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Abstract. In this paper we investigate the “area blow-up” set of a sequence
of smooth co-dimension one manifolds whose first variation with respect to an
anisotropic integral is bounded. Following the ideas introduced by White in [12],
we show that this set has bounded (anisotropic) mean curvature in the viscosity
sense. In particular, this allows to show that the set is empty in a variety of
situations. As a consequence, we show boundary curvature estimates for two
dimensional stable anisotropic minimal surfaces, extending the results of [10].

1. Introduction

Consider a sequence (Mi)i of m-dimensional varieties in a subset Ω ⊂ Rm+1

with mean curvature bounded by some h <∞ and such that the boundaries have
uniformly bounded measure in compact sets:

lim sup
i→∞

Hm−1(∂Mi ∩K) <∞, ∀K compact.

Let Z be the set of points at which the areas of the Mi blow up:

Z := {x ∈ Ω : lim sup
i
Hm(Mi ∩Br(x)) =∞ for every r > 0},

i.e. Z is the smallest closed subset of Ω such that the areas of the Mi are uniformly
bounded as i→∞ on compact subsets of Ω \ Z.

In the recent paper [12], White finds natural conditions implying that Z is empty.
These results are useful since if Z is empty, then the areas of the Mi are uniformly
bounded on all compact subsets of Ω. It follows that, up to subsequences, Mi will
converge in the sense of varifold to a limit varifold of locally bounded first variation.

The main point of [12] is to show that the set Z belongs to the class of (m,h)-
sets. The notion of (m,h)-set is a generalization of the concept of an m-dimensional,
properly embedded submanifold without boundary and with mean curvature bounded
by h 1. In particular these sets satisfy a maximum principle which often allows to
show that they are empty.

The aim of this paper is to extend the aforementioned results proven in [12] to
co-dimension one manifolds (or, more in general, to co-dimension one varifolds) which
are stationary with respect to a parametric integrand F .

Referring to Section 2 below for more details and definitions we simply recall
here that a parametric integrand is a even map F : Ω× Rm+1 → R+ which is one
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1In particular, in [12], it is shown that if M is a smooth, properly embedded, m-dimensional

submanifold without boundary, then M is an (m,h)-set if and only if its mean curvature is bounded
by h.
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homogeneous, even and convex in the second variable. For a smooth m-dimensional
manifold M ⊂ Rm+1 with normal νM we define for every open set Ω ⊂ Rm+1

F(M,Ω) =

∫
M∩Ω

F (x, νM )dHm.

A smooth manifold is then said to be F -stationary in Ω (resp. F -stable) if

d

dt
F
(
ϕt(M),Ω

)∣∣∣
t=0

= 0

(
resp.

d2

dt2
F
(
ϕt(M),Ω

)∣∣∣
t=0
≥ 0

)
for every ϕt(x) = x + tg(x) one-parameter family of diffeomorphisms (for t small
enough) generated by a vector field g ∈ C1

c (Ω,Rm+1).
In this setting our main result reads as follows, see Theorem 3.4 for the more

general statement and Definition 3.1 for the definition of (m,h)-sets with respect to
a given integrand F :

Theorem 1.1. Given a sequence of F -stable m-dimensional manifolds (Mi)i and
h > 0 such that

lim sup
i
Hm−1(∂Mi ∩K) < +∞.

Then the area-blow up set

Z := {x ∈ Ω: lim sup
i→∞

Hm(Mi ∩Br(x)) = +∞ for every r > 0 }

is an (m,h)-set in Ω with respect to F .

Beside its intrinsic interest, our main motivation for Theorem 1.1 is that, in contrast
to the case of the area functional, for manifolds which are stationary with respect to
parametric integrand, no monotonicity formula is available, [1]. In particular, a local
area bound of the form

Hm(M ∩Br(x)) ≤ C(M,m)rm (1.1)

is not know to hold true. This prevents, a priori, the possibility to establish the
convergence of the rescaled surfaces Mx,r = (M − x)/r in order to study the local
behavior of a stationary surface. Note that, for (isotropic) minimal surface, (1.1) is
a trivial consequence of the monotonicity formula.

Using Theorem 1.1, we can prove boundary curvature estimates for two dimensional
F -stable surfaces, see also Theorem 4.1 for a more general statement:

Theorem 1.2. Let Ω ⊂ R3 be uniformly convex, F be a uniformly elliptic integrand
and let Γ ⊂ Ω be a C2,α embedded curve. Let M be an F -stable, C2 2-dimensional
embedded surface in Ω such that ∂M = Γ. Then there exist a constant C > 0 and a
radius r1 > 0 depending only on F,Ω,Γ such that

sup
p∈Ω

dist(p,Γ)<r1

r1|AM (p)| ≤ C.

where AM is the second fundamental form of M . Furthermore the constants are
uniform as long as Γ, Ω and F vary in compact subsets of, respectively, embedded
C2,α curves, uniform convex domains and uniformly convex C2 integrands.

Let us conclude this introduction with a few remarks on the proof of the main
results. To prove Theorem 3.4, we follow the proof of White in [12], and we aim
to show that if the blow up set is not an (m,h)-set, than one can provide a vector
field yielding a negative first variation. This vector field is what in [9] is called an F -
decreasing vector field and its construction seems to be possible only in co-dimension
one, which is the reason for our restriction to this setting. The proof of the boundary
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curvature estimates will easily follow from [10], once we can show that the mass
density ratios

H2(M ∩Br(x))

r2

are bounded. In the interior we can rely on the extended monotonicity formula for
2-dimensional varifolds with curvature in L2 (note that by stability one easily proves
that locally |A| ∈ L2). At the boundary we perform a rescaling argument and we
use our assumption on Ω to show that that the area blow up set of the sequence of
rescaled surfaces must be contained in a wedge. Since Theorem 3.4 implies that this
is a (2, 0)-set, a simple maximum principle argument shows that it is empty, yielding
the desired bound.

Organization of the paper. The paper is organized as follows: in Section 2 we
recall some preliminary results and definitions and we compute the explicit formula
for the first variation of a smooth manifold. In Section 3 we give the definition
of (m,h)-sets, we show some of their properties and we prove Theorem 3.4, from
which Theorem 1.1 readily follows. In Section 4 we prove Theorem 4.1, which implies
Theorem 1.2.

Acknowledgements. The work of G.D.P. is supported by the INDAM-grant “Geo-
metric Variational Problems”.

2. Notation and preliminaries

We work on an open set Ω ⊂ Rm+1 and we set Br(x) = {y ∈ Rm+1 : |x− y| < r},
Br = Br(0) and B := B1(0). We will denote m-dimensional balls by Bm

r (x) and we
set Bm

r = Bm
r (0) and Bm = Bm

1 . We also let Sm be the unit sphere in Rm+1.
For a matrix A ∈ Rm+1 ⊗ Rm+1, A∗ denotes its transpose. Given A,B ∈ Rm+1 ⊗

Rm+1, we define A : B = trA∗B =
∑

ij AijBij , so that |A|2 = A : A.

Varifolds. We denote byM+(Ω) (respectivelyM(Ω,Rn), n ≥ 1) the set of positive
(resp. Rn-valued) Radon measures on Ω. Given a Radon measure µ, we denote by
sptµ its support. For a Borel set E, µ E is the restriction of µ to E, i.e. the measure
defined by [µ E](A) = µ(E ∩A). For an Rn-valued Radon measure µ ∈M(Ω,Rn),
we denote by |µ| ∈ M+(Ω) its total variation and we recall that, for all open sets U ,

|µ|(U) = sup

{∫ 〈
ϕ(x), dµ(x)

〉
: ϕ ∈ C∞c (U,Rn), ‖ϕ‖∞ ≤ 1

}
.

If η : Rm+1 → Rm+1 is a Borel map and µ is a Radon measure, we let η#µ = µ ◦ η−1

be the push-forward of µ through η. An m-varifold on Ω is a positive Radon measure
V on Ω× Sm which is even in the Sm variable, i.e. such that

V (A× S) = V (A× (−S)) for all A ⊂ Ω, S ⊂ Sm.

We will denote with Vm(Ω) the set of all m-varifolds on Ω.
Given a diffeomorphism ψ ∈ C1(Ω,Rm+1), we define the push-forward of V ∈

Vm(Ω) with respect to ψ as the varifold ψ#V ∈ Vm(ψ(Ω)) such that∫
G(ψ(Ω))

Φ(x, ν)d(ψ#V )(x, ν)

=

∫
G(Ω)

Φ

(
ψ(x),

((dxψ(x))−1)∗(ν)

|((dxψ(x))−1)∗(ν)|

)
Jψ(x, ν⊥)dV (x, ν),
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for every Φ ∈ C0
c (G(ψ(Ω))). Here dxψ(x) is the differential mapping of ψ at x and

Jψ(x, ν⊥) :=

√
det
((
dxψ

∣∣
ν⊥

)∗ ◦ dxψ∣∣ν⊥)
denotes the m-Jacobian determinant of the differential dxψ(x) restricted to the
m-plane ν⊥, see [7, Chapter 8].

