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Abstract

We consider the gradient flow of a one-homogeneous functional, whose dual involves
the derivative of a constrained scalar function. We show in this case that the gradient
flow is related to a weak, generalized formulation of a Hele-Shaw flow. The equiva-
lence follows from a variational representation, which is a variant of well-known varia-
tional representations for the Hele-Shaw problem. As a consequence we get existence
and uniqueness of a weak solution to the Hele-Shaw flow. We also obtain an explicit
representation for the Total Variation flow in one dimension, and easily deduce basic

qualitative properties.

1 Introduction

This paper deals with the L2-gradient flow of the functional
() ;:/ dwldz  ke{0,...,N—1}
A

defined on differential forms w € L2(A4,Q*(RY)), where A C R¥ is an open set. We will
focus on the particular case K = N — 1: in that case, the dual variable is a scalar and this
yields very particular properties of the functional J, and the associated flow.

Notice that, when k = 0, the functional Jy reduces to the usual total variation. When
k = N—1 we can identify by duality w € L?(A, Q¥ ~1(RY)) with a vector field u € L%(A,RY),
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so that Jy_1 is equivalent to the functional

D(u) = /A \div u| dz (1)

that is, the total mass of divu as a measure.

The gradient flow of D has interesting properties: we show in particular that it is equiva-
lent to a constrained variational problem for a function w such that Aw = divu. Moreover,
under some regularity assumption on the initial datum wug, such a variational problem al-
lows to define a weak formulation of the Hele-Shaw flow [9, 11] (see also [12] for a viscosity
formulation). Therefore, it turns out that the flow of (1) provides a (unique) global weak
solution to the Hele-Shaw flow, for a suitable initial datum wug. But our formulation allows
us to consider quite general initial data ug, for which for instance div ug may change sign, or
be a measure.

The plan of the paper is the following: in Section 2 we introduce the general functional we
are interested in, we write the Euler-Lagrange equation for its Moreau-Yosida approximation
and, in Section 2.1, we express it in a dual form that will be the base of our analysis.

In Section 3 we focus on the case £k = 1 which is analyzed in this paper. We show many
interesting properties of the flow: comparison, equivalence with a weak Hele-Shaw flow if
the initial datum is smooth enough, and qualitative behavior when the initial datum is not
smooth. In Section 4.1 we observe that, in dimension 2, the case K = N — 1 also covers the
flow of the L'-norm of the rotation of a vector field, which appears as a particular limit of
the Ginzburg-Landau model (see [16, 19] and references therein).

Another interesting consequence of our analysis is that it yields simple but original qual-
itative results on the solutions of the Total Variation flow in dimension one (see also [3, 4]).
We show in Section 4.2 that the denoising of a noisy signal with this approach will, in general,
almost surely produce a solution which is “flat” on a dense set. This undesirable artefact
is the well-known “staircasing” effect of the Total Variation regularization and is the main

drawback of this approach for signal or image reconstruction.

2 Gradient flow

Given an initial datum wy € L%(A, QF(RY)), the general theory of [5] guarantees the existence
of a global weak solution w € L2([0, +oc), L2(A, Q¥ (RY))) of the gradient flow equation of
Jkl

wr € —0J(w) t €[0,+00). (2)

Given ¢ > 0 and f € L%(A, Q¥(RY)), we consider the minimum problem

min J(w) +A2ia|w—f|2dx. 3)

w:A—RN



Notice that

2
— 1
min Jk(u)—i—/ o =P dr =¢ min Jk(u)—i—/ —lw = fI? da.
A 2 A 2€

w:A—RN w:A—RN

The Euler-Lagrange equation corresponding to (3) is
e(f —w) € 0Jk(w),
that is there exists a (k + 1)-form v with |v| = 1 such that v = dw/|dw| if dw # 0, and
e(f —w)=dvin A and (*v)r = 0 on OA. (4)

2.1 Dual formulation

Equation (4) is equivalent to

we dJi(e(f —w)),

where
and

17l :Sup{/An-wdac L Jp(w) < 1},
Note that

Ji(w) + Ji(n) Z/Auwnd:r

for all w,7. The equality holds iff [, n-wdx = Ji(w), and in such case we have ||, < 1.
Letting u be a minimizer of (3) and n = (f — u)/e we then get

/Au~f_uda::Jk(u),

3

which implies

J,j(f_u>=0 thatis e3> |f - uf..

