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Abstract. We prove an existence and uniqueness result for solutions to nonlinear diffusion
equations with degenerate mobility posed on a bounded interval for a certain density u. In

case of fast-decay mobilities, namely mobilities functions under a Osgood integrability condi-

tion, a suitable coordinate transformation is introduced and a new nonlinear diffusion equation
with linear mobility is obtained. We observe that the coordinate transformation induces a

mass-preserving scaling on the density and the nonlinearity, described by the original nonlinear

mobility, is included in the diffusive process. We show that the rescaled density ρ is the unique
weak solution to the nonlinear diffusion equation with linear mobility. Moreover, the results

obtained for the density ρ allow us to motivate the aforementioned change of variable and to

state the results in terms of the original density u without prescribing any boundary conditions.

1. Introduction

Spreading behaviours appear in a large class of phenomena in biology such as animal swarming,
chemiotaxis and bacterial movements, but also in modelling pedestrian movements and opinon for-
mation, and it is often in competition with other effects, such as transport driven by external forces
(local potentials) and/or aggregation or repulsion induced by the presence of non-local potentials.
In order to handle the aforementioned dynamics mathematical models composed by nonlinear ag-
gregation/diffusion/transport equations were introduced [5, 18, 22, 25, 26, 29] and deeply studied
in recent years adopting different techniques and investigating possible modeling extensions (see
e.g.[2, 4, 7, 11, 17, 19, 24] and references therein). The presence of a nonlinear mobility term in the
equation may help to improve the ability of the models to catch more sophisticated phenomena.
The general form of the equation we are considering is

∂tu = div (G(x, u)∇ (Φ(u) +W (x))) , (1)

where u is the density population, the function Φ models the spreading effects and, in general, it
is a nonlinear function of the density, W is an external potential. Non-linear mobilities functions
G, depending only on the density u and degenerating for a certain value umax > 0, are used to
prevent the overcrowding effect that may produce blow-up in finite time as in classical chemotaxis
models (see [2, 4, 20, 33]). The presence of such mobility induces a more realistic behavior
since aggregation stops once umax is reached and the overcrowding phenomenon is prevented, see
[8, 6, 29].

In this paper we deal with a mobility function of the form, G(x, u) = g(x)2u, that is linear in u
and non homogeneous in x. Such mobility may model the possible presence of spatial heterogeneity
in the domain of u. In the sequel we call mobility the function g(x); i.e., the x-dependent part
of G. We reduce to the one-dimensional initial value problem for nonlinear convection-diffusion
equation on bounded intervals with degenerate mobility by considering the following equation

∂tu = (g(x)2u(ϕ′(u) +W (x))x)x , (2)

where u = u(x, t) is defined on the domain QΩ := {(x, t) ∈ Ω × [0,+∞)} with Ω = (−1, 1). We
assume that the mobility function g : Ω→ [0,+∞) (or inverse metric coefficient) vanishes at the
edges x = ±1. We can consider as reference example g(x) = (1 − x2)p/2, p > 0. The function
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ϕ : [0,+∞) → R represents a free energy density, resulting from local repulsive effects or volume
filling mechanisms, and W : Ω → R is the external potential. Since g vanishing at the edges
x = ±1, the problem of posing suitable zero-flux boundary conditions arises in order to have a
(unique) solution u with constant mass. Roughly speaking, if we consider (2) as the continuum
limit equation of a many particles system and we assume that g vanishes very fast at x = ±1 then
the particles slow down so fast at the boundary that no boundary condition has to be prescribed in
order to preserve the total mass of u. On the other hand, if g goes to zero very slowly at x = ±1,
a zero-flux boundary condition could tackle the loss of mass.

The formulation of equation (2) as gradient flows, in the sense of [1], on a modified Wasserstein
space was first proven in [23] for a class of mobility functions G : Rn → Rn statisfying a uniform
ellipticity assumption,

λ|ζ|2 ≤ 〈G(x)ζ, ζ〉 ≤ Λ|ζ|2

for all x, ζ ∈ Rn and for some λ,Λ > 0, inducing a metric coefficient M = G−1 that satisfy a similar
condition, see also [9, 10, 32]. Unfortunately this result does not apply to our case. Therefore, a
new mathematical approach is needed in order to prove existence and uniqueness of solutions to
equation (2). Moreover, models with mobility degenerating at the boundary are of high interest
also for applications (see e.g. the modeling of the opinion formation phenomena [34]).

Our approach consists in introducing a suitable coordinate transformation with the aim of
getting a Fokker-Planck type equation in a new variable ρ defined on the whole space R and with
homogeneous mobility. Indeed, we set α : Ω→ R as

α(x) :=

∫ x

0

1

g(z)
dz. (3)

By definition of g we have that α is a C1(Ω), strictly increasing function. We assume that g
satisfies also the Osgood condition ∫ 1

0

1

g(z)
dz = +∞ , (4)

that is, the mobility has a fast-decay behaviour. The function α is a 1 : 1 map from Ω onto R.
Our reference example g(x) = (1 − x2)p/2 is a fast-decay mobility provided p ≥ 2. Setting the
coordinate transformation

y = α(x) ∈ R, ∀x ∈ Ω,

and the mass preserving scaling as follows

u(x, t) = α′(x)ρ(α(x), t) , (5)

we have that, by assumption (4), ρ is defined on

QR = {(y, t) ∈ R× [0,+∞)}.
Replacing the ansatz (5) into (2) we obtain

∂tρ = (ρ(ϕ′(a(y)ρ) + V )y)y , (6)

where

a(y) :=
1

g(α−1(y))
, V (y) := W (α−1(y)) .

Therefore, we may conclude, at least formally, that if u solves (2) then ρ solves (6) and vice versa.
There are two main advantages in studying problem (6) in place of (2). First of all, as already

observed, the new equation is posed on the whole real line R, and no boundary conditions should
be prescribed. Moreover, the mobility in the continuity equation is linear and no longer depending
on the space variable.

If g does not satisfy (4); i.e., there exists l > 0 such that∫ 1

0

1

g(z)
dz = l < +∞ , (7)

then the map α is a bi-jection from (−1, 1) into (−l, l) as e.g. in case of 0 ≤ p < 2 for g(x) =
(1 − x2)p/2. Condition (7) corresponds then to the slow-decay behaviour of the mobility. We
argue that the scaling (5) can be still applied, and a new density ρ(y, t) still solves (6). However,
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ρ is defined on the bounded spatial domain (−l, l), and a zero-flux boundary condition must be
prescribed in order to preserve its total mass. In a forthcoming paper we explore in details this
argument.

Another interesting case that, in our opinion, deserves to be investigated is the Cauchy problem
on R with unbounded mobilities given by the following equation

∂tu = (β(x)2u(ϕ′(b(x)u) +W )x)x . (8)

Here, β ∈ C1(R; (0,+∞) is the inverse metric factor bounded from below.
In [23], the solution to the Cauchy problem as in (8) was tackled by considering a variant of the

theory developed in [1] and the usual Wasserstein distance is replaced by a distance constructed
in the same spirit as [3]; i.e.,

dβ(u1, u2) = inf

{∫ 1

0

∫
R

1

β(x)2
u(x, s)w(x, s)2 dx ds , u(x, 0) = u1 , u(x, 1) = u2 , us + (uw)x = 0

}
.

The results in [23] are valid with b smooth, uniformly bounded and uniformly positive on R,
and they holds in arbitrary space dimension. We believe that our scaling approach, introduced
in Section 2.1, can be adapted in order to reduce, also in this case, (8) to an equation with
homogeneous mobility.

In this paper we deal with fast-decay mobility. The equation (6) has the structure of a gradient
flow with respect to the Wasserstein metric with energy functional

Fa[ρ] =

∫
R

ϕ(a(y)ρ(y))

a(y)
dy +

∫
R
V (y)ρ(y)dy, (9)

(see e.g. [1]) . We will recall the basic notions of Wasserstein gradient flow theory in Section
2.3. It is well known by the theory developed in [1, 27, 31, 35] that (6) has a unique solution in
the space of probability measures with finite second moment provided the functional Fa above
is displacement λ-convex (in addition to some further technical assumptions); i.e., geodesically
convex on the Wasserstein space up to a quadratic perturbation. Hence, following the approach
as in [16], we will collect conditions on g, ϕ, and W such that the corresponding functional Fa
obtained after the scaling (5) is geodesically λ-convex. Moreover, we state the existence and
uniqueness result for (6) by using the minimizing movements method and the by-now classical
JKO approach [21], and we reformulate the result for the density u = u(x, t) via the scaling (5).
In particular, we determine the class of initial conditions for u such that a unique solution for (2)
exists without imposing any boundary condition.

