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—1.Thanks

I wish to thank the organizers, and the Mathematisches Institut of the
Albert-Ludwigs-Universität Freiburg, for the kind invitation.
—2.Structure

• In the first part we will see basilar concepts;

• In the second part we will see an example of first order Sobolev metric;

• In the third part we will see an example of second order Sobolev metric.

Part I

Introduction
1 Introduction
1.1 Curves and shapes

—3.Curves
Suppose that c is a closed curve in the plane; we represent it by a param-

eterization
c : S1 → R2

(where S1 = {x ∈ R2 : |x| = 1} is the circle).
We’ll call M the “manifold” of all immersed regular curves.
(We’ll assume thatM is a differentiable manifold, although there are impor-

tant technical issues hidden in this assumption).
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We will present some comments on open curves that are maps

c : [0, 1]→ R2

—4.Homotopies
A motion of the curve is a homotopy C = C(t, θ) with

C : [0, 1]× S1 → R2

such that C(t, ·) ∈M for all t.
We will write C ′ = ∂θC and Ċ = ∂tC.
C represents a path γ : [0, 1]→M in the space of curves.

—5.What for?
“Curves” are a kind of “shapes”. What do we study “shapes” for?

• Shape Optimization

• Shape Analysis

1.2 Shape Optimization

—6.A method for Shape Optimization: Active Contours
A variational approach to solving Computer Vision problems is known as

Active Contours: minimizing energy functionals E(c) where c is an embedded
curve enclosing the region of interest R.

To seek the minimum we may think of performing a gradient descent flow

∂C

∂t
= −∇E(C) .

Such “gradient” ∇E is meaningful iff the manifoldM is equipped with some
sort of “Riemannian metric”
—7.Gradient and metric

Given a curve c ∈ M (the manifold of curves) we consider a “tangent
vector” h ∈ TcM to be h : S1 → R2, a vector field along the curve.

We’ll use the symbol
〈h, k〉c

for the metric tensor at c computed on h, k ∈ TcM .
If the energy E is reasonably smooth, then we may compute the “Gâteaux

Derivative”, denoted by DE(c;h) or Dc;hE, defined by

DE(c;h) = Dc;hE = lim
ε→0

E(c+ εh)− E(c)
ε

.

If M is a Riemannian manifold then the gradient ∇E at c is implicitely
defined by

〈∇E(c), h〉c = DE(c;h) ∀h ∈ TcM .
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1.3 Shape Analysis

—8.Shape Analysis

• Distances between curves

• Averages for curves

• Principle Component Analysis for curves

• Probabilistic models of curves

For all the above, a Riemannian Metric gives a well-founded and principled
approach.

1.4 Group actions

—9.Reparameterization
Coming back to the beginning: we decided to represent a curve using pa-

rameterization
c : S1 → R2 .

Any other parameterization may be written as c ◦ ϕ where ϕ : S1 → S1 is a
diffeomorphism.

The group Diff(S1) of diffeomorphisms acts on the manifold M of curves by
right composition; its actions is the reparameterization.

We will require that the Riemannian metric on the manifoldM be invariant
for the group action of reparameterizations.
—10.Group action

More in general.

Definition 1. Let G be a group. We say that G acts on M if there is a map

G ×M → M
g,m 7→ g ·m

that respects the group operations , that is, such that, if e ∈ G is the identity
element then e ·m = m, and for any g, h ∈ G,m ∈M

h · (g ·m) = (h · g) ·m .

—11.Group action
There are other interesting groups acting on the plane R2, and hence on

curves (by left composition).

• the group of rotations

• the group of translations

• the group of rescalings

• ...
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We will call shape a curve up to the actions of (a preselected family of)
groups.

The action of the groups change the pose of the shape.
—12.Quotient space

Consider the equivalence relation c1 ∼ c2 iff there is an element g ∈ G s.t.
c1 = g · c2. We write

M/G = M/∼

for the quotient space; equivalence classes [c] are called orbits.
(In some important cases unfortunately M/G is not a differentiable mani-

fold...)
—13.Geometric distance

Given a Riemannian metric on M that is independent of parameterizations:
then it projects to B = M/Diff.

Let d be the distance on M induced by a Riemannian metric.
We then study the projected distance on B , by defining the geometric

induced distance
dB(c0, c1) = inf

φ
d(c0, c1 ◦ φ)

for φ ∈ Diff all possible reparameterizations.
Note that dB is defined on parametric curves, but is independent of repa-

rameterization.

1.5 Short history

—14.Short history
There is a moltitude of metrics proposed in the literature; for lack of time

we will concentrate on few examples: all variations on the idea of Sobolev–type
geometric metrics.
—15.H0 metric

The simplest metric may be as follows:

〈h, k〉H0 :=
∫
c

h · k ds

where integration is by arc parameter along c; h · k is scalar product in R2.
This metric was used in most of the literature in Active Contours, at least

since [Caselles et al., 1993],[Malladi et al., 1995],[Kichenassamy et al., 1995],[Caselles
et al., 1995].

