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Abstract. We prove three density theorems, in the strong BD topol-
ogy, for the three subspaces of SBD functions: SBD; SBDp

∞, where
the absolutely continuous part of the symmetric gradient is in Lp, with
p > 1; SBDp, whose functions are in SBDp

∞ and the jump set has fi-
nite Hn−1-measure. We compare them with existing results, discussing
related approximation of fracture energies.
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1. Main results and comments

Special Bounded Deformation (SBD) functions have been introduced by Am-
brosio, Coscia, and Dal Maso [2], as the Bounded Deformation (BD) functions
whose symmetric distributional gradient Eu = Du+DuT

2 has no Cantor part. Given
Ω ⊂ Rn open bounded, u : Ω → Rn is in SBD(Ω) if it is in L1 and the bounded
Radon measure Eu has the form

Eu = e(u)Ln + ([u]� νu)(x)Hn−1 Ju ,

where e(u) is the density of Eu with respect to Ln, the jump set Ju is the set
of points x at which u has two different approximate limits u+(x), u−(x) with
respect to a suitable direction νu(x), and [u](x) := u+(x)−u−(x) is the jump (Ln
and Hn−1 are the n-dimensional Lebesgue and the (n−1)-dimensional Hausdorff
measures, � the symmetric tensor product).

For p > 1, consider also the subspaces

SBDp(Ω) := {u ∈ SBD(Ω): e(u) ∈ Lp(Ω;Mn×n
sym ) , Hn−1(Ju) <∞}

and

SBDp
∞(Ω) := {u ∈ SBD(Ω): e(u) ∈ Lp(Ω;Mn×n

sym )} .
1
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We prove the following density results for these spaces, through functions in
U(Ω;Rn) := {v ∈ SBV (Ω;Rn) ∩ L∞(Ω;Rn) : Jv closed and included in a

finite union of closed connected pieces of C1 hypersurfaces,

v ∈ C∞(Ω \ Jv;Rn) ∩Wm,∞(Ω \ Jv;Rn) for all m ∈ N}

assuming Ω Lipschitz (or, more in general, that the trace of u be well defined and
integrable on ∂Ω). Notice that the properties on the jump sets are attained up to
Hn−1-negligible sets, that is essentially attained.

Theorem 1.1. Let u ∈ SBDp(Ω). Then there exist uk ∈ U(Ω;Rn) such that

lim
k→∞

(
‖uk − u‖BD(Ω) + ‖e(uk)− e(u)‖Lp(Ω;Mn×n

sym ) +Hn−1(Juk
4Ju)

)
= 0 .

Moreover, (if p ∈
[
1, n

n−1

]
this is trivial) there are Borel sets Ek ⊂ Ω such that

lim
k→∞

Ln(Ek) = lim
k→∞

ˆ

Ω\Ek

|uk − u|p dx = 0 .

Theorem 1.2. Let u ∈ SBD(Ω). Then there exist uk ∈ U(Ω;Rn) such that Juk
is

(essentially) a finite union of pairwise disjoint C1 compact hypersurfaces strictly
contained in Ω and

lim
k→∞

(
‖uk − u‖BD(Ω) +Hn−1(Juk

\ Ju)
)

= 0 .

Theorem 1.3. Let u ∈ SBDp
∞(Ω), with p > 1. Then there exist uk ∈ U(Ω;Rn)

such that

lim
k→∞

(
‖uk − u‖BD(Ω) + ‖e(uk)− e(u)‖Lp(Ω;Mn×n

sym )

)
= 0 .

We compare below these theorems with existing density results of two types:
those for subspaces of SBV (the space of BV functions whose distributional gra-
dient has no Cantor part, see e.g. [3]); those for SBD and for GSBD, the space
of Generalised -SBD functions.

