
Rend. Sem. Mat. Univ. Pol. Torino
Vol. xx, x (xxxx), 1 – 38

L. Lussardi

THE PLATEAU PROBLEM IN THE
CALCULUS OF VARIATIONS

Abstract. This is a survey paper written for a course held for the Ph. D. program in Pure
and Applied Mathematics at Politecnico di Torino during autumn 2018. The course has been
dedicated to an overview of the main techniques for solving the Plateau problem, that is to
find a surface with minimal area that spans a given boundary curve in the space. This prob-
lem dates back to the physical experiments of Plateau who tried to understand the possible
configurations of soap films. From the mathematical point of view, the problem is very hard
and a lot of possible formulations are available: perhaps still today none of these answers is
the answer to the original formulation by Plateau. In this paper, first of all we will briefly
introduce the problem showing that, at least in the smooth case, if the first variation of the
area vanishes then the surface must have zero mean curvature. Then we will describe how the
classical solution by Douglas and Radó works, and we will pass to modern formulations of
the problem in the context of Geometric Measure Theory: sets of finite perimeter, currents,
and minimal sets.

1. Introduction

The original formulation of the problem might be the following one: given a closed
curve Γ in the space find a surface with minimal area spanning Γ. The Italian mathe-
matician J.-L. Lagrange (1736-1813) was the first, around the year 1760, that investi-
gated the problem, but today this problem is known as Plateau problem since the Bel-
gian physicist J. Plateau (1801-1833), in the middle of the 19th century, devised many
illustrative soap films experiments putting wires in a soap solution. The connection

Figure 1: A soap film created by the edges of a cube.
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between soap films and minimal surfaces was established by C.F. Gauss (1777-1855)
who worked, in 1830, on capillarity problems. Precisely, he found that at the equilib-
rium any liquid surface is a minimizer of the potential energy caused by the molecular
forces. For soap films such an energy is proportional to the area. In other words,
soap films can be viewed as physical models of stable minimal surfaces. Motivated
by experiments, Plateau conjectured that every closed curve (without double points)
spans a surface which minimizes the area, as every closed wire seemed to span some
soap film. The aim of this survey is to present some of the established solutions of the
Plateau problem. We will also take into account the generalization to higher dimension
and/or higher codimension: find a d-dimensional surface with minimal d-dimensional
volume spanning a (d−1)-dimensional boundary Γ. In this problem there are a lot of
ingredients that need to be clarified. For instance, we have to say what surface means,
that is at which level of generality we might work. Next, for a given notion of surface
what do we mean by d-dimensional volume? Again, what does it mean spanning a
given boundary? Depending on the meaning of these objects, the Plateau problem will
admit a suitable framework and, possibly, a solution. Here we are interested only in
the existence of solutions for the Plateau problem; we will not enter in details about
uniqueness.

2. Minimal surfaces equation and first examples

In this section we deal only with the smooth case. Precisely, we review some facts
of smooth differential geometry, we recall how to compute the area of a smooth sur-
face, and we prove that a smooth surface with minimal area has zero mean curvature
everywhere. The equation of minimal surfaces, namely

H = 0

(H stands for the mean curvature), is the Euler-Lagrange equation of the area func-
tional. Lagrange found this equation in 1762, but without explaining the geometrical
meaning; four years later the French mathematician J.-B. Meusnier (1754-1793) real-
ized that the Euler-Lagrange equation of the area functional says that the mean curva-
ture vanishes at any point.

2.1. A review on differential geometry

First of all, we review some basic facts of differential geometry for smooth surfaces;
for details we refer to Do Carmo [9]. For us, a d-dimensional surface in Rn (0 <
d < n) is the image of a smooth map X : D→ Rn, where D is open in Rd , X is a
homoemorphism between D and X(D), and ∇X has rank d. We will refer to local
coordinates as the coordinates u1, . . . ,ud ∈ D. Usually, the geometric properties of
S = X(D) do not depend on X (think to the area of S), and for this reason X is often
called a parametrization of S. Since the rank of ∇X is d, the tangent vectors

∂1X, . . . ,∂dX
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are linearly independent everywhere, hence we can well define the tangent space to S
at p, denoted by Tan(S, p), as the d-dimensional vector space generated by

∂1X(X−1(p)), . . . ,∂dX(X−1(p)).

In order to define the mean curvature of S, we restrict to the case of hypersurfaces,
namely d = n−1. Fix p ∈ S. First of all we have to choose a normal direction to S at
p. Let us take a unit vector n(p) in such a way the matrix

[∂1X|∂2X| · · · |∂n−1X|n]

has positive determinant at p.
We denote by Nor(S, p) the one dimensional vector space generated by n(p).

Hence, close to p the surface S is the graph of a smooth function

f : Tan(S, p)→ Nor(S, p)

Notice that a change of the direction of n gives a change of sign of f . Let us denote by
Ap the Hessian of f at p. The linear map

Ap : Tan(S, p)→ Tan(S, p)

is self-adjoint hence it admits n−1 real eigenvalues λ1, . . . ,λn−1 which are called prin-
cipal curvatures of S at p. We can define the mean curvature of S at p as

H(p) := trAp = λ1 + · · ·+λn−1.

There is an important relation between A and n: it turns out that

−dn(p) = Ap.

For the special case n = 3 it is usual to take

n =
∂1X∧∂2X
|∂1X∧∂2X|

,

where ∧ is the standard vector product in R3. It is possibile to prove that H has the
following expression in term of X:

H =
eG−2F f +gE

EG−F2

where
E = |∂1X|2, F = 〈∂1X,∂2X〉, G = |∂2X|2,

and
e = 〈n,∂2

11X〉, f = 〈n,∂2
12X〉, g = 〈n,∂2

22X〉

and 〈·, ·〉 is the standard scalar product in R3. In the theory of surfaces the coeffi-
cients E,F,G are usually known as coefficients of the first fundamental form, while the
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coefficients e, f ,g are usually known as coefficients of the second fundamental form.
We conclude this section with a remark on conformal coordinates. We say that X is
conformal if

E = G, F = 0.

In this case, it can be shown that the formula for H can be simplified, and it gives

(1) ∆X = 2EH,

where ∆X = (∆X1,∆X2,∆X3). A question naturally arises: is it always true that any
surface can be reparametrized conformally? The answer is positive if X is smooth
enough (for instance Hölder continuous). Let us also mention that the existence of
conformal reparametrizations is much harder in higher dimension∗ and holds true under
restrictive assumptions on the surface.

2.2. Area formula

We pass now to the definition of area and the area formula. Let S be a d-dimensional
surface in Rn parametrized by X : D→ Rn. First, consider the simple case d = 2 and
n = 3. In this case we know that the area of S is given by

A(S) =
∫

D
|∂1X∧∂2X|du.

Notice now that if v,w ∈ R3 are linearly independent then

det

( v1 v2 v3
w1 w2 w3

) v1 w1
v2 w2
v3 w3

= |v|2|w|2−〈v,w〉2 = |v∧w|2.

This means that
|∂1X∧∂2X|=

√
det((∇X)T ∇X).

Therefore, the area of S is also given by

A(S) =
∫

D

√
det((∇X)T ∇X)du.

This formula makes sense for general d and n and indeed it holds true:

A(X(D)) =
∫

D

√
det((∇X)T ∇X)du.

We need a further generalization of this formula. Precisely, if f : S→Rn is smooth and
injective we have

(2) A( f (S)) =
∫

S

√
det((d f (p))T d f (p))ds

where d f (p) : Tan(S, p)→ Rn is the differential of f as a map between surfaces, that
is

d f (p)(v) = ∇( f ◦X)v, ∀v ∈ Tan(S, p).
∗In higher dimension we say that X is conformal if |∂iX|= |∂ jX| for any i, j and 〈∂iX,∂ jX〉= 0 for any

i 6= j.
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2.3. The first variation of the area

Using the area formula it is possibile to compute the first variation of the area. In other
words, given a smooth hypersurface S in Rn we want to find a formula for the quantity

d
dt

A(St)|t=0

where St is a one-parameter family of hypersurfaces in Rn such that S0 = S. The idea
is to choose a suitable family of variations of S. Precisely, we choose a smooth normal
vector field η to S (S is assumed to be orientable, which means that such η exists).
Then, if n is a choice of unit normal vector field on S, it is η = ϕn for some function
ϕ : S→ R. Let

St = {p+ tη(p) : p ∈ S}.
Clearly St is a smooth surface only if t is small enough. Of course, the surface St can
be parametrized by ψt : S→ St given by

ψt(p) = p+ tη(p).

Since for t small ψt is smooth and injective we can apply area formula (2). We need to
compute dψt . Formally, we have

dψt = d p+ tϕdn+ tndϕ.

We are going to find the matrix which represents dψt . Choose an orthonormal basis
{e1, . . . ,en−1} in Tan(S, p) and take the orthonormal basis {e1, . . . ,en−1,n} inRn. With
respect to this choice of bases, the linear map dψt is represented by the n× (n− 1)
matrix

M =

(
I(n−1)×(n−1)− tϕA

t(∇ϕ)T

)
.

Hence we get
MT M = I(n−1)×(n−1)− tϕ(AT +A)+O(t2).

Remember that at first order det(I +X)∼ 1+ trX , from which√
det(MT M) =

√
1−2tϕtrA+O(t2) = 1− tϕH+O(t2).

Applying formula (2) we deduce that

A(St) =
∫

S
1− tϕH+O(t2)ds = Area(S)− t

∫
S

ϕHds+O(t2).

Finally, we get

(3)
d
dt

A(St)|t=0 =−
∫

S
ϕHds.

