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Sharp Poincaré inequalities under measure contraction property

BANG-XIAN HAN AND EMANUEL MILMAN

Abstract. We prove a sharp Poincaré inequality for subsets � of (essentially
non-branching) metric measure spaces satisfying the Measure Contraction Prop-
erty MCP(K , N ), whose diameter is bounded above by D. This is achieved by
identifying the corresponding one-dimensional model densities and a localization
argument, ensuring that the Poincaré constant we obtain is best possible as a func-
tion of K , N and D. Another new feature of our work is that we do not need to
assume that� is geodesically convex, by employing the geodesic hull of� on the
energy side of the Poincaré inequality. In particular, our results apply to geodesic
balls in ideal sub-Riemannian manifolds, such as the Heisenberg group.

Mathematics Subject Classification (2010): 35P15 (primary); 58J50, 53C23,
51F99 (secondary).

1. Introduction

Determining the optimal constant in the Poincaré inequality, which in an appropri-
ate setting is equivalent to the spectral-gap of a corresponding Laplacian, is one of
the most classical problems in comparison geometry. Given a metric measure space
(X, d,m), its associated Poincaré constant is given by

�(X,d,m) := inf

(R
X |rX f |2m
R
X | f |2m

: f 2Liploc(X, d),
Z

X
f m=0, 0 <

Z

X
| f |2m < 1

)

,

where Liploc(X, d) denotes the class of locally Lipschitz functions, and the local
Lipschitz constant |rX f | : X 7! R is defined as

|rX f |(x) := lim
y!x

| f (y) � f (x)|
d(y, x)
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(and 0 if x is an isolated point). Under very general assumptions on (X, d,m), it is
known [3,4] that Lipschitz functions are dense in the Sobolev spaceW 1,2(X, d,m),
and hence the above definition may be equivalently stated using Sobolev functions;
as a matter of convenience, we employ Lipschitz functions throughout this work.
Given a family F := {(X↵, d↵,m↵) : ↵ 2 A} of metric measure spaces, we define
the optimal Poincaré constant �F on F by:

�F := inf
↵2A

�(X↵,d↵,m↵).

One of the most studied families of metric measure spaces are smooth connected
orientable compact Riemannian manifolds (M, g,Volg) with Ricci curvature
bounded below by K 2 R, dimension bounded above by N 2 [1,1], and di-
ameter bounded above by D 2 (0,1]; the manifolds are typically allowed to have
locally convex boundary (in the sense that the second fundamental form on @M is
positive semi-definite). In this case, �(M,g,Volg) is the first positive eigenvalue of
the Laplace-Beltrami operator�1g with vanishing Neumann boundary conditions.
Two well-known examples are:

• The Lichnerowicz theorem [40] (see also [25, 57] for the case when @M 6= ;
is locally convex) asserts that �F = N

N�1K for the family F of N -dimensional
manifolds as above when K > 0 and D = 1.

• The Li–Yau [39] and Zhong–Yang [60] theorems assert that �F = ⇡2

D2 for the
family F of manifolds as above when K = 0.

More generally, one may equip M with a measure µ having smooth positive density
with respect to Volg, thereby obtaining the family of weighted Riemannian mani-
folds (M, g, µ). In this setting, �(M,g,µ) coincides with the first positive eigenvalue
of an appropriate weighted Laplacian �1g,µ, and the Bakry–Émery Curvature-
Dimension condition BE(K , N ) gives rise to natural generalized notions of Ricci
curvature lower bound K and dimension upper bound N [5, 6]. Based on a re-
fined gradient comparison technique originating in the work of Kröger [37] and a
careful analysis of the underlying model spaces, sharp estimates on �F for the fam-
ily of weighted Riemannian manifolds satisfying BE(K , N ) and whose diameter is
bounded above by D were obtained by Bakry and Qian in [8], and the associated
one-dimensional model spaces were identified. In particular, the Lichnerowicz and
Li–Yau / Zhong-Yang theorems continue to hold under BE(K , N ).

Thanks to the development of Optimal Transport theory, it was realized that
the Bakry–Émery condition BE(K , N ) in the smooth setting can be equivalently
characterized by K -convexity of an N -entropy functional along L2-Wasserstein
geodesics [22, 56]. Motivated by this, an appropriate CD(K , N ) Curvature-
Dimension condition for (possibly non-smooth) metric measure spaces was intro-
duced independently by Sturm [51, 52] and Lott–Villani [41, 42], encapsulating a
certain synthetic Ricci curvature lower bound K and dimension upper bound N .
The class of metric measure spaces satisfying CD(K , N ), which includes all of
the previous smooth examples, has the advantage of being closed in the measured
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Gromov-Hausdorff topology. Naturally, analyzing �F in this generality presents a
greater challenge, since many of the analytic tools from the smooth setting are not
available any longer.

Fortunately, one tool which is nowadays available is the localization technique.
In the Euclidean setting, this method has its roots in the work of Payne and Wein-
berger [47] on the spectral-gap for convex domains in Euclidean space, and has
been further developed by Gromov and V. Milman [28] and Kannan, Lovász and Si-
monovits [35]. Roughly speaking, the localization paradigm reduces the task of es-
tablishing various analytic and geometric inequalities on an n-dimensional space to
a one-dimensional problem. Recently, in a ground-breaking work [36], B. Klartag
reinterpreted the localization paradigm as a measure disintegration adapted to L1-
Optimal-Transport, and extended it to weighted Riemannian manifolds satisfying
BE(K , N ). In a subsequent breakthrough, Cavalletti and Mondino [18] have suc-
ceeded to extend this technique to a very general subclass of metric measure spaces
satisfying CD(K , N ). Using the localization method, in conjunction with an ex-
tremal point characterization of one-dimensional measures satisfying BE(K , N )
and a careful analysis of the spectral-gap for one-dimensional model measures,
the Bakry–Qian sharp estimates on the Poincaré constant have been extended in
E. Calderon’s Ph.D. thesis [14] to the entire range N 2 (�1, 0][[2,1] (his results
are formulated for smooth weighted manifolds satisfying the BE(K , N ) condition,
but apply equally well to non-smooth CD(K , N ) spaces on which the localization
technique is available).

Another property of metric measure spaces was introduced independently by
Ohta [46] and Sturm [52] as a weaker variant of the CD(K , N ) condition. This
property, called the Measure Contraction Property MCP(K , N ), is equivalent to
the CD(K , N ) condition on smooth unweighted N -dimensional Riemannian man-
ifolds, but may be strictly weaker for more general spaces. It was shown by Juil-
let [33] that the n-dimensional Heisenberg groupHn , which is the simplest example
of a non-trivial sub-Riemannian manifold, equipped with the Carnot-Carathéodory
metric and (left-invariant) Lebesgue measure, does not satisfy the CD(K , N ) con-
dition for any K , N 2 R, but does satisfy MCP(0, N ) for N = 2n + 3. More gen-
eral Carnot groups were shown to satisfy MCP(0, N ) for appropriate N by Barilari
and Rizzi [10,50]. Very recently, interpolation inequalities à la Cordero-Erausquin–
McCann–Schmuckenshläger [22] have been obtained, under suitable modifications,
by Balogh, Kristály and Sipos [9] for the Heisenberg group and by Barilari and
Rizzi [11] in the general ideal sub-Riemannian setting. As a consequence, addi-
tional examples of spaces verifying MCP but not CD have been found, e.g., gener-
alized H-type groups, the Grushin plane and Sasakian structures (under appropriate
curvature lower bounds; for more details, see [11]).

