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In this paper we investigate Lott-Sturm-Villani’s synthetic 
lower Ricci curvature bound on Riemannian manifolds with 
boundary. We prove several measure rigidity results related 
to optimal transport on Riemannian manifolds, which com-
pletely characterize CD(K, ∞) condition and non-collapsed 
CD(K, N) condition on Riemannian manifolds with boundary. 
In particular, we reveal the measure rigidity of Riemannian 
interpolation inequality proved by Cordero-Erausquin, Mc-
Cann and Schmuckenschläger. We prove that log-(semi)con-
cave measures are the only reference measures so that dis-
placement convexity holds on Riemannian manifolds. This 
is the first measure rigidity result concerning the synthetic 
dimension-free CD condition, which is new even on Rn. Using 
L1-optimal transportation theory, we also prove that CD con-
dition yields geodesical convexity (with respect to the usual 
Riemannian distance).
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1. Introduction

The synthetic theory of metric measure spaces with lower Ricci curvature bounds, 
initiated by Lott-Villani [25] and Sturm [30,31], has remarkable developments in recent 
years. We refer the reader to the survey [3] for an overview of this topic and bibliography.

Many important results, previously known on Riemannian manifolds with lower Ricci 
curvature bound, now have their generalized versions in synthetic setting. However, we 
still do not fully understand synthetic lower Ricci curvature bound on Riemannian man-
ifolds. In particular, we know very little about the dimension-free CD(K, ∞) condition.

In this paper we return to the starting point of this rapidly developing theory, inves-
tigate the following conjecture using new tools and results developed in recent years.

Conjecture. Let (M, g) be a complete Riemannian manifold and Ω be a bounded open set. 
Denote by dΩ the intrinsic distance on Ω induced by g. Then (Ω, dΩ, m) is CD(K, ∞) in 
the sense of Lott-Sturm-Villani if and only if the following conditions are satisfied:

1) m = e−V Vol for some semi-convex function V ,
2) Ω is geodesically convex.

Next, we introduce some backgrounds and explain the motivation in more detail. 
Let (M, g) be a n-dimensional Riemannian manifold, and m := e−V Volg be a weighted 
measure for some smooth function V . The diffusion operator associated with the smooth 
metric measure space (M, g, m) is L = Δ −∇V where Δ is the Laplace-Beltrami operator, 
and the well-known Bakry-Émery’s Γ2 operator is defined by

Γ2(f) := 1
2LΓ(f, f) − Γ(f,Lf), Γ(f, f) := 1

2L(f2) − fLf.

It is known that Γ(·, ·) = g(∇·, ∇·), and we have the following generalized Bochner’s 
formula

Γ2(f) = Ricci(∇f,∇f) + HessV (∇f,∇f) + ‖Hessf‖2
HS (1.1)

for any f ∈ C∞(M), where HessV = D2V is the Hessian of V and ‖Hessf‖HS is 
the Hilbert-Schmidt norm of Hessf . We say that (M, g, m) satisfies the (K, N)-Bakry-
Émery’s condition (or BE(K, N) condition for short), if the following generalized Bochner 
inequality holds

Γ2(f) ≥ KΓ(f) + 1 (Lf)2, ∀f ∈ C∞(M). (1.2)

N



B.-X. Han / Advances in Mathematics 373 (2020) 107327 3
It is known that BE(K, N) condition yields many important geometric and analytic prop-
erties. For example, when N = ∞, we have the following equivalent characterizations, 
which are also regarded as generalized lower Ricci curvature bound (cf. [33]).

0) Modified Ricci tensor bound:

RicciV (∇f,∇f) := Ricci(∇f,∇f) + HessV (∇f,∇f) ≥ K|∇f |2

for all f ∈ C∞(M).
1) BE(K, ∞) condition: Γ2(f) ≥ KΓ(f) for all f ∈ C∞(M).
2) CD(K, ∞) condition: K-displacement convexity of the entropy functional Ent( · |m)

on L2-Wasserstein space W2(M) = (P2(M), W2) (with respect to the Riemannian 
distance dg). This means, for any μ0, μ1 ∈ P2(M) with μ0, μ1 � m, there is a L2-
Wasserstein geodesic (μt)t∈[0,1] such that

K

2 t(1 − t)W 2
2 (μ0, μ1) + Ent(μt|m) ≤ tEnt(μ1|m) + (1 − t)Ent(μ0|m) (1.3)

where Ent(μt|m) :=
∫

ln ρt dμt if μt = ρt m.
3) Gradient estimate of heat semi-group:

|∇Ht(f)|2 ≤ e−2KtHt(|∇f |2) (1.4)

for any f ∈ W 1,2(M, m), where (Ht)t>0 is the semi-group generated by the diffusion 
operator L.

Let Ω ⊂ M be an open set with smooth boundary, and dΩ be (the completion of) the 
intrinsic distance on Ω induced by the Riemannian distance dg. Concerning the metric 
measure space (Ω, dΩ, e−V Volg), one would ask the following questions.

Q-1 What is Bakry-Émery’s Γ-calculus on (Ω, dΩ, e−V Volg), and what does Γ2 ≥ KΓ
mean in this case?

Q-2 What does CD(K, ∞) condition (1.3) imply? Can we say that Ω is geodesically 
convex?

Q-3 Does the gradient estimate (1.4) of (Neumann) heat semi-group imply geodesical 
convexity?

Firstly, in Section 2 we study the Bakry-Émery’s Γ-calculus on smooth metric measure 
spaces with smooth boundary. Using the vocabularies and results developed in non-
smooth theory (cf. [29] and [17]), we define a measure-valued Ricci tensor RicciΩ by

RicciΩ(·, ·) = RicciV (·, ·) e−V Volg + II(·, ·) e−V Hn−1| (1.5)

∂Ω
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where RicciV = Ricci + HessV is the Bakry-Émery’s modified Ricci tensor and II is the 
second fundamental form. Combining with the results in [7,8] and [17], we can see that 
the measure-valued Bochner inequality RicciΩ ≥ K is equivalent to the non-smooth 
BE(K, ∞) condition and the Lott-Sturm-Villani’s CD(K, ∞) condition. More precisely, 
recall that a connected Riemannian manifold with boundary is geodesically convex if 
and only if II ≥ 0 (cf. Theorem 1.2.1 [34]), we have the following theorem.

Theorem 1.1 (Measure-valued Ricci tensor, Theorem 2.4 and Corollary 2.5). Let 
(M, g, e−V Volg) be a n-dimensional weighted Riemannian manifold and Ω ⊂ M be a 
submanifold with (n −1)-dimensional smooth orientable boundary. Then Gigli’s measure-
valued Ricci tensor (cf. [17]) on (Ω, dΩ, e−V Volg) is given by

RicciΩ(∇g,∇g) = RicciV (∇g,∇g) e−V Volg + II(∇g,∇g) e−V Hn−1|∂Ω (1.6)

for any g ∈ C∞
c with g(N, ∇g) = 0, where N is the outward normal vector field on ∂Ω.

Furthermore, (Ω, dΩ, e−V Volg) is a CD(K, ∞) space if and only if RicciV ≥ K, II ≥ 0
and path-connected.

On the other side, from [6,7] we know that (Ω, dΩ, e−V Volg) is CD(K, ∞) if and only if 
the gradient estimate (1.4) holds. It is proved by F.-Y. Wang (cf. Chapter 3 in [34]), that 
the gradient estimate (1.4) is equivalent to Ricci ≥ K and II ≥ 0. Thus we completely 
answer the questions Q-1, Q-2 and Q-3.

In the discussions above, we have assumed that ∂Ω is smooth and there is no mass 
on the boundary. However, none of these assumptions is necessary or natural in abstract 
metric measure setting. Precisely, for any Ω and any Borel measure m with full support. 
It is always meaningful to investigate the K-displacement convexity of Ent( · |m) on 
L2-Wasserstein space W2(Ω, dΩ), which is exactly the approach used by Lott-Sturm-
Villani to define synthetic lower Ricci curvature bound (i.e. CD(K, ∞) conditions, cf.
[25,30,31]).

Let (et)t∈[0,1] denote the evaluation maps on a metric space (X, d):

et : Geo(X,d) � γ �→ γt ∈ X.

A measure Π ∈ P(Geo(X, d)) is called an optimal dynamical plan if (e0, e1)�Π is an 
optimal transportation plan; it easily follows that [0, 1] � t �→ (et)�Π is a geodesic in 
W2(X, d). Conversely, it is known that any geodesic (μt)t∈[0,1] in W2(X, d) can be lifted 
to an optimal dynamical plan Π so that (et)�Π = μt for all t ∈ [0, 1] (cf. [4, Theorem 
2.10]).

Now we are ready to introduce the following CD(K, N) condition.

Definition 1.2 (Definition 1.3 [31]). Let K ∈ R and N ∈ [1, ∞]. We say that (Ω, dΩ, m)
is a CD(K, N) space if for any pair μ0, μ1 ∈ P2(Ω) with μ0, μ1 � m, there exists a 
L2-Wasserstein geodesic (μt)t∈[0,1] connecting μ0, μ1 such that
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SN (μt|m) ≤ −
∫ [

τ
(t)
K,N

(
dΩ(γ0, γ1)

)
ρ
− 1

N
1 (γ1) + τ

(1−t)
K,N

(
dΩ(γ0, γ1)

)
ρ
− 1

N
0 (γ0)

]
dΠ(γ) (1.7)

for all t ∈ [0, 1] and some distortion coefficients τ (t)
K,N , where Π ∈ P(Geo(Ω, dΩ)) is a 

lifting of (μt) satisfying (et)�Π = μt, SN (μt|m) = − 
∫
ρ
− 1

N
t dμt and μt = ρt m.

