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Abstract

Prescribing conformally the scalar curvature of a Riemannian manifold as a given function consists in
solving an elliptic PDE involving the critical Sobolev exponent. One way of attacking this problem
consist in using subcritical approximations for the equation, gaining compactness properties. Together
with the results in [30], we completely describe the blow-up phenomenon in case of uniformly bounded
energy and zero weak limit in positive Yamabe class. In particular, for dimension greater or equal
to five, Morse functions and with non-zero Laplacian at each critical point, we show that subsets
of critical points with negative Laplacian are in one-to-one correspondence with such subcritical
blowing-up solutions.
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1 Introduction
Consider a compact manifold (Mn, g0) with n ≥ 3 and a conformal metric g = u

4
n−2 g0, u > 0: with this

notation the scalar curvature transforms in the following way (see [4])

Rguu
n+2
n−2 = Lg0u := −cn∆g0u+Rg0u cn =

4(n− 1)

(n− 2)
,

with ∆g0 the Laplace-Beltrami operator of g0. Lg0 is called the conformal Laplacian and transforms
according to the law Lg(uφ) = u

n+2
n−2Lg0(φ).
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In the 70’s, Kazdan and Warner considered in [28] the problem of prescribing the scalar curvature of
manifolds via conformal deformation of the metric, see also [26], [27]. By the above transformation law,
if one wishes to prescribe Rg as a given function K(x) then would need to solve

Lg0u = K(x)u
n+2
n−2 on (M, g0). (1.1)

There are rather easy obstructions to the solvability of (1.1): for example, if the sign of K is constant, it
has to coincide with that of the first eigenvalue of Lg0 . Depending on the latter sign, which is conformally
invariant, a conformal class of metrics is said to be of negative, zero or positive Yamabe class. We will
discuss for simplicity the case of function K with constant sign, despite in the literature there are many
interesting papers dealing with changing-sign functions.

In [28], Kazdan and Warner proved some existence results for zero or negative Yamabe classes using
the sub- and super-solution method. For positive Yamabe class instead, they found a now well-known
obstruction to existence on the sphere, namely that if u solves (1.1), then one must have∫

Sn
〈∇K,∇f〉gSnu

2n
n−2 dµgSn = 0, (1.2)

and hence, for conformal curvatures K, the function 〈∇K,∇f〉gSn must change sign.
Later on, some existence results were found under conditions that would imply topological richness

of the sub-levels of K, contrary to the above example. In two dimensions, where (1.1) is replaced by an
equation in exponential form, J. Moser showed that the problem is solvable on the standard sphere if K
is antipodally symmetric. In higher dimensions, existence results under the action of symmetry groups
were proven in [20] and [21], [22].

A general difficulty in studying (1.1) is the lack of compactness due to the presence of the critical
exponent. A typical phenomenon encountered here is that of bubbling. Bubbles are solutions of (1.1) on
Sn with K ≡ 1: these arise as profiles of general diverging solutions and were classified in [11], see also
[3], [36]. From the variational point of view, bubbles generate diverging Palais-Smale sequences for the
Euler-Lagrange energy of (1.1), given by J = JK :

J(u) =

∫
M

(
cn|∇u|2g0 +Rg0u

2
)
dµg0

(
∫
M
Ku

2n
n−2 dµg0)

n−2
n

.

From a formal expansion of J on a finite sum of bubbles, see e.g. the introduction in [30], one sees a role
of the dimension in the strength of the mutual interaction among bubbles, which is weaker as n increases:
a consequence of this fact is that in three dimensions only one bubble can form. Exploiting this fact, after
some work on S2 by A. Chang and P. Yang in [16], [17], A. Bahri and J.M. Coron proved an existence
result in [6] on S3 assuming that K is a Morse function satisfying the following two properties

{∇K = 0} ∩ {∆K = 0} = ∅; (1.3)∑
{x∈M : ∇K(x)=0,∆K(x)<0}

(−1)m(x,K) 6= −1, (1.4)

wherem(x,K) stands for the Morse index of K at x, see also [12] and [35] for more general related results.
The above existence statement was extended to arbitrary dimensions in [24] for functions satisfying a
suitable flatness condition, and in [18], [1], [29] for functionsK close to a positive constant in the C2-sense.

In four dimensions, see [7] and [25], it was shown that even if multiple bubbles can form, they cannot
be too close to each-other; such phenomenon is usually refereed to as isolated simple blow-up. Results of
different kind were also proven in [19] for n = 2 and in [9] [8], [10]: see also Chapter 6 in [4].

Two main approaches have been used to understand the blow-up phenomenon: sub-critical approx-
imations or the construction of pseudo-gradient flows. In this paper we focus on the former, while the
other one will be the subject of [32], where a one-to-one correspondence of blowing-up solutions with
bounded energy (and zero weak limit) and critical points at infinity is shown. Consider the problem

− cn∆g0u+Rg0u = K(x)u
n+2
n−2−τ , 0 < τ � 1, (1.5)
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which, up to a proper dilation, is the Euler-Lagrange equation for the functional

Jτ (u) =

∫
M

(
cn|∇u|2g0 +Rg0u

2
)
dµg0

(
∫
M
Kup+1dµg0)

2
p+1

, u ∈ A. (1.6)

Being now the exponent lower than critical, solutions can be easily found, even though one could lose
uniform estimates as τ tends to zero. In [12], [35], [24], the single-bubbling behaviour for diverging
solutions of (1.5) was proved. Then, by degree- or Morse-theoretical arguments it was shown that under
(1.4) there must be families of solutions that stay uniformly bounded, therefore converging to solutions
of (1.1). For this argument to work, one crucial step was to completely characterize blowing-up solutions
of (1.5), showing that in three dimensions single blow-ups occur at any critical point of K with negative
laplacian and that they are unique. On four-dimensional spheres, a similar property was proved in [25] for
multiple blow-ups (see also [7]), assuming a suitable condition related to the multi-bubble interactions.

For Morse functions, if n ≥ 5 the situation is more involved, and blow-ups might be possibly of infinite
energy, see e.g. [13], [14], [15], [37]. In [30] it was however proved that if a sequence of blowing-up solutions
has uniformly-boundedW 1,2-energy and zero weak limit, then blow-ups are still isolated simple. Although
the result is similar to the case of dimensions three and four, the phenomenon is somehow opposite since
it is driven by the function K rather than from the mutual bubble interactions. Both assumptions, zero
weak limit and bounded energy, are indeed natural: if the former fails then problem (1.1) would have a
solution; the second one instead is usually found when using min-max or Morse-theoretical arguments, as
it will be done in [31]. However, differently from n = 3, 4, in [30] no restriction is proven on the number
or location of blow-up points, provided they occur at critical points of K with negative Laplacian.

The goal of this paper is to show that the characterization of the above blow-ups in [30] is sharp,
namely that they can occur at arbitrary subsets of {∇K = 0} ∩ {∆K < 0}. Furthermore, we prove
uniqueness of such solutions, their non-degeneracy and determine their Morse index. Our main result is
the following one, that follows from Proposition 3.1, Corollary 4.1 and Theorem 1 in [30].

Theorem 1. Let (M, g) be a compact manifold of dimension n ≥ 5 with positive Yamabe class, and let
K : M → R be a positive Morse function satisfying (1.3). Let x1, . . . , xq be distinct critical points of K
with negative Laplacian. Then, as τ → 0, there exists a unique solution uτ,x1,...,xq developing a simple
bubble at each point xi and converging weakly to zero in W 1,2(M, g) as τ → 0. Moreover, up to scaling
by constants, uτ,x1,...,xq is non-degenerate for Jτ and m(Jτ , uτ,x1,...,xq ) = (q − 1) +

∑q
i=1(n−m(K,xi)).

Furthermore, all blow-ups with uniformly bounded energy and zero weak limit are of the above type.

As it will be shown in [31], for n ≥ 5 there cannot be a direct counterpart of (1.4), which is an index-
counting condition. However, existence results of different type will be derived there.

Remark 1.1. (i) A more precise expression for uτ,x1,...,xq is given by the following formula∥∥∥∥um − q∑
j=1

αj,mδλj,m,aj,m

∥∥∥∥
W 1,2(M,g0)

−→ 0 as m −→∞,

αj,m =
Θ

K(xj)
n−2
4

+ o(1), aj,m −→ xj and λj,m ' λτm = τ
− 1

2
m .

Here the multiplicative constant Θ depends on the blowing-up solutions but it is independent of j.
For this and more precise formulas we refer to Section 3 and Theorem 2 in the Appendix. If n = 4,
the same conclusions hold replacing ∆K(aj) < 0 for all j with (iv) of Theorem 2 in [30].

(ii) Even though upon scaling the above solutions uτ,x1,...,xq are non-degenerate, they Hessian of Jτ there
has

∑q
i=1(n−m(K,xi)) eigenvalues approaching zero as τ → 0, see Section 4.

(iii) Theorem 1 gives a one-to-one correspondence of zero weak limit subcritical blow-up solutions to
subsets of critical points of K with negative Laplacian, while in [32] this correspondence will be
shown with zero weak limit, i.e. pure critical points at infinity, according to the terminology in [5],
see also [33]

3



The proof of Theorem 1 relies on the estimates in [30] and a finite-dimensional reduction, see e.g. [2],
with a careful asymptotic analysis. In dimension four, this approach was used in Section 2 of [25]: here
we show that in higher dimensions blow-up might occur at arbitrary critical points of K with negative
Laplacian, which affects the global structure of the solutions of problem (1.1). Via careful expansions,
we also determine the Hessian of the Euler-Lagrange functional and the Morse index of these solutions,
which we prove to be non-degenerate.

The solutions we consider here lie in a set V (q, ε) in the functional space W 1,2(M, g0) which contains
a manifold of approximate solutions for (1.5),

∑q
i=1 α

iϕai,λi , which is transversally non-degenerate (see
Section 2 for the notation used here). This allows to solve (1.5) orthogonally to this manifold via a
proper transversal correction to the approximate solutions, see Definition 3.1 and Lemma 3.1, and reduce
to the study of the tangent component. By Theorem 2 from [30] we can reduce ourselves to a smaller
set V̄ (q, ε), see (3.1), where more precise estimates hold for the gradient of Jτ . These allow us to use an
orthogonal correction v̄ small in size, solve also for the tangent component and to estimate the second
differential of Jτ at

∑q
i=1 α

iϕai,λi + v̄, see Section 4. Finally, this allows in turn to compute the Morse
index of the solutions uτ,x1,...,xq and to prove their uniqueness. In this step we show that, even though
the correction v̄ is of the same order of the small eigenvalues of the Hessian of Jτ , some cancellation
occurs in the estimate of the Morse index.

The plan of the paper is the following: in Section 2 we collect some preliminary material concerning
approximate solutions and the finite-dimensional reduction of the problem, which is then worked-out in
detail in Section 3. In Section 4 we study the Hessian of the Euler-Lagrange functional Jτ in V̄ (q, ε),
finding a proper base with respect to which the Hessian nearly diagonalizes. Finally, we collect in an
Appendix some useful and technical estimates from [30] and a table of constants.

Acknowledgments. A.M. has been supported by the project Geometric Variational Problems and
Finanziamento a supporto della ricerca di base from Scuola Normale Superiore and by MIUR Bando
PRIN 2015 2015KB9WPT001. He is also member of GNAMPA as part of INdAM.

2 Preliminaries
In this section we collect some background and preliminary material, concerning the variational properties
of the problem and some estimates on highly-concentrated approximate solutions of bubble type.

