
On the gradient flow of a one-homogeneous functional

Ariela Briani ∗ Antonin Chambolle † Matteo Novaga ‡

Giandomenico Orlandi §

Abstract

We consider the gradient flow of a one-homogeneous functional, whose dual involves

the derivative of a constrained scalar function. We show in this case that the gradient

flow is related to a weak, generalized formulation of a Hele-Shaw flow. The equiva-

lence follows from a variational representation, which is a variant of well-known varia-

tional representations for the Hele-Shaw problem. As a consequence we get existence

and uniqueness of a weak solution to the Hele-Shaw flow. We also obtain an explicit

representation for the Total Variation flow in one dimension, and easily deduce basic

qualitative properties.

1 Introduction

This paper deals with the L2-gradient flow of the functional

Jk(ω) :=

∫

A

|dω| dx k ∈ {0, . . . , N − 1}

defined on differential forms ω ∈ L2(A,Ωk(RN )), where A ⊆ R
N is an open set. We will

focus on the particular case k = N − 1: in that case, the dual variable is a scalar and this

yields very particular properties of the functional Jk and the associated flow.

Notice that, when k = 0, the functional J0 reduces to the usual total variation. When

k = N−1 we can identify by duality ω ∈ L2(A,ΩN−1(RN )) with a vector field u ∈ L2(A,RN ),
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so that JN−1 is equivalent to the functional

D(u) :=

∫

A

|divu| dx (1)

that is, the total mass of divu as a measure.

The gradient flow of D has interesting properties: we show in particular that it is equiva-

lent to a constrained variational problem for a function w such that ∆w = divu. Moreover,

under some regularity assumption on the initial datum u0, such a variational problem al-

lows to define a weak formulation of the Hele-Shaw flow [9, 11] (see also [12] for a viscosity

formulation). Therefore, it turns out that the flow of (1) provides a (unique) global weak

solution to the Hele-Shaw flow, for a suitable initial datum u0. But our formulation allows

us to consider quite general initial data u0, for which for instance divu0 may change sign, or

be a measure.

The plan of the paper is the following: in Section 2 we introduce the general functional we

are interested in, we write the Euler-Lagrange equation for its Moreau-Yosida approximation

and, in Section 2.1, we express it in a dual form that will be the base of our analysis.

In Section 3 we focus on the case k = 1 which is analyzed in this paper. We show many

interesting properties of the flow: comparison, equivalence with a weak Hele-Shaw flow if

the initial datum is smooth enough, and qualitative behavior when the initial datum is not

smooth. In Section 4.1 we observe that, in dimension 2, the case k = N − 1 also covers the

flow of the L1-norm of the rotation of a vector field, which appears as a particular limit of

the Ginzburg-Landau model (see [16, 19] and references therein).

Another interesting consequence of our analysis is that it yields simple but original qual-

itative results on the solutions of the Total Variation flow in dimension one (see also [3, 4]).

We show in Section 4.2 that the denoising of a noisy signal with this approach will, in general,

almost surely produce a solution which is “flat” on a dense set. This undesirable artefact

is the well-known “staircasing” effect of the Total Variation regularization and is the main

drawback of this approach for signal or image reconstruction.

2 Gradient flow

Given an initial datum ω0 ∈ L2(A,Ωk(RN )), the general theory of [5] guarantees the existence

of a global weak solution ω ∈ L2([0,+∞), L2(A,Ωk(RN ))) of the gradient flow equation of

Jk:

ωt ∈ −∂Jk(ω) t ∈ [0,+∞). (2)

Given ε > 0 and f ∈ L2(A,Ωk(RN )), we consider the minimum problem

min
ω:A→RN

Jk(ω) +

∫

A

1

2ε
|ω − f |2 dx. (3)
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Notice that

min
ω:A→RN

Jk(u) +

∫

A

|ω − εf |2
2

dx = ε min
ω:A→RN

Jk(u) +

∫

A

1

2ε
|ω − f |2 dx.

The Euler-Lagrange equation corresponding to (3) is

ε(f − ω) ∈ ∂Jk(ω),

that is there exists a (k + 1)-form v with |v| = 1 such that v = dω/|dω| if dω 6= 0, and

ε(f − ω) = d∗v in A and (∗v)T = 0 on ∂A. (4)

2.1 Dual formulation

Equation (4) is equivalent to

ω ∈ ∂J∗
k (ε(f − ω)),

where

J∗
k (η) := sup

w:A→RN

∫

A

η · w dx− Jk(w) =

{

0 if ‖η‖∗ ≤ 1

+∞ otherwise

and

‖η‖∗ = sup

{
∫

A

η · w dx : Jk(w) ≤ 1

}

.

Note that

Jk(w) + J∗
k (η) ≥

∫

A

w · η dx

for all w, η. The equality holds iff
∫

A
η · w dx = Jk(w), and in such case we have ‖η‖∗ ≤ 1.