We can now deduce an important conclusion from (3). Indeed, by the arbitrariness
of ϕ we can say that if S minimizes the area among a class of surfaces for which
St produces admissible variations, then it must be H = 0 everywhere, which is the
equation of minimal surfaces. In literature actually minimal surface means simply
that H vanishes, or in other words S is a critical point of the area functional, and not
necessarily a minimizer.
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2.4. Some examples

We discuss some explicit examples of minimal surfaces, that is surfaces satisfying
H = 0 everywhere. A first, obvious, example is the flat surface: this is also the unique
solution of the Plateau problem when the boundary curve is a planar curve. A less ob-
vious example is the catenoid. We ask for a minimal surface which is also a revolution
surface. If we let

X(u,v) = (acoshvcosu,acoshvsinu,av), (u,v) ∈ (0,2π)×R, a > 0,

we find the surface generated by rotating the catenary

y = acosh
( z

a

)
around the z-axis. This surface, called catenoid, is a minimal surface. In order to see
this, first notice that the coordinates u,v are conformal:

E = G = a2 cosh2 v, F = 0.

Hence, we can apply (1) and we obtain, by direct computation,

H =
2

a2 cosh2 v
∆X = 0.

It is possible to prove that the catenoid is the unique minimal surface of revolution
(see Do Carmo [9] for details). The catenoid appears also as a solution of the soap
film bounded by two coaxial rings sufficiently close (see figure 2). The catenoid as a

Figure 2: A catenoid as a soap film that spans two coaxial rings.

solution of the Plateau problem with boundary given by two coaxial rings is not the
unique solution. There always exists the so called Goldschmidt solution (existence
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proved by K. Goldschmidt (1807-1851) in 1831) to this Plateau problem: it consists
in two plane discs with no intermediate surface. If the two rings are close enough
then the Goldschmidt solution is a local minimizer and the minimizing catenoid is the
absolute minimizer, while at some distance the catenoid becomes unstable and so if the
two rings are far enough the Goldschmidt solution is the absolute minimizer and the
catenoid is a local minimizer. We conclude with another example of minimal surface
which is the elicoid. Let

X(u,v) = (asinhvcosu,asinhvsinu,av), (u,v) ∈ (0,2π)×R, a > 0.

This surface, called elicoid, is a minimal surface. Indeed the same considerations for

Figure 3: The elicoid as a soap film.

the catenoid hold in this case:

E = G = a2 cosh2 v, F = 0, H =
2

a2 cosh2 v
∆X = 0.

It is possible to prove that the elicoid is the unique (other than the plane) ruled minimal
surface (see Do Carmo [9] for details).

2.5. Further remarks on the equation H = 0

We can ask, in general, for solutions of the equation H = 0 with prescribed boundary
conditions. From the point of view of PDE’s this problem is very hard since the mini-
mal surfaces equation arises from a functional with linear growth in the derivative. In
order to see this, let us restrict to the case of 2-dimensional graphs. Let Ω ⊂ R2 open
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bounded with smooth boundary and let u : Ω→ R smooth enough. The area of the
graph of u is given by

A(u) =
∫

Ω

√
1+ |∇u|2 dx.

We can set the Plateau problem in this case simply asking for minimizers of A(u) when
u is fixed on ∂Ω. This minimization problem leads to the equation

div
∇u√

1+ |∇u|2
= 0.

The difficulty with this equation, which is again H = 0, is hidden in the growth of A:
indeed A has linear growth in the gradient, so that the natural Sobolev space where
one could considers the minimization problem for A is W 1,1(Ω). But this space is
not reflexive, hence the direct methods of the Calculus of Variations cannot be easily
applied. In order to treat functionals as A one has to move to the space of functions of
bounded variations, but in this case one has to consider also discontinuous solutions,
which are not physical. To overcome the difficulty an idea could be to modify the area
functional in such a way it becomes a functional with superlinear growth. This is the
key point of the Douglas-Radó approach, which we are going to describe in the next
Section.

3. Disc-type Plateau problem

During the 19th century, the Plateau problem for 2-dimensional surfaces was solved
for many special boundary curves Γ. A general treatment for that arrived in 1930
independently by J. Douglas (1897-1965) and T. Radó (1896-1965). A simplification
has been given independently by R. Courant (1888-1972) and L. Tonelli (1885-1946).
In this section we will sketch the approach of Courant and Tonelli following Dierkes
et al. [8]. The idea is to consider surfaces parametrized on a disc in the plane. In other
words

D = {(u,v) ∈ R2 : u2 + v2 < 1}

and X : D→ R3 is a smooth parametrization, while, roughly speaking, the trace of X
on ∂D is a smooth parametrization of a prescribed closed curve Γ in R3.

3.1. The parametric area functional: lack of compactness

If we wish to apply the direct method of the Calculus of Variations in order to solve the
disc-type Plateau problem, we have to consider the area functional

A(X) =
∫

D
|∂1X∧∂2X|du

for which we have to check semicontinuity and compactness with respect to a suit-
able topology on a suitable domain. The weak lower semicontinuity of A in some
Sobolev space is not a problem: it turns out that A is weakly lower semicontinuous in
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W 1,p(D;R3) for any p≥ 2. The key point here is that |∂1X∧∂2X| is a convex function
of the determinants of the 2×2 minors of ∇X (what is called polyconvex function), and
the lower semicontinuity follows from standard results (see Dacorogna [7]). Concern-
ing the compactness, unfortunately the set

{X : A(X)≤ c}

is not bounded in any reasonable Sobolev norm. The main obstruction is the fact that
F is invariant under reparametrization, that is for any diffeomorphism φ : D→ D we
have

A(X) = A(X◦φ).

Hence, taking suitable φ we can make any Sobolev norm of X◦φ as large as we want.
On the other hand, this invariance may help: indeed, we could use it in order to restrict
the search of minimizer to a much smaller and better behaved class of surfaces.

3.2. The Dirichlet functional

Given two vectors v,w ∈ R3 we have

|v∧w| ≤ |v| |w| ≤ |v|
2 + |w|2

2
.

If v,w are the two columns of the matrix M then the previous estimate reads as

|v∧w| ≤ 1
2
|M|2.

Moreover, the equality holds true if and only if |v|= |w| and 〈v,w〉= 0. Thanks to the
previous considerations we can say that

A(X) =
∫

D
|∂1X∧∂2X|du≤ 1

2

∫
D
|∇X|2 du

and the equality holds true if and only if X is conformal. This suggests that we could
deal with the Dirichlet functional instead of the area functional and this should be better
since the Dirichlet functional has superlinear growth in the gradient so that we can work
in Sobolev spaces where good compactness properties hold true.

3.3. Setting of the disc-type Plateau problem

In this paragraph we state the rigorous formulation of the disc-type Plateau problem.
Fix X ∈W 1,2(D;R3). We denote C = ∂D and

X|C : C→ R3

denotes the trace of X on C; it is well known that X|C ∈ L2(C;R3). Now it comes the
main point: we have to say that X|C is a prescribed curve in R3. Fix a Jordan curve Γ in
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R3 which is oriented by a fixed homeomorphism γ : C→ Γ. Let ϕ : C→ Γ. We say that
ϕ is weakly monotonic if ϕ is continuous, surjective, and there exists a non-decreasing
function τ : [0,2π]→ R such that τ(2π) = τ(0)+2π and

ϕ(eiθ) = γ(eiτ(θ)), ∀θ ∈ [0,2π].

Roughly speaking, ϕ is weakly monotonic if the image points ϕ(w) traverse Γ in a con-
stant direction when w moves on C in a constant direction. Denoting by E : [0,2π]→C
the map E(θ) = eiθ, we can rewrite the weak monotonic condition as E ◦ τ = γ−1 ◦ϕ◦
E . As a consequence of this formula, one easily obtains that if {ϕh} is a sequence of
weakly monotonic maps C→ Γ which converges uniformly to ϕ : C→ Γ, then ϕ is
weakly monotonic. We are therefore ready to define the right domain. Let

C (Γ) = {X ∈W 1,2(D;R3) : X|C : C→ Γ is weakly monotonic}.

The class C (Γ) turns out to be invariant under conformal transformations: remember
that σ : D→ D is said to be conformal if |∂1σ| = |∂2σ| and 〈∂1σ,∂2σ〉 = 0. The idea
should be minimize

D(X) =
1
2

∫
D
|∇X|2 du

on C (Γ). Indeed, assume that we have found X0 ∈ C (Γ) such that X0 is conformal and

D(X0) = min
X∈C (Γ)

D(X).

If X ∈ C (Γ) we can pass to a conformal Xc by means of a conformal transformations
of coordinates, and therefore

A(X) = A(Xc) = D(Xc)≥ D(X0) = A(X0).

3.4. Proof of the existence of X0

In this paragraph we prove that if Γ has finite length then the problem

min
X∈C (Γ)

D(X)

has a conformal solution X0 ∈C0(D;R3) which is harmonic on D.

Step 1: Reduction to C ∗(Γ). In order to solve the minimization problem we have
to find a minimizing sequence (Xh) whose boundary values {Xh|C} contains a subse-
quence that converges uniformly on C. The selection of such a minimizing sequence
will be achieved by the following artifice: we fix some points on Γ and work only with
parametrizations which fix these points; since it is enough to fix just three points, this is
the so called three points condition. Precisely, fix three different points w1,w2,w3 ∈C
and three different points Q1,Q2,Q3 ∈ Γ such that γ(wk) = Qk. Let

C ∗(Γ) := {X ∈ C (Γ) : X|C(wk) = Qk, k = 1,2,3}.
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If we denote
e(Γ) := inf

C (Γ)
D, e∗(Γ) := inf

C ∗(Γ)
D

of course we have e∗(Γ)≥ e(Γ). On the other hand, if X ∈ C (Γ) then there exist three
different points ζ1,ζ2,ζ3 ∈C such that X|C(ζk) = Qk for k = 1,2,3. Let us take a con-
formal map σ : D→ D such that σ(wk) = ζk for k = 1,2,3. Then X ◦σ ∈ C ∗(Γ) and
since D is invariant under conformal transformation we also have that D(X◦σ)=D(X).
This means that actually e(Γ) = e∗(Γ).

Step 2: C ∗(Γ) 6= /0. In order to show that the problem infC ∗(Γ) D is well posed we
have to ensure that C ∗(Γ) is non-empty. It is possible to prove (see for instance [8]
pages 254-255) that if Γ has finite length (for instance if ϕ is Lipschitz continuous)
then C ∗(Γ) 6= /0; we also observe that this condition is only sufficient.