Approximations for SBV

The first approximation in BV -norm for SBV p∩L∞ functions is due to Braides
and Chiadò-Piat [7]: the approximating functions uk are C1 outside some closed
countably rectifiable sets Rk (in the sense of [24, 3.2.14]) and Juk

⊂ Rk, with no
information on the shape of Juk

.
De Philippis, Fusco, and Pratelli [23] have recently proven three approximations

for SBV p, SBV , SBV p∞, in BV -norm, through functions in

V(Ω;R) := {v ∈ SBV (Ω): Jv b Ω closed C1 manifold, v ∈ C∞(Ω \ Jv)} ,

under weak regularity assumptions on Ω similar to those in theorems above. These
read as follows (∇u denotes the density of the absolutely continuous part of the
distributional gradient Du with respect to Ln):
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Theorem 1.4 ([23], Theorems A, B, C). The following holds:
• If u ∈ SBV p(Ω), there exist uk ∈ V(Ω;R) such that

lim
k→∞

(
‖uk − u‖BV (Ω) + ‖∇uk −∇u‖Lp(Ω;Rn) +Hn−1(Juk

4Ju)
)

= 0 ;

• If u ∈ SBV (Ω), there exist uk ∈ V(Ω;R) such that

lim
k→∞

(
‖uk − u‖BV (Ω) +Hn−1(Juk

\ Ju)
)

= 0 ;

• If u ∈ SBV p∞(Ω), there exist uk ∈ V(Ω;R) such that

lim
k→∞

(
‖uk − u‖BV (Ω) + ‖∇uk −∇u‖Lp(Ω;Rn)

)
= 0 .

We observe that the “distances” of uk from u are analogous to those in our results
(with BV , ∇u in place of BD, e(u)), while the main difference lies in the classes U
and V (in SBV one may consider also vector valued functions, arguing componen-
twise). The functions in U are regular up to both the boundary and the jump set,
while in V only in the interior. On the other hand the jump set of functions in U
is less regular, since the C1 hypersurfaces could overlap. However, this regularity
could be improved by an argument in [23] (see Lemma 5.2 and Part B in proof
of Theorem C therein) or by the capacitary argument in [19, Corollary 3.11]. In
Theorem 1.2 we are able to separate the manifolds one from each other, obtaining
a complete generalisation of the corresponding SBV result.

As the analogous for SBV , Theorems 1.1 and 1.2 are sharp, since they strongly
approximate all the relevant quantities in the definition of SBDp and SBD and
also the measure of Juk

\Ju, while in Theorem 1.3 we do not controlHn−1(Juk
\Ju).

A further SBV -approximation result has been proven by Cortesani and Toader
[20]. The approximating functions are in the class

W(Ω;R) := {u ∈ SBV (Ω): Ju the intersection of Ω with a finite union of
(n−1)-dimensional closed simplexes,u ∈Wm,∞(Ω \ Ju) for all m}.

Theorem 1.5 ([20], Theorem 3.1). Let u ∈ SBV p(Ω) ∩ L∞(Ω). There exist
uk ∈ W(Ω;R) such that

lim
k→∞

(
‖uk − u‖L1(Ω) + ‖∇uk −∇u‖Lp(Ω;Rn) +Hn−1(Juk

4Ju)
)

= 0 ,

lim
k→∞

ˆ

Juk

φ(x, u+
k ,u
−
k , νuk

) dHn−1 =

ˆ

Ju

φ(x, u+, u−, νu) dHn−1 ,

for every φ strictly positive, continuous, and BV -elliptic (see e.g. [1] or [20, equa-
tion (2.4)] for the notion of BV -ellipticity).

The approximation is not in BV -norm, since the geometry of the jump set changes,
and u is required to be in L∞. This result could be however used in combination
with the previous theorems, that do not assume any integrability on u and give
approximants uk ∈ L∞.
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Approximations for SBD and GSBD

The space SBD has been introduced to represent displacements in elastic ma-
terials with fractures. The elastic strain corresponds to e(u), the crack to Ju. The
first density result in SBD is the following, due to Chambolle [9, 10].

Theorem 1.6 ([10], Theorem 1). Let u ∈ SBD2(Ω) ∩ L2(Ω;Rn). There exist
uk ∈ U(Ω;Rn) such that

lim
k→∞

(
‖uk − u‖L2(Ω;Rn) + ‖e(uk)− e(u)‖L2(Ω;Mn×n

sym ) +Hn−1(Juk
4Ju)

)
= 0 .

The main improvement by Theorem 1.1 is that we approximate also the jump
part of Eu. Moreover, we do not assume any a priori integrability on u, and we
consider SBDp with any p > 1, not necessarily p = 2.