Fortunately, the localization paradigm still applies to very general MCP(K , N )
spaces; this observation has its roots in the work of Bianchini and Cavalletti in the
non-branching setting [12], and was extended to essentially non-branching
MCP(K , N ) spaces with N < 1 in [15, 16, 19]. It is known from the work of
Figalli and Rifford [26] that ideal sub-Riemannian manifolds are indeed essentially
non-branching (see Section 2 for precise definitions). Using localization, Cavalletti
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and Santarcangelo [20] have recently obtained sharp isoperimetric inequalities on
MCP(K , N ) spaces having diameter upper bounded by D, by identifying an appro-
priate family of one-dimensional model MCP(K , N ) densities. Their work extends
the work of the second named author on smooth CD(K , N ) spaces [43], where an
appropriate family of one-dimensional model CD(K , N ) measures was identified,
and which was subsequently generalized to the non-smooth setting by Cavalletti
and Mondino [18].

In this work, we study the Poincaré inequality in the class MCPK ,N ,D of
essentially non-branching metric measure spaces verifying the Measure Contrac-
tion Property MCP(K , N ) (with K 2 R, N 2 (1,1)) and having diameter up-
per bounded by D 2 (0,1). As in the CD(K , N ) setting, determining the sharp
constants in analytic one-dimensional inequalities is a-priori more difficult than
their isoperimetric counterparts, and in particular, we do not know how to obtain
the extremal point characterization of one-dimensional MCP(K , N ) measures (as
in [14] for CD(K , N ) measures). Fortunately, we are able to identify the “worst”
MCP(K , N ) density supported on an interval of diameter D for the spectral-gap
problem by a direct ODE comparison argument, thereby determining the optimal
constant �MCPK ,N ,D .

An additional feature of this work is that we formulate our results on the
Poincaré inequality for general subsets � of a MCP(K , N ) space (X, d,m), with
diam(�)  D. This is very important for applications, since the MCP(K , N ) con-
dition forces (supp(m), d) to be a geodesic space, and so whenever� ⇢ supp(m) is
not geodesically convex, (�, d,m|�) does not satisfy MCP(K , N ), and hence re-
sults proven for MCP(K , N ) spaces are not directly applicable. On the other hand,
geodesically convex subsets of sub-Riemannian spaces are particularly scarce – for
instance, even for the simplest case of the Heisenberg group H1, it was shown
in [44] that the smallest geodesically convex set containing three distinct points
which do not lie on a common geodesic is H1 itself, implying in particular that
there are no non-trivial geodesically convex balls in H1.

The idea which permits us to handle a general domain � is new even in the
CD(K , N ) setting, and immediately allows to extend the sharp Poincaré inequalities
from [8, 14] (or any other Sobolev inequality) from geodesically convex domains
to general domains, in the manner described next. Given a subset � ⇢ supp(m),
denote by geo(�) its geodesic hull, namely the union of all geodesics starting at
x 2 � and ending at y 2 �. Note that geo(�) need not be geodesically convex,
and that geo(Br (x0)) ⇢ B2r (x0) by the triangle inequality for any geodesic ball
Br (x0) of radius r > 0. The idea is to use geo(�) on the energy side of the Poincaré
inequality.

Our main result thus reads as follows. Abbreviate �[h] = �(R,|·|,hL1) for the
Poincaré constant of the density h (with respect to the Lebesgue measure L1 on R).
For  2 R, define the function s : [0,+1) 7! R (on [0,⇡/

p
) if  > 0) as:

s(✓) :=

8
<

:

(1/
p

) sin(
p

✓) if  > 0
✓ if  = 0
(1/

p
�) sinh(

p
�✓) if  < 0.

(1.1)
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Denote by DK ,N the Bonnet–Myers diameter upper-bound:

DK ,N :=

(
⇡p

K/(N�1) if K > 0
+1 otherwise.

(1.2)

We refer to Section 2 for other missing definitions.

Theorem 1.1. Let (X, d,m) denote an essentially non-branching metric measure
space satisfying MCP(K , N ), with K 2 R and N 2 (1,1). Let � ⇢ supp(m) be
a closed subset with diam(�)  D < 1. Then for any (locally) Lipschitz function
f : (X, d) ! R,

Z

�
fm = 0 ) �MCPK ,N ,D

Z

�
f 2m 

Z

geo(�)
|rX f |2m,

where:

�MCPK ,N ,D :=

(
�[hK ,N ,D] if K  0
infD02(0,min(D,DK ,N )] �[hK ,N ,D0] if K > 0,

(1.3)

and hK ,N ,D denotes the following one-dimensionalMCP(K , N ) density:

hK ,N ,D(x) :=

(
sN�1
K/(N�1)(D � x) if x 2 [0, D/2]

sN�1
K/(N�1)(x) if x 2 [D/2, D].

The above Poincaré constant is clearly best possible for the class of subsets �
of MCP(K , N ) spaces with diam(�)  D, as witnessed by the one-dimensional
MCP(K , N ) spaces ([0, D0], | · |, hK ,N ,D0L1) and� = [0, D0] (with D0 = D when
K  0 and D0 2 (0,min(D, DK ,N )] when K > 0). The difference between the
cases K  0 and K > 0 was already observed in [20] in the isoperimetric context;
in Section 5, we demonstrate that this is not an artifact of the proof, but rather a
consequence of the fact that (0, DK ,N ] 3 D0 7! �[hK ,N ,D0] is not monotone non-
increasing when K > 0. We also obtain various concrete estimates on �MCPK ,N ,D ;
in particular:

�MCPK ,N ,D �

8
>><

>>:

1
4
N2
D2

1
2N�1 if K � 0

1
4 max

⇣
|K |(N � 1), N

2

D2

⌘
 
sinh(

q
�K
N�1

D
2 )

sinh(
q

�K
N�1 D)

!N�1

if K < 0.

We stress again that by the results of [10,11,26,33,50], Theorem 1.1 applies to the
ideal sub-Riemannian setting. We illustrate this here for the simplest example of
geodesic balls in the Heisenberg groupHn (equipped with the Carnot-Carathéodory
metric d and Lebesgue measure L2n+1, which satisfies MCP(0, 2n + 3) by [33]):
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Corollary 1.2. For any Lipschitz function f : (Hn, d) ! R, x0 2 Hn and r > 0:
Z

Br (x0)
fL2n+1 = 0 )

1
4

(2n + 3)2

(2r)2
1

22n+2

Z

Br (x0)
f 2L2n+1


Z

B2r (x0)
|rHn f |2L2n+1.

While the validity of a local Poincaré inequality onHn is well-known (even in tight
form, where B2r on the right-hand-side is replaced by Br ), starting from the work of
D. Jerison on vector fields satisfying Hörmander’s condition [31] (see also [23] and
the references therein), we are not aware of any explicit constants in these inequal-
ities. Note that by [29], it is always possible to tighten a Poincaré inequality on any
geodesic space, but this would result in somewhat of a loss of explicit constants.

The rest of this work is organized as follows. In Section 2 we recall some
preliminaries on metric measure spaces. In Section 3, we derive our basic ODE
comparison principle. In Section 4, we apply the comparison principle to one-
dimensional MCP(K , N ) densities and identify the extremal model densities
hK ,N ,D . In Section 5, we derive various estimates on �[hK ,N ,D] as a function of
the parameters K , N and D. In Section 6, we prove Theorem 1.1. In Section 7,
we compare to some previously known results pertaining to Poincaré inequalities
on MCP(K , N ) spaces due to Sturm, von Renesse and others. In a subsequent
work [30], the results of this work will be extended to p-Poincaré inequalities along
with corresponding rigidity results for cases of equality.

ACKNOWLEDGEMENTS. We thank the referee for carefully reading the manuscript
and providing helpful comments.

2. Preliminaries on metric measure spaces

Let (X, d) be a complete separable metric space endowed with a locally finite Borel
measure m – such triplets (X, d,m) will be called metric measure spaces. We refer
to [1, 2, 27, 53, 54] for background on metric measure spaces in general, and the
theory of optimal transport on such spaces in particular.