Step 3: The Courant-Lebesgue Lemma. Let X ∈ C0(D;R3)∩C1(D;R3) and assume
that D(X)≤M for some M ≥ 0. Let z0 ∈C and r > 0 small. Denote

Sr(z0) = D∩Br(z0), Cr(z0) = D∩∂Br(z0).

Since z0 ∈C we can write

Cr(z0) = {z0 + reiθ : θ1(r)≤ θ≤ θ2(r)}

for some θi(r) with 0 < θ2(r)−θ1(r)< π. Let

Z(r,θ) = X(z0 + reiθ)

defined in its natural domain. We have∫ r

0

1
ρ

∫
θ2(ρ)

θ1(ρ)
|Zθ|2 dθdρ≤

∫ r

0

∫
θ2(ρ)

θ1(ρ)

(
|Zρ|2 +

|Zθ|2

ρ2

)
ρdθdρ =

∫
Sr(z0)

|∇X|2 du

Fix δ ∈ (0,1) small. The previous estimate gives

(4)
∫ √

δ

δ

1
ρ

∫
θ2(ρ)

θ1(ρ)
|Zθ|2 dθdρ≤

∫
Sr(z0)

|∇X|2 du.

Observe now that the set

J =

{
ρ ∈ (δ,

√
δ) :

∫
θ2(ρ)

θ1(ρ)
|Zθ|2 dθ

∫ √
δ

δ

1
r

dr ≤
∫

Sr(z0)
|∇X|2 du

}

has positive 1-dimensional Lebesgue measure. Indeed, if L1(J) = 0 then we would
obtain ∫

θ2(ρ)

θ1(ρ)
|Zθ|2 dθ >

∫
Sr(z0)

|∇X|2 du

(∫ √
δ

δ

1
r

dr

)−1/2
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for L1-almost all ρ ∈ J. Multiplying the previous inequality by 1
ρ

and integrating on

(δ,
√

δ) we would arrive to∫ √
δ

δ

1
ρ

∫
θ2(ρ)

θ1(ρ)
|Zθ|2 dθdρ >

∫
Sr(z0)

|∇X|2 du,

which contradicts (4). Now, for any ρ∈ J and for any θ,θ′ with θ1(ρ)≤ θ≤ θ′ ≤ θ2(ρ)
we obtain, by Hölder inequality,∫

θ′

θ

|Zθ|dθ≤
(∫

θ′

θ

|Zθ|2 dθ

)1/2

|θ−θ
′|1/2

≤
(∫

Sr(z0)
|∇X|2 du

)1/2
(∫ √

δ

δ

1
r

dr

)−1/2

|θ−θ
′|1/2

=

(
2

log(1/δ)

∫
Sr(z0)

|∇X|2 du
)1/2

|θ−θ
′|1/2

≤
(

4Mπ

log(1/δ)

)1/2

from which

|Z(ρ,θ′)−Z(ρ,θ)| ≤
∫

θ′

θ

|Zθ|dθ≤
(

4Mπ

log(1/δ)

)1/2

.

In other words, we have proved the Courant-Lebesgue Lemma: for any z0 ∈C and for
any δ ∈ (0,1) there exists ρ ∈ (δ,

√
δ) such that

|X(z)−X(z′)| ≤
(

4Mπ

log(1/δ)

)1/2

where {z,z′}=C∩∂Bρ(z0).

Step 4: A topological remark. Since Γ is the topological image of C, it is possible
to prove that for any ε > 0 there exists

∧
(ε)> 0 such that any P,Q ∈ Γ with

0 < |P−Q|<
∧

(ε)

decompose Γ into two arcs Γ1(P,Q) and Γ2(P,Q) in such a way diamΓ1(P,Q)< ε.

Step 5: The key estimate on X|C . Let X ∈ C ∗(Γ)∩C0(D;R3)∩C1(D;R3) and assume
that D(X)≤M for some M ≥ 0. Let δ0 ∈ (0,1) be such that

2
√

δ0 < min
j 6=k
|w j−wk|.

If 0 < ε < min j 6=k |Q j−Qk| we choose δ > 0 such that(
4Mπ

log1/δ

)1/2

<
∧

(ε) and δ < δ0.



The Plateau problem in the Calculus of Variations 13

We use now the Courant-Lebesgue Lemma: take an arbitrary point z0 ∈ C and let
ρ ∈ (δ,

√
δ) be such that

|X(z)−X(z′)| ≤
(

4Mπ

log1/δ

)1/2

where {z,z′}=C∩∂Bρ(z0). Then |X(z)−X(z′)|<
∧
(ε) hence

diamΓ1(X(z),X(z′))< ε.

Since ε < min j 6=k |Q j−Qk| the arc Γ1(X(z),X(z′)) contains at most one of the points
Q j. On the other hand X(C∩Bρ(z0)) contains at most one of the points Q j because of
our choice of δ. Therefore it must be

X(C∩Bρ(z0)) = Γ1(X(z),X(z′)).

As a consequence, we get

|X(w)−X(w′)|< ε ∀w,w′ ∈C∩Bρ(z0)

which implies the key estimate

(5) |X(w)−X(w′)|< ε ∀w,w′ ∈C such that |w−w′|< δ.

Step 6: Minimization by direct method of the Calculus of Variations. We are going to
solve minC ∗(Γ) D. Let us take a minimizing sequence {Xh}, that is D(Xh)→ e∗(Γ). Let

Zh ∈C0(D;R3)∩C2(D;R3)∩W 1,2(D;R3)

be the unique solution to the problem{
∆Zh = 0 on D
Zh = Xh on C.

This solution minimizes D among all functions X ∈W 1,2(D;R3) such that

(X−Xh)|C = 0.

As a consequence, we deduce that D(Zh) ≤ D(Xh) and since by construction Zh ∈
C ∗(Γ), we can say that {Zh} is still a minimizing sequence. The advantage is that
Zh is harmonic in D for any h ∈ N. Now, since Zh is minimizing for sure it holds
D(Zh)≤M for some M > 0. Applying (5) we can conclude that {Zh|C} is equicontin-
uous. Moreover, since Zh(C) = Γ the family {Zh|C} is also uniformly bounded. We
may therefore apply the Ascoli-Arzelà Theorem and then, up to a subsequence (not
relabeled), Zh|C → ϕ uniformly on C, where ϕ : C→ Γ is weakly monotonic. Now the
conclusion follows using standard properties of harmonic functions. Since Zh|C → ϕ
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uniformly on ∂D, we have that Zh→ Z uniformly on D, where Z is continuous on D
and harmonic on D. Moreover, ∇Zh→ ∇Z uniformly on every D′ ⊂⊂ D, from which∫

D′
|∇Zh|2 du→

∫
D′
|∇Z|2 du.

Thus, for every D′ ⊂⊂ D we have

liminf
h

∫
D
|∇Zh|2 du≥ liminf

h

∫
D′
|∇Zh|2 du =

∫
D′
|∇Z|2 du

which means that, when D′↗ D,

e∗(Γ) = lim
h

D(Zh)≥ D(Z).

This concludes the proof of the fact that the problem

min
C ∗(Γ)

D

has a solution X0 which is continuous on D and harmonic on D.

Step 7: Conformality of minimizers. Consider a vector field
∧

= (µ,ν) ∈C1(R2;R2).
For ε small take the family of maps τε : R2→ R2 given by

τε(u) = u− ε
∧

(u).

Choose some open set D0 with D⊂⊂D0. Then it is easy to see that τε : D0→ τε(D0) is
an orientation-preserving C1-diffeomorphism of D0 onto its image provided that |ε|<
ε0 for some ε0 > 0. Take the inverse mapping σε, which is well defined on D∗ε = τε(D).
Then

σε(w) = w+ ε
∧

(w)+o(ε), ε→ 0.

Consider now X ∈W 1,2(D;R3) and construct the family of functions

Xε : D∗ε → R3, Xε = X◦σε.

The idea is to exploit the first inner variation of D in the direction of
∧

that is the
quantity defined by

δD(X,
∧

) =
d
dε |ε=0

1
2

∫
D∗ε
|∇Xε|2 dw.

In order to compute the right-hand side first of all observe that∫
D∗ε
|∇Xε|2 dw =

∫
D
|∇Xε ◦ τε|2|det∇τε|du.

We have ∇Xε(w) = ∇X(σε(w))∇σε(w), hence

∇Xε(τε(u)) = ∇X(u)∇σε(τε(u)).
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It is easy to see that

∇σε(τε(u))|ε=0 =

(
∂1µ(u) ∂2ν(u)
∂1ν(u) ∂2νv(u)

)
.

After a straightforward computation, we obtain

2δD(X,
∧

) =
∫

D
[(|∂1X|2−|∂2X|2)(∂1µ−∂2ν)+2〈∂1X,∂2X〉(∂2µ+∂1ν)]du.

Fix now arbitrary functions ρ,σ ∈C∞
c (D) and find h,k ∈C∞(D) in such a way{

∆h = ρ on D
h = 0 on C ,

{
∆k = σ on D
k = 0 on C.

Therefore, taking µ = ∂1h+∂2k and ν =−∂2h+∂1k we get

(6) 2δD(X,
∧

) =
∫

D
[(|∂1X|2−|∂2X|2)ρ+2〈∂1X,∂2X〉σ]du.

Now we finally apply this formula. To do this, we choose X = X0. Since D and D∗ε
are diffeomorphic there is a conformal map kε : D→ D∗ε of D onto D∗ε , by virtue of
the Riemann Mapping Theorem†. Moreover, since ∂D∗ε is a Jordan curve, a classical
result grants that kε can be extended to a homeomorphism D→ D∗ε . It follows that
Yε = Xε ◦ kε ∈ C (Γ), so that

D(X0)≤ D(Yε), |ε|< ε0.

But D is invariant under conformal transformation, therefore

D(Yε) =
1
2

∫
D∗ε
|∇Xε|2 du,

which gives

D(X0)≤
1
2

∫
D∗ε
|∇Xε|2 du, |ε|< ε0.