Letting u be a minimizer of (3) and η = (f − u)/ε we then get

∫

A

u · f − u

ε
dx = Jk(u),

which implies

J∗
k

(

f − u

ε

)

= 0 that is ε ≥ ‖f − u‖∗ .

In particular, we showed the following (see also [15] for the same result in the case of the

Total Variation).

Proposition 2.1. The function u = 0 is a minimizer of (3) if and only if

ε ≥ εc := ‖f‖∗ . (5)
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Note that ‖η‖∗ <∞ implies that

∫

A

ηw = 0

for all w such that dw = 0. By Hodge decomposition, this implies that η = d∗g for some

2-form g, with gN = 0 on ∂A. It follows that

‖η‖∗ = sup
R

A
|dw|≤1

∫

A

d∗g ·w dx = sup
R

A
|dw|≤1

∫

A

g · dw dx+

∫

∂A

w ∧ ∗gN = sup
R

A
|dw|≤1

∫

A

g · dw dx.

(6)

We then get

‖η‖∗ = inf
d∗g=η

gN |∂A=0

‖g‖L∞(A).

Indeed, it is immediate to show the ≤ inequality. On the other hand, by Hahn-Banach

Theorem, there exists a form g′, with d∗g′ = d∗g = η such that

‖η‖∗ = sup
R

A
|dw|≤1

∫

A

g · dw dx = sup
R

A
|ψ|≤1

∫

A

g′ · ψ dx = ‖g‖L∞(A).

Fix now φ0 such that d∗φ0 = η. We can write g = φ0 + d∗ψ, so that (6) becomes

‖η‖∗ = min
ψ: (φ0+d∗ψ)·ν

A
=0

‖φ0 + d∗ψ‖L∞(A). (7)

The Euler-Lagrange equation of (7) is similar to the infinity laplacian equation

d∞(φ0 + d∗ψ) = 0.

By duality problem (7) becomes

min
ψ∈W 1,∞

0
(A)

‖∇ψ + φ0‖L∞(A), (8)

and the corresponding Euler-Lagrange equation is

〈(∇2ψ + ∇φ0)(∇ψ + φ0), (∇ψ + φ0)〉 = 0. (9)

3 The case k = N − 1

In this case, we recall that we are considering the gradient flow of the functional (1), which

is defined, for any u ∈ L1
loc(A; RN ), as follows

D(u) = sup

{
∫

A

−u∇v dx : v ∈ C∞
c (A) , |v(x)| ≤ 1 ∀x ∈ A

}

. (10)
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This is finite if and only if the distribution divu is a bounded Radon measure in A. We now

see it as a (convex, l.s.c., with values in [0,+∞]) functional over the Hilbert space L2(A; RN ):

it is then clear from (10) that it is the support function of

K =
{

−∇v : v ∈ H1
0 (A; [−1, 1])

}

and in particular p ∈ ∂D(u), the subgradient of D at u, if and only if p ∈ K and
∫

A p ·u dx =

D(u) =
∫

A
|divu|.

We can define, for u ∈ domD, the Radon-Nikodym density

θdivu(x) =
divu

|divu| (x) = lim
ρ→0

∫

B(x,ρ)
divu

∫

B(x,ρ) |divu| ,

which exists |divu|-a.e. (we consider that it is defined only when the limit exists and is in

{−1, 1}), and is such that divu = θdivu|divu|. We can also introduce the Borel sets

E±
u = {x ∈ A : θdivu(x) = ±1} .

Then, we have:

Lemma 3.1.

∂D(u) =
{

−∇v : v ∈ H1
0 (A; [−1, 1]) , v = ±1 |divu|− a.e. on E±

u

}

.

Proof. Consider v ∈ H1
0 (A; [−1, 1]). Then we know [1] that it is the limit of smooth functions

vn ∈ C∞
c (A; [−1, 1]) with compact support which converge to v quasi-everywhere (that is,

up to a set of H1-capacity zero).

We recall that when u ∈ L2(A; RN ), the measure divu ∈ H−1(A) must vanish on sets

of H1-capacity 0 [1, §7.6.1]: it follows that vn → v |divu|-a.e. in A. Hence, by Lebesgue’s

convergence theorem,

−
∫

A

∇v(x)u(x) dx = lim
n→∞

∫

A

vn(x)θdiv u(x)|div u|(x) =

∫

A

v(x)div u(x) .

It easily follows that if v = ±1 |divu|- a.e. on E±
u , −∇v ∈ ∂D(u) and conversely, that if

v ∈ ∂D(u) then v = ±1 |divu|-a.e. on E±
u .

We now define, provided u ∈ dom ∂D (i.e., ∂D(u) 6= ∅),

∂0D(u) = argmin

{
∫

A

|p|2 dx : p ∈ ∂D(u)

}

:

it corresponds to the element p = −∇v ∈ ∂D(u) of minimal L2-norm. Using Lemma 3.1,

equivalently, v is the function which minimizes
∫

A |∇v|2 dx among all v ∈ H1
0 (A) with v ≥ χE+

u

and v ≤ −χE−
u

, |divu|-a.e.: in particular, we deduce that it is harmonic in A \ E+
u ∪ E−

u .
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Let us now return to the flow (2). In this setting, it becomes
{

ut = ∇v
u(0) = u0

(11)

where v satisfies |v| ≤ 1 and

D(u) +

∫

A

u · ∇v = 0.

