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Abstract. We show that the inner distance inside a bounded planar domain is at most
the one-dimensional Hausdorff measure of the boundary of the domain. We prove this
sharp result by establishing an improved Painlevé length estimate for connected sets and by
using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev,
and Rajala. We also give a totally disconnected example showing that for general sets the
Painlevé length bound κ(E) ≤ πH1(E) is sharp.

1. Introduction

In this paper we continue the study of the internal distance for planar domains. For a
domain Ω ⊂ R2, the internal distance dΩ : Ω2 → [0,∞) is defined as

dΩ(x, y) := inf {`(γ) : γ is a curve connecting x to y} ,

where `(γ) denotes the length of the curve γ. The internal distance is determined by how
much the boundary blocks the curves γ. One result in this direction was proven in [6]:
If the complement of the domain Ω is totally disconnected with finite H1-measure, then
dΩ is the Euclidean distance. In other words, totally disconnected closed sets with finite
H1-measure are (metrically) removable. The proof of this result used the estimate

dΩ(x, y) ≤ |x− y|+ π

2
H1(∂Ω). (1.1)

We improve (1.1) to the following sharp estimate:

Theorem 1.1. Let Ω ⊂ R2 be a domain satisfying H1(∂Ω) <∞. Then the estimate

dΩ(x, y) ≤ |x− y|+H1(E) (1.2)

holds for every x, y ∈ Ω, where E ⊂ ∂Ω is the union of all the connected components of ∂Ω
with positive length. In the case when Ω is bounded, the above estimate can be improved to

dΩ(x, y) ≤ H1(E). (1.3)
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The assumption H1(∂Ω) < ∞ in Theorem 1.1 is used for showing that the totally
disconnected part of the boundary is removable. In view of the examples constructed in
[5], it is at least necessary to assume that the Hausdorff dimension of ∂Ω is at most one.
However, it is not clear if the assumption H1(∂Ω) < ∞ could be relaxed to ∂Ω having
σ-finite H1-measure.

The sharpness of the estimate (1.2) in the unbounded case is seen simply by taking ∂Ω
to be a line-segment. In the bounded case, the sharpness is seen for example by considering

Ω = (0, 1)2 \
n⋃
i=1

({ 1

2i
} × [0, 1− 1/i]) ∪ ({ 1

2i+ 1
} × [1/i, 1])

for n larger and larger, and by scaling Ω.
As a consequence of Theorem 1.1, we obtain the following result:

Theorem 1.2. Let Ω ⊂ R2 be a bounded domain with H1(∂Ω) <∞. Let x ∈ Ω and y ∈ ∂Ω
be given. Then for every ε > 0 there exists an injective Lipschitz curve γ : [0, 1] → R2

joining x to y such that γ|(0,1) ⊂ Ω and `(γ) ≤ H1(∂Ω) + ε.
The previous result can be proven by arguing as in the proof of Theorem 2.6, but

replacing the estimate (1.1) with (1.3).
Remark 1.3. We point out that the curve γ in Theorem 1.2 can be chosen to be smooth
in the open interval (0, 1), as follows from a standard approximation argument.

The paper is organized as follows. In Section 2 we recall, and prove, basic results
in planar geometry; especially for planar domains whose boundary has finite length. In
Section 3 we show an improved version of the Painlevé length estimate for connected sets
and show the sharpness of the general Painlevé length estimate for disconnected sets. In
the final Section 4 we prove our main theorem, Theorem 1.1.

2. Some auxiliary results

We collect in this section some standard results in planar geometry that will be needed
in the remaining part of this paper. An open, connected subset of R2 is referred to as a
(planar) domain. By Jordan loop we mean a closed simple curve σ : [0, 1]→ R2.
Lemma 2.1. Let C ⊂ R2 be a connected set. Then it holds that

H1(C) ≥ |x− y| for every x, y ∈ C.
In particular, we have that diam(C) ≤ H1(C).
Proof. Fix x ∈ C and consider the function fx : R2 → R defined by fx(y) := |y − x| for
every y ∈ R2. Observe that the function fx is 1-Lipschitz, so that H1(C) ≥ L1

(
fx(C)

)
.

Moreover, since C is connected, we know that
[
0, |y−x|

]
=
[
fx(x), fx(y)

]
⊂ fx(C) holds for

every y ∈ C. Consequently, we have that |y − x| ≤ L1
(
fx(C)

)
for every y ∈ C. Therefore

we conclude that
H1(C) ≥ L1

(
fx(C)

)
≥ |x− y| for every x, y ∈ C,

as required. Taking the supremum over x, y ∈ C we also get that diam(C) ≤ H1(C). �
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For a proof of the following fact we refer, e.g., to [5, Fact 3.1]:

Lemma 2.2. Let Ω be a domain in R2. Let F be some connected component of ∂Ω. Denote
by B the connected component of Ωc that contains F . Then ∂B = F .

A domain Ω ⊂ R2 is said to be locally connected along its boundary provided for every
point x ∈ ∂Ω and every radius r > 0 there exists t ∈ (0, r) such that Ω∩Bt(x) is contained
in one connected component of Ω ∩Br(x).

The following result has been stated and proved in [5, Corollary 3.3]:

Proposition 2.3. Let Ω ⊂ R2 be any domain such that R2 \ Ω is connected and not a
singleton. Suppose that Ω is locally connected along its boundary and ∂Ω is bounded.
Then ∂Ω is a Jordan loop.

As an immediate consequence, we can obtain the following result:

Theorem 2.4. Let Ω be a bounded domain in R2 with H1(∂Ω) < +∞. Let U be a connected
component of R2 \Ω. Then ∂U is a Jordan loop (of finite length). Moreover, it holds that:

i) If U is bounded, then Ω lies in the unbounded connected component of R2 \ ∂U .
ii) If U is unbounded, then Ω lies in the bounded connected component of R2 \ ∂U .

Proof. Consider a connected component U of R2 \ Ω and denote V := R2 \ U . In view of
Proposition 2.3, it is sufficient to show that U is locally connected along its boundary. Fix
any x ∈ ∂U and r > 0. We claim that:

Only finitely many connected components of U ∩B2r(x) intersect Br(x). (2.1)

Call F such family. Suppose by contradiction that F is not a finite set and call {Ei}i∈I
its elements. Notice that for any i ∈ I we have that Ei ∩ ∂B2r(x) 6= ∅ (as U is connected),
thus also Ei ∩ ∂Br(x) 6= ∅ (as Ei intersects Br(x) by definition of F). In particular, one
has Ei ∩ ∂Bλ(x) 6= ∅ for all λ ∈ (r, 2r). Furthermore, it holds that V ∩ ∂Bλ(x) 6= ∅ for
every λ ∈ (r, 2r) (otherwise there would be just one element in F). This implies that

∂Ei ∩ ∂Bλ(x) 6= ∅ for every i ∈ I and λ ∈ (r, 2r). (2.2)

Let us define Γi := ∂Ei ∩ B2r(x) for every i ∈ I. Then {Γi}i∈I are pairwise disjoint Borel
subsets of ∂U , see Figure 1. We infer from the property (2.2) that H1(Γi) ≥ r for every
i ∈ I, whence accordingly it holds that H1(∂Ω) ≥ H1(∂U) ≥

∑
i∈I H1(Γi) = +∞. This

leads to a contradiction, thus proving the claim (2.1).
Since F has finite cardinality, we can find t ∈ (0, r) so small that the element of F

containing x is the only one that intersects Bt(x). This forces U ∩ Bt(x) to be contained
in one connected component of U ∩ B2r(x). Therefore U is connected along its boundary,
as required. The proof of items i) and ii) follows by a standard topological argument. �

Lemma 2.5. Let Ω ⊂ R2 be a bounded domain satisfying H1(∂Ω) < +∞. Fix any x ∈ ∂Ω
and ε > 0. Then there exists a subdomain Ω′ of Ω with H1(∂Ω′) ≤ ε such that x ∈ ∂Ω′ and
diam(Ω′) ≤ ε. Moreover, we can further require that ∂Ω′ ⊂ ∂Ω ∪ ∂B(x, r) for some r > 0.
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Figure 1. Proofs of Theorem 2.4 and Lemma 2.5 rely on the finiteness of
the length of the boundary of Ω to deduce that there are only finitely many
components intersecting both the small ball and the complement of the large
ball.