In addition, the heat semi-group on (Ω, dΩ, m) can be defined as the L2-gradient flow 
of the energy form E(f) : W 1,2(Ω, m) � f �→

∫
|∇f |2 dm. So gradient estimate (1.4) is 

also well-posed for general Ω and m.
In [7,8], Ambrosio-Gigli-Savaré prove that a CD(K, ∞) metric measure space whose 

Sobolev space W 1,2 is Hilbert (a notion named infinitesimally Hilbertianity in the sub-
sequent [16]) is characterised by the validity of the gradient estimate (1.4).

Therefore we have the following natural questions.

Q-4 If the boundary of Ω is not smooth or m|∂Ω �= 0, such that (Ω, dΩ, m) is CD(K, ∞), 
can we say that Ω is geodesically convex as in Theorem 1.1?

Q-5 If there exists a measure m with full support such that (Ω, dΩ, m) is CD(K, ∞) (or 
CD(K, N)). Can we assert m � Volg? Is (Ω, dΩ, m) a RCD(K, ∞) space?

In Section 3 we answer these questions completely. It should be noticed that Rieman-
nian manifolds with boundary are usually non-smooth metric measure spaces, even if 
the boundary is smooth. In the presence of an obstacle, the behaviour of the geodesics 
is quite involved. For example, the regularity of the geodesics can not be better than C1

in general (cf. [1] and [2]). In addition, in many problems related to regularity, (local) 
convexity plays essential roles. Therefore it is difficult to solve this problem with clas-
sical analysis and (second order) PDE methods. However, using optimal transportation 
theory as an effective tool, it will not be more difficult to study non-smooth boundaries 
than smooth ones.

Firstly we show the absolute continuity of the reference measure and the regularity 
of its density. The following theorem improves the results proved by Cavalletti-Mondino 
[10] and Kell [23] for essentially non-branching MCP(K, N) spaces. To the knowledge of 
the author, this is the first measure rigidity result without dimension bound.

Theorem 1.3 (Measure rigidity: absolute continuity and regularity, Propositions 3.1, 3.3, 
3.5). Let (M, g, Volg) be a complete n-dimensional Riemannian manifold without bound-
ary, dg be the Riemannian distance induced by g and m be a Borel measure with full 
support on M . Then we have the following results.

1) Assume (M, dg, m) satisfies the CD(K, ∞) condition for some K ∈ R. Then there is 
a locally Lipschitz semi-convex functions V on M such that m = e−V Volg.

2) Assume (M, dg, m) satisfies the MCP(K, N) condition for some K ∈ R and N < ∞. 
Then m = e−V Volg for some locally bounded function V .
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In the next theorem, we prove that there is no non-trivial measure other than volume 
measure on a n-dimensional Riemannian manifold, such that the corresponding metric 
measure space satisfies CD(k, n). On a weighted Riemannian manifold with C2 weight, 
it is known that the Bakry-Émery condition BE(k, n) holds if and only if the weight is 
a constant. However in general case this is still an open problem. Recently De Philippis-
Gigli [14] propose two definitions of non-collapsed metric measure space. We say that a 
CD(K, N) space (X, d, m) is weakly non-collapsed if m � HN , and we call it (strongly) 
non-collapsed if m = cHN for some constant c. In case X is a Riemannian manifold, the 
following Theorem tells us that non-collapsing and weakly non-collapsing are equivalent. 
We remark that this result is also obtained by Kapovitch-Ketterer in [22] and Kapovitch-
Kell-Ketterer in [21], as a by-product in studying RCD condition on Alexandrov spaces.

Theorem 1.4 (Measure Rigidity: non-collapsed spaces, Theorem 3.6). Let (M, g) be a n-
dimensional Riemannian manifold. Assume there exists a measure m with full support 
such that (M, dg, m) is CD(k, n). Then m = cVolg for some constant c > 0.

In the last theorem, we study dimension-free CD(K, ∞) condition on manifolds with 
possibly non-smooth boundary. We prove that the reference measure must be supported 
on a geodesically convex set, and we answer the question why there is no mass on 
the boundary. In particular, we fully understand the curvature-dimension condition on 
smooth metric measure space with boundary (cf. Theorem 2.4). Thus this result enhances 
our understanding to Cordero-Erausquin-McCann-Schmuckenschläger’s Riemannian in-
terpolation inequality [13].

In attacking this problem, we assume neither infinitesimally Hilbertian nor non-
branching property, which are often used in the study of related problems. In particular, 
we do not know a priori whether the L2-Wasserstein geodesic is unique or not (i.e. the 
Brenier-McCann’s theorem). In the proof, we make full use of measure decomposition 
theory, L1-optimal transport theory and its connection with L2-optimal transport, which 
are developed by Klartag, Cavalletti and Mondino (cf. [24], [9], [11]).

Theorem 1.5 (Measure rigidity: CD(K, ∞) condition, Theorem 3.7). Let (M, g) be a 
complete Riemannian manifold, Ω ⊂ M be an open set with Lipschitz boundary. Let dΩ

be the intrinsic distance induced by Riemannian distance dg on Ω, and m be a reference 
measure with suppm = Ω. Assume that ∂Ω is C2 out of a Hn−1-negligible set, and 
(Ω, dΩ, m) satisfies CD(K, ∞) condition for some K ∈ R, then we have the following 
rigidity results.

1) Ω is g-geodesically convex, that is, any shortest path in (Ω, dΩ) is a geodesic segment 
in (M, g);

2) m|∂Ω = 0 and m = e−V Volg for some semi-convex, locally Lipschitz function V ;
3) (Ω, dΩ, m) is a RCD(K, ∞) space.
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In particular, (Ω, dΩ, Volg) is CD(K, ∞) if and only if Ω is g-geodesically convex and 
Ricci ≥ K on Ω.

At last, we remark that most of the measure rigidity results obtained in this paper are 
still true on Alexandrov spaces with bounded curvature, which can be proved in similar 
ways. Compared with previous results about curvature-dimension conditions with finite 
dimension, we use some new methods to deal with the infinite dimensional problem. We 
believe that these methods have potential applications on more general metric measure 
spaces.

Acknowledgment: This research is part of a project which has received funding from the 
European Research Council (ERC) under the European Union’s Horizon 2020 research 
and innovation programme (grant agreement No. 637851). Part of Section 2 had been 
finished when the author was supported by a postdoctoral fellowship from Hausdorff 
Center for Mathematics (HCM) in Bonn. The author wants to thank E. Milman and M. 
Kell for helpful discussions and comments, also the anonymous referee for the valuable 
report which improved readability.

2. Smooth metric measure spaces with boundary

Let (X, d, m) be an abstract metric measure space. We say that f ∈ L2(X, m) is 
a Sobolev function in W 1,2(X, d, m) if there exists a sequence of Lipschitz functions 
(fn)n ⊂ L2, such that fn → f and lip(fn) → G in L2 for some G, where lip(fn) is the 
local Lipschitz constant of fn defined by

lip(fn)(x) := lim
y→x

|fn(y) − fn(x)|
d(y, x)

(and 0 if x is an isolated point). It is known that there exists a minimal function in m-a.e. 
sense, denoted it by |Df |, called minimal weak upper gradient. If (X, d) is a Riemannian 
manifold and m is the volume measure, we know that |Df | = |∇f | = lip(f) for any 
f ∈ C∞ (cf. Theorem 6.1 [12]). Furthermore, let Ω ⊂ X be an open set with m(∂Ω) = 0, 
by locality we have |Df |Ω = |∇f | m-a.e.

We equip W 1,2(X, d, m) with the norm

‖f‖W 1,2(X,d,m) :=
√

‖f‖2
L2(X,m) + ‖|Df |‖2

L2(X,m).

It is known that W 1,2(X, d, m) is a Banach space, but not necessarily a Hilbert space. 
We say that (X, d, m) is an infinitesimally Hilbertian space if W 1,2 is a Hilbert space. 
Obviously, Riemannian manifolds equipped with volume measure are infinitesimally 
Hilbertian spaces. In general, infinitesimal Hilbertianity is not trivial even if the base 
space X is a manifold.
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On an infinitesimally Hilbertian space, there is a pointwise bilinear map defined by

[W 1,2]2 � (f, g) �→ 〈∇f,∇g〉 := 1
4

(
|D(f + g)|2 − |D(f − g)|2

)
.

It can be seen that 〈·, ·〉 = g(·, ·) on a Riemannian manifold (M, g).
Then we can define the measure-valued Laplacian via integration by part.

Definition 2.1 (Measure-valued Laplacian, [16,17]). The space D(Δ) ⊂ W 1,2(X, d, m) is 
the space of f ∈ W 1,2(X, d, m) such that there is a measure μ satisfying

∫
h dμ = −

∫
〈∇h,∇f〉dm, ∀h Lipschitz with bounded support.

In this case the measure μ is unique and we shall denote it by Δf . If Δf � m, we 
denote its density by Δf .

The following proposition links the curvature-dimension condition RCD(K, ∞) and 
the non-smooth Bakry-Émery theory. We say that a space is RCD(K, ∞) if it is a 
CD(K, ∞) space defined by Lott-Sturm-Villani in [25,30,31], equipped with an infinites-
imally Hilbertian Sobolev space. For more details, see [7] (also [5]).

We define TestF(X, d, m) ⊂ W 1,2(X, d, m), the set of test functions by

TestF(X, d,m) :=
{
f ∈ D(Δ)∩L∞ : |Df | ∈ L∞ and Δf ∈ W 1,2(X, d,m)∩L∞(X,m)

}
.

It is known (cf. [29]) that TestF(X, d, m) is dense in W 1,2(X, d, m) when (X, d, m) is 
RCD(K, ∞).