Surprisingly, the metric H0 does not yield a well define metric structure,
since the associated distance dB is identically zero. (This striking fact was first
described in [Michor and Mumford, 2006]).

1.6 Sobolev–type metrics

—16.Sobolev–type metrics
Let Dch(θ) := h′(θ)

|c′(θ)| be the derivative in arc parameter.
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Many authors 1 studied metrics of the form

〈h, k〉G := a0

∫
c

h · k ds+
∫
c

DN
c h ·DN

c k ds ,

where N ≥ 1 is the degree.
Sobolev metrics have very good properties in shape optimization; hence the

name Sobolev Active Contours
Also, when the degree N ≥ 1 the distance dB is not degenerate.

—17.The gradient problem
Consider again the problem of computing the gradient of an energy, were we

have already represented
Dc,hE =

∫
c

h · v ds

for an appropriate vector field v.
(v is often precomputed in the literature; in this context we may call it the

H0-gradient)
We need to solve the gradient problem: find f = ∇E(c) in

〈f, h〉c =
∫
c

h · v ds ∀h ∈ TcM .

By designing the metric, we can simplify this problem. Consider the Sobolev
metric of degree N = 1.

• If the metric is

〈h, k〉H1
.= a0

∫
c

h · k ds+
∫
c

Dch ·Dck ds

then we need to solve
−DcDcf + a0f = v

this needs a convolution or an iterative approximation.

• [Sundaramoorthi et al., 2005] considered the following geometric Sobolev-
type metric

〈h, k〉H̃1
.= a0

∫
c

hds ·
∫
c

k ds+
∫
c

Dsh ·Dsk ds, (1)

in this case
−DcDcf = v + constant

and this is just computation of a primitive (twice).

—19.Sobolev Active Contours
[Sundaramoorthi et al., 2005, 2006, 2007, 2009b] proved that Sobolev Active

Contour has a beneficial effect: it regularizes otherwise ill-posed minimization
flows; the flow is more robust against data noise.

1 [Sundaramoorthi et al., 2005, 2006, 2007, 2008, 2009b,a, 2011] [Mennucci et al., 2008]
[Charpiat et al., 2005] [Younes, 1998] [Michor and Mumford, 2007] [Younes et al., 2008] [Bru-
veris et al., 2014] [Bauer et al., 2014] [Bruveris, 2015] [Martin Bauer and Kolev, 2018] [Srivas-
tava et al., 2011] [Tumpach and Preston, 2016]
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Figure 1: Top two rows: minima of E, with length penalty, by H0 flow (top
two rows). Left to right: α = 10000, 50000, 90000. Bottom two rows: minima
of E , with elastic regularization, H1 flow. Left to right: α = 0, 0.1, 5, 10, 25.
The second and fourth row show the same result as the row above them, but
the image is removed for visibility.

In this experiment from [Sundaramoorthi et al., 2009b], we show a case when
the scale-invariant elastic regularity term

E(c) = Edata(c) + α len(c)
∫
c

κ2(s) ds . (2)

is more beneficial than the using the traditional length penalty

E(c) = Edata(c) + α len(c) . (3)

In the following experiment, the image-based term Edata is the Chan-Vese func-
tional.

Note that the elastic regularizer does not generally have a length shrinking
effect, but keeps the contour regular. This length shrinking effect may have a
detrimental effect as shown in Fig. 1. Note that the length penalty restricts the
curve from moving into the groves between the fingers. The elastic regularity
term, on the other hand, has no such restriction, and makes the curve more
smooth and rounded.
—21.Structure of M

What is the structure of the space of curves endowed with a Sobolev metric?
[Mennucci et al., 2008] proved that when N = 1 then any c that is Lispchitz can
be approximated by smooth curves; whereas when N ≥ 2 any limit of a Cauchy
sequence of smooth curves will have a curvature κ that is in L2.
—22.Sobolev–type metrics of higher order

When the degree is N ≥ 2, the space M can be identified as the open subset
M = IN of immersed curves inside the standard Sobolev space HN of maps
c : S1 → R2. In this case:

• [Bruveris et al., 2014] shown that the space of planar Sobolev immersions
IN is geodesically complete for a Sobolev metric with constant coefficients;
and the metric is a smooth Riemannian metric on IN .
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• [Bauer and Harms, 2015] noted that the same method also implies metric
completeness of the space of Sobolev immersions IN ;

• Thm. 5.2 in [Bruveris, 2015] shows that any two curves may be connected
by a minimizing geodesic.

—23.
(Let me recall that: The Hopf-Rinow theorem is false in infinite dimensions

[Atkin, 1975].
Knowing that the Riemannian manifold is complete does not imply the ex-

istence of minimal geodesics — when it is true, we need to prove it, case by
case).

