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Abstract

Prescribing conformally the scalar curvature of a Riemannian manifold as a given function consists in
solving an elliptic PDE involving the critical Sobolev exponent. One way of attacking this problem
consist in using subcritical approximations for the equation, gaining compactness properties. Together
with the results in [30], we completely describe the blow-up phenomenon in case of uniformly bounded
energy and zero weak limit in positive Yamabe class. In particular, for dimension greater or equal
to five, Morse functions and with non-zero Laplacian at each critical point, we show that subsets
of critical points with negative Laplacian are in one-to-one correspondence with such subcritical
blowing-up solutions.
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1 Introduction

Consider a compact manifold (M™, go) with n > 3 and a conformal metric g = uﬁgo, u > 0: with this
notation the scalar curvature transforms in the following way (see [4])

Rguuntg = Lgyu = —cpAgu+ Rgu Cn = ((:2)),

with Ay the Laplace-Beltrami operator of go. Lg, is called the conformal Laplacian and transforms
according to the law Ly (u¢) = N1 L, ().



In the 70’s, Kazdan and Warner considered in [28] the problem of prescribing the scalar curvature of
manifolds via conformal deformation of the metric, see also [26], [27]. By the above transformation law,
if one wishes to prescribe R, as a given function K (z) then would need to solve

Lgu= K(;v)u% on (M, go). (1.1)

There are rather easy obstructions to the solvability of : for example, if the sign of K is constant, it
has to coincide with that of the first eigenvalue of L, . Depending on the latter sign, which is conformally
invariant, a conformal class of metrics is said to be of negative, zero or positive Yamabe class. We will
discuss for simplicity the case of function K with constant sign, despite in the literature there are many
interesting papers dealing with changing-sign functions.

In [28], Kazdan and Warner proved some existence results for zero or negative Yamabe classes using
the sub- and super-solution method. For positive Yamabe class instead, they found a now well-known
obstruction to existence on the sphere, namely that if u solves , then one must have

/ (VE,Vf)gantin2 dpug,, =0, (1.2)

and hence, for conformal curvatures K, the function (VK,V f),., must change sign.

Later on, some existence results were found under conditions that would imply topological richness
of the sub-levels of K, contrary to the above example. In two dimensions, where is replaced by an
equation in exponential form, J. Moser showed that the problem is solvable on the standard sphere if K
is antipodally symmetric. In higher dimensions, existence results under the action of symmetry groups
were proven in [20] and [21], [22].

A general difficulty in studying is the lack of compactness due to the presence of the critical
exponent. A typical phenomenon encountered here is that of bubbling. Bubbles are solutions of on
S™ with K = 1: these arise as profiles of general diverging solutions and were classified in [IT], see also
[3], [36]. From the variational point of view, bubbles generate diverging Palais-Smale sequences for the
Euler-Lagrange energy of , given by J = Jg:

Jar (Cn|vu|§o + Rg0u2) dpg,
2n_ n—2 :
(IM Kun-2 d:ugo) n

From a formal expansion of J on a finite sum of bubbles, see e.g. the introduction in [30], one sees a role
of the dimension in the strength of the mutual interaction among bubbles, which is weaker as n increases:
a consequence of this fact is that in three dimensions only one bubble can form. Exploiting this fact, after
some work on S% by A. Chang and P. Yang in [16], [17], A. Bahri and J.M. Coron proved an existence
result in [6] on S? assuming that K is a Morse function satisfying the following two properties

J(u) =

(VK =0} N {AK =0} = 0; (1.3)

> (1) R 2 1, (1.4)

{z€M : VK (z)=0,AK (z)<0}

where m(z, K) stands for the Morse index of K at x, see also [12] and [35] for more general related results.
The above existence statement was extended to arbitrary dimensions in [24] for functions satisfying a
suitable flatness condition, and in [I8], [1], [29] for functions K close to a positive constant in the C-sense.

In four dimensions, see [7] and [25], it was shown that even if multiple bubbles can form, they cannot
be too close to each-other; such phenomenon is usually refereed to as isolated simple blow-up. Results of
different kind were also proven in [I9] for n = 2 and in [9] [8], [10]: see also Chapter 6 in [4].

