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Abstract. In this paper we provide a rigorous asymptotic analysis of a phase-field model used
to simulate pressure-driven fracture propagation in poro-elastic media. More precisely, assuming
a given pressure p ∈W 1,∞(Ω) we show that functionals of the form

E(u) =

∫
Ω

e(u) : Ce(u) + p∇ · u + 〈∇p,u〉dx +Hn−1(Ju), u ∈ GSBD(Ω) ∩ L1(Ω;Rn)

can be approximated in terms of Γ-convergence by a sequence of phase-field functionals, which
are suitable for numerical simulations. The Γ-convergence result is complemented by a nu-
merical example where the phase-field model is implemented using a Discontinuous Galerkin
Discretization.

Keywords: Γ-convergence, phase-field approximation, pressure-driven crack propa-
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1. Introduction

In recent years the description of brittle fracture in elastic materials has drawn a lot of
attention both from an analytical and from a numerical point of view (see, e.g., [1,2,18,20,31,34]
and [12,15,35,36,38], to mention just a few works in this area). Starting from the pioneering work
of Griffith [33] and its later development by Francfort and Marigo [30] the propagation of a crack
in an elastic material is modeled by minimizing a total energy consisting of two competing terms.
A bulk term represents the stored energy in the elastic material and a surface term represents
the energy needed to produce a crack. For brittle materials the surface energy is proportional to
the length of the crack via a constant Gc, the toughness of the material. Moreover, in the small
strain regime, the bulk energy can be expressed in terms of linear elasticity. In fact, representing
by Ω ⊂ Rn the region occupied by a homogeneous and isotropic elastic material and denoting
by u : Ω→ Rn the displacement, a prototypical associated energy is given by

F (u) =
1

2

∫
Ω
e(u) : Ce(u) dx +GcHn−1(Ju). (1.1)

Here u belongs to the space of generalized special functions of bounded deformation GSBD(Ω)
introduced in [25]. The bulk energy depends on u through its approximate symmetric gradient
e(u) and is determined by the material-dependent fourth-order elasticity tensor C given by
Hooke’s law. Moreover, the crack is implicitly described through the jumpset Ju of u.

In view of new technical developments during the last years (as for instance in the field of
geothermal energy), there is an increasing interest to consider more general energies than in
(1.1). An important issue is, for example, the modeling of pressure-driven crack propagation
in a poro-elastic medium. In [13, 38, 42] the authors discuss a generalization of (1.1) to this
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framework. Following their argument and assuming a given pressure p ∈ W 1,∞(Ω) in [27] the
authors derive a total energy of the form

E(u) =
1

2

∫
Ω
e (u) : Ce (u) dx +

∫
Ω

(1− α) p∇ · u + 〈∇p,u〉 dx +GcHn−1(Ju), (1.2)

where α ∈ [0, 1] is Biot’s coefficient [11] and ∇ · u = tr e(u) denotes the divergence of u (see,
e.g., [27, 38] and references therein for more details on the modeling).

The numerical minimization of functionals as in (1.1) and (1.2), however, bears several dif-
ficulties, since they contain the a priori unknown free-discontinuity set Ju that might exhibit
complex topologies. In order to circumvent these difficulties it has proved successful to reg-
ularize the crack Ju using a phase-field approximation reminiscent of the Ambrosio-Tortorelli
approximation [5, 6] of the Mumford-Shah functional [39] (see Remark 5.2). The main idea
is to introduce an auxiliary variable ϕ, the so-called phase-field variable, which is close to 1
in large regions of Ω and approaches zero in a small region around the crack. Thus the set
where ϕ is close to zero should provide a “regularization” of the crack. More precisely, a
phase-field approximation of the functional F as in (1.1) is given by the sequence of functionals
Fε : H1 (Ω;Rn)×H1 (Ω)→ [0,+∞) defined as

Fε(u, ϕ) =
1

2

∫
Ω

(ϕ2 + kε)e (u) : Ce (u) dx +
1

2

∫
Ω

(ϕ− 1)2

ε
+ ε|∇ϕ|2 dx (1.3)

with ε > 0 and 0 < kε � ε. Since the functionals Fε are defined for Sobolev functions and
thus do not contain any unknown free-discontinuity set, numerical schemes for the minimization
of Fε can be implemented with less difficulties. Moreover, in [18, 19, 21, 34] it has been proved
successively that for ε → 0 the functionals Fε approximate the functional F in the sense of
Γ-convergence. Since Γ-convergence, when coupled with a suitable compactness result, implies
convergence of minimizers, this justifies to use Fε in place of F for numerical simulations.

A phase-field approach as described above has also been used to simulate pressure-driven
crack propagation (see [13, 27, 37, 38, 42]). In fact, in [27] the authors replace the functional E
in (1.2) by the functionals

Eε(u, ϕ) =
1

2

∫
Ω

(ϕ2 + kε)e (u) : Ce (u) dx +

∫
Ω

(1− α)ϕp∇ · u + ϕ 〈∇p,u〉 dx

+
Gc
2

∫
Ω

(ϕ− 1)2

ε
+ ε|∇ϕ|2 dx (1.4)

for numerical simulations. Moreover, they show that for n = 1 the sequence (Eε) Γ-converges
to E as ε → 0. To our knowledge, despite the fact that a phase-field approximation as in
(1.4) is widely used for numerical simulations, for n > 1 a rigorous asymptotic analysis for the
functionals Eε in terms of Γ-convergence is still missing.

The aim of this paper is to establish this missing analysis. In fact, our main result is Theorem
3.1 which shows that the functional E in (1.2) is the Γ-limit in the strong (L1 (Ω;Rn)×L1 (Ω))-
topology of the functionals Eε as in (1.4). A key ingredient to prove this result is Lemma
4.1, which allows us to estimate the functionals Eε from below in terms of Fε. On account of
Theorem 3.1 we also establish a convergence result for minimizers of a suitable perturbation
of the functionals Eε. Finally, having provided an analytical justification to use Eε for numer-
ical simulations, we also present a simulation of pressure-driven fracture propagation using a
Discontinuous Galerkin discretization of the phase-field model as in [27].

More in detail, the plan of the paper is the following. After briefly recalling some preliminaries
on Γ-convergence and on the spaces of bounded deformation, we will state the main result in
Section 3. The proof of the result is carried out in Section 4. As usual it is divided into two steps.
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First, the Γ-liminf inequality is shown following the strategy of [28] and applying the compactness
results in [25]. Second, to prove the Γ-limsup inequality we employ a recent density result of
Chambolle and Crismale [21, Theorem 1.1]. In Section 5 we study the asymptotic behavior of
a class of minimization problems associated to Eε, and we conclude the paper with a numerical
example exploring the relation between the mesh size and the parameters ε and kε in Section 6.

2. Notation and preliminaries

In this section we fix the notation and recall some preliminary results that we will employ in
the sequel.

Main notation. Let m,n ∈ N with m,n ≥ 1 and let k ∈ N. Throughout this paper, if
not specified otherwise, Ω ⊂ Rn is a bounded open set with Lipschitz boundary ∂Ω, Ln denotes
the n-dimensional Lebesgue-measure in Rn and Hk the k-dimensional Hausdorff-measure in Rn.
Moreover, # is the counting measure. Further, for U, V ⊂ Rn we denote by U∆V the symmetric
difference between U and V and XU is the characteristic function of U . For q ∈ [1,+∞] we use
standard notation for the Lebesgue spaces Lq(Ω;Rm) and W k,q(Ω;Rm). If k = 1, q = 2 we write
H1(Ω;Rm) in place of W 1,2(Ω;Rm).