€

In particular, we showed the following (see also [15] for the same result in the case of the
Total Variation).

Proposition 2.1. The function u =0 is a minimizer of (3) if and only if

e>ec=|f|- (5)



Note that ||| < co implies that

/nsz
A

for all w such that dw = 0. By Hodge decomposition, this implies that n = d*g for some
2-form g, with gy = 0 on 0A. It follows that

Inll« = sup /d*g-wd:c: sup /g~dwd:1:+/ wAxgy = sup /g-dwd:c.
Jaldw|<1J A S ldw|<1 /A 0A S ldw|<1 /A
(6)

We then get
n|l« = inf <o (A)-
7]l d,}g 0 llgll (A)

9Nloa=0
Indeed, it is immediate to show the < inequality. On the other hand, by Hahn-Banach
Theorem, there exists a form ¢’, with d*¢’ = d*g = 7 such that

Il = sup /g~dwd:c: sup /g'~1/1dI:||9||L°°<A>-
Saldw]<1 /A Salwl<1JA

Fix now ¢ such that d*¢9 = 7. We can write g = ¢g + d*¢, so that (6) becomes

7l = o + d* 9| oo (a)- (7)

min
i (po+d*9p)-v, =0
The Euler-Lagrange equation of (7) is similar to the infinity laplacian equation
doo (o + d*¢p) = 0.

By duality problem (7) becomes

min |V + ol L= (a), (8)
eWy (A)

0

and the corresponding Euler-Lagrange equation is

(V2 + Vo) (VY + o), (V) + o)) = 0. (9)

3 Thecase k=N —1

In this case, we recall that we are considering the gradient flow of the functional (1), which
is defined, for any u € Li (A;RY), as follows

D(u) = sup{/A —uVodr : ve CF(A), v(z)| <1Vze A}. (10)



This is finite if and only if the distribution divw« is a bounded Radon measure in A. We now
see it as a (convex, l.s.c., with values in [0, +00]) functional over the Hilbert space L?(A; RY):

it is then clear from (10) that it is the support function of
K = {-Vv :ve Hy(A[-1,1])}

and in particular p € 9D(u), the subgradient of D at w, if and only if p € K and fA p-udr =
D(u) = [, |divul.
We can define, for u € dom D, the Radon-Nikodym density

di . divu
bun(e) = Uy JBp BV
|div u] p—0 fB(x,p) |div w]

which exists |div ul|-a.e. (we consider that it is defined only when the limit exists and is in
{=1,1}), and is such that divu = 04y |div u|. We can also introduce the Borel sets

EF = {x €A Ogivu(x) = £1} .
Then, we have:

Lemma 3.1.
OD(u) = {~Vv :ve Hj(A[-1,1]),v=+1 |divu|— a.e. on &} .

Proof. Consider v € Hi(A;[—1,1]). Then we know [1] that it is the limit of smooth functions
vy, € C°(A;[-1,1]) with compact support which converge to v quasi-everywhere (that is,
up to a set of H'-capacity zero).

We recall that when u € L?(A4;RY), the measure divu € H~1(A) must vanish on sets
of H'-capacity 0 [1, §7.6.1]: it follows that v, — v |divu|-a.e. in A. Hence, by Lebesgue’s
convergence theorem,

—/ Vo(@)u(x)de = lim [ v, (2)0dive(x)|divul(z) = /v(x)divu(a:).
A A

n—oo A

It easily follows that if v = +1 |divul|- a.e. on £F, —Vv € 9D(u) and conversely, that if
v € OD(u) then v = +1 |divul-a.e. on EF. O

We now define, provided u € dom 9D (i.e., 9D(u) # (),
°D(u) = argmin{/ Ip|*dx : p e 8D(u)} :
A

it corresponds to the element p = —Vv € 9D(u) of minimal L?-norm. Using Lemma 3.1,
equivalently, v is the function which minimizes [, |[Vv|? dz among allv € Hj(A) with v > Xe+

and v < —x¢-, |div ul-a.e.: in particular, we deduce that it is harmonic in A\ & U &, .