As a consequence, it must be δD(X0,
∧
) = 0 for any

∧
∈ C1(D;R3). Using formula

(6) we conclude that

|∂1X0|2−|∂2X0|2 = 0, 〈∂1X0,∂2X0〉= 0

which means that X0 is conformal.
†The Riemann Mapping Theorem states that if U is a non-empty simply connected open subset of C

which is notC, then there exists a biholomorphic mapping f : U→D. The idea of the proof can be explained
easily: given z0 ∈U , we ask for f which maps U to D with f (z0) = 0. Assume U bounded with smooth
boundary is smooth. Write f (z) = (z− z0)eu(z)+iv(z), where u,v are to be determined. Since we require
| f |= 1 on ∂U , we need u(z) =− log |z− z0| on ∂U . But u is the real part of a holomorphic function, hence
u is harmonic function. We then solve the Laplace equation with − log |z− z0| on ∂U , and therefore we find
v by means of Cauchy-Riemann conditions.
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3.5. Some remarks

We conclude the section relative to the disc-type Plateau problem with some remarks.
First of all about uniqueness: for a given boundary curve Γ there may exist a lot of solu-
tions of different genus, orientable and non-orientable and so on. Concerning regular-
ity, it has been proven (see for instance Gulliver [13]) that disc-type minimal surfaces
cannot have singularities in the interior, so they are smooth surfaces. This does not
means that disc-type solutions are embedded, and they also may have self-intersection,
which is physically inconsistent. Hence, solutions of disc-type with self-intersection
for sure are not a good model for soap films. All of these phenomena are related in

Figure 4: A soap film which bounds a Jordan wire but it is not of disc-type: the disc-
type solution indeed should have a self-intersection.

some sense with the topology of the surface and the topology of the boundary curve. If
we wish to obtain more general existence results for soap films, we have to move to a
more general frameworks which do not care about topology in some sense. We we are
going to describe these more general frameworks in the coming sections.

4. A review on measure theory

In this section we review the fundamental notions of measure theory that we need in
the rest of the paper. We refer to the book by Ambrosio-Fusco-Pallara [3] for details.
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4.1. Measures

We recall that a measure space is a pair (X ,E) where X 6= /0 and E is a σ-algebra on
X , that is:

(a) /0,X ∈ E ,

(b) X \E ∈ E whenever E ∈ E ,

(c) for any sequence (Eh) in E we have

∞⋃
h=0

Eh ∈ E .

A function µ : E → [0,+∞] is said to be a positive measure on (X ,E) if

(a) µ( /0) = 0,

(b) for any sequence (Eh) of pairwise disjoint elements of E it holds

µ

(
∞⋃

h=0

Eh

)
=

∞

∑
h=0

µ(Eh) (σ-additivity).

We denote by B(Rn) the Borel σ-algebra on Rn, namely the smallest σ-algebra on Rn

containing all the open subsets of Rn; the elements of B(Rn) are called Borel subsets
of Rn. A positive measure on (Rn,B(Rn)) is also called a Borel measure on Rn. A
positive measure µ is called finite if µ(X) < +∞. A function µ : E → Rm, m ∈ N with
m≥ 1, is said to be a vector-valued measure on (X ,E) if the previous conditions (a)-(b)
hold true; in the case m = 1 we also say that µ is a real-valued measure on (X ,E). We
denote by |µ| the total variation of µ, defined by

|µ|(E) = sup

{
∞

∑
h=0
|µ(Eh)| : E =

∞⋃
h=0

Eh,Eh ∈ E are pairwise disjoint

}
.

It is possibile to prove that |µ| is a positive finite measure on (X ,E). Let us mention
the polar decomposition of µ: there exists a unique function η ∈ L1(X , |µ|)m such that
|η| = 1 and µ = η|µ|. Finally, if µh,µ are vector-valued measures on X we say that µh
converges to µ weakly∗, and we write µh ⇀

∗ µ, if

lim
h→∞

∫
X

udµh =
∫

X
udµ, ∀u ∈C0(X)

where C0(X) is the space of all continuous functions X → R vanishing at infinity. An
important property is the lower semicontinuity of the total variation: if (µh) is a se-
quence of vector-valued measures on X and µh ⇀

∗ µ then

|µ|(X)≤ liminf
h
|µh|(X).
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4.2. Hausdorff measures

We recall the notion of Hausdorff measure which plays the role of length or area for
subsets of higher dimensional spaces avoiding parametrization. Let E ⊆ Rn, let d ∈
[0,+∞) and let δ > 0. We define

H d
δ
(E) =

αd

2d inf

{
∞

∑
h=0

(diamEh)
d : E ⊂

∞⋃
h=0

Eh and diamEh ≤ δ

}
where αd is a suitable renormalization constant (we will more precise about that in a
moment). We also let

H d(E) = lim
δ→0

H d
δ
(E) = sup

δ>0
H d

δ
(E)

and we say that H d(E) is the d-dimensional Hausdorff measure of E. It turns out that
both H d

δ
and H d are σ-subadditive on Rn, namely for any sequence (Eh)

µ

(
∞⋃

h=0

Eh

)
≤

∞

∑
h=0

µ(Eh), µ = H d
δ
,H d .

Nevertheless, it is not true that H d
δ

is σ-additive on disjoint Borel subsets of Rn: actu-
ally, it is true that

H d
δ
(E ∪F) = H d

δ
(E)+H d

δ
(F)

whenever dist(E,F)> δ. This is one of the reasons why we need to send δ→ 0. Indeed,
H d becomes σ-additive on disjoint Borel subsets of Rn, hence a Borel measure on Rn.
It is sufficient to bserve that

H d(E ∪F) = H d(E)+H d(F)

holds true whenever dist(E,F)> 0, and the σ-additivity follows from the well known
Carathéodory’s Theorem. We also have that H d is invariant under isometries and scales
as a d-dimensional volume:

H d(
∧

E) =
d∧

H d(E), ∀
∧
≥ 0.

Moroever, if we choose αd as the volume of the unit ball in Rd , we have

Ld = H d = H d
δ

where Ld is the Lebesgue measure in Rd .

5. Minimization of the Hausdorff measure

In this section we briefly discuss the possibility to minimize directly the Hausdorff
measure on a suitable class of sets.
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5.1. Minimization of H d

Since the notion of Hausdorff measure, a possible direct strategy could be to look at
the surface simply as a set and try to minimize H d on a suitable class. Let us see very
briefly how this approach could be investigated. Consider the class F of all non-empty
closed and connected subsets of a given compact domain D in Rn. On F take the
Hausdorff distance:

dH(E,F) = inf{r ∈ [0,+∞] : E ⊂ Fr, F ⊂ Er}, Er =
⋃
x∈E

Br(x).

It turns out that (F ,dH) is a compact metric space. Moreover, if Γ is any subset of D
the subclass

FΓ = {E ∈ F : Γ⊂ E}

is closed in F , hence compact too. If we are thinking to direct methods in the Calculus
of Variations compactness is fine, but what about lower semicontinuity of the Haus-
dorff measure with respect to the Hausdorff distance? By a well known theorem due to
Gołab it is possibile to prove that H 1 is lower semicontinuous on F . Putting together
the compactness result and the lower semicontinuity property it is possible to have the
existence of sets with minimal length: for every Γ⊂D there exists some connected and
closed set E which minimizes H 1 among all closed and connected sets which contain
Γ. Can we apply a similar argument for the Plateau problem? The first main difficulty
in stating the Plateau problem in this framework is represented by the boundary con-
dition: what does it mean that a set spans some curve Γ? A possibility could be the
following one: given a closed curve Γ in R3 find a compact set E0 which minimizes
H 2 among all sets E such that Γ is homotopic to a constant in E. Another difficulty is
that the semicontinuity of H 1 depends heavily on the connectedness of the sets: if we
drop this assumption, lower semicontinuity fails. The real problem is that no topolog-
ical assumptions can ensure the semicontinuity of H 2 (or H d when d > 1). However,
a direct approach to the Plateau problem in this direction has been investigated in the
’60s mainly by Reifenberg [18]: his proof of the existence result is rather complicated
and it involves algebraic topology so we will not enter in details. Nevertheless, we will
come back later on the set approach to Plateau problem.

6. The approach via sets of finite perimeter

In this section we briefly describe the theory of sets of finite perimeter which dates back
to Caccioppoli but here we will define them by means of the distributional approach
which is due to De Giorgi; for details we refer to the book by Ambrosio-Fusco-Pallara
[3] or to the monograph by Maggi [16].

6.1. Sets of finite perimeter

In order to apply successfully the direct method of the Calculus of Variations we would
like to define a class F of sets in Rn such that:
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(a) F is endowed with a topology with good compactness properties so that sets
with smooth boundaries belong to F and are dense;

(b) a notion of perimeter P (E) for any E ∈ F such that the map E 7→ P (E) is lower
semicontinuous on F and P extends H n−1: precisely, P (E) = H n−1(∂E) when-
ever ∂E is a smooth hypersurface in Rn;

(c) for every E ∈ F there is a sequence Eh → E such that ∂Eh are smooth and
H n−1(∂Eh)→ P (E).

It is evident that this program might work only for hypersurfaces, and this is one of
the main drawbacks of the approach via sets of finite perimeter. However, let us see
how it works. The key observation is that the boundary of a set is related with the
distributional derivative of its the characteristic function. For instance, if E = [a,b]
then

1′E = δa−δb

which is a finite measure concentrated on {a,b}= ∂E. Moreover,

|1′E |(R) = 2 = H 0(∂E).

Let us try to see how to extract the correct information from that, in a general situation.
Let E ⊂ Rn be a Borel set with finite Lebesgue measure. We say that E is a set of
finite perimeter if the distributional derivative of 1E is a vector-valued measure on
(Rn,B(Rn)), where B(Rn)) is the σ-algebra of all Borel subsets of Rn (namely the
smallest σ-algebra which contains all the open subsets of Rn). In other words, there
exist µ1, . . . ,µn real-valued measures such that∫

E

∂ϕ

∂xi
dx =−

∫
ϕdµi, ∀ϕ ∈C∞

c (Rn), i = 1, . . . ,n.