The paper is organized as follows. In Section 2 we first derive (6) using the coordinate trans-
formation and the scaling (5), then we list the assumptions and we collect some useful tools and
results that we will apply to prove the main result stated in Theorem 2.1. Section 3 is devoted
to prove existence and uniqueness for the rescaled density ρ (Section 3.1 and Section 3.2, respec-
tively). In Section 4 we reformulate the result obtained for ρ in terms of the density function u.
Finally, in Section 5 we focus on three relevant more specific cases obtained by introducing degen-
erate mobility in the classical Heat equation, linear Fokker-Planck equation and Porous Medium
equation.

2. Preliminaries

In this section we collect general assumptions and properties on functions a, g, V and W that
are involved in the definition of the equations (2) and (6). Moreover, we derive equation (6) and
we recall the notion of Wasserstein gradient flow and the extension version of the Aubin-Lions
Lemma.

We use the usual notations h′(z) and ∂zh to denote the first derivative of a function h depend-
ing only on one variable and the first order partial derivative for h depending on two variables;
respectively. To the aim to not overburden the notations, we will use also any of the following
notations hz , [h]z , (h)z to denote the first derivative or first order partial derivative. We leave the
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interpretation up to the reader, it will be clear anyway from the context. Similarly, for the second
derivative and for the second order partial derivative.

2.1. Derivation of nonlinear convection-diffusion equation on R with homogeneous
mobility. We want to derive equation (6) from equation (2) by applying the scaling (5). More
precisely, we replace

u(x, t) = α′(x)ρ(α(x), t),

into (2) and we obtain

α′ρt ◦ α =
(
g2α′ρ ◦ α[ϕ′(α′ρ ◦ α) +W ]x

)
x
. (10)

We define now the functions a : R→ R+ and V : R→ R as

a(y) :=
1

g(α−1(y))
, V (y) := W (α−1(y)) . (11)

Hence, by (3) we have that

a ◦ α(x) =
1

g(x)
= α′(x) , V ◦ α(x) = W (x) , (12)

and

α′′(x) = (a′ ◦ α)α′ , W ′(x) = α′(x)V ′ ◦ α(x) . (13)

Therefore, we have that

[ϕ′(α′ρ ◦ α)]x = ϕ′′(α′ρ ◦ α)[α′′ρ ◦ α+ (α′)2∂yρ ◦ α]

= α′ϕ′′(aρ ◦ α)[a′ρ ◦ α+ a∂yρ ◦ α]

= α′[ϕ′(aρ)]y ◦ α . (14)

By applying (12), (13), and (14) we have that the metric factor in (10) disappears and the equation
(10) becomes

α′ρt ◦ α =
(
ρ ◦ α[ϕ′(aρ) + V ]y ◦ α

)
x

= α′
(
ρ[ϕ′(aρ) + V ]y

)
y
◦ α . (15)

Therefore, we get equation (6).

2.2. Main assumptions and properties. We assume that the mobility function g : Ω→ [0, 1]
is a C2(Ω̄) function satisfying the following conditions:

(g1) g(±1) = 0, g has a maximum point at x = 0 and g(0) = 1;
(g2) the Osgood condition (4);
(g3) there exists a constant Cg > 0 such that 0 ≤ (g′)2 − g g′′ ≤ Cg.

We collect in the following Proposition some useful properties of the function a defined in (11).

Proposition 2.1. Let g be a function as above satisfying (g1), (g2) and (g3). Let α and a be
defined as in (3) and (11), respectively. Then, a : R 7→ [1,+∞) is a convex function satisfying the
following properties:

(i) a(y) ≥ a(0) = 1 for every y ∈ R;
(ii) there exists a constant Ca such that |a′(y)/a(y)| ≤ Ca and y a′(y)/a(y) ≥ 0;
(iii) a′′(y)/a(y) is bounded for every y ∈ R .

In particular, if g(x) = (1− x2)p/2, with p ≥ 2, then conditions (i) and (ii) are still satisfied with
Ca = p. Moreover, condition (iii) still holds for every p ≥ 2 and a′′(y) is bounded for every p ≥ 4.

Proof. By (g1) and (12) we have that the function a(y) has a global minimum at y = 0, that
implies condition (i). By (3) and (13) we have that

a′ ◦ α(x) = −g
′(x)

g(x)
,

a′

a
◦ α(x) = −g′(x) ; (16)
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hence, we have that |a′(y)/a(y)| remains bounded. Moreover

a′′ ◦ α(x) =
(g′(x))2 − g′′(x)g(x)

g(x)
,

a′′

a
◦ α(x) = (g′(x))2 − g′′(x)g(x) ; (17)

therefore by (g3) we get that the function a is convex and condition (iii) is satisfied. In particular,
the convexity of a implies that a(y)− a′(y)y ≤ a(0); i.e.,

a′(y)

a(y)
y ≥ 0 .

In the particular case g(x) = (1− x2)p/2, a direct computation shows

a′(y)

a(y)
= pα−1(y)(1− (α−1(y))2)p/2−1 ,

and

a′′(y) = p
(

1 + (α−1(y))2
)(

1− (α−1(y))2
)p/2−2

;

hence, |a′(y)/a(y)| ≤ p for every y ∈ R, and a′′ is bounded for every p ≥ 4. Moreover, since

a′′(y)

a(y)
= p

(
1 + (α−1(y))2

)(
1− (α−1(y))2

)p−2

we have that the ratio a′′/a remains bounded for all p ≥ 2 and y ∈ R. �

Let ϕ : [0,+∞) → [0,+∞) be a lower semi-continuous and convex function satisfying the
following growth conditions:

(D) for m > 1 and µ ∈ [m, 3m) there exist two constants cm, Cµ ≥ 0 such that

cms
m−2 ≤ ϕ′′(s) ≤ Cµsµ−2,

for every s ≥ 0.

Let W : Ω→ [0,+∞) be a non-negative C2(Ω) function. We further assume that

(gW1) there exists λ ∈ R such that

λ ≤ g2W ′′(x) + g g′W ′ for all x ∈ [−1, 1] .

(gW2) there exists L > 0 such that[
g2(x)W ′(x)

]
x
≤ L, for all x ∈ [−1, 1] .

Note that

V ′′ ◦ α(x) = g2(x)W ′′(x) + g(x)g′(x)W ′(x) (18)

= g2(x)W ′′(x) +
1

2
[g2(x)]xW

′(x) . (19)

Remark 2.1. We observe that condition (gW1) naturally arises in the porous medium case (see
Section 5.3). Indeed, condition (gW1) implies the λ-convexity of function V ; while, condition
(gW2) implies

a(y)

[
V ′(y)

a(y)

]
y

≤ L, for all y ∈ R .

We can now state the main result of the paper (see Section 4 for the proof of Theorem).

Theorem 2.1. Let g : Ω → [0, 1] be a C2(Ω̄) function under assumptions (g1)-(g3). Let ϕ :
[0,+∞) → [0,+∞) be a lower semi-continuous and convex function satisfying (D) and let W :
Ω→ [0,+∞) be a non-negative C2(Ω) function under the assumption (gW1)-(gW2). Consider, for
m > 1, the initial condition u0 ∈ L1∩Lm(Ω) and fix T > 0. Then there exists a Hölder-continuous
curve u : [0, T ]→ Lm(Ω) such that,

(i) u ∈ Lα([0, T ]× Ω) for some α ∈ (1, 3m);
(ii) g[u

m
2 ]x ∈ L2([0,+∞)× Ω);
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(iii) for almost every t ∈ [0,+∞) and for all ψ ∈ C∞c (Ω), we have

d

dt

∫
Ω

ψ(x)u(x, t)dx = −
∫

Ω

g2(x) (ϕ′(u) +W (x))x ψx(x)u(x, t)dx. (20)

Note that the result is obtained without prescribing any boundary condition on u.

2.3. Preliminaries on Wasserstein gradient flows. We recall some basic notions in Optimal
Transport theory, see [1, 31, 35]. Let us denote with P(R) the space of all probability measures
on R and with P2(R) the set of all probability measures with finite second moment; i.e.,

P2(R) = {ρ ∈ P(R) : m2(ρ) < +∞} ,

where

m2(ρ) =

∫
Rd
|x|2 dρ(x).

Consider now a measure ρ ∈ P(R) and a Borel map T : Rd → Rn. We denote by T#ρ the
push-forward of ρ through T , defined by∫

Rn
f(y) dT#ρ(y) =

∫
Rd
f(T (x)) dρ(x) for all f Borel functions on Rn.

Let us recall the 2-Wasserstein distance between µ1, µ2 ∈ P2(R) defined by

W 2
2 (µ1, µ2) = min

γ∈Γ(µ1,µ2)

{∫
R2

|x− y|2 dγ(x, y)

}
, (21)

where Γ(µ1, µ2) is the class of all transport plans between µ1 and µ2, that is the class of measures
γ ∈ P2(R)2 such that, denoting by πi the projection operator on the i-th component of the product
space, the marginality condition

(πi)#γ = µi for i = 1, 2,

is satisfied. Setting Γ0(µ1, µ2) as the class of optimal plans; i.e., minimizers of (21), we can write
the Wasserstein distance as

W 2
2 (µ1, µ2) =

∫
R2

|x− y|2 dγ(x, y), γ ∈ Γ0(µ1, µ2).