Let us now return to the flow (2). In this setting, it becomes

Uy =Vv
{ u(0) =wup (1)

where v satisfies [v]| <1 and
D(u)—f—/u-szO.
A
It is well know, in fact, that the solution of (11) is unique and that —Vu(t) = 8°D(u(t)) is
the right-derivative of u(t) at any ¢ > 0 [5]. Given the solution (u(t),v(t)) of (11), we let

t
w(t) :/ v(s)ds,
0
which takes its values in [—t,t]. We have
u(t) = uo + Vw(t).

Theorem 1. Assume ug € L?(A;RYN). The function w(t) solves the following obstacle

problem

min{%/ lug + Vw|?dx : w € Hi(A), |w| <t a.e.}. (12)
A

Observe that in case we additionally have divug > a > 0, this obstacle problem is well-

known for being an equivalent formulation of the Hele-Shaw problem, see [9, 11].

Proof. Given ug € L*(A;RY), we can recursively define u, 11 € L*(A;RY) as the unique

solution of the minimum problem

min  D.(u,u
wEL2(A,RN) e (U, tn),

where 1
De(u,v) = D(u) + / —|u —v]* dx.
A 2e
Then, there exists v,4+1 € OD(upt1) such that
Upt1 — Up — EVUp41 = 0. (13)

It follows that v, 11 € H}(A) minimizes the functional

/ [, 4+ eVo|? da
A

under the constraint |v| < 1. Let now

n
Wy =€ E ;.
i=1



The from (13) we get
Up = ug + Vwy,, (14)

and w,, minimizes the functional

/ luo + Vw|* dx (15)
A
under the constraint |w — w,—1| < €. Notice that |w, — w,—1| < € for all n implies

|wn| < ne. (16)

We now show that w,, minimizes (15) also under the weaker constraint (16). Indeed, letting

Wy, be the minimizer of (15) under the constraint (16), we have

Wy — € < Wpy1 < Wy + €,

which follows by noticing that min{w@y,, wn4+1 + ¢} and max{wy, Wp+1 — €} minimize (15),

hence they are both equal to w,,. It then follows w,, = w,, for all n.

Passing to the limit in n we get the corresponding result in the continuum case. O

Remark 3.2. The previous proof also shows that for any initial ug € L2(4;RY), u(t) =

uo + Vw(t) is the unique minimizer of

1
/A |div u| + §|u — up|? da.

We recall that obviously, such property does not hold for general semigroups generated by
the gradient flow of a convex function. It is shown in [2] to be the case for the Total Variation

flow, in any dimension, when the initial function is the characteristic of a convex set.

3.1 Some properties of the solution

A first observation is that ¢ — w(t) is continuous (in H}(A), strong), as follows both from
the study of the varying problems (12) and from the fact that the flow u(t) = uo + Vw(t) is
both continuous at zero and L?(A)-Lipschitz continuous away from ¢ = 0 (and up to t = 0 if
ug € dom D).

In fact, one can check that w is also L°°-Lipschitz continuous in time: indeed, it follows

from the comparison principle that for any s < ¢,
w(s) —t+s < wt) < w(s)+t—s (17)

a.e. in A, hence ||w(t) —w(s)| 4y < |t —s|. The comparison (17) is obtained by adding the
energy in (12) of min{w(t), w(s)+t— s} (which is admissible at time ¢ and hence should have



an energy larger than the energy of w(t)) to the energy of max{w(t) —t+ s, w(s)} (which is
admissible at time s), and checking that this sum is equal to the energy at time ¢ plus the
energy at time s. This is quite standard, see [6, 12].

In particular, we can define for any ¢ the sets
EH(t) = {o(t) =t} and B~ (1) = {a(t) = —t}, (18)

where w(t) is the precise representative of w(t) € H'(A), defined quasi-everywhere by

o R (19)
B(z,p)

(wn is the volume of the unit ball). It follows from (17) and (19) that if @(¢,z) = ¢, then
for any s < t,  is also a point where w(s,x) is well-defined, and its value is s; similarly
if w(t,z) = —t then w(s,z) = —s. Hence: the functions ¢t — E*(t), t — E~(t) are
nonincreasing.