We consider a smooth, closed riemannian manifoldM = (Mn, g0) with volume measure µg0 and scalar
curvature Rg0 . Letting A = {u ∈W 1,2(M, g0) | u ≥ 0, u 6≡ 0, } the Yamabe invariant is defined as

Y (M, g0) = inf
A

∫ (
cn|∇u|2g0 +Rg0u

2
)
dµg0

(
∫
u

2n
n−2 dµg0)

n−2
n

; cn = 4
n− 1

n− 2
,

and it turns out to depend only on the conformal class of g0. We will assume from now on that the
invariant is positive, namely that (M, g0) is of positive Yamabe class. As a consequence, the conformal
Laplacian Lg0 = −cn∆g0 + Rg0 is a positive and self-adjoint operator. Without loss of generality we
assume Rg0 > 0 and denote by Gg0 : M ×M \ ∆ −→ R+ the Green’s function of Lg0 . Considering a
conformal metric g = gu = u

4
n−2 g0, there holds

dµgu = u
2n
n−2 dµg0 and R = Rgu = u−

n+2
n−2 (−cn∆g0u+Rg0u) = u−

n+2
n−2Lg0u.

Note that

c‖u‖W 1,2(M,g0) ≤
∫
uLg0u dµg0 =

∫ (
cn|∇u|2g0 +Rg0u

2
)
dµg0 ≤ C‖u‖W 1,2(M,g0).

In particular we may define

‖u‖2 = ‖u‖2Lg0 :=

∫
uLg0u dµg0
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and use ‖ · ‖ as an equivalent norm on W 1,2(M, g0). Setting R = Ru for g = gu = u
4

n−2 g0, we have

r = ru =

∫
Rdµgu =

∫
uLg0udµg0 , (2.1)

and hence
Jτ (u) =

r

k
2
p+1
τ

with kτ =

∫
K up+1dµg0 . (2.2)

The first- and second-order derivatives of the functional Jτ are given by

∂Jτ (u)v =
2

k
2
p+1
τ

[ ∫
Lg0uvdµg0 −

r

kτ

∫
Kupvdµg0

]
; (2.3)

∂2Jτ (u)vw =
2

k
2
p+1
τ

[ ∫
Lg0vwdµg0 − p

r

kτ

∫
Kup−1vwdµg0

]
− 4

k
2
p+1 +1
τ

[ ∫
Lg0uvdµg0

∫
Kupwdµg0 +

∫
Lg0uwdµg0

∫
Kupvdµg0

]
+

2(p+ 3)r

k
2
p+1 +2
τ

∫
Kupvdµg0

∫
Kupwdµg0 .

(2.4)

In particular, Jτ is of class C2,α
loc (A) and, for ε > 0, uniformly Hölder continuous on each set of the form

Uε = {u ∈ A | ε < ‖u‖, Jτ (u) ≤ ε−1}.

To understand the blow-up phenomenon, it is convenient to consider some highly concentrated ap-
proximate solutions to (1.1). Let us first recall the construction of conformal normal coordinates from
[23]: given a ∈ M , these are defined as geodesic normal coordinates for a suitable conformal metric
ga ∈ [g0]. Let ra be the geodesic distance from a with respect to the metric ga: with this choice, the
expression of the Green’s function Gga for the conformal Laplacian Lga with pole at a ∈M , denoted by
Ga = Gga(a, ·), simplifies considerably. In Section 6 of [23] one can find the expansion

Ga =
1

4n(n− 1)ωn
(r2−n
a +Ha), ra = dga(a, ·), Ha = Hr,a +Hs,a for ga = u

4
n−2
a g0. (2.5)

Here Hr,a ∈ C2,α
loc , while the singular error term is of the type:

Hs,a = O

 ra for n = 5
ln ra for n = 6
r6−n
a for n ≥ 7

 .

The leading term in Hs,a for n = 6 is − |W(a)|2
288cn

ln r, with W the Weyl tensor. For λ > 0 large define

ϕa,λ = ua

(
λ

1 + λ2γnG
2

2−n
a

)n−2
2

, Ga = Gga(a, ·), γn = (4n(n− 1)ωn)
2

n−2 . (2.6)

We notice that the constant γn is chosen so that

γnG
2

2−n
a (x) = d2

ga(a, x) + o(d2
ga(a, x)) as x −→ a.

Such functions are approximate solutions of (1.1), see Lemma 5.1, and for suitable values of λ depending
on τ these are also approximate solutions of (1.5), see Lemma 5.7 for a multi-bubble version.

Notation. For p ≥ 1, Lpg0 will stand for the family of functions of class Lp with respect to the measure
dµg0 . Recall also that for u ∈ W 1,2(M, g0) we have set ru =

∫
uLg0udµg0 , while for a ∈ M we de-

note by ra the geodesic distance from a with respect to the conformal metric ga introduced before. For a
finite set of points {ai}i ofM we will denote by Ki,∇Ki,Wi, the quantities K(ai),∇K(ai), |W(ai)|2, etc..

For k, l = 1, 2, 3 and λi > 0, ai ∈M, i = 1, . . . , q, let
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(i) ϕi = ϕai,λi and (d1,i, d2,i, d3,i) = (1,−λi∂λi , 1
λi
∇ai);

(ii) φ1,i = ϕi, φ2,i = −λi∂λiϕi, φ3,i = 1
λi
∇aiϕi, so φk,i = dk,iϕi.

With these definitions, the φk,i’s are uniformly bounded in W 1,2(M, g0) for every value of the λi’s.

We next recall a standard finite-dimensional reduction for functions that are close in W 1,2 to a finite
sum of bubbles. It is useful to define the following quantity

εi,j :=

(
λj
λi

+
λi
λj

+ λiλjγnG
2

2−n
g0 (ai, aj)

) 2−n
2

. (2.7)

Given ε > 0, q ∈ N, u ∈W 1,2(M, g0) and (αi, λi, ai) ∈ (Rq+,R
q
+,M

q), we set

(i) Au(q, ε) = {(αi, λi, ai) | ∀
i 6=j

λ−1
i , λ−1

j , εi,j ,

∣∣∣∣1− rα
4

n−2
i K(ai)

4n(n−1)kτ

∣∣∣∣, ‖u− αiϕai,λi‖ < ε, λτi < 1 + ε};

(ii) V (q, ε) = {u ∈W 1,2(M, g0) | Au(q, ε) 6= ∅},

see (2.1), (2.2) and (2.6). For Au(q, ε) to be non-empty, we will always assume that τ � ε. Under
the above conditions on the parameters αi, ai and λi, the functions

∑q
i=1 α

iϕai,λi constitute a smooth
manifold in W 1,2(M, g0), which implies the following well known result (see e.g. [5]).

Proposition 2.1. Given ε0 > 0 there exists ε1 > 0 such that for u ∈ V (q, ε) with ε < ε1, the problem

inf
(α̃i,ãi,λ̃i)∈Au(q,2ε0)

∫
(u− α̃iϕãi,λ̃i)Lg0(u− α̃iϕãi,λ̃i)dµg0

admits an unique minimizer (αi, ai, λi) ∈ Au(q, ε0) and we set

ϕi = ϕai,λi , v = u− αiϕi, Ki = K(ai). (2.8)

Moreover, (αi, ai, λi) depends smoothly on u.

The term v = u− αiϕi is orthogonal to all ϕi,−λi∂λiϕi, 1
λi
∇aiϕi, with respect to the product

〈·, ·〉Lg0 = 〈Lg0 ·, ·〉L2
g0
.

Finally, for u ∈ V (q, ε) let

Hu = Hu(q, ε) = 〈ϕi, λi∂λiϕi,
1

λi
∇aiϕi〉

⊥Lg0 . (2.9)

3 Existence of subcritical solutions
Theorem 2, from [30], describes in detail the behaviour as τ → 0 of blowing-up solutions to (1.5) with
uniformly bounded energy and zero weak limit in V (q, ε), providing positive lower bounds on ‖∂Jτ‖ in a
suitable subset of the functional space. In view of this, we can restrict our attention to centers a1, . . . , aq
close to distinct critical points x1, . . . , xq of K with negative Laplacian: more precisely, for n ≥ 6 we can
assume the following conditions (for n = 5 they are slightly modified: see the above-mentioned statement)

(i) |αj −Θ p−1

√
λθj

K(aj)
| < ε

λ3 ;

(ii) | ājλj + c1(∇2K(xj))
−∇∆K(xj)

λ3
j
| ≤ ε

λ3 ;

(iii) |λ2
j + c2

∆K(xj)
K(xj)τ

| ≤ ε
λ2 ,
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for λ2 = 1
τ and some xj ∈ {∇K = 0} ∩ {∆K < 0} with xi 6= xj , i 6= j. Here, Θ > 0 (uniformly bounded

and bounded away from zero) depends on the function in V (q, ε), determined in Remark 6.2 of [30].

We next define the following (refined) neigbourhood of potential subcritical blowing-up solutions as

V̄ (q, ε) = {u ∈ V (q, ε) | (i), (ii) and (iii) above hold true.} (3.1)

From Lemmata 5.4, 5.5 and 5.6 it follows that (recalling (2.2)) there exists ε̃ > 0, tending to zero as
ε→ 0, such that

|∂Jτ (u)| & ε̃

λ3
for u ∈ V (q, ε) \ V̄ (q, ε) with kτ = 1,

so this justifies to look for solutions in V̄ (q, ε) only.

For αiϕi ∈ V̄ (q, ε) with c < αi < C, we have the expansion

Jτ (αiϕi + v) = Jτ (αiϕi) + ∂Jτ (αiϕi)v +
1

2
∂2Jτ (αiϕi)v

2 +O(‖v‖3). (3.2)

Recall the uniform positivity of ∂2Jτ (αiϕi) on Hu(q, ε) (see (2.9) and [5]), which justifies the following

Definition 3.1. For αiϕi ∈ V (q, ε) we define v̄ as the unique solution of the minimization problem

Jτ (αiϕi + v̄) = min
v∈Hαiϕi ,‖v‖<ε

Jτ (αiϕi + v). (3.3)

Lemma 3.1. Let v̄ be as in the above definition. Then one has the following properties

(i) for αiϕi ∈ V̄ (q, ε) there holds ‖v̄‖ . 1
λ2 ' τ ;

(ii) if u ∈ V (q, ε) is such that ∂Jτ (u) = 0, then αiϕi ∈ V̄ (q, ε) and u = αiϕi + v̄.

Moreover, for αiϕi ∈ V̄ (q, ε) one has that

∂Jτ (αiϕi + v̄) = O(
ε̃

λ3
), where ε̃→ 0 as ε→ 0. (3.4)

Proof. Let us denote by ΠHαiϕi
the projection onto Hαiϕi : we need to solve ΠHαiϕi

∂Jτ (αiϕi+ v̄) = 0.
Since ∂2Jτ is invertible on this subspace, we can write ΠHαiϕi

∂Jτ (αiϕi + v̄) = 0 as

v̄ = −(Hαiϕi∂
2Jτ (αiϕi))

−1
[
∂Jτ (αiϕi) +

(
∂Jτ (αiϕi + v̄)− ∂Jτ (αiϕi)− ∂2Jτ (αiϕi)v̄

)]
.

We know from Lemma 5.7 that for αiϕi ∈ V̄ (q, ε) one has ‖∂Jτ (αiϕi)‖ . 1
λ2 . Since by Hölder’s continuity

the quantity within round brackets in the last formula is of order o(‖v̄‖), we can use a contraction
argument in a ball of size 1

λ2 to get the existence of a solution to ΠHαiϕi
∂Jτ (αiϕi + v̄) = 0, with the

estimate (i). By the definition of v̄ and the above contraction argument we have that

∂2Jτ (αiϕi)v̄ = −∂Jτ (αiϕi) + o(
1

λ2
) on 〈φk,i〉⊥Lg0 . (3.5)

Testing thus ∂Jτ (αiϕi) on 〈φk,i〉, we find from Lemmata 5.4, 5.5 and 5.6, again for αiϕi ∈ V̄ (q, ε)

|∂Jτ (αiϕi)φk,i| ≤
ε̃

λ3
.