It is well know, in fact, that the solution of (11) is unique and that −∇v(t) = ∂0D(u(t)) is

the right-derivative of u(t) at any t ≥ 0 [5]. Given the solution (u(t), v(t)) of (11), we let

w(t) =

∫ t

0

v(s) ds,

which takes its values in [−t, t]. We have

u(t) = u0 + ∇w(t).

Theorem 1. Assume u0 ∈ L2(A; RN ). The function w(t) solves the following obstacle

problem

min

{

1

2

∫

A

|u0 + ∇w|2 dx : w ∈ H1
0 (A) , |w| ≤ t a.e.

}

. (12)

Observe that in case we additionally have divu0 ≥ α > 0, this obstacle problem is well-

known for being an equivalent formulation of the Hele-Shaw problem, see [9, 11].

Proof. Given u0 ∈ L2(A; RN ), we can recursively define un+1 ∈ L2(A; RN ) as the unique

solution of the minimum problem

min
u∈L2(A,RN )

Dε(u, un),

where

Dε(u, v) = D(u) +

∫

A

1

2ε
|u− v|2 dx.

Then, there exists vn+1 ∈ ∂D(un+1) such that

un+1 − un − ε∇vn+1 = 0. (13)

It follows that vn+1 ∈ H1
0 (A) minimizes the functional

∫

A

|un + ε∇v|2 dx

under the constraint |v| ≤ 1. Let now

wn := ε
n

∑

i=1

vi.
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The from (13) we get

un = u0 + ∇wn, (14)

and wn minimizes the functional
∫

A

|u0 + ∇w|2 dx (15)

under the constraint |w − wn−1| ≤ ε. Notice that |wn − wn−1| ≤ ε for all n implies

|wn| ≤ nε. (16)

We now show that wn minimizes (15) also under the weaker constraint (16). Indeed, letting

ŵn be the minimizer of (15) under the constraint (16), we have

ŵn − ε ≤ ŵn+1 ≤ ŵn + ε,

which follows by noticing that min{ŵn, ŵn+1 + ε} and max{ŵn, ŵn+1 − ε} minimize (15),

hence they are both equal to ŵn. It then follows wn = ŵn for all n.

Passing to the limit in n we get the corresponding result in the continuum case.

Remark 3.2. The previous proof also shows that for any initial u0 ∈ L2(A; RN ), u(t) =

u0 + ∇w(t) is the unique minimizer of

∫

A

|divu| + 1

2t
|u− u0|2 dx.

We recall that obviously, such property does not hold for general semigroups generated by

the gradient flow of a convex function. It is shown in [2] to be the case for the Total Variation

flow, in any dimension, when the initial function is the characteristic of a convex set.

3.1 Some properties of the solution

A first observation is that t 7→ w(t) is continuous (in H1
0 (A), strong), as follows both from

the study of the varying problems (12) and from the fact that the flow u(t) = u0 + ∇w(t) is

both continuous at zero and L2(A)-Lipschitz continuous away from t = 0 (and up to t = 0 if

u0 ∈ dom∂D).

In fact, one can check that w is also L∞-Lipschitz continuous in time: indeed, it follows

from the comparison principle that for any s ≤ t,

w(s) − t+ s ≤ w(t) ≤ w(s) + t− s (17)

a.e. in A, hence ‖w(t)−w(s)‖L∞(A) ≤ |t−s|. The comparison (17) is obtained by adding the

energy in (12) of min{w(t), w(s)+ t−s} (which is admissible at time t and hence should have
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an energy larger than the energy of w(t)) to the energy of max{w(t) − t+ s, w(s)} (which is

admissible at time s), and checking that this sum is equal to the energy at time t plus the

energy at time s. This is quite standard, see [6, 12].

In particular, we can define for any t the sets

E+(t) = {w̃(t) = t} and E−(t) = {w̃(t) = −t} , (18)

where w̃(t) is the precise representative of w(t) ∈ H1(A), defined quasi-everywhere by

w̃(t, x) = lim
ρ→0

1

ωNρN

∫

B(x,ρ)

w(t, y)dy (19)

(ωN is the volume of the unit ball). It follows from (17) and (19) that if w̃(t, x) = t, then

for any s < t, x is also a point where w̃(s, x) is well-defined, and its value is s; similarly

if w̃(t, x) = −t then w̃(s, x) = −s. Hence: the functions t 7→ E+(t), t 7→ E−(t) are

nonincreasing.