Let f, g ∈ TestF(X, d, m). It is known from [29] that measure Γ2(f, g) is well-defined 
by

Γ2(f, g) = 1
2Δ〈∇f,∇g〉 − 1

2
(
〈∇f,∇Δg〉 + 〈∇g,∇Δf〉

)
m,

and we put Γ2(f) := Γ2(f, f). Then we have the following Bochner inequality on metric 
measure spaces.

Proposition 2.2 (Bakry-Émery condition, [7,8]). Let (X, d, m) be a RCD(K, ∞) space for 
some K ∈ R. Then

Γ2(f) ≥ K|Df |2 m

for any f ∈ TestF(X, d, m).

Let f ∈ TestF(X, d, m). The Hessian map Hessf :
{
∇g : g ∈ TestF(X, d, m)

}2 �→
L0(X, d, m) is defined by
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2Hessf (∇g,∇h) = 〈∇g,∇〈∇f,∇h〉〉 + 〈∇h,∇〈∇f,∇g〉〉 − 〈∇f,∇〈∇g,∇h〉〉

for any g, h ∈ TestF(X, d, m). It can be proved (see Theorem 3.4 [29] and Theorem 
3.3.8 [17]) that Hessf (·, ·) can be extended to a symmetric L∞(X, d, m)-bilinear map 
on the L2-tangent module of (X, d, m), and is continuous with values in L0(X, d, m). 
On Riemannian manifolds, Hessf coincides with D2f , which is the Hessian (tensor) in 
classical sense.

Furthermore, we have the following proposition, due to Gigli [17].

Proposition 2.3 (Theorem 3.6.7 [17]). Let M be a RCD(K, ∞) space. Then

Ricci(∇f,∇f) ≥ K|Df |2 m

for any f ∈ TestF(X, d, m), where the measure-valued Ricci tensor Ricci is defined by

Ricci(∇f,∇f) := Γ2(f) − ‖Hessf‖2
HS m.

Now we introduce our first theorem.

Theorem 2.4 (Measure-valued Ricci tensor). Let (M, g, e−V Volg) be a n-dimensional 
weighted Riemannian manifold and Ω ⊂ M be a connected open set with (n − 1)-
dimensional smooth orientable boundary. Then the measure valued Ricci tensor on 
(Ω, dΩ, e−V Volg) is given by

RicciΩ(∇g,∇g) = RicciV (∇g,∇g) e−V dVolg|Ω + II(∇g,∇g) e−V dHn−1|∂Ω (2.1)

for any g ∈ C∞
c with g(N, ∇g) = 0, where N is the outward normal vector field on ∂Ω, 

and RicciV is the Bakry-Émery’s generalized Ricci tensor.

Proof. From integration by part formula (Green’s formula) on a Riemannian manifold, 
we know∫

g(∇f,∇g) e−V dVolg = −
∫

fΔV g e
−V dVolg +

∫
∂Ω

fg(N,∇g) e−V dHn−1|∂Ω

for any f, g ∈ C∞
c , where ΔV := (Δ − ∇V ) and Hn−1|∂Ω is the (n − 1)-dimensional 

Hausdorff measure on ∂Ω.
Hence g ∈ D(ΔΩ) and the measure-valued Laplacian is given by the following formula

ΔΩg = ΔV g e
−V Volg|Ω − g(N,∇g) e−V Hn−1|∂Ω.

Therefore for any g ∈ C∞
c with g(N, ∇g) = 0 on ∂Ω, we have g ∈ TestF(Ω).

Now we can compute the measure-valued Ricci tensor. Let g ∈ C∞
c be a test function 

with g(N, ∇g) = 0 on ∂Ω. We have
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RicciΩ(∇g,∇g) = 1
2ΔΩ|Dg|2Ω − 〈∇g,∇ΔΩg〉Ω e−V Volg − ‖Hessg‖2

HS e
−V Volg

= 1
2ΔV |∇g|2 e−V Volg − g(∇g,∇ΔV g) e−V Volg − ‖Hessg‖2

HS e
−V Volg

−1
2g(N,∇|∇g|2) e−V Hn−1|∂Ω

= Ricci(∇g,∇g) e−V Volg + HessV (∇g,∇g) e−V Volg

− 1
2g(N,∇|∇g|2) e−V Hn−1|∂Ω

= RicciV (∇g,∇g) e−V Volg −
1
2g(N,∇|∇g|2) e−V Hn−1|∂Ω,

where we use Bochner’s formula at the third equality, and RicciV = Ricci + HessV is 
Bakry-Émery’s generalized Ricci tensor on weighted Riemannian manifold with weight 
e−V .

By definition of second fundamental form, we have

II(∇g,∇g) = g(∇∇gN,∇g) = g
(
∇g(N,∇g),∇g

)
− 1

2g(N,∇|∇g|2).

Recall that g(N, ∇g) = 0 on ∂Ω, we have g(∇∇gN, ∇g) = −1
2g(N, ∇|∇g|2).

Finally, we obtain

RicciΩ(∇g,∇g) = RicciV (∇g,∇g) Volg + II(∇g,∇g)e−V Hn−1|∂Ω (2.2)

for any g ∈ C∞
c with g(N, ∇g) = 0. �

At the last, we list some simple applications of Theorem 2.4 whose proof can be found 
in [19], see also Theorem 1.2.1 and Theorem 3.3.2 in [34] for more details.

Corollary 2.5 (Rigidity: convexity of the boundary). Let (Ω, dΩ, e−V Volg) be a space as 
stated in Theorem 2.4. Then it is RCD(K, ∞) if and only if ∂Ω is convex and RicciV ≥ K

on Ω.

The next result tells us that the boundary does not influence the dimension bound of 
the smooth metric measure space.

Corollary 2.6. A n-dimensional Riemannian manifold with boundary is RCD(K, ∞) if 
and only if it is RCD(K, n).

The last corollary characterizes metric measure spaces with upper Ricci curvature 
bound, see also [15] for a rigidity result concerning a different notion of upper Ricci 
bound.

Corollary 2.7 (cf. [26] p. 104). If RicciΩ � Volg, then ∂Ω is totally geodesic, i.e. II ≡ 0.



B.-X. Han / Advances in Mathematics 373 (2020) 107327 11
3. Main results: measure rigidity theorems

At first, we recall some fundamental properties of spaces satisfying Lott-Sturm-
Villani’s synthetic lower Ricci curvature bound (including CD(K, ∞), CD(K, N) and 
RCD(K, ∞) spaces).

1) (Uniform density bound of intermediate measures on CD(K, ∞) spaces, Lemma 3.1 
[27].) Let μ0, μ1 ∈ P(X) be a pair of probability measures with bounded density and 
so that W2(μ0, μ1) < ∞. Suppose also that diam(suppμ0∪suppμ1) < ∞. Then there 
exists a L2-Wasserstein geodesic (μt) connecting μ0 and μ1 such that the densities 
{dμt

dm }t are uniformly bounded.
2) (Generalized Brunn–Minkowski inequality on CD(K, N) spaces, Proposition 2.1 

[31].) Given K, N ∈ R, with N ≥ 1, we set for (t, θ) ∈ [0, 1] ×R+,

τ
(t)
K,N

(
θ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞ if Kθ2 ≥ (N − 1)π2,

t
1
N

(
sin(tθ

√
K/(N−1))

sin(θ
√

K/(N−1))

)1− 1
N if 0 < Kθ2 < (N − 1)π2,

t if Kθ2 = 0,

t
1
N

(
sinh(tθ

√
−K/(N−1))

sinh(θ
√
−K/(N−1))

)1− 1
N if Kθ2 < 0.

Then for any measurable sets A0, A1 ⊂ X with m(A0) + m(A1) > 0, t ∈ [0, 1] and 
N ′ ≥ N , we have

m
(
At

) 1
N′ ≥ τ

(1−t)
K,N ′

(
Θ)m(A0

) 1
N′ + τ

(t)
K,N ′

(
Θ
)
m
(
A1

) 1
N′ , (3.1)

where At denotes the set of points which divide geodesics starting in A0 and ending 
in A1 with ratio t

1−t and where Θ denotes the minimal (K ≥ 0) or maximal (K <

0) length of such geodesics. In particular, when A0 is a single point, we have the 
following (K, N)-measure contraction property (or MCP(K, N) condition for short):

m
(
At

)
≥

[
τ

(t)
K,N

(
Θ
)]N

m
(
A1

)
. (3.2)

3) (Riemannian-Curvature-Dimension condition, i.e. RCD condition, see [7].) We say 
that a space is RCD(K, ∞) (or RCD(K, N)) if it is an infinitesimally Hilbertian 
CD(K, ∞) (or CD(K, N) respectively) space. It is known that Riemannian manifolds 
with lower Ricci curvature bound, Ricci limit spaces, and Alexandrov spaces with 
lower curvature bound are RCD spaces. See [20, Proposition 3.1, Part a)].
Let (X, d, m) be a RCD(K, ∞) space. For any L2-Wasserstein geodesic (μt) connect-
ing μ0, μ1 � m, there exists Π ∈ P(Geo(X, d)) such that (et)�Π = μt (cf. Theorem 
2.10 [4]). By essentially non-branching property of RCD(K, ∞) spaces (cf. [28]), 
Π is concentrated on a set of non-branching geodesics, where we say that a set 
Γ ⊂ Geo(X, d) is non-branching if for any γ1, γ2 ∈ Γ, it holds:
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∃t ∈ (0, 1) s.t. ∀s ∈ [0, t] γ1
t = γ2

t ⇒ γ1
s = γ2

s , ∀s ∈ [0, 1].

Furthermore, there exits a unique L2-Wasserstein geodesic connecting μ0, μ1 (cf. [28]) 
which is induced by an optimal transport map.