Equivalently, we can require∫
E

divφdx =−
∫
〈φ,η〉d|µ|, ∀φ ∈C∞

c (Rn;Rn),

where µ = η|µ| is the polar decomposition of µ. The measure µ is therefore uniquely
determined and is denoted by D1E . We thus define

P (E) = |D1E |(Rn)

which is called perimeter of E. We endow the class F of sets of finite perimeter with
the L1 distance, namely

d(E,F) = ‖1E −1F‖L1 .

Notice that d(E,F) = Ln(E∆F), where E∆F denotes the symmetric difference be-
tween E and F . With this choice it is immediate to see that E 7→ P (E) is lower semi-
continuous: indeed, observe that

P (E) = sup
φ∈C∞

c (Rn;Rn), |φ|≤1

∫
E

divφdx
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namely E 7→ P (E) is the supremum of a family of continuous functions. Let us see
why sets with smooth boundary enter in this definition. If E is a bounded open set in
Rn with sufficiently smooth boundary then for any φ ∈C∞

c (Rn;Rn) we have, applying
the Divergence Theorem, ∫

E
divφdx =−

∫
∂E
〈φ,νE〉dH n−1

where νE is the inner unit normal of ∂E. This formula implies that E has finite perime-
ter and

D1E = νE ·1∂E ·H n−1

that is P (E) = H n−1(∂E). It is also possible to show that for any set of finite perimeter

E there exists a sequence of smooth sets Eh such that Eh
L1
→ E and P (Eh)→ P (E). We

finally notice that we have also the compactness property: if {Eh} is a sequence of sets
of finite perimeter contained in a fixed ball and with uniformly bounded perimeter, then

up to a subsequence (not relabeled) Eh
L1
→ E where E has finite perimeter. The proof

of the compactness property is not hard but is based on something we did not mention,
that is the theory of functions of bounded variation. We briefly sketch the argument. If
Ω is an open set inRn a function u∈ L1(Ω) is said to be a function of bounded variation
(the space of all these functions is denoted by BV (Ω)) if the distributional derivative Du
is a vector-valued measure on Rn, namely there exist µ1, . . . ,µn real-valued measures
such that ∫

u
∂ϕ

∂xi
dx =−

∫
ϕdµi, ∀ϕ ∈C∞

c (Rn), i = 1, . . . ,n.

Of course, E has finite perimeter if and only if 1E ∈ BV (Rn). It turns out that on BV (Ω)
we can put the weak∗ convergence

uh ⇀
∗ u⇐⇒

{
uh

L1
→ u

Duh ⇀
∗ Du.

Moreover, and this is the key remark, this convergence is really a weak∗ convergence in
the sense of functional analysis: it can be proved that BV (Ω) is the dual of a separable
Banach space and the weak∗ convergence induced by such a duality is exactly what
we have defined as weak∗ convergence. Compactness therefore follows from Banach-
Alaoglu Theorem if we have ||uh||L1 ≤ c and |Duh|(Ω) ≤ c. If we translate these two
conditions in terms of sets of finite perimeter we get the required compactness for sets
of finite perimeter. We conclude the section concerning general properties of sets of
finite perimeter with the structure theorem, which is due to De Giorgi and Federer.
Before stating it, we recall the notion of rectifiability. By means of the Hausdorff
measure it is possible to define a first very weak notion of surface. Let E be a Borel
subset of Rn. We say that E is d-rectifiable if

E = E0∪
∞⋃

h=1

Eh
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where H d(E0) = 0 and Eh is contained in the image of a Lipschitz function fh : Rd →
Rn. It is possibile to prove that the smoothness of the regular part of E can be strength-
ened: indeed, it turns out that E is d-rectifiable if and only if

E = E0∪
∞⋃

h=1

Eh

where H d(E0) = 0 and Eh is contained in a d-dimensional surface of class C1. The
class of d-rectifiable sets is the largest class for which it is still possible to give a notion
of tangent space: it turns out that there is a Borel map τ that associate at any E a
subspace of Rn of dimension d such that for every surface S of class C1 and dimension
d contained in E there holds

τ(p) = Tan(S, p), H d-a.e. p ∈ S∩E.

Moreover, such τ is unique up to a H d-null subset of E. We let

Tan(E, p) = τ(p)

and we call it the approximate tangent space to E at p. This construction looks strange,
but we have to understand that the notion of tangent space to a rectifiable set is not de-
fined in any pointwise way, in particular it does not make sense to specify Tan(E, p) at
some given point p (like to specify the value at x of some f ∈ Lp). The key observation
is that if S1,S2 are two C1 surfaces with dimension d inRn then Tan(S1, p)=Tan(S2, p)
for H d-a.e. x ∈ S1 ∩ S2. In order to clarify this, think that Si are locally the graph of
maps Rd → Rn−d of class C1. Let f1, f2 : Rd → R of class C1 and let

I = {x ∈ Rd : f1(x) = f2(x) and d f1(x) 6= d f2(x)}.

Then I is a C1 surface with dimension d−1 (or it is empty).
Now, we review the notion of density. For any t ∈ [0,1] and for any E Borel set

in Rn,

Et =

{
x ∈ Rn : lim

r→0

Ln(E ∩Br(x))
αnrn = t

}
.

We say that x has density t if x ∈ Et . We let

∂
∗E = Rn \ (E0∪E1).

The sets E0 and E1 could be considered as the measure theoretic exterior and interior
of E respectively. Thus ∂∗E, called essential boundary of E, in the sense of measure
theory should be the “nice" part of ∂E. Indeed, if now E has finite perimeter set in Rn

then the De Giorgi structure Theorem says that:

(a) ∂∗E is (n−1)-rectifiable and P (E) = H n−1(∂∗E)<+∞;

(b) H n−1-a.e. x ∈ ∂∗E has density 1/2;
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(c) there exists a Borel map ν : ∂∗E→ Rn such that if

Ex,r =
1
r
(E− x)

then for H n−1-a.e. x ∈ ∂∗E we have 1Ex,r → 1Hν(x) in L1
loc(Rn) where

Hv = {x ∈ Rn : 〈x,v〉 ≥ 0};

(d) D1E = ν ·1∂∗E ·H n−1

The map ν is also called approximate inner normal to E. Statement (c) says that if we
blow up centering in a point on ∂∗E we obtain an half plane orthogonal to ν(x).

6.2. Plateau problem in the context of sets of finite perimeter

We are ready to apply the theory of sets of finite perimeter to the Plateau problem. Fix
Ω a bounded open and convex subset of R3 (we do in R3 but more generally it can be
done in Rn). Let Γ be a curve on ∂Ω which is the boundary, relative to ∂Ω, of some
Σ0 ⊂ ∂Ω. We then construct a smooth, bounded and open set E0 ⊂ R3 \Ω such that
∂E0∩∂Ω = Σ0. Of course we are assuming that ∂Ω,Γ,Σ0 are regular enough. The idea
is to look at minimizers of P (E) among all sets of finite perimeter such that E \Ω= E0.
In order to find a closed relation, we relax this last condition in L3((E \Ω)∆E0) = 0.
Then, applying the direct method of the Calculus of Variations we can say that if X
denotes the class of all sets of finite perimeter E such that L3((E \Ω)∆E0) = 0 then
the problem

min
E∈X

P (E)

has a solution. One might wonder why we did not follow a simpler argument, that
is minimize the perimeter among all sets E contained in Ω such that ∂∗E ∩ ∂Ω = Σ0.
The reason is that the measure theoretic version H 2((∂∗E∩∂Ω)∆Σ0) = 0 is not closed:
behind this fact there is the lack of weak∗-continuity of the trace operator of BV func-
tions.

6.3. Concluding remarks on the approach via sets of finite perimeter

The approach presented in this section imposes strong constraints on the geometry of
the boundary curve Γ. Actually, the theory of sets of finite perimeter is not really suited
for the Plateau problem. A typical problem for which sets of finite perimeter are a good
framework is the following one: find the domain E in R3 which minimizes

H 2(∂E)+
∫

E
f (x)dx+ additional constraints (e.g. volume prescribed).

Concerning regularity, one would like to show that the minimizer found in the class
of sets of finite perimeter is smooth enough in order to say that is a soap film. How-
ever, regularity results are hard to prove and the theory of sets of finite perimeter hides
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some of the deep technical difficulties inherent to the Plateau problem. In order to say
something, consider the simplest issue: the regularity of a set E in Rn which minimizes
the perimeter with respect to all possible compact supported perturbations. Then it is
possibile to show that ∂E \S is smooth, where S is a closed set of singularities, and:

(a) if 2≤ n≤ 7 then S is empty (in fact, ∂E is analytical);

(b) if n = 8 then S has no accumulation points in E;

(c) if n≥ 9 then H d(S) = 0 for every d > n−8.

This regularity statement can be obtained combining a lot of results proved by Alm-
gren, Allard, Bombieri, De Giorgi, Federer, Schoen, Simon, and others, in the study of
area minimizing currents and stationary varifolds. An explicit example showing this
result is given by the cone

E = {(x,y) ∈ R4×R4 : |x|= |y|}

which turns out to be a minimizer with respect to compactly supported perturbations:
this is the famous result conjectured by Simons and its minimality was finally proved
by Bombieri, De Giorgi and Giusti in 1969 (see [6]). In any case, if we want to remain
in R3, using sets of finite perimeter we cannot hope to model soap films which develop
singularities.

7. The approach via currents

We want to describe another distributional approach to the Plateau problem, namely
the approach via currents. In some sense such an approach is the real distributional
approach since the space of currents is defined as the dual of a suitable space exactly as
in the classical theory of distributions. The notion of current goes back to De Rham and
related works on differential geometry, but soon this tool entered analysis in order to
have a suitable weak notion of surface, and this is due mainly to Federer and Fleming.
Here we only sketch the theory of currents; for details see Federer [11] or Simon [19].