Let ν, ξ ∈ Rn; we write 〈ν, ξ〉 for the scalar product between ν and ξ and |ν| for the Euclidean

norm of ν. Moreover, if A ∈ Rn×n, then |A| =
√

tr (ATA) denotes the Frobenius norm.
Suppose that u : Ω → Rm is measurable. We say that a ∈ Rm is an approximate limit of u

at x ∈ Ω and write
a = ap-lim

y→x
u(y),

if for every δ > 0 we have

lim
ρ→0+

Ln (Ω ∩Bρ(x) ∩ {|u− a| > δ})
ρn

= 0.

In this case we also say that u is approximately continuous at x and we denote by Su the set
of all x ∈ Ω where u is not approximately continuous. Moreover, we say that x ∈ Su is an
approximate jump point of u and write x ∈ Ju if there exist a, b ∈ Rm, a 6= b and ν ∈ Sn−1

satisfying
a = ap-lim

y→x
〈ν,y−x〉>0

u(y) and b = ap-lim
y→x

〈ν,y−x〉<0

u(y). (2.1)

The triplet (a, b, ν) is uniquely determined by (2.1) up to a change of sign of ν and a simultaneous
permutation of (a, b). We denote it by (u+(x),u−(x), νu(x)) and we set [u](x) := u+(x)−u−(x).
Finally, u is called approximately differentiable at x ∈ Ω \Su if there exists a matrix L ∈ Rm×n
such that

ap-lim
y→x

|u(y)− u(x)− L(y − x)|
|y − x| = 0 (2.2)

The matrix L uniquely determined by (2.2) is called the approximate gradient of u at x and is
denoted by ∇u(x).

BV and BD functions. We assume that the reader is familiar with the spaces BV (Ω;Rm)
and SBV (Ω;Rm). Here we just recall the main notation and refer to [4] (see also [16]) for more
details. We say that a function u ∈ L1(Ω;Rm) is a function of bounded variation and write
u ∈ BV (Ω,Rm) if its distributional derivative Du can be represented by a bounded (matrix-
valued) Radon measure. If m = 1 we simply write BV (Ω). Recall that for every u ∈ BV (Ω;Rm)
the distributional derivative Du can be decomposed as

Du = ∇uLn + [u]⊗ νuHn−1xSu +Dcu, (2.3)
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where Dcu is the so-called Cantor part of Du which vanishes on Borel sets U ⊂ Ω that are
σ-finite with respect to Hn−1. We call u a special function of bounded variation and write
u ∈ SBV (Ω;Rm), if u ∈ BV (Ω;Rm) and Dcu = 0. We set

SBV 2(Ω;Rm) := {u ∈ SBV (Ω;Rm) : ∇u ∈ L2(Ω;Rm×n), Hn−1(Su) < +∞}.
Moreover, we say that a measurable function u : Ω → R is a generalized special function of
bounded variation and write u ∈ GSBV (Ω) if for every M ∈ N the truncation of u at level M
defined as uM := −M ∨ (u ∧M) belongs to SBV (Ω).

Further, we say that a function u : Ω → R belongs to BVloc(Ω), if u ∈ BV (A) for every
A ⊂⊂ Ω compactly embedded. Analogously, we write u ∈ SBVloc(Ω) if u ∈ SBV (A) for every
A ⊂⊂ Ω.

In analogy to the definition of BV (Ω;Rn) one can define the space BD(Ω) as the space
of all vector-valued functions u ∈ L1(Ω;Rn) such that its distributional symmetric gradient
Eu = 1

2(Du + (Du)T ) is representable as a bounded (matrix-valued) Radon measure (see, e.g.,
[10, 41] for more details). Similar to (2.3) Eu can be decomposed as

Eu = e (u)Ln + (u+ − u−)� νuHn−1xJu + Ecu,

where for Ln-a.e. x ∈ Ω the matrix (e (u))(x) is the approximate symmetric gradient of u at x
satisfying

ap-lim
y→x

〈u(y)− u(x)− (e (u))(x)(y − x), y − x〉
|y − x|2

= 0 (2.4)

(see [3, Section 4]). Moreover, every u ∈ BD(Ω) is approximately differentiable Ln-a.e. in Ω
and

e (u) =
1

2

(
∇u + (∇u)T

)
(2.5)

(see [3, Remark 7.5]). Finally, if Ecu = 0 we write u ∈ SBD(Ω). For more details on the spaces
BD(Ω) and SBD(Ω) we refer the reader to [3, 10,41].

We now recall the definition of the space GSBD(Ω) introduced in [25]. To this end, we fix
some notation. For every ξ ∈ Sn−1 we denote by

Πξ := {y ∈ Rn : 〈y, ξ〉 = 0}
the hyperplane orthogonal to ξ passing through the origin. For every A ⊂ Ω and every y ∈ Πξ

we set

Aξy := {t ∈ R : y + tξ ∈ A},
and for every u : A→ Rm we define uξy : Aξy → Rm by setting

uξy(t) := u(y + tξ) ∀ t ∈ Aξy.

Moreover, if m = n, we define the function ûξy : Aξy → R as

ûξy(t) := 〈u(y + tξ), ξ〉.
Then the space GSBD(Ω) is defined as follows (see [25, Definition 4.1 and 4.2])

Definition 2.1. Let u : Ω → Rn be Ln-measurable. Then u ∈ GSBD(Ω) if there exists a

positive finite Radon measure λu such that for all ξ ∈ Sn−1 there holds ûξy ∈ SBVloc(Ω) for
Hn−1-a.e. y ∈ Πξ and∫

Πξ
|Dûξy|(Bξ

y \ J1
ûξy

) + #(Bξ
y ∩ J1

ûξy
)dHn−1(y) ≤ λu(B)
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for every Borel set B ⊂ Ω, where

J1
ûξy

:=
{
y ∈ J

ûξy
: |[ûξy(x)]| ≥ 1

}
.

The structure Theorem [3, Theorem 4.5] together with [3, Proposition 4.7] ensures that
SBD(Ω) ⊂ GSBD(Ω). Moreover, for u ∈ GSBD(Ω) and Ln-a.e. x ∈ Ω there exists the
approximate symmetric gradient (e (u))(x) satisfying (2.4). Further, e (u) ∈ L1(Ω;Rn×nsym ) and

for every ξ ∈ Sn−1 and Hn−1-a.e. y ∈ Πξ there holds

〈(e (u))ξyξ, ξ〉 = ∇ûξy L1-a.e. in Ωξ
y

(see [25, Theorem 9.1]). This allows us to define a divergence for u ∈ GSBD(Ω). In fact, for
every u ∈ GSBD(Ω) we set

∇ · u := tr(e (u)),

which is consistent with the usual definition of divergence thanks to (2.5).
Moreover, the space GSBD(Ω) enjoys a compactness property [25, Theorem 11.3]. We will

give a simplified version of the result therein, tailored to our needs.

Theorem 2.2 (Compactness in GSBD). Given a sequence (uk) ⊂ GSBD (Ω) suppose that we
can find c > 0 such that ∫

Ω

|uk|dx +

∫
Ω

|e (uk)|2 dx +Hn−1 (Juk) < c

for all k ∈ N. Then there exists u ∈ GSBD (Ω) and a subsequence ukj such that

ukj → u pointwise Ln-a.e. on Ω,

e
(
ukj
)
⇀ e (u) weakly in L1

(
Ω;Rn×nsym

)
,

Hn−1 (Ju) ≤ lim inf
j→0

Hn−1
(
Jukj

)
.

We finally recall the recent density result [21, Theorem 1.1], adpated to the setting ofGSBD2(Ω)∩
L1(Ω), where

GSBD2(Ω) := {u ∈ GSBD(Ω) : e (u) ∈ L2(Ω;Rn×nsym ), Hn−1(Ju) < +∞}.