For I ⊂ R we consider an absolutely continuous curve in W2, ρ : I → P2(R), namely a curve
such that there exists a function g ∈ L1

loc(I) such that

W2(ρ(t), ρ(s)) ≤ |
∫ t

s

g(τ)dτ | for all t, s ∈ I.

We introduce the concept of k-flow, which is linked to the λ-convexity along geodesics. See
[13, 28] for further details.

Definition 2.1. A semigroup GΨ : [0,+∞] × P2(R) → P2(R) is a k-flow for a functional Ψ :
P2(R) → R ∪ {+∞} with respect to the Wasserstein distance W2 if, for an arbitrary ρ ∈ P2(R),
the curve s 7→ GsΨρ is absolutely continuous on [0,+∞] and satisfies the Evolution Variational
Inequality (E.V.I.)

1

2

d+

dσ
W 2

2 (GσΨρ, ρ̃)|σ=s +
k

2
W 2

2 (GsΨρ, ρ̃) ≤ Ψ(ρ̃)−Ψ(GσΨρ), (22)

for all s > 0 and for any ρ̃ ∈ P2(R), such that Ψ(ρ̃) <∞.

Remark 2.2. The symbol d+/dσ stands for the limit superior of the respective difference quotients
and equals to the derivative if the latter exists.

Theorem 2.2. Asssume that a functional Ψ : P2(R)→ R∪ {+∞} is λ-convex (along geodesics),
with a modulus of convexity λ ∈ R, that is, along every constant speed geodesic ρ : [0, 1]→ P2(R)

Ψ [ρ(t)] ≤ (1− t)Ψ [ρ(0)] + tΨ [ρ(1)]− λ

2
t(1− t)W 2

2 (ρ(0), ρ(1))
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holds for every t ∈ [0, 1]. Then Ψ posses a uniquely determined k-flow, with some k ≥ λ. Con-
versely, if a functional Ψ posses a k-flow, and if is monotonically non-increasing along that flow,
then Ψ is λ-convex, with some λ ≥ k.

We now recall an extension of the Aubin-Lions Lemma first introduced in [30]. This result will
be used later to prove the existence of weak solutions to (6).

Theorem 2.3 (Extended Aubin-Lions Lemma [30]). On a Banach space X, let be given

• a normal coercive integrand Y : X → [0,∞]; i.e., Y is lower semi-continuous and its
sub-levels are relatively compact in X;

• a pseudo-distance d : X×X → [0,∞]; i.e., d is lower semi-continuous and d(ρ, η) = 0 for
any ρ, η ∈ X with Y(ρ),Y(η) <∞ implies ρ = η.

Let further U be a set of measurable functions u : [0, T ]→ X, with a fixed T > 0. If

sup
u∈U

∫ T

0

Y[u(t))]dt <∞ and lim
h↓0

sup
u∈U

∫ T−h

0

d (u(t+ h), u(t)) dt = 0, (23)

U contains an infinite sequence {un}n∈N that converges in measure (with respect to t ∈ [0, T ]) to
a limit u : [0, T ]→ X.

3. Existence and uniqueness of weak solutions to nonlinear convection-diffusion
equation on R with homogeneous mobility

In this section we study existence and uniqueness of solutions to (6). In particular, we investigate
on λ-convexity property for the related functional Fa introduced in (9). Let us recall that the
equation (6) obtained in Section 2.1 for the scaled density ρ is

ρt = (ρ (ϕ′(aρ) + V )y)y for (t, y) ∈ [0,+∞)× R. (24)

For technical convenience we define the following functions

F a(y, η) =
1

a(y)
ϕ(a(y)η) , H(y, η) = ηF a(y,

1

η
), (25)

and we reformulate equation (24) and the functional Fa as

ρt = (ρ(F aη (y, ρ) + V )y)y . (26)

and

Fa [ρ] =

∫
R
F a(a(y), ρ(y))dy +

∫
R
V (y)ρ(y) dy , (27)

respectively. At least formally, we may introduce the cumulative distribution function R of ρ,
defined as

R(t, y) =

∫ y

−∞
ρ(t, z) dz ,

and its pseudo-inverse function

Y (t, ω) = inf {y : R(t, y) > ω} , (28)

for any y ∈ R, w ∈ (0, 1) and t ≥ 0, respectively. Note that

Yωρ ◦ Y = 1 . (29)

The functions R and Y formally satisfy the equations

Rt = Ry
(
F aη (y,Ry) + V (y)

)
y
, (30)

Yt = − 1

Yω

(
F aη

(
Y,

1

Yω

)
+ V (Y )

)
ω

; (31)

respectively. We will make use of this reformulation in Section 3.2.

Definition 3.1. We say that a curve ρ : [0, T ]→ P2(R) is a weak solution to (26) if

(i) ρ ∈ Lα([0, T ]× R), with α ∈ (1, µ) for all T > 0;
(ii) [ρm/2]y ∈ L2([0,+∞)× R);
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(iii) for almost every t ∈ [0,+∞) and for all ζ ∈ C∞c (R), we have

d

dt

∫
R
ζ(y)ρ(y, t)dy = −

∫
R

(ϕ′(aρ) + V (y))y ζy(y)ρ(y, t) dy. (32)

3.1. The minimising movements or JKO scheme. In this section we construct solutions to
(24) by applying the so called implicit-Euler or minimising movements scheme (the last notion
has been introduced by De Giorgi in [14] in the general setting of metric spaces). Here we follow
the interpretation of the Fokker- Planck equation as Wasserstein gradient flow originally suggested
by Jordan, Kinderlehrer, and Otto in [21].

Given ρ ∈ P2(R), for a fixed time step τ > 0 and for every η ∈ P2(R) we introduce the
penalization functional Φτ (ρ; η) defined by

Φτ (ρ; η) =
1

2τ
W 2

2 (ρ, η) + Fa [ρ] . (33)

Let ρ0 ∈ P2(R) with Fa
[
ρ0
]
<∞, the approximation scheme consists in constructing recursively

the sequence of minimizers {ρnτ }n∈N as

ρnτ = argminρ∈P2(R)Φτ
(
ρ; ρn−1

τ

)
, ρ0

τ := ρ0 . (34)

We define the piece-wise constant sequence as

ρ̄τ (t) = ρnτ for t ∈ ((n− 1) τ, nτ ] , (35)

for n ≥ 1.

Lemma 3.1 (Existence of minimzers). Under the assumptions (g1) - (g3),(D),(gW1), (gW2),
we have that for any given ρn−1

τ ∈ P2(R) the functional Φτ
(
ρ; ρn−1

τ

)
admits a minimiser ρnτ ∈

P2(R).

Proof. The well-posedness of the scheme is an application of Direct Methods of Calculus of Vari-
ations. Indeed, since ϕ and V are non-negative then the functional Φτ

(
ρ; ρn−1

τ

)
satisfies the

coercivity condition, that is, for any given η ∈ P2(R) and for every constant c we have that

inf
ρ∈P2(R)

{cW 2
2 (ρ, η) + Fa [ρ]} > −∞ .

Hence, for any given ρn−1
τ ∈ P2(R) there exists a bounded minimising sequence in P2(R) that

satisfies the integral condition for tightness and therefore, it is tight in P2(R) (precompact with
respect to the narrow convergence, see e.g. [1, Remark 5.1.5]). Moreover, by the superlinear growth
condition at infinity of ϕ and Dunford- Pettis Theorem we have that the minimising sequence is
precompact also with respect to the weak-L1 convergence and the weak-L1 limit ρnτ ∈ K. The
lower semicontinuity of Φτ

(
ρ; ρn−1

τ

)
with respect to the L1-weak convergence easy follows by [1].

Indeed, by [1, Lemma 5.1.7 and Lemma 7.1.4], we have that the functionals ρ→
∫
R ρ(y)V (y) dy and

ρ→W 2
2

(
ρ, ρn−1

τ

)
are lower semicontinuous with respect to the narrow convergence, respectively;

therefore they are also L1-weak lower semicontinuous. By classical results on the L1- weak lower
semicontinuity of integral functionals with positive, convex and lower semicontinuous integrand, we
have that also ρ→

∫
R ϕ(aρ)/a dy is lower semicontinuous with respect to the L1- weak convergence,

which concludes the proof. �

Lemma 3.2 (Compactness and limit trajectory). The piecevise constant interpolating se-
quence ρ̄τ narrow converges up to (non-relabelled) sub-sequence to a Hölder continuous limit curve
ρ : [0,∞)→ P2(R).