2 Designing a metric
What is discussed in this section is extracted from [Mennucci, 2018].

In the following for convenience we will represent the metrics using the norm

‖h‖c =
√
〈h, h〉c

for h ∈ TcM .
(The scalar product is uniquely identified by the norm, using polarization).
We can change point of view. We would like to build a metric satisfying

some good properties; such as those seen before, and more.
Given a group, we would like to design a metric that factors according to

the action of the group.
The key idea is in choosing a submanifoldM0 ⊂M that intersects each orbit

of the action of G in only one point.
(This implies that the bundle π : M → M/G is trivial – important idea,

skipped for lack of time).
—27.The case of translations

Let’s see a simple example: let G = R2 be the group of translations. We
may consider two choices for M0, each associated to a map Φ : M0×G →M .

• Let M0 be the set of curves c with c(θ0) = 0, where θ0 ∈ S1 is fixed. The
map is

Φ(c̃, v) = c̃+ v , Φ−1(c) = (c̃, v) =
(
c− c(θ0), c(θ0)

)
.

• Let
avgc(c) =

∫
c

cds = 1
len(c)

∫
c

cds

be the center of mass; let M0 = {c : avgc(c) = 0} then

Φ(c̃, v) = c̃+ v , Φ−1(c) = (c̃, v) =
(
c− avgc(c), avgc(c)

)
.

In both casesM0 is a representation for “curves up to translation”. The second
map is better, since the submanifoldM0 is invariant for reparameterizations.
—28.Factoring the space

The general scheme is as follows. Suppose that G acts freely. Suppose
that there is a submanifold M0 ⊂ M that intersects each orbit of the action of
G in only one point, and is transversal to the orbits.
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This generates a map

Φ : M0 × G →M

(c̃, g) 7→ c

where c ∈M is associated to the unique c̃ ∈M0 ∩ [c] and the unique g ∈ G such
that c = g · c̃.

This map Φ is a diffeomorphism.
Then the bundle

π : M → M/G

is trivialized: indeed π
M0

will be a diffeomorphism of M0 to M/G.
The process of associating c ∈ M to c̃, g ∈ M0 × G is often found in the

literature, by the name of normalization or registration, to factor out the effect
of a group action.
—29.Normalization and Length

Lemma 2. For any smooth γ : [0, 1]→M we can find another γ̃ : [0, 1]→M0
such that γ̃(t) and γ(t) are in the same orbit; i.e. there is a smooth path g(t) ∈ G
such that γ̃(t) = g(t)γ(t).

The length of a path γ̃ in M0 is not necessarily the length of the path πγ
projected in M/G.

Lemma 3. When M0 is orthogonal to each orbit, then a minimal geodesic in
M/G corresponds to a minimal geodesic in M0 (up to normalization).

Since we are actually designing metrics, we look at this the other way around:
if we can find a M0 as above, we will then design a metric such that M0 is
orthogonal to the orbits.

2.1 Path-wise and point-wise invariance

—30.Point-wise invariance

Definition 4. Let g ∈ G, let

Lg : M →M

Lg(c) = g · c

be the action: then we will say that the metric is (point-wise) invariant
for the action of G iff Lg is an isometry (for any given g ∈ G).

By Noether’s Theorem, for any isometric group action there is a momen-
tum, a quantity that is conserved along geodesics.
—31.Vertical space

For any group acting on M we have a vertical bundle.
The vertical space Vc is the vector space Vc ⊂ TcM that is tangent to the

orbit of the action of G at the curve c.
(Given a metric, the horizontal space Wc is the orthogonal complement

inside TcM to Vc. We will not use this concept in this presentation.).
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Figure 2: The orbits Oc are dotted, the spaces Wc and Vc are dashed.

Let
π : M → M/G = B

be the canonical projection. The figure 3 may also help in understanding. The
whole orbit Oc is projected to [c]. The vertical space Vc is the kernel of Dπc, so
it is projected to 0.
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Figure 3: The vertical and horizontal spaces, and the projection π from M to
B.

—33.Path-wise invariance
Let γ ∈ H1([0, 1] → M) be path. The geodesic action, or geodesic

energy, of γ is ∫ 1

0
‖γ̇‖2γ dt .

Definition 5. We say that a semimetric is path-wise invariant for the action
of the group G if ∫ 1

0
‖γ̇‖2γ dt =

∫ 1

0
‖ ˙̃γ‖2γ̃ dt

for any choice of smooth paths γ : [0, 1] → M and A : [0, 1] → G; where we
define γ̃(t) = A(t) · γ(t).

This implies that ‖‖ is a semimetric and not a metric.
More can be said.
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Proposition 6. These two facts are equivalent.

• the semimetric is path-wise invariant,

• the semimetric is point-wise invariant and the null space of ‖·‖c contains
the vertical space Vc, namely, ‖v‖c = 0 for all v ∈ Vc. (Intuitively,
‖ · ‖ does not measure the infinitesimal action of G).

So a semimetric that is path-wise invariant cannot be a metric. So, when
we will design a metric on M , then we will add other terms to ‖ · ‖ to create a
true metric on the space.