Density theorem are in general very useful to prove Γ-convergence approxima-
tions of energies, through more regular ones. Theorem 1.6 has been developed to
study the brittle fracture Griffith energy [29, 26]ˆ

Ω

Ce(u) : e(u) dx+Hn−1(Ju) , (G)

sum of the elastic bulk energy (C being the Cauchy stress tensor) and the surface
energy dissipated in the crack. Theorem 1.1 permits to approximate also energies
depending on the jump amplitude [u], such asˆ

Ω

Ce(u) : e(u) dx+Hn−1(Ju) +

ˆ

Ju

∣∣[u]� νu
∣∣dHn−1 , (C)

considered by Focardi and Iurlano in [25] (see also [8]).
Actually, SBD2 is the right ambient space for (G) only for displacements in

L∞ (see [5]). The proper space is in fact GSBD2, introduced by Dal Maso [22]
requiring only the SBD2 slicing properties to hold, and not even u ∈ L1. With
Antonin Chambolle, we recently proved a sharp approximation result for GSBDp

in [13], removing the simplifying assumption of dimension 2 in [27] and of Lp-
integrability in [30, 17]. This permits to prove the following GSBD counterpart of
GSBV Ambrosio-Tortorelli approximation [4], widely used in Fracture Mechanics
for numerical simulations (see e.g. [6]). Moreover, we have a suitable convergence
of minimisers to a minimiser for the Dirichlet problem, whose existence has been
shown in [14] (in [28] in 2d). To simplify the notation, we assume the boundary
datum on all ∂Ω and Ω star-shaped. We denote by tr∂Ω the trace on ∂Ω.

Theorem 1.7 ([13, 14]). Let u0 ∈ H1(Rn;Rn), εk, ηk > 0 with εk → 0, ηkεk → 0 as
k →∞, H1

u0
(Ω;Rn) := u0 +H1

0 (Ω;Rn), and V 1
k := {v ∈ 1 +H1

0 (Ω): ηk ≤ v ≤ 1}.
Then

D2
k(u, v) :=


ˆ

Ω

(
vCe(u) : e(u) +

(1− v)2

4εk
+ εk|∇v|2

)
dx in H1

u0
(Ω;Rn)×V 1

k ,

+∞ otherwise,
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Γ-converge with respect to the topology of convergence in measure for u and v to

D2(u, v) :=


ˆ

Ω

Ce(u) : e(u) dx+Hn−1
(
Ju ∪ {tr∂Ωu 6= tr∂Ωu0}

)
in GSBD2(Ω)×{v = 1},

+∞ otherwise.

Moreover, if (uk, vk) ∈ H1
u0

(Ω;Rn)×V 1
k are minimisers of D2

k, then, for a subse-
quence (uh, vh), vh converges to 1 in L1(Ω), the set A := {x ∈ Ω: |uh(x)| → ∞}
has finite perimeter, and there exists u ∈ GSBD(Ω) minimiser of D2 with u = 0
in A, such that ∂∗A ⊂ Ju, uh → u Ln-a.e. in Ω \A,ˆ

Ω

Ce(u) : e(u) dx = lim
h→∞

ˆ

Ω

vhCe(uh) : e(uh) dx , (1.2a)

Hn−1(Ju) = lim
h→∞

ˆ

Ω

( (1− vh)2

4εh
+ εh|∇vh|2

)
dx . (1.2b)

Conversely, the energy space for (C) is SBD2. In [25] (C) is obtained, assuming
an a priori L∞ bound on displacements, by a phase-field approximation, with the
difference that now v is in V̂ 1

k := {v ∈ 1 + H1
0 (Ω): εk ≤ v ≤ 1}. We remove any

assumption on u, obtaning the following result (with the notation of Theorem 1.7).

Theorem 1.8 ([21, 16]). The functionals

D̂2
k(u, v) :=


ˆ

Ω

(
vCe(u) : e(u) +

(1− v)2

4εk
+ εk|∇v|2

)
dx in H1

u0
(Ω;Rn)×V̂ 1

k ,

+∞ otherwise,

Γ-converge in the strong L1(Ω;Rn)×L1(Ω) topology to D̂2(u, v), defined asˆ

Ω

Ce(u) : e(u) dx+Hn−1
(
Ju ∪ {tr∂Ωu 6= tr∂Ωu0}

)
+

ˆ

Ju

∣∣[u]� νu
∣∣dHn−1

+

ˆ

∂Ω

∣∣tr∂Ω(u− u0)� νΩ

∣∣dHn−1

if u ∈ SBD2(Ω), v = 1 a.e., and +∞ otherwise. Moreover, there is convergence
of minima and minimisers, up to a subsequence.