7.1. Covectors and simple vectors

First of all we need some elements of multilinear algebra. Let V be a real vector space
of dimension n; we denote by V ∗ the dual of V . For any d ∈ {0, . . . ,n} a d-covector on
V is simply a linear map α : V d → R which is alternating, that is

α(vσ(1), . . . ,vσ(d)) = sgn(σ)α(v1, . . . ,vd)

whenever σ ∈ Sd , the set of all permutations on {1, . . . ,d}, and sgn(σ) stands for the
sign of σ. The vector space of all d-covectors on V is denoted by

∧d(V ). By conven-
tion, we let

∧0(V ) = V . Moreover,
∧1(V ) = V ∗. We introduce the so called exterior
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product in
∧d(V ): for any α ∈

∧d(V ) and β ∈
∧d′(V ) let α∧β ∈

∧d+d′(V ) defined by
means of

α∧β(v1, . . . ,vd+d′) =
1

d!d′! ∑
σ∈Sd+d′

α(vσ(1), . . . ,vσ(d))β(vσ(d+1), . . . ,vσ(d+d′)).

The meaning of the normalization constant will be explained later. By construction,
we have

β∧α = (−1)dd′
α∧β, α∧α = 0, α∧ (β∧η) = (α∧β)∧η.

Now, we want to construct a basis in
∧d(V ). Let us fix a basis {e1, . . . ,en} in V .

Consider the dual basis of {e1, . . . ,en} denoted by {dx1, . . . ,dxn} where

dxi ∈V ∗, dxi(e j) = δ
i
j =

{
1 if i = j
0 if i 6= j.

The dual basis {dx1, . . . ,dxn} is a basis in V ∗ =
∧1(V ). For any i1, . . . , id ∈ {1, . . . ,n}

we have dxi1 ∧·· ·∧dxid ∈
∧d(V ). It is possible to show that

{dxi1 ∧·· ·∧dxid : i j ∈ {1, . . . ,n}}

is a basis in
∧d(V ). As a consequence of that and remembering the properties of ∧,

any α ∈
∧d(V ) can be written in a unique way as

α = ∑
i1<···<id

αi1,...,id dxi1 ∧·· ·∧dxid , αi1,...,id ∈ R.

As a consequence,

dim
∧d

(V ) =

(
n
d

)
.

We remark that

(7) dxi1 ∧·· ·∧dxid (v1, . . . ,vd) = detA

where A is the d× d matrix defined by A j` = dxi j(v`), that is the matrix whose `-th
column is given by the coordinates of v` with respect to the basis {e1, . . . ,en} (in order
to have (7) the normalization constant in the definition of ∧ plays a role). Using d-
covectors we can define the simple d-vectors, which are the main objects we need.
Define, on V d , the equivalence relation ∼ given by

(v1, . . . ,vd)∼ (v′1, . . . ,v
′
d)⇐⇒ α(v1, . . . ,vd) = α(v′1, . . . ,v

′
d) ∀α ∈

d∧
(V ).

We call simple d-vector any element [v1, . . . ,vd ] ∈V/∼; we also write 0 for [0, . . . ,0].
It is possible to prove that

(a) (v1, . . . ,vd)∼ (0, . . . ,0) if and only if v1, . . . ,vd are linearly dependent;
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(b) (v1, . . . ,vd)∼ (v′1, . . . ,v
′
d)� (0, . . . ,0) then

span{v1, . . . ,vd}= span{v′1, . . . ,v′d}.

Moreover, the matrix of change of basis has determinant 1.

Assume now that V is endowed with a scalar product. For any v1, . . . ,vd ∈ V , let
R(v1, . . . ,vd) be the rectangle spanned by v1, . . . ,vd . Notice that if

(v1, . . . ,vd)∼ (v′1, . . . ,v
′
d)� (0, . . . ,0)

then R(v1, . . . ,vd) and R(v′1, . . . ,v
′
d) have the same d-dimensional volume: such a vol-

ume is denoted by |[v1, . . . ,vd ]| and is called norm‡ of the simple d-vector [v1, . . . ,vd ].
Recall that if W is a vector space then an orientation of W is an equivalence class of
bases where two bases are equivalent if the change of basis matrix has positive deter-
minant. Therefore, if again

(v1, . . . ,vd)∼ (v′1, . . . ,v
′
d)� (0, . . . ,0)

and W = span{v1, . . . ,vd} then (v1, . . . ,vd) and (v′1, . . . ,v
′
d) induce on W the same ori-

entation. This means that the map

0 6= [v1, . . . ,vd ] 7→ (W,orientation of W , |[v1, . . . ,vd ]|)

is well defined. It is also possible to show that such a map is one-to-one. This is the
main point: we have that unitary simple d-vectors are in one-to-one correspondence
with oriented d-planes in V , and this permits to have an algebra on the set of oriented
d-planes in V .

7.2. Orientation of d-dimensional surfaces

We want to define what an orientation on a surface is, since forms, as we will se later,
can be integrated only on oriented surfaces. Let S be a smooth d-dimensional surface
in Rn. An orientation on S is a continuous§ map that assigns to each x∈ S a unit simple
d-vector τ(x) = [v1(x), . . . ,vd(x)] which spans Tan(S,x). If S has an orientation and
has a boundary ∂S 6= /0, there is a canonical way to orient also ∂S if we have fixed an
orientation on S. Precisely, for any x ∈ ∂S we can define the exterior normal η(x).
Then, if S is oriented by τ = [v1, . . . ,vd ] we endow ∂S with the orientation [v′1, . . . ,v

′
d−1]

such that

[v1(x), . . . ,vd(x)] = [η(x),v′1(x), . . . ,v
′
d−1(x)], ∀x ∈ ∂S.

‡Be careful, this cannot be a norm in the sense of normed spaces since the space of all simple d-vectors
is not linear.

§Recall that the space of all simple d-vectors is a quotient of a topological space, hence topological too.
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7.3. Differential forms

Using d-covectors we are able to introduce differential forms on surfaces. Let Ω be
an open set in Rn. A d-form on Ω is a “smooth map” ω that assigns to each x ∈ Ω

an element ω(x) ∈
∧d(Rn). In order to clarify what smooth means, let us write ω in

coordinates. If we fix a basis {e1, . . . ,en} in Rn then we can write

ω(x) = ∑
i1<···<id

ωi1,...,id (x)dxi1 ∧·· ·∧dxid , ωi1,...,id : Ω→ R.

It is now easy to set what smooth means: simply, ωi1,...,id ∈ C∞(Ω). It is easy to see
that this regularity does not depend on the choice of the basis {e1, . . . ,en}. The most
important operation on forms is the exterior derivative:

dω = ∑
i1<···<id

dωi1,...,id ∧dxi1 ∧·· ·∧dxid .

Here we are assuming that

dωi1,...,id =
n

∑
i=1

∂ωi1,...,id
∂xi

dxi.

It turns out that dω is a (d +1)-form.

7.4. Integration of forms on surfaces

We now move to the integration of forms on surfaces. The main application of the
theory of forms is the integration on (oriented) surfaces, and the Stokes formula, which
is the key point in order to understand why we need forms for the notion of current. If
S is a smooth and oriented d-dimensional surface in Rn, τ is an orientation on S, and ω

is a d-form on some open set containing S, we let∫
S

ω =
∫

S
〈ω(x),τ(x)〉dH d(x)

whenever the integral on the right hand-side exists. If now S is also compact and ω is a
(d−1)-form on some open set containing S we have the Stokes formula:∫

∂S
ω =

∫
S

dω.

Of course, here we are assuming that ∂S has the canonical orientation induced by τ.

7.5. Vectors

We construct the space of d-vectors on V exploiting the fact that V can be canonically
identified with its dual V ∗. Precisely, we let

∧
d(V ) :=

∧d(V ∗). The duality between



28 L. Lussardi

V and V ∗ extends to a duality between
∧d(V ) and

∧
d(V ). We in fact use the natu-

ral reflexivity of V , that is V ∗∗ is canonically isomorphic to V , which means that if
{e1, . . . ,en} is a basis on V then {e1, . . . ,en} is still a basis on V ∗∗ simply setting

ei(dx j) = δ
j
i .

In particular, notice that the quantity v1∧·· ·∧vd turns out to be well defined whenever
v1, . . . ,vd ∈V . Moreover, it is possibile to show that for any α ∈

∧d(V ) there holds

α(v1∧·· ·∧ vd) = α(v1, . . . ,vd).

Remember now that (v1, . . . ,vd)∼ (v′1, . . . ,v
′
d) if and only if α(v1, . . . ,vd)=α(v′1, . . . ,v

′
d)

for any α ∈
∧d(V ), which the means that

α(v1∧·· ·∧ vd) = α(v′1∧·· ·∧ v′d), ∀α ∈
d∧
(V ).

Thus, (v1, . . . ,vd)∼ (v′1, . . . ,v
′
d) if and only if v1∧·· ·∧vd = v′1∧·· ·∧v′d . In particular,

we can identify the simple d-vector [v1, . . . ,vd ] with v1∧·· ·∧vd . If V is endowed with
a scalar product, we can define the mass norm on

∧
d(V ) as the convex envelope of the

restriction of the Euclidean norm to simple d-vectors, that is

‖v‖ := inf

{
N

∑
i=1

ti|vi| : vi is simple and
N

∑
i=1

ti = 1

}
.

Accordingly, we can define the comass norm of α ∈
∧d(V ) as the dual norm of the

mass norm, that is
‖α‖ := sup{|α(v)| : ||v|| ≤ 1}.

7.6. Currents and Plateau problem in terms of currents

We are ready to define currents. In order to explain the idea, take a d-dimensional
surface in Rn with boundary ∂S. If we mimic the definition of distribution we could
consider a linear and “continuous" functional of the type

ϕ 7→
∫

S
ϕdH d ,

where, as in the classical theory of distributions, ϕ belongs to a suitable set of test func-
tions. This seems to be the natural way to have a weak notion of surface. But there
is a huge drawback: what is the weak version of ∂S? It is essential to have that, since
we are dealing with the Plateau problem. There is no chance: if we decide to follow
the natural idea to integrate functions on S we are in trouble with the boundary. The
right idea comes from the integration of forms: Stokes formula provides the distribu-
tional notion of ∂S. More precisely, if Dd(Rn) denotes the set of all d-forms on Rn

with compact support, then the dual space of Dd(Rn) is the space of all d-currents on
Rn, denoted by Dd(Rn). Here, dual means topological dual, so in principle one has to
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construct a topology on Dd(Rn): this can be done as in the standard theory of distri-
butions. Accordingly with the dual nature of Dd(Rn), if Th,T ∈ Dd(Rn) we say that
Th→ T if

〈Th,ω〉 → 〈T,ω〉, ∀ω ∈Dd(Rn).