We denote by Geo(X, d) the set of all closed directed constant-speed geodesics
parametrized on the interval [0, 1]. We regard Geo(X, d) as a subset of all Lipschitz
maps Lip([0, 1], X) endowed with the uniform topology. Recall that (X, d) is called
a geodesic metric space (or simply geodesic) if for any x, y 2 X there exists � 2
Geo(X, d) with �0 = x and �1 = y. Given a subset A of a geodesic space (X, d),
we denote by geo(A) the geodesic hull of A, namely:

geo(A) := [{�2Geo(X,d) ; �0,�12A}� ;

note that geo(A) need not be a geodesic space itself.
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The space of all Borel probability measures on (X, d) is denoted by P(X). It
is naturally equipped with its weak topology, in duality with bounded continuous
functions Cb(X) over X . The subspace of those measures having finite second
moment will be denoted by P2(X). The weak topology on P2(X) is metrized by
the L2-Wasserstein distance W2, defined as follows for any µ0, µ1 2 P(X):

W 2
2 (µ0, µ1) := inf

⇡

Z

X⇥X
d2(x, y)⇡(dx, dy), (2.1)

where the infimum is taken over all ⇡ 2 P(X⇥X) having µ0 and µ1 as the first and
the second marginals, respectively. It is known that the infimum in (2.1) is always
attained for any µ0, µ1 2 P(X). When µ0, µ1 2 P2(X) then this minimum is nec-
essarily finite, and a transference plan realizing it is called an optimal transference
plan between µ0 and µ1.

As (X,d) is a complete and separable metric space then so is (P2(X),W2). Un-
der these assumptions, it is known that (X,d) is geodesic if and only if (P2(X),W2)
is geodesic. Given t 2 [0, 1], let et denote the evaluation map:

et : Geo(X, d) 3 � 7! �t 2 X.

A measure 5 2 P(Geo(X, d)) is called an optimal dynamical plan if (e0, e1)]5 is
an optimal transference plan; it easily follows in that case that [0, 1] 3 t 7! (et )]⌫ is
a geodesic in (P2(X),W2). It is known that any geodesic (µt )t2[0,1] in (P2(X),W2)
can be lifted to an optimal dynamical plan 5 so that (et )]5 = µt for all t 2 [0, 1]
(cf. [1, Theorem 2.10]). We denote by OptGeo(µ0, µ1) the space of all optimal
dynamical plans5 so that (ei )]5 = µi , i = 0, 1.

2.1. Essentially non-branching spaces

We say that a subset 0 ⇢ Geo(X, d) is non-branching if for any � 1, � 2 2 0, it
holds:

9t 2 (0, 1) s.t. 8s 2 [0, t] � 1s = � 2s ) 8s 2 [0, 1] � 1s = � 2s .

We say that (X, d,m) is essentially non-branching [49] if for any µ0, µ1 ⌧ m in
P2(X), any 5 2 OptGeo(µ0, µ1) is concentrated on a Borel non-branching subset
of geodesics.

The restriction to essentially non-branching spaces is natural and facilitates
avoiding pathological cases: as an example of possible pathological behaviour we
mention the failure of the local-to-global property of CD(K , N ) within this class
of spaces; in particular, a heavily-branching metric measure space verifying a local
version of CD(0, 4) which does not verify CD(K , N ) for any fixed K 2 R and
N 2 [1,1] was constructed by Rajala in [48], while the local-to-global property of
CD(K , N ) has been recently verified in [16] for essentially non-branching metric
measure spaces.
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It is clear that if (X, d) is a smooth complete Riemannian manifold (M, g)
(with its induced geodesic distance) then Geo(X, d) is non-branching, and so in
particular (M, g,m) is essentially non-branching for any measure m. In addition,
very general complete sub-Riemannian manifolds (M,1, g) equipped with their
volume measure m are also essentially non-branching (see Figalli and Rifford [26,
Section 4]), as follows from the existence and uniqueness of the optimal transport
map on such spaces [26, Theorem 3.3 and Section 3.4]; for instance, this holds
for all ideal sub-Riemannian structures, that is admitting no non-trivial abnormal
minimizing geodesics [26, Theorem 5.9].

2.2. MCP(K, N)

As already mentioned in the Introduction, the Measure Contraction Property
MCP(K , N ) was introduced by Ohta [46] and Sturm [52] as a weaker variant of
the CD(K , N ) condition. On general metric measure spaces the two definitions
slightly differ, but on essentially non-branching spaces they coincide, and so we
use the simplest definition to state.

Recall the definition of the function s from (1.1), and the Bonnet-Myers upper
bound DK ,N from (1.2). Given K 2 R and N 2 (1,1), we set for (t, ✓) 2
[0, 1] ⇥ R+,

�
(t)
K ,N�1

�
✓) :=

(
+1 if ✓ � DK ,N
sK/(N�1)(t✓)

sK/(N�1)(✓) otherwise,
(2.2)

and

⌧
(t)
K ,N (✓) := t

1
N
⇣
�

(t)
K ,N�1(✓)

⌘1� 1
N
.

Definition 2.1 (Measure contraction property MCP(K, N)). A metric measure
space (X, d,m) is said to satisfy MCP(K , N ) if for any o 2 supp(m) and µ0 2
P2(X) of the formµ0 = 1

m(A)mxA for some Borel set A ⇢ X with 0 < m(A) < 1,
there exists5 2 OptGeo(µ0, �o) such that:

1
m(A)

m � (et )]
�
⌧

(1�t)
K ,N (d(�0, �1))N5(d� )

�
8t 2 [0, 1]. (2.3)

From [16, Proposition 9.1 (i) , (iv)], an equivalent definition is to require
the existence of 5 2 OptGeo(µ0, �o) so that µt := (et )#5 ⌧ m for all t 2 [0, 1),
and that writing µt = ⇢tm, we have for all t 2 [0, 1):

1
⇢t (�t )

� ⌧
(1�t)
K ,N (d(�0, �1))Nm(A) for5-a.e. � 2 Geo(X, d).

On an essentially non-branching space satisfying MCP(K , N ), it follows from the
results of [17] that the above5 is unique and is induced by a map (i.e.,5 = S](µ0)
for some map S : X ! Geo(X, d)).
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If (X, d,m) satisfies MCP(K , N )with N 2 (1,1) then (supp(m), d) is proper
and geodesic (e.g., [16,46]). Furthermore, it was shown in [46,52] that when K > 0,
the following (sharp) Bonnet–Myers diameter bound holds:

diam(suppm)  DK ,N ; (2.4)

we remark that while this is obvious from our present definition and the fact that
⌧K ,N (✓) = +1 if ✓ � DK ,N , the above bound was shown in [46] under an a-priori
weaker (but ultimately equivalent) definition of MCP(K , N ) where A is assumed
to be a subset of B(o, DK ,N ) and in addition (supp(m), d) is a-priori assumed to be
a length-space.

2.3. Localization

Recall that given a measure space (X,X,m), a set A ⇢ X is called m-measurable
if A belongs to the completion of the � -algebra X, generated by adding to it all
subsets of null m-sets; similarly, a function f : (X,X,m) ! R is called m-
measurable if all of its sub-level sets are m-measurable. We denote byM(X,X)
the collection of measures on (X,X). m is said to be concentrated on A ⇢ X if
9B ⇢ A with B 2 X so that m(X \ B) = 0.
Definition 2.2 (Disintegration on sets). Let (X,X,m) denote a measure space.
Given any family {Xq}q2Q of subsets of X , a disintegration of m on {Xq}q2Q is
a measure-space structure (Q,Q, q) and a map

Q 3 q 7�! mq 2M(X,X )

so that:

• For q-a.e. q 2 Q, mq is concentrated on Xq .
• For all B 2 X, the map q 7! mq(B) is q-measurable.
• For all B2X,m(B)=

R
Q mq(B) q(dq); this is abbreviated bym=

R
Q mqq(dq).