3.1. Measure rigidity: absolute continuity

Let (X, d, m1) and (X, d, m2) be two metric measure spaces satisfying essentially non-
branching MCP(K, N) condition. For N < ∞, Cavalletti and Mondino (cf. Proposition 
8.1 and Corollary 8.2 in [10]) prove the mutual absolute continuity of the reference 
measures m1, m2 (see [23] for a different proof given by Kell). In case X is a Riemannian 
manifold, we extend such result to dimension-free CD(K, ∞) condition and prove a 
quantitative density estimate under CD(K, N) condition.

Proposition 3.1 (Measure rigidity: absolute continuity). Let (M, g, Volg) be a complete 
n-dimensional Riemannian manifold, dg be the Riemannian distance induced by g and 
m be a Borel measure with full support on M . Then we have the following results.

a) Assume that (M, dg, m) is CD(K, ∞) for some K ∈ R. Then m � Volg.
b) Assume that (M, dg, m) is MCP(K, N) for some K ∈ R, N < ∞. Then we have

m
(
Br(x)

)
Volg

(
Br(x)

) ∈ L∞
loc uniformly in r > 0.

In particular, m = e−V Volg for some e−V ∈ L∞
loc.

c) Assume that (M, dg, m) is MCP(K, N) for some K ∈ R, N < ∞. Then we have

rN−nVolg
(
Br(x)

)
m
(
Br(x)

) ∈ L∞
loc uniformly in r > 0.

In particular, when N = n, we know m = e−V Volg for some V ∈ L∞
loc.

Proof. Part a):
Let U ⊂ M be a bounded and geodesically convex open set. By local finiteness of 

m (cf. Theorem 4.24 [30]) we know m(U) < ∞. By definition, (U, dg, m|U ) is still a 
CD(K, ∞) space.

Let m := mac+ms be the Lebesgue decomposition of m with respect to the Riemannian 
volume measure Volg. We will prove m � Volg in the following two steps. Firstly, we 
will show mac �= 0. Then we will prove ms = 0.

Step 1: mac �= 0 on U .
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Given a parameter r > 0, we define εr : U �→ R+ by

εr(x) :=
m
(
Br(x)

)
Volg

(
Br(x)

) . (3.3)

Assume by contradiction that m = ms, then for any constant c > 0, there must be

m

({
x ∈ U : lim

r→0
εr(x) ≤ c

})
= 0, (3.4)

otherwise we can prove mac �= 0 by a standard measure-theoretic argument (using cov-
ering theorems). For any (c, r) ∈ (0, +∞) × (0, 1), we define the set S(c, r) ⊂ U by

S(c, r) :=
{
x ∈ U : εs(x) ≥ c for all s ≤ r

}
.

From definition, we have the following monotonicity

S(c, r2) ⊂ S(c, r1) for all r1 < r2. (3.5)

It can also be seen that{
x ∈ U : lim

r→0
εr(x) > c

}
⊂ ∪0<r<1S(c, r) = lim

r→0
S(c, r).

So by (3.4), we obtain

m
(

lim
r→0

S(c, r)
)

= lim
r→0

m
(
S(c, r)

)
= m(U). (3.6)

Combining (3.5), (3.6), and the assumption suppm = X, we get

lim
r→0

Volg
(
S(c, r)

)
= Volg(U). (3.7)

Next we will deduce contradiction from (3.7) and CD(K, ∞) condition.
Fix a point y0 ∈ U with limr→0 εr(y0) = ∞. By Rauch’s (and Toponogov’s) compari-

son theorem, there exists a small R > 0 and constants c1, c2 > 0 such that

c1tdg(y, z) < dg(γxz
t , γxy

t ) < c2tdg(y, z) ∀t ∈ (0, 1], ∀x, y, z ∈ B3R(y0), (3.8)

and

dg(γxz
s , γxy

t ) > c1s ∧ tdg(y, z) ∀s, t ∈ (0, 1) (3.9)

for any x, y, z ∈ B3R(y0) with dg(x, y) = dg(x, z), where γxz denotes the geodesic from 
x to z and γxy denotes the geodesic from x to y. Moreover, the following comparison 
principle holds for any geodesic γ1, γ2 with endpoints in B3R(y0) ⊂ U :
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dg(γ1
t , γ

2
t ) < c2 max

{
dg(γ1

0 , γ
2
0),dg(γ1

1 , γ
2
1)
}

∀t ∈ (0, 1). (3.10)

Let y ∈ B3R(y0) \B2R(y0). Consider the L2-Wasserstein geodesic (μr,y
t )t from μr,y

0 :=
1

m
(
Br(y0)

)m|Br(y0)
to μr,y

1 := 1
m
(
Br(y)

)m|Br(y). By density bound of intermediate measures 

on CD(K, ∞) space (cf. Lemma 3.1 [27]), we get the following (uniform) estimate

m
(
suppμr,y

t

)
� min

{
m
(
Br(y0)

)
,m

(
Br(y)

)}
∀t ∈ [0, 1], (3.11)

where we adopt the notation A � B if there is a constant C > 0 such that A < CB. 
Combining (3.11) and the fact Volg(Br) � rn, we get

m
(
suppμr,y

t

)
� rn min

{
εr(y0), εr(y)

}
∀t ∈ [0, 1]. (3.12)

Let Tt be the optimal transport map which induces (μr,y
t )t. By (3.10) we know

dg(Tt(x), γy0y
t ) ≤ c2 max

{
dg(x, y0),dg(T1(x), y)

}
≤ c2r

for any x ∈ Br(y0), where γy0y is the geodesic from y0 to y. Therefore

μr,y
t

(
Bc2r(γ

y0y
t )

)
= 1 ∀t ∈ [0, 1]. (3.13)

In particular, ∪t suppμr,y
t ⊂ (γy0y)c2r, where (γy0y

t )c2r is the c2r-neighbourhood of γy0y

w.r.t. Hausdorff distance.
For any c > 0, by (3.7), there exists a small r = r(c) � R such that

Volg
(
{εr ≥ c} ∩B3R(y0) \B2R(y0)

)
Volg

(
B3R(y0) \B2R(y0)

) >
1
2 . (3.14)

Consider the projection map Prj : B3R(y0) �→ ∂B2R(y0) along the radius, defined by

Prj(x) := expy0

(
2R exp−1

y0
(x)

| exp−1
y0 (x)|

)
.

It is known that

Volg
(
B3R(y0) \B2R(y0)

)
=

3R∫
2R

Hn−1(∂Bt(y0)
)
dt. (3.15)

Hence by Fubini’s theorem and (3.14), there is t0 ∈ [2R, 3R] such that

Hn−1
(
{εr ≥ c} ∩ ∂Bt0(y0)

)
>

1
Hn−1

(
∂Bt0(y0)

)
. (3.16)
2
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In addition, by (3.8), we have

Hn−1|∂B2R(y0)
≥ c1

2R
t0

(
Prj

)
�

(
Hn−1|∂Bt0 (y0)

)
≥ 2c1

3
(
Prj

)
�

(
Hn−1|∂Bt0 (y0)

)
(3.17)

and

Hn−1|∂B2R(y0)
≤ c2

t0
2R

(
Prj

)
�

(
Hn−1|∂Bt0 (y0)

)
≤ 3c2

2
(
Prj

)
�

(
Hn−1|∂Bt0 (y0)

)
(3.18)

Combining the estimates (3.16), (3.17) and (3.18), we get

Hn−1|∂B2R(y0)

(
Prj

(
{εr ≥ c} ∩B3R(y0) \B2R(y0)

))
≥ Hn−1|∂B2R(y0)

(
Prj

(
{εr ≥ c} ∩ ∂Bt0(y0)

))
by (3.17) ≥ 2c1

3 Hn−1|∂Bt0 (y0)

(
{εr ≥ c} ∩ ∂Bt0(y0)

)

by (3.16) > 2c1
3

1
2H

n−1(∂Bt0(y0)
)

by (3.18) ≥ c1
3
(
Prj−1)

�

( 2
3c2

Hn−1|∂B2R(y0)

)(
∂Bt0(y0)

)
,

and finally

Hn−1(Prj
(
{εr ≥ c} ∩B3R(y0) \B2R(y0)

))
≥ 2

9
c1
c2

Hn−1(∂B2R(y0)). (3.19)

By (3.19) we can find an integer N � 1
rn−1 which is independent of c, and N points 

{y1, y2, ..., yN} ⊂ {x : εr(x) ≥ c} ∩ B3R(y0) \ B2R(y0), such that {Prj(y1), Prj(y2), ...,
Prj(yN )} are sparsely distributed on ∂B2R(y0) satisfying the following estimate:

dg

(
Prj(yi),Prj(yj)

)
>

4c2
c1

r ∀1 ≤ i < j ≤ N.

So by (3.9), we have

dg

(
γy0Prj(yi)
s , γ

y0Prj(yj)
t

)
>

c1
2

4c2
c1

r = 2c2r for any s, t ∈ [ 12 , 1]. (3.20)

By (3.13), we also have

⋃
t∈[ 12 ,

2
3 ]

suppμr,yi

t ⊂
(
γy0yi

t |t∈[ 12 ,
2
3 ]

)
c2r

⊂
(
γ
y0Prj(yi)
t |t∈[ 12 ,1]

)
c2r

. (3.21)

Combining (3.20) and (3.21), we know 
⋃

t∈[ 1 , 2 ] suppμr,yi

t , i = 1, ..., N are disjoint.

2 3
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Furthermore, consider the following set

N(yi, r) :=
{
t = (t1, t2, ...) : ti ∈

[
1
2 ,

2
3

]
, suppμr,yi

t1 , suppμr,yi

t2 , ... ⊂ B2R(y0) are disjoint
}
.

It can be seen that maxt∈N(yi,r) |t| � 1
r , i = 1, ..., N .