Proof. Directly from the definition of the minimising sequence we get,

1

2τ

N∑
n=1

W 2
2

(
ρn−1
τ , ρnτ

)
≤ Fa

[
ρ0
]
−Fa

[
ρNτ
]
, (36)

which easily induces a monotonicity property for the functional along the sequence,

Fa [ρnτ ] ≤ Fa
[
ρ0
τ

]
, ∀n ≥ 0 .
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Moreover, since Fa is non-negative we have that

∞∑
n=1

W 2
2

(
ρn−1
τ , ρnτ

)
≤ 2τFa

[
ρ0
]
. (37)

Reasoning as in the proof of [1, Theorem 11.1.6, Steps 1-2] we get

W2(ρ̄τ (s), ρ̄τ (t)) ≤
√

2Fa[ρ0] max(τ, |t− s|) 1
2 , s, t ≥ 0 . (38)

By the refined version of Ascoli-Arzelà Theorem in [1, Proposition 3.3.1] we get the narrow con-
vergence. �

We now show that the piece-wise constant interpolation sequence actually is strongly convergent
in some Lp space, where the exponent will depend only on the growth condition (D) of ϕ.

Remark 3.1. There exists a constant C := C(ρ0, ϕ, a, V ), such that

m2 [ρ̄τ ] (T ) :=

∫
R
|x|2ρ̄τ (T, y)dy ≤ C(1 + T ) for all T ≥ 0 . (39)

Indeed, given an optimal transport plan γ between ρnτ and ρ0 we have that

m2 [ρnτ ] =

∫
R2

y2dγ(y, z) ≤ 2

∫
R2

z2dγ(y, z) + 2

∫
R2

|y − z|2dγ(y, z)

= 2m2 [ρ0] +W 2
2 (ρnτ , ρ

0)

≤ 2m2 [ρ0] +

n∑
h=0

W 2
2 (ρkτ , ρ

k−1)

≤ 2m2 [ρ0] + 2τFa[ρ0] .

We now prove a key tool, the so called flow interchange lemma (see [16] for further details).

Lemma 3.3 (Flow Interchange). Let Ψ : P2(R) → (−∞,+∞] be a lower semi-continuous
functional which posses a k-flow GΨ. Define the dissipation of a functional F along GΨ by

DΨFa(ρ) := lim sup
s↓0

1

s
(Fa [ρ]−Fa [GsΨρ]) ,

for every ρ ∈ P2(R). If ρn−1
τ and ρnτ are two consecutive steps in the JKO scheme (34), then

Ψ
[
ρn−1
τ

]
−Ψ [ρnτ ] ≥ τDΨFa(ρnτ ) +

k

2
W 2

2 (ρnτ , ρ
n−1
τ ). (40)

In addition, assume that GΨ is such that for every n ∈ N, the curve s 7→ GsΨρ
n
τ lies in Lm(R), it

is differentiable for s > 0 and continuous at s = 0. Let R : P2(R) → (−∞,+∞] be a functional
satisfying

lim inf
s↓0

(
− d

dσ
|σ=sFa [GσΨρ

n
τ ]

)
≥ R [ρnτ ] .

Then the following estimate holds: for every n ∈ N,

Ψ
[
ρn−1
τ

]
−Ψ [ρnτ ] ≥ τR [ρnτ ] +

k

2
W 2

2 (ρnτ , ρ
n−1
τ ); (41)

In particular, for every N ∈ N,

Ψ
[
ρNτ
]
≤ Ψ

[
ρ0
]
− τ

N∑
n=1

R [ρnτ ]− k

2

N∑
n=1

W 2
2 (ρnτ , ρ

n−1
τ ). (42)

Proof. The proof of (40) easily follows as in [16, Lemma 4.2], after recalling Definition 2.1, the
W2- absolute continuity of the curve s 7→ GsΨρ

n
τ and the definition of ρnτ , ρ

n−1
τ as in (34). �
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We now apply Lemma 3.3 with the entropy

H [η] =

∫
R
η(y) log η(y) dy,

as auxiliary functional in place of Ψ. It is well-known that H posses the heat flow as 0-flow, that
is, GsHρ0 is a solution to the heat equation

ηs = ηyy, η(0, y) = ρ0(y).

Lemma 3.4. There exists a constant A depending only on ρ0 such that the piece-wise interpolants
ρ̄τ satisfy

‖ρ̄m/2τ ‖L2(0,T ;H1(R)) ≤ A(1 + T ), (43)

for all T > 0. In particular, ρ̄
m/2
τ ∈ H1(R) for every t > 0.

Proof. The proof of (43) is an application of the Flow Interchange Lemma. Indeed, we first
compute

d

ds
Fa [GsHρ0] =

∫
R

(ϕ′(aη) + V (y)) ηs dy

=

∫
R
ϕ′(aη)ηyy dy +

∫
R
V (y)ηyy dy

= −
∫
R
ϕ′′(aη)∂y(aη)ηy dy +

∫
R
V ′′(y)η dy .

By assumption (D),

d

ds
Fa [GsHρ0] ≤ −cm

∫
R

(aη)m−2(a′η + aηy)ηy dy +

∫
R
V ′′(y)η dy

= −cm
∫
R

(
am−2a′ηm−1 + am−1ηm−2ηy

)
ηy +

∫
R
V ′′(y)η dy

= −cm
m

∫
R
am−2a′[ηm]y dy −

4cm
m2

∫
R
am−1([ηm/2]y)2 dy +

∫
R
V ′′(y)η dy

=
cm
m

∫
R

[am−2a′]yη
m dy − 4cm

m2

∫
R
am−1([ηm/2]y)2 dy +

∫
R
V ′′(y)η dy

Note that by Proposition 2.1(ii)-(iii)

∂y
(
am−2a′

)
= am−1

(
(m− 2)

(a′
a

)2

+
a′′

a

)
≤ K am−1;

therefore,

d

ds
Fa [GsHρ] ≤ c

∫
R
am−1ηm dy − 4cm

m2

∫
R

([η
m
2 ]y)2 dy +

∫
R
V ′′ η dy .

We define

R[η] = −c
∫
R
am−1ηm dy +

4cm
m2

∫
R

([η
m
2 ]y)2 dy − V̄

where V̄ = supR V
′′ < +∞. By applying Lemma 3.3 with Ψ = H, we have that

H
[
ρNτ
]
≤ H

[
ρ0
]
− τ

N∑
n=1

R [ρnτ ] ;

hence,

τ
4cm
m2

N∑
n=1

∫
R

([(ρnτ )
m
2 ]y)2 dy ≤ H

[
ρ0
]
−H

[
ρNτ
]

+ cτ

N∑
n=1

∫
R
am−1(ρnτ )m dy + V̄ Nτ.
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In particular,

τ
4cm
m2

N∑
n=1

‖(ρnτ )
m
2 ‖2H1 ≤ τ

4cm
m2

N∑
n=1

∫
R

([(ρnτ )
m
2 ]y)2 dy + τ

4cm
m2

N∑
n=1

∫
R
am−1(ρnτ )m dy

≤ H
[
ρ0
]
−H

[
ρNτ
]

+ (c+
4cm
m2

)τ

N∑
n=1

∫
R
am−1(ρnτ )m dy + V̄ Nτ . (44)

Recalling the standard inequalities

−2

e
s1/2 ≤ s log s ≤ 1

(m− 1)e
sm

for all s > 0, we have that

H(η) =

∫
R
η log η dy ≤ 1

(m− 1)e

∫
R
ηm dy ≤ 1

(m− 1)e

∫
R
am−1ηm dy ≤ cFa(η) ,

and, on the other hand,

H(η) ≥ −2
√
π

e

(
1 +

∫
R
x2η dy

)1/2

,

(see e.g. [16, Lemma 4.6]). By (44) we have that

τ
4cm
m2

N∑
n=1

‖(ρnτ )
m
2 ‖2H1

≤ cFa(ρ0) + c̄
(

1 +

∫
R
x2ρ̄τ (y,Nτ) dy

)1/2

+ c̃NτFa(ρ0) + V̄ Nτ . (45)

By (39) we get the thesis. �

Proposition 3.1. The converging sub-sequence ρ̄τ in Lemma 3.2 converges to a limit function ρ
in Lµ([0, T ]× R) for every T > 0, with µ < 3m.

Proof. We first prove the convergence in Lm([0, T ] × R). The proof is a standard application of
Theorem 2.3 and we sketch here for completeness, see also [16, Proposition 4.8] . The strategy is
to check that the hypotheses of Theorem 2.3 are satisfied with X = Lm(R) and

Y[ρ] =

{∫
R
(
[ρ
m
2 ]y
)2
dy +m2 [ρ] , ρ ∈ P2(R), [ρ

m
2 ]y ∈ L2(R),

+∞ otherwise,

and

d(ρ, η) =

{
W 2

2 (ρ, η) ρ, η ∈ P2(R),

+∞ otherwise.