Proof. Step 1. Given that H1|∂Ω is upper continuous, we can choose r ∈
(
0, ε/(4π)

)
such

that H1
(
∂Ω ∩ B(x, r)

)
≤ ε/2. If Ω ⊂ B(x, r), then the set Ω′ := Ω does the job, thus let

us assume that there exists a point y ∈ Ω \ B(x, r). Let us denote by F the family of all
connected components of Ω∩B(x, r) that intersect ∂B(x, r/2). Given any V ∈ F , it holds:

There is a continuous curve α : [0, 1]→ R2 such that
α|(0,1] ⊂ V , α0 ∈ ∂B(x, r) ∩ Ω and α1 ∈ ∂B(x, r/2).

(2.3)

Indeed, we can find a continuous curve α′ : [0, 1]→ Ω joining y to a point of ∂B(x, r/2)∩V .
Calling t0 := max

{
t ∈ [0, 1]

∣∣α′t ∈ ∂B(x, r)
}
< 1, we see that the curve α obtained by

restricting α′ to [t0, 1] fulfills the requirements.
Step 2. Moreover, we claim that:

](∂V1 ∩ ∂V2 ∩ ∂V3) ≤ 2 if V1, V2, V3 ∈ F are distinct. (2.4)

Call σ1, σ2, σ3 those Jordan loops such that σi ⊂ ∂Vi and Vi is contained in the bounded
connected component Ui of R2 \ σi for i = 1, 2, 3 (cf. Theorem 2.4). It follows from (2.3)
that the sets U1, U2, U3 are pairwise disjoint. Suppose by contradiction that there exist at
least three distinct points z1, z2, z3 in ∂V1∩∂V2∩∂V3. In particular, such points are forced
to belong to σ1 ∩ σ2 ∩ σ3. Fix some other points aj ∈ Uj for j = 1, 2, 3. We can build
continuous curves γij : [0, 1]→ R2 for i, j = 1, 2, 3 such that the following properties hold:

i) γij joins zi to aj for all i, j = 1, 2, 3.
ii) γij|(0,1) ⊂ Uj for all i, j = 1, 2, 3.
iii) γ1j|(0,1), γ

2j|(0,1), γ
3j|(0,1) are pairwise disjoint for all j = 1, 2, 3.

This would imply that the complete 3-by-3 bipartite graph K3,3 is planar, thus leading to
a contradiction (cf. [3, Chapter I, Theorem 17]). Therefore, the claim (2.4) is proven.
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Step 3. As a consequence, we can show that:

F is a finite family. (2.5)

In order to prove it, we argue by contradiction: suppose F is infinite, say F = (Vi)i∈N.
Thanks to (2.3) we know that Vi ∩ ∂B(x, λ) 6= ∅ for any i ∈ N and λ ∈ (r/2, r). Since F
contains more than one element, we infer that also ∂Vi ∩ ∂B(x, λ) 6= ∅ holds for any i ∈ N
and λ ∈ (r/2, r). In particular, we have that H1(∂Vi) ≥ r/2 for every i ∈ N. On the other
hand, (2.4) grants that H1

(⋃
i∈N ∂Vi

)
≥ 2

∑
i∈NH1(∂Vi). This implies that

⋃
i∈N ∂Vi has

infinite H1-measure, which is in contradiction with the fact that
⋃
i∈N ∂Vi ⊂ ∂Ω∪∂B(x, r).

Accordingly, property (2.5) is verified.
Step 4. We also claim that:

Ω ∩B(x, r/2) ⊂ U :=
⋃
V ∈F

V. (2.6)

Indeed, fix any z ∈ B(x, r/2) ∩ Ω. Choose a continuous curve α : [0, 1] → Ω such that
α0 = z and α1 = y. Call t0 := min

{
t ∈ [0, 1]

∣∣αt ∈ ∂B(x, r)
}
> 0. Then α|[0,t0) is a

connected subset of Ω ∩ Br(x) that intersects ∂B(x, r/2), whence it is contained in some
element of F . This shows that z ∈

⋃
V ∈F V , which yields the claim (2.6).

Step 5. We can finally conclude the proof by combining (2.5) with (2.6): the latter ensures
that x ∈ ∂U , thus the former implies that x ∈ ∂Ω′ for some element Ω′ ∈ F . Given that
we have Ω′ ⊂ B(x, r) ⊂ B(x, ε/2) (so that diam(Ω′) ≤ ε) and

H1(∂Ω′) ≤ H1
(
∂Ω ∩B(x, r)

)
+H1

(
∂B(x, r)

)
≤ ε

2
+ 2 π r ≤ ε,

the statement is achieved. �

Theorem 2.6 (Accessible points). Let Ω ⊂ R2 be a bounded domain with H1(∂Ω) < ∞.
Let x ∈ Ω and y ∈ ∂Ω be given. Then for every ε > 0 there exists an injective Lipschitz
curve γ : [0, 1]→ R2 joining x to y such that γ|(0,1) ⊂ Ω and `(γ) ≤ |x− y|+ π

2
H1(∂Ω) + ε.

Proof. Step 1. Fix ε ∈ (0, 1). Call x0 := x and Ω0 := Ω. By applying Lemma 2.5 in a
recursive way, we build a decreasing sequence (Ωn)n≥1 of subdomains of Ω\{x0} satisfying
the following properties:

i) H1(∂Ωn) < ε/(2n+1 π) for all n ≥ 1.
ii) y ∈ ∂Ωn for all n ≥ 1.
iii) diam(Ωn) ≤ ε/2n+2 for all n ≥ 1.
iv) dist(∂Ωn ∩ Ω, ∂Ωn+1 ∩ Ω) > 0 for all n ≥ 0.

See Figure 2 for an illustration of the sequence of subdomains. For brevity, let us set
In := [1−2−n, 1−2−n−1] for all n ∈ N. We claim that we can build a sequence (xn)n≥1 ⊂ Ω
such that xn ∈ Ωn \Ωn+1 for all n ≥ 1, and a sequence of injective Lipschitz curves (αn)n≥0

such that each αn : In → Ωn \ Ωn+2 joins xn to xn+1 and satisfies

`(α0) ≤ |x− y|+ π

2
H1(∂Ω) +

ε

2
,

`(αn) ≤ ε

2n+1
for every n ≥ 1.

(2.7)
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Figure 2. In the proof of Theorem 2.6 we use Lemma 2.5 to find a nested
sequence of subdomains. The next step is to then connect points in subse-
quent subdomains by using the non-optimal inner distance estimate (1.1).