The two theorems above hold also for bulk energy with p-growth in e(u), thanks
to our density results. In [16] we study a phase-field approximation “intermediate”
between Theorems 1.7 and 1.8.

2. Strategy of the proof

We notice first that, since tr∂Ωu is integrable on ∂Ω, for a bounded Ω̃ ⊃ Ω the
extension of u with 0 in Ω̃\Ω is in SBD(Ω̃), and for any ε > 0 there exists Γ̃ε ⊂ Ju
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with Hn−1(Γ̃ε) <∞ and (we argue for the extended u, not relabeled)ˆ
Ju\Γ̃ε

∣∣[u]
∣∣ dHn−1 < ε . (2.1)

By a covering argument we find a C1 set Γ̂ (depending on ε) with Hn−1(Γ̃ε\Γ̂) < ε

and pairwise disjoint cubes Q1, . . . , QN with center xj ∈ Γ̃ε and sidelength %j ,
j = 1, . . . , N , for which Γ̂ ⊂

⋃
j Qj ,

Hn−1
(
(Γ̃ε4Γj) ∩ Qj

)
< ε(2%j)

n−1 <
ε

1− ε
Hn−1(Γ̃ε ∩Qj) , (2.2)

being Γj := Γ̂ ∩ Qj , and Γj is a C1 graph in direction νu(xj) with Lipschitz
constant less than ε. Then Ju is almost a diameter for each Qj (recall Γ̃ε ⊂ Ju,
with Γ̃ε = Ju if Hn−1(Ju) <∞), and Ω̃ is partitioned, up to a Ln-negligible set, by
the family of subdomains given by the two (open) halves of each Qj , and Ω̃\

⋃
j Qj .

In every subdomain, the jump energy
´
Ju
|[u]|dx is small, as well as the measure

of the jump set if Hn−1(Ju) <∞.
The guiding idea, in the spirit of [9], is to construct in each of these subdomains

a rough approximation uk, in the following sense: uk converge in L1 to u; the trace
of uk−u vanishes in k on each Γj ; in a small neighbourhood the Lp norm of e(uk) is
controlled by that of e(u), up to a factor 1+ok→∞(1), while

´
Juk

(1+ |[uk]|) dHn−1

is less than C
´
Ju

(1 + |[u]|) dHn−1, for C > 0 independent of k.
At this stage, we first join the two rough approximation for the two halves of

each Qj , and then we glue all the resulting functions with the rough approximation
in the complement of the cubes, avoiding jumps on each ∂Qj . Since the traces on
Γj are well approximated, and Γj is almost covered by Ju, we do not increase (as
ε, k−1 → 0) on each almost-diameter both the measure of the jump set and the
jump energy. Conversely, we increased the jump energy outside Γ̂ by the factor C,
but there this energy is less than ε. If Hn−1(Ju) is finite, also Hn−1(Juk

\Γ̂) < C ε.
In order to avoid jumps on each ∂Qj , [9, 30, 17] use a partition of the unity to

glue the pieces. In such a case, due to the Leibniz rule e(ϕu) = ϕe(u)+∇ϕ�u, to
control the Lp norm of e(u) one needs that the approximants converge in Lp to u,
and then that u ∈ Lp. This issue is overcome in [13], by developing a procedure for
the rough approximation similar in each subdomain, that permits to glue simply
by characteristic functions, still avoiding (almost all) jumps on each ∂Qj .

Another point where [9, 30, 17] use partitions of the unity is to extend the
original function a little bit outside each subdomain, to construct then the rough
approximation. This extension is done in [13] by taking the same function u a
litte bit outside each Qj , and applying an argument derived by Nitsche [31] to
extend along the direction νu(xj) on the two sides with respect to Γj : since Γj
is almost flat, we find an hyperplane at distance less than ε and we extend in
the domain reflected with respect to the hyperplane, without creating jump and
keeping the energy controlled. Notice that we cannot simply reflect the function
since we would loose the control on e(u).
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The construction of [21] is inspired by the one in [13], that is crucial to avoid any
a priori integrability assumption, but improves it both in the rough approximation
and in the extension procedure, to control the resulting jump energy.