Theorem 2.3 (Localization for MCP(K, N) spaces). Let (X, d,m) be an essen-
tially non-branching metric measure space satisfying theMCP(K , N ) condition for
some K 2 R and N 2 (1,1). Let g : X ! R be m-integrable with

R
X gm = 0

and
R
X |g(x)|d(x, x0)m(dx) < 1 for some (equivalently, all) x0 2 X . Then there

exists an m-measurable subset T ⇢ X and a family {Xq}q2Q ⇢ X , such that:

1. There exists a disintegration of m|T on {Xq}q2Q:

m|T =
Z

Q
mq q(dq) , q(Q) = 1.

2. For q-a.e. q 2 Q, Xq is a closed geodesic in (X, d).
3. For q-a.e. q 2 Q, mq is a Radon measure supported on Xq with mq ⌧ H1|Xq .
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4. For q-a.e. q 2 Q, the metric measure space (Xq , d,mq) verifiesMCP(K , N ).
5. For q-a.e. q 2 Q,

R
gmq = 0, and g ⌘ 0 m-a.e. on X \ T.

The localization paradigm on MCP(K , N ) spaces has its roots in the work of Bian-
chini and Cavalletti in the non-branching setting (cf. [12, Theorem 9.5]), and was
extended to essentially non-branching MCP(K , N ) spaces with N < 1 and finite
m in [16, Theorem 7.10 and Remark 9.2] (building upon [15]) and for general m
in [19, Theorem 3.5]. The idea to use L1-transport between the positive and nega-
tive parts g+ := max(g, 0) and g� := (�g)+ of the balanced function g to ensure
that it remains balanced along the localization is due to Klartag [36] (see [18] for
an adaptation to the metric measure space setting).

Proof of Theorem 2.3. Simply combine [19, Theorem 3.5] with the proof of [18,
Theorem 5.1]. Up to modification on a m-null-set, the set T is the transport set
of the 1-Lipschitz Kantorovich potential u associated to the L1-Optimal-Transport
between g+m and g�m, which consists of geodesics {Xq} on which the function u
is affine with slope 1.

3. ODE comparison principle

It is well known and easy to see (see Section 6) that the Localization Theorem
reduces the study of the Poincaré constant on metric measure spaces satisfying
MCP(K , N ) to the one-dimensional case. To understand the one-dimensional set-
ting, we observe in this section a simple comparison principle for ODEs. We refer
to [59] for well-known facts from classical Sturm–Liouville theory.

Given a compact interval I = [a, b] ⇢ R, consider the density 9 = exp(V )
where V is a continuous piecewise smooth function on I . Denote the weighted
Laplacian 19 acting on f 2 C1(I ) by:

19 f := f 00 + V 0 f 0.

LetC1
⇤,†(I) denote the subset ofC

1(I ) consisting of functions satisfying ⇤-bounda-
ry condition at a and †-boundary condition at b; here ⇤, † 2 {D, N }, D stands
for zero Dirichlet boundary condition and N stands for zero Neumann boundary
condition. It is well known that as an operator on L2(I,9), �19 with domain
C1

⇤,†(I ) is essentially self-adjoint and positive semi-definite for any ⇤, † 2 {D, N }.
Denoting the corresponding self-adjoint extension by �1⇤,†

9 , it is also well-known
that �1⇤,†

9 has discrete spectrum, consisting of an increasing sequence of simple
(multiplicity one) non-negative eigenvalues {3i } tending to +1. The associated
eigenfunctions {ui } and their first derivatives are absolutely continuous on I , and
are smooth in any open subset of I where 9 is; they satisfy the corresponding
boundary conditions and u00

i + V 0u0
i = ��i ui in the distributional sense on I .

We denote by 3⇤,†(9, I ) the first non-zero eigenvalue of �1⇤,†
9 ; for {⇤, †} 2

{{N , N }, {D, N }}, the associated eigenfunction is strictly monotone on I , and in
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particular, has a single zero in the interior of I when {⇤, †} = {N , N }. By do-
main monotonicity (which for {⇤, †} 6= {D, D} is a particular feature of the one-
dimensional setting), 3⇤,†(9, [⇠, ⌘]) is a continuous function of (⇠, ⌘) in a  ⇠ <
⌘  b, strictly decreasing as ⌘ % or as ⇠ &.

Lemma 3.1 (ODE comparison principle). Assume 0 2 (a, b). Let V0 be contin-
uous on [a, b], and smooth on [a, 0] and on [0, b]. Denote 90 = exp(V0), and
assume that the eigenfunction u0 of �1N ,N

90
associated to 3N ,N (90, [a, b]) has its

(unique) zero at 0.
Then for all V 2 C1([a, b]), if V 0 � V 0

0 on [a, 0) and V 0  V 0
0 on (0, b], then

denoting 9 = exp(V ) we have:

3N ,N (9, [a, b]) � 3N ,N (90, [a, b]).

Proof. Let u denote the eigenfunction of �1N ,N
9 associated to the first non-zero

eigenvalue 3N ,N (9, [a, b]), and let ⇠ 2 (a, b) denote its (unique) zero. Clearly:

3N ,N (9, [a, b]) = 3N ,D(9, [a, ⇠ ]) = 3D,N (9, [⇠, b]),

and:

�0 := 3N ,N (90, [a, b]) = 3N ,D(90, [a, 0]) = 3D,N (90, [0, b]).

Assume first that ⇠ 2 [0,b]. We will show that3D,N (9,[⇠,b])�3D,N (90,[0, b])=
�0, thereby establishing the assertion. If this were not the case, then by domain
monotonicity we would have 3D,N (9, [⇠, ⌘]) = �0 for some ⌘ 2 (⇠, b). Let
u 2 C1([⇠, ⌘]) be the corresponding monotone increasing (non-negative) eigen-
function solving:

�19u = �0u , u(⇠) = 0 , u0(⌘) = 0.

Since u0 � 0 and V 0  V 0
0 on [⇠, ⌘] ⇢ [0, b], this implies that:

�190u  �0u on [⇠, ⌘].

Using the non-negativity of u, we deduce that:
Z ⌘

⇠
u(�190u)90dx  �0

Z ⌘

⇠
u290dx,

and so by the min-max theorem, we conclude that 3D,N (90,[⇠,⌘])  �0. On the
other hand, domain monotonicity implies that3D,N (90,[⇠,⌘])>3D,N (90,[0,b])=
�0, and we obtain our desired contradiction.

If ⇠ 2 [a, 0], we conclude by a similar argument that 3N ,D(9, [a, ⇠ ]) �
3N ,D(90, [a, ⇠ ]) = �0 (now u is the non-positive monotone increasing eigenfunc-
tion corresponding to 3N ,D(9, [⌘, ⇠ ]) = �0, and �190u � �0u on [⌘, ⇠ ]).
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4. One dimensional model

4.1. One dimensionalMCP densities

We say that a non-negative h 2 L1loc(R,L1) is a MCP(K , N ) density if:

h(t x1 + (1� t)x0) � �
(1�t)
K ,N�1(|x1 � x0|)N�1h(x0) (4.1)

for all x0, x12supp h and t 2 [0,1]. We use supp h throughout to denote supp(hL1),
where, recall, L1 denotes the Lebesgue measure on R. The following is well-
known:
Lemma 4.1. The one-dimensional metric-measure space (R, | · |, hL1) satisfies
MCP(K , N ) if and only if (up to modification on a null-set) h is a MCP(K , N )
density.

Proof. The if direction follows from [52, Corollary 5.5 (i)]. The only if direction
follows by considering the MCP(K , N ) condition for uniform measures µ0, µ1 on
intervals of length " and ↵", respectively, letting " ! 0, employing Lebesgue’s
differentiation theorem, and optimizing on ↵ > 0 (e.g., as in the proof of [21,
Theorem 4.3] or [14, Theorem 3.3.6]).