First, fix any sequence of points (x′n)n≥1 ⊂ Ω that satisfies x′n ∈ Ωn for all n ≥ 1. By
using (1.1), we can find an injective curve α̃0 : [0, 1] → Ω0 joining x0 to x′1 such that
`(α̃0) < |x0−x′1|+ π

2
H1(∂Ω) + ε/4. Given that |x0−x′1| ≤ |x−y|+ |y−x′1| ≤ |x−y|+ ε/4

is verified by items ii) and iii) above, we see that `(α̃0) ≤ |x−y|+π
2
H1(∂Ω)+ ε

2
. Item iv) tells

us that there exists t1 ∈ (0, 1] such that α̃0|[0,t1] lies in Ω0\Ω2 and x1 := α̃0
t1
∈ Ω1. Therefore,

the injective Lipschitz curve α0 : I0 → Ω0 obtained by reparametrizing α̃0|[0,t1] satisfies the
first line of (2.7). Now suppose to have already defined x0, . . . , xn and α0, . . . , αn−1 with
the required properties. We can use again property (1.1) and item i) to find an injective
curve α̃n : [0, 1]→ Ωn joining xn to x′n+1 such that `(α̃n) < |xn− x′n+1|+ ε/2n+2. Since the
points xn, x′n+1 are in Ωn, we infer from item iii) that |xn−x′n+1| ≤ ε/2n+2 and accordingly
we have `(α̃n) ≤ ε/2n+1. We can choose tn+1 ∈ (0, 1] so that α̃n|[0,tn+1] lies in Ωn \ Ωn+2

and xn+1 := α̃ntn+1
∈ Ωn+1. Therefore, the injective Lipschitz curve αn : In → Ωn obtained

by reparametrizing α̃n|[0,tn+1] satisfies the second line of (2.7). This proves our claim.
Consider the unique continuous curve α : [0, 1) → Ω satisfying α|In := αn for all n ∈ N.

Items ii) and iii) grant that |αt − y| ≤ 2−n holds for all n ∈ N and t ∈
⋃
k≥n Ik. This

ensures that limt↗1 αt = y whence α can be extended to a continuous curve α : [0, 1]→ R2

joining x to y. By using (2.7) we also deduce that

`(α) ≤ |x− y|+ π

2
H1(∂Ω) +

ε

2
+
∞∑
n=1

ε

2n+1
= |x− y|+ π

2
H1(∂Ω) + ε. (2.8)

Step 2. Observe that the curve α might not be injective. We thus proceed as follows: we
recursively build a sequence (γn)n≥1 of curves defined on [0, 1] such that

a) γn is a constant-speed, `(α)-Lipschitz and injective curve for all n ≥ 1,
b) γn joins x to xn for all n ≥ 1,
c) the image of γn lies in α0 ∪ . . . ∪ αn−1 for all n ≥ 1,
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d) calling sn := min
{
t ∈ [0, 1]

∣∣ γnt ∈ ∂Ωn

}
it holds γn|[0,sn] ⊂ γn+1 for all n ≥ 1.

First, we take as γ1 : [0, 1]→ Ω the constant-speed reparametrization of α0. Now suppose
to have already defined γn for some n ≥ 1. Let us define t′ := max{t ∈ In : αnt ∈ γn}
and choose that t′′ ∈ [0, 1] for which γnt′′ = αnt′ . Therefore, we call γn+1 : [0, 1] → Ω the
constant-speed reparametrization of the concatenation between γn|[0,t′′] and αn|[t′,+∞)∩In .
It follows from the very construction that γn+1 satisfies items a), b), c) and d), as required.

The Ascoli-Arzelà theorem grants that (possibly passing to a not relabeled subsequence)
the curves γn uniformly converge to some limit curve γ : [0, 1]→ R2 with γ0 = x. By using
item a) and the lower semicontinuity of the length functional, we deduce that `(γ) ≤ `(α).
By item b) we know that γ1 = limn γ

n
1 = limn xn = y. Given n ≥ 1, we set Sn := γn

(
[0, sn]

)
and λn := H1(Sn). Item d) ensures that Sn ⊂ γk for all k ≥ n, thus `(γk) ≥ λn. Thanks
to item c) we also see that γk ⊂ γ ∪ αk−1 ∪ αk, so that

`(γk) ≤ `(γ) + `(αk−1) + `(αk) ≤ `(γ) +
ε

2k
+

ε

2k+1
≤ `(γ) +

1

2n−1
=: qn.

Given that γk
([

0, λn/`(γ
k)
])
⊂ Sn and λn/`(γ

k) ≥ λn/qn, we have γk
(
[0, λn/qn]

)
⊂ Sn.

Observe also that

dSn(γkt , γ
k
s ) = `(γk) |t− s| ≥ λn |t− s| for every k ≥ n and t, s ∈ [0, λn/qn]. (2.9)

Since γn|[0,sn] : [0, sn]→ Sn is a homeomorphism, we conclude from (2.9) by letting k →∞
that dSn(γt, γs) ≥ λn |t− s| for every t, s ∈ [0, λn/qn]. In particular, one has that

γ is injective on [0, λn/qn] for every n ≥ 1. (2.10)

Notice that α0 ∪ . . . ∪ αn−2 ⊂ Sn for all n ≥ 2 by construction, whence γn ⊂ Sn ∪ αn−1 by
item c) and accordingly `(γn) ≤ λn + `(αn−1). This implies that

1 ≥ lim
n→∞

λn
qn

=
limn λn
limn qn

≥ limn `(γ
n)− limn `(α

n−1)

`(γ)
≥ 1.

Therefore, we deduce that [0, 1) =
⋃
n≥1[0, λn/qn], so that (2.10) grants that γ is injective

on [0, 1). Since γ
(
[0, λn/qn]

)
⊂ Sn ⊂ α\{y} for all n ≥ 1, we see that γ|[0,1) ⊂ α\{y} ⊂ Ω.

Finally, the curve γ is `(α)-Lipschitz and `(α) ≤ |x− y|+ π
2
H1(∂Ω) + ε by (2.8), whence

`(γ) ≤ |x− y|+ π
2
H1(∂Ω) + ε as well. This completes the proof of the statement. �

Lemma 2.7. Let K ⊂ R2 be a compact, connected set. Let Ω ⊂ R2 be an open set such
that K \ Ω̄ 6= ∅. Then for any connected component E of K ∩ Ω̄ it holds that E ∩ ∂Ω 6= ∅.

Proof. It readily follows, e.g., from [1, Lemma 2.14]. �

For the sake of completeness, we report a proof of the ensuing standard fact:

Proposition 2.8. Let K ⊂ R2 be a compact connected set such that H1(K) < ∞. Let
us denote by C the convex hull of K. Then

H1(∂C) ≤ 2H1(K). (2.11)
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Proof. We subdivide the proof into several steps:
Step 1. If C̊ = ∅ then C is a segment, thus ∂C = C = K and accordingly (2.11) is
trivially verified. Now assume that C̊ 6= ∅, so that (by convexity of C) we know that there
exists a continuous curve γ : [0, 1]→ R2, which is injective on [0, 1), such that γ0 = γ1 ∈ K
and γ[0, 1] = ∂C. We can write γ−1(R2 \ K) =

⋃
i∈I(ai, bi), where I ⊂ N and the sets

(ai, bi) are pairwise disjoint subintervals of (0, 1). Since C is the convex hull of K, we have
that the set Si := γ(ai, bi) ⊂ ∂C \K is a segment for all i ∈ I.
Step 2. Given any i ∈ I, let us call mi the midpoint of Si, while vi ∈ R2 stands for the
unit vector perpendicular to Si such that mi + R>0vi intersects C. Since K is compact,
there exists εi > 0 such that (mi + [0, εi]vi)∩K = ∅. Then we denote by Ai the connected
component of R2 \ (∂C ∪K) containing mi + εivi. Observe that Ai is open (as ∂C ∪K is
compact) and that Si ⊂ ∂Ai. Moreover, we claim that

Ai ∩ Aj = ∅ for every i, j ∈ I with i 6= j. (2.12)