It is easy to see from (2.4) and Lemma 5.1 that ∂2Jτφk,i = o( 1
λ ), and since ‖v̄‖ . 1

λ2 we have that

∂2Jτ (αiϕi)v̄φk,i = o(
1

λ3
), (3.6)
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More in general, one finds also that

∂2J(αiϕi + θv̄)v̄φk,j = o(
1

λ3
)

for any θ ∈ (0, 1). To see this, since v̄ ∈ 〈φk,i〉⊥Lg0 , recalling (2.4) it is sufficient to show that∫
K(αiϕi + θv̄)p−1v̄ϕjdµg0 −

∫
K(αiϕi)

p−1v̄ϕjdµg0 = O(
1

λ3
).

This, in turn, can be verified by dividing the domain of integration into {|v̄| ≤ αiϕi} and its complemen-
tary set, using Hölder’s inequality and the fact that ‖v̄‖ . 1

λ2 . Consequently

∂Jτ (αiϕi + v̄) = ∂Jτ (αiϕi + v̄)b〈φk,i〉= ∂Jτ (αiϕi)b〈φk,i〉+o(
1

λ3
) = O(

ε̃

λ3
),

where ε̃ tends to zero as ε does. Finally, if a solution ∂Jτ (u) = 0 exists on V (q, ε), then we may write

u = αiϕi + v̄ + ṽ with ṽ ⊥Lg0 〈φk,i〉.

But then

0 =∂Jτ (αiϕi + v̄ + ṽ)ṽ = ∂Jτ (αiϕi + v̄)ṽ + ∂2Jτ (αiϕi + v̄)ṽṽ + o(|ṽ|2),

whence necessarily ṽ = 0 by uniform positivity of ∂2Jτ (αiϕi) on 〈φk,i〉⊥Lg0 . Thus

∂Jτ (u) = 0 with u ∈ V̄ (q, ε) =⇒ u = αiϕi + v̄

where v̄ = v̄α,a,λ is the unique solution to (3.3), for which αiϕi + v̄ ∈ V̄ (q, ε).

Remark 3.1. For αiϕi ∈ V̄ (q, ε) and ν ∈W 1,2(M, g0) with ‖ν‖ = 1 it can be shown that

(kτ )
2
p+1

αiϕi

8n(n− 1)
∂Jτ (αiϕi)ν =− αiτ

∫
Bε(ai)

(
ϕ
n+2
n−2

i ln(1 + λ2
i r

2)
n−2
2 − c̄1

c1
ϕ
n+2
n−2

i +
2

n− 2

c̃1
c2
ϕ

4
n−2

i λi∂λiϕi

)
νdµg0

+ αiτ

∫
Bε(ai)

(
c̃1
c̃2

λ2
i r

2

2n
ϕ
n+2
n−2

i − c̃1c̄2
c̃2c1

ϕ
n+2
n−2

i +
2

n− 2

c̃1
c2
ϕ

4
n−2

i λi∂λiϕi

)
νdµg0

− αi
∫
Bε(ai)

(
∇2
k,lKi

2Ki
xkxl − ∆Ki

2nKi
r2)ϕ

n+2
n−2

i νdµg0 + o(
1

λ2
),

referring to the table at the end of the paper for the definition of the constants. As a consequence of these
formulas, one can prove that v̄ is indeed of order 1

λ2 and not smaller, as well as determine the leading
order in its expansion. Anyway, due to some cancellation properties, this will not substantially affect the
eigenvalues of the Hessian of Jτ at αiϕi + v̄, estimated in the next section.

Let us now set (d1,i, d2,i, d3,i) = (1,−λi∂λi , 1
λi
∇ai), for i = 1, . . . , q.

Lemma 3.2. For u = αiϕi + v̄ ∈ V̄ (q, ε) there holds

‖v̄‖, ‖dl,j v̄‖ = O(
1

λ2
).

Proof. The bound on ‖v̄‖ follows from Lemma 3.1. Differentiating 〈φk,i, v̄〉Lg0 = 0 we obtain

〈φk,i, dl,j v̄〉Lg0 = −〈dl,jφk,i, v̄〉Lg0 = O(‖v̄‖),
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whence denoting by Π〈φk,i〉 the orthogonal projection onto Π〈φk,i〉 we have ‖Π〈φk,i〉v̄‖ ' 1
λ2 due to

‖v̄‖ . 1
λ2 . Moreover, since ∂Jτ (αiϕi + v̄)v = 0 for every smoothly-varying vector field v ∈ 〈φk,i〉⊥Lg0 of

unit norm we have

0 =dl,j(∂Jτ (αiϕi + v̄)v) = ∂2Jτ (αiϕi + v̄)dl,j(α
iϕi + v̄)v + ∂Jτ (αiϕi + v̄)dl,jv

and we can estimate the last summand above as

∂Jτ (αiϕi + v̄)dl,jv =∂Jτ (αiϕi + v̄)Π〈φk,i〉(dl,jv) = O(|∂Jτ (αiϕi + v̄)|‖v‖),

since 〈φk,i, dl,jv〉 = 〈dl,jφk,i, v〉 = O(‖v‖). Thence, ∂Jτ (αiϕi + v̄) = O( 1
λ2 ) implies

∂2Jτ (αiϕi + v̄)vdl,j v̄ = −∂2Jτ (αiϕi + v̄)vdl,j(α
iϕi) +O(

1

λ2
).

Then the claim would follow from ‖Π〈φk,i〉(dl,j v̄)‖ ' 1
λ2 , which we had seen before, and the uniform

positivity of ∂2Jτ (αiϕi) on 〈φk,i〉⊥Lg0 , provided we show

∂2Jτ (αiϕi + v̄)φl,jv =O(
1

λ2
), (3.7)

cf. (4.1) and (4.7) for weaker statements. Let us prove (3.7) for l = 1. We next claim that

∂2Jτ (αiϕi + v̄)ϕjv = ∂2Jτ (αiϕi)ϕjv +O(
1

λ2
).

From (2.4), since v ∈ 〈φk,i〉⊥Lg0 , it is sufficient to show that we must show (see the proof of Lemma 3.1)∫
K(αiϕi + v̄)p−1vϕjdµg0 −

∫
K(αiϕi)

p−1vϕjdµg0 = O(
1

λ2
).

Again, this can be seen considering the set {|v̄| ≤ αiϕi} and its complementary, using Hölder’s inequality
and ‖v̄‖ . 1

λ2 . Thus, from the above claim and (2.4) we find, due to the orthogonalities 〈φk,i, v〉Lg0 = 0,

∂2Jτ (αiϕi)ϕiv =− 2p

(kτ )
2
p+1

αiϕi

rαiϕi
(kτ )αiϕi

∫
K(αiϕi)

p−1ϕjvdµg0

− 4

(kτ )
2
p+1 +1

αiϕi

∫
Lg0(αiϕi)ϕjdµg0

∫
K(αiϕi)

pvdµg0

+
2(p+ 3)rαiϕi

(kτ )
2
p+1 +2

αiϕi

∫
K(αiϕi)

pϕjdµg0

∫
K(αiϕi)

pvdµg0 .

By definition of V̄ (q, ε) we have τ ' 1
λ2 and recalling (5.2) and (5.5) we may simplify this to

∂2Jτ (αiϕi)ϕjv ' −4n(n− 1)
n+ 2

n− 2

α2

α
2n
n−2

K,τ

∫
K(αiϕi)

4
n−2ϕjvdµg0

− 2

c̄0α
2n
n−2

K,τ

∫
Lg0(αiϕi)ϕjdµg0

∫
K(αiϕi)

n+2
n−2 vdµg0

+ 4n(n− 1)
(n+2
n−2 + 3)α2

c̄0(α
2n
n−2

K,τ )2

∫
K(αiϕi)

n+2
n−2ϕjdµg0

∫
K(αiϕi)

n+2
n−2 vdµg0

up to error O( 1
λ2 ). Moreover, from (5.3) and (5.4) we have∫

Lg0(αiϕi)ϕjdµg0 = 4n(n− 1)c̄0αj +O(
1

λ2
)
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and since d(ai, aj) ' 1, we find by expanding and using Lemma 5.2∫
K(αiϕi)

4
n−2ϕjvdµg0 = α

4
n−2

j

∫
Kϕ

n+2
n−2

j vdµg0 ;

∫
K(αiϕi)

n+2
n−2 vdµg0 =

∑
i

α
n+2
n−2

i

∫
Kϕ

n+2
n−2

i vdµg0 ;

∫
K(αiϕi)

n+2
n−2ϕjdµg0 = α

n+2
n−2

j

∫
Kϕ

2n
n−2

j dµg0 ;

∫
K(αiϕi)

n+2
n−2 vdµg0 =

∑
i

α
n+2
n−2

i

∫
Kϕ

n+2
n−2

i vdµg0 ,

up to errors of order O( 1
λ2 ). Therefore, since |∇Ki|λi

= O( 1
λ2 ) due to (3.1), we obtain

∂2Jτ (αiϕi)ϕjv '− 4n(n− 1)
n+ 2

n− 2

α2

α
2n
n−2

K,τ

Kiα
4

n−2

j

∫
ϕ
n+2
n−2

j vdµg0

− 8n(n− 1)αj

α
2n
n−2

K,τ

∑
i

Kiα
n+2
n−2

i

∫
ϕ
n+2
n−2

i vdµg0

+ 4n(n− 1)
(n+2
n−2 + 3)α2

(α
2n
n−2

K,τ )2
α
n+2
n−2

j Kj

∑
i

Kiα
n+2
n−2

i

∫
ϕ
n+2
n−2

i vdµg0

up to an error O( 1
λ2 ). Therefore using again (3.1) we have

∂2Jτ (αiϕi)ϕjv '−
n+ 2

n− 2

∫
ϕ
n+2
n−2

j vdµg0 − 2
∑
i

αiαj
α2

∫
ϕ
n+2
n−2

i vdµg0 + (
n+ 2

n− 2
+ 3)

∑
i

αiαj
α2

∫
ϕ
n+2
n−2

i vdµg0

up to the same error. Thus, ∂2Jτ (αiϕi)ϕjv = O( 1
λ2 ) using (5.6), obtaining (3.7) for l = 1.

For l = 2, 3 one can reason analogously.

Theorem 1 follows from the next proposition, based on the analysis of Section 4, and Corollary 4.1.

Proposition 3.1. Let n ≥ 5 and let K : M → R be a positive Morse function satisfying (1.3). Then,
for every subset {x1, . . . , xq} of {∇K = 0} ∩ {∆K < 0}, as τ → 0 there exists a unique

u = αiϕai,λi + v̄ ∈ V (q, ε) with ‖u‖2Lg0 = 1, d(ai, xi) = o(1) and ∂Jτ (u) = 0.

Proof. Due to (3.4), we have

|∂J | ≤ ε̃

λ3
on V̄ (q, ε) and |∂J | ≥ ε̂

λ3
on ∂V̄ (q, ε)

as long as c < αj < C. Thus, by (ii) in Lemma 3.1, it is sufficient to look for critical points in the set

C̃ := {ũ(α, λ, a) := αiϕi + v̄(α, λ, a) ∈ V̄ (q, ε) | ‖ũ‖2Lg0 = 1},

which is a smooth (3(n+ 2)− 1)-dimensional manifold in W 1,2(M, g0).
Vice-versa, we claim that a critical point of JτbC̃ is indeed a critical point of Jτ . In fact, by Lagrange

multiplier’s rule, the gradient of Jτ at a constrained critical point ũ0 must be orthogonal to C̃. Since Jτ is
dilation-invariant, its gradient on C must be tangent to the unit sphere in the ‖ · ‖Lg0 norm. On the other
hand, by construction of v̄, the gradient of Jτ at ũ0 is tangent to C := {αiϕi ∈ V̄ (q, ε) | ‖u‖2Lg0 = 1} at
the point u0 such that ũ0 = u0 + v̄0 (with obvious notation). By the estimate on the derivatives of v̄ in
Lemma 3.2, Tũ0 C̃ is nearly parallel to Tu0C, which implies that ∂Jτ (ũ0) = 0, as desired.