Also, if s < t, one has from (17)

1 / 1 1
w(s,y)dy —t+s < / w(t,y)dy < / w(s,y)dy —s+t
wNpN B(z,p) ( ) wNpN B(z,p) ( ) wNpN B(z,p) ( )

so that if x € BT (s),

1 1
2s —t < liminf N/ w(t,y)dy < limsup N/ w(t,y)dy < t
=0 wNp B(z,p) p—0 WNP B(z,p)

and sending s to t, we find that if z € (,_, ET(s), w(t,z) =t and € E*(t): hence these
sets (as well as E~(+)) are left-continuous.
We define

EfXt) = [JE(s) CET(1) and E-(t) = [JE (s) CE (1), (20)
s>t s>t
as well as E(t) = ET(t)UE~(t), E-(t) = E}f(t) UE; (t). Then, there holds the following

lemma:

Lemma 3.3. If s <t, then
E~(t) CE (s)and ET(t) C E'(s),

E (t) CE (s)and Ef(t) C E}(s).

T

Moreover, for t > 0, v(t) = £1 quasi-everywhere on EX(t) and Ef(t) C EX(t), up to a set
|div u(t)|-negligible. In particular

divu(t) L (E; (1)) >0, divu(t) (Ef () <0, divu(t) (Ef(t)UE () =0.

T T T



Proof. The first two assertions, as already observed, follow from (17) and the definition of
EF. We know that the solution of equation (11) satisfies 9;'u = —0°D(u(t)) = Vo(t) for any
t > 0, but the right-derivative of u = uo+Vw(t) is nothing else as limy,_.o V[w(t+h)—w(t)]/h.
We easily deduce that v(t) = limj,_o[w(t+h)—w(t)]/h (which converges in H}-strong). Since
when z € Ef(t), w(t,z) = t and w(t + h,xz) = t + h for h small enough, we deduce that
v(x) = 1 on that set, in the same way v = 1 on E, ().

Observe that the Euler-Lagrange equation for (12) is the variational inequality
/ (up + Vw(t)) - (tVv — Vw(t))de > 0,
A

for any v € Hg(A;[—1,1]). In other words since u(t) = ug + Vw(t),

_/Au(t).v@ > _/Au(t)-Vv

for any |v| < 1, and we recover that —Vw(t)/t € OD(u(t)).
Hence, &, C E*(t). Now, if & € Hj(A;[~1,1]) with & = £1 on E;, one deduces that
for any s > t,

—/ Vo -u(s)de = Dlu(s)).
A
Sending s — t, it follows
—/ Vo -u(t)dr > D(u(t)),
A
hence © € 9D (u(t)). We deduce that 8:(15) C EXf(t), invoking Lemma 3.1. O

Remark 3.4. We might find situations where |v(t)| = 1 outside of the contact set. For
instance, assume the problem is radial, divug is positive in a crown and negative in the
center. Then one may have that ET is a crown (w should be less than ¢ at the center) and
E~ is empty. In that case, v should be equal to one also in the domain surrounded by the
set ET.

We show now another simple comparison lemma:
Lemma 3.5. Let ug and u}y in L?>(A;RYN) such that
divu, < divug

in H=Y(A). Then for any t >0, w'(t) < w(t), where w'(t) and w(t) are the solutions of the
contact problem (12), the first with ug replaced with ug,.



Proof. Let t > 0, € > 0, and w® be the minimizer of

1
min —/ |Vwl|? da —/w(divug—a)
A A

lw|<t 2

which of course is unique. We now show that w® < w(t) a.e., and since w® — w'(t) ase — 0
the thesis will follow.
We have by minimality

V()] * : |V (w(t) v wf)|® S (d:
/AT dx — /Aw(t)(dlvuo) < /Af dx — /A(w(t)\/w )(divug) ,

|Vowe|® & (divaf! |V (w(t) Aws)|? S\ (div ol
/AT dr — /Aw (divuy —e) < /Af dr — /A(w(t)/\w )(divugy —¢)

and summing both inequalities we obtain

/A(w(t) Vw® —w(t))divuy < / (w® —w(t) Aw®)(divuy —€),

A

from which it follows e [, (w® —w(t))" dz < 0, which is our claim. O
Corollary 3.6. Under the assumptions of Lemma 3.5, we obtain that if divu) < divug:

E-(t) CE(t) and E' (t) C ET(t), (21)
and it follows that v'(t) < wv(t), for each t > 0.