We argue by contradiction: suppose that Ai ∩ Aj 6= ∅, thus necessarily Ai = Aj. By
Theorem 2.6 we know that there exists an injective continuous curve σ : [0, 1] → R2 such
that σ0 = mi, σ1 = mj and σ(0, 1) ⊂ Ai. Possibly interchanging i and j, we can assume
that bi < aj. Choose t ∈ (bi, aj) such that γt ∈ K. Since we are supposing that the set
of indexes I has cardinality at least 2, we know that K ∩ C̊ 6= ∅ (otherwise K would be
contained in ∂C and accordingly disconnected). Pick any y ∈ K ∩ C̊. Either γ0 or γt does
not belong to the closure of the connected component of R2 \ (∂C ∪ σ[0, 1]) containing y.
Since K is connected, this forces K to intersect σ(0, 1), which leads to a contradiction.
Therefore the claim (2.12) is proven.
Step 3. Given any i ∈ I, we call Ri the strip Si+R>0vi. We also define Bi := Ri∩∂Ai∩∂C
and Ci := (Ri ∩ ∂Ai) \ ∂C, which are disjoint Borel subsets of K by (2.12). We claim that

H0(Bi ∩Bj) ≤ 2 for every i, j ∈ I with i 6= j, (2.13a)

H0(Ci ∩ Cj ∩ Ck) ≤ 1 for every i, j, k ∈ I with i 6= j 6= k 6= i. (2.13b)

We argue by contradiction. In order to prove (2.13a), suppose to have three distinct points
y1, y2, y3 in Bi∩Bj. The set ∂C \{y1, y2, y3} is made of three arcs. By Theorem 2.6 we can
find injective continuous curves σ, σ′ : [0, 1]→ R2 such that σ0 = mi, σ1 = y2, σ(0, 1) ⊂ Ai,
σ′0 = mj, σ′1 = y1 and σ′(0, 1) ⊂ Aj. We now distinguish two cases:

i) Si and Sj lie in the same arc of ∂C \ {y1, y2, y3}. Then (up to relabeling y1, y2, y3)
it holds that σ[0, 1] ∩ σ′[0, 1] 6= ∅, thus contradicting (2.12).

ii) Si and Sj lie in different arcs of ∂C \ {y1, y2, y3}. Possibly relabeling y1, y2, y3, we
have that Si is between y1 and y3, while Sj is between y2 and y3. Then it holds
that σ[0, 1] ∩ σ′[0, 1] 6= ∅, again contradicting (2.12).

Therefore (2.13a) is proven. In order to prove (2.13b), suppose that Ci∩Cj∩Ck contains at
least two distinct points z1, z2. By using Theorem 2.6 we can build an injective continuous
curve σ : [0, 2] → R2 with σ0 = mi, σ1 = z1, σ2 = mj, σ(0, 1) ⊂ Ai and σ(1, 2) ⊂ Aj.
Possibly interchanging z1 and z2, we can assume that z2 and mk do not belong to the
same connected component of C \ σ(0, 2). Hence (again by Theorem 2.6) we can pick an



SHARP ESTIMATE ON THE INNER DISTANCE IN PLANAR DOMAINS 9

injective continuous curve σ′ : [0, 1] → R2 such that σ′0 = mk, σ′1 = z2 and σ′(0, 1) ⊂ Ak.
This implies that σ(0, 2)∩ σ′(0, 1) 6= ∅, whence either Ai ∩Ak 6= ∅ or Aj ∩Ak 6= ∅. In both
cases property (2.12) is violated, thus even the claim (2.13b) is proven.
Step 4. Let i ∈ I be fixed. For any x ∈ Si there is tx > 0 such that px := x+txvi ∈ Bi∪Ci
and

(
x + (0, tx)vi

)
∩ ∂Ai = ∅. Call πi : R2 → R2 the orthogonal projection onto the line

containing Si, which is a 1-Lipschitz map. Then one has that

H1(Si) = H1
(
πi{px : x ∈ Si}

)
≤ H1

(
{px : x ∈ Si}

)
≤ H1(Bi) +H1(Ci).

Therefore it holds that

H1(∂C) = H1(∂C ∩K) +
∑
i∈I

H1(Si) ≤ H1(∂C ∩K) +
∑
i∈I

H1(Bi) +
∑
i∈I

H1(Ci). (2.14)

Finally, we easily deduce from (2.13a) and (2.13b) that
∑

i∈I H1(Bi) ≤ H1(∂C ∩K) and∑
i∈I H1(Ci) ≤ 2H1(C̊ ∩ K), respectively. By plugging these estimates into (2.14), we

conclude that (2.11) is satisfied. This completes the proof of the statement. �

Proposition 2.9. Let Γ ⊂ R2 be a Borel set satisfying H1(Γ) < +∞. Let v ∈ R2 \ {0}
and x ∈ R2 be given. Fix a point y ∈ R2 that does not belong to the line x+ Rv. Then

H1
(
[x+ tv, y] ∩ Γ

)
= 0 for a.e. t ∈ R.

Proof. Notice that the elements of
{

[x + tv, y) ∩ Γ
}
t∈R are pairwise disjoint subsets of Γ.

Given that H1|Γ is a finite Borel measure on R2, we conclude that H1
(
[x+ tv, y) ∩ Γ

)
= 0

for all but countably many t ∈ R, whence the statement follows. �

Remark 2.10. Let Ω be an open, connected subset of R2. Let K be a compact subset of
Ω. Then there exists an open, connected set U ⊂ R2 such that K ⊂ U and U ⊂ Ω.

Indeed, the compactness of K ensures that we can find a finite family B1, . . . , Bn of open
balls such that K ⊂

⋃n
i=1Bi and

⋃n
i=1Bi ⊂ Ω. Given any 1 ≤ i < j ≤ n, we can take a

continuous curve γij in Ω connecting a point of Bi to a point of Bj. Choose δ > 0 so small
that B(γij, δ) ⊂ Ω for all i < j. Therefore, the set U :=

⋃n
i=1Bi ∪

⋃
i<j B(γij, δ) does the

job, as it is a domain containing K that is compactly contained in Ω.

Lemma 2.11. Let σ ⊂ R2 be a Jordan loop with `(σ) < +∞. Call U the bounded connected
component of R2 \ σ. Fix a point p ∈ σ and a compact set K ⊂ U . Then for every ε > 0
there exists a Jordan loop σ′ in R2 such that p /∈ σ′, `(σ′) ≤ `(σ) + ε and K ⊂ U ′ ⊂ U ,
where U ′ stands for the bounded connected component of R2 \ σ′.

Proof. First of all, pick a radius r ∈
(
0, ε/(2 π)

)
such that the sets U ∩∂B(p, r), σ \B(p, r)

and ∂B(p, r) \ U are non-empty. As observed in Remark 2.10, we can choose an open,
connected set V ⊂ R2 such that K ⊂ V ⊂ V ⊂ U . Possibly shrinking r, we can further
assume that B(p, r) ∩ V = ∅. Fix some points x ∈ U ∩ ∂B(p, r) and y ∈ σ \ B(p, r). We
denote by α the arc in ∂B(p, r) containing x, whose interior lies in U and whose extreme
points a, b belong to ∂B(p, r). Notice that a 6= b as ∂B(p, r) \ U 6= ∅. Call γ, γ′ the two
arcs in σ joining a to b; say that γ is the one passing through y. By construction p ∈ γ′,
thus the Jordan loop σ′ obtained by concatenating γ and α does not contain p. Given
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that α \ {a, b} ⊂ U , we see that the bounded connected component U ′ of the complement
of σ′ is contained in U . Being B(p, r) and V disjoint, we also have K ⊂ U ′. Finally, we
conclude by pointing out that `(σ′) = `(γ) + `(α) ≤ `(σ) + 2πr < `(σ) + ε. �

Proposition 2.12 (Approximation by analytic loops). Let σ be a Jordan loop in R2 such
that `(σ) < +∞. Call U the bounded connected component of R2 \ σ. Fix ε, δ > 0 and
any compact subset K of U . Then there exists an analytic Jordan loop σ′ in R2 such
that `(σ′) ≤ `(σ) + ε and K ⊂ U ′ ⊂ B(U, δ), where U ′ stands for the bounded connected
component of the complement of σ′.