It remains to prove existence and uniqueness of critical points of JτbC̃ . For the existence part, one
can use the expansions in Lemmas 5.4, 5.5 and 5.6, together with the definition of V̄ (q, ε) to show that
∂Jτ is non-vanishing on the boundary of C̃. For example (see (iii) in the definition of V̄ (q, ε)), suppose

λ2
j = −c2

∆K(xj)

K(xj)τ
+

ε

λ2
;

1

λ2
= τ.
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From Lemma 5.5 one deduces that there exists ε̃ > 0, tending to zero as ε→ 0, such that

λj∂λjJτ (αiϕi) >
ε̃

λ3
.

From Lemmas 3.1 and 3.2 one has also that

λj∂λjJτ (u(α, λ, a)) >
1

2

ε̃

λ3
,

with a similar reversed inequality, with opposite sign, if λ2
j = −c2 ∆K(xj)

K(xj)τ
− ε

λ2 . Analogous estimates
can be derived for the α− and a−derivatives, yielding that the degree of ∂Jτ on C̃ is well-defined and
non-zero. This shows the existence of a critical point for JτbC̃ , which is (freely) critical for Jτ by the
above discussion. Since by construction the negative part of the above solutions is small in W 1,2 norm,
it is possible to show from Sobolev’s inequality that it has to vanish identically, so full positivity follows
then from the maximum principle.

Uniqueness follows from Lemma 3.2 and Proposition 4.1, implying the strict convexity or concavity
of JτbC̃ with respect to all parameters α’s, λ’s and the coordinates of the points ai, provided they are
chosen so that ∇2K(xi) is diagonal.

4 The second variation
Let V̄ (q, ε) be the open set defined in (3.1): the aim of this section is to find there a nearly diagonal form
of the second differential of Jτ . Let us recall our notation from Section 2, and in particular that of the
orthogonal space Hu in (2.9).

Proposition 4.1. For αiϕi + v̄ ∈ V̄ (q, ε), consider the decomposition

W 1,2(M, g0) = Hαiϕi ⊕ 〈ϕi〉1≤i≤q ⊕ 〈λi∂λiϕi〉1≤i≤q ⊕ 〈
∇ai
λi

ϕi〉1≤i≤q =: V ⊕Xα ⊕Xλ ⊕Xa.

Then there exists a basis B of W 1,2(M, g0), with elements in the subspaces of the above decomposition,
such that the coefficients of the the second differential of Jτ with respect to B have the form

[∂2Jτ (αkϕk + v̄)]B =
1

λ2


V+ 0 0 0
0 Aq−1,0 0 0
0 0 Λ+

0 0 0 −∇
2K
K

+ o(
1

λ2
), where:

(i) V+ represents the coefficients of a symmetric, positive-definite operator on V with eigenvalues uni-
formly bounded away from zero;

(ii) Aq−1,0 has q−1 negative eigenvalues uniformly bounded away from zero and one-dimensional kernel;

(iii) Λ+ is positive-definite, with eigenvalues uniformly bounded away from zero;

(iv) −∇
2K
K stands for the diagonal matrix −(∇

2Ki
Ki

)i=1,...,q.

Remark 4.1. The basis elements in B corresponding to the first two blocks have norms of order 1
λ2 , while

the ones corresponding to the last two blocks have norm of order 1. We made this choice to guarantee the
off-diagonal terms in the above matrix to be of order o( 1

λ2 ).

Proof of Proposition 4.1. We wish to analyse (2.4) for u = αiϕi + v̄ ∈ V̄ (q, ε). Recall that

W 1,2(M, g0) = 〈φk,i〉k,i ⊕Hαiϕi ,
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see Section 2. We then choose a basis {ν0, ν1, ν2, . . .} for Hαiϕi which is orthonormal with respect to
〈·, ·〉⊥Lg0 and for λ ' λ1 ' . . . ' λq ' 1√

τ
define

B = {φ̃k,i, ν̃j} := {ϕi
λ
, λi∂λiϕi,

∇ai
λi

ϕi,
νj
λ
}; k = 1, 2, 3, i = 1, . . . , q.

It is not hard to see that, with this choice, the coefficients [∂2Jτ (αkϕk + v̄)]B are all of order O( 1
λ2 ), and

our goal is to make their estimates more precise, considering different matrix blocks.

First block. The fact that ∂2Jτ (αiϕi) is (uniformly) positive-definite on Hαiϕi is well-known, see e.g.
[5]. The positivity of ∂2Jτ (αiϕi + εv) on the same subspace follows from the Hölder continuity of the
second differential and the fact that ‖v̄‖ = O( 1

λ2 ).

First two blocks. Testing the second differential with ν̃i and φ̃1,j =
ϕj
λ we get

∂2Jτ (αiϕi + v̄)ν̃iφ̃1,j = o(
1

λ2
) (4.1)

using the orthogonality 〈ν̃i, φ̃1,j〉Lg0 = 0, Lemma 5.1 and the fact that ‖v̄‖ . 1
λ2 . Moreover, from (2.4)

and the fact that φ̃1,i is of order 1
λ , we find

∂2Jτ (αkϕk + v̄)φ̃1,iφ̃1,j =
16n(n− 1)c̄

2
n
0

(n− 2)(α
2n
n−2

K,τ )
n−2
n λ2

(−δk,l +
αkαl
α2

) = Ai,j ; c0 =

∫
Rn

dx

(1 + r2)n
, (4.2)

up to an error of order o( 1
λ2 ). Let us compare the above expression to

f(α) =
α2

(α
2n
n−2

K )
n−2
n

; α :=

q∑
i=1

α2
i , α

2n
n−2

K :=

q∑
i=1

Kiα
2n
n−2

i ,

with first- and second-order derivatives given by

1

2
∂αif(α) =

αi

(α
2n
n−2

K )
n−2
n

− α2Kiα
n+2
n−2

i

(α
2n
n−2

K )
n−2
n +1

=
αi

(α
2n
n−2

K )
n−2
n

(1− α2

α
2n
n−2

K

Kiα
4

n−2

i );

1

2
∂αi∂αjf(α) = δi,j

1

(α
2n
n−2

K )
n−2
n

(1− n+ 2

n− 2

α2

α
2n
n−2

K

Kiα
4

n−2

i ) + 2
αiαj

(α
2n
n−2

K )
n−2
n +1

α2

α
2n
n−2

K

Kiα
4

n−2

i Kjα
4

n−2

j

− 2
αiαj

(α
2n
n−2

K )
n−2
n +1

(Kiα
4

n−2

i +Kjα
4

n−2

j ) +
2n

n− 2

α2

(α
2n
n−2

K )
n−2
n +2

Kjα
n+2
n−2

j Kiα
n+2
n−2

i .

The function f is scaling invariant and restricted to {α
2n
n−2

K = 1} attains its maximum at (αi)i satisfying

α2

α
2n
n−2

K

Kiα
4

n−2

i = 1 for all i = 1, . . . , q,

where we have
1

2
∂αi∂αjf(α) =

4

(n− 2)(α
2n
n−2

K )
n−2
n

(−δi,j +
αiαj
α2

). (4.3)

Comparing (4.2) and (4.3) we conclude, with obvious notation

[∂2Jτ (αkϕk + v̄)]B =


1
λ2V+ 0 ∂2Jτ ν̃φ̃2 ∂2Jτ ν̃φ̃3

0 1
λ2Aq−1,0 ∂2Jτ φ̃1φ̃2 ∂2Jτ φ̃1φ̃3

∂2Jτ φ̃2ν̃ ∂2Jτ φ̃2φ̃1 ∂2Jτ φ̃2φ̃2 ∂2Jτ φ̃2φ̃3

∂2Jτ φ̃3ν̃ ∂2Jτ φ̃3φ̃1 ∂2Jτ φ̃3, φ̃2 ∂2Jτ φ̃3φ̃3

+ o(
1

λ2
).
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Terms off 2x2 blocks. Let us consider next the interaction of ν̃i with φ̃k,j = φk,j for k = 2, 3. Since

v̄ = O(
1

λ2
), ν̃i = O(

1

λ
), 〈ϕk, φk,j〉Lg0 = O(

1

λ2
) and 〈νi, φk,j〉Lg0 = 0

we simply find for (2.4)

∂2Jτ (αlϕl + v̄)ν̃iφ̃j,k = ∂2Jτ (αlϕl)ν̃iφ̃j,k = −
2prαiϕi

k
2
p+1 +1
τ

∫
K(αlϕl)

p−1ν̃iφ̃j,kdµg0 , (4.4)

up to an error of order o( 1
λ2 ). Indeed, by (2.4), the crucial estimates needed to verify (4.4) are∫

K(αlϕl)
pν̃idµg0 = o(

1

λ2
) =

∫
K(αlϕl)

pφ̃k,jdµg0 . (4.5)

These however follow easily by expansion and interaction estimates using

〈ϕl, φk,j〉Lg0 = O(
1

λ2
), 〈νi, φk,j〉Lg0 = 0, Lg0ϕl = 4n(n− 1)ϕ

n+2
n−2

l + o(1) in W−1,2(M, g0)

and Lemma 5.3. For the remaining integral in (4.4), we then have∫
K(αlϕl)

p−1ν̃iφ̃j,kdµg0 = Kj

∫
(αlϕl)

p−1ν̃iφ̃j,kdµg0 + o(
1

λ2
)

=Kj

∫
{ϕj>

∑
j 6=l α

lϕl}
(αlϕl)

p−1ν̃iφ̃j,kdµg0 +O(
1

λ

∑
j 6=l

‖ϕp−1
l ϕj‖

L
p+1
p

) + o(
1

λ2
)

=Kjα
p−1
j

∫
{ϕj>

∑
j 6=l α

lϕl}
ϕp−1
j ν̃iφ̃j,kdµg0 +O(

1

λ

∑
j 6=l

‖ϕp−1
l ϕj + ϕlϕ

p−1
j ‖

L
p+1
p

) + o(
1

λ2
)

(4.6)

and therefore, using Lemma 5.2 (with p = n+2
n−2 − τ)∫

K(αlϕl)
p−1ν̃iφ̃j,kdµg0 = Kjα

p−1
j

∫
ϕp−1
j ν̃iφ̃j,kdµg0 + o(

1

λ2
).