Theorem 2.3 (Density in GSBD). Let Ω ⊂ Rn be an open, bounded set with Lipschitz boundary
∂Ω. Let u ∈ GSBD2 (Ω) ∩ L1 (Ω;Rn). Then we can find a sequence (uk) ⊂ SBV 2 (Ω;Rn) ∩
L∞ (Ω;Rn) such that Juk ⊂ Ω is closed and contained in a finite union of closed C1-hypersurfaces
and uk ∈W 1,∞ (Ω \ Juk ;Rn) such that

uk → u in L1(Ω;Rn), (2.6)

e (uk)→ e (u) in L2
(
Ω;Rn×nsym

)
, (2.7)

Hn−1 (Juk∆Ju)→ 0. (2.8)

For further use we denote by W(Ω;Rn) the class of the approximating functions in Theorem
2.3, that is, the class of all functions u ∈ SBV 2(Ω;Rn) ∩ L∞(Ω;Rn) such that Ju ⊂ Ω is closed
and contained in a finite union of closed C1-hypersurfaces and u ∈W 1,∞ (Ω \ Ju;Rn).

Remark 2.4. If the function u in Theorem 2.3 belongs to GSBD2 (Ω) ∩ L2(Ω;Rn) the approxi-
mating sequence (uk) converges to u in L2(Ω;Rn) (see [21, Theorem 1.1], formula (1.1e)).
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Γ-convergence. Eventually, we also recall the definition of Γ-convergence [26] and its basic
properties. For more details we refer the reader to the literature (see, e.g., [17, 24]). In all that
follows ε > 0 is a positive parameter varying in a strictly decreasing sequence converging to
zero. Let (X, d) be a metric space. We say that a sequence of functionals Fε : X → [−∞,+∞]
Γ-converges with respect to the metric d to a functional F : X → [−∞,+∞], if for all x ∈ X
the following two conditions are satisfied:

(1) (liminf-inequality) For every sequence (xε) ⊂ X converging to x with respect to d there
holds

F (x) ≤ lim inf
ε→0

Fε(xε).

(2) (limsup-inequality) There exists a sequence (xε) ⊂ X converging to x with respect to d
and satisfying

lim sup
ε→0

Fε(xε) ≤ F (x).

The function F uniquely determined by 1. and 2. is called the Γ-limit of F . We also consider
the so-called Γ-lower and Γ-upper limits of (Fε) defined by

F ′(x) = Γ- lim inf
ε→0

Fε(x) = inf{lim inf
ε→0

Fε(xε) : xε → x with respect to d}

and

F ′′(x) = Γ- lim sup
ε→0

Fε(x) = inf{lim sup
ε→0

Fε(xε) : xε → x with respect to d}.

We notice that F ′ and F ′′ are lower semicontinuous with respect to d ([24, Proposition 6.8]) and
conditions 1. and 2. are equivalent to

F (x) = F ′(x) = F ′′(x) for every x ∈ X.
In particular, the Γ-limit is always lower semicontinuous with respect to d.

A fundamental property is that a Γ-convergence result when coupled with a suitable compact-
ness result ensures the convergence of minimizers and minimum values. Indeed, the following
holds (see, e.g., [17, Theorem 1.21], [24, Theorem 7.4]).

Theorem 2.5 (Fundamental property of Γ-convergence). Let Fε : X → [−∞,+∞] be equico-
ercive (i.e., for every t ∈ R there exists Kt ⊂ R compact such that for all ε > 0 there holds
{Fε < t} ⊂ Kt) and suppose that (Fε) Γ-converges to some functional F : X → [−∞,∞] with
F 6≡ +∞. Then there exists

min
X

F = lim
ε→0

inf
X
Fε.

Moreover, if (xε) ⊂ X is a minimizing sequence for the functionals Fε (that is, a sequence
satisfying limε (Fε(xε)− infX Fε) = 0) then (up to subsequences) (xε) converges to a minimizer
x̄ of F .

3. Setting of the problem and statement of the main result

We now introduce the functionals that we will consider in this paper. We define the func-
tionals E, Eε : L1 (Ω;Rn)× L1 (Ω)→ (−∞,+∞] by setting

E(u, ϕ) :=


1

2

∫
Ω
e (u) : Ce (u) dx +

∫
Ω

(
(1− α) p∇ · u + 〈∇p,u〉

)
dx +GcHn−1(Ju)

if u ∈ GSBD2(Ω) ∩ L1(Ω;Rn), ϕ = 1 Ln-a.e. in Ω,

+∞ otherwise in L1(Ω;Rn)× L1(Ω),

(3.1)
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and

Eε(u, ϕ) :=



1

2

∫
Ω

(ϕ2 + kε)e (u) : Ce (u) dx +

∫
Ω

(
(1− α)ϕp∇ · u + ϕ 〈∇p,u〉

)
dx

+
Gc
2

∫
Ω

((ϕ− 1)2

ε
+ ε|∇ϕ|2

)
dx

if u ∈ H1(Ω;Rn), 0 ≤ ϕ ≤ 1,

+∞ otherwise in L1(Ω;Rn)× L1(Ω).

(3.2)

Here 0 < kε � ε, Gc > 0 is a positive constant and α ∈ [0, 1] is the Biot’s coefficient [11]. C
denotes the fourth-order elasticity tensor for an isotropic material. It is given by

CA = 2µA+ λ(trA)I for every A ∈ Rn×nsym , (3.3)

where µ > 0 and λ > 0 are the material-dependent Lamé parameters and I ∈ Rn×n denotes the
identity matrix. Moreover, p ∈ W 1,∞(Ω) represents the pressure in the porous medium Ω. As
µ > 0, C is positive definite, since for every A ∈ Rn×nsym there holds

A : CA = 2µ|A|2 + λ (trA)2 ≥ 2µ|A|2. (3.4)

In addition, we have

A : CA ≤ (2µ+ nλ) |A|2.
We also consider the functionals F, Fε : L1(Ω;Rn) × L1(Ω) → [0,+∞] without pressure terms
defined as

F (u, ϕ) :=


1

2

∫
Ω

e (u) : Ce (u) dx +GcHn−1 (Ju)

if u ∈ GSBD2 (Ω) ∩ L1 (Ω;Rn) , ϕ = 1 Ln-a.e. in Ω,

+∞ otherwise in L1 (Ω;Rn)× L1 (Ω) ,

(3.5)

Fε (u, ϕ) :=


1

2

∫
Ω

(
ϕ2 + kε

)
e (u) : Ce (u) dx +

Gc
2

∫
Ω

((ϕ− 1)2

ε
+ ε |∇ϕ|2

)
dx

if u ∈ H1 (Ω;Rn) , 0 ≤ ϕ ≤ 1,

+∞ otherwise in L1 (Ω;Rn)× L1 (Ω) .

(3.6)

It is well-known that the functionals Fε as in (3.6) Γ-converge to the functional F as in (3.5)
(see [21, 34] and also [18]). The aim of this paper is to extend this result to the functionals Eε
and E. More precisely, we prove the following Γ-convergence result.

Theorem 3.1. Let Eε be as in (3.2). Then the functionals Eε Γ-converge in the strong(
L1 (Ω;Rn)× L1 (Ω)

)
-topology to the functional E defined in (3.1).

In the case n = 1 the result has already been proved in [27]. We notice that in this case the
domain of the Γ-limit E is SBV 2(Ω).