In conclusion, we can find approximate 1
rn measures whose supports are disjoint in 

B2R(y0). Combining with (3.12) and local finiteness of m (cf. Theorem 4.24 [30]) we 
obtain the following estimate

rn min
{
εr(y0), εr(y1), ..., εr(yN )

} 1
rn

< Cm
(
B2R(y0)

)
< ∞ (3.22)

where C is independent of c. By the choice of {y1, ..., yN}, we know

min
{
εr(y1), ..., εr(yN )

}
≥ c.

Letting c → ∞, by (3.22) we get εr(y0) < Cm(B2R(y0)), which is the contradiction. 
Therefore mac �= 0.

Step 2: ms = 0 on U .
We will prove the assertion by contradiction. Assume that m|U is not absolutely 

continuous w.r.t. Volg, then there exists a compact singular set N ⊂ U such that m(N) =
ms(N) > 0 and Volg(N) = 0.

Since mac �= 0, there exists a bounded set EL with positive m-measure such that 
dm

dVolg < L on EL. Denote by (μt) the L2-Wasserstein geodesic from μ0 := 1
m(N)m|N to 

μ1 := 1
m(EL)m|EL

. By the choice of EL, we know μ1 � Volg with bounded density. By 

measure contraction property of (U, dg, Volg), we know μt � Volg for any t > 0. In 
particular μt(N) = 0, so there is a Borel set At ⊂ suppμt such that At ∩ N = ∅ and 
μt(At) = 1. However, by Lemma 3.1 [27] again, we have μt ≤ C1m for some constant 
C1 > 0. Next we will show the contradiction using the argument in [23] (cf. Lemma 6.4 
therein). Given ε > 0, we know

At ⊂ suppμt ⊂ (suppμ0)ε = (N)ε

for t small enough. Then

m(N) = lim
ε→0

m
(
(N)ε

)
≥ lim

t→0
m(suppμt)

≥ lim
t→0

m(At \ N) + m(N)

= lim m(At) + m(N)

t→0
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≥ lim
t→0

1
C 1

μt(At) + m(N)

≥ 1
C1

+ m(N)

which is the contradiction.
Finally, since the choice of U is arbitrary, we know m � Volg on whole M .

Part b):
Given x ∈ M . For any y ∈ B3R(x) \ B2R(x), let us consider the L2-Wasserstein 

geodesic (μr
t )t from μr

0 := 1
m
(
Br(x)

)m|Br(x) to μr
1 := δy. By measure contraction property, 

we have the following (uniform) estimate

m
(
suppμr

t

)
� m

(
Br(x)

)
∀t ∈ [0, 2

3 ]. (3.23)

Combining the definition of εr (3.3) and (3.23), we get

m
(
suppμr

t

)
� rnεr(x) ∀t ∈ [0, 2

3 ]. (3.24)

As previously shown in Part 1), there exist (approximate) 1
rn measures whose supports 

are disjoint. Combining with (3.24) we get

εr(x) =
(
rnεr(x)

) 1
rn

� m
(
B2R(x)

)
. (3.25)

Since MCP(K, N) condition yields measure doubling property, m(B2R(x)) is finite. Hence 
εr ∈ L∞(U, Volg) uniformly in r.

Letting r → 0, by Lebesgue differentiation theorem there is e−V ∈ L∞
loc(M, Volg) such 

that

e−V (x) = lim
r→0

m
(
Br(x)

)
Volg

(
Br(x)

) , Volg − a.e. x.

Part c):
For x ∈ M and 0 < r � 1, we define

δr(x) :=
rN−nVolg

(
Br(x)

)
m
(
Br(x)

) . (3.26)

Denote by (νrt )t the Wasserstein geodesic from νr0 := 1
Volg

(
Br(x)

)Volg|Br(x) to νr1 := δy, 
with 0 < r � R. By measure contraction property (of compact Riemannian manifolds), 
we have
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Volg
(
supp νrt

)
� Vol

(
Br(x)

)
∀t ∈ [0, 2

3 ].

Combining with (3.26), we obtain

Volg
(
supp νrt

)
� rn−Nδrm

(
Br(x)

)
∀t ∈ [0, 2

3 ]. (3.27)

By Bishop-Gromov inequality (cf. Corollary 2.4 [31]), we know m(Br(x)) �(
r
R

)N
m(B2R(x)). Therefore (3.27) implies

Volg
(
supp νrt

)
� δrr

n ∀t ∈ [0, 2
3 ]. (3.28)

Similarly, we can find approximate 1
rn measures whose supports are disjoint inside 

B2R(x), then we obtain

δr � Volg
(
B2R(x)

)
. (3.29)

Then we obtain the following L∞
loc estimate

rN−nVolg
(
Br(x)

)
m
(
Br(x)

) ∈ L∞
loc.

If N = n, we have Volg(Br(x))
m(Br(x)) ∈ L∞

loc. Letting r → 0, by Lebesgue differentiation 
theorem we know

eV = lim
r→0

Volg
(
Br(x)

)
m
(
Br(x)

) ∈ L∞
loc.

Combining with e−V ∈ L∞
loc, we get V ∈ L∞

loc (see also Proposition 3.5). �
The following result has been proved in the Part 1) of the proof above (see also Lemma 

6.4 [23]). For convenience of later applications, we extract it as a separate lemma.

Lemma 3.2. Let μ0, μ1 be two probability measures with compact support. Assume that 
μ1 � Volg and (μt) ⊂ W2(M, g) is the unique L2-Wasserstein geodesic connecting μ0 and 
μ1. If there exists a locally finite measure m such that the density functions dμt

dm , t ∈ [0, 1]
are uniformly bounded. Then μ0 � Volg.

3.2. Measure rigidity: regularity of density, non-collapsing

In the following two propositions, we will improve the regularity of density functions 
obtained in Proposition 3.1.
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Proposition 3.3. Let V : M �→ R ∪ {+∞} be an extended-valued function on a complete 
Riemannian manifold (M, g), such that (M, dg, e−V Volg) is a CD(K, ∞) space. Then V
has a semi-convex, locally Lipschitz representative.

Proof. Denote m := e−V Volg. Let Ω ⊂ M be a convex, bounded open set such that 
points in Ω do not have cut-locus inside Ω, and let L > 0 be a constant such that the 
sub-level set {V ≤ L} ∩ Ω has positive m-measure (and hence positive Volg-measure). 
Let V be a family of sets of bounded eccentricity defined in Lemma 3.4. Denote by EL

the subset of {V ≤ L} which consists of density 1 points, i.e.

EL :=
{
x : lim

U∈V→x

Volg
(
{V ≤ L} ∩ U

)
Volg

(
U
) = 1

}
. (3.30)

Firstly we will prove the following claim.
Step 1: For any x ∈ EL, there is r0 > 0 such that

EL ∩Br0(x) = Conv
(
EL ∩Br0(x)

)◦ (3.31)

where Conv
(
EL ∩Br0(x)

)◦ is the interior points of the convex-hull of EL ∩Br0(x) in Ω. 
In particular, EL is open and connected, V is locally bounded from above.

Given x ∈ EL, v ∈ TxM and y := expx(1
2v). Let (μδ

t )t∈[0,1] denote the L2-
Wasserstein geodesic from μδ

0 := 1
Volg

(
EL∩Aδ

0
)Volg|EL∩Aδ

0
to μδ

1 := 1
Volg

(
Aδ

1
)Volg|Aδ

1
, where 

Aδ
0 = Bδ(x), Aδ

1 = Bδ

(
expx(v)

)
are geodesic balls with radius δ > 0.

By direct computation (cf. ‘(ii) =⇒ (i)’ in the proof of Theorem 1.1 [33]), we have

Ent(μδ
0|Volg) = − ln Volg

(
EL∩Aδ

0
)

= − ln cn−n ln δ−ln
Volg

(
EL ∩Aδ

0
)

Volg
(
Aδ

0
) +O(δ2), (3.32)

and

Ent(μδ
1|Volg) = − ln Volg

(
Aδ

1
)

= − ln cn − n ln δ + O(δ2) (3.33)

where cn := Ln(B1) in Rn.
Since Ω is compact, we may assume that the sectional curvature is bounded from 

above by κ > 0. By Rauch’s comparison theorem, for δ � |v| � 1 we can find a set

Aδ
1
2

= B(
1+(κ+1/n)|v|2/8

)
δ(y)

such that γ 1
2
∈ Aδ

1
2

for each minimizing geodesic γ : [0, 1] �→ M with γ0 ∈ Aδ
0, γ1 ∈ Aδ

1. In 

particular, suppμδ
1
2
⊂ Aδ

1
2
. Moreover, by the asymptotic expansion formula in [33, Page 

929, Proof of Theorem 1.1]
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Ent(μδ
1
2
|Volg)

≥ − ln Volg(Aδ
1
2
) (by Jensen’s inequality)

≥ − ln cn − n ln δ − (nκ + 1)|v|2
8 + O(δ2) + O(|v|4) (cf. page 929 in [33]).

Similarly, by the expansion formulas (3.32) and (3.33), for k := nκ + 2, we have

1
2Ent(μδ

1|Volg) + 1
2Ent(μδ

0|Volg) −
k

8W
2(μδ

0, μ
δ
1)

= − ln cn − n ln δ − 1
2 ln

Volg
(
EL ∩Bδ(x)

)
Volg

(
Bδ(x)

) − k|v|2
8 + O(δ).

Thus for δ and |v| small enough, we have

Ent(μδ
1
2
|Volg) ≥

1
2Ent(μδ

1|Volg) + 1
2Ent(μδ

0|Volg) −
k

8W
2(μδ

0, μ
δ
1). (3.34)

By the definition of CD(K, ∞), Ent( · |m) is K-convex along (μδ
t ). Combining with 

the inequality (3.34) and the following formula

Ent( · |m) = Ent( · |Volg) +
∫

V d(·),

we obtain ∫
V dμδ

1
2
− k −K

8 W 2(μδ
0, μ

δ
1) (3.35)

≤ 1
2

∫
V dμδ

1 + 1
2

∫
V dμδ

0. (3.36)

By replacing V with V + H for some locally |K − k|-convex function H (and simulta-
neously replacing {V ≤ L} by {V + H ≤ L}), we may assume k = K without loss of 
generality.