Proof. The argument is inspired by the proof of [2, Theorem 3.42].
Let ρ be an analytic convolution kernel in R2 and denote by fε := χU ∗ ρε the mollified

function for all ε > 0. It is well-known (cf. the discussion preceding [2, Proposition 3.7])
that

`(σ) = H1(∂U) = lim
ε↘0

∫
R2

∣∣∇fε(x)
∣∣ dx. (2.15)

Fix any open, connected set V ⊂ R2 with K ⊂ V and V ⊂ U , whose existence is proven in
Remark 2.10. Set δ′ := dist(V ,R2 \ U) > 0 and choose a sequence (εn)n ⊂

(
0,min{δ, δ′}

)
converging to 0. The superlevel sets Snt are defined as Snt :=

{
x ∈ R2

∣∣ fεn(x) > t} for every
n ∈ N and t ∈ (0, 1). By combining the Morse-Sard theorem with the analytic implicit
function theorem we know that there exists a negligible set N ⊂ (0, 1) such that Snt is an
analytic domain for all n ∈ N and t ∈ (0, 1) \N . Notice that

`(σ)
(2.15)
= lim

n→∞

∫
R2

∣∣∇fεn(x)
∣∣ dx = lim

n→∞

∫ 1

0

H1(∂Snt ) dt ≥
∫ 1

0

lim
n→∞

H1(∂Snt ) dt

by coarea formula and Fatou lemma. Then there exists t ∈ (0, 1) \ N for which it holds
that limnH1(∂Snt ) ≤ `(σ). Let us choose n ∈ N so that H1(∂Snt ) ≤ `(σ) + ε. Given that
fεn ≡ 0 on R2 \ B(U, δ) and fεn ≡ 1 on V , one has that V ⊂ Snt ⊂ B(U, δ). Being V a
connected set, it is entirely contained in one connected component U ′ of Snt . Calling σ′ the
boundary of U ′, we see that σ′ is an analytic Jordan loop and `(σ′) ≤ H1(∂Snt ) ≤ `(σ) + ε.
Since K ⊂ V ⊂ U ′ ⊂ Snt ⊂ B(U, δ), the statement is finally achieved. �

Remark 2.13. Let Ω ⊂ R2 be a bounded domain with H1(∂Ω) < +∞. Let U,U ′ be two
distinct connected components of R2 \ Ω. Call σ (resp. σ′) the boundary of U (resp. U ′),
which is a Jordan loop by Theorem 2.4. Then it can be readily checked that σ∩σ′ contains
at most one point.

Proposition 2.14. Let Ω ⊂ R2 be a bounded domain with H1(∂Ω) < +∞. Let K ⊂ R2

be a compact set such that K ⊂ Ω. Let U ⊂ R2 be an open set satisfying Ω ⊂ U . Then
for every ε > 0 there exists a bounded domain Ω′ ⊂ R2 with the following properties:

i) K ⊂ Ω′ ⊂ Ω′ ⊂ U ,
ii) H1(∂Ω′) < H1(∂Ω) + ε,
iii) ∂Ω′ is the union of finitely many pairwise disjoint analytic Jordan loops.
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Proof. We denote by {Hi}i∈I the bounded connected components of R2\Ω, whileW stands
for the unbounded one. We set σi := ∂Hi for all i ∈ I and σ := ∂W , which are Jordan
loops by Theorem 2.4. Since {Hi}i∈I is an open covering of the compact set R2 \ (U ∪W ),
we can select a finite subfamily F of I such that R2 \ (U ∪W ) ⊂

⋃
i∈F Hi. Equivalently, we

have that (R2 \W ) \
⋃
i∈F Hi ⊂ U . As observed in Remark 2.13, any two of the curves σ

and σi can intersect in at most one point, thus in particular `(σ) +
∑

i∈F `(σi) ≤ H1(∂Ω).
By repeatedly applying Lemma 2.11, we can replace the curves σ, σi with some pairwise
disjoint Jordan loops σ′, σ′i satisfying the following conditions:

a) `(σ′) < `(σ) + ε/(]F + 1) and `(σ′i) < `(σi) + ε/(]F + 1) for all i ∈ F .
b) (R2 \ U) ∩Hi lies in the bounded connected component H ′i of R2 \ σ′i for all i ∈ F ,

while (R2 \ U) ∩W lies in the unbounded connected component W ′ of R2 \ σ′.
c) K ∩H ′i = ∅ for all i ∈ F and K ∩W ′ = ∅.

Thanks to Proposition 2.12, we can even assume that the Jordan loops σ′ and σ′i are
analytic. Let us set Ω′ := (R2 \ W ′) \

⋃
i∈F H

′
i. The fact that Ω′ is a bounded domain

and item iii) follow from the very construction of Ω′. Moreover, i) is granted by b) and c).
Finally, we deduce from a) that

H1(∂Ω′) = `(σ′) +
∑
i∈F

`(σ′i) < `(σ) +
∑
i∈F

`(σi) + ε ≤ H1(∂Ω) + ε,

thus proving item ii). This concludes the proof of the statement. �

3. Painlevé length estimates

Let us first recall the definition of Painlevé length.

Definition 3.1. The Painlevé length of a compact set K ⊂ R2, denoted κ(K), is the
infimum of numbers ` with the following property: for every open set U containing K
there exists an open set V such that K ⊂ V ⊂ U and ∂V is a finite union of disjoint
analytic Jordan curves of total length at most `.

In [4, p. 25] the following estimate was stated.

Proposition 3.2. For every compact set K ⊂ R2 the following inequality holds:

κ(K) ≤ πH1(K). (3.1)

In [4] it was also noted that the estimate (3.1) is the best possible one for general compact
sets, when the Hausdorff measureH1 is replaced by the (possibly smaller) Hausdorff content
H1
∞. In what follows we prove that the Painlevé length estimate (3.1) can be improved for

connected sets.

Theorem 3.3 (Painlevé estimate for connected sets). For every compact, connected set
K ⊂ R2 the following inequality holds:

κ(K) ≤ 2H1(K). (3.2)
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Proof. The case H1(K) = +∞ is trivial, thus let us suppose that H1(K) < +∞. Fix an
open neighbourhood U ⊂ R2 of K and any ε > 0. We aim to prove that there exists an
open set V ⊂ U containing K, whose boundary is a disjoint union of finitely many analytic
Jordan loops, such that

H1(∂V ) < 2H1(K) + ε. (3.3)
Fix any positive radius r < dist(K,R2 \ U). For any x ∈ K we can choose rx > 0 such
that r < rx < dist(K,R2 \ U) and H0

(
K ∩ ∂Brx(x)

)
< +∞. We claim that:

There exist x0, . . . , xn ∈ K and compact connected sets xi ∈ Ki ⊂ B̄rxi
(xi)

such that K = K0 ∪ . . . ∪Kn and H1(Ki ∩Kj) = 0 whenever 0 ≤ i < j ≤ n.
(3.4)

In order to show the validity of the claim (3.4), we need the following property that can
be readily obtained as a consequence of Lemmata 2.1 and 2.7:
Fact. If E is a compact connected subset of K and x ∈ E satisfies E \ B̄rx(x) 6= ∅, then
the connected component F of E ∩ B̄rx(x) containing x has the following properties:

i) H1(F ) ≥ rx > r.
ii) G := E \

(
F ∩ Brx(x)

)
is compact and has finitely many connected components

(which accordingly are compact as well). More precisely, the number of connected
components of G cannot exceed H0

(
K ∩ ∂Brx(x)

)
.

iii) H0(F ∩G) < +∞.
We now recursively apply the above Fact. First of all, fix any x0 ∈ K. If K ⊂ B̄rx0

(x0)

then we define K0 := K. Otherwise, we call K0 the connected component of K ∩ B̄rx0
(x0)

containing x0. In the latter case, let us denote by E1, . . . , Ek the connected components of
the set K \

(
K0 ∩ Brx0

(x0)
)
. Given any i = 1, . . . , k, we pick a point xi ∈ Ei and proceed

as before: if Ei ⊂ B̄rxi
(xi) then we set Ki := Ei; otherwise, we call Ki the connected

component of Ei ∩ B̄rxi
(xi) containing xi and Ei,1, . . . , Ei,ki the connected components of

the set Ei \
(
Ki ∩ Brxi

(xi)
)
. We can repeat the same argument on each Ei,j, and so on.

