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Abstract

We study the problem of optimal estimation of the density cluster tree under various as-
sumptions on the underlying density. Building up from the seminal work of Chaudhuri et al.
[2014], we formulate a new notion of clustering consistency which is better suited to smooth
densities, and derive minimax rates of consistency for cluster tree estimation for Hélder smooth
densities of arbitrary degree a. We present a computationally efficient, rate optimal cluster tree
estimator based on a straightforward extension of the popular density-based clustering algo-
rithm DBSCAN by Ester et al. [1996]. The procedure relies on a kernel density estimator with
an appropriate choice of the kernel and bandwidth to produce a sequence of nested random geo-
metric graphs whose connected components form a hierarchy of clusters. The resulting optimal
rates for cluster tree estimation depend on the degree of smoothness of the underlying density
and, interestingly, match minimax rates for density estimation under the supremum norm. Our
results complement and extend the analysis of the DBSCAN algorithm in Sriperumbudur and
Steinwart [2012]. Finally, we consider level set estimation and cluster consistency for densi-
ties with jump discontinuities, where the sizes of the jumps and the distance among clusters
are allowed to vanish as the sample size increases. We demonstrate that our DBSCAN-based
algorithm remains minimax rate optimal in this setting as well.

1 Introduction

Clustering is one of the most basic and fundamental tasks in statistics and machine learning,
used ubiquitously and extensively in the exploration and analysis of data. The literature on this
topic is vast, and practitioners have at their disposal a multitude of algorithms and heuristics to
perform clustering on data of virtually all types. However, despite its importance and popularity,
rigorous statistical theories for clustering, leading to inferential procedures with provable theoretical
guarantees, have been traditionally lacking in the literature. As a result, the practice of clustering,
one of the most central tasks in the analysis and manipulation of data, still relies in many cases
on methods and heuristics of unknown or even dubious scientific validity. One of the most striking
instances of such a disconnect is the algorithm DBSCAN of Ester et al. [1996], an extremely
popular and relatively efficient [see Gan and Tao, 2015, Wang et al., 2015] clustering methodology
whose statistical properties have been properly analyzed only very recently in Sriperumbudur and
Steinwart [2012].

In this paper, we provide a complementary and thorough study of DBSCAN, and show that this
simple algorithm can deliver optimal statistical performance in density-based clustering. Density-
based clustering [see, e.g., Hartigan, 1981] provides a general and rigorous probabilistic framework
in which the clustering task is well-defined and amenable to statistical analysis. Given a Borel
probability distribution P on R? with Lebesgue density p and a fixed threshold A > 0, the A-
clusters of p are the connected components of the upper A-level set of p, the set {x € R%: p(z) > A}



of all points whose density values exceed the level A. With this definition, clusters are the high-
density regions, subsets of the support of P with the largest probability content among all sets of
the same volume.

As noted in Hartigan [1981], the hierarchy of inclusions of all clusters of p is a tree structure
indexed by a height or level parameter A > 0, called the cluster tree of p. The chief goal of density
clustering is to estimate, given an i.i.d. sequence {X;}!" ; of points from P, the cluster tree of p. A
density tree clustering estimator is also a tree structure, consisting of a hierarchy of nested subsets
of the sample points, and typically relies on non-parametric estimators of p in order to determine
which sample points belong to high-density regions of p. A cluster tree estimator is deemed accurate
if, with high probability, the hierarchy of clusters it encodes is close, in an appropriate sense, to
the hierarchy that would have been obtained should p be known.

Density-based clustering is an instance of hierarchical clustering that enjoys several advantages:
(1) it imposes virtually no restrictions on the shape, size and number of clusters, at any level of
tree; (2) unlike flat (i.e. non-hierarchical) clustering, it does not require as input a pre-specified
number of clusters and in fact the number of clusters itself is quantity that may change depending
on the level of the tree; (3) it provides a multi-resolution representation of all the clustering features
of p across all levels A at the same time; (4) it allows for an efficient encoding of the entire tree of
clusters with a compact data structure that can be easily accessed and queried, and (5) the main
object of interest for inference, namely the cluster tree of p, is a well-defined population quantity,
and the notions of consistency of a cluster tree estimator and of its uncertainty are well-defined.

Despite the appealing properties of the density-based clustering framework, a rigorous quan-
tification of the statistical performance of such algorithms has proved difficult. The seminal work
by Hartigan [1981] and then by Penrose [1995] has led to a relatively weak notion of cluster con-
sistency, achieved by the popular single-linkage algorithm. More recently Chaudhuri et al. [2014]
have developed a general framework for defining consistency of cluster tree estimators based on a
separation criterion among clusters. The authors have further demonstrated two algorithms, both
based on k-nearest neighbors graphs over the sample points, that achieved such consistency. One
of these algorithms was also shown to achieve the optimal minimax scaling with respect to certain
parameters that quantify the hardness of the clustering task. Those results have been generalized
in Balakrishnan et al. [2012], where it is shown that the main algorithm of Chaudhuri et al. [2014],
as well a class of kernel density estimators, ensure similar consistency guarantees for cluster trees
arising from probability distributions supported over well-behaved manifolds, with consistency rates
depending on the reach of the manifold and its intrinsic dimension. In both contributions, rates
for cluster consistency are established with virtually no assumptions on the underlying density. In
particular, these rates do not directly reflect the degree of smoothness of the underlying density.

Below, we will provide further contributions to the theory of density based clustering by deriv-
ing new and minimax optimal rates of consistency for cluster tree estimation that depend explicitly
on the smoothness of the underlying density function. In line with well-known results from the
minimax theory of density estimation, we establish that the cluster trees of smoother densities can
be consistently estimated at faster rates that depend on the smoothness of the density. Interest-
ingly, such rates match those for estimating smooth densities in the Lo, norm. To the best of
our knowledge, this finding and the implication that density based clustering is is no easier — at
least in our setting — than density estimation, has not been rigorously shown before. In order to
account explicitly for the smoothness of the density, we have developed a new criterion for cluster
consistently that is better suited for smooth densities. In terms of procedures, we consider cluster



tree estimators that arise from applying a very simple generalization to the well-known DBSCAN
procedure and are computationally efficient. Despite its simplicity, our DBSCAN-based estimator
is minimax optimal over arbitrary smooth densities under our notion of consistency and under
appropriate conditions.

Overall our contributions further advance our theoretical understanding of density-based clus-
tering.

Problem-Set-up

Let P be a Borel probability distribution supported on ¢ R¢ and with Lebesgue density p. Notice
that, necessarily, €2 has dimension d.

Definition 1. For any A > 0, let L(\) = {x € Q: p(x) > A} be the A-upper level set of p. For a
given XA > 0, the \-cluster of p are the connected components of L()\).

We refer the reader to Appendix A for a definition of connectedness. Notice that the set of all
clusters is an indexed collection of subsets of €2, whereby each cluster of p is assigned the index A
associated to the corresponding super-level set L()\), and that many clusters may be indexed by
the same level .

Definition 2. The cluster tree of p is the collection T, of all clusters of p, indexed by A > 0. We
can represent the cluster tree of p as the function on [0,00) returning, for each A > 0, the set of
A-clusters of p.

Thus, T,(\) consists of disjoint connected subsets of 2 or is empty. In particular, 7,(0) = 2
and Tp(A\) = 0 if and only if A > ||p||s := sup,eq p(2).

The cluster tree owes its name to the easily verifiable property [see Hartigan, 1981] that if A
and B are elements of T}, i.e. distinct clusters of p, then ANB =0 or A C B or B C A. This
induces a partial order on the set of clusters. In particular, for any Ay > Xy > 0, if A € T,,(A\1) and
B € T,(A2) then either AN B =0 or B C A. As a result, T}, can be represented as a dendrogram
with height indexed by A > 0. We refer the reader to Kim et al. [2016] for a formal definition of
the dendrogram encoding a cluster tree.

Let {X;}? , be an ii.d. sample from P. In order to estimate the cluster tree of p we will
consider tree-valued estimators, defined below.

Definition 3. A cluster tree estimator of T, is a collections fn of subsets of {X;}I' | indexed by
[0,00) such that

e for each A > 0, fn()\) is either empty or consists of disjoint subsets of {X;}I" ,, called clusters,
and

e T, satisfies the following tree property: for any A\1 > Ao > 0, if A € j—\‘n(Al) and B € fn(AQ)
then either ANB =0 or B C A.

It is important to realize that while the cluster tree T}, of density p is a collection of con-
nected subsets of its support, the cluster tree estimators considered in this paper are comrpised by
collections of subsets of the sample points partially ordered with resect to the inclusion relation.

In order to quantify how well a cluster-tree estimator approximates the true cluster tree, we
will rely on the notion of cluster tree consistency put forward by Chaudhuri et al. [2014], which we
rephrase next.



Definition 4. Given data {X;}}_;, let {A,}52, denote a sequence of collections of connected
subsets of the support of p. A cluster tree estimator fn s consistent with respect to the sequence
{AL}22 if, as n tends to infinity, the following holds, simultaneously over all disjoint elements A
and A’ in A, : with probability tending to 1, the smallest clusters in fn containing AN{X;}", and
A'NA{X;}, are disjoint.

In this definition, the collection A,, may include clusters, but also other connected subsets of
the support of p. The requirement for consistency outlined above is rather natural: if a cluster
tree is to be deemed consistent with respect to the sequence A,, then it should, with probability
tending to 1, cluster the sample points perfectly well. Or equivalently, as well as if we had ability
of verifying, for each pair of sample points X; and X; and each connected set A € A,, whether
both X; and X; are in A. We take notice that the above definition only requires fn to preserve the
connectivity of all the sets in A,,. However, fn might have additional unwanted clusters, referred
to as spurious in Chaudhuri et al. [2014] that do not correspond to any disjoints sets in A4,,. We
will come back to this in Section 3.7.

The reason why we consider a sequence {Ay};2; of collections of connected sets is to allow
the set of target connected subsets of p, such clusters, to grow larger and more complex as the
sample size n increases, so that the cluster tree estimator will be able, as more data are collected,
to discriminate among clusters of p that are barely distinguishable. An example of a sequence {A,,}
is the set of d,-separated clusters according to Definition 5 below, where the parameter é,, is taken
to be vanishing in n.

The sequence of target subsets {A,,}>°; may not be chosen to be too large: for example if
A, is equal, for each n, to the set of all clusters of p, then, depending on the complexity of p,
no cluster tree estimator need to be consistent. A natural way to define {4, }7° ; is by specifying
a separation criterion for sets, which may become less strict as n grows, and then populate each
A, using only the connected subsets of the support of p fulfilling such a criterion. In particular,
Chaudhuri et al. [2014] develop a separation criteria known as the (€, o)-separation, which requires
two subsets connected A and A’ to be far apart from each other in terms of their “horizontal”
distance d(A, B) = infyeayep ||z — y|| and their “vertical” distance, in the sense that the smallest
cluster containing both A and B should belong to a level set of p indexed by a value of A significantly
smaller by the values indexing the level sets of A and B. See Definition 11 below for details. One
of the major contributions in this paper is to replace this rather general notion of separation,
which requires the specification of two independent parameters, by a simpler one — the d-separation
criterion of Definition 5 — which is natural for smooth densities and allows to extract faster cluster
rates.

Related Work

The idea of using probability density function to study clustering structure dates back to Harti-
gan Hartigan [1981], who formalized the notion of clusters as the connected components of the
high density regions. This formalism was later explored by many. Among others, Rinaldo and
Wasserman [2010], Polonik [1995] focus on the clustering consistency of a fixed level; Stuetzle and
Nugent [2010], Stuetzle [2003] analyze efficient tree algorithms; Rinaldo et al. [2012] investigate the
stability of the clustering structure; Eldridge et al. [2015], Kim et al. [2016] study the inference of
the trees under various tree metric. Recently, Chaudhuri et al. Chaudhuri et al. [2014] proposes
a simple algorithm and show that with appropriate choice of the parameters, the resulting hier-



archical clustering structure correctly estimates the cluster tree with high probability. Based on
their results, Kpotufe and Luxburg [2011] further proposed efficient pruning algorithms. (See also
Klemeld [2009].)