Remark 3.2. We mention here that on account of Theorem 3.1, following the approach of [21,
Theorem 1.2] one can also prove a Γ-convergence result for a suitable modification of Eε that
includes the prescription of Dirichlet boundary conditions on a subset ΓD of ∂Ω, satisfying some
geometric condition. More precisely, suppose that Ω ⊂ Rn is open, bounded, connected and
with Lipschitz boundary ∂Ω and that ΓD,ΓN ⊂ ∂Ω are such that

∂Ω = ΓD ∪ ΓN ∪N
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with ΓD, ΓN relatively open, ΓD ∩ΓN = ∅, Hn−1(N) = 0, ΓD 6= ∅ and ∂(ΓD), ∂(ΓN ) have finite
Hn−2-measure. Suppose moreover that there exists δ̄ > 0 and x0 ∈ Rn such that there holds

fδ,x0 (ΓD) ⊂ Ω for every δ ∈ (0, δ̄), (3.7)

where fδ,x0(x) := x0 + (1− δ) (x− x0). Finally, suppose that u0 ∈ H1(Rn;Rn). Then, applying
Theorem 3.1 and following the arguments of [21, Theorem 1.2] one can show that the functionals

Ẽε defined by

Ẽε (u, ϕ) :=

{
Eε (u, ϕ) if trΩ u = trΩ u0 on ΓD, trΩ ϕ = 1 on ΓD,

+∞ otherwise in L1 (Ω;Rn)× L1 (Ω) .
(3.8)

Γ-converge in the strong
(
L1 (Ω;Rn)× L1 (Ω)

)
-topology to the functional Ẽ defined as

Ẽ(u, ϕ) := E(u, ϕ) +GcHn−1 (ΓD ∩ {trΩ u 6= trΩ u0}) .
The proof of Theorem 3.1 will be established in Section 4 below.

4. Proof of the main result

We prove Theorem 3.1 gathering Propositions 4.2 and 4.3 below, which establish the liminf-
inequality and the limsup-inequality, respectively. The main difficulty in establishing the liminf-
inequality consists in the fact that the new pressure-dependent terms might be negative. A
key ingredient to bypass this difficulty is Young’s inequality. Indeed, using Young’s inequality
together with the ellipticity condition (3.4) it is possible to estimate Eε(u, ϕ) from below in
terms of Fε(u, ϕ). More precisely, we can prove the following auxiliary lemma.

Lemma 4.1. Let Eε be as in (3.2), Fε as in (3.6). Then there exist constants c1, c2, c3 > 0
depending only on n, p,Ω and µ such that

Eε(u, ϕ) ≥ c1Fε(u, ϕ)− c2‖u‖L1(Ω;Rn) − c3 (4.1)

for all (u, ϕ) ∈ H1(Ω;Rn)×H1 (Ω) with 0 ≤ ϕ ≤ 1.

Proof. Let (u, ϕ) ∈ H1(Ω;Rn)×H1 (Ω); we now apply Young’s inequality in the form

ab ≤ 1

δ
a2 +

δ

4
b2 for every a, b ≥ 0, δ > 0,

and we choose δ ∈ (0, 2µ/n), where µ is as in (3.3). Together with the fact that |ϕ| ≤ 1 this
yields∣∣∣∣∣

∫
Ω

(
(1−α)ϕp∇ · u + ϕ 〈∇p,u〉

)
dx

∣∣∣∣∣
≤ (1− α)2

δ

∫
Ω
p2dx+

δ

4

∫
Ω
ϕ2(∇ · u)2 dx +

∫
Ω
|∇p||u| dx

≤ (1− α)2

δ
Ln(Ω)‖p‖2L∞(Ω) +

δn

4

∫
Ω
ϕ2|e (u) |2 dx +‖∇p‖L∞(Ω;Rn)‖u‖L1(Ω;Rn)

≤ (1− α)2

δ
Ln(Ω)‖p‖2L∞(Ω) +

µ

2

∫
Ω
ϕ2|e (u) |2 dx +‖∇p‖L∞(Ω;Rn)‖u‖L1(Ω;Rn)

≤ (1− α)2

δ
Ln(Ω)‖p‖2L∞(Ω) +

1

4

∫
Ω

(ϕ2 + kε)e (u) : Ce (u) dx

+ ‖∇p‖L∞(Ω;Rn)‖u‖L1(Ω;Rn). (4.2)
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Thus, we obtain

Eε(u, ϕ) ≥ Fε(u, ϕ)−
∣∣∣∣∣
∫

Ω

(
(1− α)ϕp∇ · u + ϕ 〈∇p,u〉

)
dx

∣∣∣∣∣
≥ Fε(u, ϕ)− (1− α)2

δ
Ln(Ω)‖p‖2L∞(Ω) −

1

4

∫
Ω

(ϕ2 + kε)e (u) : Ce (u) dx

− ‖∇p‖L∞(Ω;Rn)‖u‖L1(Ω;Rn)

≥ 1

2
Fε(u, ϕ)− (1− α)2

δ
Ln(Ω)‖p‖2L∞(Ω) − ‖∇p‖L∞(Ω;Rn)‖u‖L1(Ω;Rn).

Hence, (4.1) holds true with c1 = 1
2 , c2 = ‖∇p‖L∞(Ω) and c3 = (1−α)2

δ Ln(Ω)‖p‖L∞(Ω). �

Lemma 4.1 enables us to prove the lower-bound inequality Proposition 4.2 below. Thereby
and in all that follows c > 0 denotes a generic constant that may vary from line to line.

Proposition 4.2 (Γ-lim inf inequality). Let (u, ϕ) ∈ L1 (Ω;Rn) × L1 (Ω); for every sequence
(uε, ϕε) ⊂ L1 (Ω;Rn)× L1 (Ω) that converges to (u, ϕ) in L1 (Ω;Rn)× L1 (Ω) it holds

E (u, ϕ) ≤ lim inf
ε→0

Eε (uε, ϕε) .

Proof. Let (uε, ϕε) ⊂ L1(Ω;Rn)× L1(Ω) and (u, ϕ) be as in the statement. It is not restrictive
to assume that

sup
ε
Eε(uε, ϕε) < +∞.

Then (uε, ϕε) ⊂ H1 (Ω;Rn) × H1 (Ω), 0 ≤ ϕε ≤ 1 and in view of Lemma 4.1 for every ε > 0
there holds

Eε(uε, ϕε) ≥ c1Fε(uε, ϕε)− c2‖uε‖L1(Ω;Rn) − c3.

Since by hypotheses ‖uε‖L1(Ω;Rn) is bounded uniformly with respect to ε, we deduce that

sup
ε
Fε(uε, ϕε) < +∞. (4.3)

In particular,

sup
ε

∫
Ω

(ϕε − 1)2

ε
dx < +∞

and thus we obtain that ϕε → 1 in L2(Ω) and by the uniqueness of the limit ϕ = 1 Ln-a.e. in
Ω. Moreover, [34, Theorem 8] ensures that u ∈ GSBD2(Ω). It remains to prove that

lim inf
ε→0

Eε(uε, ϕε) ≥
1

2

∫
Ω
e (u) : Ce (u) dx

+

∫
Ω

(
(1− α) p∇ · u + 〈∇p,u〉

)
dx+GcHn−1(Ju).

To this end, we show that

lim inf
ε→0

1

2

∫
Ω

(ϕ2
ε + kε)e(uε) : Ce(uε) dx ≥ 1

2

∫
Ω
e(u) : Ce(u) dx, (4.4)

lim
ε→0

∫
Ω

(
(1− α)ϕεp∇ · uε + ϕε 〈∇p,uε〉

)
dx =

∫
Ω

(
(1− α)p∇ · u + 〈∇p,u〉

)
dx, (4.5)

lim inf
ε→0

Gc
2

∫
Ω

(ϕε − 1)2

ε
+ ε|∇ϕε|2 dx ≥ GcHn−1(Ju). (4.6)
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We first prove (4.4) and (4.5) following the lines of [28, Lemma 3.3] (see also [29]). To this end,
we first pass to a subsequence (not relabeled) such that the lower limit in (4.4) is a limit and
such that (uε, ϕε)→ (u, 1) Ln-a.e. in Ω. Now we define Φ : [0, 1]→ [0, 1] as