Proof. Eqn (21) follows at once from the inequality w’(t) < w(t) (Lemma 3.5). We deduce,
of course, that also E(t) C E’, (t), and E'}(t) C E7f(t). Consider the function v =
V'(t) Av(t) = min{v'(t),v(t)}. As it is £1 on E’;t(t), it follows from Lemmas 3.3 and 3.1
that —Vov € dD(v/(t)). In the same way, v' = v/(t) V v(t) = max{v'(t),v(t)} is such that
—Vv' € 9D(u(t)). Since

/|Vv|2dx+/ Vo' |2 de = /|Vv(t)|2dx+/ |Vo' ()| dx
A A A A

cither [, |Vol?dz < [, |Vu(t)]*dz or [, |VV'[?dz < [, |V (t)|*dz. By minimality (as
—Vo(t) = 8°D(u(t))) it follows that v = v(t) and v' = v/ (t). O

3.2 The support of the measure divu
Throughout this section we will assume that divug is a bounded Radon measure on A.

Lemma 3.7. Let ug € L2(A4;RYN)NdomD, § > 0 and u = (I + 50D) (ug). Then for
a positive Radon measure p € H~Y(A), the Radon-Nikodym derivatives of divu and divug
with respect to p satisfy (divu/p)(x) < (divug/p)(z) for p-a.e. x € EF, and (divu/p)(z) >

(divuo/p)(z) for p-a.e. x € &, . In particular, divu << divug and (divu)* < (divug)®.

10



Remark. It follows from the Lemma that divu = Odivugl_ (€ U &, ) for some weight
O(z) € [0,1]. We can build explicit examples where § < 1 at some point. Consider for
instance, in 1D, A = (0, 1) and the function uo(z) = 0 if x < 1/3 and = > 2/3, and 2 — 3z if
1/3 < 2 < 2/3. Then, one shows that u(t) is given by

3t if v < 3
(t.2) 1-2V3t if L <z<a(t):=41+2
ult,r) =

2 -3z ifa(t) <x<b(t):=1- Vlgfﬁt

VIF6E—1 ifz> bt

until ¢ = 1 —2v/2/3. We have divu(t) = u(t), = (1 —2v/3t — 3t)81 /3 — 3X(a(t),(t)) for such t:
E;'(t) = {1/3} stays constant for a while (and disappears suddenly right after t = 1 —2+/2/3),
while the density of the measure div u(t) goes down monotonically until it reaches zero (notice
that v(t) will jump right after 1 —2+v/2/3), while E = (a(t), B(t)) shrinks in a continuous

way, and carries the constant continuous part of the initial divergence (—3).

Proof. We have u = ug + 6Vv with —Vuv € 9D(u). Let x € &. Recall that the precise

representative of v is defined by

IB(I,,)) v(y)dy

o(z) = lim N ,

p—0 WNp

where wy = |B(0,1)|, and that this limit exists quasi-everywhere in A. We assume also that
o(x) = 1.
Then, for a.e. p > 0, one may write

/ divu = / w-vdH!
B(m,p) 8B(I,P)

:/ ug - vdH + 6 Vo -vdH!
9B(x,p) 0B(z,p)
= / divug + & Vo-vdH'. (22)
B(z,p) 0B (w,p)

Now, let f(p) = (1/pN_1)faB($ 2 vdH' (which is well-defined for any p). Then, since
o(z)=1and v <1 a.e.,

limsup f(p) = Nwy .
p—0

One can also show that for a.e. p > 0, f'(p) = (1/pN_1)faB(m A vdH?!, in fact f is

locally H! in some small interval (0, po).