Integrands. The anisotropic (elliptic) integrands that we consider are C2 positive
functions

F : Ω× (Rm+1 \ {0})→ R+

which are even, one-homogeneous and convex in the second variable, i.e.

F (x, λν) = |λ|F (x, ν)

and

F (x, ν1 + ν2) ≤ F (x, ν1) + F (x, ν2).

We will denote with D1F (x, ν) and D2F (x, ν) respectively the differential of F in
the first and in the second variable. Denoting with {exi }

m+1
i=1 the euclidean basis in

Rm+1
x and with {eνi }

m+1
i=1 the euclidean basis in Rm+1

ν , we set

Fi(x, ν) := 〈D2F (x, ν), eνi 〉, (∂iFj)(x, ν) = D12F (x, ν) : exi ⊗ eνj
and Fij(x, ν) := D2

2F (x, ν) : eνi ⊗ eνj .
(2.1)

Note that by one-homogeneity:

〈D2F (x, ν), ν〉 = F (x, ν) for all ν ∈ Rm+1 \ {0}. (2.2)

An integrand F is said to be uniformly elliptic on a set Ω if there exists a constant
λ > 0 such that

〈D2
2F (x, ν)η, η〉 ≥ λ|η|2 for all x ∈ Ω, ν ∈ Sm, η ⊥ ν.

Given x ∈ Ω, we will denote by Fx the “frozen” integrand

Fx : Sm → (0,+∞), Fx(ν) := F (x, ν).

We define the anisotropic energy of V ∈ Vm(Ω) as

F(V,Ω) :=

∫
G(Ω)

F (x, ν) dV (x, ν).

For a vector field g ∈ C1
c (Ω,Rm+1), we consider the family of functions ϕt(x) =

x + tg(x), and we note that they are diffeomorphisms of Ω into itself for t small
enough. The anisotropic first variation is defined as

δFV (g) :=
d

dt
F
(
ϕ#
t V,Ω

)∣∣∣
t=0

.

It can be easily shown, see [5, Appendix A], that

δFV (g) =

∫
G(Ω)

[
〈D1F (x, ν), g(x)〉+BF (x, ν) : Dg(x)

]
dV (x, ν), (2.3)

where the matrix BF (x, ν) ∈ Rm+1 ⊗ Rm+1 is uniquely defined by

BF (x, ν) := F (x, ν)Id− ν ⊗D2F (x, ν), (2.4)

see for instance [3, Section 3] or [6, Lemma A.4]. We will often omit in the sequel the
dependence on F of the matrix BF (x, ν). Moreover let us note the following useful
fact:

B(x, ν)ν = 0 or equivalently rangeB∗(x, ν) = ν⊥ (2.5)
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We say that a varifold V ∈ Vm(Ω) has locally bounded anisotropic first variation
if δFV is a Radon measure on Ω, i.e. if

|δFV (g)| ≤ C(K)‖g‖∞, for all g ∈ C1
c (Ω,Rm+1) with spt(g) ⊂ K ⊂⊂ Ω.

Notice that, by Riesz representation theorem, we can write

δFV (g) = −
∫

Ω
〈w, g〉d‖δFV ‖, for all g ∈ C1

c (Ω,Rm+1)

where ‖δFV ‖ is the total variation of δFV and w is ‖δFV ‖-measurable with |w| = 1
‖δFV ‖-a.e. in Ω. In this case, by the Radon-Nikodym theorem, we can decompose
‖δFV ‖ in its absolutely continuous and singular parts with respect to the measure
‖V ‖:

δFV (g) = −
∫

Ω
〈HF , g〉 d‖V ‖(x) +

∫
Ω
〈w, g〉 dσ, for all g ∈ C1

c (Ω,Rm+1). (2.6)

Notice that by the disintegration theorem for measures, see for instance [4, Theorem
2.28], we can write

V (dx, dν) = ‖V ‖(dx)⊗ µx(dν),

where µx ∈ P(Sm) is a (measurable) family of parametrized non-negative even
probability measures. We define for ‖V ‖-a.e. x ∈ Ω

HF (x) :=
HF (x)∫

Sm F (x, ν)dµx(ν)
.

We will say that a varifold V ∈ Vm(Ω) has mean curvature HF (x) in L1(‖V ‖ ,Rm+1)
if it has locally bounded anisotropic first variation and in the representation (2.6),
we have σ = 0. In this case one can easily check that

δFV (g) = −
∫
G(Ω)
〈HF , g〉 F (x, ν) dV (x, ν) for all g ∈ C1

c (Ω,Rm+1). (2.7)

Furthermore we will say that HF (x) is bounded by h ∈ R if

‖HF ‖F,x := F (x,HF (x)) ≤ h.

In particular we say that a varifold V ∈ Vm(Ω) has anisotropic mean curvature
bounded by h(x) ∈ L1(‖V ‖ ,R+) if

δFV (g) ≤
∫
G(Ω)

h(x) ‖g‖F ∗,x F (x, ν) dV (x, ν) for all g ∈ C1
c (Ω,Rm+1), (2.8)

where

‖w‖F ∗,x = F ∗(x,w) = sup
v:F (x,v)≤1

〈v, w〉.

Remark 2.1. Since all norms are equivalent on finite dimensional spaces, the above
definition coincides with the classical one. However the above formulation has
the advantage of being coordinate independent, namely if Φ : Rm+1 → Rm+1 is a
diffeomorphism and V has F -mean curvature bounded by h then Φ#V has Φ#F -mean
curvature still bounded by h where Φ#F is the integrand defined by

Φ#F (x, ν) = F
(
Φ−1(x), (dxΦ(Φ−1(x)))∗(ν)

) ∣∣det(dxΦ−1(x))
∣∣

and it satisfies

Φ#F (Φ#V,Φ(Ω)) = F(V,Ω).

In particular we have HΦ#F of the varifold Φ#V is (dΦ∗)−1HF where HF is the
anisotropic mean curvature of the varifold V .
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We conclude this section by computing the first variation formula for the varifold
induced by a manifold with boundary and by providing an explicit formula for its F
mean curvature

Proposition 2.1. Let M ⊂ Rm+1 be an oriented C2 m-manifold M with boundary,
and let

VM := Hm M ⊗
(

1

2
δνx +

1

2
δ−νx

)
,

where νx is the normal to M at x. Then

δFVM (g) =

∫
∂M
〈B(x, νx)η(x), g(x)〉dHm−1 −

∫
M
〈HF (x,M), g(x)〉 F (x, νx)dHm,

(2.9)

for all g ∈ C1
c (Ω,Rm+1). Here η(x) denotes the conormal of ∂M at x, HF (x,M) is

parallel to νx and satisfies

− F (x, νx)HF (x,M) =
(
D2

2F (x, ν) : A+
∑
i

(∂iFi)(x, ν)
)
νx. (2.10)

Here A is the second fundamental form2 of M defined by

A(τ1, τ2) = 〈τ1, Dτ2ν〉for τ1, τ2 ∈ Tx

and we are adopting the convention in (2.1).

Note that (2.10) gives

‖HF ‖F,x =

∣∣∣∣∣(D2
2F (x, ν) : A+

∑
i

(∂iFi)(x, ν)
)∣∣∣∣∣ .

Moreover, by (2.10) and the homogeneity of F , if M = {f = 0} locally around x for
a C2 function f with Df(x) 6= 0, then

−F (x,Df(x))
〈
HF (x,M),

Df(x)

|Df(x)|

〉
= tr

(
D2

2F

(
x,

Df(x)

|Df(x)|

)
D2f(x)

)
+
∑
i

(∂iFi)

(
x,

Df(x)

|Df(x)|

)
|Df(x)|.

(2.11)

Proof. Recall that for a vector field X

divX = divM X + 〈DνX, ν〉,

where for any orthonormal basis τj of TxM = ν⊥ one has

divM X =
∑
i

〈DτiX, τi〉.

Hence, if ei is the standard orthonormal basis of Rn and we adopt Einstein convention

B : Dg = div(B∗g)− 〈divB, g〉
= divM (B∗g)− divM (B∗ei)g

i + 〈Dν(B∗g), ν〉 − 〈Dν(B∗ei), ν〉gi

= divM (B∗g)− divM (B∗ei)g
i

(2.12)

2Note that by this sign convention the second fundamental form is positive definite for a convex
set with respect to the outer normal.
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where B is evaluated at (x, νx) and in the last equality we used that 〈ν,B∗Dνg〉 = 0
due to (2.4). Note that B∗g is tangent to M (again by (2.4)), hence by the divergence
theorem

δFV (g) =

∫
M
B : Dg + 〈D1F (x, ν), g〉

=

∫
∂M
〈B(x, ν)η, g〉 −

∫
M

(divM (B∗ei)− 〈D1F (x, ν), ei〉) gi.