2.2 Designing, for one group action

—35.Designing, for one group action
We use the map Φ that trivializes the bundle. We want to design a metric

that splits orthogonally this map.
As a first step we define a metric ‖ · ‖G on G.
As a second step we define a metric ‖ · ‖0 on M0. To this end we define

a semimetric ‖h‖0 on M that is path-wise invariant, and projects to a metric
in M0. (This is equivalent to asking that the null space of ‖h‖0 at c ∈ M be
exactly the vertical space Vc).

Note that we view ‖h‖0 at the same time as a metric in M0 and as a semi
metric in M . This largely simplifies the analysis and the applications.

The full metric on M is then defined by pullback as

‖h‖ =
√
‖ĥ‖20 + ‖ĝ‖2G (4)

where the decomposition

TcM → Tc̃M0 × TgG , h 7→ (ĥ, ĝ) (5)

is the derivative of the map Φ−1.

2.3 Geodesics

—36.Geodesics
There is a benefit to the scheme.

Proposition 7. Let c0, c1 ∈ M , let g ∈ G and let c̃1 = gc1. Suppose that
C : [0, 1] → M is the geodesic connecting c0 to c1, and C̃ : [0, 1] → M is the
geodesic connecting c0 to c̃1: then C̃(t) = ξ(t)C(t) where ξ(t) is the geodesic
connecting the identity in G to g; and vice-versa. In particular the projections
of C and C̃ onto the quotient space M/G are identical.

This is not true for generic metrics on M (even if they are point-wise invari-
ant).
—37.Minimal geodesics

We show how this strategy affects the computation of geodesics.
Let c0, c1 ∈M . We want to find a geodesic C : [0, 1]→M connecting c0 to

c1.
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We first decompose the endpoints using the map Φ so we find g0, g1 ∈ G and
c̃0, c̃1 ∈M0 such that c0 = g0c̃0 and c1 = g1c̃1.

We compute a minimal geodesic g(t) connecting g0 to g1. If we carefully
chose the metric in G, then this will be easy.

We then look for a geodesic ξ(t) in M0 connecting c̃0 to c̃1.
By the definition, the geodesic minimizes the geodesic energy

min
{∫ 1

0
‖ξ̇(t)‖20,ξ(t) dt : ξ : [0, 1]→M0

}
(6)

in the family of all smooth paths ξ : [0, 1] → M0 connecting c̃0 to c̃1. Since
‖ · ‖0 is path-wise invariant, then we can equivalently compute the minimum in
the family of all smooth paths ξ : [0, 1] → M connecting c̃0 to c̃1 — that is,
dropping the constraint requiring that ξ(t) ∈M0 at all times.

Eventually g(t)ξ̃(t) will be a minimal geodesic.
TL;DR We can compute the geodesic separately, in “pose” and in “shape”.

2.4 Designing, for many group actions

—39.Designing, for many group actions
What if there are many groups G1, . . . ,Gk acting on M?
The “perfect metric” would be as follows:

‖h‖2 = ‖h‖2G1
+ . . .+ ‖h‖2Gk

+ ‖h‖2S

where the null space of a semimetric ‖h‖2Gi
contains the direct sum of the vertical

spaces of all other groups; whereas the kernel of the “shape semimetric” ‖h‖2S
would be the direct sum of the vertical spaces of all groups.

This is currently not achieved.
There are many groups acting on curves.
Unfortunately some interfere.
For example, a rotation of a circle (around its center) is equivalent to a

reparameterization.
For this reason, we cannot factor out all actions alltogether.

Part II

A first order example
3 A first order example: the Stiefel metric
3.1 History

—41.History
This idea first appeared in [Younes, 1998]
Then it was rewritten in [Younes et al., 2008] as follows.

—42.Square root representation
We always identify R2 with the complex plane C.
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Given two smooth functions e, f : [0, 1]→ R we define the map Φ by

c = Φ(e, f) c(θ) = c(0) + 1
2

∫ θ

0
(e+ if)2(ξ) dξ (7)

where i denotes the imaginary unit; this map uniquely identifies a curve c :
S1 → C up to the choice of the base point c(0), or equivalently, up to the choice
of the centroid avgc(c).

Vice versa given c immersed smooth there are two such choices, (e, f) and
(−e,−f).
—43.Stiefel manifold

We now require c = Φ(e, f) to be a closed curve of unit length.
For c to be closed we must have that

0 = c(1)−c(0) = 1
2

∫ 1

0
(e+if)2(θ) dθ = 1

2

∫ 1

0
[e2(θ)−f2(θ)+2ie(θ)f(θ)] dθ, (8)

and for the curve to of unit length we must have that

1 =
∫ 1

0
|c′(θ)|dθ = 1

2

∫ 1

0
(e2(θ) + f2(θ)) dθ. (9)

By conditions (8) and (9), then the pair (e, f) belongs to

St(2, C∞) = {(e, f) ∈ C∞ × C∞ : ‖e‖L2 = ‖f‖L2 = 1, 〈e, f〉L2 = 0}

where the above L2 norms and inner product are the standard ones on L2([0, 1]).