11



Since v < 1 a.e., f(p) < Nwy a.e., so that
Pl
liminf/ ﬁ/ Vou-vdH'dr = hmlnf/ flr
e=0 Je 77 JoaB(a,r)
= timinf f(p) - /(€) < 0
£—

for any p. If follows that for any p small, the set I7 = {r € [0, p] fBB(ac oy Vo vdH* <0}

has positive Lebesgue measure, and for any r € Ip , we deduce from (22) that fB dlvu <
fB(w,r) div uQ-.
Now consider p a positive Radon measure: p-a.e., we know that the limits
di o divu di 2 diV o
V%) = lim M and 2 %(z) = lim ‘[B(>7
Iz r—=0 p(B(z,r)) Iz r—=0  p(B(z,r))
exist. If moreover, as before, € £ and ¥(z) = 1 (which holds p-a.e., since u € H1(A)),
we can find a subsequence r, such that f Bz )dIV’U, < f Bl d1v ug for each n, and it
follows (divu/p)(x) < (divug/p)(x). O

The following corollaries follows:

Corollary 3.8. Let t > s > 0: then (divu(t))* < (divu(s))*. In particular, Ef(t c&x

u(s)’
|divu(s)|-a.e. in A.

Proof. Indeed: if t > s, then u(t) = (I + (t — s)0D) *(u(s)). We deduce that for quasi-
every z € £ 1y 1 = baivu(x) < (divu(s)/(divu(t))™)(x), and it follows (divu(t))t <
(divau(s)/(divu(t))™)(divu(t))T < (divu(s))t. O

Corollary 3.9. We have that (divu(t))* = (divug)* ast — 0, weakly-+ in the sense of
measures. Moreover, E£ C EE(0) (up to a |divug|-negligible set), and divug L (E;7(0)) > 0,
divugl_ (E(0)) <0.

Proof. We know that as t — 0, u(t) — ug in L?(A;RY), and thanks to the boundedness of
div u(t) it follows that div u(t) = div ug in the sense of measures. Now consider a subsequence
(tx) such that (divu(ty))t = u, (divu(ty))” = v. Since u — v = divug, it follows that
p > (divug)™ and v > (divug)~. The reverse inequalities follow from Lemma 3.7 and the
first part of the thesis follows.

From the previous results we obtain that for each ¢, one can write
(divu(®)™ = 60i(z)(divug)™

The function 6;(z) = lim infpﬂo(fB(m ) div u(t)*)/(fB(w o (divug)™) is well-defined on the
set £ which supports the measure (divug)™, and we find that 6;(x) < 1 is nonincreasing
in t. Hence there exists for all z € £ the limit lim;_o 0;(2) = sup;~q 6¢(), and this limit

12



must be 1 (divug)t-a.e., otherwise this would contradict that (divu(t))t = (divue)*. Tt
follows that up to a (divug)*-negligible set, & C J,uo{z € & : 0:(2) > 0}.
Now, if z € £ and 6;(x) > 0, then z € Sij'(t): indeed,
JB@p @vul)  (divu(®)*t(B(z,p) — [divu(t) " (B(z,p) p—o

= —)1,

Jp(epyldivu@)] (divu(®)T(B(z, p)) + (divu(t)~(B(z, p))

(divu(t))” (B(z,p)) < (divug)(B(z,p))
= o((divug )(B(,p))) < o((divu(t))" (B(x,p)))

the last inequality because 6,(z) > 0). It follows that

EJO < U‘g;r(t)

t>0

(the equality is because x € &

uo !

and the conclusion follows from Lemma 3.3. O

Remark 3.10. If A = RY one can easily show easily by a translation argument that
ug € HY(A;RY) = u(t) € HY(A;RY) with same norm, so that the Hl-norm of u(t) is
nonincreasing. In this case, 5:( 0 is a.e.-equivalent to the support of (divu)™ and since from
the equation it follows u = ug a.e. on E* (since v = £1 a.e. on E*, so that Vo = 0 a.e.,
the problem being in general that this will not be true quasi-everywhere), we deduce that
divu = divug a.e. on ET U E~ = spt(divu).

3.3 The regular case

Let us now assume that divug = g € LP(A), p > 1. The obstacle problem which is solved by

w(t) can be written

) 1
min -
weH:|w|<t 2

[vu@ia - [ g ds.

Standard results show that w(t) € W2P(A), (see Theorem 9.9 in [10]). In particular, we

have that in the LP sense,
—Auw(t) = gX{juw(n)<t}

and, since u(t) = up + Vw(t), we deduce that in this case
divu(t) = divuoxg@) (23)

for any ¢ > 0. In particular, formally, we deduce from (11) that

)
divuo% — Au(t), (24)
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and since Av(t) is the jump of the normal derivative of v(t) on E*(t), we find that these
sets shrink with a normal speed |Vu(t)|/|div ugl.