Then, since ‖ν̃i‖ = O( 1
λ ), τ = O( 1

λ2 ) and εr,s = O( 1
λn−2 ), we find∫

K(αlϕl)
p−1ν̃iφ̃j,kdµg0 =Kjα

4
n−2

j

∫
ϕ

4
n−2

j ν̃iφ̃j,kdµg0 + o(
1

λ2
) = o(

1

λ2
),

where the last inequality follows from Lemma 5.1 and 〈φk,j , ν̃i〉Lg0 = 0. Thus

∂2Jτ (αlϕl + v̄)ν̃iφ̃k,j = o(
1

λ2
) for k = 2, 3. (4.7)

By exactly the same arguments with φ̃1,i = O( 1
λ ) as for (4.5) there holds

∂2Jτ (αlϕl + v̄)φ̃1,iφ̃k,j = ∂2Jτ (αlϕl + v̄)
φ1,i

λ
φk,j =

1

λ
∂2Jτ (αlϕl)ϕiφk,j = o(

1

λ2
)

for k = 2, 3. Thus we arrive at

[∂2Jτ (αlϕl + v̄)]B =


1
λ2V+ 0 0 0

0 1
λ2Aq−1,0 0 0

0 0 ∂2Jτ φ̃2φ̃2 ∂2Jτ φ̃2φ̃3

0 0 ∂2Jτ φ̃3φ̃2 ∂2Jτ φ̃3, φ̃3

+ o(
1

λ2
).
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Last 2x2 block. We are left with the estimate of

∂2Jτ (αkϕk + v̄)φ̃k,iφ̃l,j = ∂2Jτ (αkϕk + v̄)φk,iφl,j

for k, l = 2, 3. Using the fact that∫
φk,iLg0(αmϕm + v̄)dµg0 = o(

1

λ
) =

∫
φk,iK(αmϕm + v̄)pdµg0 for k = 2, 3,

which follows from ‖v̄‖ = O( 1
λ2 ), Lemma 5.1 and Lemma 5.2, we find for (2.4)

∂2Jτ (αmϕm + v̄)φk,iφl,j

=
2

(kτ )
2
p+1

αmϕm+v̄

∫ [
φk,iLg0φl,j − p

rαmϕm+v̄

(kτ )αmϕm+v̄
K(αmϕm + v̄)p−1φk,iφl,j

]
dµg0

=:
2

(kτ )
2
p+1

αmϕm+v̄

I =:
2

(kτ )
2
p+1

αmϕm+v̄

(I1 − I2) =
2

(c0α
2n
n−2

K,τ )
n−2
n

(I1 − I2) + o

(
1

λ2

)
.

(4.8)

In the latter formula, recalling (2.2) and the definition of V̄ (q, ε), we have used the fact that

(kτ )
2
p+1

αmϕm+v̄ = (c0α
2n
n−2

K,τ )
n−2
n + o(1)

and that both I1, I2 are of order 1
λ2 . Let us first compute I2, for which we clearly have

I2 = p
rαmϕm+v̄

(kτ )αmϕm+v̄

∫
K(αmϕm)p−1φk,iφl,jdµg0 + p(p− 1)

rαmϕm+v̄

(kτ )αmϕm+v̄

∫
K(αmϕm)p−2φk,iφl,j v̄dµg0

up to an error o( 1
λ2 ), as ‖v̄‖ = O( 1

λ2 ), and therefore still up to an error o( 1
λ2 )

I2 =p
rαmϕm+v̄

(kτ )αmϕm+v̄

∫
K(αmϕm)p−1φk,iφl,jdµg0

+ 4n(n− 1)
n+ 2

n− 2

4

n− 2

α2

α
2n
n−2

K,τ

∫
K(αmϕm)

6−n
n−2φk,iφl,j v̄dµg0 .

As due to d(ai, aj) ' 1 for i 6= j, the interactions terms εi,j in (2.7) are of order 1
λn−2 = o( 1

λ2 ), we find

I2 =p
rαmϕm+v̄

(kτ )αmϕm+v̄
δi,jα

p−1
i

∫
Kϕp−1

i φk,iφl,idµg0

+ 4n(n− 1)
n+ 2

n− 2

4

n− 2

α2

α
2n
n−2

K,τ

δi,jα
6−n
n−2

i

∫
Kϕ

6−n
n−2

i φk,iφl,iv̄dµg0

up to an error o( 1
λ2 ). Using (3.1), up to the same error we may simplify this to

I2 =p
rαmϕm+v̄

(kτ )αmϕm+v̄
δi,jKiα

p−1
i

∫
ϕp−1
i φk,iφl,idµg0 + 4n(n− 1)

n+ 2

n− 2
δi,j

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i φk,iφl,idµg0

+ 4n(n− 1)
n+ 2

n− 2

4

n− 2
δi,jα

−1
i

∫
ϕ

6−n
n−2

i φk,iφl,iv̄dµg0

for some ε > 0 small and fixed. Moreover, by orthogonality and (5.12)

rαiϕi+v̄
(kτ )αiϕi+v̄

=
rαiϕi

(kτ )αiϕi
= 4n(n− 1)

α2

αp+1
K,θ

(1− (
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

)τ) + o(
1

λ2
),
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whence by (3.1) and the fact that p = n+2
n−2 − τ we arrive at

I2 =4n(n− 1)
n+ 2

n− 2
[(1− (

n− 2

n+ 2
+
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

)τ)]λθi δi,j

∫
ϕp−1
i φk,iφl,idµg0

+ 4n(n− 1)
n+ 2

n− 2
δi,j

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i φk,iφl,idµg0

+ 4n(n− 1)
n+ 2

n− 2

4

n− 2
δi,jα

−1
i

∫
ϕ

6−n
n−2

i φk,iφl,iv̄dµg0 .

Let us compute the last integral above, which is of order O( 1
λ2 ), as it is ‖v̄‖. There holds

4

n− 2

∫
ϕ

6−n
n−2

i φk,iφl,iv̄dµg0 =

∫
dk,iϕ

4
n−2

i φl,iv̄dµg0

=dk,i

∫
ϕ

4
n−2

i φl,iv̄dµg0 −
∫
ϕ

4
n−2

i dk,iφl,iv̄dµg0 −
∫
ϕ

4
n−2

i φl,idk,iv̄dµg0 .

Due to orthogonality, the first integral above is of order o( 1
λ2 ) and denoting by

ŵ = Π
〈φk,i〉

⊥Lg0
w for w ∈W 1,2(M, g0) (4.9)

the orthogonal projection onto 〈φk,i〉⊥Lg0 we have, up to an error o( 1
λ2 )∫

ϕ
4

n−2

i dk,iφl,iv̄dµg0 =

∫
ϕ

4
n−2

i d̂k,iφl,iv̄dµg0

due to the orthogonalities 〈v̄, φk,i〉Lg0 = 0 and the fact that ‖v̄‖ = O( 1
λ2 ). Hence, using the same notation

as in (4.9), we arrive at

I2 =4n(n− 1)
n+ 2

n− 2
[(1− (

n− 2

n+ 2
+
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

)τ)]λθi δi,j

∫
ϕp−1
i φk,iφl,idµg0

+ 4n(n− 1)
n+ 2

n− 2
δi,j

∫
Bc(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i φk,iφl,idµg0

− 4n(n− 1)
n+ 2

n− 2
δi,jα

−1
i (

∫
ϕ

4
n−2

i d̂k,iφl,iv̄dµg0 +

∫
ϕ

4
n−2

i φl,idk,iv̄dµg0).

Due to the fact that ‖v̄‖ = O( 1
λ2 ) we have, still up to a o( 1

λ2 )

∂2Jτ (αmϕm)v̄ =
8n(n− 1)

(c̄0α
p+1
K,τ )

n−2
n

(
Lg0

4n(n− 1)
v̄ − n+ 2

n− 2

∑
m

ϕ
4

n−2
m v̄

)
,

and we recall from (3.5) that ∂2Jτ (αmϕm)v̄ = −∂Jτ (αmϕm)+o( 1
λ2 ) on 〈φl,j〉⊥Lg0 . From this we deduce,

again by smallness of interactions terms εi,j

n+ 2

n− 2

∫
ϕ

4
n−2

i d̂k,iφl,iv̄dµg0 =
(c̄0α

p+1
K,τ )

n−2
n

8n(n− 1)
∂Jτ (αmϕm)d̂k,iφl,i +

〈v̄, d̂k,iφl,i〉Lg0
4n(n− 1)

and, by orthogonality and Lemma 5.1, there holds up to an error o( 1
λ2 )

〈v̄, d̂k,iφl,i〉Lg0 =− 〈dk,iv̄, φl,i〉Lg0 = −4n(n− 1)

∫
d̄k,ivdl,iϕ

n+2
n−2 dµg0

=− 4n(n− 1)
n+ 2

n− 2

∫
ϕ̄

4
n−2

i dk,ivφl,idµg0 .
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We therefore conclude that, up to an error o( 1
λ2 ),

I2 =4n(n− 1)
n+ 2

n− 2
[(1− (

n− 2

n+ 2
+
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

)τ)]λθi δi,j

∫
ϕp−1
i φk,iφl,idµg0

+ 4n(n− 1)
n+ 2

n− 2
δi,j

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i φk,iφl,idµg0

− 4n(n− 1)δi,jα
−1
i

(c̄0α
p+1
K,τ )

n−2
n

8n(n− 1)
∂Jτ (αmϕm)d̂k,iφl,i,

at which point v̄ has been eliminated from the main terms in the expansion. By Lemma 3.1 we then have

∂Jτ (αmϕm)b〈φk,i〉= o(
1

λ2
),

so we may pass from d̂k,iφl,i to dk,iφl,i in the above formulas and, as ∂Jτ (αmϕm) = O( 1
λ2 ), we obtain

(c̄0α
p+1
K,τ )

n−2
n

8n(n− 1)
∂Jτ (αmϕm)dk,iφl,i

=− αmτ
∫

Bε(am)

(
ϕ
n+2
n−2
m ln(1 + λ2

mr
2)

n−2
2 − c̄1

c1
ϕ
n+2
n−2
m +

2

n− 2

c̃1
c2
ϕ

4
n−2
m λm∂λmϕm

)
dk,iφl,idµg0

+ αmτ

∫
Bε(am)

(
c̃1
c̃2

λ2
mr

2

2n
ϕ
n+2
n−2
m − c̃1c̄2

c̃2c1
ϕ
n+2
n−2
m +

2

n− 2

c̃1
c2
ϕ

4
n−2
m λm∂λmϕm

)
dk,iφl,idµg0

− αm
∫

Bε(am)

(
∇2Km

2Km
x2 − ∆Km

2nKm
r2)ϕ

n+2
n−2
m dk,iφl,idµg0 .

Still by the fact that εi,j = o( 1
λ2 ) we therefore arrive at

I2 =4n(n− 1)
n+ 2

n− 2
[(1− (

n− 2

n+ 2
+
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

)τ)]λθi δi,j

∫
ϕp−1
i φk,iφl,idµg0

+ 4n(n− 1)
n+ 2

n− 2
δi,j

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i φk,iφl,idµg0

− 4n(n− 1)δi,j

(
− τ

∫
Bε(ai)

(
ϕ
n+2
n−2

i ln(1 + λ2
i r

2)
n−2
2 − c̄1

c1
ϕ
n+2
n−2

i +
2

n− 2

c̃1
c2
ϕ

4
n−2

i λi∂λiϕi

)
dk,iφl,idµg0

+ τ

∫
Bε(ai)

(
c̃1
c̃2

λ2
i r

2

2n
ϕ
n+2
n−2

i − c̃1c̄2
c̃2c1

ϕ
n+2
n−2

i +
2

n− 2

c̃1
c2
ϕ

4
n−2

i λi∂λiϕi

)
dk,iφl,idµg0

−
∫

Bε(ai)

(
∇2Ki

2Ki
x2 − ∆Ki

2nKi
r2)ϕ

n+2
n−2

i dk,iφl,idµg0

)
,
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up to some o( 1
λ2 ). By oddness, we may simplify this to

I2 =4n(n− 1)
n+ 2

n− 2
[(1− (

n− 2

n+ 2
+
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

)τ)]λθi δi,jδk,l

∫
ϕp−1
i φk,iφk,idµg0

+ 4n(n− 1)
n+ 2

n− 2
δi,jδk,l

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i φk,iφk,idµg0

− 4n(n− 1)δi,jδk,l

(
− τ

∫
Bε(ai)

(
ϕ
n+2
n−2

i ln(1 + λ2
i r

2)
n−2
2 − c̄1

c1
ϕ
n+2
n−2

i +
2

n− 2

c̃1
c2
ϕ

4
n−2

i λi∂λiϕi

)
dk,iφk,idµg0

+ τ

∫
Bε(ai)