St(2, C∞) ⊂ St(2, L2)

where it is dense;
St(2, L2) is a closed smooth submanifold of L2 × L2: hence it is a complete

Riemannian manifold when we use the metric induced from the scalar product
L2 × L2.

St(2, C∞) and St(2, L2) are known as a Stiefel manifold.
—45. Isometry

Let
Md = {c ∈M : len(c) = 1, avgc(c) = 0} , (10)

be the space of curves with length 1 and center of mass in the origin.
The above square root transformation Φ is an isometry if the space Md is

endowed with the metric ∫
c

Dsh ·Dsk ds

and the Stiefel manifold St(2, C∞) is endowed with the Riemannian metric
induced from the ambient space L2 × L2.
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3.2 Stiefel metric

—46.Decomposition of tangent space
To define the metric H, [Sundaramoorthi et al., 2011] defined the following

decomposition for c ∈M and h ∈ TcM :

h = ht + hl(c− avgc(c)) + len(c)hd (11)

where ht is the component of h that changes the centroid of c, hl(c− avgc(c)) is
the component of h that changes the scale (length) of c, and hd is the component
of h that deforms c. The components ht and hl of h are defined as

ht = D(c;h)(avgc(c)) ∈ R2 (12)
hl = D(c;h)(log len(c)) ∈ R (13)

hd = 1
len(c) [h− ht − hl(c− avgc(c))] (14)

—47.Stiefel metric
If h, k ∈ TcM are decomposed as above, then [Sundaramoorthi et al., 2011]

defined the Riemannian metric H as

〈h, k〉H
.= ht · kt + λlh

lkl + λd len(c)2
∫
c

Dsh
d ·Dsk

d ds, (15)

where the first two products are the Euclidean dot products, the last term is a
normalized geometric Sobolev metric, and λl, λd > 0 are (constant) weights.

3.3 Explanation
The third term of the metric may be rewritten directly as a function of h ∈ TcM
by using the identity∫

c

Dsh
d ·Dsk

d ds =
∫
c

Dsh ·Dsk ds−
∫
c

Dsh ·Dscds
∫
c

Dsc ·Dsk ds . (16)

—49.Explanation (ex post!)
The third term in the metric∫

c

Dsh
d ·Dsk

d ds

is a semimetric whose null space coincides with the vertical space of translations
and rescalings; so is path-wise invariant for those actions.

(This was not the explanation given at the time of writing of [Sundaramoorthi
et al., 2011])

3.4 Isometry

—50. Isometric decomposition
Let again

Md = {c ∈M : len(c) = 1, avgc(c) = 0} , (17)
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We associate the Euclidean metric to Rn × R and the metric

〈h, k〉Md
=
∫
c̃

Dsh ·Dsk ds (18)

to Md. This metric is the restriction of the metric H to Md.
The metric H is associated to an isometry between the space of curves M

and the space R2 × R×Md.

Theorem 8. Let λl = λd = 1 for simplicity. We define the map of c ∈ M to
(v, l, c̃) ∈ R2 × R×Md, and its inverse,

c ∈M 7→ (v, l, c̃) =
(
avgc(c) , log len(c) , c− avgc(c)

len(c)

)
(v, l, c̃) 7→ c = v + elc̃ ∈M

This map is an isometry.

3.5 Properties

—52.Momenta, geodesics
This new metric enjoys the following properties:

1. Centroid translations, scale changes and deformations of the curve are
orthogonal. Moreover, the space of curves can be decomposed into a
product space consisting of three components as shown in Thm. 8.

2. there is a fast and easy way to compute gradients of commonly used en-
ergies with respect to the new metric H, that does not need convolutions
nor iterative approximations.

3. Geodesics in this new metric can be numerically computed efficiently.

3.6 Geodesics
Classically, the Stiefel manifold St(p,Rn) is defined as the set of all frames
composed of p orthonormal vectors in Rn (with 1 ≤ p ≤ n); those frames are
represented as n×pmatrices. Geodesics in Stiefel manifolds St(p,Rn) are known
to have closed form solutions as demonstrated by [Edelman et al., 1998].2

The closed form formula for geodesic holds mutatis mutandi in St(p, L2).

Proposition 9 (Exponential Map in St(p,Rn) ). Suppose that St(p,Rn) is
endowed with the Euclidean metric, i.e.,

〈A,B〉 = tr(ATB) ,

then the geodesic equation is

Ÿ + Y (Ẏ T Ẏ ) = 0 . (19)
2 [Edelman et al., 1998] credits a personal communication by R. A. Lippert for the final

closed form formula (20).
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The solution is

(Y (t)eAt, Ẏ (t)eAt) = (Y (0), Ẏ (0)) exp t
(
A −S
Id A

)
(20)

where A = Y T (0)Ẏ (0), S = Ẏ T (0)Ẏ (0), and Id is the p× p identity matrix.