Definition 4.2. Given K 2R, D2 (0,1) and N 2 (1,1), we defineMCP1K ,N ,D
as the collection of MCP(K , N ) densities h 2 L1(R,L1) with supp h = [0, D].

Recalling the definitions of �K ,N�1 and s from (2.2) and (1.1), it is immediate
to check that (4.1) is equivalent to the requirement that diam(supp h)  DK ,N and:

✓
sK/(N�1)(b � x1)
sK/(N�1)(b � x0)

◆N�1

h(x1)
h(x0)



✓
sK/(N�1)(x1 � a)
sK/(N�1)(x0 � a)

◆N�1
(4.2)

for all [x0, x1] ⇢ [a, b] ⇢ supp h. Moreover, we have the following known charac-
terization (cf. [20, (2.10)]):

Lemma 4.3. A density h is inMCP1K ,N ,D if and only if D  DK ,N and:
✓
sK/(N�1)(D � x1)
sK/(N�1)(D � x0)

◆N�1

h(x1)
h(x0)



✓
sK/(N�1)(x1)
sK/(N�1)(x0)

◆N�1
8 0  x0  x1  D.

(4.3)
Proof. Immediate from (4.2) after checking that for 0  x0  x1  D the function

a 7!
sK/(N�1)(x1 � a)
sK/(N�1)(x0 � a)

is non-decreasing on [0, x0], and the function

b 7!
sK/(N�1)(b � x1)
sK/(N�1)(b � x0)

is non-decreasing on [x1, D].
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This gives rise to the following definition:
Definition 4.4. Given DDK ,N , the modelMCP1K ,N ,D Poincaré density hK ,N ,D
is defined by:

hK ,N ,D(x) :=

(
sN�1
K/(N�1)(D � x) if x 2 [0, D/2]

sN�1
K/(N�1)(x) if x 2 [D/2, D].

Remark 4.5. Note that indeed hK ,N ,D 2MCP1K ,N ,D; this follows from (4.3) and
the fact that the function

(0, D] 3 x 7!
sK/(N�1)(D � x)
sK/(N�1)(x)

is decreasing, as verified in [20, Lemma 3.3]. hK ,N ,D is precisely the “middle”
model density (corresponding to a = D/2) from the family of isoperimetric
MCP1K ,N ,D model densities haK ,N ,D considered by Cavalletti and Santarcangelo
in [20].

We immediately deduce from (4.3) (cf. [16, Lemma A.9]):

Corollary 4.6. If h 2 MCP1K ,N ,D , then at every point x 2 [0, D] where h if
differentiable:

�(log sN�1
K/(N�1))

0(D � x)  (log h)0(x)  (log sN�1
K/(N�1))

0(x).

In particular:

(log h)0(x)

(
� (log hK ,N ,D)0(x) if x 2 [0, D/2)
 (log hK ,N ,D)0(x) if x 2 (D/2, D].

4.2. One dimensional Poincaré inequality

Given a density h 2 L1loc(R,L1), denote its associated Poincaré constant on an
interval I ⇢ R by

�[h, I ] := �(I,|·|,hL1)

= inf

(R
I | f 0|2 h dx
R
I | f |2 h dx

: f 2 Liploc(I ),
Z

I
f h dx = 0, 0 <

Z

I
| f |2 h dx < 1

)

.

We abbreviate �[h] := �[h, R]. By a classical variational argument (cf. [7, Propo-
sition 4.5.4] or [13, Theorem 4.2]), the Poincaré constant coincides with the first
non-zero Neumann eigenvalue for all (say) piecewise smooth densities h on I :

�[h, I ] = 3N ,N (h, I ).

In addition, the following simple perturbation lemma is well-known (see, e.g., [38,
Proposition 5.5]):
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Lemma 4.7. Given two positive densities h1, h2 on an interval I ⇢ R, denote:

osc(h1, h2, I ) := ess sup
x2I

h2(x)
h1(x)

· ess sup
x2I

h1(x)
h2(x)

.

Then:
1

osc(h1, h2, I )
�[h1, I ]  �[h2, I ]  osc(h1, h2, I )�[h1, I ].

We are now ready to establish the following sharp estimate:

Proposition 4.8. Let h be aMCP(K , N ) density with diam(supp h) = D 2 (0,1),
K 2 R and N 2 (1,1). Then the following sharp estimate holds:

�[h] � �[hK ,N ,D].

Proof. As (supp h, | · |) is geodesic, it must be a compact interval; by translation
invariance, we may assume that supp h = [0, D]. If D = DK ,N it follows imme-
diately from (4.3) that necessarily h(x) = c · sN�1

K/(N�1)(x) for some c > 0, and so
�[h] = �[sK/(N�1)] = �[hK ,N ,DK ,N ] and there is nothing further to prove; con-
sequently, we may assume that D < DK ,N . We now reduce to the case that h is
smooth and positive on its support. While this follows from a fairly simple approx-
imation argument, we take the time to sketch its proof, as one may find various
erroneous approximation arguments in the literature (in the CD(K , N ) setting).

It is known that the MCP(K , N ) density h is bounded above on [0, D], positive
on (0, D), and that log h is locally Lipschitz on (0, D) (see [16, Lemmas A.8 and
A.9] which were stated for CD(K , N ) densities, but the proof only uses the defining
property of MCP(K , N ) densities). Let ' denote a smooth compactly supported
non-negative function on R supported on [�1, 1] which integrates to 1, and denote
by '"(x) := 1

" '(x/"), " > 0, the corresponding family of mollifiers. By definition,
the family of MCP(K , N ) densities having fixed support I is a convex cone (note
that this is totally false if the supports do not coincide). Since the restriction of
h onto any non-empty sub-interval of [0, D] is itself an MCP(K , N ) density, it
follows that the convolution h" = h ⇤ '" is an MCP(K , N ) density when restricted
to [", D � "] (but possibly not on [0, D]). It is a standard fact that h" is smooth
and that h" ! h uniformly on [�, D � �] as " ! 0+ for any fixed � > 0. As h is
strictly positive on [�, D � �], if follows that h"/h ! 1 uniformly on [�, D � �],
and hence by Lemma 4.7 we deduce that:

lim
"!0+

�[h", [�, D � �]] = �[h, [�, D � �]], (4.4)

for any fixed � > 0.
Now consider the model Poincaré density hK ,N ,D�2� , which we henceforth

translate so that it is supported on [�, D � �]. The eigenfunction associated to the
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first non-zero Neumann eigenvalue 3N ,N (hK ,N ,D�2�, [�, D � �]) is strictly mono-
tone and necessarily has its unique zero at D/2, by the symmetry of hK ,N ,D�2�
around this point and the fact that the eigenvalue is simple. Since by Corollary 4.6

(log h")
0(x)

(
� (log hK ,N ,D�2�)

0(x) if x 2 [�, D/2)
 (log hK ,N ,D�2�)

0(x) if x 2 (D/2, D � �],

it follows from Lemma 3.1 (ODE comparison principle) that:

�[h", [�, D � �]] = 3N ,N (h", [�, D � �]) � 3N ,N (hK ,N ,D�2�, [�, D � �])

= �[hK ,N ,D�2�, [�, D � �]].