(
c̃1
c̃2

λ2
i r

2

2n
ϕ
n+2
n−2

i − c̃1c̄2
c̃2c1

ϕ
n+2
n−2

i +
2

n− 2

c̃1
c2
ϕ

4
n−2

i λi∂λiϕi

)
dk,iφk,idµg0

−
∫

Bε(ai)

(
∇2Ki

2Ki
x2 − ∆Ki

2nKi
r2)ϕ

n+2
n−2

i dk,iφk,idµg0

)

By Lemma 5.1 it follows that, up to some o( 1
λ2 ), for k = 2, 3

4n(n− 1)
n+ 2

n− 2

∫
ϕ

4
n−2

i λi∂λiϕidk,iφk,idµg0 =

∫
Lg0(λi∂λiϕi)dk,iφk,idµg0

=〈λi∂λiϕi, (dk,i)2ϕi〉Lg0 = dk,i〈λi∂λiϕi, dk,iϕi〉Lg0 − 〈λi∂λidk,iϕi, dk,iϕi〉Lg0

=dk,i〈φ2,i, φk,i〉Lg0 −
1

2
λi∂λi‖φ2

k,i‖Lg0 = o(1),

as 〈φ2,i, φk,i〉Lg0 and ‖φ2
k,i‖Lg0 are almost constant in ai and λi. So we simplify to

I2
4n(n− 1)

=
n+ 2

n− 2
[(1− (

n− 2

n+ 2
+
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

)τ)]λθi δi,jδk,l

∫
ϕp−1
i φk,iφk,idµg0

+
n+ 2

n− 2
δi,jδk,l

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i φk,iφk,idµg0 − δi,jδk,l
(
− τ

∫
Bε(ai)

(
ln(1 + λ2

i r
2)

n−2
2 − c̄1

c1

)
ϕ
n+2
n−2

i dk,iφk,idµg0

+ τ

∫
Bε(ai)

(
c̃1
c̃2

λ2
i r

2

2n
− c̃1c̄2
c̃2c1

)
ϕ
n+2
n−2

i dk,iφk,idµg0 −
∫

Bε(ai)

(∇2Ki

2Ki
x2 − ∆Ki

2nKi
r2)ϕ

n+2
n−2

i dk,iφk,idµg0

)
.

Next, for the first summand above we find that, up to an error o( 1
λ2 )

λθi

∫
ϕp−1
i φk,iφk,idµg0 =

∫
ϕ

4
n−2

i φk,iφk,idµg0 +

∫
Bε(ai)

ϕ
4

n−2

i (λθiϕ
−τ
i − 1)φk,iφk,idµg0

=
n− 2

n+ 2

∫
dk,iϕ

n+2
n−2

i φk,idµg0 +

∫
Bε(ai)

ϕ
4

n−2

i ((1 + λ2
i r

2)θ − 1)φk,iφk,idµg0

=
1

4n(n− 1)

n− 2

n+ 2
〈φk,i, φk,i〉Lg0 + θ

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)φk,iφk,idµg0
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using Lemma 5.1 and properly expanding. Recalling (4.8), we thus conclude

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)φk,iφl,j =

∫
Lg0

4n(n− 1)
φk,iφl,jdµg0 −

I2
4n(n− 1)

=δi,jδk,l

(
(1 +

n+ 2

n− 2
(
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

))τ

∫
ϕ

4
n−2

i φk,iφk,idµg0 −
n+ 2

n− 2
τ

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 φk,iφk,idµg0

− τ
∫

Bε(ai)

(
ln(1 + λ2

i r
2)

n−2
2 − c̄1

c1

)
ϕ
n+2
n−2

i dk,iφk,idµg0 + τ

∫
Bε(ai)

(
c̃1
c̃2

λ2
i r

2

2n
− c̃1c̄2
c̃2c1

)
ϕ
n+2
n−2

i dk,iφk,idµg0

−
∫

Bε(ai)

(
∇2Ki

2Ki
x2 − ∆Ki

2nKi
r2)ϕ

n+2
n−2

i dk,iφk,idµg0 −
n+ 2

n− 2

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i φk,iφk,idµg0

)
(4.10)

and in particular for i = 1, . . . , q, and j = 1, . . . , n we have, up to an error o( 1
λ2 )

[∂2Jτ (αkϕk + v̄)]B =


1
λ2V+ 0 0 0

0 1
λ2Aq−1,0 0 0

0 0 ∂2Jτλi∂λiϕiλi∂λiϕi 0

0 0 0 ∂2Jτ
(∇ai )j
λi

ϕi
(∇ai )j
λi

ϕi

 .

Last diagonal terms. Concerning λ-derivatives, we first notice that mixed derivatives in different λi’s
are of order λ2−n, which is a o(λ−2) since n ≥ 5. Therefore it is sufficient to compute second derivatives
with respect to the same λi. This corresponds to

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(λi∂λiϕi)

2 = (1 +
n+ 2

n− 2
(
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

))τ

∫
ϕ

4
n−2

i φk,iφk,idµg0

− n+ 2

n− 2
τ

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 |λi∂λiϕi|2dµg0

− τ
∫

Bε(ai)

(
ln(1 + λ2

i r
2)

n−2
2 − c̄1

c1

)
ϕ
n+2
n−2

i (λi∂λi)
2ϕidµg0 + τ

∫
Bε(ai)

(
c̃1
c̃2

λ2
i r

2

2n
− c̃1c̄2
c̃2c1

)
ϕ
n+2
n−2

i (λi∂λi)
2ϕidµg0

−
∫

Bε(ai)

(
∇2Ki

2Ki
x2 − ∆Ki

2nKi
r2)ϕ

n+2
n−2

i (λi∂λi)
2ϕidµg0 −

n+ 2

n− 2

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i |λi∂λiϕi|2dµg0 .

The second-last summand vanishes and
∫
ϕp−1
i φk,iφk,idµg0 = ck + o(1), cf. Lemma 5.2, whence

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(λi∂λiϕi)

2 = c2(1 +
n+ 2

n− 2
(
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

))τ

− n+ 2

n− 2
τ

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 |λi∂λiϕi|2dµg0 − τ

∫
Bε(ai)

(
ln(1 + λ2

i r
2)

n−2
2 − c̄1

c1

)
ϕ
n+2
n−2

i (λi∂λi)
2ϕidµg0

+ τ

∫
Bε(ai)

(
c̃1
c̃2

λ2
i r

2

2n
− c̃1c̄2
c̃2c1

)
ϕ
n+2
n−2

i (λi∂λi)
2ϕidµg0 −

n+ 2

n− 2

∆Ki

2nKi

∫
Bε(ai)

r2ϕ
4

n−2

i |λi∂λiϕi|2dµg0 .

Moreover,∫
ϕ
n+2
n−2

i (λi∂λi)
2ϕidµg0 = λi∂λi

∫
ϕ
n+2
n−2

i λi∂λiϕidµg0 −
n+ 2

n− 2

∫
ϕ

4
n−2

i |λi∂λiϕi|2dµg0 = −n+ 2

n− 2
c2 + o(1),
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and
n+ 2

n− 2

∫
Bε(ai)

r2ϕ
4

n−2

i |λi∂λiϕi|2dµg0 =

∫
Bε(ai)

r2λi∂λiϕiλi∂λiϕ
n+2
n−2

i dµg0

=λi∂λi

∫
Bε(ai)

r2λi∂λiϕiϕ
n+2
n−2

i dµg0 −
∫

Bε(ai)

r2ϕ
n+2
n−2

i (λi∂λi)
2ϕidµg0 .

Thus, recalling (3.1), in particular c̃1τ + c̃2
∆Ki
Kiλ2

i
= o( 1

λ2 ), we arrive at

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(λi∂λiϕi)

2 = c2τ −
n+ 2

n− 2
τ

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 |λi∂λiϕi|2dµg0

− τ
∫

Bε(ai)

ln(1 + λ2
i r

2)
n−2
2 ϕ

n+2
n−2

i (λi∂λi)
2ϕidµg0 +

c̃1
c̃2

τ

2n
λ3
i ∂λi

∫
Bε(ai)

r2λi∂λiϕiϕ
n+2
n−2

i dµg0 ,

and for the last integral above we find passing to integration over Rn

λi∂λi

∫
Bε(ai)

r2λi∂λiϕiϕ
n+2
n−2

i dµg0 = λi∂λi

∫
Rn
r2λi∂λiδ0,λiδ

n+2
n−2

0,λi
dx

=
n− 2

2n
(λi∂λi)

2

∫
r2δ

2n
n−2

0,λi
dx =

n− 2

2n
(λi∂λi)

2(λ−2
i

∫
Rn

r2

(1 + r2)n
dx) =

n− 2

8n

c̄2
λ2
i

up to some error of order o(1). Consequently,

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(λi∂λiϕi)

2 = c2(1 +
n− 2

16n2

c̃1c̄2
c̃2c2

)τ

− n+ 2

n− 2
τ

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 |λi∂λiϕi|2dµg0 − τ

∫
Bε(ai)

ln(1 + λ2
i r

2)
n−2
2 ϕ

n+2
n−2

i (λi∂λi)
2ϕidµg0 .

Finally, we calculate passing to integration over Rn and up to a o(1)

n+ 2

n− 2

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 |λi∂λiϕi|2dµg0

=

∫
Rn

ln(1 + λ2
i r

2)
n−2
2 λi∂λiδ0,λiλi∂λiδ

n+2
n−2

0,λi
dx = λi∂λi

∫
Rn

ln(1 + λ2
i r

2)
n−2
2 λi∂λiδ0,λiδ

n+2
n−2

0,λi
dx

− (n− 2)

∫
Rn

λ2
i r

2

1 + λ2
i r

2
λi∂λiδ0,λiδ

n+2
n−2

0,λi
dx−

∫
Rn

ln(1 + λ2
i r

2)
n−2
2 (λi∂λi)

2δ0,λiδ
n+2
n−2

0,λi
dx,

where the first summand above vanishes by rescaling, and we are reduced to

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(λi∂λiϕi)

2 = c2(1 +
n− 2

16n2

c̃1c̄2
c̃2c2

)τ + (n− 2)τ

∫
Rn

λ2
i r

2

1 + λ2
i r

2
λi∂λiδ0,λiδ

n+2
n−2

0,λi
dx,

where, up to some o(1),∫
Rn

λ2
i r

2

1 + λ2
i r

2
λi∂λiδ0,λiδ

n+2
n−2

0,λi
dx =

n− 2

2

∫
Rn

r2(1− r2)

(1 + r2)n+2
dx = −n− 2

2
ĉ3, ĉ3 = −

∫
Rn

r2(1− r2)

(1 + r2)n+2
dx. (4.11)

By an explicit computation (all the above constants can be explicitly evaluated), we conclude that up to
an error o( 1

λ2 )

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(λi∂λiϕi)

2 =

(
c2(1 +

n− 2

16n2

c̃1c̄2
c̃2c2

)− (n− 2)2

2
ĉ3

)
τ =

(n− 2)2Γ2(n2 )

128nΓ(n+ 1)
τ.
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Thence we arrive at (with i = 1, . . . , q and j = 1, . . . , n)

[∂2Jτ (αkϕk + v̄)]B =


1
λ2V+ 0 0 0

0 1
λ2Aq−1,0 0 0

0 0 1
λ2 Λ+

0 0 0 ∂2Jτ
(∇ai )j
λi

ϕi
(∇ai )j
λi

ϕi


up to o( 1

λ2 ), where Λ+ > 0 is as in the statement. We are left with the computation of the terms

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)

∇ai
λi

ϕi
∇ai
λi

ϕi,

for instance we consider

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(

(∇ai)1

λi
ϕi)

2

=(1 +
n+ 2

n− 2
(
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

))τ

∫
ϕ

4
n−2

i | (∇ai)1

λi
ϕi|2dµg0 −

n+ 2

n− 2
τ

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 | (∇ai)1

λi
ϕi|2dµg0

− τ
∫

Bε(ai)

(
ln(1 + λ2

i r
2)

n−2
2 − c̄1

c1

)
ϕ
n+2
n−2

i (
(∇ai)1

λi
)2ϕidµg0 + τ

∫
Bε(ai)

(
c̃1
c̃2

λ2
i r

2

2n
− c̃1c̄2
c̃2c1

)
ϕ
n+2
n−2

i (
(∇ai)1

λi
)2ϕidµg0

−
∫

Bε(ai)

(
∇2Ki

2Ki
x2 − ∆Ki

2nKi
r2)ϕ

n+2
n−2

i (
(∇ai)1

λi
)2ϕidµg0 −

n+ 2

n− 2

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i | (∇ai)1

λi
ϕi|2dµg0 .