The proof and discussion of these results is in Section 2.2.2 in [Edelman
et al., 1998].
—55.Minimal geodesics

Theorem 10. Any two points in St(2, L2) are connected by a minimal geodesic
[Harms and Mennucci, 2012]

The [Edelman et al., 1998] closed form formula for geodesic greatly simplifies
the computation of minimal geodesics.

The algorithm to compute a minimal geodesic reduces to compute an op-
timal problem with 5 real parameters (regardless of the dimensionality of the
numerical approximation).

3.7 Applications
Having a well-defined Riemannian manifold, it is possible to define a Kalmann-
type filtering.

We set up a hidden constant velocity model (by exponential map and parallel
transport).

We will see some movies.
In the movies:

• green is observation, the contour extracted from the image;

• red is the estimated curve

• blue is the estimated velocity (vector field).

Some frames of the movie are in Fig. 4

3.8 Conclusions

—58.Metric completion
We started from smooth curves c, in this case (e, f) is smooth; the family of

such frame St(2, C∞) is dense in St(2, L2). (Proved in [Deiala, 2010])
Vice versa St(2, L2) represents curves that are absolutely continuous.
But an absolutely continous curve c is represented by infinitely many

frames with e, f ∈ L2

—59.Conclusions

good This model can be completed to a well known Riemannian manifold:
St(2, L2).

good The computation of gradients is fast (no convolutions, no iterative ap-
proximation); the gradient regularizes ill conditioned and ill posed prob-
lems.
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Figure 4: Tracking a flatworm (left to right, top to bottom) using the proposed
filtering technique. Green is observation; red is the estimated curve; blue is the
estimated vector field.

good Any two points in St(2, L2) are connected by a minimal geodesic [Harms
and Mennucci, 2012]

good The equation for geodesics is solved in closed forms, the algorithm just
needs to compute the exponential of a 4× 4 matrix.

good Simple fast numerical algorithm to compute a minimal geodesic in St(2, L2)

good In the quotient space B = M/Diff of “curves up to parameterization”, the
distance dB between curves “up to parameterization” is not degenerate.

bad There may be curves that are not connected by a minimal geodesic “up to
parameterization”.

bad The basilar geometric concept of index number of the curve is lost in
St(2, L2). (Proved in [Deiala, 2010])

bad An absolutely continous curve c is represented by infinitely many frames
with e, f ∈ L2

bad Any algorithm that computes minimal geodesics between curves should
consider a very large number of possible representatives (unless better
analysis shows otherwise).
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Part III

A second order example
4 A second order example: the delta metric
(What follows is extracted from the second part of [Mennucci, 2018]).

4.1 Delta seminorm

—62.Delta operator
We always identify R2 with the complex plane C. Recall that Dch := h′/|c′|.

Definition 11. We propose the “delta” operator

∆ch := h′/c′ (21)

where the division is in the sense of complex numbers.

The difference between Dch and ∆ch is akin to the difference between La-
grangian coordinates and Eulerian coordinates (but transported to the level of
first derivatives). When using Dch we are considering h to be positioned in the
ambient space R2, and we are just renormalizing h′ by |c′|, so that Dch will
be reparameterization invariant. When using ∆ch we are considering h to be
anchored to the curve, and so we are normalizing as above, and moreover we
are interested in the relative angle between h′ and c′, not in the angle between
h′ and a fixed reference versor in the space.
—63.Path-wise invariance

The kernel of DcDc is given by constant vector fields (when we consider
closed curves).

Instead if ∆c∆ch = 0 then h = αc+ β for two constants α, β ∈ C.
This kernel is exactly the vertical space of rotations, translations and rescal-

ings.
—64.Delta semimetric

We then define the second order seminorm

‖h‖∆2,c :=

√∫
c

|∆2
ch|

2 ds =

√√√√∫
S1

∣∣∣∣∣ 1
c′

(
h′

c′

)′∣∣∣∣∣
2

|c′|dθ

where products are in C and the absolute value | · | is the norm in C. It is
a seminorm that is path-wise invariant for rotations, translations and rescal-
ings. Moreover it is point-wise invariant for reparameterization. It will be our
seminorm for shape.
—65.Log coordinates

Consider a homotopy of curves C : [0, 1]× S1 → C.
Recall that C ′ = ∂θC and Ċ = ∂tC.
Then represent C by a pair E,F : [0, 1]× S1 → R by the relation

C ′(t, θ) = eE(t,θ)+iF (t,θ) ;
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we call this representation in log–cordinates.
If we know E,F and the center of mass avgc(C)(t) at all t, then C is uniquely

determined.
The representative F is not unique, we can add multiples of 2π to it.
Note that eE dθ will replace ds in integration by arc parameter.
Deriving

C ′ = eE+iF

in time we obtain
Ċ ′ = (Ė + iḞ )eE+iF

So we can express a curve c ∈M and its infinitesimal displacement h ∈ TcM
using log-coordinates, as (ẽ, f) and respectively (ê, f̂) satisfying

c′(θ) = eẽ(θ)+if(θ) , h′(θ) = (ê(θ) + if̂(θ))eẽ(θ)+if(θ) .