By (3.35) and EL ⊂ {V ≤ L}, we have

∫
V dμδ

1
2
≤ 1

2

∫
V dμδ

1 + 1
2L. (3.37)

If y = expx(1
2v) is a density 1 point of {V > L}, by (3.37) we get

L < lim
δ→0

∫
V dμδ

1
2
≤ lim

δ→0

1
2

∫
V dμδ

1 + 1
2L,

thus



B.-X. Han / Advances in Mathematics 373 (2020) 107327 21
γ1 = expx(v) /∈ EL. (3.38)

Let r0 > 0 be small so that the geodesic ball Br0(x) is geodesically convex. Assume 

by contradiction that Vol
(
Conv

(
EL ∩Br0(x)

)
\EL

)
�= 0. By Lebesgue density theorem, 

the density 1 points of {V > L} in Br0(x) are not negligible. By Fubini’s theorem, there 
is γ ⊂ Br0(x) such that γ0, γ1 ∈ EL and γ 1

2
is a density 1 point of {V > L}, which 

contradicts to (3.38).
Notice that by Fubini’s theorem we have Volg

(
∂Conv

(
EL ∩Br0(x)

))
= 0. Hence

EL ∩Br0(x) =
◦

Conv
(
EL ∩Br0(x)

)
which is the thesis.

We define an extended real-valued function V̄ : M �→ R ∪ {±∞} by

V̄ (x) := lim
V	U→x

1
Volg(U)

∫
U

V dVolg

where V is the family of sets defined in Lemma 3.4.
Denote V + := V ∨ 0 and V − := V ∧ 0. By the inequality t ≤ et on [0, +∞), we know 

|V −| ≤ e−V and V − ∈ L1
loc(Volg). Combining with the fact that V + ≤ L on EL, we get 

V ∈ L1(EL, Volg). By Lebesgue differentiation theorem, we know V̄ = V m-a.e. on EL

and there is M∗ ⊂ EL with full measure such that

lim
V	U→x

1
Volg(U)

∫
U

V dVolg = V̄ (x) ∈ R ∀x ∈ M∗.

Step 2: V̄ is geodesically convex on EL. Then from [18] (see also Corollary 3.10 [32]) 
we know V̄ is locally Lipschitz on M .

Let γ ⊂ EL be a geodesic with end points in M∗ and with small length, and let (μδ
t )

be the geodesic defined similarly as in Step 1. Similar to (3.35), we have

∫
V dμδ

1
2
≤ 1

2

∫
V dμδ

1 + 1
2

∫
V dμδ

0. (3.39)

Letting δ → 0 in (3.39), we obtain

V̄ (γ 1
2
) ≤ 1

2 V̄ (γ0) + 1
2 V̄ (γ1) ≤ L. (3.40)

Given x ∈ EL, by Fubini’s theorem we know there exists Sx ⊂ {v ∈ S1(TxM)} with 
full Hn−1-measure and a positive constant τ(x) ∈ (0, 1], such that expx (tv) ∈ M∗ for 
all v ∈ Sx and L1-a.e. t ∈ (−τ(x), τ(x)). Define a set of geodesic segments Γx by
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Γx :=
{(

expx (tv)
)
t∈(−τ(x),τ(x)) : v ∈ Sx

}
.

Then for any γ ∈ Γx, (3.40) yields that V̄ is convex on γ ∩ M∗. In particular, V̄ is 
Lipschitz on γ ∩M∗.

To prove the geodesical convexity of V̄ on whole EL, we just need to show the conti-
nuity of V̄ . Then by an approximation argument, we can see that V̄ satisfies (3.40) on 
all geodesics. With this aim, we will prove the following claims.

Claim 1: For any x ∈ EL, 
{

Lip
(
V̄ |(γt)

t∈[− τ(x)
2 ,

τ(x)
2 ]

∩M∗

)}
γ∈Γx

is bounded.

By (3.40) and the discussion thereafter, we know

V̄ (γ0+) := lim
y∈γ∩M∗→x

V̄ (y) ∈ [V̄ (x), L]

for any γ ∈ Γx. Thus by convexity we know V̄ is 2(L−V̄ (x)+1)
τ (x)-Lipschitz on {

(γt)t∈[− τ(x)
2 , τ(x)

2 ] ∩M∗ : γ ∈ Γx

}
, which is the thesis.

We define a (possibly multi-valued) function V̄ ′ : EL �→ [V̄ (x), L] by

V̄ ′(x) :=
{
V̄ (γ0+) : γ ∈ Γx

}
.

For any x ∈ M∗, by (3.40) we know the value of V̄ (γ0+) is independent of the choice 
of the geodesic γ ∈ Γx and V̄ (γ0+) = V̄ (x), so V̄ ′ = V almost everywhere. Furthermore, 
if we can show that V̄ ′ is continuous, by definition we know V̄ = V̄ ′ on EL. Therefore it 
suffices it to prove the following assertion.

Claim 2: V̄ ′ is single-valued and continuous on EL.
Given x ∈ EL. Assume by contradiction that V̄ ′ is not single-valued,

−∞ < V̄ (x) ≤ V̄ (γ1
0+) < V̄ (γ2

0+) ≤ L (3.41)

for some different γ1, γ2 ∈ Γx. By Fubini’s theorem, we can find sequences (xn) ⊂
γ1∩M∗, (yn) ⊂ γ2∩M∗ such that xn, yn → x, and yn ∈ γxn ∈ Γxn

. From (3.40), we can 
see that V̄ ′(xn) → V̄ (γ1

0+), V̄ ′(yn) → V̄ (γ2
0+), and V̄ ′ is Lipschitz on γxn ∩ M∗. From 

(3.41) we also know Lip V̄ ′|γxn

→ +∞, which contradicts to the fact that V̄ ′ ≤ L on EL.
Finally, let (zn) ⊂ EL be an arbitrary sequence with zn → x. By definition, we can 

find z′n ∈ M∗ such that dg(z′n, zn) < 1
n and |V̄ (z′n) − V̄ ′(zn)| < 1

n . By uniqueness of 
V̄ ′(x) and Claim 1, we know V̄ (z′n) → V̄ ′(x). So V̄ ′ is continuous at x. �
Lemma 3.4. We define a family of measurable sets V in the following way. We say that 
U ∈ V if there are x, y ∈ M , δ > 0, and a L2-Wasserstein geodesic (μδ

t )t∈[0,1] from 
μδ

0 := 1
Volg

(
Bδ(x)

)Volg|Bδ(x) to μδ
1 := 1

Volg
(
Bδ(y)

)Volg|Bδ(y), such that U = suppμδ
1
2
.

Then V is a fine covering with bounded eccentricity. This means that every point x ∈ M

is covered by sets in V with arbitrarily small diameter, and there exists a constant c > 0
such that each set U ∈ V is contained in a ball Br and Vol(U) ≥ cVol(Br).
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Proof. Let (Tt) be a family of maps which induce (μδ
t ), i.e. μδ

t = (Tt)�μδ
0. Denote the 

geodesic from x to y by γ. On one hand, by Rauch’s comparison theorem, there exists a 
constant C1 > 0 such that

dg
(
γt, Tt(z)

)
≤ C1

(
dg(γ0, z) + dg(γ1, T1(z))

)
≤ 2C1δ

for any z ∈ suppμδ
0 = Bδ(x). So we have

suppμδ
t ⊂ B2C1δ(γt).

On the other hand, Riemannian manifolds are locally CD spaces, hence

Volg
(
suppμδ

t

)
�

{
Volg

(
Bδ(x)

)
,Volg

(
Bδ(y)

)}
.

Therefore by Bishop-Gromov inequality, the sets in V have bounded eccentricity. Fur-
thermore, let x = y ∈ M , it can be seen that U = Bδ(x), so V is a fine covering of 
M . �
Proposition 3.5. Let V : M �→ R ∪ {+∞} be an extended-valued function on a compact 
Riemannian manifold (M, g) with boundary, and m = e−V Volg. If (M, dg, m) satisfies 
MCP(K, N) for some K ∈ R and N < ∞. Then V is locally bounded in the interior of 
M . In particular, (M, dg, m) is infinitesimally Hilbertian.

Proof. We define the following family of functions with parameter r ∈ (0, 1), as in the 
proof of Proposition 3.1,

εr(x) := m(Br(x))
Volg(Br(x)) .

Given x ∈ M and R > 0 with BR(x) ⊂ M and limr→0 εr(x) = e−V (x). We define a 
family V of Borel sets in the following way. We say that U ∈ V if there exist 0 < r � R

2 , 
x0 ∈ B2R(x) \ BR(x), and a L2-Wasserstein geodesic (μt)t∈[0,1] with μ0 := δx0 and 
μs := 1

m
(
Br(x)

)m|Br(x) for some s ∈ [ 13 , 1], such that U = suppμ1. For the similar reason 

as Lemma 3.4, we know the sets in V is a covering of HR(x) := B2R(x) \ BR(x) with 
bounded eccentricity.

By Lebesgue differentiation theorem, there exists H∗
R(x) ⊂ HR(x) with full measure 

such that

lim
V	U→y

m(U)
Volg(U) = lim

V	U→y

1
Volg(U)

∫
U

e−V dVolg = e−V (y) > 0 ∀y ∈ H∗
R(x).