By Frechet-Kolmogorov Theorem (see e.g. [15, Theorem IV.8.20]), it can be shown that the sub-
levels of Y, Yc = {ρ ∈ Lm(R)|Y[ρ] ≤ c} for c > 0, are relatively compact in Lm(R). The estimates
(39) and (43) imply the first condition in (23), that is

sup
u∈U

∫ T

0

Y[u(t))]dt <∞

where U = {ρ̄τk |k ∈ N}. The second condition in (23) is a direct consequence of the Hölder
continuity (38). The hypotheses of Theorem 2.3 are then satisfied and we can extract a sub-
sequence ρ̄τ ′k converging in measure with respect to t ∈ [0, T ] to some limit ρ∗ in Lm(R). By

Lemma 3.2 ρ∗ coincides with the narrow limit ρ for every t ∈ [0, T ] and so the entire sequence ρ̄τk
converges in measure to ρ. By (43) and the dominated convergence theorem we can conclude the
strong convergence of ρ̄τ to ρ in Lm(0, T ;Lm(R)).

Notice that, for every T > 0 ∫ T

0

‖ρ̄τ (t, ·)− ρ(t, ·)‖σLm(R)dt→ 0,
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as τ → 0, for every σ > 0. By Gagliardo-Nirenberg inequality we get∫ T

0

∥∥∥ρ̄m2τ − ρm2 ∥∥∥p
Lp
dt ≤ C

∫ T

0

∥∥∥∥[ρ̄m2τ − ρm2 ]
y

∥∥∥∥pθ
L2

∥∥∥ρ̄m2τ − ρm2 ∥∥∥p(1−θ)
L2

dt

≤ C

(∫ T

0

∥∥∥∥[ρ̄m2τ − ρm2 ]
y

∥∥∥∥2

L2

dt

) pθ
2
(∫ T

0

∥∥∥ρ̄m2τ − ρm2 ∥∥∥γ
L2
dt

)m−µθ
m

,

with p = 2µ/m, θ = (µ−m)/2µ and µ > m. The exponent γ is given by

γ =
(1− θ)2µ
m− µθ

,

and it is a positive exponent provided µ < 3m. �

Proposition 3.2 (Existence of weak solutions). The approximating sequence ρ̄τ converges to
a weak solution ρ to (24) in the sense of Definition 3.1.

Proof. In order to not overburden the notations we denote ρ0 and ρ two consecutive minimisers
as defined in (34). For ε > 0 and ζ ∈ C∞c (R), define

P ε(y) = y + εζy(y), ρε = P ε#ρ.

The minimality of ρ gives

0 ≤ 1

2τ

(
W 2

2 (ρε, ρ0)−W 2
2 (ρ, ρ0)

)
+ Fa [ρε]−Fa [ρ] .

Let T be the optimal map pushing ρ0 to ρ, then by definition

W 2
2 (ρ, ρ0) =

∫
R
|y − T (y)|2ρ0(y)dy,

W 2
2 (ρε, ρ0) ≤

∫
R
|y − P ε (T (y)) |2ρ0(y)dy.

Therefore,

1

2τ

(
W 2

2 (ρε, ρ0)−W 2
2 (ρ, ρ0)

)
≤ 1

2τ

∫
R

(
|y − P ε (T (y)) |2 − |y − T (y)|2

)
ρ0(y)dy

=
1

2τ

∫
R

(
|y − (T (y) + εζy(T (y))) |2 − |y − T (y)|2

)
ρ0(y)dy

= − ε
τ

∫
R

(y − T (y)) ζy(T (y))ρ0(y)dy + o(ε) := I1. (46)

The term involving the functional can be reformulated as follows

Fa [ρε]−Fa [ρ] =

∫
R

(
ϕ(a(y)ρε)

a(y)
+ V (y)ρε − ϕ(a(y)ρ)

a(y)
− V (y)ρ

)
dy

= I2 + I3, (47)

where I2 and I3 are defined by

I2 =

∫
R

(
ϕ(a(y)ρε)

a(y)
− ϕ(a(y)ρ)

a(y)

)
dy =

∫
R

(
ϕ

(
a(P ε(y))ρ

1 + εζyy(y)

)
1 + εζyy(y)

a(P ε(y))
− ϕ(a(y)ρ)

a(y)

)
dy, (48)

and

I3 =

∫
R

(V (P ε(y))− V (y)) ρ(y)dy ; (49)

respectively. In order to handle with the term I2 we introduce the following function

B(χ, η) =
1

χ
ϕ(χη).
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The first-order Taylor series approximation of B about the point (χ, η) with perturbation (χε, ηε)
is given by

B(χε, ηε) = B(χ, η) +

(
η

χ
ϕ′(χη)− 1

χ2
ϕ(χη)

)
(χε − χ) + ϕ′(χη)(ηε − η) +Rε(χ, η) ,

whereRε(χ, η) is the remainder term. We choose (χ, η) = (a(y), ρ) and (χε, ηε) = (a(P ε(y)), ρ
1+εζyy

),

then I2 becomes∫
R

[
ϕ(aρ)

a
+

(
ρ

a
ϕ′(aρ)− ϕ(aρ)

a2

)
(a ◦ P ε − a) + ϕ′(aρ)

(
εζyy

1 + εζyy

)
ρ+Rε

]
(1 + εζyy)− ϕ(aρ)

a
dy

= ε

∫
R

ϕ(aρ)

a
ζyy +

(
ρ

a
ϕ′(aρ)− ϕ(aρ)

a2

)
a ◦ P ε − a

ε
(1 + εζyy) + ρϕ′(aρ)ζyydy +

∫
R
Rε (1 + εζyy) dy.

By dominated convergence theorem we can prove that the last term involving Rε is o(ε). Indeed,

1

ε

∫
R
Rε (1 + εζyy) dy =

1

ε

∫
R

(
R1
ε +R2

ε +R3
ε

)
(1 + εζyy) dy, (50)

where

R1
ε =

1

2

(
ρ̃2

ã
ϕ′′(ãρ̃)− 2

ρ̃ϕ′(ãρ̃)

ã2
+ 2

ϕ(ãρ̃)

ã3

)
(a ◦ P ε − a)

2
,

R2
ε =

1

2
ãϕ′′(ãρ̃)

(
εζyy

1 + εζyy

)2

,

R3
ε = ρ̃ϕ′′(ãρ̃)

(
εζyy

1 + εζyy

)
(a ◦ P ε − a) ,

for some ã between a and a◦P ε and ρ̃ between ρ and ρ/(1+εζyy). Thanks to the growth condtions
(D) it is easy to see that the remainder goes to zero in view of the Lµ estimate of ρnτ .

We now sum up all contributions in (46), (47), (48), (49), we divide by ε, and we let go ε to 0;
hence, we have

1

τ

∫
R

(y − T (y)) ζy(T (y))ρ0(y)dy

=

∫
R

ϕ(aρ)

a
ζyy +

(
ϕ′(aρ)

ρ

a
(a′ζy − aζyy)− ϕ(aρ)

a′

a2
ζy

)
dy +

∫
R
V ′(y)ρ(y)ζy(y)dy .

By the Taylor series approximation of ζ about T we get that

1

τ

∫
R

(y − T (y)) ζy(T (y))ρ0(y)dy =
1

τ

∫
R
ζ(y) [ρ0(y)− ρ(y)] dy +O(τ) .

We recall now that ρ0 and ρ are two consecutive minimisers as in (34), so that by replacing ρ0

with ρnτ and ρ with ρn+1
τ , into the two previous formulas, we get∫

R
ζ
[
ρnτ − ρn+1

τ

]
dy +O(τ)

= τ

∫
R
V ′ρn+1

τ ζy +
ϕ(aρn+1

τ )

a
ζyy +

(
ϕ′(aρn+1

τ )
ρn+1
τ

a
(a′ζy − aζyy)− ϕ(aρn+1

τ )
a′

a2
ζy

)
dy. (51)

Let 0 ≤ t < s be fixed, with

h =

[
t

τ

]
+ 1 and k =

[ s
τ

]
.

Summing (51) from h to k we get,∫
R
ζ
[
ρhτ − ρk+1

τ

]
dy +O(τ)

= τ

k∑
n=h

∫
R
V ′ρn+1

τ ζy +
ϕ(aρn+1

τ )

a
ζyy +

(
ϕ′(aρn+1

τ )
ρn+1
τ

a
(a′ζy − aζyy)− ϕ(aρn+1

τ )
a′

a2
ζy

)
dy .
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The formula can be rewritten also in terms of the piecewise constant interpolation ρ̄τ introduced
in (35); i.e.,∫

R
ζ [ρ̄τ (t)− ρ̄τ (s)] dy +O(τ)

=

∫ s

t

∫
R
V ′ρ̄τ (σ)ζy +

ϕ(aρ̄τ (σ))

a
ζyy +

(
ϕ′(aρ̄τ (σ))

ρ̄τ (σ)

a
(a′ζy − aζyy)− ϕ(aρ̄τ (σ))

a′

a2
ζy

)
dy dσ .