—67.Delta seminorm in Log coordinates
The Delta seminorm has a simple representation in log-coordinates.

‖h‖2∆2,c =
∫
c

|∆2
ch|2 ds =

∫
S1

(|ê′|2 + |f̂ ′|2)e−ẽ dθ

Or, for homotopies, writing again

C ′(t, θ) = eE(t,θ)+iF (t,θ)

we have
‖Ċ‖2∆2,C =

∫
C

|∆2
CĊ|2 ds =

∫
S1

(|Ė′|2 + |Ḟ ′|2)e−E dθ

Note that this involves only first order derivatives in θ (!)
So this is a second order norm, but in analysis and numerics it has the

complexity of a first order norm.
—68.Companion seminorms

We now need seminorms associated to group actions.

• For translations, starting from the map

Φ(c̃, v) = c̃+ v , Φ−1(c) =
(
c− avgc(c), avgc(c)

)
.

we use the norm of Gâteaux Derivative of the center of mass

‖h‖t,c := |Dc,havgc(c)|

(the pullback thru Φ of the Euclidean norm for R2)

• For rescalings, we consider the map

Φ(c̃, l) = elc̃ = c , Φ−1(c) = (c̃, l) = (c/ len(c), log len(c))

where len(c) is the length of the curve. The pullback of the standard
metric on R is then

‖h‖len,c :=
∣∣Dc,h log len(c)

∣∣ (22)
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• For rotations, we express c ∈M,h ∈ TcM using log-coordinates

c′(θ) = eẽ(θ)+if(θ) , h′(θ) = (ê(θ) + if̂(θ))eẽ(θ)+if(θ)

then we design the seminorm

‖h‖r,c =
∣∣∣∣∫ 1

0
f̂ eẽ dθ

∣∣∣∣ . (23)

(that is not associated, and cannot be associated, to a map Φ).

4.2 Delta metric

—70.Full delta metric
Let ml,mr,mt > 0 be fixed. We define then the metric

‖h‖2(l∆2+len +r/l+t),c := len(c)‖h‖2∆2,c +ml‖h‖2len,c+ (24)
+mr‖h‖2r,c/ len(c)2 +mt‖h‖2t,c

(There are some conformal terms based on the length of the curve).
The definition of this metric requires three constants ml,mr,mt. This is

common to many models in the literature. In this model though we have an
important property: geodesics (and in particular minimal length geodesics) do
not depend on the choice of ml,mt.

A similar metric for open curves has a different term for rotations, in that
case geodesics do not depend on the choice of ml,mt,mr.

This metric is modular: e.g. if we wish to study “curves up to rotation” we
just need to drop the third term: and so on.

4.3 Properties

—71.Curling
In the manifold of open curves there is another interesting group acting:

curling.
Curling means: deforming an open ended curve without changing the pa-

rameterization.
Given the log-representation

c′(θ) = eẽ(θ)+if(θ)

the group of curling is represented by H1(S1), the action of ϕ ∈ H1(S1) on the
curve is just by addition

(ẽ, f) 7→ (ẽ, f + ϕ) .

—72.Decomposition of shape seminorm
We again express c ∈M,h ∈ TcM using log-coordinates

c′(θ) = eẽ(θ)+if(θ) , h′(θ) = (ê(θ) + if̂(θ))eẽ(θ)+if(θ)

We decompose for a moment the “shape seminorm”

‖h‖2l∆2
e,c

:= len(c)
∫ 1

0

(
(ê′)2 + (f̂ ′)2

)
e−ẽ dθ

19



in two components:

‖h‖2l∆2
e,c

:= len(c)
∫ 1

0
(ê′)2e−ẽ dθ , ‖h‖2l∆2

f
,c := len(c)

∫ 1

0
(f̂ ′)2e−ẽ dθ

—73. Invariances
We have this table of invariances of the semimetrics wrt the group actions.

‖h‖l∆2
e,c

‖h‖l∆2
f
,c ‖h‖len,c ‖h‖r/l,c ‖h‖t,c

reparameterization .w. .W! PW .W! PW
curling PW .w. PW .W- PW
scaling PW PW .w. PW PW

rotation PW PW PW .w. PW
translation PW PW PW PW .w.

Legenda: ".W" means point-wise invariance, "PW" means path-wise invari-
ance.

We expect that a semimetric be point-wise invariant for the group action
that is related to it. So there are “.w.” entries along the diagonal: these are
spots where “.w” is the correct behavior. (Indeed for any group action (that is, a
row in the table) there must be a semimetric that is not path-wise invariant for that
action — otherwise the sum of them would not be a metric)

Outside of the diagonal, we would love to see only “PW” entries; any such
entry means that a semimetric (say ‖h‖l∆2,c) is path-wise invariant for an action
(say, translations): then this semimetric is, as to say, completely blind for that
action. Unfortunately we have some “.W” entries out of the diagonal, marked
as “.W!”.

The “W-” in particular is due to the fact that “rotations” is a subgroup of
“curling” (the case when φ is constant).