The density level sets estimation and support estimation have also been intensively studied in
the statistic literature. A comprehensive summary of the early works on the support estimation
can be found in Tsybakov et al. [1997]. Different approaches are later studied by many authors (
see e.g, Ba et al. [2000], Cuevas and Fraiman [1997], Klemela [2004]). Being a closely related topic,
the level set estimation received a lot more attention in the recent years. For example, Cuevas et al.
[2006], Tsybakov et al. [1997] focus on the consistency, Rigollet and Vert [2009], Willett and Nowak
[2007] analyze the minimaxity under various loss functions, Chen et al. [2016] discusses inference
and visualization and Singh et al. [2009] investigates the adaptive histogram estimator, and show
its optimality. Jiang [2017b] studies the uniform convergence rates for kernel density estimator and
Jiang [2017a] analyzes density level set estimation on manifolds using DBSCAN.

Summary of Our Contributions

We briefly summarize of the main contribution of our manuscript.

e In Section 3 we study cluster tree density estimation of Holder continuous densities or ar-
bitrary smoothness a > 0. We formulate a novel criterion of separation among connected
subsets that lead to a new notion of cluster consistency, called J-consistency. We exhibit
cluster tree estimators in Algorithm 1 (for the case of a < 1) and Algorithm 2 (for the case
of a > 1) that are computationally efficient and minimax optimal for cluster tree estimation.
We show that the optimal rates of cluster consistency depend on the degree of smoothness of
the underlying density and are, up to logarithmic factors, the same rates for estimating an
Holder-smooth density in the sup-norm loss. This result implies that, for the class of densities
under consideration, clustering is as difficult as density estimation in the sup-norm. Though
not surprisingly, this result has not been previously established.

e In Section 4 we consider the different scenario in which the underlying density exhibits jump
discontinuities. We are particular interested in clustering consistency right below the density
level at which the jump occurs, and assuming that the size of the discontinuity is vanishing in
n (so that clustering becomes increasingly difficult). We show that with suitable inputs, the
DBSCAN algorithm returns a Devroye-Wise type of estimator which is minimax optimal for
cluster recovery and level set estimation. The main contribution on this section is to derive
the minimax scaling for the size of the jump discontinuity, which appears to not have been
previosuly known.

Our analysis is based on finite sample bounds. We have made an attempt to keep track of the
constants in most of the bounds and of their dependence on other fixed quantities such as the
dimension and other properties of the underlying density. While it would be desirable to allow for
a dimension changing with n, this modification will add significant complexity to the problem and
will require a separate analysis. Thus we have followed the convention commonly adopted in the
literature on density cluster and density estimation and have treated d as fixed.



Notation

Throughout, we denote with p the underlying Lebesgue density of the i.i.d. sample {X;}}' | C R,
We let £4 be the the Lebesgue measure in R? and, for a point z € R% and a value r > 0, we
let B(z, ) be the d-dimensional closed Euclidean ball centered at x and with radius r. We write
Va = L4(B(0,1)) for the volume of the Euclidean unit ball B(0,1). For a real valued function on
RY we set || f||oo = sup, |f(z)| for its Ls, (supremum) norm. For a Lebesgue density p on R? and
A >0, we let L(\) = {z € R%: p(x) > A} stand for its upper level set at A. We use T}, to denote
the cluster tree with underlying density p and fn to denote any estimator of the cluster tree (see
Definitions 2 and 3 above). For any measurable set A C R? and any h > 0, we define

Ap=|J B(z,h) and A_,={zcA:B(x,h)C A} (1)
z€A

Throughout, we will denote with C', C1, Cy quantities that do not depend on any variable of interest
and whose value may change from line to line. These constants may depend on other parameters
held fixed, such as the dimension d. We will indicate such dependence but not track it explicitly
in our statements.

2 The DBSCAN Algorithm and its Connections with KDE

In this section we describe how straightforward generalization of the DBSCAN algorithm of Ester
et al. [1996] will produce a cluster tree estimator and elucidate its connections with kernel density
estimation; see Algorithm 1. As shown below in Section 3.4.1, the resulting estimator will be optimal
provided that the underlying density is Holder continuous with parameter o < 1 (see Section 3.1
for a definition of Hélder continuity). For higher degrees of smoothness, it will be necessary to
utilize a slight variant of this procedure, given in Algorithm 2, in order to retain optimality.

Algorithm 1 The DBSCAN algorithm

INPUT: i.id sample {X;}!' ; and h > 0" For each k € {0,...,n},
1. construct a graph Gy, ;, with node set {X; : |B(X;, h) N {X;}}_;| > k} and edge set {(X;, X;) :
[ X — Xl < 2h};
3. compute C(h, k), the maximal connected components of Gy, .

OUTPUT: T, = {C(h,k),k € {0,...,n}}

It is easy to see that the output of Algorithm 1 is a cluster tree estimator according to Defini-
tion 3. Indeed, for a given value of k € {0,...,n} and h > 0, the subset C(h, k) of sample points
(if non-empty) correspond to a “flat” clustering. By sweeping through all the possible values of k
the algorithm returns a sequence of nested geometric graphs over the sample points. The hierarchy
of connected components of such graphs is then a cluster tree estimator since, for each pair of
inetegers k1 < ko,

U B(Xi,h) C U B(Xi, h).

(Xl BOX0 N{X; )7 | k2 (X BX WX [ 2k}

Remark 1. In practice, Algorithm 1 can be efficiently implemented using a union-find structure
in such a way that the determination of the set C(h, k) of maximal connected components of Gy, i,



can be accomplished without using the potentially expensive breadth-first search or depth-first search
algorithms. See Najman and Couprie [2006] for an efficient implementation.

For a fixed value of k, Algorithm 1 is in fact a slightly simplified version of in the original
DBSCAN algorithm of Ester et al. [1996] for “flat” clustering”, where the parameters h and k are
called instead Eps and MinPts, respectively. Specifically, in the original version of DBSCAN, two
nodes X; and X in the graph Gy, are connected if || X; — Xj|| < h instead of 2h. Such a variant
allows us to link the connected components of the graph Gy, j, to the connected components of the
upper level set {py, > A} of the density estimator p;, (see Equation (2) below), where \; = ﬁ%.
This simplifies our theoretical analysis without affecting the consistency rates. A second minor
difference is the fact that Algorithm 1 does not distinguish between core and border points. It is
possible to show that such a distinction is also largely inconsequential in deriving consistency rates
for Algorithm 1 and, therefore, we have not included it in our analyst.

As pointed out by Sriperumbudur and Steinwart [2012], DBSCAN corresponds to using a kernel
density estimator with a spherical kernel K given by the indicator function of the unit d-dimensional
Euclidean ball to cluster the points. In detail, consider the density estimator pj: RY — R given by

R Bl h)n{Xa, 1O x—X;
= pu(r) = nhiv = nhdv, Z;K ho ) 2)

where
1 ifz € B(0,1)

d
0 otherwise. z € R™ (3)

K(z) = {

It is easy to see that pj, is a Lebesgue density, i.e. p > 0 for all  and [ Pr(x)d2 = 1. Furthermore,

E[pn(z)] = pr(z), VaeRY, (4)

1 r—z P(B(x,h
i) = gz [ 5 (557 etz = T, o)

The connections between DBSCAN and the density estimator p;, are described in the following
result, whose proof is immediate. For any A > 0, set

where

D(\) = {z: pu(x) > A} N {X: )0,

and
L= |J BX;h (6)
X;eD(N)

Lemma 1. Let k and h be the input to DBSCAN. Then the nodes of Gy, is the set ZA)()\k) where

A = ﬁ%. Furthermore, two points X; and X; in lA)()\k) are the in the same connected component

of E()\k) if and only if they are in the same graphical connected component of Gy, . Consequently,
for any pair A and A’ of subsets of R? with AN {X;}7; # 0 and A’ N {X;}, # 0,

e ifAC E(Ak) is connected, all the sample points in A belong to the same connected component
Of Gh,k .



e if A and A’ belongs to distinct connected components of E()\k) , then the sample points in A
and the sample points in A" belong to distinct connected components of Gy, .

Notice that while ﬁ()\) is a finite collection of points in R?, E()\) is a d-dimensional closed set.
For clustering purposes however, the two sets convey the same information. From a computational
standpoint, this equivalence is key to the efficiency of Algorithm 1: it is computationally very
inexpensive to check whether two points X; and X; are in the same connected component of
the graph G(h, k) (something that, as remarked above, follows directly from a simple union-find
strategy); in contrast, checking whether X; and X; are in the same connected component of {z €
RY: pp(x) > A} can be computationally costly, even for small values of d.

The estimator E()\) is well know in the literature on level set estimation; e.g., Cuevas and
Rodriguez-Casal [2004]) and Devroye and Wise [1980]. Furthermore, as shown in Sriperumbudur
and Steinwart [2012], with a suitable scaling of the bandwidth parameter A and under appropri-
ate assumptions on the underlying density p and/or its support, E(/\) is a rate optimal minimax
estimator of the level set {p > \}.

3 Clustering rate for Holder continuous densities

In this section we study optional estimation of the density cluster tree when the density is Holder
smooth. In this case, the notion of (¢, o)-separation originally proposed by Chaudhuri et al. [2014]
to quantify the discrepancy between clusters can be refined significantly, since the smoothness
properties of the underlying density constraint the range of the possible combinations of the vertical
and horizontal separation € ans o between clusters. In fact, we will show below in Section 3.2 that a
simpler notion of cluster separation, called d-separation, which depends only on one parameter, will
suffice to capture the inherent difficulty of density clustering under smoothness of the density. We
will comment on the differences between the (e, o)-separation and the d-separation criteria below
in Section 5.1.

3.1 Holder Smooth Densities

Given vectors s = (s1,...,54) in N and 2 = (x1,...,74) in R% set |s| = s; + --- + s4 and
¥ =2 ...z, and let
oSt tsa

Ds=_°"_
S1 Sd
Ox] ...axd

denote the high-order differential operator. A Lebesgue density p : R* — R is said to belong the
Holder class X(L, a) with parameters a > 0 and L > 0 if p is |«]-times continuously differentiable
and, for all 2,y € R? and all s € N? with |s| = |a],

|D*p(x) — Dp(y)| < Lz —y[**.
Notice that, when 0 < o < 1, the Holder condition reduces to the Lipschit condition
p(x) = p(y)| < Ll|lz —y||*  Vz,y € R
In our analysis below, we will require a high-probability bound on the quantity

1Pn = plloe < 1P = Palloo + [IPh — Pl



where p is assumed to belong to the class (L, «), for some L > 0 and o > 0, and pj, is a kernel
density estimator with bandwidth A > 0 of the form

d
1 :L'—XZ‘

for some kernel K, such as the one given Equation (3) for example, and py(x) = E[py(z)], for all
z € R% As is customary in non-parametric density estimation, we obtain separate bounds for
the stochastic component ||pr — ppllco and the bias ||pr, — plleo- For the first term we will invoke
known concentration bounds from density estimation to conclude that there exists a quantity C
such that, for any v > 0 and assuming nh?¢ > 1,

C1(y + log(1/h)) .
N > >1—e . (7)

The verification of the previous bound is given in Appendix B. There, we distinguish two cases.
If @« <1 we may take the kernel K to be the spherical kernel as in Equation (3), so that p will
reduce to Equation (2) and we are effectively recovering the DBSCAN procedure. In this case, the
constant C will only depend on ||p||c and d; see Proposition 16 in Appendix B.

When instead a > 1, Equation (7) holds provided that the kernel K satisfies the so-called
VC property, which we recall in Appendix B. The VC-property is verified for a large class of
kernels, including any compact supported polynomial kernel and the Gaussian kernel. See Nolan
and Pollard [1987] and Giné and Guillou [2002]. In this case, the constant C; will additionally
depend on the VC characteristic of K (see Proposition 17 in Appendix B for details). As for the
bias term ||pp, — p||o, standard calculations yield that, for an appropriate constant Co,

Ipn = plloc < C2h®. (8)

P (Hﬁh = onlle <

When a < 1, Cy depends on L only. When a > 1, Equation (8) holds for a certain class of kernels
known as [a]-valid kernels, whose construction can be found, e.g., in Rigollet and Vert [2009].
Since this type of kernels are polynomials supported on [0, 1], they automatically satisfy the VC
condition. See lemma 22 of Nolan and Pollard [1987] for instance. We remark that for a@ > 2,
[a]-valid kernels take on negative values. In this case Cy depends on L, K and a.
Thus combining the bias and the variance bounds (7) and (8), we conclude that, for any v > 0,
with probability at least 1 —e™7,
1Ph = Plloc < an, 9)

where a,, = % + C5h% and the kernel K may be taken to be the spherical kernel if o < 1

and is an [«]-valid, VC kernel otherwise. Setting v = logn, the optimal choice of the bandwidth is

logn
which leads the rate N
N 10 n \ 2a+d
1P — plloe < C [ 2 : (11)
n

for some universal C > 0 and with probability at least 1 — % The above bound is in fact minimax
optimal.