By Lemma 3.2, Proposition 3.1, and growth condition (D), letting τ → 0 we obtain∫
R
ζ [ρ(t)− ρ(s)] dy

=

∫ s

t

∫
R
V ′ρ(σ)ζy +

ϕ(aρ(σ))

a
ζyy +

(
ϕ′(aρ(σ))

ρ(σ)

a
(a′ζy − aζyy)− ϕ(aρ(σ))

a′

a2
ζy

)
dy dσ.

We now Integrate by parts the second and in the forth term on the right-hand side of the previous
formula and we get∫

R
ζ [ρ(t)− ρ(s)] =

∫ s

t

∫
R
V ′ρ(σ)ζy + ρ(σ)(ϕ′(aρ(σ)))yζydy dσ .

It remains to divide by s − t and pass to the limit as s → t, to recover Definition 3.1 of weak
solutions. �

3.2. λ-convexity and k-flow. We want to study the convexity of the functional Fa under the
assumptions in Section 2.2. In Section 5 we will show some explicit examples as the heat equation,
linear Fokker-Planck equation, and Porous medium equation with degenerate mobility.

Lemma 3.5. Let F a and H be defined as in (25), and let us assume that the matrix

H(y, η) =

(
Hyy(y, η) + V ′′(y)− k Hηy(y, η)

Hηy(y, η) Hηη(y, η)

)
,

is positive semi-definite in R× R+; that is,

H(y, η) + V (y)− k

2
y2,

is jointly convex on R× R+. Then the solution to (26) is a k-flow for the functional Fa [ρ].

Proof. We adapt the regularisation procedure used in [16] to our case. We first troncate the
function F a, introduced in (25), as follows

F̃N (y, η) =


F a(y, η) if |y| ≤ N,
F a(N, η) if y > N,

F a(−N, η) if y < −N,
(52)

and we denote FN as the C∞ mollification of F̃N (y, η) such that FNy = 0 for |y| ≥ N + 1/2 and

ηFNηη ≥ c > 0. (53)

According to (25) we can define HN and the functional FaN , by replacing F a with FN . The
following initial-boundary value problem

∂tρN = (ρN (
(
FNyη(y, ρN ) + [ρN ]yF

N
ηη(y, ρN )

)
+ V ′))y

∂yρN (t,N) = ∂yρN (t,−N) = 0

ρN (0, y) = ρN,0 .

(54)

is then uniformly parabolic, thanks to (53). We consider an initial datum ρN,0 such that the
following inequality ∫

R

1

a(y)
ϕ(a(y)ρN,0(y)) dy ≤

∫
R

1

a(y)
ϕ(a(y)ρ0(y)) dy , (55)
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is satisfied. Moreover, the solution ρN is supported in [−N,N ] and strictly positive. Hence, we
define the corresponding cumulative distribution function RN and its pseudo-inverse Y N that
obeys to

Y Nt = (HN
η (Y N , Y Nz ))z −HN

Y (Y N , Y Nz )− 1

Y Nz
(V (Y N ))z .

Indeed, the first term in the (31) right-hand side can be rewritten in term of HN as follows

− 1

Y Nz
(FNη (Y N ,

1

∂zY N
))z = −(FNη (y, ρN ))y

=
1

ρN
(HN

η (y,
1

ρN
))y −HN

y (y,
1

ρN
)

= Y Nz (HN
η (Y N , Y Nz ))y −HN

y (Y N , Y Nz ).

We now prove that the solution to (54) is a k-flow, showing that the E.V.I. (22) is satisfied. By
the change of variable y = Y N (t, z) we get

FaN [ρN ] =

∫ N

−N
FN (y, ρN ) dx+

∫ N

−N
V (y)ρN (y) dy

=

∫ 1

0

Y Nz (t, z)FN
(
Y N (t, z),

1

Y Nz (t, z)

)
dz +

∫ 1

0

V (Y N (t, z)) dz

=

∫ 1

0

HN
(
Y N (t, z), Y Nz (t, z)

)
dz +

∫ 1

0

V (Y N (t, z)) dz.

Since the Wasserstein distance can be rephrased in terms of pseudo-inverse as

W 2
2 (ρ1, ρ2) =

∫ 1

0

(Y1 − Y2)
2
dz,

for any ρ1 and ρ2 in P2(R); then, for a fixed ρ̃N we have

1

2

d+

dt
W 2

2 (ρN (t), ρ̃N ) +
k

2
W 2

2 (ρN (t), ρ̃N )

=
1

2

d+

dt

∫ 1

0

(Y N − Ỹ N )2 dz +
k

2

∫ 1

0

(Y N − Ỹ N )2 dz

=

∫ 1

0

Y Nt (Y N − Ỹ N ) dz +
k

2

∫ 1

0

(Y N − Ỹ N )2 dz

=

∫ 1

0

[HN
η (Y N , Y Nz ]z −HN

Y (Y N , Y Nz )− 1

Y Nz
[V (Y N )]z(Y

N − Ỹ N ) dz

+
k

2

∫ 1

0

(Y N − Ỹ N )2 dz .

We now integrate by parts, by convexity we get

1

2

d+

dt
W 2

2 (ρN (t), ρ̃N ) +
k

2
W 2

2 (ρN (t), ρ̃N )

=

∫ 1

0

HN
η (Y N , Y Nz )(Ỹ Nz − Y Nz ) dz +

∫ 1

0

HN
Y (Y N , Y Nz )(Ỹ N − Y N ) dz

+

∫ 1

0

V ′(Y N )(Ỹ N − Y N ) dz +
k

2

∫ 1

0

(Y N − Ỹ N )2 dz

≤ FaN
[
ρ̃N
]
−FaN [ρN ] .

In order to conclude the proof we need to pass to the limit as N → ∞ in the inequality after
proving that the sequence ρN converges to a certain limit function that is a solution to (24). To
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this end we first calculate the following derivative

1

m

d

dt

∫ N

−N
am−1(y)ρmN (y, t) dy = −

(m− 1

m

)∫ N

−N
[(aρN )m]y

1

a

(
FNyη(y, ρN ) + [ρN ]yF

N
ηη(y, ρN )

)
dy

+
m− 1

m

∫ N

−N
(aρN )m

[V ′
a

]
y
dy

= −
(m− 1

m

)∫ N

−N
[(aρN )m]y

[aρN ]y
a

ϕ′′(aρN ) dy

+
m− 1

m

∫ N

−N
(aρN )m

[
V ′

a

]
y

dy .

= −(m− 1)

∫ N

−N

(aρN )m−1

a
[aρN ]2yϕ

′′(aρN ) dy

+
m− 1

m

∫ N

−N
(aρN )m

[
V ′

a

]
y

dy .

By the growth condition from below (D) and (gW2) the last equality becomes

d

dt

∫ N

−N
am−1ρmN dy ≤ −

4m(m− 1)

(2m− 1)2
cm

∫ N

−N

1

a

([
(aρN )m−

1
2

]
y

)2

dy + L(m− 1)

∫ N

−N
am−1ρmN dy .

(56)
By applying the Gronwall’s inequality in (0, T ) we deduce an Lm-estimates on ρN ; that is,∫ N

−N
ρmN dy ≤

∫ N

−N
am−1ρmN dy ≤ e(m−1)LT

∫ N

−N
am−1ρmN,0 dy ≤ c e(m−1)LTFa [ρ0] . (57)

This actually induce an L∞-estimate in space on both ρN and aρN . Indeed, the L∞-estimate of
ρN is a straightforward consequence of (57) since ‖ρN‖∞ = limm→∞ ‖ρN‖m. In order to derive
the L∞-estimate for aρN we consider the change of variable x = α−1(y) that maps [−N,N ] to
[−1 + δN , 1− δN ] for some δN > 0. Hence, we define the scaling vN (x, t) = a(α(x))ρN (α(x), t) for
x ∈ [−1 + δN , 1− δN ] and zero otherwise. We apply the aforementioned change of variable to (56)
and we get

d

dt

∫ 1−δN

−1+δN

vmN dx ≤ L(m− 1)

∫ 1−δN

−1+δN

vmN dx .

Reasoning as above we can conclude that ‖vN‖m ≤ e
L(m−1)t

m ‖v0‖m. Letting m→∞ and changing
again variable we get the L∞-estimate for aρN .