Theorem 12. The space of curves can be described as a smooth differentiable
manifold, as follows: for any curve c we factor out translation

v = avgc(c) , c̃ = c− v

we represent in log-coordinates

c̃′(θ) = eẽ(θ)+if(θ)

then the manifold of curves is

(ẽ, f, v) ∈ H1(S1)× (H1(S1)/(2π))× R2

and this is equivalent to saying that c ∈ H2(S1). 3

H1(S1)× (H1(S1)/(2π))× R2

is the space of all open immmersed curves.
For closed curves of index k, we restrict to the submanifold where∫ 1

0
eẽ+if dθ = 0 , f(1) = f(0) + 2πk

3 The representative f is not unique, we can add multiples of 2π to it, so f ∈ H1(S1)/(2π).
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(the last one, up to continuous lifting f : [0, 1]→ R).
In any case, this is a complete Riemannian manifold when equipped

with the full delta metric ‖ · ‖(l∆2+len +r/l+t) defined in (24).
Let

(e, f, v) ∈ H1(S1)× (H1(S1)/(2π))× R2

be the representative of a curve. Let then

(ê, f̂ , v̂) ∈ H1(S1)×H1(S1)× R2

be the representation of a tangent vector h. In this decomposition the metric
takes this form. Let l = len(c) =

( ∫ 1
0 e

ẽ dθ
)
.

len(c)‖h‖2∆2,c = l

∫ 1

0
(|ê′|2 + |f̂ ′|2)e−ẽ dθ

ml‖h‖2len,c = mll
−2
∣∣∣∣∫ 1

0
êeẽ dθ

∣∣∣∣2
mr‖h‖2r,c/ len(c)2 = mrl

−2
∣∣∣∣∫ 1

0
f̂ eẽ dθ

∣∣∣∣2
mt‖h‖2t,c = mt|v̂|

—77.Momenta
Suppose that γ : [0, 1] → M is a geodesic, that we can view as a homotopy

C : [0, 1]× S1 → C and represent in log-coordinates

C ′(t, θ) = eE(t,θ)+iF (t,θ) .

Translation The center of mass avgc(γ(t)) of the curve is an affine map of t.

Rescaling log len γ is an affine map of t

Rotation In log-coordinates ∫ 1

0
Ḟ eE dθ = cetb (25)

for appropriate constants c, b (where b is as before).

—78.Curling momentum
The metric ‖(ê, f̂)‖2(l∆2+len +r/l),(ẽ,f) does not depend on f ; hence, for any

fixed q ∈ H1, along a geodesic the quantity

Df̂ ,q‖(Ė, Ḟ )‖2(l∆2+len +r/l),(E,F ) =

=
( ∫ 1

0
eE dθ

) ∫ 1

0
2q′Ḟ ′e−E dθ +

2mr

∫ 1
0 qe

E dθ
∫ 1

0 Ḟ e
E dθ∣∣∣∫ 1

0 e
E dθ

∣∣∣2
will be constant.

This holds only for geodesics of open immersed curves.
This is the conserved momentum for the action of curling.
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Corollary 13. Along a geodesic γ the four “speeds”√
len(γ)‖γ̇‖∆2,γ , ‖γ̇‖len,γ , ‖γ̇‖r,γ/ len(γ) , ‖γ̇‖t,γ (26)

are all constant.

Theorem 14. Any two curves are connected by a minimal length geodesic.

Computation of geodesics is easier than it seems, perusing the ideas we saw
while designing the metric.

Given two curves c0 and c1 we normalize them so that they have unit length
and center of mass in the origin.

Then we compute a homothopy of unit length curves that minimizes∫ 1

0
‖Ċ‖2∆2,C +mr‖Ċ‖2r,C dt

In log coordinates this is just∫ 1

0

∫ 1

0
(|Ė′|2 + |Ḟ ′|2)e−E dθ dt+mr

∫ 1

0

∣∣∣∣∫ 1

0
Ḟ eE dθ

∣∣∣∣2 dt

Eventually we adjust for the affine motion of center of mass, and of the
logarithm of the length.

This is justified from the “magick” of translation and rescaling seminorms
being path-wise invariant (and not only curve-wise invariant).

4.4 Conclusions

—82.Conclusions

good A model that is a complete Riemannian manifold.

good The computation of gradients is fast (no convolutions, no iterative ap-
proximation); the gradient regularizes ill conditioned and ill posed prob-
lems.

good Any two curves are connected by a minimal geodesic.

good The quotient space B = M/Diff of “curves up to parameterization” has
similar properties: it is complete; the distance dB between curves “up to
parameterization” is not degenerate; there is existence of minimal geodesics
(skipped due to lack of time).

good The basilar geometric concept of index number of the curve is preserved.

todo The equation for geodesics is not known in closed forms, unknown if there
is a fast way to compute it. ( Is there another metric that may be designed,
such that the computation of geodesics is simplified?)

todo No numerical experiments are available: in the TODO list.

todo Would be nice to export these ideas to surfaces, volumes...
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