This iterated procedure must stop after finitely many passages thanks to item i) of Fact
(recall that H1(K) < +∞ and that the intersection Ki ∩Kj has null H1-measure if i 6= j).
Therefore the previous argument provides us with a family K0, . . . , Kn as in claim (3.4).

Let us now denote by C̃i the convex hull of Ki for every i = 0, . . . , n. We know from
Proposition 2.8 that H1(∂C̃i) ≤ 2H1(Ki). Moreover, recall that the open δ-neighbourhood
C̃δ
i of C̃i is convex for all δ > 0 and satisfies H1(∂C̃δ

i )→ H1(∂C̃i) as δ → 0. Furthermore,
given any i = 0, . . . , n and any Borel set F ⊂ R2 with H1(F ) < +∞, it holds that

H0(∂C̃δ
i ∩ F ) < +∞ for a.e. δ > 0.

By (3.4) we have that each Ki is contained in the convex set B̄rxi
(xi), whence accordingly

the inclusions C̃i ⊂ B̄rxi
(xi) ⊂ U hold for every i = 0, . . . , n. Hence we can recursively

choose δ0, . . . , δn > 0 so that (calling Ci := C̃δi
i ) the following properties are verified:

a) Ci ⊂ U for every i = 0, . . . , n,
b) H1(∂Ci) ≤ 2H1(Ki) + ε/(n+ 1) for every i = 0, . . . , n.
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Figure 3. Here are approximations of the set K defined in Example 3.4.
On the left is K2 and on the right one step further refinement, the set K3.

Let us now define V := C0 ∪ . . . ∪ Cn. Then V is an open set such that K ⊂ V ⊂ U and
∂V ⊂ ∂C0 ∪ . . . ∪ ∂Cn, thus it holds that

H1(∂V ) ≤
n∑
i=0

H1(∂Ci)
b)

≤ 2
n∑
i=0

H1(Ki) + ε = 2H1(K) + ε,

proving (3.3). The fact that the boundary of V can be supposed to be made of finitely many
disjoint analytic Jordan loops is due to Proposition 2.14. This completes the proof. �

The estimate (3.2) is easily seen to be sharp simply by taking K to be a line-segment.
What is less trivial, is that also the estimate (3.1) is sharp for general compact sets. This
is shown in the next example.

Example 3.4. We define a compact fractal set K ⊂ R2 with κ(K) = πH1(K) using an
iteration procedure. We start with K1 = B((0, 0), 1) and continue by contracting and
copying K1 as follows. For each integers k and j with k ≥ 2 and 1 ≤ j ≤ 2k we define,
using complex notation, a contractive similitude

fk,j(x) := 2−kx+ (1− 2−k)ej2
1−kπi.

Using these functions we set

Kk :=
⋃

(j2,...,jk)

f2,j2 ◦ f3,j3 ◦ · · · ◦ fk,jk(K1),

where the union runs over all (k − 1)-tuples of indices with 1 ≤ ji ≤ 2k, i = 2, . . . , k. We
call the balls in this union the construction balls of level k. Notice that Kk+1 ⊂ Kk for
every k ∈ N. Finally, we set

K :=
∞⋂
k=1

Kk.

See Figure 3 for an illustration of the construction. We claim that H1(K) = 2 and κ(K) =
2π. Taking into account (3.1), it suffices to show that H1(K) ≤ 2 and κ(K) ≥ 2π.
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The inequality H1(K) ≤ 2 follows directly by using the construction balls of level k as
the cover for K in the definition of the Hausdorff measure and by letting k →∞. Thus, it
only remains to show that κ(K) ≥ 2π.

Let ε > 0. We show that

κ(K) ≥ (1− ε)2π.

By letting U ⊂ R2 be an open set containing K such that each connected component of
U contains only one construction ball of level k, we may restrict ourselves to estimating
κ(K ∩B) for a construction ball B of level k with k arbitrarily large. Let V ⊂ U be open
such that K ∩ B ⊂ V . It suffices to show that for each connected component V ′ of V we
have H1(∂V ′) ≥ (1 − ε)πH1(V ′ ∩K). Since H1(∂V ′) ≥ H1(∂W ) for W = conv(V ′ ∩K),
it is enough to show that H1(∂W ) ≥ (1− ε)πH1(V ′ ∩K).

Let k0 be the smallest integer so that W intersects at least 2 of the level k0 construction
balls. By our assumption on U we have that k0 > k. The set W is then contained in a
level k0 − 1 ball B(x, r). We separate the rest of the proof into two cases:

i) W intersects exactly 2 level k0 construction balls.
ii) W intersects at least 3 level k0 construction balls.

Let us first consider the case i). Since the distance between two level k0 construction
balls is at least

(1− 21−k0) sin(2−k0π)r ≥ (1− 22−k0)2−k0πr,

we may assume that H1(V ′ ∩K) ≥ 2−k0r. Then, one of the construction balls contains a
point of ∂W that has distance at least 3

2
(1 − 22−k0)2−k0πr to the other construction ball.

Thus, we may assume that H1(V ′ ∩K) ≥ 3
2
2−k0r. But then, there exist two points in ∂W

with distance at least 2(1− 22−k0)2−k0πr, which then yields

H1(∂W ) ≥ (1− 22−k0)2πr22−k0 ≥ (1− 22−k0)πH1(V ′ ∩K).

Let us then consider the case ii). For each construction level k0 ball Bi intersecting W
there exists a point xi ∈ ∂W ∩ Bi, since none of the balls Bi is in the convex hull of the
other balls. Let us then estimate H1(∂W ) using the angle around the center x. If xi and xj
are contained in adjacent construction balls, the boundary of W from xi to xj has length
at least

(1− 21−k0) sin(αi,j)r ≥ (1− 22−k0)αi,jr,

where αi,j := ](xi, x, xj). See Figure 4 for an illustration for the estimate. If xi and xj are
not contained in adjacent construction balls, the length of the boundary of W from xi to
xj is at least 21−k0π. All in all, denoting by N the total number of the construction balls
Bi intersecting W , we have

H1(∂W ) ≥ (1− 22−k0)2πrN2−k0 ≥ (1− 22−k0)πH1(V ′ ∩K).
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W

xi
xj

x

Figure 4. In the case ii), the length of ∂W is estimated by summing up
lengths of projections (red line) of parts connecting points in consecutive
balls (here between xi and xj).

4. Proof of the main result

This section is entirely devoted to the proof of Theorem 1.1:

Step 1. Let us denote by {Ei}Ni=1 the connected components of ∂Ω with positive length,
where N ∈ N ∪ {∞}. We can clearly suppose without loss of generality that N = ∞.
In the case in which Ω is bounded, we also assume that E1 is the element containing the
boundary of the unbounded connected component of R2 \ Ω, which is connected as it is a
Jordan loop by Theorem 2.4. Set C := ∂Ω \

⋃∞
i=1Ei. Notice that C can be a Cantor-type

set, thus in particular it can have positive H1-measure. Lemma 2.1 grants that
∞∑
i=1

diam(Ei) ≤
∞∑
i=1

H1(Ei) ≤ H1(∂Ω) < +∞.