Hence, if we set

F (x, ν)HF (x,M) =
(

divM (B∗ei)− 〈D1F (x, ν), ei〉
)
ei, (2.13)

the proof will be concluded, provided HF (x,M) satisfies (2.10). This follows by
direct computations since

divM (B∗ei) = 〈τj , ei〉
(
FkDτjν

k + 〈D1F, τj〉
)

− 〈τj , Dτj (D2F )〉〈ν, ei〉 − 〈τk, D2F 〉〈Dτkν, ei〉
= 〈τj , ei〉〈D1F, τj〉 − 〈τj , Dτj (D2F )〉〈ν, ei〉,

(2.14)

where we used that FkDτjν
k = 〈τh, D2F 〉〈τh, Dτjν〉 since 〈ν,Dτjν〉 = 0 and so

〈τj , ei〉FkDτjν
k−〈τk, D2F 〉〈Dτkν, ei〉 = 〈τk, D2F 〉

(
〈τj , ei〉〈τk, Dτjν〉 − 〈Dτkν, ei〉

)
= 〈τk, D2F 〉〈τj , ei〉

(
〈τk, Dτjν〉 − 〈τj , Dτkν〉

)
= 0.

Now we note that

〈τj , ei〉〈D1F, τj〉 = 〈D1F, ei〉 − 〈ν, ei〉〈D1F, ν〉
= 〈D1F, ei〉 − 〈ν, ei〉D12F : ν ⊗ ν,

(2.15)

where in the last equality we have used the one-homogeneity of D1F . Furthermore

〈τj , Dτj (D2F )〉 = D12F : τj ⊗ τj +D2
2F (τj , Dτjν)

= D12F : τj ⊗ τj +D2
2F (τj , τ`)A`j ,

(2.16)

where A`j = 〈Dτjν, τ`〉 is the second fundamental form of M . Combining (2.14),
(2.15) and (2.16), we get (2.10) since

divM (B∗(x, ν)ei)− 〈D1F, ei〉

= −〈ν, ei〉
(
D12F : ν ⊗ ν +

∑
j

D12F : τj ⊗ τj +D2
2F (τj , τ`)A`j

)
= −〈ν, ei〉

(
∂jFj + tr(D2FA)

)
,

where in the last equality we have used that, by (2.1)),

∂jFj =
∑
j

D12F : ej ⊗ ej = D12F : ν ⊗ ν +
∑
j

D12F : τj ⊗ τj .

�

Remark 2.2. Let us record here the following consequence of the above computations:
if X = D2F (x, a(x)νx) on M with a ∈ C1(M,R+), then B∗X = 0 and thus, by
(2.12), (2.13) we get

− 〈HM (x, ν), X〉F (x, νx) = B(x, νx) : DX + 〈D1F (x, νx), X〉. (2.17)

X is what is called an F -decreasing vector filed in [9, Proposition 1] and it will play
a crucial role in the proof of our main theorem.
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3. (m,h)-sets

In this section, following [12], we define (m,h)-sets and we prove that the area-blow
up set of a sequence of varifolds with bounded curvature is an (m,h)-set. Roughly
speaking an (m,h)-set is a set which can not be touched by manifolds with F 〈HF , ν〉
greater than h, i.e. they satisfy ‖HF ‖ ≤ h in the viscosity sense. This can be phrased
in several ways, as the following proposition shows.

Proposition 3.1. Given a closed set Z ⊂ Rm+1, then the following three statements
are equivalent.

(i) If f : Ω→ R is a C2-function and if f |Z has a local maximum at p, then

inf
v∈Sm

Fij(p, v)Dijf(p) + (∂iFi)

(
p,

Df(p)

|Df(p)|

)
|Df(p)| ≤ h |Df(p)| ,

where the second term in the left hand side is intended to be zero when
Df(p) = 0.

(ii) If f : Ω → R is a C2-function and if f |Z has a local maximum at p and
Df(p) 6= 0, then

Fij

(
p,

Df(p)

|Df(p)|

)
Dijf(p) + (∂iFi)

(
p,

Df(p)

|Df(p)|

)
|Df(p)| ≤ h |Df(p)| .

(iii) Let N be a relative closed domain in Ω with smooth boundary, such that
Z ⊂ N and p ∈ Z ∩ ∂N , then the F -mean curvature HF (p) of ∂N satisfies

F (p, νint.(p))〈HF (p), νint.(p)〉 ≤ h.
where νint. is the interior normal to N .

We can now give the following definition

Definition 3.1. Given an elliptic integrand F and and open set Ω of Rm+1, we say
that a relatively closed set set Z ⊂ Ω is an (m,h)-set with respect to F if it satisfies
one of the three equivalent conditions of Proposition 3.1.

Let us prove Proposition 3.1.

Proof of Proposition 3.1. (ii) ⇒ (iii): This is an easy consequence of (2.11) and of

the elementary Lemmas 3.2 and 3.3 below. Note that νint.(p) = − Df(p)
|Df(p)| if p ∈ ∂N

and N coincides locally with {f ≤ f(p)}.
(i) ⇒ (ii): Suppose Z fails to have property (ii), we will show that also property

(i) cannot be satisfied by Z. Following the argument in [12, Lemma 2.4], we can
construct a function f ∈ C∞(Ω,R) such that f |Z attains its maximum at a unique
point p ∈ Z, i.e.

f(x) < f(p) ∀x ∈ Z,
Df(p) 6= 0, the super-level set {x : f(x) ≥ a} is compact for every a ∈ R and

Fij

(
p,

Df(p)

|Df(p)|

)
Dijf(p) + (∂iFi)

(
p,

Df(p)

|Df(p)|

)
|Df(p)| > h |Df | (p) (3.1)

Up to translation, rotation and multiplication of f by |Df(p)|−1, we can assume
without loss of generality that p = 0 and Df(p) = em+1.

It is easy to verify that there exists an open neighborhood U 3 p such that
Σ0 := {x : f(x) = f(p)} ∩ U is a smooth sub-manifold of Ω. Moreover, since Σ0 is a
level set of f , we know that

νΣ0(p) = Df(p) = em+1, (3.2)

where νΣ0(p) denotes the unit normal to Σ0 at the point p.
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If we denote with d(x) the signed distance function from Σ0

d(x) := sign(f(x)− f(p))dist(x,Σ0),

since Σ0 ∩ U is smooth, there exists r > 0 small enough such that d is a smooth
function on Br(p). Moreover Br(p) is contained in the r-neighborhood of Σ0, since
p ∈ Σ0. Thanks to (3.2), we also deduce that

Dd(p) = em+1. (3.3)

We observe that
Br(p) ∩ {d(x) > 0} ∩ Z = ∅,

otherwise f(p) would not be the maximum of f |Z . We deduce that for every λ > 0
the function

gλ(x) := (eλd(x) − 1)

satisfies gλ(x) ≤ 0 for every x ∈ Z ∩ Br(p). Fix a non negative cut off function
ϕ ∈ C∞c (Br(p)) with ϕ(x) = 1 on B r

2
(p) and consider for every λ > 0 the function

fλ(x) := f(x) + ϕ(x)λ−
3
2 gλ(x).

By the above considerations fλ restricted to Z attains its maximum in p and by
direct calculations we have that for every x ∈ B r

2
(p)

Difλ(x) = Dif(x) + λ−
1
2Did(x)eλd(x)

Dijfλ(x) = Dijf(x) + λ−
1
2Dijd(x)eλd(x) + λ

1
2Did(x)Djd(x)eλd(x).

Evaluating the previous derivatives in p and implementing (3.3), we get

Dfλ(p) = em+1 + λ−
1
2Did(p)eλd(p) = (1 + λ−

1
2 )em+1

and

Dijfλ(p) = Dijf(p) + λ−
1
2Dijd(p) + λ

1
2 (em+1 ⊗ em+1)ij .

By homogeneity of F , we have Fm+1,m+1(p, em+1) = 0, and combining the previous
equation with (3.1), we deduce that there exists λ0 > 0 such that for all λ > λ0

Fij (p, em+1)Dijfλ(p) > h |Dfλ| (p)− (∂iFi)(p,Dfλ(p)) |Dfλ| (p)
We conclude that fλ fails the condition (i) for λ chosen sufficiently big, showing that

lim
λ→∞

inf
v∈Sm

Fij(p, v)Dijfλ(p) = Fij(p, em+1)Dijf(p).