Also, if s < t, one has from (17)

1

ωNρN

∫

B(x,ρ)

w(s, y)dy − t+ s ≤ 1

ωNρN

∫

B(x,ρ)

w(t, y)dy ≤ 1

ωNρN

∫

B(x,ρ)

w(s, y)dy − s+ t

so that if x ∈ E+(s),

2s− t ≤ lim inf
ρ→0

1

ωNρN

∫

B(x,ρ)

w(t, y)dy ≤ lim sup
ρ→0

1

ωNρN

∫

B(x,ρ)

w(t, y)dy ≤ t

and sending s to t, we find that if x ∈ ⋂

s<tE
+(s), w̃(t, x) = t and x ∈ E+(t): hence these

sets (as well as E−(·)) are left-continuous.

We define

E+
r (t) =

⋃

s>t

E+(s) ⊆ E+(t) and E−
r (t) =

⋃

s>t

E−(s) ⊆ E−(t) , (20)

as well as E(t) = E+(t) ∪ E−(t), Er(t) = E+
r (t) ∪ E−

r (t). Then, there holds the following

lemma:

Lemma 3.3. If s ≤ t, then

E−(t) ⊆ E−(s) and E+(t) ⊆ E+(s),

E−
r (t) ⊆ E−

r (s) and E+
r (t) ⊆ E+

r (s).

Moreover, for t > 0, v(t) = ±1 quasi-everywhere on E±
r (t) and E±

u(t) ⊆ E±
r (t), up to a set

|divu(t)|-negligible. In particular

divu(t) (E−
r (t))c ≥ 0, divu(t) (E+

r (t))c ≤ 0, divu(t) (E+
r (t) ∪ E−

r (t))c = 0.
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Proof. The first two assertions, as already observed, follow from (17) and the definition of

E±
r . We know that the solution of equation (11) satisfies ∂+

t u = −∂0D(u(t)) = ∇v(t) for any

t > 0, but the right-derivative of u = u0+∇w(t) is nothing else as limh→0 ∇[w(t+h)−w(t)]/h.

We easily deduce that v(t) = limh→0[w(t+h)−w(t)]/h (which converges in H1
0 -strong). Since

when x ∈ E+
r (t), w̃(t, x) = t and w̃(t + h, x) = t + h for h small enough, we deduce that

v(x) = 1 on that set, in the same way v = 1 on E−
r (t).

Observe that the Euler-Lagrange equation for (12) is the variational inequality

∫

A

(u0 + ∇w(t)) · (t∇v −∇w(t)) dx ≥ 0 ,

for any v ∈ H1
0 (A; [−1, 1]). In other words since u(t) = u0 + ∇w(t),

−
∫

A

u(t) · ∇w(t)

t
≥ −

∫

A

u(t) · ∇v

for any |v| ≤ 1, and we recover that −∇w(t)/t ∈ ∂D(u(t)).

Hence, E±
u(t) ⊆ E±(t). Now, if ṽ ∈ H1

0 (A; [−1, 1]) with ṽ = ±1 on E±
r , one deduces that

for any s > t,

−
∫

A

∇ṽ · u(s) dx = D(u(s)) .

Sending s→ t, it follows

−
∫

A

∇ṽ · u(t) dx ≥ D(u(t)) ,

hence ṽ ∈ ∂D(u(t)). We deduce that E±
u(t) ⊆ E±

r (t), invoking Lemma 3.1.

Remark 3.4. We might find situations where |v(t)| = 1 outside of the contact set. For

instance, assume the problem is radial, divu0 is positive in a crown and negative in the

center. Then one may have that E+ is a crown (w should be less than t at the center) and

E− is empty. In that case, v should be equal to one also in the domain surrounded by the

set E+.

We show now another simple comparison lemma:

Lemma 3.5. Let u0 and u′0 in L2(A; RN ) such that

divu′0 ≤ divu0

in H−1(A). Then for any t ≥ 0, w′(t) ≤ w(t), where w′(t) and w(t) are the solutions of the

contact problem (12), the first with u0 replaced with u′0.

9



Proof. Let t > 0, ε > 0, and wε be the minimizer of

min
|w|≤t

1

2

∫

A

|∇w|2 dx −
∫

A

w(div u′0 − ε)

which of course is unique. We now show that wε ≤ w(t) a.e., and since wε → w′(t) as ε→ 0

the thesis will follow.

We have by minimality

∫

A

|∇w(t)|
2

2

dx −
∫

A

w(t)(div u0) ≤
∫

A

|∇(w(t) ∨ wε)|
2

2

dx −
∫

A

(w(t) ∨wε)(divu0) ,

∫

A

|∇wε|
2

2

dx −
∫

A

wε(divu′0 − ε) ≤
∫

A

|∇(w(t) ∧ wε)|
2

2

dx −
∫

A

(w(t) ∧wε)(divu′0 − ε)

and summing both inequalities we obtain
∫

A

(w(t) ∨ wε − w(t))div u0 ≤
∫

A

(wε − w(t) ∧ wε)(div u′0 − ε) ,

from which it follows ε
∫

A(wε − w(t))+ dx ≤ 0, which is our claim.