Φ(t) :=

∫ t

0
(1− s) ds =

t(2− t)
2

with Φ(0) = 0 and Φ(1) = 1
2 and we notice that Φ and Φ−1 are non negative and strictly

increasing on [0, 1]. Moreover, the classical Modica-Mortola trick gives

|DΦ (ϕε)| (Ω) =

∫
Ω

|∇ϕε| |ϕε − 1| dx ≤
∫
Ω

(ϕε − 1)2

2ε
+
ε

2
|∇ϕε|2 dx . (4.7)

Thus, thanks to (4.3) we deduce that supε |DΦ (ϕε)| (Ω) < +∞. For t ∈ R let us now define
the superlevel set Uε,t := {x ∈ Ω: Φ (ϕε (x)) > t} and let us denote by Pε (t) := Per (Uε,t) the
perimeter of Uε,t in Ω. By the Fleming-Rishel coarea formula [4, Theorem 3.40] we have∫ +∞

−∞
Pε (t) dt =

∫ +∞

−∞

∣∣DXUε,t∣∣ (Ω) dx = |DΦ (ϕε)| (Ω). (4.8)

Thus, in view of (4.7) and (4.3), Uε,t has finite perimeter in Ω for almost every t in R indepen-
dently of ε. Choose 0 < γ < γ′ < 1

2 = Φ(1) arbitrary; by the mean-value theorem for integrals
we find a tε ∈ (γ, γ′) such that

(γ′ − γ)Pε(tε) ≤
∫ Φ(1)

0
Pε(t) dt ≤ |DΦ(ϕε)| (Ω). (4.9)

Let us now define Uε := Uε,tε and wε := uεXUε . Since for every ε > 0 it holds uε ∈ H1 (Ω;Rn)
and Uε has finite perimeter in Ω, it can be easily seen that wε ∈ [GSBV (Ω)]n ⊂ GSBD(Ω) for
every ε > 0. Moreover, ∇wε = ∇uεXUε and e(wε) = e(uε)XUε . Finally, wε → u Ln-a.e. in Ω,
since uε → u Ln-a.e. in Ω and XUε → XΩ Ln-a.e. in Ω.

Now we show that the sequence (wε) satisfies all the properties of Theorem 2.2, which will
then allow us to deduce (4.4)-(4.5). We first notice that

sup
ε
‖wε‖L1(Ω;Rn) ≤ sup

ε
‖uε‖L1(Ω;Rn) < +∞.

Further, gathering (4.7) and (4.9) we obtain

sup
ε
Hn−1(Jwε) = sup

ε
Pε(tε) < +∞.

Finally, we have ∫
Ω

(
Φ−1 (γ)

)2 |e (wε)|2 dx ≤
∫
Uε

(
Φ−1 (tε)

)2 |e (uε)|2 dx

≤
∫
Uε

(ϕε)
2 |e (uε)|2 dx

≤
∫
Uε

(
ϕ2
ε + kε

)
e (uε) : Ce (uε) dx . (4.10)

Thanks to (4.3) the right-hand side of (4.10) is bounded uniformly in ε and thus we can apply
Theorem 2.2 to the sequence (wε) ⊂ GSBD2 (Ω). Then, the fact that wε → u Ln-a.e. in Ω
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allows us to conclude that e(wε) ⇀ e(u) weakly in L1(Ω;Rn×nsym ) and we immediately deduce
that

lim inf
ε→0

1

2

∫
Ω

(
ϕ2
ε + kε

)
e (uε) : Ce (uε) dx

≥ lim inf
ε→0

1

2

(
Φ−1 (γ)

)2 ∫
Uε

e (uε) : Ce (uε) dx

= lim inf
ε→0

1

2

(
Φ−1 (γ)

)2 ∫
Uε

e (wε) : Ce (wε) dx

= lim inf
ε→0

1

2

(
Φ−1 (γ)

)2 ∫
Ω

e (wε) : Ce (wε) dx

≥ 1

2

(
Φ−1 (γ)

)2 ∫
Ω

e (u) : Ce (u) dx . (4.11)

Furthermore, (4.10) yields supε‖e (wε)‖L2(Ω;Rn×nsym ) < +∞, hence the weak convergence e (wε) ⇀

e (u) holds in L2
(
Ω;Rn×nsym

)
. Since also ϕε → 1 in L2 (Ω), we have

ϕεe(wε) ⇀ e(u) weakly in L1
(
Ω;Rn×nsym

)
,

and the weak convergence holds componentwise. In particular,

ϕε 〈e(wε)ek, ek〉⇀ 〈e(u)ek, ek〉 weakly in L1 (Ω) ,

for every 1 ≤ k ≤ n. Thus, since p ∈ L∞ (Ω), there holds

lim
ε→0

∫
Ω

(1− α)ϕεp∇ ·wε dx =

∫
Ω

(1− α) p∇ · u dx .

Moreover, using Hölder’s inequality we get∣∣∣∣∣
∫

Ω\Uε
(1− α)ϕεp∇ · uε dx

∣∣∣∣∣ ≤ |1− α|‖p‖L∞(Ω)(Ln(Ω \ Uε))1/2√n‖ϕεe(uε)‖L2(Ω;Rn×nsym ). (4.12)

In view of (4.3) we have that ‖ϕεe(uε)‖L2(Ω;Rn×nsym ) is bounded uniformly in ε. Further, Ln(Ω \
Uε) → 0 as ε → 0. Thus, the right hand side in (4.12) converges to 0 as ε → 0 and we deduce
that

lim
ε→0

∫
Ω

(1− α)ϕεp∇ · uε dx

= lim
ε→0

(∫
Ω

(1− α)ϕεp∇ ·wε dx +

∫
Ω\Uε

(1− α)ϕεp∇ · uε dx

)

=

∫
Ω

(1− α) p∇ · u dx . (4.13)

Finally, as (uε, ϕε) → (u, 1) in L1 (Ω;Rn) × L1 (Ω) and 0 ≤ ϕε ≤ 1, Lebesgue’s dominated
convergence theorem yields ϕεuε → u in L1 (Ω;Rn)× L1 (Ω) and thus

lim
ε→0

∫
Ω

ϕε 〈∇p,uε〉 dx =

∫
Ω

〈∇p,u〉dx . (4.14)
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Combining (4.13) and (4.14) we obtain (4.5). Eventually, (4.4) follows from (4.11) by letting
γ → Φ(1).

Finally, thanks to the uniform upper bound (4.3) the proof of (4.6) can be obtained, e.g., by
applying estimate (61) in [34, Theorem 8] or (5.2b) in [21, Theorem 5.1] (see also [18, Theorem
4]), which follows via a slicing argument together with the structure theorem [25, Theorem
8.1]. �

It remains to prove the Γ-limsup inequality.

Proposition 4.3 (Γ-lim sup inequality). For all (u, ϕ) ∈ L1 (Ω;Rn) × L1 (Ω) there exists a
sequence (uε, ϕε) ⊂ L1 (Ω;Rn) × L1 (Ω) that converges to (u, ϕ) in L1 (Ω;Rn) × L1 (Ω) and
satisfies

lim sup
ε→0

Eε (uε, ϕε) ≤ E (u, ϕ) . (4.15)

Proof. It suffices to prove (4.15) for all pairs (u, ϕ) with u ∈ GSBD2(Ω;Rn) ∩ L1(Ω;Rn) and
ϕ = 1 Ln-a.e. in Ω. Moreover, thanks to Theorem 2.3 we can restrict ourselves to the case
u ∈ W(Ω;Rn) and deduce the general case by a density argument. In fact, suppose that we have
proved (4.15) for u ∈ W(Ω;Rn). Then, for u ∈ GSBD2(Ω) ∩ L1(Ω;Rn) Theorem 2.3 provides
a sequence (uk) ⊂ W(Ω;Rn) satisfying (2.6)–(2.8) and

E′′(uk, 1) ≤ E(uk, 1) for all k ∈ N. (4.16)

At this point it suffices to show that E(uk, 1) → E(u, 1) as k → +∞, then (4.16) and the
L1-lower semicontinuity of E′′(·, 1) allow us to deduce that

E′′(u, 1) ≤ lim inf
k→+∞

E′′(uk, 1) ≤ lim inf
k→+∞

E(uk, 1) = lim
k→+∞

E(uk, 1) = E(u, 1).