This can be written rigorously in the sense of distributions: (E*, E~,v) are such that
v e LY[0,T); HY(A;[~1,1])), v = +1 on E* for a.e. t and x, and for any ¢ € C°([0,T) x A),

/le’LLO( ¢(0,2) dz —|—/ /dlvuo )X e (@ )g(b(a; t)dx dt
- / /Vv(t,:t)-VqS(t,x)dxdt = 0. (25)
0 A

We observe that the evolution equation (25) is reminiscent of the enthalpy formulation of the
one-phase Stefan problem [18].

We expect that with either the additional information that divug is a.e. nonnegative on
E* and nonpositive on E~, or that the maps E*(t) are nonincreasing, then (25) characterizes
the unique evolution (11). On the other hand, without this additional assumption, then a
time-reversed evolution with will satisfy the same weak equation, with ug replaced with —ug.

With both assumptions we can actually show the following result:

Proposition 3.11. Let ET, E~ be measurable subsets of Ax[0,T], andv € L*([0,T); Hi(A))
with |v| < 1 a.e., v = +1 a.e. on E*, and satisfying (25). Assume in addition that +divug >
0 a.e. on E*, and

E*(t) C E*(s) forae t>s. (26)
Then u(t,x) := ug(z) + Vfo s,x)ds is the unique solution of (11).
Proof. Let w(t fo s)ds. Thanks to (26), we have that |w(t,z)| < t for a.e. z € A,

and w(t,x) = :I:t for a.e. ¥ € E*(t), for all . We can approach test functions of the form
X[0,4?(x), ¢ € Hg(A), with smooth functions and pass to the limit to check that

/divumbdx—/ divugpdx = /Vw(t)-Vqux,
A E(t) A

for almost all ¢ (up to a negligible set, which we can actually choose independently of ¢, as
H}(A) is separable).

If we choose ¢ — w(t, ) as the test function in this equation, we find

/Adiv uo(x)p(z) de — /Adiv uo(x)w(z,t)de — /E(t) div ug(x)(d(x) — w(z, t)) d

= /AVw(t,x)-V¢(x)dz—/4|vw(t7$)|2d$v
= =5 [ [Vutt.0) = Vo) do + 5 [ Vo do =g [ [Vutta)P de.

If |¢| < t, we have that —divug(x)(p(x) — w(z,t)) > 0 for a.e. x € E(t), so that w(t) is the

minimizer of (12) and the thesis follows. O
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Remark 3.12. As mentioned above, it is a natural question whether assumption (26) is
necessary to prove this result. For instance, in case ET and E~ are closed sets in [0,7) x A
with E*(t) N E~(t) for any ¢ > 0, and {divug = 0} is a negligible set, then one can actually
deduce (26) from (25). Indeed, using localized test functions ¢(z)x[s, one shows first that
v is harmonic in A\ E(t) for a.e. t, and then that fE(S) divugp dz — fE(t) divugpdzr > 0, and
(26) follows.

Remark 3.13. When p > N/2, we can deduce some further properties of w from the
regularity theory for the obstacle problem [6]. Indeed, letting ¥ € HJ(A) N W2P(A) such
that —AW = g, we have that w = w — ¥ € H}(A) solves the obstacle problem

1 w(z)|? de
/A'V“'d'

min
—t—U<w<t—U 2

Since p > N/2, we have w(t) € C*(A), with o = 2 — N/p, so that E(t) = {Jw(t)| =t} is a
closed set. In this case, v(t) can be defined as the harmonic function in A\ E(t) with Dirichlet
boundary condition v(t) = 0 on A and v(t) = 1 on E*(t). Moreover, it is easy to check
that —Vo(t) € 3°D(u(t)), and v(t) is continuous out of the singular points of 9A U E(t).

4 Examples

4.1 The antiplane case in dimension 2

Let N =2 and kK = 1. We have
a0 = orol(a) = s [ v e e}
A

where rot ¢ = 91109 — 9901 and V+ = (02, —0;). Then, we check easily that in L?(A4;R?) the
functional J is the support function of the closed convex set

K = {V%'v:veHj(A4[-1,1])}.