Two main approaches have been used to understand the blow-up phenomenon: sub-critical approx-
imations or the construction of pseudo-gradient flows. In this paper we focus on the former, while the
other one will be the subject of [32], where a one-to-one correspondence of blowing-up solutions with
bounded energy (and zero weak limit) and critical points at infinity is shown. Consider the problem

nt2

—cnAgu+ Rgou = K(x)u»—2"", 0<7Tl, (1.5)




which, up to a proper dilation, is the Euler-Lagrange equation for the functional

_ fM (Cn|VU|30 + R90u2) dig,
(fJV] K“pﬂdllgo)"%

J-(u) . ueA (1.6)

Being now the exponent lower than critical, solutions can be easily found, even though one could lose
uniform estimates as 7 tends to zero. In [12], [35], [24], the single-bubbling behaviour for diverging
solutions of (1.5 was proved. Then, by degree- or Morse-theoretical arguments it was shown that under

.1)). For this argument to work, one crucial step was to completely characterize blowing-up solutions
of (1.5), showing that in three dimensions single blow-ups occur at any critical point of K with negative
laplacian and that they are unique. On four-dimensional spheres, a similar property was proved in [25] for
multiple blow-ups (see also [7]), assuming a suitable condition related to the multi-bubble interactions.

For Morse functions, if n > 5 the situation is more involved, and blow-ups might be possibly of infinite
energy, see e.g. [13], [14], [15], [37]. In |30] it was however proved that if a sequence of blowing-up solutions
has uniformly-bounded W'-2-energy and zero weak limit, then blow-ups are still isolated simple. Although
the result is similar to the case of dimensions three and four, the phenomenon is somehow opposite since
it is driven by the function K rather than from the mutual bubble interactions. Both assumptions, zero
weak limit and bounded energy, are indeed natural: if the former fails then problem would have a
solution; the second one instead is usually found when using min-max or Morse-theoretical arguments, as
it will be done in [31]. However, differently from n = 3,4, in [30] no restriction is proven on the number
or location of blow-up points, provided they occur at critical points of K with negative Laplacian.

The goal of this paper is to show that the characterization of the above blow-ups in [30] is sharp,
namely that they can occur at arbitrary subsets of {VK = 0} N {AK < 0}. Furthermore, we prove
uniqueness of such solutions, their non-degeneracy and determine their Morse index. Our main result is
the following one, that follows from Proposition Corollary and Theorem 1 in [30].

Theorem 1. Let (M, g) be a compact manifold of dimension n > 5 with positive Yamabe class, and let
K : M — R be a positive Morse function satisfying . Let z1,...,x4 be distinct critical points of K
with negative Laplacian. Then, as 7 — 0, there erists a unique solution U s, . ., developing a simple
bubble at each point x; and converging weakly to zero in WY2(M, g) as 7 — 0. Moreover, up to scaling
by constants, Ur g, ..., is non-degenerate for J. and m(Jr, Ur e, ..x,) = (@ —1) + Zgzl(n —m(K,x;)).
Furthermore, all blow-ups with uniformly bounded energy and zero weak limit are of the above type.

As it will be shown in [31], for n > 5 there cannot be a direct counterpart of (|1.4)), which is an index-
counting condition. However, existence results of different type will be derived there.

Remark 1.1. (i) A more precise expression for ur z, . .. s given by the following formula

g

—0 as m — oo,
Wt:2(M,g0)

q
Um — E :Oéjvmé)\j,7n7aj,m
Jj=1

© _1

Qo = ———— +0(1), ajm—x; and N, =Tm>.
K(z;) +
Here the multiplicative constant © depends on the blowing-up solutions but it is independent of j.
For this and more precise formulas we refer to Section[3 and Theorem [ in the Appendiz. If n = 4,

the same conclusions hold replacing AK (a;) < 0 for all j with (iv) of Theorem 2 in [30].

(ii) Even though upon scaling the above solutions Ur,z,....x, aTC NON-degenerate, they Hessian of J, there
has >°¢_,(n —m(K,x;)) eigenvalues approaching zero as T — 0, see Section .