Of course, as for distributions, the main example of a current is given by a smooth
surface: if S is a smooth d-dimensional oriented surface in Rn we define TS ∈Dd(Rn)
by means of

〈TS,ω〉=
∫

S
ω, ∀ω ∈Dd(Rn).

The next crucial notion is the definition of boundary of a current, and this can be well
defined via the Stokes formula: if we look again at the smooth case, we notice that

Dd−1(Rn) 3 ω 7→
∫

∂S
ω =

∫
S

dω = 〈∂TS,dω〉

defines a (d − 1) current which is the canonical current associated to ∂S. Then, in
general if T ∈Dd(Rn) we define the boundary of T as ∂T ∈Dd−1(Rn) given by

〈∂T,ω〉= 〈T,dω〉.

By construction, for oriented surfaces we have

∂TS = T∂S.

Thus, we have found a weak notion of surface and a corresponding weak notion of its
boundary. In order to at least state the Plateau problem it remains to understand what is
the "area" of a current. We introduce the mass of a current in this way: if T ∈Dd(Rn)
then we let

M(T ) := sup
||ω(x)||≤1

〈T,ω〉.

For oriented surfaces we have

M(TS) = H d(S).

Before going on, let us see an illustrative example. In R2 take the segment I = [0,1]×
{0}. We orient I using τ(x) = e1 = (1,0), for any x ∈ I. We want to see what the
boundary of TI is. For any 0-form ω with compact support in R2, that is a smooth
function with compact support in R2, we have

〈∂TI ,ω〉= 〈TI ,dω〉=
∫

I
〈 ∂ω

∂x1
dx1 +

∂ω

∂x2
dx2,e1〉dH 1 =

∫ 1

0

∂ω

∂x1
dx1 = ω(1,0)−ω(0,0)

that is
∂TI = δ(1,0)−δ(0,0).

Generalizing this example, if γ : [0,1]→ Rn is a smooth function and C = γ(I) is ori-
ented by the tangent vector γ′ then

∂TC = δγ(1)−δγ(0).
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We will come back to this example, now we go on with the theory. Of course, currents
of interests have finite mass. These currents can be characterized. Let µ be a real
measure on Rn and let τ ∈ L1

µ(Rn;
∧

d(Rn)). Define the current T = τµ as

〈T,ω〉=
∫
〈ω(x),τ(x)〉dµ.

Then, one easily hasM(T )≤ ||τ||1 = |τµ|(Rn), hence T has finite mass. Actually, this is
the general case. Indeed, ifM(T )<+∞ then T is a linear functional on Dd(Rn) which
is bounded with respect to the supremum norm on forms. Hence T can be extended by
density to a linear functional on the closure of Dd(Rn) with respect to the supremum
norm, which is the space of all continuous d-form vanishing at infinity. Therefore, T
is represented by a vector-valued measure with values in the dual of

∧d(Rn), which is∧
d(Rn), and all such measures can be written as τµ as in the previous example. In view

of this equivalence, we can state a first compactness/lower semicontinuity theorem: if
(Th) is a sequence of d-currents with finite mass such that M(Th) ≤ c for some c > 0
then, up to a subsequence (not relabeled), Th→ T in Dd(Rn) and

M(T )≤ liminf
h

M(Th).

In particular, T has finite mass. For the Plateau problem we wish also to consider
currents such that also the boundary has finite mass. We say that a d-current is a
normal current if both M(T ) and M(∂T ) are finite. The advantage is that for normal
currents we have compactness and lower semicontinuity of the masses: if (Th) is a
sequence of normal d-currents such that M(Th)+M(∂Th)≤ c for some c > 0 then, up
to a subsequence (not relabeled), Th→ T in Dd(Rn), ∂Th→ ∂T in Dd−1(Rn) and

M(T )≤ liminf
h

M(Th), M(∂T )≤ liminf
h

M(∂Th).

In particular, T is normal. Indeed, let us apply the compactness and lower semiconti-
nuity theorem for currents with finite mass both to Th and ∂Th. Up to subsequences,
Th→ T , ∂Th→U , and

M(T )≤ liminf
h

M(Th), M(U)≤ liminf
h

M(∂Th).

It is sufficient to prove that U = ∂T . Let ω ∈Dd−1(Rn). Then

〈∂T,ω〉= 〈T,dω〉= lim
h
〈Th,dω〉= lim

h
〈∂Th,ω〉= 〈U,ω〉

and this yields the conclusion. Thanks to the previous theorem, we can solve the
Plateau problem in terms of normal currents. Let T0 be a given normal d-current on
Rn. Then the problem

min{M(T ) : T is a normal d-current and ∂T = ∂T0}

has a solution. Notice that in this formulation of the Plateau problem we fix T0 normal
d-current and we ask for minimizers in the class

{T is a normal d-current and ∂T = ∂T0}.
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The natural way to set the problem would be fix T0 normal (d−1)-current and ask for
minimizers in the class

{T is a normal d-current and ∂T = T0}.

But in this last case one has to prove that this class is notempty, and this could be not
trivial. In other words, we are saying that the admissible boundary data are all the
objects which are really obtained as the boundary of something. Nevertheless, this
solution to the Plateau problem is not satisfactory because the class of normal currents
is too large. Let us see an example. Let T be the 1-current on R2 given by T = τµ
where µ is the Lebesgue measure on the square Q = [−1,1]2 and τ(x) = e1 = (1,0) for
any x ∈ Q. Notice that M(T ) = 4. We want to find ∂T . Let ω be a 0-form (that is, a
function) with compact support on R2. Then we have

〈∂T,ω〉= 〈T,dω〉=
∫

Q
〈 ∂ω

∂x1
dx1 +

∂ω

∂x2
dx2,e1〉dx =

∫
Q

∂ω

∂x1
dx

=
∫ 1

−1
ω(1,x2)−ω(−1,x2)dx2 =

∫
ωτ
′ dµ′

where µ′ is H 1 restricted to I± = {±1}× [−1,1] and τ′ = +1 on I+ and τ′ = −1 on
I−. In particular, M(∂T ) = 4 hence T is a normal current. This example suggests
that working with normal currents we might obtain, in general, very mild solutions.
The idea is to consider currents which, in some sense, are “supported" on at least a
rectifiable set. We say that T ∈Dd(Rn) is a d-rectifiable current if there exist:

(a) a d-rectifiable set E in Rn,

(b) an orientation τ on E, that is a Borel map that to H d-a.e. x ∈ E assigns a unit
simple d-vector τ(x) which spans Tan(E,x),

(c) a multiplicity function, that is a summable (with respect to the H d measure)
function m : E→ R,

such that
〈T,ω〉=

∫
E
〈ω(x),τ(x)〉m(x)dH d(x), ∀ω ∈Dd(Rn).

In this case, we denote T by [E,τ,m]. We notice that it holds

M([E,τ,m]) =
∫

E
|m|dH d .

If S is a smooth d-dimensional surface oriented by τ then

TS = [S,τ,1].

Notice that at a first sight it seems that we can treat also non-orientable surfaces in
the framework of (integral) currents, since we are not assuming any continuity of the
orientation. Indeed, by definition an orientation of a rectifiable set is simply a Borel
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choice of a unit simple d-vector which spans the approximate tangent space H d-a.e. on
E. Actually something wrong happens if we wish to preserve the “physical" boundary:
indeed, a discontinuity of the orientation affects the boundary of T . As an example
take

T = [[0,1],−e1,1]+ [[1,2],e1,1].

Then,
∂T = δ2 +δ0−2δ1.

As a consequence, if we use the framework of integral currents we find only good
models for orientable soap films, since any discontinuity in the orientation produces
some boundary which is not physical. As for normal currents, we wish to consider
d-rectifiable currents such that also the boundary is rectifiable. We then try to look at
compactness and lower semicontinuity for such a currents. The bad thing is that there
is no compactness: let us sketch an example. Let

Eh =
h−1⋃
k=0

[0,1]×
{

1
2h

}
, Th =

[
Eh,e1,

1
h

]
.

First of all notice that both Th and ∂Th are rectifiable andM(Th)+M(∂Th) = 3. Never-
theless, it is possible to prove that

Th =

[
Eh,e1,

1
h

]
→ T = e1L2 [0,1]2

and T is not rectifiable. This is due to the fact that the multiplicity is arbitrarily close to
0. Assuming integer multiplicity it is possible to prove what we need, that is the cele-
brated Federer-Fleming Compactness Theorem, which is, probably, the most important
result in the theory of currents. Precisely, we say that [E,τ,m] is a d-rectifiable current
with integer multiplicity if m takes values in Z, and finally we say that T ∈ Dd(Rn) is
a k-integral current if both T and ∂T are rectifiable currents with integer multiplicity.
The Federer-Fleming Compactness Theorem states that if (Th) is a sequence of integral
d-currents such that M(Th)+M(∂Th) ≤ c for some c > 0 then, up to a subsequence
(not relabeled), Th→ T in Dd(Rn), ∂Th→ ∂T in Dd−1(Rn) and

M(T )≤ liminf
h

M(Th), M(∂T )≤ liminf
h

M(∂Th).

Moreover, T is an integral current. As for normal currents, thanks to the Federer-
Fleming Theorem we can solve the Plateau problem in terms of integral currents, which
is, in some sense, the “right” formulation of the Plateau problem in terms of currents.
Let T0 be a given integral d-current on Rn. Then the problem

min{M(T ) : T is a integral d-current and ∂T = ∂T0}

has a solution.
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7.7. Concluding remarks on the theory of currents

First of all notice that, in principle, one could obtain, as a solution of the Plateau prob-
lem in the context of integral currents, a current with some multiplicity different from
1. This can happen, think to minimizing sequences of currents which attach in the limit
in some region with positive mass. Actually, the right object to minimize should be the
size of a current and not the mass, where the size is defined as

S([E,τ,m]) = H d({x ∈ E : m(x) 6= 0}).