The required convergence of E(uk, 1) follows from (2.6)–(2.8) as follows. (2.7) and (2.8) en-
sure that F (uk, 1) → F (u, 1) as k → +∞, while (2.6) yields

∫
Ω〈∇p,uk〉 dx →

∫
Ω〈∇p,u〉 dx.

Eventually, applying once more (2.7) together with Hölder’s inequality gives∣∣∣ ∫
Ω

(1−α)p(∇ · uk −∇ · u) dx
∣∣∣

≤ |1− α|‖p‖L∞(Ω)(Ln(Ω))1/2√n‖e(uk)− e(u)‖L2(Ω;Rn×nsym ) → 0 as j → +∞.
It thus remains to prove the limsup inequality for u ∈ W(Ω;Rn). This can be done following the
approach in [18, Theorem 4]. We start observing that for u ∈ W(Ω;Rn) the jumpset Ju admits
a Minkowski content that coincides with Hn−1(Ju) (see [4, Theorem 2.104]), that is, there exists

lim
ρ→0

Ln({x ∈ Rn : dist (x, Ju)) < ρ})
2ρ

= Hn−1(Ju).

We denote by d (x) := dist (x, Ju) the distance from Ju and for every ρ > 0 we define the set
Aρ := {x ∈ Ω: d (x) < ρ}, which satisfies

lim sup
ρ→0

Ln(Aρ)

2ρ
≤ Hn−1(Ju). (4.17)

Let ξε =
√
kεε = o(ε), let ψε be a smooth cut off between Aξε/2 and Aξε and set uε := u(1−ψε).

Then uε ⊂ H1 (Ω;Rn) and uε → u in L1 (Ω;Rn) thanks to the dominated convergence theorem.
To define the phasefield variable of the recovery sequence we consider the solution to the so-called
optimal-profile problem

inf
{∫ ∞

0
((f − 1)2 + (f ′)2) dx: f ∈ H1

loc(0,+∞), f(0) = 0, lim
t→+∞

f(t) = +∞
}
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given by 1− exp(−t). We then set

ϕε(x) :=

{
1− exp

(
− d(x)−ξε

ε

)
if d(x) > ξε,

0 otherwise,

and we observe that (ϕε) ⊂ H1 (Ω) and 0 ≤ ϕε ≤ 1. Moreover, ϕε → 1 in L1 (Ω) by the
dominated convergence theorem (and then also in L2(Ω) in view of the uniform L∞-bound). It
remains to estimate Eε(uε, ϕε). We start proving that

lim sup
ε→0

∫
Ω

(1

2

(
ϕ2
ε + kε

)
e (uε) : Ce (uε) + (1− α)ϕεp∇ · uε + ϕε 〈∇p,uε〉

)
dx

≤
∫
Ω

(1

2
(e (u) : Ce (u)) + (1− α) p∇ · u + 〈∇p,u〉

)
dx . (4.18)

As in [18, Theorem 4] we deduce that

lim sup
ε→0

∫
Ω

(
ϕ2
ε + kε

)
e (uε) : Ce (uε) dx

≤ lim sup
ε→0

(∫
Ω\Aξε

(1 + kε) e (u) : Ce (u) dx +c

∫
Aξε

kε|e(uε)|2 dx

)
≤
∫
Ω

e (u) : Ce (u) dx, (4.19)

where the last ineqality follows from (4.17) and our choice of ξε together with the fact that
u ∈ L∞(Ω;Rn), since∫

Aξε

kε|e(uε)|2 dx ≤ c‖u‖L∞
kε
ξ2
ε

Ln(Aξε) = c

√
kε√
ε

Ln(Aξε)

ξε
→ 0 as ε→ 0.

To estimate the pressure-dependent terms we observe that∫
Ω

(
(1− α)ϕεp∇ · uε + ϕε〈∇p,uε〉

)
dx =

∫
Ω

(
(1− α)p∇ · u + 〈p,u〉

)
dx

+

∫
Ω

(1− α)(ϕε − 1)p∇ · u dx +

∫
Ω

(ϕε − 1)〈∇p,u〉 dx . (4.20)

The last term in (4.20) vanishes as ε → 0, since ϕε → 1 in L1 (Ω) and 〈∇p,u〉 ∈ L∞(Ω).
Moreover, applying Hölder’s inequality gives∣∣∣ ∫

Ω
(1− α)(ϕε − 1)p∇ · u dx

∣∣∣ ≤ c|1− α|‖ϕε − 1‖L2(Ω)‖p‖L∞(Ω)‖e(u)‖L2(Ω;Rn×nsym ).

The right-hand side in the above inequality vanishes thanks to the L2-convergence of ϕε to 1,
so that (4.18) follows from (4.19) and (4.20). Eventually, the upper bound for the surface part
follows as in [18, Theorem 4] by means of the coarea formula and (4.17). We briefly repeat the
argument for the reader’s convenience. A direct computation shows that

1

2

∫
Ω

((ϕε − 1)2

ε
+ ε|∇ϕε|2

)
dx =

1

ε

∫
{d>ξε}

exp
(
− 2

d(x)− ξε
ε

)
dx

=
1

ε

∫ +∞

ξε

exp
(
− 2

t− ξε
ε

)
Hn−1(∂{d > t}) dt, (4.21)
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where the last equality is due to the coarea formula. Moreover, there holds f(t) := Ln(At) =∫ t
0 Hn−1(∂{d > s}) ds. Thus, integrating by parts allows to rewrite the right-hand side in (4.21)

as

−1

ε
f(ξε) +

2

ε2

∫ +∞

ξε

exp
(
− 2

t− ξε
ε

)
f(t) dt ≤ 1

ε

∫ +∞

0
exp(−s)f

(
ξε +

ε

2
s
)

ds

=

∫ +∞

0

f(ξε + ε
2s)

2ξε + εs

(
2
ξε
ε

+ s
)

exp(−s) ds .

Since ξε = o(ε) and
∫ +∞

0 s exp(−s) ds = 1, thanks to (4.17) we deduce that

lim sup
ε→0

∫ +∞

0

f(ξε + ε
2s)

2ξε + εs

(
2
ξε
ε

+ s) exp(−s) ds ≤ Hn−1(Ju),

which in combination with (4.21) and (4.18) gives the reqired limsup inequality. �

5. Convergence of minimizers

In this section we study the asymptotic behavior of minimizers of a suitable modification of
the functionals Eε. Namely, we consider here functionals that satisfy the equicoercivity condition
required in Theorem 2.5. More precisely, let g ∈ L2(Ω;Rn) and consider the functionals

Eg
ε (u, ϕ) := Eε(u, ϕ) +

∫
Ω
|u− g|2 dx (5.1)

and

Eg(u, ϕ) := E(u, ϕ) +

∫
Ω
|u− g|2 dx . (5.2)

Then Theorem 3.1 allows us to establish the following convergence result, which will be proved
at the end of this section.

Corollary 5.1. Let g ∈ L2(Ω;Rn) and let Eg
ε and Eg be as in (5.1), (5.2). For every ε > 0 the

minimization problem

mε := min
{
Eg
ε (u, ϕ) : (u, ϕ) ∈ L1 (Ω;Rn)× L1 (Ω)

}
admits a solution (ûε, ϕ̂ε). Moreover, up to subsequences, the sequence (ûε, ϕ̂ε) converges in
L1 (Ω;Rn)× L1 (Ω) to a pair (û, ϕ̂) with û ∈ GSBD2 (Ω) ∩ L2(Ω;Rn) solution to the problem

m := min
{
Eg(u, 1) : u ∈ GSBD2 (Ω)

}
.