(i4i) Theorem |1| gives a one-to-one correspondence of zero weak limit subcritical blow-up solutions to
subsets of critical points of K with negative Laplacian, while in [32] this correspondence will be
shown with zero weak limit, i.e. pure critical points at infinity, according to the terminology in [J],
see also [33)]



The proof of Theorem [I| relies on the estimates in [30] and a finite-dimensional reduction, see e.g. [2],
with a careful asymptotic analysis. In dimension four, this approach was used in Section 2 of [25]: here
we show that in higher dimensions blow-up might occur at arbitrary critical points of K with negative
Laplacian, which affects the global structure of the solutions of problem . Via careful expansions,
we also determine the Hessian of the Euler-Lagrange functional and the Morse index of these solutions,
which we prove to be non-degenerate.

The solutions we consider here lie in a set V (g, ¢) in the functional space W12(M, go) which contains
a manifold of approximate solutions for (L5), >-7_; a’¢q, x,, which is transversally non-degenerate (see
Section [2| for the notation used here). This allows to solve orthogonally to this manifold via a
proper transversal correction to the approximate solutions, see Definition [3.I]and Lemma 3.1} and reduce
to the study of the tangent component. By Theorem [2| from [30] we can reduce ourselves to a smaller
set V(q,¢), see , where more precise estimates hold for the gradient of J.. These allow us to use an
orthogonal correction v small in size, solve also for the tangent component and to estimate the second
differential of J; at > ¢ | a’pqa, r, + U, see Section |4] Finally, this allows in turn to compute the Morse
index of the solutions ur 4, ... ., and to prove their uniqueness. In this step we show that, even though
the correction v is of the same order of the small eigenvalues of the Hessian of J,, some cancellation
occurs in the estimate of the Morse index.

The plan of the paper is the following: in Section [2] we collect some preliminary material concerning
approximate solutions and the finite-dimensional reduction of the problem, which is then worked-out in
detail in Section In Section [4f we study the Hessian of the Euler-Lagrange functional .J, in V (g, ),
finding a proper base with respect to which the Hessian nearly diagonalizes. Finally, we collect in an
Appendix some useful and technical estimates from [30] and a table of constants.

Acknowledgments. A.M. has been supported by the project Geometric Variational Problems and
Finanziamento a supporto della ricerca di base from Scuola Normale Superiore and by MIUR Bando
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2 Preliminaries

In this section we collect some background and preliminary material, concerning the variational properties
of the problem and some estimates on highly-concentrated approximate solutions of bubble type.

We consider a smooth, closed riemannian manifold M = (M", go) with volume measure /1,4, and scalar
curvature Ry, . Letting A = {u € WY2(M, go) | u > 0,u # 0, } the Yamabe invariant is defined as

[ (calVul, + Ry dityy_ n—1

2n_ n—2 ) n )
(fum=2dpg,) "= Lt

Y (M =inf
( ago) lg

and it turns out to depend only on the conformal class of gg. We will assume from now on that the
invariant is positive, namely that (M, go) is of positive Yamabe class. As a consequence, the conformal
Laplacian Ly, = —cpAg, + Ry, is a positive and self-adjoint operator. Without loss of generality we
assume Ry, > 0 and denote by Gy, : M x M \ A — R the Green’s function of L,,. Considering a

conformal metric g = g, = sz go, there holds

_ nt2 _ n+42
=u "2 (—cpAgu+ Rgu) = u” »=2 Ly u.

dpg, =un-2du, and R=R,

u

Note that
C||UHW112(M,90) < /ULQOUdUgo = / (Cn|VU|§O +Rgou2) dprg, < CH“”W”(M’QU)-

In particular we may define
JulP? = Vel = [ Loyudi



and use || - || as an equivalent norm on W2(M, go). Setting R = R, for g = g, = uw2 gy, we have