But the situation for size minimizers is far from clear. Even if d = 2 and S is the current
of integration on a smooth curve, there is no general existence result for an integral cur-
rent T such that ∂T = S and S(T ) is minimal. The main problem is compactness: from
a bound on the size we are not able, in general, to deduce a bound on the mass, hence
we are not in position to apply the Federer-Fleming compactness result. Another draw-
back of the use of integral currents is that we cannot treat non-orientable boundaries
since, as we have already observed, the discontinuity of the orientation produces, in
general, new boundaries. However, there is a possibility to obtain also non-orientable
soap films using currents: it is sufficient to work with rectifiable currents modulo ν,
where ν ≥ 2 is an integer. More precisely, two rectifiable currents T and S are con-
gruent modulo ν if T − S = νQ for some current Q. In particular, we can say that T
and −T are congruent modulo 2, and this permits, in principle, to solve the Plateau
problem in a more general context using the equivalence classes of rectifiable currents
modulo ν. We point out that non-orientable surfaces occur as soap films. We also re-

Figure 5: A Möbius strip-like soap film

mark that there is an alternative perspective to currents for working with non-oriented
objects, which is the theory of varifolds, introduced by Almgren in ’70 and developed
mainly by Allard and Hutchinson in view of the applications to variational problems
which involve curvatures of surfaces. We do not want to enter in details, the interested
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reader can consult for instance the original paper by Almgren [1]. We just point out
that for varifolds the main difficulty is to produce a good definition of boundary. We
conclude with some remarks on the regularity. How much regular are the soap films
produced by integral currents? In R2 the situation is almost perfect: indeed, it is pos-
sible to prove that if T is a mass-minimizing 1-integral current in R2 then the “interior
part" of T (the part of T which is not in the boundary of T ) consists of disjoint line
segments. In the case 2 ≤ n ≤ 7, if T is a mass-minimizing (n−1)-integral current in
Rn then the interior part of T is a smooth embedded hypersurface: if we go back to
Figure 4 the soap film solution corresponds to an embedded solution, which could be
the mass-minimizing integral current. When n > 7 we already know that the regularity
is lost, since the result of Bombieri-De Giorgi-Giusti [6]. In any case, as for sets of fi-
nite perimeter, we cannot hope to have the singularities developed by some soap films.
However, notice that such singularities appear when we have, as boundary, curved ob-
jects which are not well covered by the theory of currents: for instance, in the Figure
1 we can see a singular soap film, surely not covered by currents, but here the problem
is that this soap film cannot be reduced to a rectifiable current whose boundary, in the
sense of currents, is the set of the edges of a cube.

8. Minimal sets approach

Perhaps the best model for the soap films is represented by the Almgren minimal sets,
introduced by Almgren in [2]. The idea is to come back, in some sense, to the set
approach, as the already cited one by Reifenberg [18]. The surface is a (d-rectifiable)
set and we minimize the d-dimensional Hausdorff measure among a suitable class of
sets.

8.1. Almgren minimal sets and Taylor regularity

Let S⊂Rn be a closed set and A⊂Rn be an open set. We say that S is a d-dimensional
minimal set in A (briefly minimal set if we do not need further details) if for any closed
ball C ⊂ A and every Lipschitz map ϕ : Rn→ Rn such that ϕ|Rn\C = id and ϕ(C) ⊂C
we have

H d(S)≤H d(ϕ(S)).

Roughly speaking, a minimal set is such that if we apply any local deformation of the
set the d-dimensional Hausdorff measure increases. The reason for which minimal
sets are the best model for soap films stems in the regularity theorem for such objects.
Indeed, J. Taylor in 1976 [20] proved that the singularities of 2-dimensional minimal
sets in R3 are precisely those produced by soap films. The analysis of Taylor is very
deep. First of all, she proved that if S is a minimal set then S is d-rectifiable, but there
is a more detailed analysis of the blow up around points of S. From rectifiability, we
already know that at H d-a.e. x ∈ S there exists the approximate tangent space Tan(S,x)
defined by the blow up procedure, that is looking at the limit

(8) lim
r→0+

1
r
(S∩Br(x)− x)
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The key point of the Taylor’s approach is to understand what happens if we do the blow
up (8) centering at any point of S. Taylor proved that

C = lim
r→0+

1
r
(S∩Br(x)− x)

always exists and, by construction, is a cone, that is rC =C for any r > 0. Moreover, the
fact that S was a minimal set reflects on C: since the definition of minimal sets requires
only local perturbations it is not difficult to believe that C turns out to be a minimal set
too, a so called minimal cone. Having proved that, it comes the last part: finding all the
possible minimal cones and this should correspond to all possible singularities for min-
imal sets. Actually, only 1-dimensional minimal cones in R2, 1-dimensional minimal
cones in R3 and 2-dimensional minimal cones in R3 are completely classified; higher
dimensions and codimensions are far from clear still today. The three 2-dimensional
minimal cones in R3 are:

(a) the plane configuration (this happens when the blow up procedure gives the tan-
gent space);

(b) the Y-configuration: three plane sheets crossing on a line and forming a 120◦

angle;

(c) the T-configuration: four lines crossing in a point (called tetrahedrical point)
and forming a 109,47◦ angle.

All these three configurations are realized by some minimal sets represented by soap
films. The flat surface of course produces an example of plane configuration. Concern-
ing plane sheets that meet at 120◦ and lines meeting at 109,47◦, see Figure 6. The two

Figure 6: The soap films created by a tetrahedral boundary.

possible singularities of minimal sets in R3 (Y and T) are precisely the only singulari-
ties conjectured by Plateau. For this reason, the fact that a soap film can only have Y
and T singularities are known still today as Plateau’s laws.
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8.2. Plateau problem in the context of minimal sets

As we have already mentioned in the Reifenberg’s approach, the main difficulty of the
set point of view is to have a good notion of boundary. Very recently a framework for
that has been investigated and some existence results have been proved. In this section
we will state what is proved in [10] by De Lellis, Ghiraldin, and Maggi. This paper is
motivated by a very elegant idea introduced by Harrison (see related papers [14] and
[15]) in order to give a definition of boundary. Let us give the following definition [10,
Def. 3] (see [15] for the original approach). Let n ≥ 3 and let H be a closed subset of
Rn. Let

CH = {γ : S1→ Rn \H smooth embedding of S1 into Rn}.

Let C ⊂ CH . We say that C is closed by homotopy if together with any γ ∈ C the set C
contains all elements belonging to the homotopy class [γ] ∈ π1(Rn \H), where π1(X)
denotes the fundamental group of X . Let C ⊂ CH and let K be a relatively closed set in
Rn \H. We say that K is a C -spanning set of H if

K∩ γ(S1) 6= /0 ∀γ ∈ C .

We denote by F (H,C ) the class of all relatively closed sets in Rn \H which are C -
spanning set of H. Roughly speaking, K ∈ F (H,C ) means that the set K has a bound-
ary which lies on H. When H is a closed curve in R3 this corresponds to the fact that
the soap film K wets all the curve H, which is precisely what we want. In order to
understand better this let us discuss the typical choice when H is a (n−2)-dimensional
closed submanifold ofRn, which is the idea of Harrison [14]. Let K be relatively closed
in Rn \H and let Ki be the connected components of K. We say that K spans H if for
any i and for any γ ∈ CH the linking number between γ and Ki has modulus 1 while
the linking number between γ and K j is 0 for any j 6= i. The class of all of these γ’s
is closed by homotopy. We now continue to follow [10] where the following existence
theorem has been proved. Let n≥ 3, let H be a closed subset of Rn, and let C ⊂ CH be
closed by homotopy. Assume that there exists K ∈ F (H,C ) such that H n−1(K)<+∞.
Then, the problem

min
K∈F (H,C )

H n−1(K)

has a solution which is a (n− 1)-dimensional minimal set in Rn \H. We only sketch
the idea of the proof. A difficult part, and we do not enter in details on that, is the
proof of the existence of a minimizing sequence which consists of (n− 1)-rectifiable
sets. If we take a minimizing sequence (Kh) of (n−1)-rectifiable sets, we can consider
the corresponding associated measures µh = H n−1 Kh. Then, up to a subsequence,
µh ⇀

∗ µ inRn\H. Now, it is possibile to prove, using arguments of Geometric Measure
Theory, that

µ≥ θH n−1 K, on subsets of Rn \H,

where θ≥ 1 and K = sptµ\H is (n−1)-rectifiable. In particular, we get

liminf
h

H n−1(Kh)≥H n−1(K).
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Hence, the direct method of the Calculus of Variations should apply. The only thing
we have to be careful about is the closedness of the spanning condition. Suppose
by contradiction that some loop γ ∈ C does not intersect K. Since both γ and K are
compact, we can find some ε > 0 such that U2ε(γ) does not intersect K and is contained
in Rn \H: here Ur(γ) denotes the tubular neighborhood of γ(S1). Hence µ(U2ε(γ)) = 0
and thus

(9) lim
h

H n−1(Kh∩Uε(γ)) = 0.

Notice now that if ε is small there is a diffeomorphism Φ : S1×Bn−1
ε (0)→Uε(γ) such

that Φ|S1×{0}
= γ. Let y ∈ Bn−1

ε (0) and set γy = Φ|S1×{y}
. Then γy ∈ [γ] represents an

element of π1(Rn \H). As a consequence, it must be Kh ∩ γy(S1) 6= /0. It is now not
difficult to conclude that

H n−1(Kh∩Uε(γ))≥ c

for some c > 0 independent on h, which contradicts (9). Finally, it is possibile to show
that the solution is a (n−1)-dimensional minimal set thanks again to the fact that K is
a limit of a minimizing sequence.

This approach furnishes a good answer to the Plateau problem: when H is a
Jordan curve in R3 we obtain the existence of a minimal set K in R3 \H that spans H.
Therefore, “the boundary of K is H” and, by Taylor’s regularity, K can have singulari-
ties but only of Plateau’s type.
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