Indeed, for every v 6= em+1, the strict convexity of F implies that Fm+1,m+1(p, v) > 0
and we can compute

lim
λ→∞

Fij(p, v)Dijfλ(p) = lim
λ→∞

Fij(p, v)Dijf(p)

+ lim
λ→∞

λ−
1
2Fij(p, v)Dijd(p) + λ

1
2Fm+1,m+1(p, v) = +∞,

unless v = em+1.
(ii) ⇒ (i): Suppose Z fails to have property (i), we will show that this implies

Z does not satisfy property (ii). Similarly to the previous step, we can make use
of the argument of [12, Lemma 2.4] and assume without loss of generality that
f ∈ C∞(Ω,R), f |Z attains its maximum at a unique point p ∈ Z (f(x) < f(p) for
every x ∈ Z), the super-level set {x : f(x) ≥ a} is compact for every a ∈ R, there
exist r > 0 and δ > 0 small enough such that f(x) < f(p)− δ for all x 6∈ Br(p) and

inf
v∈Sm

Fij(p, v)Dijf(p) > h |Df | (p)− (∂iFi)

(
p,

Df(p)

|Df(p)|

)
|Df(p)|,

where the right hand side is intended to be zero when Df(p) = 0.
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If |Df | (p) 6= 0, Z fails to have property (ii) since trivially

inf
v∈Sm

Fij(p, v)Dijf(p) ≤ Fij
(
p,

Df(p)

|Df(p)|

)
Dijf(p).

Hence, we are reduced to consider the case Df(p) = 0, i.e. the case in which there
exists v0 ∈ Sm such that

Fij(p, v0)Dijf(p) = inf
v∈Sm

Fij(p, v)Dijf(p) ≥ σ > 0. (3.4)

This is done by relaxation. Up to a translation of Z by p and considering f −f(p) we
may assume without loss of generality that p = 0 and f(0) = 0. We can fix M > 0
with M ≥ sup{|f(x)|+ |Df(x)| : x ∈ B2r(0)}. Furthermore, for λ > 0 we define the
smooth auxiliary function

gλ(x, y) := f(y)− λ |x− y|4 .

Observe that, by the stated properties of f , for every x ∈ Z and every y /∈ Br(0)

we have gλ(x, y) ≤ f(y) < −δ < 0 = gλ(0, 0). If |x− y|4 > M
λ , y ∈ Br(0) we have

gλ(x, y) < 0. Hence for each λ > 0

mλ := sup{gλ(x, y) : x ∈ Z, y ∈ Ω}

is attained for a couple (xλ, yλ) ∈ Z ×Br(0) with |xλ − yλ|4 ≤ M
λ .

We moreover observe that xλ → 0 as λ→ +∞. Indeed, for every x ∈ Z ∩Br(0) \ {0}
and every y ∈ B

(M
λ

)
1
4
(x), since f(x) < 0 we get that for sufficiently large λ

gλ(x, y) ≤ f(y) = f(x) + (f(y)− f(x)) ≤ f(x) + sup
z∈B2r(0)

|Df |(z)
(
M

λ

) 1
4

≤ f(x) +M

(
M

λ

) 1
4

< 0 = gλ(0, 0),

which implies that for λ big enough x is far enough from xλ.
Since yλ ∈ B

(M
λ

)
1
4
(xλ), then as λ→ +∞ we get xλ − yλ → 0 and consequently also

yλ → 0.
For each couple (xλ, yλ) we distinguish two cases:
First case: xλ = yλ. Since y 7→ gλ(xλ, y) admits a global maximum in yλ we have
Dygλ(xλ, yλ) = Df(yλ) = 0 and D2

ygλ(xλ, yλ) = D2f(yλ) ≤ 0. By convexity of F , it
holds Fij(y, v) ≥ 0 for every (y, v) ∈ Ω× Sm, hence

Fij(xλ, v)Dijf(xλ) = Fij(yλ, v)Dijf(yλ) ≤ 0 for every v ∈ Sm.

Passing this inequality to the limit for λ→ +∞ we get

Fij(p, v)Dijf(p) ≤ 0 for every v ∈ Sm,

which contradicts (3.4).
Second case: xλ 6= yλ. As before y 7→ gλ(xλ, y) admits a global maximum in yλ,
hence

0 = Dygλ(xλ, yλ) = Df(yλ)− 4λ |yλ − xλ|2 (yλ − xλ),

which gives in particular Df(yλ) 6= 0. Furthermore

lim
λ→+∞

|Df(yλ)| = 0,

since Df(0) = 0 and yλ → 0. Now consider the new function

fλ(x) := f(x+ (yλ − xλ)).
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The function fλ|Z admits its maximum at xλ because for every x ∈ Z
fλ(x)− λ |yλ − xλ|4 = f(x+ (yλ − xλ))− λ |x+ (yλ − xλ)− x|4

= gλ(x, x+ (yλ − xλ)) ≤ gλ(xλ, yλ)

= f(yλ)− λ |yλ − xλ|4 = fλ(xλ)− λ |yλ − xλ|4 .
Thanks to (3.4), for λ sufficiently large, we deduce that

inf
v∈Sm

Fij(xλ, v)Dijfλ(xλ) = inf
v∈Sm

Fij(xλ, v)Dijf(yλ) >
σ

2

h |Dfλ| (xλ)− (∂iFi)(p,Dfλ(xλ)) <
σ

2
.

We conclude that Z fails to have property (ii).
�

Lemma 3.2. Given f ∈ C∞(Ω) and p ∈ Ω such that f(p) = 0 and Df(p) 6= 0, then
there exists N ⊂ Ω relatively closed with smooth boundary and U 3 p open such that

{f ≤ 0} ⊂ N and U ∩ {f ≤ 0} = U ∩N.

Proof of Lemma 3.2. If 0 is a regular value of f , we can simply choose N = {f ≤ 0}.
Otherwise we fix r > 0 such that |Df(x)−Df(p)| ≤ 1

2 |Df(p)| for all x ∈ Br(p). We
deduce that

|Df(x)| ≥ |Df(p)| − |Df(x)−Df(p)| ≥ 1

2
|Df(p)| ∀x ∈ Br(p). (3.5)

Let φ ∈ C∞c (Br(p)) be non negative, φ = 1 on B r
2
(p) and |Dφ| < 4

r . By Sard’s

theorem there is a regular value c of f with 0 < 4
r c <

|Df(p)|
4 .

We set
f̃(x) := f(x)− φ(x)c.

By the choice of c and φ and thanks to (3.5), we compute∣∣∣Df̃(x)
∣∣∣ ≥ |Df(x)| − c |Dφ(x)| > |Df(p)|

2
− |Df(p)|

4
=
|Df(p)|

4
∀x ∈ Br(p).

Hence 0 is a regular value of f̃ |Br(p) and therefore 0 is a regular value of f̃ on the

whole set. Since f̃ = f on U := B r
2
(p), we infer that U ∩ {f ≤ 0} = U ∩ {f̃ ≤ 0}

and we conclude that the relatively closed set N := {f̃ ≤ 0} has the claimed
properties. �

Lemma 3.3. Given N ⊂ Ω relatively closed with smooth boundary and p ∈ ∂N ∩ Ω.
There exists f ∈ C∞(Ω) and U 3 p open such that

N ⊂ {f ≤ 0} and U ∩ {f ≤ 0} = U ∩N.

Proof of Lemma 3.3. Fix a smooth proper function u : Ω→ R with u < 0 on N . We
define the signed distance function d defined as

d(x) :=

{
−dist(x, ∂N) if x ∈ N
dist(x, ∂N) if x /∈ N

.

Given r > 0, as before we fix a non negative function φ ∈ C∞c (Br(p)), with φ = 1 on
U := B r

2
(p). It is now straightforward to check that, choosing r small enough, the

function
f(x) := φ(x)d(x) + (1− φ(x))u(x)

has the claimed properties. �

Remark 3.2. In Proposition 3.1 above, we may replace (ii) with the following
equivalent condition:
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(ii)’ If P is a paraboloid P (x) := a0 + 〈a1, x − p〉+ 1
2(x − p)tA(x − p) for some

a0 ∈ R, a1 ∈ Sm and A ∈ R(m+1)×(m+1) and if P |Z has a local maximum at
p, then

Fij (p, a1)Aij + (∂iFi)(p, a1) ≤ h. (3.6)

Indeed, the fact that (ii) implies (ii)’ is immediate. For the converse, let f as in (ii)
and p a local maximum of f |Z . Consider for any ε > 0 the paraboloid

Pε(x) :=

〈
Df(p)

|Df(p)|
, x− p

〉
+

1

2 |Df(p)|
D2f(p)((x− p)⊗ (x− p))− ε

2
|x− p|2 .

Since f ∈ C2, for every ε > 0 there exists rε > 0 such that

sup
x∈Brε (p)

∣∣∣ f(x)
|Df(p)| − Pε(x)

∣∣∣
|x− p|2

≤ ε

4
.

Then Pε|Z attains its local maximum in p. Moreover we compute

DPε(p) =
Df(p)

|Df(p)|
and D2Pε =

D2f(p)

|Df(p)|
− ε1.

Letting ε→ 0 in (3.6), we deduce the inequality in (ii) for f in p.

The following is our main theorem. The proof is based on (the proof of) the
maximum principle of Solomon and White for varifolds which are stationary with
respect to an anisotropic integrand, see [9].