Corollary 3.6. Under the assumptions of Lemma 3.5, we obtain that if divu′0 ≤ divu0:

E−(t) ⊆ E′−(t) and E′+(t) ⊆ E+(t) , (21)

and it follows that v′(t) ≤ v(t), for each t > 0.

Proof. Eqn (21) follows at once from the inequality w′(t) ≤ w(t) (Lemma 3.5). We deduce,

of course, that also E−
r (t) ⊆ E′−

r (t), and E′+
r (t) ⊆ E+

r (t). Consider the function v =

v′(t) ∧ v(t) = min{v′(t), v(t)}. As it is ±1 on E′±
r (t), it follows from Lemmas 3.3 and 3.1

that −∇v ∈ ∂D(u′(t)). In the same way, v′ = v′(t) ∨ v(t) = max{v′(t), v(t)} is such that

−∇v′ ∈ ∂D(u(t)). Since
∫

A

|∇v|2 dx+

∫

A

|∇v′|2 dx =

∫

A

|∇v(t)|2 dx+

∫

A

|∇v′(t)|2 dx ,

either
∫

A |∇v|2 dx ≤
∫

A |∇v(t)|2 dx or
∫

A |∇v′|2 dx ≤
∫

A |∇v′(t)|2 dx. By minimality (as

−∇v(t) = ∂0D(u(t))) it follows that v = v(t) and v′ = v′(t).

3.2 The support of the measure divu

Throughout this section we will assume that divu0 is a bounded Radon measure on A.

Lemma 3.7. Let u0 ∈ L2(A; RN ) ∩ domD, δ > 0 and u = (I + δ∂D)−1(u0). Then for

a positive Radon measure µ ∈ H−1(A), the Radon-Nikodym derivatives of divu and divu0

with respect to µ satisfy (divu/µ)(x) ≤ (divu0/µ)(x) for µ-a.e. x ∈ E+
u , and (divu/µ)(x) ≥

(divu0/µ)(x) for µ-a.e. x ∈ E−
u . In particular, divu << divu0 and (divu)± ≤ (divu0)

±.
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Remark. It follows from the Lemma that divu = θdivu0 (E+
u ∪ E−

u ) for some weight

θ(x) ∈ [0, 1]. We can build explicit examples where θ < 1 at some point. Consider for

instance, in 1D, A = (0, 1) and the function u0(x) = 0 if x < 1/3 and x > 2/3, and 2− 3x if

1/3 < x < 2/3. Then, one shows that u(t) is given by

u(t, x) =



























3t if x < 1
3

1 − 2
√

3t if 1
3 < x < a(t) := 1

3 + 2t√
3

2 − 3x if a(t) < x < b(t) := 1 −
√

1+6t
3√

1 + 6t− 1 if x > b(t)

until t = 1− 2
√

2/3. We have divu(t) = u(t)x = (1− 2
√

3t− 3t)δ1/3 − 3χ(a(t),b(t)) for such t:

E+
u(t) = {1/3} stays constant for a while (and disappears suddenly right after t = 1−2

√
2/3),

while the density of the measure divu(t) goes down monotonically until it reaches zero (notice

that v(t) will jump right after 1− 2
√

2/3), while E−
u(t) = (α(t), β(t)) shrinks in a continuous

way, and carries the constant continuous part of the initial divergence (−3).

Proof. We have u = u0 + δ∇v with −∇v ∈ ∂D(u). Let x ∈ E+
u . Recall that the precise

representative of v is defined by

ṽ(x) = lim
ρ→0

∫

B(x,ρ)
v(y) dy

ωNρN
,

where ωN = |B(0, 1)|, and that this limit exists quasi-everywhere in A. We assume also that

ṽ(x) = 1.

Then, for a.e. ρ > 0, one may write

∫

B(x,ρ)

divu =

∫

∂B(x,ρ)

u · ν dH1

=

∫

∂B(x,ρ)

u0 · ν dH1 + δ

∫

∂B(x,ρ)

∇v · ν dH1

=

∫

B(x,ρ)

divu0 + δ

∫

∂B(x,ρ)

∇v · ν dH1. (22)

Now, let f(ρ) = (1/ρN−1)
∫

∂B(x,ρ)
v dH1 (which is well-defined for any ρ). Then, since

ṽ(x) = 1 and v ≤ 1 a.e.,

lim sup
ρ→0

f(ρ) = NωN .

One can also show that for a.e. ρ > 0, f ′(ρ) = (1/ρN−1)
∫

∂B(x,ρ)
∇v · ν dH1, in fact f is

locally H1 in some small interval (0, ρ0).
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Since v ≤ 1 a.e., f(ρ) ≤ NωN a.e., so that

lim inf
ε→0

∫ ρ

ε

1

rN−1

∫

∂B(x,r)

∇v · ν dH1 dr = lim inf
ε→0

∫ ρ

ε

f ′(r) dr

= lim inf
ε→0

f(ρ) − f(ε) ≤ 0

for any ρ. If follows that for any ρ small, the set I+
ρ = {r ∈ [0, ρ] :

∫

∂B(x,r)
∇v · ν dH1 ≤ 0}

has positive Lebesgue measure, and for any r ∈ I+
ρ , we deduce from (22) that

∫

B(x,r) divu ≤
∫

B(x,r)
divu0.