T=1ry, = /Rdugu = /uLgDudugo, (2.1)

and hence
Jo(u) = ——  with &, = / KuP™tdu,, . (2.2)
k2t
The first- and second-order derivatives of the functional J, are given by
2 T
0Jr(u)v = —5 [/Lgouvdugo - k—/Ku”vdugo]; (2.3)
k71_7+1 T
9 2 r 1
O*Jr(wow =——[ | Lgyowdpg, — p-— | KuP~ vwdpuyg, |
S22 kr
4 P P
_ F[ Lgyuwvdpg, | KuPwdpg, + | Lgyuwdpug, [ KuPvdpg,] (2.4)
p + 3)r »
> KuPvdpg, [ KuPwdpg,.
kp+1

In particular, J, is of class Cl2 2*(A) and, for € > 0, uniformly Hélder continuous on each set of the form
U.={ueAle<||ul, J-(u) <e 1}

To understand the blow-up phenomenon, it is convenient to consider some highly concentrated ap-
proximate solutions to . Let us first recall the construction of conformal normal coordinates from
[23]: given a € M, these are defined as geodesic normal coordinates for a suitable conformal metric
Ja € [go]. Let r, be the geodesic distance from a with respect to the metric g,: with this choice, the
expression of the Green’s function G, for the conformal Laplacian L,, with pole at a € M, denoted by
Gq = Gy, (a,-), simplifies considerably. In Section 6 of [23] one can find the expansion

1

Ga = dn(n — Dw,

(rZ"+ H,), ro = dg,(a,-), Hy = Hy o + Hs, for do = w2 go. (2.5)

Here H,, € C’ZQO?, while the singular error term is of the type:

Ta for n=5
Hsq=0|Inr, forn==6

7‘2’” for n>7

The leading term in Hy , for n =6 is — @g;gf Inr, with W the Weyl tensor. For A\ > 0 large define

n—2

A o >
Par = Uq <2> , Ga=Gy,(a,7), 7= (n(n—1w,) 2. (2.6)
1+ X2y, Ge™"

We notice that the constant 7, is chosen so that

_2
WGa " (x) = d; (a,2) + o(d>, (a,2)) as © — a.

Such functions are approximate solutions of (|1.1)), see Lemma and for suitable values of A depending
on 7 these are also approximate solutions of (|1.5]), see Lemma 7| for a multi-bubble version.

Notation. For p > 1, L} will stand for the family of functions of class L? with respect to the measure
djg,. Recall also that for u € W'2(M, go) we have set r, = [uLg udpg,, while for a € M we de-
note by r, the geodesic distance from a with respect to the conformal metric g, introduced before. For a
finite set of points {a;}; of M we will denote by K;, VK;, W;, the quantities K (a;), VK (a;), [W(a;)|?, etc

For k,i=1,2,3and \; >0,a; e M,i=1,...,q, let



() @i = @an and (i, dai,ds) = (1, =i, 3 Va,);
(i) P10 = @is D20 = —Ni0x,0i, 930 = 3 VaiPis 50 bpi = diii-

With these definitions, the ¢y ;’s are uniformly bounded in W12(M, go) for every value of the \;’s.

We next recall a standard finite-dimensional reduction for functions that are close in W12 to a finite
sum of bubbles. It is useful to define the following quantity

s i 2 2
€ij = oyt + )\i)\j’ynG;(;n (ai, aj) . (27)
7N TN

Givene >0, ¢ € N, u € Wh?(M, go) and (', A;, a;) € (RL,RY, M), we set

=
1 ro; K(a;)

T In(n—D)k, 7”“ - O‘i‘pau%” <e A <1 +5}§

(1) Au(Q76) = {(O‘ia)‘%ai) | iij )‘i_la)‘j_laei,ja

(i)  V(ge)={ueWh(M,g) | Aulge) # 0},

see (2.1, (2.2) and (2.6). For A,(g,e) to be non-empty, we will always assume that 7 < e. Under
the above conditions on the parameters a;,a; and \;, the functions 23:1 o' pq;,n; constitute a smooth
manifold in W12(M, go), which implies the following well known result (see e.g. [5]).