Theorem 3.4. Let Ω ⊂ Rm+1 be open. Consider a sequence of varifold (Vk)k ⊂
Vm(Ω) and h > 0 such that for every K ⊂⊂ Ω it holds

lim sup
k→∞

sup

{
δFVk(X)− h

∫
‖X‖F ∗,x F (x, ν) dVk(x, ν) : |X| ≤ 1K

}
<∞. (3.7)

Then the area-blow up set

Z := {x ∈ Ω: lim sup
k→∞

‖Vk‖(Br(x)) = +∞ for every r > 0 }

is an (m,h)-set in Ω with respect to F .

Proof. We first observe that Z is a closed set. Indeed, given {xn}n∈N ⊂ Z, such
that xn → x ∈ Ω, then, for every r > 0, there exists n big enough such that
Br/2(xn) ⊂ Br(x). We deduce that

lim sup
k→∞

‖Vk‖(Br(x)) ≥ lim sup
k→∞

‖Vk‖(Br/2(xn)) = +∞,

which implies that x ∈ Z and consequently that Z is closed.
Assume now that Z is not an (m,h)-set. Hence due to Proposition 3.1 there is

a smooth function f : Ω → R and a point p ∈ Ω ∩ Z such that f |Z has a unique
local maximum at p, Df(p) 6= 0 and (ii) fails. After translation by p and rotation
and scaling of f we may assume that p = 0, f(p) = 0 and Df(p) = −em+1. The
contradiction then reads

Fij

(
p,

Df(p)

|Df(p)|

)
Dijf(p) + (∂iFi)

(
p,

Df(p)

|Df(p)|

)
|Df(p)| > h |Df(p)| . (3.8)

Let us define the vector field

X(x) = Xi(x)ei = Fi(x,Df(x))ei. (3.9)

Firstly note that 〈X(x), Df(x)〉 = F (x,Df(x)) hence X is pushing along “outside”
the level sets {f ≤ t}. Furthermore

‖X‖F ∗,x = 1. (3.10)
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Moreover, by (2.17)

− 〈HF (x), X〉F (x,Df(x)) = B(x,Df(x)) : DX + 〈D1F (x,Df), X〉 (3.11)

where HF (x) is the F -mean curvature of a level set {f = t}.
Now we want to show how this vector field can be used to derive the contradiction

to (3.7). First fix a radius r > 0 and δ > 0 such that

Fij

(
x,

Df(x)

|Df(x)|

)
Dijf(x) + (∂iFi)

(
x,

Df(x)

|Df(x)|

)
|Df(x)| ≥ (h+ δ) |Df(x)|

for all x ∈ B2r(0) (3.12)

and
1

2
≤ |Df(x)| ≤ 2 for all x ∈ B2r(0). (3.13)

By (3.9), we compute 〈X, Df(x)
|Df(x)|〉 = F (x, Df(x)

|Df(x)|), which combined with (3.12), gives

the following estimate on B2r(0)

Fij

(
x,

Df(x)

|Df(x)|

)
Dijf(x) + (∂iFi)

(
x,

Df(x)

|Df(x)|

)
|Df(x)| ≥ (h+ δ)F (x,Df(x))

(3.14)
By assumption we have Z ⊂ {f ≤ 0} and Z ∩ {f = 0} = {0}, hence there exists
η1 > 0 such that f(x) < −η1 for all x ∈ Z \ Br(0). Now we fix a non-negative cut
off function ϕ(x) supported in B2r(0) with ϕ(x) = 1 on Br(0). For 0 < η2 < η1 to
be chosen later, we define the function

η(t) :=

{
0 if t ≤ −η2

η2 + t if − η2 ≤ t
.

Now we consider the vector field

Y (x) = −ϕ(x)η(f(x))X. (3.15)

Then we have

−DY = ϕη ◦ fDX + ϕη′ ◦ fX ⊗Df + η ◦ fX ⊗Dϕ.
Hence for every a we have

−δFVk(Y ) =

∫
ϕη ◦ f (B(x, ν) : DX + 〈D1F (x, ν), X〉)

+ ϕη′ ◦ f (B(x, ν) : X ⊗Df) + η ◦ f (B(x, ν) : X ⊗Dϕ) dVk(x, ν)

=

∫
I + II + III dVk(x, ν).

We analyze the three terms separately. Note that |III| ≤ C1B2r\Br∩{f≥−η1}. Since
by the choice of r and η1 we have Z ∩B2r \Br ∩ {f ≥ −η1} = ∅ we have∣∣∣∣∫ III dVk(x, ν)

∣∣∣∣ ≤ O(1) for all k.

Concerning II we have due the uniform convexity of F there is a constant cF

B(x, ν) : X ⊗Df(x) = F (x, ν)F (x,Df)− 〈D2F (x, ν), Df(x)〉〈D2F (x,Df(x)), ν〉

≥ cF |Df(x)| distRPm
( Df(x)

|Df(x)|
, ν
)2
F (x, ν)

= cF |Df(x)| d(x, ν)2 F (x, ν),

where, for v, w ∈ Sm, we set

distRPm(v, w) := min{|v + w|, |v − w|}, (3.16)
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and we introduced the function

d(x, ν) := distRPm
( Df(x)

|Df(x)|
, ν
)
. (3.17)

We conclude taking into account (3.13)∫
II dVk(x, ν) ≥ 1

2
cF

∫
ϕη ◦ f d(x, ν)2 F (x, ν) dVk(x, ν).

It remains to estimate I. By (3.12), (3.11) and the C2 regularity of F , there exists a
constant CF ≥ 0 such that

|Df(x)|
(
B(x, ν) : DX(x) + 〈D1F (x, ν), X〉

)
≥ B(x,Df(x)) : DX(x) + 〈D1F (x,Df(x)), X〉

− CF |Df(x)| distRPm

(
Df(x)

|Df(x)|
, ν

)
≥ |Df(x)| (h+ δ)F (x, ν)− CF |Df(x)| d(x, ν)F (x, ν).

Taking additionally into account that {η ≥ η2}∩B2r ∩Z = ∅ and (3.13), we conclude∫
I dVk(x, ν) ≥(h+ δ)

∫
ϕη ◦ f F (x, ν) dVk(x, ν)

− 2CF

∫
{η<η2}

ϕη ◦ f d(x, ν)F (x, ν) dVk(x, ν)−O(1).

Combing all the estimates for I − III we have∫
I + II + III dVk(x, ν)− h

∫
ϕη ◦ f F (x, ν) dVk(x, ν)

≥
∫
{η<η2}

ϕ

(
δ η ◦ f − 2CF η ◦ fd(x, ν) +

1

2
cF η

′ ◦ fd(x, ν)2

)
dVk(x, ν)−O(1).

Observe that 0 ≤ η ◦ f ≤ 2η2 on the set {f < η2} and η′ = 1 on the set {η > 0}. Let
us consider the polynomial

p(µ, t) := δ µ − 2CF µt+
1

2
cF t

2.

For a fixed µ ≥ 0 its minimum is obtained in tmin. = 2CFµ
cF

and takes the value

p(µ, tmin.) =
δ

2
µ−

2C2
F µ

2

cF
.

Hence if µ ≤ 2η2 with η2 > 0 sufficient small, p(µ, t) is non-negative i.e. for such a
choice of η2 we have∫

I + II + III dVk(x, ν)− h
∫
ϕη ◦ f F (x, ν) dVk(x, ν)

≥
∫
{η<η2}

ϕ
δ

2
η ◦ f +

∫
{η<η2}

ϕp(η ◦ f, d(x, ν))dVk(x, ν)−O(1)

≥
∫
{η<η2}

ϕ
δ

2
η ◦ f d ‖V ‖k (x)−O(1).

Since B r
2
∩ {η ◦ f < η2} is an open neighbourhood of 0 and 0 ∈ Z, we conclude that

lim
k→∞

∫
{η<η2}

ϕ
δ

2
η ◦ f d ‖V ‖k (x) = +∞,

contradicting the assumption (3.7) and proving the theorem. �
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3.1. Consequences of Theorem 3.4. By repeating the arguments of [12], we can
now derive several properties of area blow-up sets (and more in general of (m,h)-sets).

Proposition 3.5. Let Ω ⊂ Rm+1 be open, (Fk)k be a sequence of anisotropic
integrands, and (Zk)k be a sequence of (m,hk)-subset of Ω with respect to the integrand
Fk. Suppose that Fk converges uniformly on compact subsets of Ω to some integrand
F , Zk converges in Hausdorff distance to a closed set Z and hk → h, then Z is an
(m,h)-subset of Ω with respect to the integrand F .

Proof. We will prove that the condition (ii)’ in Remark 3.2 holds. Let

P (x) = a0 + 〈a1, x〉+
1

2
xtAx for some a0 ∈ R, a1 ∈ Sm and A ∈ R(m+1)×(m+1)

be a paraboloid that realizes its maximum on Z in p ∈ Ω. Let r > 0 such that
Br(p) ⊂⊂ Ω. For any ε > 0 and k sufficient large, the map

Pε(x) := P (x)− ε |x− p|
2

2

realizes a strict local maximum on Zk∩Br(p) along a sequence of point pk ∈ Zk∩Br(p),
such that pk → p.