3.2 The /-Separation and )-Consistency Criteria

We begin by formulating a novel criterion of cluster separation that is naturally suited to smooth
densities and is in fact equivalent to cluster separation in the merge distance of Eldridge et al.
[2015]. See Section 5.2 below for details, as well as Kim et al. [2016].

Definition 5. Two connected subsets A and A’ of the support of the density p are d-separated when
they belong to distinct connected components of the level set {p > A—3}, where A := inf caua p(x).

The intuition behind the notion of d-separation is simple: the smoothness properties of the
density limit the minimal degree of “vertical” and “horizontal” separation between clusters. This
is illustrated in Figure 1 and best explained for the case of a density in ¥(«, L) with o < 1. If A

and A’ are d-separated, then their distance is at least (%)1/ “. And similarly, if two clusters A and
A’ are at a distance o from each other (that is 0 = infyc 4 year ||z — y||), they are d-separated with
0 upper bounded by the same amount. As a result, separation between clusters of smooth densities
can be defined using only one parameter, a feature that we will exploit to derive a new notion of
consistency for clustering.

Definition 6 (d—consistency). Let § > 0 and v € (0,1). A cluster tree estimator based on an
i.i.d. sample {X;}7_ is (9,7)-accurate if, with probability no smaller than 1 — v, for any pair of
connected subsets A and A’ of the support of p that are d-separated, exactly one of the following
conditions holds:

1. at least one of AN{X;}, and A’ N {X;}, is empty;

2. the smallest clusters in the cluster tree estimator containing A N {X;}", and A" N {X;}
are disjoint.

Let {6,} be a vanishing sequence of positive numbers and a {vn} a vanishing sequence in (0,1).
The sequence of cluster tree estimators {Tp}n, where Ty, is based on an i.i.d. sample {X;}!' | from
p, is 0-consistent with rate (0y,vn) if, for all n, Ty is (6n,n)-accurate.

The first condition in definition 6 is to rule out the trivial cases.

It is important to realize that the notion of d-consistency is a uniform notion of consistency: it
is required to hold simultaneously over all possibly pairs of J,-separated connected subsets of the
support, for an apropriate sequence {4, }.

Remark 2. For simplicity below we will take ~, = % It is of course possible to take v = n~¢ for
any ¢ > 0; this will affect 8, only in the constants.

3.3 The Split Levels

One of the most important features of the cluster tree of a density is the collections of levels A
at which the clusters split into two or more disjoint sub-clusters, which we refer to as split levels.
Such levels correspond to critical changes in the topology of the upper level sets of p, of which
clustering is a manifestation. One would hope that the split levels of a consistent cluster tree
estimator should closely match the split levels of the cluster tree T},. In what follows, we give a
rigorous definition of the split levels and relate it to the criterion of d-separation of clusters. The
notion of splits levels will be important below in Section 3.4.2 in formalizing sufficient conditions
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under which computationally efficient and statistically optimal cluster tree estimation is feasible
for Holder densities with smoothness degree o greater than 1. It will also be used to demonstrate
that our algorithms for cluster tree estimations are not only d-consistent, but will also not produce
spurious clusters, with high probability (see Section 3.7).

e N

NV
>

Figure 1: The left figure depicts a split level A* (see Definition 7) of the density p. The right figure
depicts two d-separated sets A and A’ with respect to \*.

Definition 7. Let p : R — R is a continuous density. For fized \* > 0, let {CLHE | be the
collection of connected components of {p > A*}. The value \* is said to be a split level of p if there
exists a Cy, such that Ci, N {p > A\*} has two or more connected components.

The following, simple result illustrates the main topological properties of split levels.

Proposition 2. Suppose p : R — R is compactly supported and that A and A’ are subsets of two
distinct connected components of {p > A\1}. If A and A’ belongs to the same connected components
of {p > A2}, where Ay < A1, then there is a unique split level \* € [Ag, A1) such that A and A’
belong to one connected component of {p > A\*} and to distinct connected components of {p > A*}.

Proposition 2 suggests that if two connected components merge into one as the density level A
decreases, then there exists one and only one split level at which the corresponding merge takes
place. Therefore, it is natural to make the following definition, which characterizes the correspond-
ing split level of any two distinct clusters in a cluster tree.

Definition 8. Suppose A and A’ are two open sets. Then A and A’ are said to split at level \* if
A and A’ belong to one connected component of {p > A\*} and to two distinct connected components

of {p > \*}.

Furthermore, there is a direct link between the criterion of §-separated sets and the notion of
split levels, as illustrated in the next result. This fact we will exploited later on in Section 3.7 to
prove that the cluster tree estimators considered here also automatically yield accurate estimates
of the splits levels and, therefore, do not lead to spurious clusters.
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Corollary 3. Let A and A’ be §-separated. Then there exists a split level \* of the density, with

A< inf flz) =4,

TEAUA’

such that A and A’ belong to one connected component of {p > \*} and to two connected components

of {p > \*}.

3.4 Rate of Consistency for the DBSCAN Algorithm

In this section, we will present the main results of the paper, and derive rates of consistency for
DBSCAN-based cluster tree estimators of Holder smooth densities in ¥(L, ) with respect to the
notion of J-separation. Specifically we show that these estimators are d-consistent with rate (see
Definition 6 above)

§p > Cn~2avd, (12)

for an appropriate positive constant C' that depend on ||p||ec, L and, possibly, K and «. The above
rates depend on the smoothness of the underlying density, with smoother densities leading to faster
rates, and, as we prove later on in Section 3.6, are in fact minimax optimal. This is one of the
main findings of the article and provides a sharpening over the consistency results of Chaudhuri
et al. [2014] for cluster tree estimation, which are independent of the smoothness of p. As remarked
above, (12) matches the optimal rate for density estimation given in (11).

We will carry out separate analyses for the case of @ < 1 and the more subtle case in which the
density has a higher degree of smoothness, i.e. a > 1.

3.4.1 Consistency for a <1

For Holder densities with smoothness parameter o < 1, the DBSCAN estimator given in Al-
gorithm 1, which relies on the spherical kernel, is optimal. This result should not be particularly
surprising, as Sriperumbudur and Steinwart [2012] have already demonstrated, using settings differ-
ent from ours, that DBSCAN can be used optimally for density-based clustering. For completeness,
we provide the proof of the consistency results.

In order to demonstrate that DBSCAN is §-consistent, it will be sufficient to show that the
procedures provides an adequate approximation to the upper level sets of py,.

Lemma 4. Assume that p € X(a, L), where a € (0,1], and let K be the spherical kernel. Then,

1
setting h = Cyn~ 2o+d, for any Cy > 0, there exist a constant Cy > 0, depending on C1, ||pllco, L
and d such that, uniformly over all A > 0, with probability at least 1 — %,

log(n) o log(n) a
X]'GD()\)

1
As a direct corollary of Lemma 4, we see that setting h to be of order n™ 2a+d) | then the
DBSCAN algorithm will output a d-consistent cluster tree at rates that are adaptive to a.

Corollary 5. Under the assumptions of Lemma 4, the cluster tree returned by the DBSCAN
Algorithm 1 is §-consistent with rate 6, > C%, where C = C(||p|loo, L, d) is a constant
independent of §.

12



3.4.2 Consistency for a > 1

When a > 1, the vanilla Algorithm 1 no longer delivers the optimal rate (12), for statistical and
computational reasons. The statistical reasons are clear: when a > 1 it become necessary to rely
on smoother kernels, namely [a]-valid kernels as indicated Section 3.1. This will lead to a bias
lp — pulloo of the correct order O(h*) and, therefore, by choosing the bandwidth as in (10), to
the optimal balance in the bias/variance trade-off as in (11). The computational reasons are more
subtle: in order to determine cluster connectedness DBSCAN employs single-linkage type rules,
which will force a sub-optimal choice for the bandwidth even if the kernel K is chosen to be [a]-
valid. To exemplify, suppose we would like to cluster the sample points X; ,...,X;, belonging
the upper level set {x: pp(x) > A}, for some A > 0. The computationally efficient, single-linkage
rule implemented by DBSCAN for a choice of the input h is to clusters the points based on the
connected components of the union-of-balls around them, i.e based on the connected components
of

k
L)) = | B(Xi,, h).
j=1

Assume now that the gradient of p has norm uniformly bounded by a constant D for all x € L(\).
Then,

_max sup |p(x) — p(Xi,)| < Dh, o
J:L...,kmeB(Xij,h)

and, as a result,

{p > A+ C <log(”) + ha> n Dh} c IO\ {p >A-C <1°g(”) - ha) - Dh} . (19)

Vnhd nhd
where the terms C (% - ho‘) come from the Lo, error bound of [«]-valid kernel as in (9) and

Dh is due to of (14). As h — 0, the term Dh dominates the bias term, of order O(h®), so that the
optimal choice of h is of the order h =< 1;%3, which in turn yields a worse rate than (12). What is
more, on the event that

i X)) > D
j:ng}gkIIVp( i)l > D',

for some D’ > 0, we have that, as h — 0, SUPzeB(X; h) Ip(w) — p(X;;)| = ©(h) for each j. Then,
on that event, the inclusions in (15) are tight, showing that the sub-optimal choice of h cannot be
ruled out.

We believe that these considerations, which reveal as an interesting trade-off between computa-
tionally efficiency and statistical optimality, apply to not just DBSCAN, but to single-linkage type
of algorithms.

The issue outline above can be handled in more than one way. A neraly trivial but impractical
solution, studied in detal in Section 3.5below, is to deploy a computationally inefficient algorithm
that assumes the ability to evaluate the connected components of the upper level set of pj, exactly:
see Algorithm 3 below. It is very easy to see that this will result in optimal d-consistency (see
Corollary 8 below). Unfortunately, this procedure will require evaluating pp on a very fine grid,
a task that is computationally unfeasible even in small dimensions. The second, more interesting
and novel approach, which we describe next, is to further assume that p satisfies mild additional
regularity conditions around the split levels that are reminiscent of low-noise type assumptions in
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classification. Under those assumptions, the modified DBSCAN Algorithm 2, given below, will
achieve the optimal rate (12) while remaining computationally feasible since it only operates on
the sample points.

Algorithm 2 The modified DBSCAN

INPUT: iid sample {X;}!" ,, a [a]-valid kernel K and h > 0’
1. Compute {py(X;),i=1,...,n}.
For each A > 0,
2. construct a graph Gy, » with node set

D) = {X; : pu(Xi) > A}

and edge set {(X;, X;) : X;, X € D)) and || X; — X;| < 2hn}.
3. Compute C(h, A), the maximal connected components of Gy, .
OUTPUT: T, = {C(h,\),\ > 0}

Remark 3. Despite its seemingly different form, Algorithm 2 is nearly identical to Algorithm 1.
The only difference is in the use of a [a]-valid kernel K instead of a spherical kernel. Furthermore,
the procedures only requires evaluating at most n + 1 different graphs:

Gh0s Ghpy(X0y) - s Chpi(Xon)s

where (o1, ...,04) is a permutation of (1,...,n) such that
ﬁh(Xcrl) < ﬁh(Xag) <.. 'ﬁh(XUn)

And, again just like with Algorithm 1, the connected components of each C(h,\) can be easily
evaluated by maintaining a union-find structure.

We will now describe the extra regularity conditions we will impose on the geometry of the
density p € X(a, L) around the split levels that guarantees optimality of the clustering Algorithm 2.
We begin by formulating two widely used technical conditions on a generic set  C R%.

C1. (The Standard Assumption) There exist constants ry,c¢; > 0 such that, for any 0 < r < r;
and x € (,
L(B(x,r)NQ) > ¢rVgrd,

where we recall that £ here denote the Lebesgue measure of RY.

C2. (The Covering Condition) There exists a constant C7 such that, for any 0 < r, there ex-
ists a collection of points A, C Q such that card(N;) < Crr~¢ and

U B(y,r) D Q.

yENr

Conditions C1, C2 hold for many sets §2. In particular, they hold for compact manifolds with
piecewise Lipschitz boundary (see, e.g, Do Carmo [1992]). Since p € ¥(L,a > 1), any upper-level
set {p > A} is a union of connected d dimensional manifolds with C! boundary and therefore
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meet both C1 and C2. Condition C1 is known as the inner cone condition C1 in Korostelev and
Tsybakov [1993]; the term standard condition is due to Cuevas [2009].