Consequently, we can relabel the sets {Ei}i≥2 so that diam(Ei) ≥ diam(Ej) if 2 ≤ i ≤ j.
Let us fix ε > 0. For each i ∈ N, we select a point zi ∈ Ei. Observe that

∞∑
i=1

H1
∞
(
B(zi, 4 diam(Ei))

)
≤ 8

∞∑
i=1

diam(Ei) ≤ 8
∞∑
i=1

H1(Ei) ≤ 8H1(∂Ω) < +∞.

By using the Borel-Cantelli lemma we deduce that H1
∞
(⋂∞

k=1

⋃∞
i=k B(zi, 4 diam(Ei))

)
= 0.

Since H1 � H1
∞ and the measure H1|∂Ω is continuous from above, we see that

lim
k→∞
H1
(
∂Ω ∩

⋃∞

i=k
B
(
zi, 4 diam(Ei)

))
= H1

(
∂Ω ∩

⋂∞

k=1

⋃∞

i=k
B
(
zi, 4 diam(Ei)

))
= 0.

Therefore, there exists k ∈ N such that

H1
(
∂Ω ∩

⋃∞

i=k
B
(
zi, 4 diam(Ei)

))
<

2 ε

5 π
,

∞∑
i=k

diam(Ei) <
ε

10 π
.

(4.1)
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s

x y

γ1

Figure 5. The first approximation s of the curve is obtained in the bounded
case by going near the outer boundary. In the unbounded case, the initial
curve is just the line-segment connecting the points.

Step 2. Choose any continuous curve γ1 ⊂ Ω joining x to y. Theorem 3.3 grants that for
any i = 1, . . . , k − 1 we can choose an open neighbourhood Vi of Ei in such a way that

V i ∩ V j = ∅ for every 1 ≤ i < j ≤ k − 1,

V i ∩ γ1 = ∅ for every i = 1, . . . , k − 1,

H1(∂Vi) ≤ 2H1(Ei) +
2 ε

5 (k − 1)
for every i = 1, . . . , k − 1.

We can also assume that the boundary of each set Vi consists of finitely many pairwise
disjoint Jordan loops. Notice that x, y lie in the same connected component of R2\

⋃k−1
i=1 Vi,

thanks to the fact that the curve γ1 does not intersect
⋃k−1
i=1 Vi. We distinguish two cases:

• Ω is bounded. Let us call Ω′ the (bounded) connected component of R2 \ V 1 that
contains γ1 (thus also x, y). The boundary of Ω′ is a Jordan loop σ : [0, 1]→ R2 with
`(σ) ≤ H1(∂V1) ≤ 2H1(E1) + 2 ε

5(k−1)
(cf. Theorem 2.4). Possibly reparametrizing

σ, we can suppose to have 0 < t1 < t2 < t3 < t4 < t5 < 1 such that

x, y ∈ (σ0, σt3) ⊂ Ω′, x ∈ (σt1 , σt5) ⊂ Ω′, y ∈ (σt2 , σt4) ⊂ Ω′

and the segments [σt1 , σt5 ], [σt2 , σt4 ] are perpendicular to [x, y]. It readily follows
from Lemma 2.1 that |x−σt1| ≤ `(σ|[0,t1]), |y−σt2| ≤ `(σ|[t2,t3]), |y−σt4 | ≤ `(σ|[t3,t4])
and |x− σt5| ≤ `(σ|[t5,0]). Calling ∗ the concatenation of curves, we thus see that

`
(
[x, σt1 ] ∗ σ|[t1,t2] ∗ [σt2 , y]

)
+ `
(
[x, σt5 ] ∗ σ|[t5,t4] ∗ [σt4 , y]

)
≤ `(σ).

Then we define s : [0, 1]→ R2 as the shortest curve between [x, σt1 ]∗σ|[t1,t2] ∗ [σt2 , y]
and [x, σt5 ] ∗ σ|[t5,t4] ∗ [σt4 , y], so that `(s) ≤ H1(E1) + ε

5(k−1)
. See Figure 5 for the

curve s.
• Ω is unbounded. Then we define s : [0, 1]→ R2 as st := x+ t(y−x) for all t ∈ [0, 1].
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x y
γ2

Figure 6. In the second approximation, the curve is constructed so that
it avoids a finite number of the largest boundary components. Next, it is
slightly perturbed so that it does not intersect the (remaining) boundary
points in a positive H1-measure set.

For the sake of simplicity, let us define the quantity q > 0 as

q :=

{
0
|x− y|

if Ω is bounded,
if Ω is unbounded. (4.2)

We proceed in a recursive way: choose that i1 ∈ {1, . . . , k − 1} such that Vi1 is the first
element of {Vi}k−1

i=1 that is encountered by the curve s (note that i1 ≥ 2 if Ω is bounded).
Put a1 := min

{
t ∈ (0, 1)

∣∣ st ∈ ∂Vi1}. The connected component of ∂Vi1 containing sa1 is
the image of a Jordan loop σ1. Now let us call b1 := max

{
t ∈ (a1, 1)

∣∣ st ∈ σ1

}
. Observe

that s|(b1,1) ∩ ∂Vi1 = ∅. We can write the image of σ1 as the union of two injective curves
α1, α̃1 joining sa1 to sb1 . Given that the length of σ1 does not exceed H1(∂Vi1), which in
turn is smaller than 2H1(Ei1) + 2 ε

5(k−1)
, we can assume without loss of generality that the

length of α1 is smaller than H1(Ei1) + ε
5(k−1)

.
We can now argue in the same way starting from sb1 . Take i2 ∈ {1, . . . , k−1}\{i1} such

that the first of the sets Vi that we meet while going from sb1 to y is Vi2 (again, i2 6= 1 if
Ω is bounded). We denote by a2 the smallest t ∈ (b1, 1) for which st ∈ ∂Vi2 ; the connected
component of ∂Vi2 containing sa2 is the image of a Jordan loop σ2, and b2 stands for the
biggest t ∈ (a2, 1) such that st ∈ σ2. Then we can find a curve α2 in σ2 joining sa2 to sb2 ,
which is shorther than H1(Ei2) + ε

5(k−1)
. By repeating this procedure finitely many times

(see Figure 6), we obtain a curve γ2 of the form

γ2 := s|[0,a1] ∗ α1 ∗ s|[b1,a2] ∗ α2 ∗ . . . ∗ s|[b`−1,a`] ∗ α
` ∗ s|[b`,1]

for some ` ≤ k − 1. Notice that γ2 is contained in R2 \
⋃k−1
i=1 Ei and connects x to y. By

combining the previous estimates, we also deduce that

`(γ2) < q +
k−1∑
i=1

H1(Ei) +
ε

5
. (4.3)
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Step 3. In light of (4.3), we can choose some points p1, . . . , p2h−1 ∈ γ2 \ {x, y} having
the following property: the curve γ3 := [x, p1] ∗ [p1, p2] ∗ . . . ∗ [p2h−2, p2h−1] ∗ [p2h−1, y] is
contained in R2 \

⋃k−1
i=1 Ei and satisfies

`(γ3) < q +
k−1∑
i=1

H1(Ei) +
ε

5
.