As we mentioned in the Introduction, this functional appears as limit of the Ginzburg-Landau
model in a suitable energy regime [19].

Letting ¢ = (Y2, —t1), we get J(¢) = fA |div1p|, so that the flow can be described as
above.

Proposition 4.1. Let ug € L*(A;R?) with rotug = g € LP(A), p > 1. Then for t > 0
there exist nonincreasing left-continuous closed (and disjoint) sets E*(t) C {£g > 0}, such

that rot u(t) = rot uo(X p-(1yup+(r))- Moreover, letting E* = Ugso{t} x EE(t), there exists a
function v(t, z) with v = £1 a.e. on E* such that (ET, E~,v) are the unique closed sets and
function solution of the weak Hele-Shaw flow (25).
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4.2 The one-dimensional Total Variation Flow

Let now N = 1, k = 0: the previous analysis also provides interesting qualitative information
on the behavior of the flow of the Total Variation, in dimension 1.

We consider ug € L%((a,b)), a < b, and the flow u(t) of the total variation J(u) :=
sup{f: w'dt : v € C¥(a,b;[—1,1])}. Notice that in this situation, the function w which
minimizes (12), being in Hg(a,b), is also in C/2([a, b]) with w(a) = w(b) = 0. In particular,
the sets ET(t) defined in (18) are closed, disjoint sets compactly contained in (a,b).

We can state the following result.

Proposition 4.2. The function u(t) is the unique minimizer of

1
min J(u) + ﬂ/ lu — uo|? da.

Moreover there exist nonincreasing, disjoint closed sets EX(t) C (a,b) such that u(t) =
ug a.e. on E*(t), ug is nondecreasing on any interval contained in E*(t), nonincreasing

on any nterval contained in E~(t), and u(t) is constant on each connected component of
(a,b) \ (E*(t) UE~(1)).

If up is smooth enough, one can also characterize the speed of the boundary points of
E*(t) in term of ug and the size of the intervals of (a,b) \ (ET(t) U E~(t)).

Proof. The first part of the thesis is a consequence of Remark 3.2. Then, if ug € BV (a,b),
the thesis is a consequence of Lemma 3.3. Indeed, for a.e.  on E*(t), we have d,w(t,z) = 0
and u(t,z) = uo(x) + Opw(t,z) = ug(z). If I C ET(¢) is an interval, since the measure
Du(t)L_T must be nonnegative, u(t) is nondecreasing on I, but as u(t) = wug a.e. on I it
follows that wug is nondecreasing on I.

If ug ¢ BV (a,b), we use the fact that for alle > 0, u(¢) € BV (a,b). Then the Proposition
holds for ¢ > ¢, and we have u(t) = u(e) a.e. on E*(t), u(e) is nondecreasing on any interval
contained in ET(t), nonincreasing on any interval contained in E~(¢), and w(t) is constant
on each connected component of (a,b) \ (E*(t) U E~(t)). The sets do not depend on ¢, as
they are defined as the contact sets in (12). Sending then € — 0 we deduce the result. O

We can deduce the following, quite interesting result (see also [4, 14, 17] for other results
on the one-dimensional Total Variation flow).

Corollary 4.3. Let ug = @y + n where @y € BV (a,b) and n is a stochastic process (a,b)
with n € L*(a,b) a.s. and such that |Dn|(I) = +oo for any interval I C (a,b), almost surely
(this is satisfied for instance by the Wiener process [8]). Let u(t) be the total variation flow
starting from uo. Then almost surely, at t > 0, there is “staircaising” everywhere in the
interval (a,b): u(t) is constant on each connected component of an open set A(t) which is

dense in (a,b).
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Proof. We let A(t) = (a,b) \ (E*(t) U E~(t)), and from the previous result we know that
u(t) is constant on each connected component of A(t) while v = ug on (a,b) \ A(t). Now
assume there is an interval I with I N A(t) = (: without loss of generality we may assume
that I C E*(t). Then up must be nondecreasing on I, in particular there exists I’ C I with
|Dug|(I") < 4+o00. But this yields that |[Dn|(I") < 400, which is a.s. impossible. O
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