For any y ∈ H∗
R(x) and 0 < δ � 1. There is a L2-Wasserstein geodesic (μt)t∈[0,1]

with μ0 := δx0 and μs := 1
m(Br(x))m|Br(x) for some x0 ∈ B2R(x) \ BR(x), s ∈ [ 13 , 1] and 

r = r(δ), such that U = suppμ1 and
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1 − δ <

∣∣∣∣∣∣
m(U)

Volg(U)

e−V (y)

∣∣∣∣∣∣ < 1 + δ.

By measure contraction property, there is a universal constant C > 0 such that

εr(x)Volg
(
Br(x)

)
= m

(
Br(x)

)
> Cm(U) > C(1 − δ)Volg(U)e−V (y).

Dividing rn on both sides and letting r → 0, we get e−V (x) � e−V (y). Recall that H∗
R(x)

has full measure in HR(x), we have the following weak mean-value property

e−V (x) � m
(
BR(x)

)
> 0.

Combining with Proposition 3.1, we know V ∈ L∞
loc. �

Next we will prove that there is no non-trivial measure other than the volume measure 
such that a n-dimensional Riemannian manifold satisfies CD(K, n) condition. We remark 
that this result can also be obtained by combining Kapovitch-Ketterer’s recent result 
[22, Corollary 1.2], and Cavalletti-Mondino’s result [10, Corollary 8.3] about measure 
rigidity on Alexandrov spaces (see also [21, Theorem 1.4] for a more recent proof).

Theorem 3.6 (Measure Rigidity: non-collapsed spaces). Let (M, g) be a n-dimensional 
Riemannian manifold. Assume there exists a measure m∗ with full support such that 
(M, dg, m∗) is CD(K, n) for some K ∈ R. Then there exists a constant c > 0 such that 
m∗ = cVolg.

Proof. For any x ∈ M , we can find a small convex neighbourhood U of it, such that 
(U, dg, m∗) is still CD(K, n) and (U, dg, Volg) is a CD(k, n) for some k ∈ R. So without 
loss of generality, we may assume that any point in M has no cut-locus and (M, dg, Volg)
is CD(k, n) for some k. By Proposition 3.1 and Proposition 3.3 we know there exists a 
positive continuous function ϕ such that m∗ = ϕnVolg. Hence we just need to prove that 
ϕ is a constant.

Given two points x, y ∈ M . Let γ be a geodesic from x to y. Let m = m∗ = ϕnVolg
and m = Volg respectively. By Brunn–Minkowski inequality on CD(K, n) spaces (cf. [31, 
Proposition 2.1]) and Rauch’s comparison theorem, there is C > 0 such that

m

(
Bσ

2
(
1+Cd2

g(x,y)
)(γ 1

2
)
) 1

n ≥ τ
( 1
2 )

K,n(Θ)m
(
Bσ(x)

) 1
n (3.42)

where 0 < σ � 1 and 
∣∣Θ − dg(x, y)

∣∣ ≤ σ.
We define Jm(x) by

Jm(x) := lim
r→0

(
m
(
Br(x)

)
rn

) 1
n

.
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Dividing σ2
(
1 + Cd2

g(x, y)
)

on both sides of (3.42) and letting σ → 0, we obtain

Jm(γ 1
2
) ≥ 2

1 + Cd2
g(x, y)

τ
( 1
2 )

K,n

(
dg(x, y)

)
Jm(x).

When dg(x, y) is small, by Taylor expansion of τ ( 1
2 )

K,n(θ) we obtain

Jm(γ 1
2
) ≥

1 + O
(
d2

g(x, y)
)

1 + Cd2
g(x, y)

Jm(x).

For any N > 0, we divide γ equally into N parts. Repeating the argument above on 
each interval with length 1

N dg(x, y) we get

Jm(γ i+1
N

) ≥
(
1 + o( 1

N
)
)
Jm(γ i

N
) i = 0, ..., N − 1.

Therefore

Jm(y) ≥
(
1 + o( 1

N
)
)N

Jm(x).

Letting N → ∞, we obtain Jm(y) ≥ Jm(x). By symmetry, we can also prove Jm(y) ≤
Jm(x), hence Jm(y) = Jm(x). So Jm is a constant for both m = Volg and m = m∗. By 
Proposition 3.5 we know ϕ is continuous, so we also have

Jm∗ = ϕJVolg .

Therefore ϕ is a constant. �
3.3. Measure rigidity: geodesical convexity

In the last theorem, we study the CD(K, ∞) condition on manifolds with Lipschitz 
boundary. Without loss of generality, we may restrict our study on an open set Ω ⊂ M

with Lipschitz boundary, which means that the boundary ∂Ω can be written locally as 
the graph of a Lipschitz continuous function on Rn−1.

As we mentioned in the introduction, no matter how smooth the boundary is, we 
cannot definitely predict that the geodesics are C2. Consider the complement of a disc 
in the Euclidean plane. A geodesic fails to have an acceleration only at those points 
which we call switch points, where the geodesic switches from a boundary segment to an 
interior segment or vice-versa. In addition, besides the switch points, boundary segments, 
and interior segments, one other kind of point is possible, an accumulation point of 
switch points, which we call intermittent point. It is not difficult to construct a geodesic 
whose intermittent points form a Cantor set with positive measure. Unfortunately, it is 
uncertain which assumptions on the boundary guarantee finite switching behaviour. One 
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known result (cf. [2]) is that domains in Euclidean plane with analytic boundary have 
no intermittent point. However, thanks to a theorem proved by Alexander, Berg and 
Bishop (Theorem 1 [2]), these intermittent points will not bring us too much trouble in 
our problem.

Theorem 3.7 (Measure rigidity: CD(K, ∞) condition). Let (M, g) be a complete Rieman-
nian manifold, Ω ⊂ M be an open set with Lipschitz boundary. Let dΩ be the intrinsic 
distance induced by the Riemannian distance dg on Ω, and m be a reference measure with 
suppm = Ω. Assume that ∂Ω is C2 out of a Hn−1-negligible set, and (Ω, dΩ, m) satisfies 
the CD(K, ∞) condition, then we have the following rigidity results.

1) Ω is g-geodesically convex, this is to say, any shortest path in (Ω, dΩ) is a (unparam-
eterized) geodesic (segment) in (M, g);

2) m(∂Ω) = 0 and m = e−V Volg for some semi-convex, locally Lipschitz function V on 
Ω;

3) (Ω, dΩ, m) is a RCD(K, ∞) space.

In particular, (Ω, dΩ, Volg) is CD(K, ∞) if and only if Ω is g-geodesically convex and 
Ricci ≥ K on Ω.

Proof. Since all the assertions are local, without loss of generality, we may assume that 
Ω is compact and points in Ω do not have cut-locus inside Ω.

First of all, by Proposition 3.1 and Proposition 3.3 we know m|Ω � Volg, Volg � m|Ω
and m = e−V Volg for some semi-convex, locally Lipschitz function V . In particular, we 
have

dVolg
dm ∈ L∞(Ω,m), dm

dVolg
∈ L∞(Ω,Volg). (3.43)

Given x, y ∈ Ω and a parameter ε > 0 such that Bε(x), Bε(y) ⊂ Ω. Firstly, con-
sider the L1-optimal transportation on (Ω, dΩ) between με

0 := 1
m
(
Bε(x)

)m|Bε(x) and 

με
1 := 1

m
(
Bε(y)

)m|Bε(y). Let (με
t)t be a geodesic from με

0 to με
1 in L1-Wasserstein space 

W1(Ω, dΩ). Denote by Πε its lifting in P
(
Geod(Ω, dΩ)

)
satisfying (et)�Πε = με

t. By 
L1-optimal transport theory, there exists a Kantorovich potential ϕ associated with 
such optimal transportation, which is a 1-Lipschitz function. Let Γϕ be the subset of 
C
(
[0, 1]; (Ω, dΩ)

)
containing all the (parameterized) trajectories of the gradient flow of 

ϕ. It is known that Πε(Γϕ) = 1.
For 0 < δ � 1

2 small enough, (με
t)t∈[0,δ] and (με

t)t∈[1−δ,1] are also L1-Wasserstein 
geodesics (segments) in W1(Ω, dg). By needle decomposition via L1-optimal transport 
(cf. Theorem 3.8, Theorem 5.1 [11]), there is Γ ⊂ Γϕ such that Πε(Γϕ \ Γ) = 0 and 
(γt)t∈[0,δ]∪[1−δ,1], γ ∈ Γ are pairwisely disjoint. In addition, the measure Volg|Bε(x) (and 

similarly Volg| ) has a decomposition

Bε(y)
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Volg|Bε(x) =
∫
Q

mq dq (3.44)

where Q can be represented locally as a level set of ϕ, and (mq)q support on disjoint 
geodesic segments (Xq)q. Furthermore, mq � H1 and hq = dmq

dH1 is a CD(k, n) density 
for q-a.e. q., this means that (Xq, | · |, mq) satisfies BE(k, n) condition in the sense of 
Bakry-Émery. Thus for any q, hq is Lipschitz and it can not vanish at the interior points 
of Xq.