Now consider µ a positive Radon measure: µ-a.e., we know that the limits

divu

µ
(x) = lim

r→0

∫

B(x,r)
divu

µ(B(x, r))
and

divu0

µ
(x) = lim

r→0

∫

B(x,r)
divu0

µ(B(x, r))

exist. If moreover, as before, x ∈ E+
u and ṽ(x) = 1 (which holds µ-a.e., since µ ∈ H−1(A)),

we can find a subsequence rn such that
∫

B(x,rn)
divu ≤

∫

B(x,rn)
divu0 for each n, and it

follows (divu/µ)(x) ≤ (divu0/µ)(x).

The following corollaries follows:

Corollary 3.8. Let t > s ≥ 0: then (divu(t))± ≤ (divu(s))±. In particular, E±
u(t) ⊆ E±

u(s),

|divu(s)|-a.e. in A.

Proof. Indeed: if t > s, then u(t) = (I + (t − s)∂D)−1(u(s)). We deduce that for quasi-

every x ∈ E+
u(t), 1 = θdivu(t)(x) ≤ (divu(s)/(divu(t))+)(x), and it follows (divu(t))+ ≤

(divu(s)/(divu(t))+)(divu(t))+ ≤ (divu(s))+.

Corollary 3.9. We have that (divu(t))±
∗
⇀ (div u0)

± as t → 0, weakly-∗ in the sense of

measures. Moreover, E±
u0

⊂ E±
r (0) (up to a |divu0|-negligible set), and divu0 (E+

r (0)) ≥ 0,

divu0 (E−
r (0)) ≤ 0.

Proof. We know that as t → 0, u(t) → u0 in L2(A; RN ), and thanks to the boundedness of

divu(t) it follows that divu(t)
∗
⇀ divu0 in the sense of measures. Now consider a subsequence

(tk) such that (divu(tk))
+ ∗
⇀ µ, (divu(tk))

− ∗
⇀ ν. Since µ − ν = divu0, it follows that

µ ≥ (divu0)
+ and ν ≥ (divu0)

−. The reverse inequalities follow from Lemma 3.7 and the

first part of the thesis follows.

From the previous results we obtain that for each t, one can write

(divu(t))+ = θt(x)(div u0)
+

The function θt(x) = lim infρ→0(
∫

B(x,ρ) divu(t)+)/(
∫

B(x,ρ)(divu0)
+) is well-defined on the

set E+
u0

which supports the measure (divu0)
+, and we find that θt(x) ≤ 1 is nonincreasing

in t. Hence there exists for all x ∈ E+
u0

the limit limt→0 θt(x) = supt>0 θt(x), and this limit
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must be 1 (divu0)
+-a.e., otherwise this would contradict that (divu(t))+

∗
⇀ (div u0)

+. It

follows that up to a (divu0)
+-negligible set, E+

u0
⊆ ⋃

t>0{x ∈ E+
u0

: θt(x) > 0}.
Now, if x ∈ E+

u0
and θt(x) > 0, then x ∈ E+

u(t): indeed,

∫

B(x,ρ) divu(t)
∫

B(x,ρ)
|divu(t)| =

(divu(t))+(B(x, ρ)) − (divu(t))−(B(x, ρ))

(divu(t))+(B(x, ρ)) + (divu(t))−(B(x, ρ))

ρ→0−→ 1 ,

since

(divu(t))−(B(x, ρ)) ≤ (divu−0 )(B(x, ρ))

= o((divu+
0 )(B(x, ρ))) ≤ o((div u(t))+(B(x, ρ)))

(the equality is because x ∈ E+
u0

, the last inequality because θt(x) > 0). It follows that

E+
u0

⊆
⋃

t>0

E+
u(t)

and the conclusion follows from Lemma 3.3.

Remark 3.10. If A = R
N one can easily show easily by a translation argument that

u0 ∈ H1(A; RN ) ⇒ u(t) ∈ H1(A; RN ) with same norm, so that the H1-norm of u(t) is

nonincreasing. In this case, E+
u(t) is a.e.-equivalent to the support of (divu)+ and since from

the equation it follows u = u0 a.e. on E± (since v = ±1 a.e. on E±, so that ∇v = 0 a.e.,

the problem being in general that this will not be true quasi-everywhere), we deduce that

divu = divu0 a.e. on E+ ∪ E− = spt(divu).

3.3 The regular case

Let us now assume that divu0 = g ∈ Lp(A), p > 1. The obstacle problem which is solved by

w(t) can be written

min
w∈H1

0
:|w|≤t

1

2

∫

A

|∇w(x)|2 dx −
∫

A

g(x)w(x) dx .