We will require both C1 and C2 to hold simultaneously for all the upper level-sets of p right
above the split levels. Specifically, we will assume that

C. There exists a g > 0 such that, for any split level \* of p and any 0 < § < Jg, the set
{z: p(x) > \* + ¢} satisfies conditions C1 and C2 with universal constant r7,c; and C7 only de-
pending on p.

We also need the connected components of the upper level sets right above split levels to be
sufficiently well separated in the . Below we introduce another condition that essentially charac-
terizes the separation of the distinct connected components right above the split levels.

S(«). There exist positive constants dg and cg such that, for each split level A* of p, the fol-
lowing holds: let {C;}X | be the connected components of {z: p(x) > A*}. Then,

min d(C N {p >N 40},Cu N {p> N +6}) > cs6™/*, V5 € (0,05]. (16)

Our following result shows that Corollary 5 still holds for a > 1 .

Theorem 6. Let p € X(aw > 1,L) be any density function with compact connected support and
finitely many split levels bounded from below by Ao > 0. Assume also that conditions C and
S(«) hold for p. Then, the modified DBSCAN Algorithm 2 is (0n,7n) consistent, where ~, =
% + O(h~% exp(—eXgn®/ ot ¢ is a positive constant only depending on p and

d =2an + (4h/cs)?

with ay, defined in (9) and cs the constant in C. Thus if h < n~ Y/t the cluster tree returned
by the modified DBSCAN algorithm is consistent with & = Q(n=%/ 2+ with high probability.

The explicit expression of ¢ in the proposition can be found in (35). The proof of the theorem
heavily relies on both condition conditions C and S(«), which cannot be dispensed of. Luckily,
both conditions hold for a variety of densities, as we show in the next two examples.

Example 1: Morse densities. We recall that a function p on R is Morse if all the critical
points of p have a non-degenerate Hessian. See, e.g., Matsumoto [2002] for an treatment of Morse
theory. An equivalent and more intuitive condition is that around the critical points, p behaves
like a quadratic function. The assumption that a density is Morse is routinely usd in the literature
on density-based clustering and mode estimation: see, e.g., Chacén et al. [2015] and Arias-Castro
et al. [2016] and references therein. In the Proposition 19 of the appendix, we show that any Morse
function on RY satisfies C and S(2).

Example 2: Natural Splines. Let @ > 2 be any integer. Let f; : [1,2] — R be such that
fi(x) = (z —2)®. It is easy to find a polynomial fo of degree o on [0, 1] such that the real valued
function f on R, given by

filz), xe€ll,2]
f({E) = f2(x)a S [07 1]

0, otherwise,
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has continuous derivatives up to order o — 1 and is such that f(0) = f/(0) =,...,= fle=1 = 0.
When a = 3, f is called a natural spline. For any dimension d, let F' : R — R be such that
F(z) = f(|z|)). Then, F € ¥(a, L). Denote xg = (2,0,...,0). Let G be the function z € R?
F(x — x9) + F(z + x). It is easy to see that, for any 0 < ¢ < 1,

{G(x) > 6} = B(wo,2 — 6Y/*) U B(—x0,2 — 6'/%).

As a result conditions C and S(«) are trivially satisfied in this simple case. This example also
implies that if the density locally behaves like a spline function of order «, then conditions C and
S(«) are satisfied.

3.5 Consistency of the Density Cluster Tree of p,

As a side result, we show below that the cluster tree of the KDE py, is, for an appropriate choice
of the bandwidth h, a minimax optimal estimator of the cluster tree of p with respect to the §-
separation criterion. As remarked above, such an estimator, given below in Algorithm 3, is not
computable even in small dimensions, as it requires evaluating the connected components of all the
upper level sets of py,.

Algorithm 3 Clustering based on connected components

INPUT: i.id sample {X;}?,, the kernel K : R? — R, the level A\ and h > 0
1. Compute L(\) = {z : pp(z) > A}
2. Construct a graph Gy, ;, with nodes

D) = {X;}7, N L(\)

and edges (X;, X;) if X; and X; belong to the same connected component of E()\)
3. Compute C(h, ), the graphical connected components of Gy, ».
OUTPUT: C(h,\)

We show that for generic a > 0, if p € X(L, «), level sets of KDE estimator are good approxi-
mations of the corresponding population quantities.

Lemma 7. Assume that p € X(L,«), where a > 0, and let K be a [a|-valid kernel. Suppose
h=h,=0C (W) for some absolute constant Cy. Then there exists Co > 0, depending on
C1, |Iplloe, K , L and d such that, when nh® > 1, with probability 1 —1/n, uniformly over all X > 0,

{:c: p(z) > /\+C’2ni:)/(gQ%} C {w: Bula) > A} € {w:p(x) > A—CQM}, (17)

As a direct corollary of Lemma 7 we can establish the following consistency rate for the algorithm
3.
Corollary 8. Let h = h, = (4 <m> Under the assumptions of Lemma 7, the cluster tree

returned by Algorithm 3 is §-consistent with probability at least 1 — ~, where

logn
02 O alaray

with C' = C(||pl|eo, K, L, 7y, d) a constant independent of n and ¢.

(18)
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We remark that while Algorithm 3 is not feasible even in moderate dimension, its optimality
holds without any additional regularity conditions such as S(«) and C.

3.6 Lower bounds

Below we show that the rates of the DBSCAN algorithm derived in the previous sections are
minimax optimal. We remark that in our analysis we cannot use the lower bound construction of
Chaudhuri et al. [2014], as we consider the sub-class of Holder smoother densities. Another minor
difference is that our result applies to all dimensions d, while the arguments in Chaudhuri et al.
[2014] requires d > 2. We recall that the notion of J-accuracy is given in Definition 6.

Lemma 9. Suppose for fired d > 1 and o > 0. There exists a finite family F of d-dimensional
probability density functions belonging to the Holder class (L, ) satisfying C and S(«) and uni-
formly bounded from above by Cy, and a constant K, depending on L and o, such that the following
holds when

49810g(32) . K d
> oV d 6 < _— %) 2 /2+1
0z PO s ] () s

where Vi denote the volume of a d dimensional ball. If a cluster tree estimator of p is (0,1/4)-
accurate when presented with an i.i.d. sample {X;}I", from a density in F, then it must be the
case that

- (Cs2td/a’
for some constant C' only dependent on d.

It is important to remark that the class of functions F C ¥(«, L) used in the proof of Lemma 9
also satisfies conditions C and S(«). See Lemma 20 in B shows for more details. Since the lower
bound in Lemma 9 is of the same order as the upper bound from Theorem 6 the consistency rate
established in that result is minimax optimal.

Remark 4. Assuming ||pllco and d fized and ~ logarithmic in n, the cluster consistency guarantees
of the DBSCAN-based algorthms derived in Corollary 5 and Theorem 6 and the lower bound in (19)
differ only in the constants and by a term of order logn. Thus, alltogether these results show that,
up to a log factor, the optimal clustering rate for §-consistency for density functions in X(L, «) is

S} <nf/g$+)d>, achieved by Algorithm 1 when o <1 and Algorithm 2 when o > 1. Interestingly, up
to logarithmic terms, the rate matches the minimax rate for estimating a-smooth densities in the
Lo norm: see Korostelev and Nussbaum [1999]. In hindsight, this finding is not very surprising.
Indeed, as noted in the discussion, §-separation of clusters is equivalent to separation in the merge
distance of Eldridge et al. [2015] (see Definition 12 below), which, in turn, as shown in Kim et al.
[2016], can be linked to the supreme norm of the difference between p and p, if p is continuous. Thus,
for continuous densities, the performance of a cluster tree estimator based on a density estimator
D ought to be tied to ||p — Plleo. Though a similar fact was also noted in Chaudhuri and Dasgupta
[2010], this connection has not been previously established in the literature in a rigorous manner.
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3.7 Consistent estimate of the Split levels

We now discuss a simple pruning procedure for the cluster tree estimators considered here that
allows to estimate consistently the split levels of the underlying density and, as a result, is guaran-
teed to prevent the occurrence of spurious estimated clusters. Pruning and consistent estimation
of split levels have been previously analyzed in Sriperumbudur and Steinwart [2012] when o < 1
and in Chaudhuri et al. [2014] for general densities. However, none of the existing algorithms give
error bounds being adaptive to « for density p € ¥(«, L) with a > 1.

The following definition provides a way to identify significant split levels in the cluster tree es-
timator returned by Algorithm 2.

Definition 9. Given A > 0, the value e (0,00) is said to be a A-significant split level of the
cluster tree estimator if there exist two data points X;, X; € D(A* + A) satisfying

= sup{A > 0: X, and X; are in the same connected component of C(h, \).} (20)

Thus a A-significant split level of the cluster tree estimator is a split level such that the clusters
“born” at that level persists also at higher levels.

The intuition of the A-significant split level is that in theory, the accuracy of modified DBSCAN
estimator is limited with finitely many data points. By looking at split levels corresponding to large
clusters, we rule out the insignificant split levels and only keep the A-significant ones. Therefore
finding A-significant levels can be thought of as a process of pruning the cluster tree estimators.

Below, we show that there is a one to one correspondence between A-significant split level of
the modified DBSCAN cluster tree estimator and the split level of the population density under a
slightly stronger covering condition than C:

C’. There exists 69 > 0 such that for any split level A\* of p and any [0| < dg, {p > \* + 0}
satisfies conditions C1 and C2 with universal constant r;,c; and C; only depending on p.

The only difference between C and C’ is that while condition C assumes the regularity above
split levels, C’ ensures the regularity around split levels.

Proposition 10. Suppose condition C’ and S hold. Let A = 2a, + (4h/cs)®* where a, =
% + C(L, K, a)h® is defined in (9) and h = Cin~YCo+d) - Suppose p has finitely many
split levels. Then, with probability at least 1 —1/n — O(h~% exp(—cn® 2e+d))  the following addi-
tional results hold:

1. Let \* be a split level of the density p. Suppose C and C' are two open sets splitting at \* (see
Definition 8) and that

min{P (CN{p > X" +2A}),P(C'N{p>X"+2A})} >0 (21)

Then there exists a split level bu of the cluster tree estimator (constructed by the modified DBSCAN)
being A-significant such that e
I =M <A (22)

2. Conversely suppose N is a A-significant split level of the cluster tree estimator. Then there
exists a split level \* of p such that e
A" — A < A (23)
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Proposition 10 says that with high probability, every A-split level corresponds to a density split
level and that conversely, any split level of the density p can be found if we have enough data. To
prune the cluster tree returned by the modified DBSCAN algorithm, it suffices to remove all the
split levels that are not A-significant.

4 Densities with Gaps

In this final section we investigate the properties of DBSCAN-based cluster tree estimators when
the underlying density p is no longer continuous but exhibit instead a jump discontinuity, so that,
for all values of X in a given interval of length €, the upper level sets {p > A} do not change. The
value of € is referred to as the gap size. See Figure 2 for examples.

We formally define the notion of density gap below.

Definition 10. A Lebesqgue density p in R is said to have a gap of size € > 0 at level Ay > 0 when

inf p(x) > \* and sup p(z) < A,

zeS zeSe
where \* = \, + € and
S ={p(x) = A"} (24)
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Figure 2: The left plot depicts a one dimensional density with gap of size € at level A. It is clear
that {\ < p < A+ €} is an empty set. The right plot depicts 500 i.i.d sampling from a two
dimensional density with a gap. It is clear that the density is low in the background and high on
the disk centered at (-1,-1) and on the square centered at (1,1). Finding the samples points with
low density values can be thought of as outliers detection in this case.
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It follows from the above definition that, if p has a gap of size € at A, then

C~

LN =|]c=5 vae(\, AT,

i=1

where (Cy, . ..,Cr) are disjoint, connected sets in R?. To avoid trivialities, we will assume throughout
that I > 1. Though fairly restrictive, this scenario is already interesting for the purpose of both
clustering and level set estimation. Indeed, this situation encompasses the ideal clustering scenario,
depicted as examples in Figures 1 and 5 in the original DBSCAN paper Ester et al. [1996], of a piece-
wise constant density that is low everywhere on its support with the exception of a few connected,
full-dimensional regions, or clusters, where it is higher by a certain amount (in our case the gap ).
The size of the gap parameter € and the minimal distance among clusters both affect the difficulty
of the clustering task, which becomes harder as both parameters get smaller. In our analysis, we
keep track of such dependence, thus producing consistency rates depending on the sample size, the
gap size and the minimal distance. In particular, we will demonstrate that DBSCAN algorithm
achieves the optimal minimax scaling in both parameters.