Taking the limit as " ! 0+, (4.4) implies that:

�[h, [�, D � �]] � �[hK ,N ,D�2�, [�, D � �]]. (4.5)

Finally, observe that Lemma 4.7 implies that:

�[hK ,N ,D�2�, [�, D � �]] � c��[hK ,N ,D, [�, D � �]],

with lim�!0+ c� = 1 (recall that D < DK ,N so that the density hK ,N ,D is positively
bounded below on [0, D]). It remains to invoke, e.g., [14, Theorem 5.2.4], where it
is shown that for any f 2 L1([0, D],L1):

lim
�!0+

�[ f, [�, D � �]] = �[ f, [0, D]]

(in fact, we just need the upper semi-continuity, which is particularly simple). Ap-
plying this to (4.5), it follows that:

�[h, [0, D]] = lim
�!0+

�[h, [�, D � �]] � lim
�!0+

c��[hK ,N ,D, [�, D � �]]

= �[hK ,N ,D, [0, D]],

as asserted.

If we only have an upper bound on the diameter of the support of h, we deduce:

Corollary 4.9. Let h be a MCP(K , N ) density with diam(supp h)  D 2 (0,1),
K 2 R and N 2 (1,1). Then the following sharp estimate holds:

�[h] �

(
�[hK ,N ,D] if K  0
infD02(0,min(D,DK ,N )] �[hK ,N ,D0] if K > 0.
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Proof. Let D0 = diam(supp h) 2 (0, D]; by Bonnet–Myers (2.4), we also know
that D0  DK ,N . By Proposition 4.8 we have:

�[h] � �[hK ,N ,D0],

which yields the assertion when K > 0.
When K  0, it remains to establish that:

(0,1) 3 D0 7! �[hK ,N ,D0] is strictly decreasing, (4.6)

thereby concluding the proof. In fact, a stronger property holds, namely:

Lemma 4.10. The mapping:

(0, DK ,N ] 3 D0 7! (D0)2�[hK ,N ,D0]

is non-increasing if K  0 and non-decreasing if K � 0. In particular, it is constant
if K = 0.

Proof. Let 0 < D0  D  DK ,N with D < 1. Assume K  0, and con-
sider the scaled density hK ,N ,D0( D

0

D x) which is supported on [0, D] and satisfies
MCP(( D

0

D )2K , N ); since ( D
0

D )2K � K when K  0, it also satisfies MCP(K , N ),
and so by Proposition 4.8 and scaling of the Poincaré constant we deduce the claim:

✓
D0

D

◆2
�[hK ,N ,D0] = �[hK ,N ,D0((D0/D)x)] � �[hK ,N ,D].

The case K � 0 is treated analogously, exchanging the roles of D0 and D.

The difference between the cases K  0 and K > 0 was already observed
in [20] in the isoperimetric context. In the next section, we will verify that it is not
an artifact of the proof; in particular, the monotonicity property (4.6) is false when
K > 0 in the relevant range D0 2 (0, DK ,N ]. It is an interesting question whether
the function

(0, DK ,N ] 3 D0 7! �[hK ,N ,D0]

is at least unimodal when K > 0, and if so, to determine where its unique minimum
is attained. We provide some partial answers in the next section.
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5. Estimating �[hK,N,D]

In this section, we study the quantitative dependence of �[hK ,N ,D] on the parame-
ters K , N and D. Note that hKa2,N ,D/a(x) = 1

a hK ,N ,D(ax) for any a > 0, and so
scaling of the Poincaré constant implies:

�[hKa2,N ,D/a] = a2�[hK ,N ,D].

Consequently, it is only necessary to treat the cases K = 0, K = �1 and K = 1, but
as this comes at no extra cost, we will analyze the general cases K < 0 and K > 0
below. In addition, since MCP(K , N ) implies MCP(K 0, N 0) for any K 0  K and
N 0 � N , and since hK ,N ,D is an MCP(K , N ) density supported on an interval of
length D, it follows by Proposition 4.8 that:

�[hK ,N ,D] � �[hK 0,N 0,D]. (5.1)

To obtain more meaningful estimates, we will use the following classical result, first
derived by Kac and Krein [34], later by Artola, Talenti and Tomaselli (separately
and independently), and generalized by Muckenhoupt, thereby bearing his name
(see [45] and the references therein). For simplicity, we only state the version we
require here (see, e.g., [13, Theorem 1.2]).

Proposition 5.1 (Muckenhoupt’s criterion). For any smooth positive density 9
on a compact interval I = [a, b] ⇢ R, denote:

A[9, I ] := sup
x2[a,b]

Z x

a

dt
9(t)

Z b

x
9(t)dt.

Then:
A[9, I ] 

1
3D,N (9, I )

 4A[9, I ].

As explained in the previous section,

�[hK ,N ,D] = 3N ,N (hK ,N ,D, [0, D]) = 3D,N (hK ,N ,D, [D/2, D]),

and so Proposition 5.1 provides us with a way to estimate �[hK ,N ,D] quite well.

5.1. Case K = 0

Lemma 5.2. For all N 2 (1,1) and D 2 (0,1):

⇡2N22�(N�1) � D2�[h0,N ,D] �
1
4
N22�(N�1).

Note that 2�(N�1) = �
(1/2)
0,N (D)N�1.
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Proof. Recall that D2�[h0,N ,D] is independent of D by Lemma 4.10, so we may
assume D = 1. Assume first that N � 4. Our task it to evaluate:

AN := A[h0,N ,1, [1/2, 1]] = sup
x2[1/2,1]

Z x

1
2

dt
t N�1

Z 1

x
t N�1dt (5.2)

= sup
x2[1/2,1]

2N�2 � x2�N

N � 2
1� xN

N
.

As N � 4, we trivially upper bound this by:

AN 
1
4

1
N (N � 2)

2N 
1
4
2N�1

N2
, (5.3)

and the asserted lower bound follows by Proposition 5.1. On the other hand, using
x2�N  x�N (as x 2 [1/2, 1]), we have:

AN �
1

N (N � 2)
sup

x2[1/2,1]
(2N�2 � x�N )(1� xN )

=
1

N (N � 2)
(2N�2 + 1� 2 · 2N/2�1).

As N � 4, it is easy to check that this implies:

AN �
1
16
2N

N2
�

1
⇡2
2N�1

N2
,

and the asserted upper bound follows by Proposition 5.1.
When N 2 (1, 4), we can simply invoke Lemma 4.7 to compare h0,N ,1 with

the constant density 1. Since �[1, [0, 1]] = ⇡2, we obtain the lower bound below:

1 �
�[h0,N ,1]

⇡2
� 2�(N�1);

the upper bound follows by Proposition 4.8 since 1 is itself an MCP(0, N ) density
on [0, 1]. It is immediate to check that 2�(N�1)⇡2 � 1

4N
22�(N�1) and that ⇡2 

2⇡2N22�N when N 2 (1, 4), thereby concluding the proof.

5.2. Case K < 0

A similar argument applies to the case K < 0. For brevity, we only supply the
lower bound:

Lemma 5.3. For all K < 0, N 2 (1,1) and D 2 (0,1):

�[hK ,N ,D] �
1
4
max

 

|K |(N � 1),
N2

D2

!

�
(1/2)
K ,N (D)N�1.
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Note that when K ! 0�, the limiting lower bound precisely coincides with the
one from the previous lemma.

Proof. By scaling, we have for any T > 0:

�[hK ,N ,D] =
1
T 2

�[hT 2K ,N ,D/T ],

and therefore, denoting D0 =
q

�K
N�1D,

�[hK ,N ,D] =
�K
N � 1

�[h�(N�1),N ,D0].

Our task it to evaluate:

BN ,D0 := A[h�(N�1),N ,D0, [D0/2, D0]]

= sup
x2[D0/2,D0]

Z x

D0
2

dt
sinhN�1(t)

Z D0

x
sinhN�1(t)dt.

Since sinh(t)/et is an increasing function on R+, we first evaluate:

BN ,D0 

✓
sinh(D0)

sinh(D0/2)

◆N�1
sup

x2[D0/2,D0]

Z x

D0
2

e(
D0
2 �t)(N�1)dt

Z D0

x
e(t�D0)(N�1)dt



✓
sinh(D0)

sinh(D0/2)

◆N�1
min

 
1

(N � 1)2
,

✓
D0

4

◆2!