Standard results show that w(t) ∈ W 2,p(A), (see Theorem 9.9 in [10]). In particular, we

have that in the Lp sense,

−∆w(t) = gχ{|w(t)|<t}

and, since u(t) = u0 + ∇w(t), we deduce that in this case

divu(t) = divu0χE(t) (23)

for any t > 0. In particular, formally, we deduce from (11) that

divu0

∂χE(t)

∂t
= ∆v(t) , (24)
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and since ∆v(t) is the jump of the normal derivative of v(t) on ∂E±(t), we find that these

sets shrink with a normal speed |∇v(t)|/|divu0|.
This can be written rigorously in the sense of distributions: (E+, E−, v) are such that

v ∈ L1([0, T );H1
0 (A; [−1, 1])), v = ±1 on E± for a.e. t and x, and for any φ ∈ C∞

c ([0, T )×A),

∫

A

divu0(x)φ(0, x) dx +

∫ T

0

∫

A

divu0(x)χE(t)(x)
∂φ

∂t
(x, t) dx dt

−
∫ T

0

∫

A

∇v(t, x) · ∇φ(t, x) dx dt = 0. (25)

We observe that the evolution equation (25) is reminiscent of the enthalpy formulation of the

one-phase Stefan problem [18].

We expect that with either the additional information that divu0 is a.e. nonnegative on

E+ and nonpositive on E−, or that the maps E±(t) are nonincreasing, then (25) characterizes

the unique evolution (11). On the other hand, without this additional assumption, then a

time-reversed evolution with will satisfy the same weak equation, with u0 replaced with −u0.

With both assumptions we can actually show the following result:

Proposition 3.11. Let E+, E− be measurable subsets of A×[0, T ], and v ∈ L1([0, T );H1
0 (A))

with |v| ≤ 1 a.e., v = ±1 a.e. on E±, and satisfying (25). Assume in addition that ±divu0 ≥
0 a.e. on E±, and

E±(t) ⊆ E±(s) for a.e. t > s . (26)

Then u(t, x) := u0(x) + ∇
∫ t

0 v(s, x) ds is the unique solution of (11).

Proof. Let w(t) =
∫ t

0 v(s) ds. Thanks to (26), we have that |w(t, x)| ≤ t for a.e. x ∈ A,

and w(t, x) = ±t for a.e. x ∈ E±(t), for all t. We can approach test functions of the form

χ[0,t]φ(x), φ ∈ H1
0 (A), with smooth functions and pass to the limit to check that

∫

A

divu0φdx−
∫

E(t)

divu0φdx =

∫

A

∇w(t) · ∇φdx ,

for almost all t (up to a negligible set, which we can actually choose independently of φ, as

H1
0 (A) is separable).

If we choose φ− w(t, ·) as the test function in this equation, we find

∫

A

divu0(x)φ(x) dx −
∫

A

divu0(x)w(x, t) dx −
∫

E(t)

divu0(x)(φ(x) − w(x, t)) dx

=

∫

A

∇w(t, x) · ∇φ(x) dx −
∫

A

|∇w(t, x)|2 dx ,

= −1

2

∫

A

|∇w(t, x) −∇φ(x)|2 dx+
1

2

∫

A

|∇φ(x)|2 dx− 1

2

∫

A

|∇w(t, x)|2 dx .

If |φ| ≤ t, we have that −divu0(x)(φ(x) − w(x, t)) ≥ 0 for a.e. x ∈ E(t), so that w(t) is the

minimizer of (12) and the thesis follows.
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Remark 3.12. As mentioned above, it is a natural question whether assumption (26) is

necessary to prove this result. For instance, in case E+ and E− are closed sets in [0, T )×A

with E+(t) ∩E−(t) for any t > 0, and {divu0 = 0} is a negligible set, then one can actually

deduce (26) from (25). Indeed, using localized test functions φ(x)χ[s,t], one shows first that

v is harmonic in A \E(t) for a.e. t, and then that
∫

E(s)
divu0φdx−

∫

E(t)
divu0φdx ≥ 0, and

(26) follows.

Remark 3.13. When p > N/2, we can deduce some further properties of w from the

regularity theory for the obstacle problem [6]. Indeed, letting Ψ ∈ H1
0 (A) ∩W 2,p(A) such

that −∆Ψ = g, we have that w̃ = w − Ψ ∈ H1
0 (A) solves the obstacle problem

min
−t−Ψ≤w̃≤t−Ψ

1

2

∫

A

|∇w̃(x)|2 dx.

Since p > N/2, we have w(t) ∈ Cα(A), with α = 2 −N/p, so that E(t) = {|w(t)| = t} is a

closed set. In this case, v(t) can be defined as the harmonic function in A\E(t) with Dirichlet

boundary condition v(t) = 0 on ∂A and v(t) = ±1 on E±(t). Moreover, it is easy to check

that −∇v(t) ∈ ∂0D(u(t)), and v(t) is continuous out of the singular points of ∂A ∪ ∂E(t).