4.1 Connection to the Devroye-Wise Estimator and Minimax Optimal Estima-
tion of Level Sets

In the simplified setting considered here, it turns out that the DBSCAN algorithm is equivalent to
the renown Devroye-Wise estimator of the level set {x: p(x) > A*}; see Devroye and Wise [1980].
Below we formalize this observation and show that this estimator is minimax optimal for estimating
the level set S when the gap size € is vanishing in the sample size n, in the sense that it allows
the fastest possible decay of €. To the best of our knowledge, such scaling has not been previously
established.
Recall that with inputs £ and h, the DBSCAN algorithm outputs a set of nodes Gy, . One then
may construct the random set
Sv= |J BX;.h) (25)

XjEGh,k

comprised of the union of balls of radius h around such points, and use it as an estimator for the
high density region S = U;C; consisting of all the clusters. The above estimator was originally
proposed by Devroye and Wise [1980] to estimate the support of the underlying density.
We measure the performance of any estimator S with the Lebesgue measure of its symmetric
difference with S: R R R
c(sa8)=c(sns)+c(sns).
In order to determine the difficulty of this estimation problem we will need to use the gap size € as

a parameter which may depend on n. We will in addition impose the following condition:

(R). (Level set regularity). There exists constants hg > 0 and Cy > 0 such that, for all
h € (0, ho),
L(Sp\ S-n) < Coh,

where S is as in (24) and Sy, and S_j, are defined in (1).
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The condition R is a very mild assumption. In particular, every compact domain in R? with
C? boundary satisfies condition R. In this case Cy < Vy_1]|0S|, where |0S| denotes the surface
volume of S, and hyg is the size of the tubular neighborhood of 05S.

Proposition 11. Assume that the density p has gap of size € at level Ay and that condition (R)
holds. Let a, = C(W_l%g(l/h)) be defined as in (7). Suppose the input parameters (h,k) of the

hd

DBSCAN Algorithm 1 gatisfy

ne? (26)

1/d
ho > h > C <1°g(”)> ,

where C1 > 0 depends on C and d and hg is the constant appearing in assumption R, and
k= [nh9VyA],
where A € (Ax + an, \* — ay]. Then with probability at least 1 —e™7,
L(SAS)) < 2Coh,
where Cy is the constant appearing in condition (R) and

Sv=|J BX;h). (27)
XjEGh’k

If P(S) =1, the level set estimator S, is also a support estimator and € = infyeg p(z). In this
case, Proposition 11 says that if the lower bound of the density goes to 0 not faster than O(n_l/ 3,
then support estimation is still possible.

Below we show that the error bound given in Proposition 11 is minimax optimal up to log
factors. Consider the collection P"(hg,€) of probability distributions of n i.i.d. random vectors in
R? from a distribution with bounded d-dimensional Lebesgue densities having a gap size € at some
level and satisfying condition (R) with parameter hg > 0. Then Proposition 11 shows that

sup Ep (SASh> =0 < 0g(;1)> )
PEP(hoe) ne

1/d
provided that A is of the order (%) .

In our next result we construct obtain a matching lower bound (up to a log factor).

Proposition 12. There exists a hg > 0 and constant ¢ > 0, depending on d only such that for any

e<1/4,
R 1\ 1/
inf sup Ep <SASh) > cmin (2) s 18,
S PePn(ho,e) ne

where the infimum is with respect to all estimators of S.

We remark that if ne? — 0 as n — oo, then Proposition 11 and Proposition 12 match up to a
log factor of n. In other words, with suitable choice of input, DBSCAN can optimally estimate the
level set S at the gap.

Remark 5. Our results offer a sharpening of the rates of consistency of the Devroye- Wise estimator
given in Cuevas and Rodriguez-Casal [2004] (see, e.g. Theorem 4 and 5 therein) where the size
of the gap € is assumed fized. Instead, we derive the optimal minimazx scaling €, w and show that
the Devroye-Wise estimator, with an appropriate choice of h can achieve it. To the best of our
knowledge, this result is new.
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4.2 Clustering at the Gap Level

We conclude this section by showing that DBSCAN estimates the clusters in S optimally.
In addition to assuming the existence of a gap of size €, we also need to measure the degree of
separation among clusters in S.

S(o). (Separation condition). There exists a constant o > 0 such that

min dist(C;, Cj) = o.

i#j
The above condition is hardly an assumption: if the distance between two distinct cluster were 0
then the cluster may not be consistently estimated. We will let the parameters ¢ and € to vanish
as n — oo and derive the minimax scaling for both of them. These minimax scaling describe the
fastest rates of decay for the gap size and the separation parameter for which clustering is (barely)
possible. In particular, we will demonstrate that the DBSCAN algorithm can optimally estimate

the clusters at A* with suitable inputs under such scaling, implying that no other algorithm can do
better than DBSCAN for such task.

Proposition 13. Assume that p has a gap of size € > 0 at level A, > 0 and satisfy the separation
condition S(o). Suppose also that the input parameters (h,k) of the DBSCAN Algorithm 1 satisfy

log(n)
ne?

1/d
o/4>h>C ( ) and k= [nh?Vy\], (28)

for some Cy and X is any value in (As + an, \* — ap] where a, = % as in (7). Then the

following results hold with probability at least 1 —e™7:

i. simultaneously over all connected sets A such that Asp, C C;, for some i, all the sample points
in A, if any, belong to the same connected component of Gy, p;

#. simultaneously over all connected sets A and A’ such that Asy, C C; and AL, C Cj, for some
i # j, the sample points in A and A', if any, belong to distinct connected components of Gy, .

The definition of Agj, and A_y;, can be found in (1).

Proposition 13 implies the DBSCAN algorithm will yield clustering consistency provided (28)
holds. This requires that the parameters ¢ and o are such that

"2 Cagn
for some constant C'. The above inequality constrains the rate of decay of € and ¢ in terms of n.
As it turns out, the resulting scaling is in fact minimax optimal, in the sense that any sequences
of values for € and o such that n = o (ﬁ) will lead to inconsistent clustering, no matter the
clustering algorithm used.

Proposition 14. Consider a finite family of density functions F' = {f;}. Suppose all f; € F have
gap of size € > 0 at level \.. This means that for any j, {f; > M\ + €} U{f; < A} = Re. For any

j, let {C; zI]=1 be the connected components of {f; > A\s + €} and dist(Cj,Cé/) >0 fori#i.
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There exists subsets A; and A;- for density f; such that A;, C C; and AQJ C CJZ:/ with the following
additional property.

Consider any algorithm that is given n > 100 i.i.d. samples {X;}I" | from some f; € F and, with
probability at least 3/4, outputs a tree in which the smallest cluster containing A; N { X} is
disjoint from the smallest cluster containing A; N{X;}" .. Then there exists a constant C(d) only

depending on d such that
C(d) 1
n2 od)\*e2 log od)\*
The proof of the proposition is a straightforward modification of the proof of Theorem VI.1 of
Chaudhuri et al. [2014] and we omit it for brevity. As a consequence, we conclude that DBSCAN
achieves the optimal minimax scaling in both parameters € and o.

(29)

5 Discussion

In this article we propose a new notion of consistency for estimating the clustering structure un-
der various conditions. Our analysis shows that both the DBSCAN algorithm and the plug-in
KDE cluster tree estimator is minimax optimal. Interestingly, the rates match, up to log terms,
minimax rates for density estimation in the supreme norm for Héloder smooth densities. In par-
ticular, our results provide a complete, rigorous justification to the plausible belief, commonly held
in density-based clustering, that clustering is as difficult as density estimation in the supreme norm.

In the rest of the discussion section, we will compare of our notion of separation with other existing
ones in the literature.

5.1 (¢,0)-separation in Chaudhuri et al. [2014]

The criterion of d-separation is most useful in the study of smooth densities. Nonetheless, it will
be helpful to compare this with the notion of (e, o)-separation defined in Chaudhuri et al. [2014],
which is applicable to arbitrary densities.

Definition 11 ((e, 0)-separation criterion in Chaudhuri et al. [2014]).

1. Let f be a density supported on X C RY. We say that A, A' C X are (¢, 0)-separated if there
exists S C X (the separator set) such that (i) any path in X from A to A intersects S, and

(ii) sup,eg, f(w) < (1 —¢€)infreca,uar f(z).

2. Suppose an i.i.d samples {X;}7 | is given. An estimate of the cluster tree is said to be (¢, 0)
consistent if for any pair A and A’ being (e,0) separated, the smallest cluster containing
ANA{X;} is disjoint from the smallest cluster containing A" N {X;}1 .

In the following lemma we make a straightforward connection between the J-separation and
(e, 0)-separation.

Lemma 15. Assume that p € X(L,a) with « < 1 and that A and A" are §-separated. Then, A and
A" are (e,0)-separated with

S={x:p(x) <A=46}, €=6/(3\) and o*=4/(3L), (30)

where A = inf ,c a7 p(2).
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Proof of lemma 15. Denote A = inf,c 4,4’ p(2). Suppose for the sake of contradiction that there is
a path [ connects A and A" and that [ N {p < X\ — 40} = 0. Then by the continuity of p and the
compactness of [, there exist v > 0 such that [ C {p > A — 0 +~}. Thus A and A’ belongs to the
same path connected component of {p > A\ —3J+~}. Since {p >A—-9d+~} C{p>A—9}, A and
A’ belongs to the same path connected component of {p > A}. Since {p > A} is an open set, A and
A’ be belongs to the same connected component of {p > A}. This is a contradiction.

Let 0% = 6/(3L) and € = §/3, then for any z € S,, p(zr) < A\ — 6 + Lo® = X\ —2§/3. Simi-
larly if x € A, UAL, p(x) > A= Lo® =\ —§/3. Thus

(1—¢) zefix?EAg fl@)>1—e)A=6/3=1—-20/3 > gcsggj f(z)

O

According to the separation criterion in Definition 11, for a given §, two clusters can be §-
separated for many values of € and o. In particular, by taking the separator set to be large, it is
easy to produce examples of J-separated clusters that are also (e, 0)-separated such that ¢ is big
but o is small. This is simply because o is heavily associated with S. And conversely, by taking
an almost flat density function, it is possible to have a very large o and very small §.

We remark that when a > 1, there is no obvious relationship between the parameter (o, €) in
Definition 11 and § in Definition 6 as that in Lemma 15. For o > 1, while p € 3(L, «) implies
that p is Lipschitz continuous, the Lipschitz constant in this case does not depend on L and «
in a simple manner. As a result, the parameter o, representing the distance between connected
components of upper level sets of p, is not related to § in any straightforward way.

5.2 Merge height distance

The notion of §-separation is closely related to the merge height first introduced by Eldridge et al.
[2015] (see also Kim et al. [2016]). In the context of hierarchical clustering, merge height is used
to described the height at which two points or two clusters merge into one cluster.

Definition 12. Let p be any density and T,(\) denote the cluster tree generated by p at level \.
For any two clusters A, A" € Ty, their merge height my(A, A) is defined as

my(A, A) = sup{\ € R : there exists C € T,,(\) such that A, A’ C C.}
It is easy to see that if two clusters of p, A and A’, are J-separated, then their merge height is
at most A — 0, where \ = inf,c 4ua’ p(z).
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A Topological Preliminaries

For completeness, we review the definition of connectedness from the general topology.

Definition 13 ( Munkres [2000] Chapter 3). Let U be any nonempty subset in R?. Then U is said
to be connected, if, for every pair of open subsets A, A" of U such that AU A’ = U, we have either
A=0 or A’ = 0. The mazimal connected subsets of U are called the connected components of U.

We briefly explain why the connected components naturally introduce a hierarchical structure
to the level sets of p. Let A1 > Ag, so we have {p > A1} C {p > A\2}.

e Suppose A is any subset of R%, and A belongs to the same connected component of {p > A1 }.
Then A is contained in the same connected component of {p > Ao}.

e Suppose AU A" C {p > A} and they belong to distinct connected components of {p > Ao}
Then A and A’ are not contained in the same connected component of {p > A1 }.
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We also review a closed related concepts, which is call the path connectedness in general topol-
ogy.
Definition 14. We say that a subset U C R? is path connected if for any x,y € U, there exists a
path continuous P : [0,1] — U such that P(0) =z and P(1) = y.