At this point some simplifications occur. From the relation

c̃1τ + c̃2
∆Ki

Kiλ2
i

= o(
1

λ2
)

we obtain cancellation of the terms involving ∆Ki and c̃1
c̃2

λ2
i r

2

2n . Using as well the relations∫
ϕ

4
n−2

i | (∇ai)1

λi
ϕi|2dµg0 =

c3
n

+ o(1);

∫
ϕ
n+2
n−2

i (
(∇ai)1

λi
)2ϕidµg0 = −n+ 2

n− 2

c3
n

+ o(1)

together with ( c̄1c̄0 −
c̃1
c̃2
c̄2
c̄0

) c3n = ( c̄1c1 −
c̃1
c̃2
c̄2
c1

) c2n , due to the fact that c̄0 = c1 and c2 = c3, to obtain

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(

(∇ai)1

λi
ϕi)

2

=
c3
n
τ − n+ 2

n− 2
τ

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 | (∇ai)1

λi
ϕi|2dµg0 − τ

∫
Bε(ai)

ln(1 + λ2
i r

2)
n−2
2 ϕ

n+2
n−2

i (
(∇ai)1

λi
)2ϕidµg0

−
∫

Bε(ai)

∇2Ki

2Ki
x2ϕ

n+2
n−2

i (
(∇ai)1

λi
)2ϕidµg0 −

n+ 2

n− 2

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i | (∇ai)1

λi
ϕi|2dµg0 .

Moreover we have, passing to integration over Rn, up to an error o(1)

n+ 2

n− 2

∫
Bε(ai)

ϕ
4

n−2

i ln(1 + λ2
i r

2)
n−2
2 | (∇ai)1

λi
ϕi|2dµg0 =

∫
Rn

ln(1 + λ2
i r

2)
n−2
2

(∇ai)1

λi
δ
n+2
n−2

0,λi

(∇ai)1

λi
δ0,λidx

=− (n− 2)

∫
Rn

λix1

1 + λ2
i r

2
δ
n+2
n−2

0,λi

(∇ai)1

λi
δ0,λidx−

∫
Rn

ln(1 + λ2
i r

2)
n−2
2 δ

n+2
n−2

0,λi
(
(∇ai)1

λi
)δ0,λidx
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and find for the first summand

(n− 2)

∫
Rn

λix1

1 + λ2
i r

2
δ
n+2
n−2

0,λi

(∇ai)1

λi
δ0,λidx =−

∫
Rn
δ

4
n−2

0,λi
| (∇ai)1

λi
δ0,λi |2dx = −c3

n
.

We therefore are left with

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(

(∇ai)1

λi
ϕi)

2

=−
∫

Bε(ai)

∇2Ki

2Ki
x2ϕ

n+2
n−2

i (
(∇ai)1

λi
)2ϕidµg0 −

n+ 2

n− 2

∫
Bε(ai)

∇2Ki

2Ki
x2ϕ

4
n−2

i | (∇ai)1

λi
ϕi|2dµg0 .

Finally, passing to integration over Rn, up to some o(1) there holds

n+ 2

n− 2

∫
Bε(ai)

x2
lϕ

4
n−2

i | (∇ai)1

λi
ϕi|2dµg0 =

∫
Rn
x2
l

(∇ai)1

λi
δ
n+2
n−2

0,λi

(∇ai)1

λi
δ0,λidx

=− 2δ1,l

∫
Rn

x1

λi
δ
n+2
n−2

0,λi

(∇ai)1

λi
δ0,λidx−

∫
Rn
x2
l

(∇ai)1

λi
δ
n+2
n−2

0,λi
(
(∇ai)1

λi
)2δ0,λidx,

and similarly for j = 2, . . . , n. Diagonalizing the Hessian we have ∇2Kix
2 =

∑n
l=1 ∂

2
lKix

2
l and∫

Rn

x1

λi
δ
n+2
n−2

0,λi

(∇ai)1

λi
δ0,λidx =− (n− 2)

∫
Rn
δ

2n
n−2

0,λi

x2
1

1 + λ2
i r

2
dx = −n− 2

nλ2
i

∫
Rn

r2

(1 + r2)n+1
dx,

(and similarly for j = 2, . . . , n), so we conclude that

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)(

(∇ai)1

λi
ϕi)

2 = −c∂
2
1Ki

Kiλ2
i

.

Similarly, one can show analogous formula for any couple of indices

(kτ )
2
p+1

αmϕm+v̄

8n(n− 1)
∂2Jτ (αmϕm + v̄)

(∇ai)k
λi

ϕi
(∇ai)l
λi

ϕi = −c
∂2
k,lKi

Kiλ2
i

.

The proof is thereby complete.

From Proposition 4.1 we deduce that the kernel of ∂2Jτ is exactly one-dimensional. The presence of a
kernel is unavoidable due to the scaling invariance of Jτ , but this degeneracy turns out to be minimal.
We can therefore restrict ourselves to some homogeneous constraint.

Corollary 4.1. Let Iτ = Jτb[‖·‖Lg0 =1] or Iτ = Jτb[‖·‖kτ=1], and let ũ be normalization of a solution u

of (1.5) in V̄ (q, ε). Then

m(Iτ , ũ) = q − 1 +

q∑
i=1

(n−m(K, ai)).

5 Appendix: some technical estimates
In this appendix, recalling our notation, we collect some useful statements and formulas proved in [30].

Lemma 5.1. There holds Lg0ϕa,λ = O(ϕ
n+2
n−2

a,λ ). More precisely on a geodesic ball Bα(a) for α > 0 small

Lg0ϕa,λ = 4n(n− 1)ϕ
n+2
n−2

a,λ − 2ncnr
n−2
a ((n− 1)Ha + ra∂raHa)ϕ

n+2
n−2

a,λ +
Rga
λ
u

2
n−2
a ϕ

n
n−2

a,λ + o(rn−2
a )ϕ

n+2
n−2

a,λ ,

where ra = dga(a, ·). Since Rga = O(r2
a) in conformal normal coordinates, cf. [23], we obtain
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(i) Lg0ϕa,λ = 4n(n− 1)[1− cn
2 r

n−2
a (Ha(a) + n∇Ha(a)x)]ϕ

n+2
n−2

a,λ +O(λ−2ϕa,λ) for n = 5;

(ii) Lg0ϕa,λ = 4n(n− 1)ϕ
n+2
n−2

a,λ = 4n(n− 1)[1 + cn
2 W (a) ln r]ϕ

n+2
n−2

a,λ +O(λ−2ϕa,λ) for n = 6;

(iii) Lg0ϕa,λ = 4n(n− 1)ϕ
n+2
n−2

a,λ = O(λ−2ϕa,λ) for n ≥ 7,

where W (a) = |W(a)|2. The expansions stated above persist upon taking λ∂λ and ∇aλ derivatives.

Lemma 5.2. Let θ = n−2
2 τ and k, l = 1, 2, 3 and i, j = 1, . . . , q. Then, for εi,j as in (2.7), there holds

uniformly as 0 ≤ τ −→ 0

(i) |φk,i|, |λi∂λiφk,i|, | 1
λi
∇aiφk,i| ≤ Cϕi;

(ii) λθi
∫
ϕ

4
n−2−τ
i φk,iφk,idµg0 = ck · id+O(τ + 1

λ2+θ
i

), ck > 0;

(iii) for i 6= j up to some error of order O(τ2 +
∑
i6=j(

1
λ4
i

+ ε
n+2
n

i,j ))

λθi

∫
ϕ
n+2
n−2−τ
i φk,jdµg0 = bkdk,iεi,j =

∫
ϕ1−τ
i dk,jϕ

n+2
n−2

j dµg0 ;

(iv) λθi
∫
ϕ

4
n−2−τ
i φk,iφl,idµg0 = O( 1

λ2
i
) for k 6= l and for k = 2, 3

λθi
∫
ϕ
n+2
n−2−τ
i φk,idµg0 = O

τ +

λ2−n
i for n = 5

lnλi
λ4
i

for n = 6

λ4
i for n ≥ 7

 ;

(v) λθi
∫
ϕα−τi ϕβj dµg0 = O(εβi,j) for i 6= j, α+ β = 2n

n−2 , α− τ >
n
n−2 > β ≥ 1;

(vi)
∫
ϕ

n
n−2

i ϕ
n
n−2

j dµg0 = O(ε
n
n−2

i,j ln εi,j), i 6= j;

(vii) (1, λi∂λi ,
1
λi
∇ai)εi,j = O(εi,j), i 6= j.

with constants bk =
∫
Rn

dx

(1+r2)
n+2
2

for k = 1, 2, 3 and

c1 =

∫
Rn

dx

(1 + r2)n
, c2 =

(n− 2)2

4

∫
Rn

|r2 − 1|2dx
(1 + r2)n+2

, c3 =
(n− 2)2

n

∫
Rn

r2dx

(1 + r2)n+2
.

Lemma 5.3. For u ∈ V (q, ε) with kτ = 1, cf. (2.2),and ν ∈ Hu(q, ε) there holds

∂Jτ (αiϕi)ν = O

([∑
r

τ

λθr
+
∑
r

|∇Kr|
λ1+θ
r

+
∑
r

1

λ2+θ
r

+
∑
r 6=s

ε
n+2
2n
r,s

λθr

]
‖ν‖
)
.

Lemma 5.4. For u ∈ V (q, ε) and ε > 0 sufficiently small the three quantities ∂Jτ (u)φ1,j, ∂Jτ (αiϕi)φ1,j,
∂αjJτ (αiϕi) can be written as

αj

(α
2n
n−2

K,τ )
n−2
n

(
c̀0
(
1− α2

αp+1
K,τ

Kj

λθj
αp−1
j

)
− c̀2

(∆Kj

Kjλ2
j

−
∑
k

∆Kk

Kkλ2
k

α2
k

α2

)

+ b̀1

(∑
k 6=l

αkαl
α2

εk,l −
∑
j 6=i

αi
αj
εi,j

)
− d̀1


Hj
λ3
j
−
∑
k
α2
k

α2
Hk
λ3
k

for n = 5

Wj lnλj
λ4
i
−
∑
k
α2
k

α2
Wk lnλk

λ4
k

for n = 6

0 for n ≥ 7

)
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up to an error of order O
(
τ2 +

∑
r 6=s

|∇Kr|2
λ2
r

+ 1
λ4
r

+ ε
n+2
n

r,s + |∂Jτ (u)|2
)
, with positive constants c̀0, c̀2, b̀1, d̀1

b̀1 =
8n(n− 1)(n+ 2)

c̄
n−2
n

0 (n− 2)
b1, c̀2 =

8n(n− 1)

c̄
n−2
n

0

c̄2, d̀1 =
8n(n− 1)

c̄
n−2
n

0

d̄1, c̀0 = 8n(n− 1)c̄
2
n
0 . (5.1)

In particular for all j

α2

αp+1
K,τ

Kj

λθj
αp−1
j = 1 +O

(
τ +

∑
r 6=s

1

λ2
r

+ εr,s + |∂Jτ (u)|
)
.