Proposition 2.1. Given ey > 0 there exists £1 > 0 such that for u € V(q,€) with € < €1, the problem

inf u—3ato. VLo (u— &y, < )d
(&i,ai,ii)eAu(q,zao)/( P Lo P )it

admits an unique minimizer (o, a;, ;) € Ayu(q,€0) and we set
©i = Pa; 2 v=u—aly;, K; = K(a;). (2.8)
Moreover, (o, a;, \;) depends smoothly on w.
The term v = u — a’y; is orthogonal to all ¢;, — X0, @i, )\%Vai ©;, with respect to the product
Ve = Lanes iz
Finally, for u € V(g,¢) let

L

i ) hao. (2.9)

H, = H,(q,¢) = (pi, \iOx, i, —Va, i

3 Existence of subcritical solutions

Theorem [2] from [30], describes in detail the behaviour as 7 — 0 of blowing-up solutions to (1.5) with
uniformly bounded energy and zero weak limit in V (g, €), providing positive lower bounds on ||0.J|| in a
suitable subset of the functional space. In view of this, we can restrict our attention to centers ai,...,a,q
close to distinct critical points z1,...,x, of K with negative Laplacian: more precisely, for n > 6 we can
assume the following conditions (for n = 5 they are slightly modified: see the above-mentioned statement)

. ENIY
() oy — O wlsl < 5

‘e a; _ VAK(z; € .
(i) |3+ e(VE () o] < 5

ee AK T €
(i) A2+ pa] < s




for A = 1 and some z; € {VK =0} N {AK < 0} with @; # z;, i # j. Here, © > 0 (uniformly bounded
and bounded away from zero) depends on the function in V' (g, €), determined in Remark 6.2 of [30].

We next define the following (refined) neigbourhood of potential subcritical blowing-up solutions as
V(g,e) ={u€V(ge)| (i), (i) and (iii) above hold true.} (3.1)

From Lemmata and it follows that (recalling (2.2))) there exists é > 0, tending to zero as
€ — 0, such that

|0J-(u)| 2 % for ue€ V(g,e)\V(ge) with k, =1,

so this justifies to look for solutions in V (g, ) only.

For a'p; € V(q,¢) with ¢ < a; < C, we have the expansion
, , . 1 A
Jr (@i +v) = (b)) + 0J- (b pi)v + 55‘2Jf(azgai)v2 +O(||v]|?). (3.2)

Recall the uniform positivity of 92.J(a’y;) on H,(q,¢) (see (2.9) and [5]), which justifies the following

Definition 3.1. For a‘p; € V(q,e) we define v as the unique solution of the minimization problem

Jr (g +17) = min J-(a'p; +v). (3.3)
UEH(,«L%,HNKE
Lemma 3.1. Let v be as in the above definition. Then one has the following properties
(i) for a’p; € V(q,€) there holds |[v]| S 5 ~ 7;
(ii) if u € V(q,¢€) is such that 8J,(u) = 0, then a'p; € V(q,¢) and u = a'p; + .

Moreover, for a'p; € V(q,€) one has that
J, (g +0) = O(), where € = 0 as e — 0. (3.4)

PROOF. Let us denote by Uu,, the projection onto Hy,i,,: we need to solve g, dJ-(alp; +7) = 0.

Since 02J, is invertible on this subspace, we can write My, 0J (alp; +7v) =0 as

U= f(Hai%62JT(ozi<p,-))*1 [&]T(aigoi) + (3JT(0/30¢ +0) — dJ-(a'p;) — 82J7(ai<pi)6)] .

We know from Lemmathat for a’p; € V(q,¢) one has [|0J-(a’p;)|| < 5z Since by Holder’s continuity
the quantity within round brackets in the last formula is of order o(||7]|), we can use a contraction
argument in a ball of size /\1—2 to get the existence of a solution to HHQW_ 0J,(alp; + v) = 0, with the

estimate (7). By the definition of © and the above contraction argument we have that

1) on ()"t (3.5)

0% T (ipy)o = =0 (a'p;) + O(P

Testing thus 0.J,(a’y;) on (¢y.;), we find from Lemmata and again for aly; € V(q,¢)

i €
|0J- (i) dr.qi| < N

It is easy to see from (2.4]) and Lemma that 02J,¢r,; = o(5), and since ||5]| < 55 we have that

0% (o' )0 = ol 5), (3.6)