The main reason we introduce the path connectedness is that if U is an open set in R?, then U
is connected if and only if it is path connected. Therefore a simple but useful consequence is that
for any A, the connected components of {p > A} are also the path connected components.

We will repeatedly use these topological properties in our analysis without further mentioning.
The proofs of them are omitted and can be found in Munkres [2000] or any other books on general
topology.

B Proofs in Sections 2 and 3

Proof of Lemma 1. All the claims of the lemma follow from the simple observation that E()\k)
is a union of collection of balls of radius h and centered at D(A;). Thus X; and X; are in the

same connected component of E()\k) if and only if there exists {Xy,, ..., Xy, } such that X, = X
Xk, = Xj and that || Xy, — Xp,, || <2hforall 1 <I<L—1. O

B.1 Proofs from Section 3.1
We begin by justifying the event Proposition 16.

Proposition 16. Let K be the spherical kernel, h > 0 a fixed bandwidth and py, be the corresponding
kernel density estimator. Then

P (SHP [Pn(x) — pr(2)] < an) 1=, (31)
zERY
where ay, is defined in (9). ||plloc = sup,era p(x).

Remark 6. The quantity ||p|loc can be replaced by the smaller quantity sup,cpa pp(z), for any
h > 0.

Proof of Proposition 16 . Let B denote the collection of all closed Euclidean balls in R¢. Then,
the relative VC bounds for balls (see Vapnik and Chervonenkis [2015]) in R? states that, for any

v€(0,1),

P,(B) — P(B) —s \/ (d+1)log(2n + 1) + log(8/~)

bes  /Pu(B) n

and
s P(B) — P,(B) - 2\/(ol +1)log(2n +1) + log(S/’y)’
BeB P(B) n

with probability 1 —« . Since pp(z) = #'lvd >ict YxieB@n)) = ﬁPn(B(a:,h)) and pp(z) =
E(pn(x)) = h%VdP(B(x, h)), it follows that , with probability at least 1 — - ,

sup

Pn(@) — pna) _ \/ (d+1)log(2n + 1) + log(8/7)
zERd pn(x)

nhaV,
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and

up P2E) (@) _, \/ (d+1)log(2n + 1) + log(8/7)
zeR? pn() nhVy

Since pp(x) < pmax for all z € R?,

. ~ d+1)log(2n + 1) + log(8
15n — Phlloo < 24/ (Pmax + [1Br — Palloo) (d 1) log( 7 ) + Log(®/7) (32)
nh Vd
Solving this quadratic inequality in ||pr, — ppllco gives
. (d+1)log(2n + 1) + log(8/7) (d+1)log(2n + 1) +log(8/7)
— <4 2

||ph ph”oo = nthd + Pmax nthd )

as claimed. O

We begin by justifying (7). Since this is a well known result, we simply use a result of Sripe-
rumbudur and Steinwart [2012]. We will assume the following condition for the kernel K which is
fairly standard in the non-parametric literature.

VC. The kernel K : R — R has bounded support and integrates to 1. Let F be the class of
functions of the form
zeR¥— K(z—2), zeRL

Then, F is a uniformly bounded VC class: there exist positive constants A and v such that

Sl;)p/\f(ﬁ L2(P), €| Fll2(p)) < (A/€)",

where N (T, d, €) denotes the e-covering number of the metric space (T, d), F is the envelope
function of F and the sup is taken over the set of all probability measures on R?. The
constants A and v are called the VC characteristics of the kernel.

The assumption VC holds for a large class of kernels, including any compact supported polynomial
kernel and the Gaussian kernel. See Nolan and Pollard [1987] and Giné and Guillou [2002].

Proposition 17 ( Sriperumbudur and Steinwart [2012]). Let P be the probability measure on R?
with Lebesgue density bounded by ||p|lss and assume that the kernel K belongs to L°°(R%) N L?(RY)
satisfies the VC assumption. Then for any v > 0 and h > 0, there exists an absolute constant C
depending on the VC characteristic of K such that, with probability no smaller than 1 —e™7,

~ C 24 201p [l ) ) 24
[Ph=Dhlloc < — (’Hvlog >+C VK|S + ][ K][3 log
nhd N IMEE nhe h{|plloo [ K [I3

B.2 Proofs from Section 3.3
Proof of Proposition 2. To show Proposition 2, we first extablish simple topological facts.

Lemma 18. Suppose p : R — R are compactly supported. If A and A’ are in the same connected
components of {p > N} fori =1,2,...,00 and that \; < \jy1,then A and A’ are in the same
connected components of {p > Ao}, where N\g = sup; A;.
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Proof of lemma 18. Let C; be the connected component of {p > A;} that contains A and A’. Thus
C; are compact and connected. Since C;41 C C; for all ¢ > 1, ﬂ;’il C; is connected. Thus A, A’ C
nz’ Cz - {p > >\0}‘ 0

Consider
A" = sup{\: A, A’ belongs to the same connected components of {p > \}}

Then Ay < A* < \j. By lemma 18 ; A and A’ are in the same connected components of {p > A*}.
Thus Ay < A* < Aq.

In order to show that \* is split level, it suffices to show that A and A’ are in the different connected
components of {p > A\*}. Suppose for the sake of contradiction that A and A’ are connected in
{p > \*}. Then A and A’ are path connected as {p > \*} is open. Thus there exist P connects
A and A" in {p > A*}. Since P is compact, p(P) > A* implies that there exists a > 0 such that
M +a <)X and P, A, A C {p > A\*+a}. Thus A and A’ belong to the same connected component
of {p > X\* + a}. This is a contradiction because by construction of \*, A and A’ belongs to the
different connected components of {p > \* + a}. O

Proof of corollary 3. Suppose A and A’ are § separated with respect to A\. Then A and A’ belongs
to distinct connected components of {p > A — 46} where A = inf,c quar f(z). Let 0 < € < § be given.
Then since {p > A —0 +¢e} C {p > A —d}, A and A" belongs to distinct connected components of
{p=>A—05+¢€}.
Since R? = {p > 0} is connected, A and A’ belongs to the same connected component of {p > 0}.
By proposition 2, there exists 0 < A\* < A — § + € such that A and A’ in the same connected
component of {p > A*} and in different connected components of {p > A*}. By taking ¢ — 0, the
claimed result follows.

]

B.3 Proofs from sections 3.4

Proof of Lemma 4. From the proof of lemma 7, it can be see that

log(n) n ~ log(n)
{p2A+Cna/(2a+d)}ﬁ{Xz}i1 C D\ C {pZA—Cna/(zaer) :

Thus for any y € B(Xj, h) for some X; € D),

log(n)

py) 2 p(X;) = Lh® 2 A = O o

—Lhe,
where the first inequality follows from [p(y) — p(X;)| < Lh®. Therefore the above display implies

log(n) o
XJED()\)
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For the other inclusion, let = € {p > )\—1—0% +Lh°‘}. Then pp(xz) > A+ Lh®. Thus
B(z,h) N{X;}7_, # 0, or else pp(x) = 0. Let X; € B(x, h). Therefore

log(n)

p(Xj> > p(m) — Lh™ > X+ Tl Catd)”

Thus pp(X;) > A, which means that X; € 13()\) Soz e UXjef)
follows.

o) B(Xj,h) and the first inclusion

O
Proof of Theorem 6. Let B be the event that

B = {sup |pn(z) — p(z)| < an}
zER?
We can choose a,, so that P(B) > 1 — 1/n and that a,, = O(log(n)n~®/(4+22)) All the argument
will be made under the good event B.

Observe that p has connected support. Therefore, A = 0 is not a split level. Assume that
Ao = min{\* : \*is a split level of p}. Then Ay > 0. If h = O(n~"/(2+d) for large n, we
have 2a,, + (4h/cs)® < min{dg, dp}. Take

0 > 2ay + (4h/cs)/cs.

Let A and A" are two sets being d-separated and let A = inf e a4 p(x). Since A and A’ are in
distinct connected components of {p > A —J}, by proposition 2 there exists A* being a split level of
p such that A* < X\ — ¢ and that A and A’ belongs to distinct connected components of {p > A\*}.
Thus A and A’ belong to distinct connected components of {p > X'}, where

N =X+ 2a, + (4h/cs)*/cs.

Let {C,}, be the collection of connected components of {p > X'}. Thus we have A C C; and
A" C Cp for some k # k. In order to show the smallest cluster containing A N {X;}", and
A'N{X;}?_, are disjoint with high probability, it suffices to show the following statement.

e Let A and A’ be two connected subsets of {p > N} and belong to two distinct connected
components of {p > A*}. Then the smallest cluster containing A N {X;}” , and A’ N{X;}, are
disjoint with high probability.

Note that this observation reduce the original statement which concerns with generic J-separated
sets to the current statement which only concerns with one level near the split level. Since there
are finitely many split levels, a simple union bound will suffice to show the J consistency of the
cluster tree returned by Algorithm 2.

The proof will be completed by the following two claims.

Claim 1. If A is a connected subset of {p > X'}, then AN {X;}?, is in the same connected
component of

LN —ap) = )  BX;.2n). (33)
{X;:D(N—an)}
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Proof. 1t suffices to show that R
{p>N}C LN — ay). (34)

Since for large n,
an + (4h/cS)a S 507

By C2 there exists NV}, C {p > N} with card(N}) < A.(h)~% such that A}, is a h cover.
Since {p > X'} satisfies the inner cone condition C1,

P(B(z,h) N {p > N1}) > NerVah® > NerVahe,
So there exists ¢} only depending on d and ¢ such that
PU{X N Bz, k)N {p > N} =0}) < (1 = AoerVgh®)? < exp(—cjprgn®/ @)y = o(n=2),

where the second inequality follows from h = O(n'/(2*+9) and the equality follows from
Aon2e/(e+d) /1og(n) — 0o and n being large enough. Consider the event

A={X;},NB(z,h)Nn{p >N} #0 for all x € Nj,}.
By the union bound
P(A%) < card(Ny,) exp(—cpaon®®/ et d)y — A b= exp(—cpAon®®/ otd)y = o(1). (35)
So for any y € {p > N} , there exists x € N} such that |y — x| < h. Under event A there exists
X; € {p > X'} such that |X; — x| < h. Therefore y € B(Xj,2h). Since
Xj € (X} N {p > N} € DV — an),

the claim follows.
O

To finish the proof of the theorem, we still need to show at level N — a,, the data points
AN{X;}" , and A’N{X;}? , are contained in distinct clusters. Therefore the following claim finish
the proof.

Claim 2. There exists a partition {S;}/_; of D(X — a,,) such that AN {X;}7, and A’ N{X;},
belong to distinct subsets of the partition and that data points in distinct subsets of the partition
are mutually disconnected.

Proof. Let {B;}!_, be the collection of connected components of {p > (4h/cs)®+ A*}. Since A and
A’ belong to distinct connected components of {p > A*}, and \* < (4h/cg)® + \*, A and A’ are
contained in distinct elements of {B;}/_,. From condition S ,

win dist(B;, B;) > 4h. (36)
1#]

Note that lA)(X—an)AC {p > (4h/cs)®+A*} as a consequence of event B. Thus S; = B;ND(X —ay)
form a partition of D(\ — ay,). Let

L= |J B(X;,2n).
XjES»;

By (36), Ly " Lj = 0 if ¢ # j. This shows that data points in distinct subsets of the partition
{S;}L_, are mutually disconnected at the graph C(h, ' — a,,). O
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Proposition 19. Suppose p is a Morse function, then p satisfies C and S(2).

Proof of Proposition 19.
Step 1. In this step we show that condition S(2) holds. Consider an arbitrary split level A, and
two connected components C1, Cy. If

(isngdist(Clﬂ{pZ)\+5},C’2ﬁ{p2)\+5}) >0
>

then we have dist(C1 N {p > A},Ca N {p > A}) > 0, and the thesis is trivial. Thus assume that

[isngdist(Cl N{p>A+6},Con{p>A+4}) =0,
>

i.e.
lim dist(C1 1 {p > A+ 6}, C2 N {p > A +}) = 0.
ﬁ
Thus there exists yo € {p = A}, and points y‘iQ € Ci2N{p > A+ 4} such that

yiz 30 Yo, |y‘1s - yg| =dist(C1N{p > A+},Can{p > A+ }).