We now integrate (56) with respect to t ∈ (0, T ), by (57) we get

4(m− 1)

(2m− 1)2
c

∫ T

0

∫ N

−N

1

a(y)

([
(a(y)ρN (y, t))m−

1
2

]
y

)2

dy dt ≤ C(T,m)Fa [ρ0] . (58)

Note that([
(a(y)ρN (y, t))m−

1
2

]
y

)2

=

(
2m− 1

2

)2(
a′

a

)2

a2m−1(ρN )2m−1

+ a2m−1
(

[(ρN )m−
1
2 ]y

)2

+ (2m− 1)

(
a′

a

)
a2m−1(ρN )m−

1
2 [(ρN )m−

1
2 ]y ;
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hence,

∫ N

−N

1

a(y)

([
(a(y)ρN (y, t))m−

1
2

]
y

)2

dy =

(
2m− 1

2

)2 ∫ N

−N

(
a′

a

)2

a2m−2(ρN )2m−1 dy

+

∫ N

−N
a2m−2

(
[(ρN )m−

1
2 ]y

)2

dy

+ (2m− 1)

∫ N

−N

(
a′

a

)
a2m−2(ρN )m−

1
2 [(ρN )m−

1
2 ]y dy

=

(
2m− 1

2

)2 ∫ N

−N

(
a′

a

)2

a2m−2(ρN )2m−1 dy (59)

+

∫ N

−N
a2m−2

(
[(ρN )m−

1
2 ]y

)2

dy

+ (
2m− 1

2
)

∫ N

−N

(
a′

a

)
a2m−2[(ρN )2m−1]y dy .

Since (59) is positive, a ≥ 1, and m > 1 then we can minimise

∫ N

−N

1

a(y)

([
(a(y)ρN (y, t))m−

1
2

]
y

)2

dy

≥
∫ N

−N

(
[(ρN )m−

1
2 ]y

)2

dy − (
2m− 1

2
)

∫ N

−N

(
a′′

a
+ (2m− 3)

(
a′

a

)2
)
a2m−2(ρN )2m−1 dy .

Therefore, by (58) we get that

∫ N

−N

(
[(ρN )m−

1
2 ]y

)2

dy ≤ C(t,m)Fa [ρ0]+(
2m− 1

2
)

∫ N

−N

(
a′′

a
+ (2m− 3)

(
a′

a

)2
)
a2m−2ρ2m−1

N dy .

We recall that, by Proposition 2.1, a′′/a and |a′(y)/a(y)| are bounded for every y ∈ R. Hence,

if we denote K := sup
R

(
a′′

a
+ (2m− 3)

(
a′

a

)2
)

we can conclude that

∫ N

−N

(
[(ρN )m−

1
2 ]y

)2

dy ≤ C(t,m)Fa [ρ0] +K

∫ N

−N
a2m−2ρ2m−1

N dy .

Thanks to the L∞-estimate of aρN we get

∫ N

−N
a2m−2ρ2m−1

N dy =

∫ N

−N
am−1ρmN

(
am−1ρm−1

N

)
dy

≤ C Fa [ρN ] ≤ C Fa [ρ0] .

Since ρN > 0 ,the L2-estimate of [(ρN )m−
1
2 ]y easily implies an L2-estimate of [(ρN )

m
2 ]y and,

therefore, the L2
(
[0, T ] , H1(R)

)
- estimate of ρ

m
2

N uniformly in N .
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We now prove the H−1-estimate of [ρ
m/2
N ]t. Let θ be a bounded function such that θyy = [ρ

m/2
N ]t.

We get that∫ N

−N
(θy)2 dy = −

∫ N

−N
θθyy dy = −m

2

∫ N

−N
θρ

m
2 −1

N [ρN ]t dy

= −m
2

∫ N

−N
θρ

m
2 −1

N

[
ρN
(
FNηy(y, ρN ) + FNηη(y, ρN )∂yρN + V ′

)]
y
dy

=
m

2

∫ N

−N
[θρ

m
2 −1

N ]yρN
(
FNηy(y, ρN ) + FNηη(y, ρN )∂yρN + V ′

)
dy

=
m

2

∫ N

−N
[θρ

m
2 −1

N ]yρN ((a′ρN + a [ρN ]y)ϕ′′(aρN ) + V ′) dy

=
m

2

∫ N

−N
θyρ

m
2

N ((a′ρN + a [ρN ]y)ϕ′′(aρN ) + V ′) dy

+
m

2

∫ N

−N
θ[ρ

m
2 −1

N ]yρN ((a′ρN + a [ρN ]y)ϕ′′(aρN ) + V ′) dy

= I1 + I2.

Applying the weighted Cauchy inequality to I1 we have that

I1 ≤
1

2

∫ N

−N
θ2
y dy +

m2

4
3C(V, a)2

∫ N

−N
ρmN dy +

m2

4

3

2
C2

∫ N

−N
[ρ
m
2

N ]2y dy. (60)

Concerning I2 its easy to see that we can get the following estimate

|I2| ≤ ‖θ‖∞C(m, ‖aρN‖∞)

∫ N

−N
[ρ
m
2

N ]2y dy.

Hence, we can conclude that

1

2

∫ N

−N
θ2
y dy ≤ C(m, ‖aρN‖∞, V )

(∫ N

−N
ρmN dy +

∫ N

−N
[ρ
m
2

N ]2y dy

)
. (61)

Thanks to the previous L2-estimate of ρ
m/2
N we can conclude that [ρ

m/2
N ]t is N -uniformly bounded

in L2(0, T ;H−1(R)). Invoking Aubin-Lions Lemma we have that ρ
m/2
N converges to a certain limit

η in L2
loc(R+ × R). The estimates above allow us to pass to the limit in the weak formulation of

the regularised problem in order to recover weak solutions to (24). The passage to the limit in the
E.V.I. can easily be deduced reasoning as in [16]. �

In Proposition 3.2 we proved the existence of weak solution ρ to equation (24). We are now
ready to prove the uniqueness.

Theorem 3.1 (Uniqueness of weak solution ρ). Let ϕ, g and W as in Section 2.2. In addition,
we assume that also the assumption in Lemma 3.5 is full-filled for some k ∈ R. Then, there is at
most one solution to (24) with initial condition ρ0.

Proof. Let ρ and η be two solutions to (24) with initial data ρ0 and η0 respectively. Under the
assumption of Lemma 3.5, the E.V.I. holds for both solutions, namely for any ρ̃ ∈ P2(R)

1

2

d

dt
W 2

2 (ρ, ρ̃) +
k

2
W 2

2 (ρ, ρ̃) ≤ Fa(ρ̃)−Fa(ρ), (62)

and
1

2

d

dt
W 2

2 (η, ρ̃) +
k

2
W 2

2 (η, ρ̃) ≤ Fa(ρ̃)−Fa(η), (63)

are satisfied. Choosing ρ̃ = η in (62), ρ̃ = ρ in (63) and summing up the two inequalities, we get,
by Gronwall’s Lemma, a contraction; i.e.,

W 2
2 (ρ(t), η(t)) ≤ e−ktW 2

2 (ρ0, η0), (64)

that yields uniqueness provided ρ0 = η0. �
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4. Existence and uniqueness of weak solutions to nonlinear convection-diffusion
equation on bounded intervals with degenerate mobility: fast-decay case

In this section we reformulate the results obtained in Section 3 in terms of existence and
uniqueness of weak solutions to equation (2).

Theorem 4.1. Let g : Ω → [0, 1] be a C2(Ω̄) function under assumptions (g1)-(g3). Let ϕ :
[0,+∞) → [0,+∞) be a lower semi-continuous and convex function satisfying (D) and let W :
Ω→ [0,+∞) be a non-negative C2(Ω) function under the assumption (gW1)-(gW2). Consider, for
m > 1, the initial condition u0 ∈ L1∩Lm(Ω) and fix T > 0. Then there exists a Hölder-continuous
curve u : [0, T ]→ Lm(Ω) such that,

(i) u ∈ Lα([0, T ]× Ω) for some α ∈ (1, 3m);
(ii) g[um/2]x ∈ L2([0,+∞)× Ω);
(iii) for almost every t ∈ [0,+∞) and for all ψ ∈ C∞c (Ω), we have

d

dt

∫
Ω

ψ(x)u(x, t)dx = −
∫

Ω

g2(x) (ϕ′(u) +W (x))x ψx(x)u(x, t)dx. (65)

Proof. Fix T > 0 and consider the initial datum u0 ∈ L1 ∩ Lm(Ω). We define

ρ0(y) = g(α−1(y))u0(α−1(y)), y ∈ R,
with α as in (3). The function ρ0 is an admissible initial condition for (24) in the sense of Definition
3.1 and by Theorem 3.1 there exists a unique solution ρ, corresponding to this initial datum, with
ρ ∈ Lm([0, T ]×R) and [ρm/2]y ∈ L2([0,+∞)×R). Therefore, by the usual change of variable, we
can define in a unique way

u(x, t) = a(α(x))ρ(α(x), t), x ∈ Ω,

and, we get that ∫
Ω

um(x, t)dx =

∫
R
am−1(y)ρm(y, t) dy.