As for the rough approximation, we use a different method for each result.
For Theorem 1.2 it is enough to take a convolution with ϕk(x) := knϕ(kx), for
ϕ ∈ C∞c (B(0, 1)) radially symmetric. Indeed, for any subdomain Uˆ

U

|e(u ∗ ϕk)|dx ≤ |Eu|(U +B(0, k−1)) ,

so ‖e(u ∗ ϕk)‖L1 ≤ ‖e(u)‖L1 + |Eju|(U + B(0, k−1), but we know that the jump
energy is small in each subdomain. Conversely, when e(u) is accounted with a
power p > 1 and Eju linearly, we have to separate the two contributions, so we
cannot use only convolution.

In fact, for the other results, we partition any subdomain in cubes q of sidelength
k−1 and we distinguish the “bad” cubes where the relative jump is large either in
measure for Theorem 1.1, that is

Hn−1(Ju ∩ 4q) > θk−(n−1) ,

for a small parameter θ, or in energy for Theorem 1.3, that is

|Eju|(4q) > k−n .

In the good cubes we take convolution with ϕk. In the first case the energy is
controlled by a technical argument based on the Korn-Poincaré-type estimate in
[11] by Chambolle, Conti, and Francfort (used also in [12, 18, 15]), which gives

‖e(ũ ∗ ϕk)− e(u) ∗ ϕk‖pLp(q) ≤ C
(Hn−1(Ju ∩ 4q)

k−(n−1)

)r
‖e(u)‖pLp(4q) ≤ θ

r‖e(u)‖pLp(4q) ,

for ũ a modification of u in a small exceptional set, and r depending only on p and
n. In the other case we use the easy estimate (cf. [21, Lemma 5.1])

‖e(u ∗ ϕk)− e(u) ∗ ϕk‖pLp(q) ≤ ‖ϕ‖
p
Lp k

n(p−1)|Eju|p(2q) ≤ C |Eju|(2q) .

In the bad cubes we define in both cases uk as the affine function aq obtained by
the classical Korn-Poincaré inequality in BD, such that e(aq) = 0 and

‖u− aq‖L1(2q) ≤ C k−1|Eu|(2q) . (2.3)

Of course the uk jump on the boundary of bad cubes, but we estimate the jump
energy with C|Eu|(

⋃
q bad 2q). Notice that the number of bad cubes is less than

ε θ−1kn−1 in the first case and than ε kn in the second case, by (2.2) and (2.2),
since we are in a subdomain. Thus Ln(

⋃
q bad 2q) vanishes as ε→ 0 (for ε� θ).

A difference with respect to [13] is that therein we put in the bad cubes uk equal
to 0. This seems good since it does not create jump between two neighbouring
bad cubes, but instead it gives no control on the amplitude of the jump between
good and bad cubes. By adding the energy contribution for any small cube, we
obtain the energy rough estimate, while it is not hard to guarantee convergence of
the functions and of the traces.
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We remark that since we have used the same approximation procedure in each
subdomain, we do not create jump on ∂Qj , except in the zone when we extend,
modifying the original function. A crucial difference with respect to [13] is related
to this zone: indeed, if we consider an hyperplane at distance of order ε from Γj ,
then we create a jump for uk at the intersection between ∂Qj and a neighbourhood
of the diameter of thickness ε. Since we consider convolution at scale k � ε, we
are not able to control [uk] therein, even if we could control the measure of the
union of all these jump sets by C εHn−1(Ju), as in [13]. For this reason, we have
to keep the reflected zone of height Ck−1, so comparable to the size of the small
cubes and of the convolution kernels. Thus we divide the two halves of each Qj
in parallelepipeds whose basis is a (n−1)-dimensional cube of sidelength (ηεk)−1,
and extend separately. This introduces also jumps at the common boundary of
two adjacent parallelepides, but we choose ηε ≥ ε in such a way that limε→0 ηε = 0
and both the jump energy and the measure of these jumps vanish as ε→ 0.
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