It is straightforward to check that p(y$) = p(y3) = X\ + 4.

The thesis is now rewritten as |y — y3| > cs6/2 for some constant ¢g > 0 and all sufficiently
small 6. Since split levels are also critical, Vp(yo) = 0; since p is a Morse function, V?p(y) is
non-degenerate. By Taylor formula we have

& =p(y)) = p(yo) = (4] —90)" V?p(yo) (] —v0)/2+ O(ly] —wol*).  j=1,2, (37)

and, as V2p(yo) is non-degenerate, it follows \y?—y0| = 0(6'/?), i.e. there exist constants ¢y, ca, 5y >
0 such that
ad'/? < ]y;s — yo| < 20"/ for all § € (0, dp).

We can estimate co from below: denoting by
a := max{|e1(yo)l, |e2(vo)|}, e1(10), e2(yo) = eigenvalues of V2p(yp),
(37) gives
(W) — v0)" V2p(y0) (¥ — wo) < ac3ly) — yol?,
hence ¢y > /2/a. By the Lipschitz regularity of the gradient, i.e. hypothesis
IVp(z) = Vp(y)| < Llz —y|
for some L > 0, we have
IVp(y}) = Vp(yo)| = Vo)) < Lly] — yol < Lead™>. (38)

Consider now the segment [y?,y3] between y? and y3: since y? eCin{p>XA+0}(j=1,2), and
C; N {p > X+ &} are disconnected for all § > 0, there exists some point z € [y}, y3] such that
p(2) < A+ 6/2. By Taylor’s formula we then have

p(2) =) + Vpl) - (z — ) + (= — 1)) V() (2 — ¥9) /2 + O]z — 3|
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If inequality |y — 3| < k62 were to holds for some k > 0, then since the domain is compact and
V2p € C?, denoting by

A= sgp (max{|el(aj)\, |62(x)|}), e1(x), ea(z) = eigenvalues of V2p(z),

we have
Ip(z) = p(9)] < VR - |2 = yi| + [V2p(y)| - |z — yi[?/2
) ) ) 2 ) ) 512 (38) 2
< [Vp@)! - y) — sl + IVopWi)] - [y1 —u2l°/2 < (Lkea + k= A/2)6.

Since p(y?) = A + 4, and p(z) < A+ 6/2, we need Lkcy + k2A/2 > 1/2, hence

k> A" (/L2 + A — Le2),

i.e.
g8 — 3] = dist(Cy N {p > A+ 6},Can {p > A +6})

> A7V L263 + A — Leg)d'/? > A7 (/202 Ja+ A — L\/2/a)sY/2.

Step 2. In this step we show that condition C holds.

Proof of C1. Since a Morse function has only isolated non degenerate critical points, and an
isolated set in a compact domain is also finite, we infer that Vp(z) = 0 only for finitely many x. In
particular, since A* are split levels, and {p = A*} contains a critical point, there exist sufficiently
small 01, 6o > 0 such that {\* + 3 < p < A\* + 2} contains no critical points (since there are
only finitely many critical points). Since the level sets are orthogonal to the gradient, we infer that
{p = X\* + 1} is smooth. In particular, {p = \* + d;} it satisfies the inner cone property with
C] = 1 / 2.

The key difficulty in extending the above argument to {p > A\*} (instead of just {p > A* + §;}
with 01 > 0) is that the norm of gradient |Vp| can approach zero as 6; — 0, since {p = \*} is a
split level, hence it contains critical points.

The Morse function requirement, however, gives the “bare minimum” regularity to ensure C1.
We aim to prove, by contradiction, that {p > A*} also satisfies C1, i.e. the boundary {p = A*}
does not exhibit cusps. If a cusp were to appear, then there exist arc-length parameterized curves
v; : [0,€] — , j = 1,2, such that g = 71(0) = 72(0) and the angle Zvyi(s)zoy2(s) = 0 as s — 0.

Consider a level set {p = A\* + d}, for small 6 > 0. Let ys € {p = A* + 6} be the point on {p =
A"+ 38} closest to @, i.e. |zo—ys| = minye,—x+15} [To — yl, and we proved that |z — ys| = O(V59).
Let ps, g5 be the intersection between {p = A\*} and the tangent line to {p = \* + ¢} through ys.
Clearly, as {p = A\*} has a cusp at xg, we get lims_,o £pszogs = 0. Thus

dist(ys, {p = X*}) < |ps — ys| = o(V3).
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bs\ Ys [ds

o

Figure 3: Construction in the proof of Morse function case.

Since Vp(zp) = 0, and the gradient Vp is L-Lipschitz continuous for some constant L, we infer
|Vp(y)| < AVS for some A > 0 and all y on the segment [ps,ys]. Thus it follows

§ = p(ps) — pys)| < ALVS|ps — ys| = o(9).

This is a contradiction.

Proof of C2. Let U = {p > X\* + ¢}. Fix an arbitrary r. Clearly U C |J, ¢y B(z,r/3). Since
U ={p > X+ 0} is closed, and the domain 2 is compact, we infer U = {p > \* 4+ 0} is also
compact. Thus we can extract a covering U C Uf:rl B(z;,r/3) with finitely many balls. By Vitali
covering lemma, we can further extract mutually disjoint balls B(z;;,7/3) such that

Cr

UcC U B(.CL‘Z'].,T)
j=1

Since B(x;;,7/3) C €2,/3, and {B(xij,r/?))}jcil are pairwise disjoint, we have

VaCr(r/3)~% < £, 3).

Thus we can choose N, = {z;,}, j =1,---,C].

r

B.3.1 Proofs in Section 3.6

Proof of lemma 9. Let A > 0 be given. Later in the proof, it can be seen that A = Cj, being the
common upper bound of f; € F'. Define a > 0 to be such that

56X -89 1gd =1, (39)

35



Consider
A,z €0,56a] x [0,8a] ! =Q

0, otherwise.

1/d
Let b = (l(:lg(32)> . For 0 < a < 1, define

0, 0<r<b
g@) =K () = r=v= )" )" o= ()= ()
0, otherwise,
and for o > 1,define
0, 0<r<b
2105 —Klr —b—(£) 7%, 0<|r—b—(2)

1/a
g(r) = a \© 1/ %(Kl/ 1/
(6% =Kol —b— (2)" 1) SR <= (£) 12 ()

’ 2
0, otherwise,

where K < 1 is chosen so that g € ¥(L, «). By construction 0 < g(r) < 4.
Consider the inequality

NV

a=1 a=2

Figure 4: The radial function g for o = 1, 2.
1/a 1/d 1/a
b2 (S) T 2 (BT, (2
K nA\Vy K
1\ 1
- 42—
498\ 16(7\)1/d

1 /1) V4 ) 1 /1) V4
< -z —1/d =~ [ = ~1/d _
=7 <7> A + 3 <7> A 3a
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where the first inequality follows from n > 4d81#‘532) and § < <W>. So by construction,

8
9 disjoint ball {B (wi,b—k 2 (%)I/Q)}' . can be placed in Q. For i = 1,...,8, let f; = f(x) —
g(|z — z;]) + g(|z — 20|). Thus f; € (L, ) for ,i=1,...,8 and the common upper bound of f; is
| fillo = A. Since [ f =1, by symmetry each f; also integrates to 1. The fact that f; > 0 follows
from 0 < g(7) < 6 < pmax. Since for any 1 <i,5 <8, fj(x) = X for any z € B(z;,b).
P(There exists a point in B(z;,b) for any i) > 1 — (1 — AVb%)"
> 1 —exp(=Vgban) =1—1/32

_ (ros2)\ /4 : :
where b = o\ is used in the last equality. Thus

P(There exists a point in every B(z;,b) for i =1...8) > 3/4.

Suppose the family F' = {f;}2_, is given ahead. One wants to show that any algorithm being
d consistent with probability 3/4 can identify f; with probability at least 1/2. To begin consider
B; = {fi > A\}. B; has exactly two connected components and one is B(z;,b). Denote the other
connected component of B; by V;. Thus B; = V; U B(z;,b), where V; N B(x;,b) = (). Define the
three events &1, &1 and &3 as following

&1 = {There exists a point in every B(x;,b) for i =1...8}
&y = {The algorithm is (4, €) consistent } (42)
&3 = {The algorithm can indentify the true density}

Then one has & N & C &. This is because if an algorithm is 4, consistent and every B(z;,b)
contains at least one point , the algorithm will assign points in Ujx;B(x;,b) and points B(x;,b)
into different clusters before joining them into the same cluster. In this way, the algorithm can
identify the true density. Since P(&1) > 3/4 and P(&;) > 3/4, P(&) > 1/2

It remains to compute the KL divergent between f; and fs and apply Fano’s lemma. Using spherical
coordinate centering at x; and xo, the KL divergent is given by
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A—g(r)
br2( L) -
:dVd/ grlog( >r_d
b s =g
a(t)"”
g(r) d—1
=dV, / g(r)log <1 + )
‘) ") >~ g
b+2( L)Y b2( L)
9(r) a1 K 9(r) a1
<dVd/ g drngd/ g(r r¢ dr
b ( ))\ —g(r) b )
b2(2)Y®
< d) 152Vd/ Yl
b
d
52V, 5\
< —
AANE
Thus by Fano’s lemma
n> (1/2)logy(8) — 1 _ 1 (43)
KL(flan) QKL(flafZ)
and this implies
AN\ (8 1/"‘+ log(32)\ M/ (44)
202Vn - K nAVy '
Since § < A/(2%/%*1), this gives
A log(32)
> . 45
20+152Vm = AV, (45)
Combines equation (44) and equation (45) one has
hal > _ _Z 46
2 <IC> = <2(52Vdn> (1=3) (46)
This gives
)\]Ccl/a
"2 Cle 0
where C(d) = 224+1V/,. O

Lemma 20. The collection of functions {fi}§:1 constructed in the previous proof satisfies condition

C and S(«).

Proof. Observe that A is the only split level of f; for all 1 < ¢ < 8 The case of a > 1 is only
provided as the case of a < 1 is simpler. Straight forward computations shows that for any

t <279 {z: fi(x) > X+ t} has two connected components: B (l’i,bo + % (%)Ua - (%)1/04) and
(B ($i7 bo + % (%)Ua))c N €. Therefore condition C and S(«) are trivially satisfied. O

38



B.4 Proofs in Section 3.5
Proof of lemma 7. Let v = 1/n. For any x € R with probability at least 1 — v
() — p(@)| <|pn(z) — pa(@)| + [pa(2) — p(2)]

K. d o0 ) 1
CQ( ) )HpH ) ogn —i—Cé(K)Lha
nhd

- (48)

where the second inequality follows from proposition 17 and the standard bias calculation. By
taking

1\ 1/ a+d)
h:hn:®<>
n
in (48),
. log(n)
_ < _o\VY
sup [ (0) = p(o)| < Clple. K. L) (B )

This completes the proof. O

Proof of Corollary 8. Let A and A’ be two given connected subsets of R, Suppose A > 0 satisfies
A+ 35 =infecaua f(z) and that A and A’ are contained in two distinct connected components of
{p > A}. It suffices to show that the estimate cluster tree at {p, > A + 26} gives correct labels to
AN{X;} and A" N{X;}, where

n

1\ V/(2atd)
h:hn:®<>

e Since A, A’ are connected and
A, A c{p>35+ A} C{pn>25+ )},

A and A’ each belongs to the connected component of {p; > 20 + A\}. Therefore the cluster
tree at {pp, > 26+ A} will assign AN{X;}" , the same label. This is also true for A'N{X;} .

e It remains to show that A and A’ are in the two distinct connected components of {p, >
25 + A}. For the sake of contradiction, suppose that A and A’ are in the same connected
components of {pp > 25 + A}. Since

{pn > A+20} C{p>A+0} C{p> A},

A and A’ are in the same connected components of {p > A}. This is a contradiction.
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B.5 Proofs in Section 3.7
Poof proposition 10. By (9), with probability at least 7, we have
[P — plloe < an-

Step 1. In this step, we show that for any split level \* satisfying (21), there exists 2\ being
A-significant and that .
A=A <A

for large n. Let C and C’ be two sets split at \*. Thus there exists B being the connected component
of {p > A\*} containing both C and C’.