More in general, one finds also that

: 1
82,](0/@1‘ + Hﬁ)ﬁqﬁk,j = O(F)

for any 6 € (0,1). To see this, since v € ((bk,i)J‘LHO, recalling (2.4)) it is sufficient to show that

: L P 1
/K(a’goi + 6v)P 1vapjdugo — /K(a ;)P 1vcpjd,ug0 = O(F)

This, in turn, can be verified by dividing the domain of integration into {|o] < a’p;} and its complemen-
tary set, using Holder’s inequality and the fact that ||7] < % Consequently

i = i — i 1 €
0J-(a'pi +0) = 0J (@i + V)| (¢ )= OJr (@ @i)ka,iﬁO(ﬁ) = O(F)’

where € tends to zero as € does. Finally, if a solution dJ-(u) = 0 exists on V (g, ), then we may write
uw=a'e; +0+0 with ¥ L, (k).
But then
0 =0J-(a'p; + 0+ D)0 = 0J-(a'p; + V)b + 0*J, (a'p; + )00 + o(|7]?),
whence necessarily @ = 0 by uniform positivity of 9%J,(a‘p;) on <¢k,i>lL90. Thus
0J,(u) =0 with uw € V(g,e) = u=a'e;+70

where ¥ = ¥, 4, is the unique solution to (3.3)), for which a’p; +v € V(g,¢). ®

Remark 3.1. For a'y; € V(q,e) and v € WY2(M, go) with ||v|| = 1 it can be shown that

2
(k)2 . , nt2 n_2 ¢ nk2 9 & 4
— 2 HT (ol = — o " n(14 A2 7 - Lor 4 2L om N0 ¢ |vd
8n(n _ 1) (a SD )V a'T / (SDZ n( + zT ) Cl 801, + n — 02 @1 )\7,()0 v Mgo
Bs(ai)
. c )\27~2 nt2 C1Cy nt2 2 ¢ 4
+a'T / A ol — 122 290{"2 + —1%"*2 AiOx; i | vdpig,
Co 2n CaC n—2cy
Bs(ai)
7 5 k.l 2 n—2
_ — ! d —
¢ /Bs(az')( 2k C T aar Ve o)

referring to the table at the end of the paper for the definition of the constants. As a consequence of these
formulas, one can prove that v is indeed of order /\1—2 and not smaller, as well as determine the leading
order in its expansion. Anyway, due to some cancellation properties, this will not substantially affect the
eigenvalues of the Hessian of J. at a'p; + v, estimated in the next section.

Let us now set (di4,do,,ds;) = (1, —A\;Ox,, %Vai), fori=1,...,q.
Lemma 3.2. For u = o'p; +v € V(q,e) there holds

B _ 1
1oll, lidusoll = O(53)-
PrROOF. The bound on ||7]| follows from Lemma Differentiating (¢x, )L

(Dr,is dij0) L,y = —(d1,j0k,5, V)L, = O([]]),

5 =0 we obtain
0



whence denoting by Iy, ,y the orthogonal projection onto Iy, ), we have [Tl o[ =~ % due to

[0]] £ 5. Moreover, since dJ(a'p; + v)v = 0 for every smoothly-varying vector field v € (Gpi)roo of
unit norm we have

0 =d; ;(0J;(a'p; + D)v) = O*J-(a'p; + V)dy (' p; + 0)v + O, (o' i + D)dy jv
and we can estimate the last summand above as
8- (i + 0)dy jv =0 (a'p; + D)y, y(dij0) = O80T (a’p; + D)|[|v]]),
since (¢y,i,dijv) = (di jdr,i,v) = O(||v]|). Thence, dJ-(a'p; + ) = O(5%) implies
) ) ) 1
82J7(a1g0i + 0)vd; ;0 = —82J7(alapi + v)vdy (o) + O(ﬁ)

Then the claim would follow from [Ty, ,y(di;0)|| ~ 35, which we had seen before, and the uniform

positivity of 92.J,(a’p;) on (qbk,i)lL-%, provided we show
0PI (a' i+ 0)on 0 =0(55) (3.7
cf. and for weaker statements. Let us prove for [ = 1. We next claim that
DT, (ol +0)pju = 02T, (alp:)pjv + O(%)
From (2.4)), since v € (¢, ;) %90, it is sufficient to show that we must show (see the proof of Lemma
[ K@it 07 opdg, — [ K(@te0r tugsdiy, = 0(55).