Since Zk are (m,hk)-subset of Ω, we can apply the characterization (ii)’ in Remark
3.2 to Pε to deduce that

Fij (pk, a1) (Aij − εδij) ≤ hk − (∂iFi)(pk, a1) + C|pk − p|.
Passing to the limit as k →∞ and ε→ 0, we obtain

Fij (p, a1)Aij ≤ h− (∂iFi)(p, a1).

�

Corollary 3.6. Let Ω ⊂ Rm+1 be open and Z ⊂ Ω be an (m,h)-set with respect to
the anisotropic integrand F . Consider a sequence rk ↘ 0 and a point p ∈ Ω∩Z such
that

Zi :=
Z − p
ri

→ Z∞ in Hausdorff distance.

Then Z∞ is an (m, 0)-set of Rm+1 with respect to the frozen integrand Fp(ν) :=
F (p, ν).

Proof. It is straight forward to check that for every r > 0 and q ∈ Ω

Z − q
r

is an (m, rh)-set with respect to the integrand

Fq,r(x, ν) := F (q + rx, ν).

By Proposition 3.5, Z∞ is an (m, 0)-subset of the integrand

Fp(ν) = lim
k→∞

Fp,rk(x, ν).

�

A further consequence of Theorem 3.4 is a constancy property, compare with [12,
Section 4]:

Proposition 3.7. Let Ω ⊂ Rm+1 be open and Z be an (m,h)-subset of Ω with respect
to an anisotropic integrand F . Suppose Z is a subset of a connected, m-dimensional,
properly embedded C1-submanifold M of Ω. Then

either Z = ∅ or Z = M.
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Proof. If Z = ∅ there is nothing to prove. Assume that Z 6= ∅ and suppose by
contradiction that Z 6= M . Since Z is closed, there exists Br(q) ⊂ Ω \Z with q ∈M
and p ∈ Z ∩Br(q). For a sequence of positive numbers λk ↘ 0 consider

Zk :=
Z − p
λk

and Mk :=
M − p
λk

.

Due to the regularity of M , we have that Mk \ B r
λk

( q−pλk ) converges in Hausdorff

distance to a half plane H of TpM . Hence, passing to a subsequence, Zk → Z∞ in
Hausdorff distance, with Z∞ ⊂ H and 0 ∈ Z∞. After a rotation O, we may assume
that H = {x ∈ Rm+1 : xm+1 = 0, x1 ≥ 0}. By corollary 3.6 we have that Z∞ is an

(m, 0)-subset of Rm+1 with respect to the frozen integrand F̂ (ν) := F (p,Oν). Now
consider the function

f(x) := −x1 + x2
1 + x2

m+1.

Observe that f takes a strict local maximum at 0 on H, hence f |Z∞ has a strict local
maximum in 0, but this contradicts the characterization (ii) of Proposition 3.1, since

D2F̂ (e1)(e1 ⊗ e1 + em+1 ⊗ em+1) > 0.

�

For the sake of completeness we prove also the anisotropic counterpart of the
“classical” constancy theorem for varifolds. The reader may compare it with [7,
Theorem 8.4.1] for the proof in the isotropic setting.

Proposition 3.8. Given V ∈ Vm(Ω) wich is stationary with respect to an anisotropic
integrand F . Let spt(V ) ⊂M , where M is a connected M -dimensional C2 submani-
fold of Ω, then V = θ0Hm M ⊗ δTxM .

Proof. The strategy of the proof is similar to the one for the area functional, compare
[7, Theorem 8.4.]. To simplify the presentation, we divide the proof in two steps:

Step 1) if M is a plane, i.e. M = {xm+1 = 0}, and Ω = B2r(0), then the conclusion
of the proposition holds on Br(0).

Step 2) we reduce the general case to the case in Step 1.

Proof of Step 1: We will write x = (y, z) ∈ Rm × R for the coordinates in Rm+1 i.e.
M = {z = 0}. Consider the vectorfield

X(x) := ϕ(y)η(z)f(z)D2F (x, em+1)

where ϕ ∈ C1
c (Bm

r (0)), f, η ∈ C1(R) satisfying f(0) = 0, f ′(0) 6= 0 and η non-negative
with η(z) = 0 for |z| > r and η(z) = 1 for |z| < r

2 .
Since spt(V ) ⊂ M , f = 0 on M , η = 1 on M and η′ = 0 on M , the first variation
formula (see [5, section 5]) reduces to

0 = δFV (X) =

∫
BF (x, ν) : (ϕ(y)f ′(0)D2F (x, em+1)⊗ em+1) dV (x, ν).

Since f ′(0) 6= 0, the previous equation implies that

BF (x, ν) : D2F (x, em+1)⊗ em+1 = 0, for V -a.e. (x, ν),

which, by strict convexity of F , is only possible when ν = ±em+1 for all x ∈
Br(0) ∩ spt(V ). This shows that the tangent space of V agrees with the tangent
space of M , that is

V = ‖V ‖ ⊗
(

1

2
δem+1 +

1

2
δ−em+1

)
.

Furthermore, we consider the vectorfield

X(x) := ϕ(y)η(z)ei, for every1 ≤ i ≤ m.
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Since η = 1 on M and BF (x, ν) is even in the second variable, the first variation
formula reads

0 = δFV (X) =

∫
BF (x, em+1) : (ei ⊗Dϕ) + ∂iF (x, em+1)ϕd‖V ‖(x)

=

∫
F (x, em+1)∂iϕ+ ∂iF (x, em+1)ϕd ‖V ‖ (x)

=

∫
∂i(F (x, em+1)ϕ) d ‖V ‖ (x).

Hence ‖V ‖ is constant on M ∩Br(0). This concludes the proof of step 1.

Proof of Step 2: Fix any p ∈ M ∩ spt(V ) and 0 < r < dist(x, ∂Ω) such that
the following holds: there is a C2 function Φ : B2r(p) → B2r(0) ⊂ Rm+1 with
Φ(M ∩B2r(0)) = {xm+1 = 0} ∩B2r(p). We replace V , M and F in Ω respectively

with V ′ := Φ#V , M ′ := Φ(M) and F ′ := Φ−1#
F in B2r(0). By construction

V ′,M ′, F ′ are all as in Step 1. Hence we deduce that in Br(0)

V ′ = θ0Hm M ′ ⊗
(

1

2
δνx +

1

2
δ−νx

)
, where νx is the normal vectorfield to M.

But this implies that V = θ0Hm M ⊗
(

1
2δνx + 1

2δ−νx
)

in Br(p) and the proposition
follows. �

4. Boundary curvature estimates

In this section we prove the following theorem which easily implies Theorem 1.2.
Recall that a set Ω is strictly F -convex in BR if

HF (x, ∂Ω) ≥ c > 0 for all x ∈ Ω ∩BR.
It easily follows by (2.11) that a uniformly convex set is strictly F -convex in in
sufficiently small balls.

Theorem 4.1. Let Ω ⊂ R3 s.t. ∂Ω ∩B2R is C3 and Ω is strictly F -convex in B2R.
Let Γ be a C2,α embedded curve in ∂Ω∩B2R with ∂Γ∩B2R = ∅. Furthermore let M
be an F -stable, C2 regular surface in Ω such that ∂M ∩BR = Γ. Then there exists a
constant C > 0 and a radius r1 > 0 depending only on F,Ω,Γ such that

sup
p∈BR

2
∩Ω

dist(p,Γ)<r1

r1|A(p)| ≤ C.

Moreover the constants C and r1 are uniform as long as Ω, Γ and F vary in compact
classes3.

We start with the following simple lemma.

Lemma 4.2. Let {µj}j∈N ⊂M+(Rm+1) be a sequence of Radon measures such that

lim
j→∞

µj(B1) = +∞.

Then the “area-blow up set”

Z := {x ∈ Rm+1 : lim sup
j→∞

µj(Br(x)) = +∞ for every r > 0}

3 For a family of curves Γα this amounts also in asking that all the considered curves should be
“uniformly” embedded:

inf
α

inf
x 6=y

x,y∈Γα

distΓ(x, y)

|x− y| > 0.
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satisfies Z ∩B1 6= ∅.

Proof. Up to consider as new sequence of measures µj |B1, we can assume that

spt(µj) ⊂ B1. We claim that there exists a sequence of cubes {Ci}i∈N with side
length li such that

(i) Ci+1 ⊂ Ci for all i ∈ N;
(ii) li = 21−i;
(iii) lim supj→∞ µj(Ci) = +∞ for all i ∈ N.

We will prove this claim by induction on i. We remark that C0 exists: it is enough
to consider a cube containing B1, for instance B1 ⊂ [−1, 1]m =: C0, so that we have

lim sup
j→∞

µj(C0) = +∞.

Proof of the Inductive step: Let C the collection of the dyadic cubes that are obtained
by dividing Ci into 2m+1 sub-cubes with half side length. Suppose

lim sup
j→∞

µj(C
′) <∞ ∀C ′ ∈ C.