Finally, mε → m as ε→ 0.

Remark 5.2 (Addition of the fidelity term). The additional term
∫

Ω |u − g|2 dx has also been
considered in [34] (see also [21] for a more general variant) for the functionals Fε as in (3.6),
which do not contain the pressure terms. Namely, [34, Corollary 1] establishes the analogous
result to Corollary 5.1 for the functionals F g

ε , F g defined as

F g
ε (u, ϕ) := Fε(u, ϕ) +

∫
Ω
|u− g|2 dx and F g(u, ϕ) := F (u, ϕ) +

∫
Ω
|u− g|2 dx .

The term
∫

Ω |u− g|2 dx, which is usually referred to as a fidelity term, has its origin in image-
processing problems. In fact, in the scalar-valued case u, g : Ω → R the functionals F g and
F gε coincide with the Mumford-Shah functional [39] for image segmentation and its Ambrosio-
Tortorelli approximation [5, 6]. In this context the function g represents a possibly distorted
digital image and a function u obtained by minimizing F g can be interpreted as a restored
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version of the given input datum g. Thus the fidelity term has a clear physical meaning as it
forces a minimizer u to stay close to the original image g.

Although a fidelity term has in general no physical meaning in the context of fracture me-
chanics (see, e.g., the introduction to [21, Theorems 5.1 and 5.2] and references therein), it is
suitable to add this term, since it makes the functionals F g

ε and also the functionals Eg
ε equico-

ercive in the strong (L1 (Ω;Rn)×L1 (Ω))-topology. Indeed, it allows us to prove Proposition 5.4
below, which is a key ingredient for the proof of Corollary 5.1.

Remark 5.3 (The case of constant pressure and boundary data). It is worth noticing that without
any additional constraints on the functionals Eε and E in general one cannot expect the limit
functional E to admit a minimizer. In fact, in the case of a straight or penny-shaped crack
under constant pressure p in an infinite medium it is known that above a critical pressure the
sharp interface limit E does not admit a minimizer (see, e.g., [40]). If the medium is restricted
to a bounded domain Ω as in the present setting, a natural approach to obtain equicoercivity

consists in adding Dirichlet boundary conditions, that is, in considering he functionals Ẽε defined
as in (3.8). From a physical point of view, this would be more feasible than adding a fidelity
term. Indeed, in [20,31] the authors obtained very general compactness results that apply to the
functionals Fε as in (3.6). However, compactness is obtained with respect to the convergence
in measure and not with respect to strong L1-convergence, and the results apply to our setting
only if p is constant, i.e., ∇p = 0. To be more precise, in the case ∇p = 0 the constant c2

in Lemma 4.1 is zero, so that any sequence (uε, ϕε) with supεEε(uε, ϕε) < +∞ also satisfies
Fε(uε, ϕε) < +∞, even if ‖uε‖L1 is unbounded. Moreover, in this case it should be possible to
restate the Γ-convergence result Theorem 3.1 with respect to the convergence in measure as in
[21]. In the general case, however, we need to consider strong L1-convergence in order to deal
with the term 〈u, p〉. For this reason, we prefer to state the compactness results Corollary 5.1
and Proposition 5.4 in the present form.

As a preliminary step towards the proof of Corollary 5.1 we now prove the following com-
pactness result.

Proposition 5.4. Let g ∈ L2(Ω;Rn) and let Eg
ε be as in (5.1). Moreover, suppose that

(uε, ϕε) ⊂ L1 (Ω;Rn)× L1 (Ω) is a sequence satisfying supεE
g
ε (uε, ϕε) < +∞. Then ϕε → 1 in

L1 (Ω) and there exists u ∈ GSBD2(Ω) ∩ L2(Ω;Rn) such that, up to subsequences, uε → u in
L1 (Ω;Rn).

Proof. The statement follows by using Lemma 4.1 and applying [34, Proposition 1]. Indeed, let
(uε, ϕε) ⊂ L1 (Ω;Rn)× L1 (Ω) be a sequence with

sup
ε
Eg
ε (uε, ϕε) < +∞.

Then Lemma 4.1 gives

Eg
ε (uε, ϕε) ≥ c1Fε(uε, ϕε)− c2‖uε‖L1(Ω;Rn) − c3 +

∫
Ω
|uε − g|2 dx

≥ c1Fε(uε, ϕε) +
1

2

∫
Ω
|uε − g|2 dx−c, (5.3)

where in the second step we have used again Young’s inequality. We thus obtain

sup
ε
F g
ε (uε, ϕε) < +∞,

and we can conclude thanks to [34, Proposition 1]. �

Proposition 5.4 now allows us to prove Corollary 5.1.
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Proof of Corollary 5.1. For fixed ε > 0 the existence of a minimizing pair for Eg
ε follows by

applying the direct method of the calculus of variations upon observing that thanks to (5.3) a
minimizing sequence (uj , ϕj) for Eg

ε satisfies

sup
j

(∫
Ω

(ϕj + kε)
2e(uj) : Ce(uj) dx +

∫
Ω

(1− ϕj)2

ε
+ ε|∇ϕj |2 +

∫
Ω
|uj − g|2 dx

)
< +∞.

Thanks to Proposition 5.4 it then suffices to show that Eg
ε Γ-converges to Eg in the strong

(L1 (Ω;Rn) × L1 (Ω))-topology, then Corollary 5.1 follows from Theorem 2.5. To prove the
required Γ-convergence result we first observe that the liminf-inequality is a direct consequence
of Proposition 4.2 together with Fatou’s lemma. Indeed, for any sequence (uε, ϕε) ⊂ L1 (Ω;Rn)×
L1 (Ω) converging L1 (Ω;Rn)× L1 (Ω) to some (u, ϕ) we have

lim inf
ε→0

Eg
ε (uε, ϕε) ≥ lim inf

ε→0
Eε(uε, ϕε) + lim inf

ε→0

∫
Ω
|uε − g|2 dx ≥ Eg(u, ϕ).

It remains to prove the limsup-inequality. To this end we notice that using (4.2) together with an
estimate as in (5.3) we also obtain Eg

ε (u, ϕ) ≤ c(F g
ε (u, ϕ)+1). In particular, due to the addition

of the term
∫

Ω |u−g|2 dx the domain of the Γ-limit reduces to the space GSBD2 (Ω)∩L2(Ω;Rn).

Moreover, for every u ∈ GSBD2 (Ω)∩L2(Ω;Rn) Theorem 2.3 together with Remark 2.4 provide
us with a sequence (uj) ⊂ W(Ω;Rn) converging to u in L2(Ω;Rn) and satisfying E(uj , 1) →
E(u, 1) as j → +∞. Thanks to the strong convergence in L2(Ω;Rn) we then obtain

lim
j→+∞

∫
Ω
|uj − g|2 dx =

∫
Ω
|u− g|2 dx,

which implies that also Eg(uj , 1) → Eg(u, 1) as j → +∞. Thus, it suffices to establish the
upper bound (Eg)′′(u, 1) ≤ Eg(u, 1) for u ∈ W(Ω;Rn). This can be done by taking the recovery
sequence (uε, ϕε) constructed in Step 2 in the proof of Proposition 4.3 upon noticing that the
sequence (uε) defined therein actually converges to u in L2(Ω;Rn), which in its turn implies
that