4 Examples

4.1 The antiplane case in dimension 2

Let N = 2 and k = 1. We have

J(ψ) = |rotψ|(A) = sup

{
∫

A

∇⊥ · ψ : v ∈ C∞
c (A; [−1, 1])

}

where rotψ = ∂1ψ2 − ∂2ψ1 and ∇⊥ = (∂2,−∂1). Then, we check easily that in L2(A; R2) the

functional J is the support function of the closed convex set

K =
{

∇⊥v : v ∈ H1
0 (A; [−1, 1])

}

.

As we mentioned in the Introduction, this functional appears as limit of the Ginzburg-Landau

model in a suitable energy regime [19].

Letting ψ⊥ = (ψ2,−ψ1), we get J(ψ) =
∫

A
|divψ⊥|, so that the flow can be described as

above.

Proposition 4.1. Let u0 ∈ L2(A; R2) with rotu0 = g ∈ Lp(A), p > 1. Then for t > 0

there exist nonincreasing left-continuous closed (and disjoint) sets E±(t) ⊂ {±g ≥ 0}, such

that rotu(t) = rotu0(χE−(t)∪E+(t)). Moreover, letting E± = ∪t≥0{t} × E±(t), there exists a

function v(t, x) with v = ±1 a.e. on E± such that (E+, E−, v) are the unique closed sets and

function solution of the weak Hele-Shaw flow (25).
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4.2 The one-dimensional Total Variation Flow

Let now N = 1, k = 0: the previous analysis also provides interesting qualitative information

on the behavior of the flow of the Total Variation, in dimension 1.

We consider u0 ∈ L2((a, b)), a < b, and the flow u(t) of the total variation J(u) :=

sup{
∫ b

a uv
′ dt : v ∈ C∞

c (a, b; [−1, 1])}. Notice that in this situation, the function w which

minimizes (12), being in H1
0 (a, b), is also in C1/2([a, b]) with w(a) = w(b) = 0. In particular,

the sets E±(t) defined in (18) are closed, disjoint sets compactly contained in (a, b).

We can state the following result.

Proposition 4.2. The function u(t) is the unique minimizer of

min
u
J(u) +

1

2t

∫ b

a

|u− u0|2 dx.

Moreover there exist nonincreasing, disjoint closed sets E±(t) ⊂ (a, b) such that u(t) =

u0 a.e. on E±(t), u0 is nondecreasing on any interval contained in E+(t), nonincreasing

on any interval contained in E−(t), and u(t) is constant on each connected component of

(a, b) \ (E+(t) ∪ E−(t)).

If u0 is smooth enough, one can also characterize the speed of the boundary points of

E±(t) in term of u0 and the size of the intervals of (a, b) \ (E+(t) ∪ E−(t)).

Proof. The first part of the thesis is a consequence of Remark 3.2. Then, if u0 ∈ BV (a, b),

the thesis is a consequence of Lemma 3.3. Indeed, for a.e. x on E±(t), we have ∂xw(t, x) = 0

and u(t, x) = u0(x) + ∂xw(t, x) = u0(x). If I ⊂ E+(t) is an interval, since the measure

Du(t) I must be nonnegative, u(t) is nondecreasing on I, but as u(t) = u0 a.e. on I it

follows that u0 is nondecreasing on I.

If u0 6∈ BV (a, b), we use the fact that for all ε > 0, u(ε) ∈ BV (a, b). Then the Proposition

holds for t > ε, and we have u(t) = u(ε) a.e. on E±(t), u(ε) is nondecreasing on any interval

contained in E+(t), nonincreasing on any interval contained in E−(t), and u(t) is constant

on each connected component of (a, b) \ (E+(t) ∪ E−(t)). The sets do not depend on ε, as

they are defined as the contact sets in (12). Sending then ε→ 0 we deduce the result.

We can deduce the following, quite interesting result (see also [4, 14, 17] for other results

on the one-dimensional Total Variation flow).

Corollary 4.3. Let u0 = ū0 + n where ū0 ∈ BV (a, b) and n is a stochastic process (a, b)

with n ∈ L2(a, b) a.s. and such that |Dn|(I) = +∞ for any interval I ⊂ (a, b), almost surely

(this is satisfied for instance by the Wiener process [8]). Let u(t) be the total variation flow

starting from u0. Then almost surely, at t > 0, there is “staircaising” everywhere in the

interval (a, b): u(t) is constant on each connected component of an open set A(t) which is

dense in (a, b).
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Proof. We let A(t) = (a, b) \ (E+(t) ∪ E−(t)), and from the previous result we know that

u(t) is constant on each connected component of A(t) while u = u0 on (a, b) \ A(t). Now

assume there is an interval I with I ∩ A(t) = ∅: without loss of generality we may assume

that I ⊂ E+(t). Then u0 must be nondecreasing on I, in particular there exists I ′ ⊂ I with

|Du0|(I ′) < +∞. But this yields that |Dn|(I ′) < +∞, which is a.s. impossible.
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