.

In addition, since sinh(t)/t is increasing on R+, we also obtain when N � 4:

BN ,D0 

✓
sinh(D0)

sinh(D0/2)

◆N�1
sup

x2[D0/2,D0]

Z x

D0
2

✓
D0/2
t

◆N�1
dt
Z D0

x

✓
t
D0

◆N�1
dt

=

✓
sinh(D0)

sinh(D0/2)

◆N�1 (D0)2

2N�1 AN 

✓
sinh(D0)

sinh(D0/2)

◆N�1 (D0)2

N2
,

where AN was defined in (5.2) and we employed (5.3) in the last inequality. Com-
bining our estimates and recalling the definition of D0, we obtain for all N 2
(1,1):

BN ,D0 
1

�
(1/2)
K ,N (D)N�1

min

 
1

(N � 1)2
,

|K |

N � 1
D2

N2

!

.

Applying Proposition 5.1, the assertion follows.
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5.3. Case K > 0

Lemma 5.4. For all K > 0, N 2 (1,1) and 0 < D0  D  DK ,N :

(D0)2�[hK ,N ,D0]  D2�[hK ,N ,D]  (D0)2�[hK ,N ,D0]

 
�

(1/2)
K ,N (D)

�
(1/2)
K ,N (D0)

!N�1

.

Proof. The first inequality was already established in Lemma 4.10. For the second
inequality, consider the rescaled density hK ,N ,D0( D

0

D t) on [0, D], and compare its
Poincaré constant to that of hK ,N ,D(t) using Lemma 4.7. By scaling and symmetry:

�[hK ,N ,D] 

✓
D0

D

◆2
�[hK ,N ,D0] osc(hK ,N ,D(t), hK ,N ,D0((D0/D)t), [D/2, D]),

where recall:

osc(hK ,N ,D(t), hK ,N ,D0((D0/D)t), [D/2, D])

=

0

@
maxt2[D/2,D]

sK/(N�1)(t)
sK/(N�1)((D0/D)t)

mint2[D/2,D]
sK/(N�1)(t)

sK/(N�1)((D0/D)t)

1

A

N�1

.

By directly calculating the derivative, it is straightforward to check that the func-
tion t 7!

sK/(N�1)(t)
sK/(N�1)((D0/D)t) is non-increasing on (0, DK ,N ] when 0 < D0  D;

alternatively, one can use the fact that (�1, log(⇡)) 3 x 7! log sin exp(x) is con-
cave, which implies that x 7! log sin exp(x) � log sin(a exp(x)) is non-increasing
for a 2 (0, 1]. Consequently, the above maximum and minimum are attained at
t = D/2 and t = D, respectively, and the assertion follows.

We will exploit the fact that we can recognize the limit of (D0)2�[hK ,N ,D0] at
both endpoints of the interval D0 2 [0, DK ,N ].

Corollary 5.5.

�[h0,N ,D]  �[hK ,N ,D]  �[h0,N ,D]

 
�

(1/2)
K ,N (D)

�
(1/2)
0,N (D)

!N�1

= �[h0,N ,D]

0

@
2 sin(

q
K

N�1
D
2 )

sin(
q

K
N�1D)

1

A

N�1

.

Proof. Taking the limit D0 ! 0+ in the previous lemma, it is clear that the limit of
(D0)2�[hK ,N ,D0] is independent of K (say by Lemma 4.7), as the curvature effect
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is unnoticeable at infinitesimal scales. Consequently, we have:

D2�[hK ,N ,D]  lim
D0!0+

(D0)2�[hK ,N ,D0]

 
�

(1/2)
K ,N (D)

�
(1/2)
K ,N (D0)

!N�1

= lim
D0!0+

(D0)2�[h0,N ,D0]

 
�

(1/2)
K ,N (D)

�
(1/2)
0,N (D0)

!N�1

= D2�[h0,N ,D]

 
�

(1/2)
K ,N (D)

�
(1/2)
0,N (D)

!N�1

,

where the last equality follows since all relevant expressions are scale invariant
when K = 0. This establishes the second inequality of the assertion; the first
follows identically, or simply by (5.1) since K > 0.

As for the other endpoint, note that hK , N , DK ,N is simply the density

sin
�q K

N�1 t
�N�1 on [0,DK ,N ]. In this special case, the model MCP(K ,N ) Poincaré

density coincides with its CD(K , N ) counterpart, which corresponds to the density
obtained from pushing forward the uniform measure on an N -dimensional sphere
having Ricci curvature equal to K via the radial map x 7! d(x, x0). Consequently,
we know that:

Lemma 5.6.

�[hK ,N ,DK ,N ] = 3N ,N (hK ,N ,DK ,N , [0, DK ,N ]) =
N

N � 1
K .

Proof. Observe that u(t) = cos(
q

K
N�1 t) is a monotone function on [0, DK ,N ] sat-

isfying Neumann boundary conditions there and that:

�1N ,N
hK ,N ,DK ,N

u =
N

N � 1
Ku.

Hence u must be the eigenfunction corresponding to the first non-zero Neumann
eigenvalue.

From the previous discussion we can already conclude that when K > 0:

(0, DK ,N ] 3 D 7! �[hK ,N ,D] is not non-increasing. (5.4)

This is in stark contrast to the case K  0, when the above function is strictly de-
creasing by (4.6), and explains why in the formulations of Theorem 1.1 and Corol-
lary 4.9 we really need to take an infimum over D0 2 (0,min(D, DK ,N )] when
K > 0.
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Let us only show (5.4) for N � 13. Indeed, by Corollary 5.5 and Lemma 5.2,
we know that:

�[hK ,N ,D] 
⇡2N2

D2

0

@
sin(

q
K

N�1
D
2 )

sin(
q

K
N�1D)

1

A

N�1

.

Setting D = ↵DK ,N , ↵ 2 (0, 1), and recalling Lemma 5.6, this is equal to:

= �[hK ,N ,DK ,N ]
N
↵2

✓sin(↵
2⇡)

sin(↵⇡)

◆N�1
.

When N � 13, it is immediate to verify that for ↵ = 1/2, the term on the right is
strictly smaller than 1, and we deduce �[hK ,N ,DK ,N /2] < �[hK ,N ,DK ,N ].

It is also possible to show using Hadamard’s formula that the derivative of
D 7! �[hK ,N ,D] is strictly positive at D = DK ,N , thereby verifying (5.4) for all
N > 1; we omit the details.

6. Proof of main theorem

We are now ready to prove our main Theorem 1.1.

Proof of Theorem 1.1. Given a Lipschitz function f on (X, d) with
R
� fm = 0,

set g = f 1�. As (supp(m), d) is proper and m is locally finite, the integrability
assumption

R
X |g(x)|d(x, x0)m(dx) < 1 is clearly satisfied, and we may apply

the Localization Theorem 2.3. It follows that there exists an m-measurable subset
T ⇢ X and a family {Xq}q2Q ⇢ X , such that:

1. There exists a disintegration of m|T on {Xq}q2Q :

m|T =
Z

Q
mq q(dq) , q(Q) = 1;

2. For q-a.e. q 2 Q, Xq is a closed geodesic in (X, d);
3. For q-a.e. q 2 Q, mq is a Radon measure supported on Xq with mq ⌧ H1|Xq ;
4. For q-a.e. q 2 Q, the metric measure space (Xq , d,mq) verifies MCP(K , N );
5. For q-a.e. q 2 Q,

R
� fmq =

R
X gmq = 0, and f ⌘ 0 m-a.e. on � \ T.