Next we will construct a L2-optimal transportation based on Πε and Γ.
Denote the level set {ϕ = T} by ϕT . For any z ∈ Bε(x), there exist a γz ∈ Γ such 

that z ∈ γz, and a unique Tz := ϕ(z) such that z = ϕTz
∩ γz. In addition, by Fubini’s 

theorem, there exists T0 such that B∗ := {z : γz ∩ϕTz−T0 ∈ Bε(y)} ∩Bε(x) has positive 
Volg-volume. It can be seen that Cpl := {(z1, z2) : z1 ∈ B∗, z2 ∈ γz1 ∩ ϕTz1−T0} ⊂
Bε(x) ×Bε(y) is still a L1-optimal transport coupling. Furthermore, we have

(
ϕ(y1) − ϕ(y0)

)(
ϕ(x1) − ϕ(x0)

)
(3.45)

=
((

ϕ(x1) − T0
)
−
(
ϕ(x0) − T0

))(
ϕ(x1) − ϕ(x0)

)
(3.46)

=
(
ϕ(x1) − ϕ(x0)

)2
≥ 0 (3.47)

for any (x0, y0), (x1, y1) ∈ Cpl. By Lemma 4.6 in [9], we know Cpl is d2
Ω-cyclically 

monotone, so that it is also a L2-optimal transport coupling (cf. Theorem 2.13 [4]). 
From the construction of Cpl we know 

(
Cpl

)
z1

= B∗ has positive m-measure, and by 
measure decomposition (3.44) and the regularity of CD(k, n) densities, we also have 

m

((
Cpl

)
z2

)
> 0. Then by renormalization we obtain a curve, still denote it by (με

t), 
which is a L1-Wasserstein geodesic, as well as a L2-Wasserstein geodesic. From the 
construction above, we can see that both με

0, μ
ε
1 have bounded m-densities.

To prove the geodesical convexity of Ω, we just need to show that Πε
(
Geod(Ω, dΩ) \

Geod(M, g)
)

= 0, then letting ε → 0 we know that x and y are connected by a geodesic 
in (M, g).

Let R be the set of C2-regular points of ∂Ω. By assumption, Hn−1(∂Ω \ R) = 0. It 
can be seen that Geod(Ω, dΩ) has a decomposition Geod(Ω, dΩ) = Γ1 ∪ Γ2 ∪ Γ3, where

a) Γ1 =
{
γ : H1(γ ∩ R) > 0

}
;

b) Γ2 =
{
γ : H1(γ ∩ R) = 0, γ ∩ ∂Ω ⊂ R

}
;

c) Γ3 =
{
γ : H1(γ ∩ R) = 0, γ ∩ ∂Ω \ R �= ∅

}
.

We will prove Πε(Γi) = 0 for i = 1, 3, and Γ2 ⊂ Geod(M, g) in the following three steps.

Step 1: Πε(Γ1) = 0.
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By Proposition 3.1 and Proposition 3.3, there exists a locally Lipschitz and semi-
convex function V such that

m = e−V Volg|Ω + m|∂Ω\R + m|R.

In particular, m|Ω < C0Volg|Ω for some C0 > 0.

Claim: m(R) = 0, therefore m = e−V Volg|Ω + m|∂Ω\R.

Assume that ∂Ω is locally represented as the graph of a bi-Lipschitz function φ on 
U ⊂ Rn−1, and

1
L
|ab| < dg(x, y) < L|ab| ∀a, b ∈ U, x = (a, φ(a)), y = (b, φ(b))

for some L > 1. For any a ∈ U with (a, φ(a)) ∈ R, there is a unique tangent plane dφ(a)
at this point and

lim
r→0

sup
b∈U,|b−a|<r

∣∣φ(b) − φ(a) − dφ(a)(b− a)
∣∣

|b− a| = 0.

In particular, there exists a unique inward (unit) normal vector field R � x �→ Nx such 
that Nx ⊥ dφ(x). Furthermore, for any x ∈ R, there is δ(x) > 0 such that for any 
r ≤ δ(x), all dΩ-geodesics from Br

(
expx(3rNx)

)
to x are g-geodesics.

Assume by contradiction that m(R) �= 0. By Lusin’s theorem there exists R∗ ⊂ R
with m(R∗) > 0 and a constant r0 > 0, such that δ(x) ≥ r0 and the map x → Nx is 
continuous on R∗.

Let x ∈ R∗ ∩ suppm|R∗ . There is a neighbourhood Ux ⊂ ∂Ω of x, such that all the 

dΩ-geodesics connecting Ux∩R∗ and B r0
2

(
expx(3r0Nx)

)
are g-geodesics. By Lemma 3.2, 

we get the contradiction. Therefore m(R) = 0 and we prove the claim.
Assume by contradiction that Πε(Γ1) > 0. By Fubini’s theorem we know

(Πε × L1)
({

(γ, t) : γ ∈ Γ1, t ∈ [0, 1], γt ∈ R
})

> 0,

and there is t0 ∈ [0, 1] such that

Πε
({

γ : γ ∈ Γ1, γt0 ∈ R
})

> 0,

so με
t0(R) > 0, which contradicts to the facts that με

t0 � m and m|R = 0. Therefore 

Πε(Γ1) = 0.

Step 2: Γ2 ⊂ Geod(M, g).
Let γ ∈ Γ2. For any t ∈ [0, 1] with γt ∈ Ω, it is known that γ̈t = 0. For any t ∈ [0, 1]

with γt ∈ ∂Ω. From the definition of Γ2 we know γt ∈ R, so γ̇t exists.
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Since γ ∩ ∂Ω is closed and H1-negligible, any γt ∈ R is either an isolate point or 
an intermittent point. For isolate points, by elementary calculus we know γ̈t exists and 
equals to 0. For intermittent points, by Theorem 1 in [2] we also know γ̈t exists and 
equals to 0.

So γ̈t ≡ 0 and γ ∈ Geod(M, g) which is the thesis.

Step 3: Πε(Γ3) = 0.
By definition and Γ2 ⊂ Geod(M, g) which is proved in the last step, for any γ ∈

Πε(Γ3), there is a point b(γ) ∈ γ ∩ ∂Ω \ R such that the segment from γ0 to b(γ) is a 
Riemannian geodesic (segment).

Recall the decomposition Volg|Bε(x) =
∫
Q
mq dq in (3.44) and keep the notations 

thereafter. For any z ∈ Bε(x), there are a longest γz ∈ Γ3 such that z ∈ γz, and a unique 
Tz = ϕ(z) ∈ R such that z = ϕTz

. In addition, for such γz, there is a unique qz ∈ Q

such that suppmqz ⊂ γz.
Assume by contradiction that Πε(Γ3) > 0. Denote QT by

QT :=
{
qz : z ∈ Bε(x), γz ∈ Γ3, ϕ(γz

0 ) − ϕ(z) > ε

8 and ϕTz−T ∩ γz = b(γz)
}
.

Then by Fubini’s theorem, there is T1 > 0 such that q
(
QT1

)
> 0.

For σ ∈ (0, δ), we define couplings Cpl1,2σ , Cpl1,3σ ⊂ M ×M by

Cpl1,2σ :=
{

(z1, z2) : z1 ∈ γ ∩ ϕTb(γ)+T1−sσ, z2 ∈ γ ∩ ϕTb(γ)+(1−s)σ, γ ∈ Γ3, s ∈ [0, 1]
}

and

Cpl1,3σ :=
{

(z1, z3) : z1 ∈ γ ∩ ϕTb(γ)+T1−sσ, z3 ∈ γ ∩ ϕTa(γ)−sσ−T0 , γ ∈ Γ3, s ∈ [0, 1]
}
.

By the choice of T1 and the regularity of conditional measures mq, we can see that 
m
(
(Cpl1,2σ )z1

)
, m

(
(Cpl1,3σ )z3

)
> 0. More precisely, we have

Vol
(
(Cpl1,2σ )z1

)
≥

∫
QT1

mq

({
ϕTb(γ)+T1−sσ ∩ γ : γ ∈ Γ3, s ∈ [0, 1]

})
dq = O(σ) > 0,

(3.48)
and similarly

Vol
(
(Cpl1,2σ )z1

)
� σ. (3.49)

From the construction, we can see that these couplings are dΩ-cyclically monotone, 
as well as d2

Ω-cyclically monotone (cf. (3.45) and Lemma 4.6 [9]). Therefore, they are 
both L1-optimal and L2-optimal (cf. Theorem 2.13 [4]). By renormalization and repa-
rameterization, we can find a Wasserstein geodesic (νσt ) in W2(Ω, dΩ) ∩W1(Ω, dΩ), such 
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that Cpl1,2σ is the optimal coupling for (νσ0 , νσ1
2
) and Cpl1,3σ is the optimal coupling for 

(νσ0 , νσ1 ) and

1) (νσt )t∈[0, 12 ] is a geodesic segment in Wasserstein space W2(Ω, dg);
2) Given δ ∈ (0, 12 ), (νσt )t∈[0, 12−δ]∪{1} have uniformly bounded m-densities;
3) m(supp νσ0 ) � σ and m(supp νσ1 ) � σ (by (3.48), (3.49) and (3.43)).

Moreover, since Hn−1(∂Ω \ R) = 0, by Rauch’s comparison theorem we know 
Volg(supp νσ1

2
) � σn, so that m(supp νσ1

2
) � σn.

Since (Ω, dΩ, m) is CD(K, ∞), by Lemma 3.1 [27] there exists a L2-Wasserstein 
geodesic (ν̄σt )t∈[0,1] ⊂ W2(Ω, dΩ) with uniformly bounded densities, connecting νσ1

4
and 

νσ1 such that

m(supp ν̄σt ) � min
{
m(supp νσ1

4
),m(supp νσ1 )

}
, t ∈ [0, 1].

It is known that Riemannian manifolds are essentially non-branching, hence νσs ∈ (ν̄σt )
for all s ∈ [ 14 ,

1
2 ]. In particular, there exists t1 ∈ (0, 1) such that νσ1

2
= ν̄σt1 . Therefore we 

have

σn � m(supp νσ1
2
) = m(supp ν̄σt1) � O(σ)

which is the contradiction. Therefore Πε(Γ3) = 0.
In conclusion, we have proved that (Ω, dΩ, m) is (M, g)-geodesically convex. By 

Lemma 3.2 we have m|∂Ω = 0. Therefore m = e−V Volg|Ω for some Lipschitz func-

tion V . In particular, (Ω, dΩ, m) is infinitesimally Hilbertian and it satisfies RCD(K, ∞)
condition. �
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