By (21), for large n, neither {X;}7; NCN{p > X\*+2A} nor {X;} ;NC’'N{p > A*+2A} is empty.
Let X; €CN{p> X\ +2A}and X; € C'N{p > \* +2A}.

e By the same argument that gives (34)

{p> N} C LN —ay,) = U  B(x;.2n). (49)
{X;:D(\* —an)}

Since B C {p > X\*} and that B is connected, X; and X; have the same label in C(h, \* — ay,).

e Since X; € C,X; € C' and that C and C’ are split exactly at A*, X;, X; are contained in the
distinct connected components of {p > A* + A}. By Claim 2 in the proof of Theorem 6, X; and

X belong to distinct connected components of C(h, \* + A — ay,). Let 2 be defined as in (20). By
the above two bullet points, .
A —ap <X <A 4+ A —a,.

The fact that A+ is A-significant follows from the observation that

X, Xj € C(h, X"+ 2A — ay,).

Step 2. In this step, we show that if M is a A-significant level of the cluster tree constructed using
modified DBSCAN, then there exists A* being a split level of p such that
=\ < A.
So suppose X; ,X; and 2\ satisfies (20) and that X;, X; € (C(h,jx: + A). Let
A" :=sup{\ > 0: X; and X; are in the same connected component of {p > \}}.

e By (49), X; and X; have the same label in C(h, \* — ay,). Therefore,

N —a, < N

e For the sake of contradiction, suppose that

> A A
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Then by Claim 2 in the proof of Theorem 6, X; and X; belong to distinct connected components
of C(h, \* + A — ay,). By definition of A\*, this implies
N4+ A—a, > X;,

which is a contradiction. This finishes the proof.

C Proofs in Section 4

C.1 Proof of Proposition 11
To show Proposition 11, we first show the two technical lemmas 21 and 22.

Lemma 21. Suppose € > 2a,,, where

sup [pn(z) — pr(2)| < an,
z€RI

and let A € (Ax + an, \* — ay,). Then,
S_nN {Xi}?:]_ C ﬁh()\> C Sy,
where S = {p > \*}, where

Dp(\) = {z: pulx) = A} () {Xi}ies-
Proof of lemma 21. For the first inclusion, suppose X; € S_;, N {X;}! ;. Then B(X;,h) C S.
Since K is supported on B(0,1),
1
Pr(X; —/ p(y)dy > \". 50
( ]) thd B(X, ) ( ( )

As a result,
Pu(X5) > pn(Xj) —an > X —an > A,

which implies that X; € Dy, ()\). For the second inclusion, if X; € Dj,()\), then p(X;) > . So
pr(X;) = pn(Xj) —an > A —an > A

However, for any point = € S§, since B(z,h) C S¢, pp(z) < A (see (50)). So X; € Dy(\) implies

Xj € Sy. O]

Lemma 22. Under the same assumption as in lemma 21, suppose further that \* > a,. Let
LX) =Uyx,ep, ) B(Xi,h). and C be any connected components of S. Then C_gp, C L(A).

Proof of lemma 22. Let x € C_gp. Then, B(z,h) C S, which implies, by (50), that p,(x) > A\* and
therefore that
pr(z) > pr(z) —an > X —a, > 0.

Therefore, B(x,h) N {X;}!, is not empty — otherwise pj(x) = 0 — so that there exists a sample
point, say X, in B(z, h). Since B(x,h) C S_j, we conclude that X; € S_j,. By lemma 21 we then
have that X; € Dy,(\). This shows that if # € C_gp, then there exists some X, € Dy, ()) such that
x € B(Xj,h). This finishes the lemma. O
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Proof of Proposition 11. Let

_ C (v + log(1/h))
" nhd
be defined in (9). Then by (7).
P <sup 1Pn(z) — pr(x)] < an> >1—n. (51)
zcRd
Denote h = Cl(ﬁ)l/d where C7 is chosen such that 3a, < e. Denote A\, = ﬁ%. Therefore
A — A > 3ap,.
Consequently A is well defined and one has
M Fan <A< N —ay,.
By lemma 21, the nodes of Gy, ;, are contained in Sj;. Thus
U B(Xj,h) C Sop. (52)
X;€Gp
By lemma 22,
Sonc |J B(Xjh). (53)
X;€Gp 1
Since hg > h using assumption A3 then
L(SAS) < L(Sm\S) + L(SK\S-2n) < Coh.
O

C.1.1 Proof of Proposition 12

We will prove the following result, from which the lower bound claim of Proposition 12 will follow.

For any e < 1/4, there exists a constant hy depending only on d and a finite family F = {fi}f\il
of Lebesgue densities such that the following holds. If P; is the distribution of n i.i.d samples with
respect to the density fi, then {P;}M, C P"(ho,€) and there exists a constant ¢ only depending on

d such that
N 1 1/d
HSlfi:?.l.I.),M Ep, (E(SAS)) > cmin { <n62> ,1} ,

where the infimum is with respect to all estimators of S.  We remark that from the proof of
Proposition 12, M = 2V/8, where N = max{C(ne?)?1,16} for some absolute constant C. For
explicit expression of NV, see step 1 of the proof of Proposition 12.

We begin by constructing of a well-behaved class of sets satisfying the boundary regularity
condition (R). These sets will then be used to define high-density clusters in the proof of Proposi-
tion 12. Sets satisfying the properties given in the next definition are well known in the literature
on support estimation: see, e.g., Korostelev and Tsybakov [1993]. For completeness we also show
that they satisfy the boundary regularity condition (R).
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Definition 15. For a number L > 0, denote by G4(L) the class of all domains in [0,1]? satisfying
{('xla s 7$d) : (1:15 s 7:Cd—1) € [Oa ]-]d_lv 0< xqg < g(ﬂfb s axd—l)} )

where g : R¥™1 — R satisfies
o 1/2 < |g(x)| <3/2 for all z € [0,1]%!
e |g(x) —g(z')| < L|lz — 2| for all z,2' € RI~L.

Lemma 23. There exist a constants hg only depending only on L such that for any Q € G4(L),
one has for any 0 < h < hg,
L(Qp\Q_p) < Coh,

where Qp, = Jeq B(x, h), Q_p, = {x € Q: B(x,h) C Q} and Cy is some constant depending on d.

Proof of lemma 23. Given Q € G4(L), let g be the corresponding map as in definition 15. Denote
2 be a generic point in R, Consider the change of coordinate map ¢ : R? — R defined as

Pz, 2q) = (z, x49(z)).

The inverse map ¢! : R? — RY where ¢! (2, z4) = (z, £4/g(z)) is also well defined as g > 0.
Observe that ¢([0,1]%) = Q, and there exists a constant C(d) depending only on d such that [0, 1]¢
satisfies condition A3 with hg = 1/2 and Cy = C(d). Thus in order to justify the lemma, it suffices
to show that the maps ¢ and ¢! only distort the distance and volume by factors depending on L
only.

To be more precise, it suffices to show that for some constant L’ depending on L and some absolute
constant C,

o1 (z) — ¢~ ()| < L)z — 2/| and |¢(x) — ¢p(2)| < L'|z — 2| for all z,2’ € [-2,2]¢
L(¢7'(B)) < CL(B) and L(¢(B)) < CL(B) for any B C [-2,2]" .

Since the calculations of ¢ are similar to that of !, only the former one is shown in this case.

Step 1. To show that ¢(x) is Lipschitz, it suffices to bound ||V é||sp.

==
—_
=
QL
Q|
Q |Q
S S
BB
]

b
al‘j ) N

Vo(z,za) = (

000 .. 1 gl
00 ... 0 glz) |

A straight forward calculations shows that for any (z,z%) € [-2,2]¢,

[Vollop <1+ 20]|Vg(z)|l2 + g(x) < 5/2+2L.
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Step 2.

The change of variables equations gives

£(6(B)) = /¢ s /B | det(V ()| da.

Since det(Vo(z, x4)) = g(z) which is bounded above by 3/2, one has L(¢(B)) < (3/2)L(B).
O

Proof of Proposition 12. Let 0 < 6 < 1/16 be depending on € which will be specified later. For some
constant depending C(d) only depending on d, we will construct a colleciton {S;}M, € G4(C(d))
such that £(S;AS;) > ¢ and that M is of order §—4+1.

Step 1.

Step 2.

Consider a hyper rectangle [0,26] x [0,]%2 in R%"!. One can place N = [§~!]|?1/2 such
hyper rectangles into [0, 1]9~! without having any two intersect. Denote theses hype rectan-
gles by {R;}Y,. Each R; is composed of two hypercubes of dimension [0,3]¢"!, which are
denoted as RY and R}.

DLet z be a generic point in R¥~!. One can defined a map g : [~§/2,6/2]7"! — R by

- {c<d> (8/2 = llzllga—) , if par < 5/2

x
9z 0, otherwise .

The region
C={(z,2q) 2 €[-5/2,6/21"1,0 < 24 < g(2)}

defines a region of hyper cone in R? and C(d) is set so that the cone volume

dx = 6%,
/[_5/2,5/2]u g(2)de =

Let g? and 92'1 be the corresponding map on R? and Rl-l, as the later ones are copies of
[—6/2,6/2]% 1.

Let W = {w = (w1,...,wn),w; € {0,1}}. By Varshamov-Gilbert lemma [see, e.g., Lemma
2.9 in Tsybakov, 2009], there exist w', ..., w™ € W such that (i) M > 2V/® (i) H(w',w’) >
N/8.

For 1 <j < M,let G, :[0,1]971 — R? be defined as

N .
Gj(z) =1/2+) 9" (2).
i=1

Consider
Sj = {(z,2q) : z € [0, 1]d_170 <xg< Gj(g)}

Thus by construction G € G4(C(d)) in definition 15. For [ = 0,1 and 1 <i < N, define
Ci={(z,7a) 1z € R0 < 2 < gi(2)}-

So C]l- are non-overlapping cones with volume being §¢, which are indexical copies of C.
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Step 3.

Step 5.

Step 6.

Step 7.

Let {f; j]\/il be such that
1/4, if z € [0,a]?\S;
Ji=q1/4+¢ ifxels;
0, otherwise

Since 1 = [ f; = a?/4 + (1/4 + €)(3/4)¢ < a?/4 + (1/2)(3/4)%, a has to be greater than 1.
Thus S; C [0,a]? and so S; can be viewed as the support of f; at the gap.

For any i and j Since f; and f; are only possibly different on {C2 U CLHY . Also f; # f;
within C) U C} if and only if wi # wy.. Thus the KL(f;, f;) is determined by

N
) = Jog (1) = tog (i
KL(f’va]) kZl/C\]gUCi leOg <f]> Z ,/C\guci leog <f]>

k! #w)

Suppose w,i #* wi, then

/cguc; filee <£) - /0(1/4 te)log (1/14/1 6) +(1/4)log (1/14/1 6) < 45,

So KL(f;, f;) < H(w',w?)d%e? < N§de?,

We will finally apply Fano’s Lemma [se, e.g. Yu, 1997]. Towards that end, we need to show
that

log M
max KL(P;, Pj) < —2°
i#] 16n

Since M > 2V /8 the above inequality will follow if nNd%? < Nlog(2)/128. Choosing §¢ to
be equal to min{aﬁ, 1/16} for some absolute constant a will in turn ensure that.

Putting things together, we find that the minimax rate is bounded from below by
L(Si,S5) = H(w',w’)2L(C) = (N/8)267 = ¢5,

for some absolute constant c.

O
C.1.2 Proof of Proposition 13
Proof of Proposition 13. Let
a — C(v + log(1/h))
" nhd

be defined in (9). Then by (7).

P <Sup pn(2) — pn(z)] < an) >1—1. (54)

reRd

Denote h = C’l(nlj)l/d where C is chosen such that 3a,, < e.
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Step 1.

Step 2.

Suppose Agp, C C;. Then A C C; _9p. Then by Lemma 22, one has A C C; _op C ﬁ(x\) Since
by Lemma 1, points in connected components of ﬁ(x\) has same label, and A is contained in
only one connected components of L(\), points in AN {X;}"; has the same labels.

Suppose Al holds. Since dist(C;,Cj) > 4h, {C;on}l_, are pairwise disjoint.

Since ﬁh(Ak) C Ule Ci n, this means for any 7, j there is no edges connect ﬁh()\k) NCip and
Dh()\k) NCjp. Since A and A’ belong to distinct members of {C:}L,, labels in AN {X;}",
and in A" N {X;}, are different.

O
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