 dv dx

:= I1 + I2.

First of all, by the definition of u, we have
∫
f(u− v) dv = 0, hence I1 = 0.

Concerning I2, it follows from (1.1) that

I2 =

∫
Td×Rd

|u− v|2
(
−∇x · (vf)−∇v · (L[f ]f)−∇v · ((u− v)f)

)
dv dx

= 2

∫
Td×Rd

∇xu(u− v) · vf dv dx︸ ︷︷ ︸
=:I21

−2

∫
Td×Rd

(u− v) · L[f ]f dv dx︸ ︷︷ ︸
=:I22

−2

∫
Td×Rd

|u− v|2f dv dx︸ ︷︷ ︸
=−2E1

.

Then, we use the stress tensor P =
∫
Rd(v − u)⊗ (v − u)f dv to rewrite I21 as

I21 = 2

∫
Td×Rd

∇xu(u− v) · (v − u)f dv dx = 2

∫
Td

(∇x · P ) · u dx.

Thanks to the estimate on I2 in the proof of Lemma 5.1, we see that

I22 = −2

∫
T2d×R2d

ψ(x− y)f(t, x, v)f(t, y, w)(u(t, x)− v) · (w − v) dv dw dx dy ≤ 0.

Therefore, we have

(A.1)
d

dt
E1 ≤ 2

∫
Td

(∇x · P ) · u dx− 2E1.

We next estimate d
dtE2 as follows:

d

dt
E2 = 2

∫
T2d

∂tρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

+ 2

∫
T2d

ρ(t, x)ρ(t, y)(u(t, x)− u(t, y))∂t(u(t, x)− u(t, y)) dx dy

:= J1 + J2.

Since it follows from (2.13) with ε = 1 that

∂tρ+∇x · (ρu) = 0,

ρ∂tu+ ρu · ∇xu+∇x · P =

∫
Rd

L[f ]fdv,
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we obtain (recall that ‖ρ‖L1(Td) = 1)

J1 = −2

∫
T2d

∇x · (ρu)(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

= 4

∫
Td

ρu · ∇xu · u dx− 4

∫
Td

ρu · ∇xu dx ·
∫
Td

ρu dx,

and

J2 = 4

∫
T2d

ρ(t, y)u(t, x)ρ(t, x)∂tu(t, x) dx dy − 4

∫
T2d

ρ(t, y)u(t, y)ρ(t, x)∂tu(t, x) dx dy

= −4

∫
Td

ρu · ∇xu · u dx− 4

∫
Td

∇x · P · u dx

+ 4

∫
Td×Rd

u · L[f ]f dx dv︸ ︷︷ ︸
:=J21

+4

∫
Td

ρu · ∇xu dx ·
∫
Td

ρu dx

+ 4

∫
Td

∇x · Pdx︸ ︷︷ ︸
=0

·
∫
Td

ρu dx− 4

∫
Td×Rd

L[f ]f dx dv︸ ︷︷ ︸
:=J22

·
∫
Td

ρu dx.

Now, we compute the above terms J21 and J22 as follows:

J21 =

∫
T2d×R2d

ψ(x− y)f(t, x, v)f(t, y, w)(w − v) · u(t, x) dv dw dx dy

=

∫
T2d

ψ(x− y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) · u(t, x) dx dy

= −1

2

∫
T2d

ψ(x− y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy,

J22 =

∫
T2d×R2d

ψ(x− y)f(t, x, v)f(t, y, w)(w − v) dv dw dx dy = 0.

Therefore, we have

d

dt
E2 = −4

∫
Td

∇x · P · u dx− 2

∫
T2d

ψ(x− y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy.

Recalling (A.1), proves that

d

dt
E ≤ −2E1 −

∫
T2d

ψ(x− y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

≤ −2E1 − ψmE2 ≤ −2 min{1, ψm}E ,

which completes the proof of (2.11).
To show the second bound, note that if `T := supt∈[0,T ] ‖∇xu‖L∞(Td) < ∞ then (A.1)

yields

d

dt
E1(t) ≤ −2

∫
Td

∇xu : P dx− 2E1 ≤ 2`T

∫
Td

|u− v|2f dv dx− 2E1(t) = 2(`T − 1)E1(t),

and also (2.11) follows. �
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