Lemma 5.5. For u ∈ V (q, ε) and ε > 0 sufficiently small the three quantities ∂Jτ (u)φ2,j, ∂Jτ (αiϕi)φ2,j

and λj
αj
∂λjJτ (αiϕi) can be written as

αj

(α
2n
n−2

K,τ )
n−2
n

(
c̃1τ + c̃2

∆Kj

Kjλ2
j

− b̃2
∑
j 6=i

αi
αj
λj∂λjεi,j + d̃1


Hj
λ3
j

for n = 5
Wj lnλj
λ4
j

for n = 6

0 for n ≥ 7

),
with positive constants c̃1, c̃2, d̃1, b̃2 up to some error O

(
τ2 +

∑
r 6=s

|∇Kr|2
λ2
r

+ 1
λ4
r

+ ε
n+2
n

r,s + |∂Jτ (u)|2
)
.

Lemma 5.6. For u ∈ V (q, ε) and ε > 0 sufficiently small the three quantities ∂Jτ (u)φ3,j, ∂Jτ (αiϕi)φ3,j

and
∇aj
αjλj

Jτ (αiϕi) can be written as

− αj

(α
2n
n−2

K,τ )
n−2
n

č3 ∇Kj

Kjλj
+ č4

∇∆Kj

Kjλ3
j

+ b̌3
∑
j 6=i

αi
αj

∇aj
λj

εi,j

 ,

with positive constants č3, č4, b̌3 up to some error O
(
τ2 +

∑
r 6=s

|∇Kr|2
λ2
r

+ 1
λ4
r

+ ε
n+2
n

r,s + |∂Jτ (u)|2
)
.

Lemma 5.7. For every u ∈ V (q, ε) there holds

|∂Jτ (u)| . τ +
∑
r 6=s

|∇Kr|
λr

+
1

λ2
r

+ |1− α2

αp+1
K,τ

Kr

λθr
αp−1
r |+ ε

n+2
2n
r,s + ‖v‖.

Theorem 2. Suppose that n ≥ 5, K : M → R is positive, Morse and satisfies (1.3). Then for ε > 0
sufficiently small there exists c > 0 such that for any u ∈ V (q, ε) with kτ = 1 there holds

|∂J(u)| ≥ c
(
τ +

∑
r 6=s

|∇Kr|
λr

+
1

λ2
r

+
∣∣1− α2

αp+1
K,τ

Kr

λθr
αp−1
r

∣∣+ εr,s
)
,

unless there is a violation of at least one of the four conditions

(i) τ > 0;

(ii) there exists xi 6= xj ∈ {∇K = 0} ∩ {∆K < 0} and d(ai, xi) = O( 1
λi

);

(iii) αj = Θ · ( λ
θ
j

Kj
)

1
p−1 + o( 1

λ2
j
);

(iv) c̃1τ = −c̃2 ∆Kk
Kkλ2

k
+ o( 1

λ2
k

)

where Θ is a positive constant, uniformly bounded and bounded away from zero, that depends on u (see
Remark 6.2 in [30]). In the latter case there holds λ1 ' . . . λq ' λ = 1√

τ
and setting aj = expgxj

(āj),
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we still have up to an error o( 1
λ3 ) the lower bound

|∂J(u)| &
∑
j

|τ +
2

9

∆K(xj)

K(xj)λ2
j

+
512

9π
[
H(xj)

λ3
j

+
∑
j 6=i

√
K(xj)

K(xi)

Gg0(xi, xj)

γn(λiλj)
3
2

]|

+
∑
j

| āj
λj

+
č4
č3

(∇2K(xj))
−1∇∆K(xj)

λ3
j

|

+
∑
j

|αj −Θ · p−1

√√√√√ λθj
K(aj)

(1− 1

90

∆K(xj)

K(xj)λ2
j

+
2816

π

H(xj)

λ3
j

−

∑
k( ∆K(xk)
K(xk)2λ2

k
+ 2816

π
H(xk)
K(xk)λ3

k
)∑

k
1

K(xk)

)|

in case n = 5 and

|∂J(u)| &
∑
j

(|τ +
c̃2
c̃1

∆K(xj)

K(xj)λ2
j

|+ | āj
λj

+
č4
č3

(∇2K(xj))
−1∇∆K(xj)

λ3
j

|+ |αj −Θ · p−1

√
λθj

K(aj)
|)

in case n ≥ 6. The constants appearing above are defined by c̄0 =
∫
Rn

dx
(1+r2)n ,

c̃1 =
n(n− 1)(n− 2)2

c̄
n−2
n

0

∫
Rn

1− r2

(1 + r2)n+1
ln

1

1 + r2
dx, c̃2 = − (n− 1)(n− 2)

c̄
n−2
n

0

∫
Rn

r2(1− r2)

(1 + r2)n+1
dx;

č3 =

∫
Rn

4(n− 1)(n− 2)

(1 + r2)n
dx, č4 =

∫
Rn

2(n− 1)r2

(1 + r2)n
dx.;

b̃2 =
4n(n− 1)

c̄
n−2
n

0

∫
Rn

dx

(1 + r2)
n+2
2

; d̃1 =
4n(n− 1)

c̄
n−2
n

0

∫
Rn
rn

(n+ 2− nr2)

(1 + r2)n+2
dx.

From the proof of Proposition 5.1 and Sections 4,5 and 6 in [30] we will need the following estimates

(i) up to an error of order O
(
τ2 +

∑
r

1
λ4
r

+
∑
r 6=s ε

n+2
n

r,s

)
there holds (b̄1 = 2n

n−2b1)

∫
K(αiϕi)

p+1dµg0 =
∑
i

(
c̄0
Ki

λθi
αp+1
i + c̄1

Ki

λθi
α

2n
n−2

i τ + c̄2
∆Ki

λ2+θ
i

α
2n
n−2

i

)

+ d̄1

∑
i

Ki

λθi
α

2n
n−2

i


Hi
λ3
i

Wi lnλi
λ4
i

0

+ b̄1
∑
i 6=j

α
n+2
n−2

i αj
Ki

λθi
εi,j ; d̄1 =

∫
Rn

rndx

(1 + r2)n+1
;

(5.2)

(ii) recalling (2.7), one has∫
ϕiLg0ϕjdµg0 = b̃1εi,j +O(

∑
r 6=s

1

λ4
r

+ ε
n+2
n

r,s ), b̃1 = 4n(n− 1)b1; (5.3)

(iii) up to an error O(τ2 + 1
λ4
i
), there holds∫

ϕiLg0ϕi
4n(n− 1)

dµg0 =c̄0; (5.4)

(iv) up to an error of order O
(
τ2 +

∑
r

1
λ4
r

+
∑
r 6=s ε

n+2
n

r,s

)
. one has

αiαj
∫
ϕiLg0ϕjdµg0 =4n(n− 1)c̄0

∑
i

α2
i + b̃1

∑
i 6=j

αiαjεi,j . (5.5)
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(v) If ϕi is as in (2.6), then

∣∣∣∣ ∫ ϕ
n+2
n−2

i νdµg0

∣∣∣∣ ≤ ‖v‖∥∥∥∥ Lg0ϕi
4n(n− 1)

− ϕ
n+2
n−2

i

∥∥∥∥
L

2n
n+2
g0

= O

 λ−3
i for n = 5

ln
2
3 λiλ

− 10
3

i for n = 6
λ−4
i for n ≥ 7

 ‖v‖; (5.6)

(vi) up to an error O(τ2 + 1
λ4
i
) one has

∫
Kϕp+1

i dµg0 =
c̄0Ki

λθi
+ c̄1

Kiτ

λθi
+ c̄2

∆Ki

λ2+θ
i

+ d̄1Ki


Hi
λ3+θ
i

Wi lnλi
λ4+θ
i

0

 , c̄2 =
1

2n

∫
Rn

r2dx

(1 + r2)n
; (5.7)

(vii) up to an error or order O(τ2 +
∑
r 6=s

|∇Kr|2
λ2
r

+ 1
λ4
r

+ ε
n+2
n

r,s ) there holds

Jτ (αiϕi) =
αiαj

∫
ϕiLg0ϕjdµg0

(
∫
K(
∑
i αiϕi)

p+1)
2
p+1

=
αiαj

∫
ϕiLg0ϕjdµg0

(c̄0
∑
i
Ki
λθi
αp+1
i )

2
p+1

(
1− c̄1

∑
i

Ki

λθi

α
2n
n−2

i

α
2n
n−2

K,τ

τ

− c̄2
∑
i

∆Ki

λ2+θ
i

α
2n
n−2

i

α
2n
n−2

K,τ

− d̄1

∑
i

Ki

λθi


Hi
λ3
i

Wi lnλi
λ4
i

0

 α
2n
n−2

i

α
2n
n−2

K,τ

− b̄1
∑
i6=j

α
n+2
n−2

i αj

α
2n
n−2

K,τ

Ki

λθi
εi,j

)
.;

(5.8)

(viii) if εi,j is as in (2.7), then

λj∂λjεi,j =
2− n

2
εi,j +O(

1

λ4
j

+ ε
n+2
n

i,j ) in case j < i or dg0(ai, aj) 6= o(1). (5.9)

Finally, we derive one last technical estimate. Recalling (2.1), from (5.5) we have, up to an error o( 1
λ2 ),

rαiϕi =αiαj
∫
Lg0ϕiϕjdµg0 = 4n(n− 1)c̄0

∑
i

α2
i = 4n(n− 1)c̄0α

2 (5.10)

with c̄0 =
∫
Rn

dx
(1+r2)n . From (5.2) instead, still up to an error o( 1

λ2 ), we get

∫
K(αiϕi)

p+1dµg0 =
∑
i

(
c̄0
Ki

λθi
αp+1
i + c̄1

Ki

λθi
α

2n
n−2

i τ + c̄2
∆Ki

λ2+θ
i

α
2n
n−2

i

)

=c̄0α
p+1
K,θ +

∑
i

Kiα
2n
n−2

i

λθi

(
c̄1τ + c̄2

∆Ki

Kiλ2
i

)
with constants given by

c̄1 =
2

n− 2

∫
Rn

ln(1 + r2)

(1 + r2)n
dx, and c̄2 =

1

2n

∫
Rn

r2

(1 + r2)n
dx. (5.11)

Therefore

rαiϕi
(kτ )αiϕi

= 4n(n− 1)
α2

αp+1
K,θ

− 4n(n− 1)
α2

(αp+1
K,θ )2

∑
i

Kiα
2n
n−2

i

λθi

(
c̄1
c̄0
τ +

c̄2
c̄0

∆Ki

Kiλ2
i

)
+ o(

1

λ2
)

and we conclude again from (3.1) that

rαiϕi
(kτ )αiϕi

= 4n(n− 1)
α2

αp+1
K,θ

(1− (
c̄1
c̄0
− c̃1
c̃2

c̄2
c̄0

)τ) + o(
1

λ2
). (5.12)
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5.1 List of constants
For the reader’s convenience, we display the equations where some dimensional constants appear.

¯ ˆ ` ˜ ˇ
c0 (5.10) (5.1)
c1 Lemma 5.2 (5.11) Theorem 2
c2 Lemma 5.2 (5.11) (5.1) Theorem 2
c3 Lemma 5.2 (4.11) Theorem 2
c4 Theorem 2
d1 (5.2) (5.1) Theorem 2
b1 Lemma 5.2 (5.2) (5.1) (5.3)
b2 Lemma 5.2 Theorem 2
b3 Lemma 5.2
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