By performing a similar computation as in proof of Lemma 3.5 we can show that

1

m

d

dt

∫
Ω

um(x, t) dx =
1

m

d

dt

∫
R
am−1(y)ρm(y, t)dy

≤ − 4(m− 1)

(2m− 1)2
cm

∫
R

1

a

([
(aρ)m−

1
2

]
y

)2

dy + L
m− 1

m

∫
R
am−1ρm dy

≤ − 4(m− 1)

(2m− 1)2
cm

∫
Ω

g2
(

[um−
1
2 ]x

)2

dx+ L
m− 1

m

∫
Ω

um dx .

Since u0 ∈ Lm(Ω) we get that u ∈ Lm(Ω). An L2-estimate of g[um/2]x can be easily derived from
the L2-estimate of [ρ

m
2 ]y and assumption (gW2). Changing variable in (32) we get

d

dt

∫
Ω

ψ(x)u(x, t)dx =
d

dt

∫
R
ζ(y)ρ(y, t)dy

= −
∫
R
∂y (ϕ′(aρ) + V (y)) ∂yζ(y)ρ(y, t)dy

= −
∫

Ω

g2(x)∂x (ϕ′(u) +W (x)) ∂xψ(x)u(x, t)dx

where ζ(y) = ψ(α−1(y)), for y ∈ R. �

5. Special cases with degenerate fast-decay mobility

In this section we consider three examples of well-known classical equations slightly modified
by adding the degenerate mobility g(x) = (1 − x2)p/2. In order to apply the results obtained in
the general case, we need to check the λ-convexity of the associated energy functionals. We recall
that in Section 3.2 we associated to the equation

ρt = (ρ (ϕ′(aρ) + V )y)y
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the functional Fa [ρ] as in (27). By using (28) and (29), the functional can be rewritten in the
following form

Fa [ρ] =

∫
Ω′

ϕ(a(y)ρ(y))

a(y)
dy +

∫
Ω′
V (y)ρ(y) dy

=

∫ 1

0

ϕ(a ◦ Y ρ ◦ Y )

a ◦ Y
Yω dω +

∫ 1

0

V ◦ Y ρ ◦ Y Yω dω

=

∫ 1

0

ψ
(a ◦ Y
Yω

)
dω +

∫ 1

0

V ◦ Y dω =: F̃a [Y ] , (66)

where ψ(s) = ϕ(s)/s. We recall that λ-convexity of Fa, with respect to the Wasserstein distance, is

equivalent to the λ-convexity of F̃a in L2. The latter is implied by the convexity of f : Ω′×R+ → R
defined as

f(p, q) = ψ
(a(p)

q

)
+ V (p)− λ

2
p2 . (67)

The Hessian of f is given by

Hf (p, q) =

(a′)2q−2 ψ′′(z) + a′′q−1 ψ′(z) + V ′′ − λ , −aa′q−3 ψ′′(z)− a′q−2 ψ′(z)

−aa′q−3 ψ′′(z)− a′q−2 ψ′(z) , a2q−4 ψ′′(z) + 2aq−3 ψ′(z)

 .

where z := a(p)/q and we have omitted the dependence of a from the variable p to not overburden
the notations.

We now study the λ-convexity of Fa in the three relevant cases with g(x) = (1− x2)p/2.

5.1. Heat equation. We consider the following linear heat equation with degenerate mobility,

ut = (g2ux)x =
(
g2u[log u]x

)
x
.

By Section 2.1 we get the corresponding equation in ρ(y, t)

ρt = (ρ[log(aρ)]y)y = ρyy + (ρ[log(a)]y)y (68)

and the associated functional as in (27) with ϕ(ρ) = ρ log ρ and V (y) = log a. Therefore, by (16),
(17), and ψ(z) = log z, we have that the hessian reduces to

Hf (p, q) =

(
−2ggxx − λ 0

0 q−2

)
.

By (11), we have that he equation (68) is a λ-convex gradient flow, with

λ := inf
y∈R

[log a]yy = inf
y∈R

a′′a− (a′)2

a2
◦ α = − sup

x∈Ω
(gg′′) .

Since g(x) = (1− x2)p/2 for some p > 0 then we get that

−g′′(x)g(x) = p
(
x(1− x2)p/2−1

)
x
(1− x2)p/2

= p(1− x2)p−2
(
1− x2 − (p− 2)x2

)
= p(1− x2)p−2(1− (p− 1)x2);

which implies,

λ = p inf
|x|<1

(1− x2)p−2(1− (p− 1)x2).

for p > 2.
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5.2. Linear Fokker-Plank equation. We now consider a linear Fokker-Planck equation with
degenerate mobility g; i.e.,

ut =
(
g2u[log u+W ]x

)
x
.

Recalling (16) and (17), the hessian reduces

Hf (p, q) =

(
−gg′′ + g2W ′′ + gg′W ′ − λ 0

0 q−2

)
.

In this case we can consider a λ that balances the diffusive and the potential part, separately;
namely, we assume that there exist λd and λW such that

(i) −gg′′ ≥ λd,
(ii) g2W ′′ + gg′W ′ ≥ λW .

5.3. Porous Medium. We consider the following porous medium equation

ut =
(
g2 [(um)x + uW ′]

)
x
.

Then ϕ(s) = sm/(m− 1), and accordingly

ψ(z) =
zm−1

m− 1
, ψ′(z) = zm−2, ψ′′(z) = (m− 2)zm−3.

The component (Hf )11 is thus given by

(Hf )11 =
1

gm−1qm−1

(
(m− 1)(g′)2 − g′′g

)
+ (g2W ′′ + gg′W ′ − λ), (69)

and the determinant becomes

detHf =
1

g2(m−1)q2m

(
(m− 1)(g′)2 −mg′′g

)
+

m

gm−1qm+1
(g2W ′′ + gg′W ′ − λ). (70)

Unfortunately, only in the linear case m = 1 both the component 11 and the determinant
are homogeneous with respect to q and g, and their terms can be combined to balance each
other. As soon as m 6= 1, all terms need to be non-negative individually. In the case m = 2,
(g′)2 − g′′g = 2(1 + x2) that is always positive, so the first entrance in the hessian is positive as
soon as

g2W ′′ + gg′W ′ − λ ≥ 0.

In order to preserve this condition we need to impose that

1

2
(g′)2 − g′′g = −2g

3
2

(
g

1
2

)
xx
≥ 0;

namely, g
1
2 concave, that is true only for p < 4.

For general m 6= 2, we can rewrite

(m− 1)

m
(g′)2 − g′′g = −g2− 1

m (g
1
m−1g′)x

= −mg2− 1
m (g

1
m )xx .

Similarly, we can prove that

(m− 1)(g′)2 − g′′g = −gm(g1−mg′)x

=
1

m− 2
gm(g2−m)xx .

Therefore, the formulas in (69) and (70) become

(Hf )11 =
g

qm−1

(g2−m)xx
m− 2

+ (g2W ′′ + gg′W ′ − λ), (71)

and

detHf = −m2 g2− 1
m

g2(m−1)q2m
(g

1
m )xx +

m

gm−1qm+1
(g2W ′′ + gg′W ′ − λ). (72)
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We first compute

(gα(x))x = −αpx (1− x2)αp/2−1,

and,

(gα(x))xx = −αp (1− x2)α
p
2−2[1− (αp− 1)x2] .

The term [1−(αp−1)x2] is always positive if α = 2−m < 0; hence, g2−m is always convex. While,
g2−m is concave if and only if α = 2−m > 0 and p < 2/(2−m). On the other side, if α = 1/m
then, [1− (αp− 1)x2] is positive if and only if p ≤ 2m and therefore g1/m is concave. Note that,
if p ≤ 2m and m < 2 then p satisfies also the condition p < 2/(2−m). Hence, summarizing,

• if m > 2 then g2−m is convex ;
• if m < 2 and p < 2/(2−m) then g2−m is concave. Note that, if m < 2 and p > 2/(2−m)

then αp > 2 therefore [1−(αp−1)x2] < 0 if (1/(αp−1)) < |x| < 1 and [1−(αp−1)x2] > 0
if |x| < 1/(αp− 1);

• if p ≤ 2m then g1/m is concave;
• if m < 2 and p ≤ 2m then g2−m is concave and g1/m concave. Indeed, if m < 2 then

2m = min{2m, 2/(2−m)}; hence, p ≤ 2m implies p < 2/(2−m);
• if m < 2 and 2m < p < 2/(2−m): g1/m is convex and g2−m is concave .

We can conclude that (Hf )11 and detHf are both positive as soon g2W ′′ + gg′W ′ − λ ≥ 0,
m > 2 and p ≤ 2m.
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