∫
Ω |uε − g|2 dx→

∫
Ω |u− g|2 dx as ε→ 0, hence lim supεE

g
ε (uε, ϕε) ≤ Eg(u, 1). �

6. Numerical example

We will conclude our paper with an example simulation of fracture propagation including
pressure, that was also considered in [14], [42], [38], and [27]. It models a straight crack in 2D
opened by a constant pressure. The advantage of the setting is that one can compare the crack
opening displacement (COD) with an analytical solution by Sneddon [40]. We first introduce the
setup of the example and briefly sketch the numerical approach, before we recall the analytical
solution computed in [40] and compare it with the numerical solution. The setup is as follows.
We consider the domain Ω = [0, 4]× [0, 4] with an initial crack C = [1.8, 2.2]× [2.0− h, 2.0 + h].
On ∂Ω we prescribe homogeneous Dirichlet boundary conditions for the displacement variable,
while for the phase-field variable we prescribe the Dirichlet boundary condition ϕ = 1. Then,

minimizing the functionals Ẽε alternatingly in u and ϕ, the associated Euler-Lagrange equations
become

0 =

∫
Ω

(ϕ2 + kε)e (u) : Ce(v) + (1− α)ϕp∇ · v + ϕ〈∇p,v〉 dx ∀ v ∈ H1
0 (Ω,R2), (6.1)

0 =

∫
Ω
ϕψe (u) : Ce (u) + (1− α)ψp∇ · u + ψ〈∇p,u〉dx

+Gc

∫
Ω

(ϕ− 1)ψ

ε
+ ε〈∇ϕ,∇ψ〉dx ∀ ψ ∈ H1

0 (Ω). (6.2)
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Eventually, (6.1) and (6.2) are discretized using the discretization scheme proposed by Eng-
wer and the second author in [27]. We only briefly summarize here the main ideas for the
reader’s convenience and refer to [27, Section 4] for more details. Fixing a triangular grid Th
with mesh-size h > 0 (cf. Figure 1) the Euler-Lagrange equation for u is discretized using a
discontinuous Galerkin scheme. Roughly speaking, this amounts to restricting (6.1) to functions
uh,vh belonging to the space of piecewise polynomials of degree at most 1 given by

Vh := {w = (w1, w2) ∈ L1(Ω;R2) : w1|T , w2|T ∈ P1(Ω) ∀ T ∈ Th, w = 0 on ∂Ω},
and adding a penalization of possible jumps of u,v across faces of the triangles T . Moreover,
(6.2) is discretized using first-order Lagrange shape functions (cf., e.g., [22, Chapter 2.2]), that
is, by restricting it to ϕh, ψh belonging to the space

Wh := {φ ∈ C0(Ω): φ|T ∈ P1(Ω) ∀ T ∈ Th},
where in addition we require ϕh = 1 on ∂Ω and ψh = 0 on ∂Ω. The constraint 0 ≤ ϕ ≤ 1 is
implemented using the Truncated Non-smooth Newton Multigrid Method (TNNMG) [32]. The
corresponding discrete formulations of (6.1) and (6.2) are solved numerically using the DUNE
framework [8], applying a fix-point iteration scheme, alternatingly solving for the displacement
and the phasefield. The iteration scheme stops when the correction in the phasefield becomes
smaller than a certain treshold.

Let us now fix the material parameters and recall the corresponding analytical solution in
[40]. As Lamé constants we choose λ = 0.27778N/m2, µ = 0.41667N/m2, while Gc = 1.0N/m.
A constant pressure p ≡ 10−3N/m2 forces the crack to open. According to Sneddon in the
described situation the crack opening displacement (COD) defined by

COD :=

∫ ∞
−∞
〈u (x, y) ,∇ϕ (x, y)〉dy

can be calculated analytically as

COD = 2l0
1− ν2

E
p

√(
1− x2

l20

)
.

Here 2l0 denotes the initial crack length, thus l0 = 0.2. The material parameter E and ν stand
for Young’s modulus and Poisson’s ratio, respectively. Figure 1 shows the mesh and the solution
for the displacement in y-direction. We will compare the results obtained in the simulations with
this COD, see Figure 2. We mention that Sneddon’s benchmark example was already simulated
in [27], here we will study the relation between the mesh size h and the parameters kε and ε in
more detail. Recent studies of the discretization of the Ambrosio-Tortorelli functional suggest,
that it is necessary to choose h = o (ε) to keep Γ-convergence in the discrete setting (see [7] and
also [9] and [23]). To study the convergence behavior in different parameter regimes we consider
the following three cases:

• Case 1: Refine ε, h, kε with the fixed relation ε = 2h, kε = h2.
• Case 2: Refine ε, h, kε with the fixed relation ε =

√
h, kε = h.

• Case 3: Refine ε, h, kε with the fixed relation ε = 2
√
h, kε = h2.

In the initial setup the crack is described implicitely by setting the phasefield to zero along the
crack (see Figure 3, where we show the initial and the final phasefiled for Case 3). The COD
of the numerical simulations in the Cases 1–3 is shown in Figure 2. Notice that the numerical
solution for the COD is non-zero at the boundary due to a smearing effect in x-direction resulting
from the phase-field variable ϕ. This effect is quantified in Table 1, which shows the error in the
COD both at the boundary of the crack (characterising the smearing effect) and in the middle of
the crack (proportional to the error in the crack opening volume). Let us now briefly comment
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Figure 1. Simulation of a crack opening with an applied constant pressure. At
the left the grid for h = 0.00625 is shown. At the right the corresponding solution
for the displacement in y−direction is shown.
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Figure 2. Comparison of the COD of the numerical simulation with Sneddon’s
analytical solution for the different parameter settings.

on the convergence behavior in the three different cases. In Case 1 the constraint kε = o(ε)
is satisfied, but the mesh size does not satisfy h = o(ε), and indeed the numerically computed
COD does not approximate well the analytical COD (see also the error in Table 1). In contrast,
in Case 2 the mesh size is chosen sufficiently small, so that h = o(ε) is satisfied, instead the
constraint kε = o(ε) is violated, which results in an even larger error in the COD. Finally, a good
approximation of the COD (cf. again Table 1) is obtained in Case 3, where both the constraints
kε = o(ε) and h = o(ε) are satisfied.

Acknowledgements. A. Bach is supported by the DFG Collaborative Research Center TRR109,
Discretization in Geometry and Dynamics.
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Figure 3. Initial and final phasefield in the Case 3.

x = 1.8 (boundary)
Case 1 Case 2 Case 3

h = 0.025 1.08884 ∗ 10−4 2.77893 ∗ 10−4 5.00649 ∗ 10−4

h = 0.0125 2.78525 ∗ 10−5 2.13652 ∗ 10−4 4.02968 ∗ 10−4

h = 0.00625 4.79258 ∗ 10−6 2.00319 ∗ 10−4 3.81487 ∗ 10−4

h = 0.003125 4.58196 ∗ 10−6 1.77422 ∗ 10−4 3.38051 ∗ 10−4

h = 0.0015625 6.92701 ∗ 10−5 1.29177 ∗ 10−4 2.66374 ∗ 10−4

h = 0.00078125 8.60155 ∗ 10−5 8.37184 ∗ 10−5 1.96768 ∗ 10−4

h = 0.00039062 1.23924 ∗ 10−4 5.40301 ∗ 10−5 1.47525 ∗ 10−4

x = 2.0 (center)
Case 1 Case 2 Case 3

h = 0.025 4.80758 ∗ 10−4 4.01074 ∗ 10−4 7.8668 ∗ 10−5

h = 0.0125 4.68180 ∗ 10−4 3.60473 ∗ 10−4 4.4731 ∗ 10−5

h = 0.00625 3.91144 ∗ 10−4 3.15823 ∗ 10−4 5.1340 ∗ 10−6

h = 0.003125 2.84570 ∗ 10−4 2.83627 ∗ 10−4 9.8550 ∗ 10−6

h = 0.0015625 1.97725 ∗ 10−4 2.63613 ∗ 10−4 5.9020 ∗ 10−6

h = 0.00078125 1.41795 ∗ 10−4 2.48961 ∗ 10−4 1.5930 ∗ 10−5

h = 0.00039062 1.08338 ∗ 10−4 2.37518 ∗ 10−4 2.3898 ∗ 10−5

Table 1. Error in the COD
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