Since there are only 2m+1 of these cubes, there exists j0 ∈ N and K > 0 such that

µj(C
′) ≤ K ∀j ≥ j0, ∀C ′ ∈ C.

But this contradicts the assumption, since

µj(Ci) ≤
∑
C′∈C

µj(C
′) ≤ 2m+1K ∀j ≥ j0.

We consequently can find a cube Ci+1 ⊂ Ci satisfying the properties (i), (ii) and (iii).
As a consequence we obtain a decreasing sequence of dyadic closed cubes {Ci}∞i=0
with nonempty intersection, i.e. there exists x ∈

⋂∞
k=0Ci.

Since for every r > 0 there exists i ∈ N such that Ci ⊂ Br(x), we have

lim sup
j→∞

µj(Br(x)) = +∞.

This implies that x is in the area blow up set. Finally since x must be in the support
of infinitely many µj , we have x ∈ B1. This concludes the proof of this lemma. �

The next proposition ensures that we have a local bound on the mass ratio, indeed
assuming the contrary the varifolds associated with

Mx,r =
M − x
r

would have unbounded masses. If Z is the area blow up set for this sequence, we can
exploit our F convexity assumption together with the Hopf lemma to show that Z is
contained in a wedge, this contradicts the fact that it is an (m,h)-set.

Proposition 4.3. Let Ω ⊂ Rm+1 such that ∂Ω ∩ B2R is C3 and ∂Ω is strictly F
convex in B2R. Let Γ be a C2,α embedded (m − 1)-submanifold in ∂Ω ∩ B2R with

∂Γ ∩ B2R = ∅. Furthermore, let M be a C2 stationary (i.e. δ̂FM = 0) manifold
in Ω such that ∂M ∩BR = Γ. Then there exists a constant C and a radius r0 > 0
depending only on F,Ω,Γ such that

sup
q∈Γ∩BR
r<r0

Hm(M ∩Br(q))
wmrm

≤ C <∞. (4.1)

Proof. We split the proof in two steps:
Step 1: Proposition 4.3 holds under the following additional Assumption 4.1:

Assumption 4.1. There exists 0 < δ < 1
4 such that:
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(1) Ω ∩B2 = {xm+1 ≥ Φ(x1, . . . , xm)} ∩B2 for some Φ ∈ C2,α(Rm,R). Further-
more we have

Φ(0) = 0, DΦ(0) = 0 (i.e. T0∂Ω = e⊥m+1) and ‖Φ‖C2,α < δ;

(2) Let F(x, y, p) denote the non-parametric function associated to F

F(x, y, p) := F ((x, y), p1e1 + · · ·+ pmem − em+1)

and L be the Euler-Lagrange operator for F . Then, for every U ⊂ Bm
2 with

smooth boundary, f ∈ C0,α and g ∈ C2,α with

‖f‖C0,α < δ, ‖g‖C2,α < δ,

the boundary value problem{
Lu = f in U

u = g on ∂U

has a unique solution u ∈ C2,α(U,R) such that

‖u‖C2,α(U,R) ≤ C(‖f‖C0,α + ‖g‖C2,α);

(3) for all x ∈ ∂Ω ∩B2 we have

0 < hmin < L(Φ) < hmax < δ.

Note that

F (x, ν(x))HF (x) =
L(Φ)(x)

〈ν(x), em+1〉
ν(x)

for all x ∈ ∂Ω ∩B2, where ν(x) is the normal of ∂Ω at the point x.
(4) Γ ⊂ ∂Ω is C2,α.

Step 2: There exists a radius 0 < R0 ≤ R such that for every p ∈ ∂Ω the rescaled
domain Ω−p

R0
and the rescaled manifold M−p

R0
satisfy the conditions of Assumption

4.1.

By a classical covering argument, one can show that Step 1 and Step 2 together
imply Proposition 4.3.

Proof of Step 1: Assume the conclusion 4.1 does not hold in B1, then there exists
a sequence Mk, rk, pk satisfying

(1) Γk := ∂Mk ⊂ ∂Ω with uniformly bounded C2,α-norm;
(2) pk ∈ Γk ∩B1, 0 < rk <

1
k and

Hm(Mk ∩Brk(pk))

rmk
> k. (4.2)

We denote with γk the projection of Γk onto the plane {xm+1 = 0}, i.e.

Γk = GΦ(γk),

where GΦ(x) := (x,Φ(x)) is the graph map of Φ. Up to subsequences, and performing
if necessary a rotation of B2, we may assume that

(3) there exists x0 ∈ B1 such that pk = (xk,Φ(xk))→ p0 = (x0,Φ(x0));
(4) ν̂k(xk)→ em, where ν̂k(x) denotes the normal of γk in the plane {xm+1 = 0}

at the point x ∈ γk.
To set up the contradiction we need the following additional construction:
Consider r0 > 0 small enough so that for all k ∈ N we have

r0 < min

{
1

‖Aγk‖∞
,
1

2

}
,
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where Aγk denotes the second fundamental form of γk. This is possible since we
assumed that the C2,α-norm of Γk is uniformly bounded.
For every k ∈ N we define the pair of balls

B±k := Bm
r0(xk ± r0ν̂k(xk)) ⊂ {xm+1 = 0}.

By the choice of r0, we have ensured that B±k ∩ γk = {xk}. For each 0 ≤ s ≤ δ, using

Assumption 4.1 (2), let u±k,s ∈ C
2,α(B±k (x)) be the unique solution to the boundary

value problem {
Lu±k,s = s in B±k

u±k,s = Φ on ∂B±k .

Observe that, by the classical Hopf-maximum principle, if s > hmax we have u±k,s < Φ

and if s < hmin then u±k,s > Φ. We claim that the graphs of u±k,s never touch Mk

in the interior of the cylinders B±k × R for s ≥ 1
2hmin. Indeed, for s > hmax this is

obvious since Mk ⊂ Ω. Suppose there is a first 1
2hmin < s ≤ hmax where for instance

the graph u+
k,s touches Mk at a point q = (y, u+

k,s(y)). Then TqMk = (−Du+
k,s(y), 1)⊥

and Mk is locally the graph over the plane {xm+1 = 0} around y by a map fk.
Since Mk is stationary we have L(fk) = 0, but this contradicts the strong maximum
principle.

For k ∈ N, define

u±k := u±
k, 1

2
hmin

.

By the Hopf boundary point lemma we can compare Φ with u±k at xk, obtaining the
existence of cH > 0 depending only on F and ∂Ω such that

min

{
∂u+

k (xk)

∂ν̂k(xk)
− ∂Φ(xk)

∂ν̂k(xk)
,−

∂u−k (xk)

∂ν̂k(xk)
+
∂Φ(xk)

∂ν̂k(xk)

}
> cH . (4.3)

Furthermore by (2) in Assumption 4.1,
∥∥u±k ∥∥C2,α is uniformly bounded on B±k .

Now we consider the blow-up sequence

• M ′k := Mk−pk
rk

in Ω′k := Ωk−pk
rk

;

• Γ′k = ∂M ′k = ∂Mk−pk
rk

projecting to γ′k = γk−xk
rk

in {xm+1 = 0};

• d±k (y) =
u±k (xk+rky)−Φ(xk+rky)

rk
on 1

rk
(B±k − xk).

Observe that, by the regularity assumption on Ω and Γk and the estimates on u±k ,
we have (up to a subsequence)

(i) ∂Ω′k → Tp0∂Ω, i.e. Ω′k → {xm+1 ≥ 〈DΦ(x0), x〉};
(ii) γ′k → {xm = 0};
(iii) d±k (y)→ a±ym for y ∈ Rm ∩ {±ym ≥ 0} with a+,−a− > cH

Indeed (ii) follows by property (4). Point (iii) is a consequence of the fact that
1
rk

(B±k − xk) → Rm ∩ {±ym ≥ 0} and that, by construction, we have d±k = 0 on

∂ 1
rk

(B±k − xk). The last part of (iii) is a consequence of (4.3).

By (4.2) and the definition of M ′k, we observe that the sequence of Radon measures

µk := Hm M ′k, satisfies the assumptions of Lemma 4.2, hence Z ∩B1 6= ∅ where Z
is the area blow up set for M ′k

Since M is a stationary manifold (i.e. δ̂FM = 0), by (2.9) we can estimate for
every vectorfield X with |X| ≤ 1BR

|δFM ′k(X)| ≤
∫

Γ′k

|X| ≤ Hm−1(Γ′k ∩BR).
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Applying Theorem 3.4, we get that Z is an (m, 0)-set in Rm+1 for the frozen integrand
Fp0 : ν 7→ F (p0, ν).