Since supp(gm) ⇢ �, we know that diam(supp(gm))  D. Let q 2 Q be such that
all of the above properties hold, and denote:

Lq := geoXq (supp(gm) \ Xq) ;

although this is not important, we point out that we take the geodesic hull inside
the metric space (Xq , d) which is isometric to a closed subinterval of (R, | · |). It
follows that diam(Lq)  D, and we have:

supp(gm) \ Xq ⇢ Lq ⇢ geo(supp(gm)) \ Xq . (6.1)
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Sincem|T ({g 6= 0}\supp(gm)) = 0, the above disintegration and Fubini’s theorem
imply that for q-a.e. q 2 Q, g ⌘ 0 mq -a.e. on X \ supp(gm) and in particular on
Xq \ Lq , and hence:

6. For q-a.e. q 2 Q, f ⌘ 0 mq -a.e. on Xq \ � \ (Lq \ �).

We therefore add this requirement from q to our previous requirements, as they all
hold for q-a.e. q 2 Q.

Since the MCP(K , N ) condition is closed under restrictions onto geodesically
convex subsets, it follows that (Lq , d,mq |Lq ) verifies MCP(K , N ); however, since
� was not assumed to be geodesically convex, note that (Lq \�, d,mq |Lq\�)may
not satisfy MCP(K , N ). Nevertheless, we claim that:

Z

Lq\�
f 2mq 

1
�MCPK ,N ,D

Z

Lq
|rLq f |

2mq , (6.2)

where recall �MCPK ,N ,D was defined in (1.3), and |rLq f | is the local Lipschitz
constant of f on (Lq , d).

To see this, first note that by property (6):
Z

Lq\�
fmq =

Z

Xq\�
fmq = 0 ; (6.3)

however,
R
Lq fmq may not vanish since Lq could exit and reenter � if � is not

geodesically convex. To establish (6.2), we may assume that mq(Lq) > 0, since
otherwise there is nothing to prove. We know that the one-dimensional metric mea-
sure space (Lq , d,mq |Lq ) is isometric to (I, | · |, hqL1) for some closed interval
I ⇢ R with diam(I )  D and with hq an MCP(K , N ) density (by Lemma 4.1),
and we identify these two representations. Applying Corollary 4.9 to the function
f̄ := f � 1

mq (Lq )
R
Lq fmq , since

R
Lq f̄mq = 0, we deduce:

Z

Lq
f 2mq �

(
R
Lq fmq)

2

mq(Lq)
=
Z

Lq
( f̄ )2mq 

1
�MCPK ,N ,D

Z

Lq
|rLq f |

2mq .

This immediately implies (6.2) if mq(Lq \ �) = 0 by (6.3), while otherwise, (6.2)
follows since:

Z

Lq\�
f 2mq �

(
R
Lq\� fmq)

2

mq(Lq \ �)
�

(
R
Lq\� fmq)

2

mq(Lq)
=

(
R
Lq fmq)

2

mq(Lq)
,

where we employed (6.3) again in the final transition.
Recalling Property (6) and (6.1), (6.2) implies:

Z

Xq\�
f 2mq 

1
�MCPK ,N ,D

Z

Xq\geo(supp(gm))
|rLq f |

2mq .
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Using |rLq f |  |rX f | and integrating this with respect to q, we deduce (after
recalling that f ⌘ 0 m-a.e. on � \ T ):

Z

�
f 2m =

Z

T\�
f 2m 

1
�MCPK ,N ,D

Z

T\geo(supp(gm))
|rX f |2m.

Since geo(supp(gm)) ⇢ geo(�), this concludes the proof.

7. Comparison with prior results

Before concluding, we mention some previously known related results on
MCP(K , N ) spaces.

In [52, Theorem 6.4 and Corollary 6.6], Sturm obtained a certain Poincaré
inequality on geodesic balls of an MCP(K , N ) space (N 2 (1,1)) under the as-
sumption that the function

wN (x) := lim
"!0+

m(B"(x))
"N

is locally bounded; the inequality reads:
Z

Br (x0)
fm = 0 ) �w

K ,N (r)
m(Br (x0))

r N

Z

Br (x0)
f 2m 

Z

B3r (x0)
wN |rX f |2m,

with:

�w
K ,N (r) =

1
(2r)2

·

8
<

:

2+N
N2N if K � 0
2+N
N2N

⇣
2r

sK/(N�1)(2r)

⌘N�1
if K < 0.

While the m(Br (x0))
r N term may be bounded from below on any compact set by

employing Bishop–Gromov volume comparison (valid on MCP(K , N ) spaces –
see [46,52]), it is not clear how to control wN , or how to offset it using the m(Br (x0))

r N
term (Bishop–Gromov goes in the wrong direction here). All in all, we do not see
how to obtain an explicit quantitative expression for the Poincaré constant on balls
from this approach.

In [55], M. von Renesse obtained the following L1-Poincaré inequality on
geodesic balls of anMCP(K , N ) space (N 2 (1,1)) under a certain non-branching
assumption, which in particular holds if for m-a.e. point x , the cut-locus of x has
zero m-measure. It was shown in [16, Remark 7.5] that the latter property holds on
essentially non-branching MCP(K , N ) spaces. Von Renesse’s inequality reads:

2r�1K ,N (r)
1

m(Br (x0))

Z

Br (x0)

Z

Br (x0)

| f (x)� f (y)|
d(x, y)

m(dx)m(dy)
Z

B2r (x0)
|rX f |m;
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in particular, it implies (using d(x, y)  2r and Jensen’s inequality) that:
Z

Br (x0)
fm = 0 ) �1K ,N (r)

Z

Br (x0)
| f |m 

Z

B2r (x0)
|rX f |m ,

with:
�1K ,N (r) =

1
2r

inf
t2[1/2,1],✓2(0,2r]

t �
(t)
K ,N (✓)N�1

=
1
2r

·

(
1
2

1
2N�1 if K � 0

1
2�

(1/2)
K ,N (2r)N�1 if K < 0.

We do not know how to quantitatively compare between the above L1-Poincaré
inequality and our L2-Poincaré one; it is always possible to pass from an L1 tight
version to an L2 tight one (when B2r on the right-hand-side is replaced by Br ) by
applying it to f = g2sgn(g) and using Cauchy–Schwarz, but we do not know how
to do this for the above non-tight version. Note that by the results of [29], a non-
tight Poincaré inequality may always be tightened on any geodesic space, but this
results in loss of explicit constants. Still, it might be interesting to compare the
above explicit expression for 2r�1K ,N (r) with our estimates on (2r)2�MCPK ,N ,2r
from Section 5 (with this scaling, both are unit-free). Besides the fact that our
estimates apply to any� with diam(�)  2r , two other notable differences are that
our estimates improve when K > 0, and that we have an additional advantageous
N2 term when K  0. In any case, as explained in the Introduction, our Poincaré
constant �MCPK ,N ,D is best possible.

We also mention a recent result of Eriksson-Bique [24, Theorem 1.3], who
established a (1, p)-local-Poincaré inequality for p > N+1 onMCP(K , N ) spaces,
without any non-branching assumptions whatsoever (when K � 0 he also obtained
a global version).

Lastly, it is worthwhile to mention the results of Yang and Lian [58], who
obtained very precise (and in some cases optimal) constants for weighted Poincaré
inequalities on geodesic balls Br in the Heisenberg group as well as other Carnot
groups, with Dirichlet boundary conditions (when the corresponding test functions
are compactly supported inside Br ). The optimal constant for the global Sobolev
inequality on Hn was discovered by Jerison and Lee [32].
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Basel, second ed., 2008.
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[35] R. KANNAN, L. LOVÁSZ and M. SIMONOVITS, Isoperimetric problems for convex bodies
and a localization lemma, Discrete Comput. Geom. 13 (1995), 541–559.

[36] B. KLARTAG, “Needle Decompositions in Riemannian Geometry”, Mem. Amer. Math.
Soc., Vol. 249, 2017, v + 77.
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