Now let us apply Proposition 2.9: we can find some points q1, q3, . . . , q2h−1 (sufficiently
near to p1, p3, . . . , p2h−1, respectively) for which the following conditions are verified:

• The curve γ4 := [x, q1] ∗ [q1, p2] ∗ . . . ∗ [p2h−2, q2h−1] ∗ [q2h−1, y] satisfies

`(γ4) < q +
k−1∑
i=1

H1(Ei) +
ε

5
, (4.4)

• γ4 is contained in R2 \
⋃k−1
i=1 Ei,

• the set γ4 ∩ ∂Ω has null H1-measure.
By upper continuity of H1|∂Ω, we can find δ > 0 such that B(γ4, 2 δ) ⊂ R2 \

⋃k−1
i=1 Ei and

H1
(
∂Ω ∩B(γ4, 2 δ)

)
<

2 ε

5 π
. (4.5)

Theorem 3.3 provides an open neighbourhood U ′ ⊂ B(γ4, δ) \
⋃k−1
i=1 Ei of γ4 such that

H1(∂U ′) ≤ 2 `(γ4) +
2 ε

5
≤ 2 q + 2

k−1∑
i=1

H1(Ei) +
4 ε

5
, (4.6)

where the second inequality stems from (4.4). Moreover, let us fix any index m ≥ k for
which diam(Em) < dist(γ4, ∂U

′). Since i 7→ diam(Ei) is non-increasing for i ≥ k, one has

diam(Ei) < dist(γ4, ∂U
′) for every i ≥ m. (4.7)

Let us define

U := U ′ ∪
m⋃
i=k

B
(
zi, 2 diam(Ei)

)
.

See Figure 7 for an illustration of the set U . Given that U ⊂ B(γ4, 2 δ)∪
⋃m
i=k B

(
zi, 4 diam(Ei)

)
,

we deduce from the first line of (4.1) and from (4.5) that

H1(∂Ω ∩ U) <
4 ε

5π
. (4.8)

Step 4. We claim that

x, y belong to the same connected component of U \ ∂Ω. (4.9)

We argue by contradiction: suppose that y does not belong to the connected component A
of U \ ∂Ω containing x. Call B the connected component of R2 \A that contains y (notice
that y lies in the interior of B). Call F the connected component of ∂A that is included
in B. Hence, Lemma 2.2 yields F = ∂B. Given that γ4 joins x /∈ B to y ∈ B, we deduce
that γ4 ∩ ∂B 6= ∅. Choose any z ∈ γ4 ∩ ∂B. Observe that ∂B ⊂ ∂A ⊂ ∂U ∪ ∂Ω, thus
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x y

γ4

U

Figure 7. The final curve is found inside a set U that is obtained as the
union of a neighbourhood of the curve γ4 and suitable collection of balls. The
neighbourhood of γ4 allows us to avoid the largest pieces of the boundary,
which the curve γ4 avoided. By taking balls around the remaining boundary
parts that have so large diameter that they could block inside the previous
neighbourhood, we are guaranteed to be able to connect x to y inside U .

the fact that γ4 ⊂ U gives z ∈ ∂Ω. Call E the connected component of ∂Ω containing z.
Given that γ4 ⊂ R2 \

⋃k−1
i=1 Ei, we have that either E = Ei for some i ≥ k or E ⊂ C. To

prove that E ∩ ∂U = ∅ we distinguish the following three cases:
i) E = Ei for some i = k, . . . ,m. Then it holds E ⊂ B

(
zi, 2 diam(Ei)

)
⊂ U , whence

accordingly E ∩ ∂U = ∅.
ii) E = Ei for some i > m. Since diam(E) < dist(γ4, ∂U

′) by (4.7) and γ4 ∩ E 6= ∅,
we see that E ⊂ U ′ ⊂ U and thus E ∩ ∂U = ∅.

iii) E ⊂ C. Then E is a non-empty connected set with null diameter, namely a
singleton, so that clearly E ∩ ∂U = ∅.

Therefore, E is also a connected component of ∂U ∪ ∂Ω and accordingly ∂B ⊂ E. The set
R2 \ ∂B cannot be connected, otherwise we would have B̊ = R2 \ ∂B and thus B = R2.
Therefore, R2 \ ∂B has at least two connected components: one coincides with B̊ (thus
contains y), while another one contains the point x. Then any curve joining x to y must
intersect ∂B ⊂ ∂Ω, which is in contradiction with the assumption that Ω is connected.
Consequently, the claim (4.9) is proven.
Step 5. Thanks to (4.9), we can find a continuous curve γ5 ⊂ U \ ∂Ω joining x to y. The
Painlevé estimate (for general compact sets), namely Proposition 3.2, provides us with an
open neighbourhood V of ∂Ω ∩ U such that V ∩ γ5 = ∅ and

H1(∂V ) ≤ πH1(∂Ω ∩ U) <
4 ε

5
, (4.10)

where the second inequality is a consequence of (4.8). Let us denote by W ′ the connected
component of U \ V containing γ5. Note that ∂W ′ ⊂ ∂U ′ ∪ ∂V ∪

⋃m
i=k ∂B

(
zi, 2 diam(Ei)

)
.

Therefore, by combining the estimates in (4.6), in (4.10) and in the second line of (4.1),
we conclude that H1(∂W ′) < 2

(
q +

∑k−1
i=1 H1(Ei) + ε

)
. Since γ5 ⊂ W ′ ⊂ W ′ ⊂ R2 \ ∂Ω,

we can apply Proposition 2.14 to obtain a bounded domain W ⊂ R2 with γ5 ⊂ W ⊂ Ω,
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whose boundary is the disjoint union of finitely many smooth Jordan loops and such that

H1(∂W ) < 2
(
q +

∑k−1

i=1
H1(Ei) + ε

)
. (4.11)

We call λ the boundary of the unbounded connected component of R2\W , while by {λj}j∈J
(for some finite family of indices J) we denote the boundaries of the bounded connected
components of R2 \W . Let us also define Λ :=

⋃
j∈J λj.

Step 6. Call Lx and Ly the lines orthogonal to [x, y] that pass through x and y, respec-
tively. Take those points u1, u2, u3, u4 ∈ λ such that x ∈ [u1, u3] ⊂ Lx, y ∈ [u2, u4] ⊂ Ly,
and (u1, u3) ∩ λ, (u2, u4) ∩ λ = ∅. We can suppose that u1, u2 lie in the same connected
component of R2 \R(y−x) (thus u3, u4 are contained in the other one). By ū1u2 we mean
the arc in λ joining u1 to u2 that does not contain any other point ui, similarly for ū3u4

and so on. The set R(y − x) \ [x, y] is the union of two half-lines; both of them intersect
the curve λ, say at some points u5 ∈ ū1u3 and u6 ∈ ū2u4. By Lemma 2.1 we see that

|x− u1| ≤ H1(ū1u5), |y − u2| ≤ H1(ū2u6),

|x− u3| ≤ H1(ū3u5), |y − u4| ≤ H1(ū4u6).
(4.12)

Let us define the curves γ6, γ7 as

γ6 := [x, u1] ∗ ū1u2 ∗ [u2, y], γ7 := [x, u3] ∗ ū3u4 ∗ [u4, y].

Therefore, (4.12) ensures that `(γ6) + `(γ7) ≤ `(λ), whence (possibly relabeling γ6 and γ7)
it holds that `(γ6) ≤ `(λ)/2. Finally, it can be readily checked that it is possible to find a
curve γ ⊂ γ6∪Λ joining x to y such that γ∩∂Ω = ∅ (thus γ ⊂ Ω) andH1(γ∩Λ) ≤ H1(Λ)/2.
Consequently, we deduce that `(γ) ≤ `(γ6) +H1(γ ∩Λ) ≤

(
`(λ) +H1(Λ)

)
/2 = H1(∂W )/2.

By recalling the inequality (4.11), we conclude that `(γ) ≤ q +
∑k−1

i=1 H1(Ei) + ε. In view
of (4.2), this explicitly means that

`(γ) ≤
{ ∑k−1

i=1 H1(Ei) + ε

|x− y|+
∑k−1

i=1 H1(Ei) + ε

if Ω is bounded,
if Ω is unbounded.

By arbitrariness of ε > 0, this completes the proof of Theorem 1.1.
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