Moroever, combining (i) and (iii), we know that

Z ⊂ {(x, xm+1) : xm+1 ≥ 〈DΦ(x0), x〉+ cH |xm|}. (4.4)

We will show that this contradicts the fact that Z satisfies the characterization
(ii) in Proposition 3.1 for being an (m, 0)-set for an appropriate choice of a function
f . We can assume cH ≤ 1

4 (up to replace cH with min(cH ,
1
4)). We set

T := 4
1 + |DΦ(x0)|

cH

and consider ε > 0 to be chosen later. We define the function

f(x, xm+1) := −xm+1 + 〈DΦ(x0), x〉+
cH
2T

(
x2
m − εx2

)
.

On {(x, xm+1) : xm+1 ≥ 〈DΦ(x0), x〉+ cH |xm|} ∩ {xm = T} we have

f(x, xm+1) = −xm+1 + 〈DΦ(x0), x〉+ cH |xm|+ cH

(
x2
m

2T
− |xm| −

εx2

2T

)
≤ 0 + cH

(
x2
m

2T
− |xm|

)
= −cH

T

2
≤ −2(1 + |DΦ(x0)|). (4.5)

But for every x ∈ B1 and choosing ε sufficiently small, we have

f(x) > −3

2
(1 + |DΦ(x0)|).

Combining the previous inequality with (4.4) and (4.5), we deduce that f |Z takes a
local maximum at some point p = (x̂, x̂m+1) with |x̂m| < T . Now we claim that this
contradicts (ii) in Proposition 3.1 for sufficient small ε > 0. Indeed we can compute

Df(x, xm+1) = −em+1 +DΦ(x0) +
cH
T

(xmem − εx),

D2f(x, xm+1) =
cH
T

(em ⊗ em − εIdR(m+1)×(m+1));

where IdR(m+1)×(m+1) is the (m+ 1)-dimensional identity matrix. Observe that there
exits Λ > 0 such that tr(D2Fp0(ν)) < Λ for all ν ∈ Sm. Furthermore for every
0 < η < 1 there exists some λ > 0 such that

D2Fp0(ν) : em ⊗ em > λ for all ν ∈ Sm verifying |〈ν, em〉| < 1− η.
For every x such that |xm| ≤ T , by Assumption 4.1 (1), we can compute

|〈Df(x, xm), em〉| =
∣∣∣∂mΦ(x0) +

cH
T

(1− ε)xm
∣∣∣ ≤ |∂mΦ(x0)|+cH

T
|xm| ≤

1

4
+cH ≤

1

2
.

Since |Df(x, xm)| ≥ 〈Df(x, xm),−em+1〉 ≥ 1, we deduce that for every x with
|xm| ≤ T ∣∣∣∣〈 Df(x)

|Df(x)|
, em

〉∣∣∣∣ ≤ 1

2
.

If we choose ε sufficiently small we compute in the local maximum point p = (x̂, x̂m+1)〈
D2Fp0

(
Df(p)

|Df(p)|

)
: D2f(p)

〉
≥ cH

T
(λ− εΛ) > 0.

This contradicts Proposition 3.1 (ii).

Proof of Step 2: The existence of R0 as in the statement of Step 2 is a consequence
of the implicit function theorem as in [10], we report here the argument for the
sake of completeness. Fix q ∈ ∂Ω and let νq ∈ Sm be the inner normal of ∂Ω at q.
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Furthermore we fix an orthonormal basis t1, . . . , tm spanning Tq∂Ω = ν⊥q ∼ Rm i.e.

Rm+1 = Tq∂Ω× span νq. We will write (x, xm+1) for points in Tq∂Ω× span νq.
We consider the family of non-parametric functionals

Fr(x, u(x), Du(x)) := F (q + r(x, u(x)), (−Du(x), 1)) .

These are the non-parametric functionals associated to the image of the parametrized
surfaces x 7→ q + rx+ ru(x)νq. Let Lr be the Euler-Lagrange operators for Fr. By
strict convexity of F , planes are the unique minimizers for the frozen integrand
ν ∈ Sm 7→ F (q, ν). With respect to Fr this implies that the constant functions u are
the unique minimizers of F0, and in particular L0u = 0 for every constant function
u. The convexity of F translates into the ellipticity of the linearization of Lr around
the constant u0 = 0. Hence the implicit function theorem implies the existence
of δq, Rq > 0 such that, for every couple of scalar functions f, g with ‖f‖C0,α < δ,
‖g‖C2,α < δq, U ⊂ B2 and r ≤ Rq, the boundary value problem{

Lru = f in U

u = g on ∂U

has a unique solution u ∈ C2,α(U,R) satisfying

‖u‖C2,α(U,R) ≤ C(‖f‖C0,α + ‖g‖C2,α).

The size of Rq, δq only depends on the C2,α norm of F . Hence by compactness
there exist R1, δ1 > 0 such that δq > δ1 and Rq > R1 for all q ∈ ∂Ω ∩B2R.
Let HF (q) as before denote the anisotropic mean curvature of ∂Ω with respect to
the inner normal ν(q). Fix 0 < R0 ≤ R1 such that

max
q∈BR∩∂Ω

hF (q) <
δ1

R0
.

Now it is straight forward to check that R0 has the desired properties.
�

We now show how to “globalize” the above boundary estimate. We recall that for
an F -stable surface it holds∫

M
φ2 |A|2 dH2 ≤ c1

∫
M
|Dφ|2 + c2φ

2 dH2, (4.6)

for some constants c1(n, F ), c2(n, F ) > 0 and for all φ ∈ C1
c (M), see [2, Lemma 2.1]

or [6, Lamma A.5].

Lemma 4.4. Let Ω ⊂ R3 and Γ be a C2,α embedded curve in ∂Ω ∩ B2R with
∂Γ∩B2R = ∅. Furthermore let M be a two dimensional F -stable, C2 regular surface
in Ω such that ∂M ∩BR = Γ and satisfying for some 0 < C0 <∞ and r0 ≤ 1

sup
q∈Γ∩BR
r<r0

H2(M ∩Br(q))
πr2

≤ C0. (4.7)

Then there exists a constant C > 0 depending only on F such that

sup
Br(p)⊂BR−r0

r<
r0
3

;dist(p,Γ)<
r0
3

H2(M ∩Br(p))
πr2

≤ CC0. (4.8)

Proof. This lemma is a direct consequence of (4.6) and of the extended monotonicity
formula of L. Simon (see [8]). Indeed, for every p ∈ BR−r0 ∩ Ω we fix q ∈ Γ with

d := |q − p| = dist(p,Γ) <
r0

3
.
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Hence q ∈ BR ∩ Γ. If d
2 < r < r0

3 , then Br(p) ⊂ B3r(q) and we easily estimate

H2(M ∩Br(p))
πr2

≤ 9H2(M ∩B3r(q))

π(3r)2

(4.7)

≤ 9C0.

If r < d
2 we argue as follows: Fix a non-negative even function η ∈ C∞(R) with

η(t) = 1 for every |t| ≤ 1
2 , η(t) = 0 for |t| ≥ 1 and |η′(t)| ≤ 3 for every t ∈ R. We

choose φ(x) := η( |x−p|d ) in (4.6) and, denoting with H the isotropic mean curvature
of M , we obtain

1

2

∫
B d

2∩M
(p)
|H|2 dH2 ≤

∫
M
φ2 |A|2

≤ c1

∫
M

1

d2

∣∣∣∣η′( |x− p|d

)∣∣∣∣2 + c2η

(
|x− p|
d

)2

dH2

≤ c3
H2(M ∩Bd(p))

πd2
,

(4.9)

where in the last inequality we used that d < r0 ≤ 1.
Now we may use the extended monotonicity formula of L. Simon [8, formula

(1.3)] to conclude that for any r ≤ d
2 we have for some universal constant c > 0

(independent of F,M,Γ and all our particular choices)

H2(M ∩Br(p))
πr2

≤ c

H2(M ∩B d
2
(p))

πd2
+

∫
B d

2
(p)∩M

|H|2 dH2

 . (4.10)

Plugging (4.9) in (4.10), we conclude the lemma:

H2(M ∩Br(p))
πr2

≤ c(1 + 2c3)
H2(M ∩Bd(p))

πd2
≤ 4c(1 + c3)

H2(M ∩B2d(q))

π(2d)2
≤ C C0,

where C depends just on F . �

Now finally we can combine the obtained results with the curvature estimate in
[11] to prove Theorem 4.1

Proof of 4.1. We choose r1 = r0
6 where r0 is the radius in Proposition 4.3. Hence we

may combine Proposition 4.3 with Lemma 4.4 to deduce that for some constant C
depending only on F,Ω,Γ

sup
Br(p)⊂BR

2
r<2r1;dist(p,Γ)<2r1

H2(M ∩Br(p))
πr2

≤ C.

In particular this implies that for each q ∈ BR
2
∩ Γ we have

sup
Br(p)⊂B2r1 (q)

H2(M ∩Br(p))
πr2

≤ C.

Hence the triple Ω,M,B2r1(q) satisfies the assumptions of [11, Theorem 5.2] and
we deduce that all principle curvatures of M ∩ Br1(q) are bounded by a constant
depending only on F,Ω,Γ. �
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