Again, this can be seen considering the set {|7| < akpz} and its complementary, using Holder’s inequality
and [|9]] < 7. Thus, from the above claim and ( we find, due to the orthogonalities (¢ ;,v)r, =0,

90

: 2P Taig
aZJT(O‘,LLPi)(Pi’U = 2 ( LP /K (Pz) (Pjvd/j'go
Jaip;

(k)27

4 i i
- W/LgO(a %’)%‘dugo/K(a @i)Pudpg,

atp;
2(p+3)raig,
P+1+2

(k)71

By definition of V(g,¢) we have 7 ~ % and recalling (5.2) and (5.5) we may simplify this to

+ /K ‘PZ) @jdﬂgo/K 801) vdfg, -

n+2 a?
O J, (a %)@JU ~ —dn(n — 1) )” 2pjvdpig,
KT
2 i i \nt2
T 2 Lgo (a %‘)%’dﬂgo K(Oé wi)"_deugo
Coa ;

(n+2 +3

+4n(n—1)7/K o SOz)" QSpadﬂqo/K 301)" 2‘Udlldqo
co(ozKT

up to error O(55). Moreover, from (5.3)) and ( we have

, _ 1
/%wmmww%=mm—n%%+oqa



and since d(a;, a;) ~ 1, we find by expanding and using Lemma

n+2
/K i) 72 pjudpg, = o] /Kw > vdjigy; /K i) " Eudpg, = Za

n+2
/ Ko vdpg,;

n+42 n+2

i 2d:ugo7 /K 901 " QUd.Ugo Zaw : K(pin_de/“LgU?

n42

/K 901)f d/ugo - a

up to errors of order O(55). Therefore, since \v l‘ = O(5%) due to (3.1)), we obtain

; n+2 o A nt2
O* I (i) v ~ — dn(n — l)n T%Kiaﬂ 2 /goj “odpg,

2 aa J
aK T
a +2 7Li»2
_ 271 J ZKan 2/()01'" ZUd,U/go
OéK T
n+2
nrs 1L 3o n42 +2 'n.+
+4n(n—l)% Y ¢ ZKQ 2/4,0z *odpg,
e
up to an error O(%) Therefore using again (3.1)) we have
n+2 j;“ ala nt aza n+t
I, (a 901)90]“ == n_29 b vdpg, — 22 : / 2vdﬂgo Z —5 / ZUd:ugo

up to the same error. Thus, 9%J-(a’p;)p;v = O(55) using (5.6), obtaining (3.7) for I = 1.
For | = 2,3 one can reason analogously. B

Theorem [I] follows from the next proposition, based on the analysis of Section [d] and Corollary .1}

Proposition 3.1. Letn > 5 and let K : M — R be a positive Morse function satisfying (L1.3)). Then,
for every subset {z1,...,x4} of {VK =0} N{AK < 0}, as 7 — 0 there ezists a unique

U= Py +7€V(ge) with ||uH%gD =1, d(a;,z;) =0o(1) and I9J.(u) =
ProoOF. Due to , we have
|0 < — on V(g,e) and [0.J] > — on 9V(q,¢)
as long as ¢ < o; < C. Thus, by (m) in Lemma it is sufficient to look for critical points in the set
C:={a(a, X a) = a'p; +0(a, A a) € V(g,e) | [lall7,, =1},

which is a smooth (3(n + 2) — 1)-dimensional manifold in W2(M, go).

Vice-versa, we claim that a critical point of J|s is indeed a critical point of J;. In fact, by Lagrange
multiplier’s rule, the gradient of J, at a constrained critical point @y must be orthogonal to C. Since J; is
dilation-invariant, its gradient on C must be tangent to the unit sphere in the || - |1, norm. On the other
hand, by construction of o, the gradient of J, at g is tangent to C := {a‘p; € V(q,¢) | ||uH%gD =1} at
the point uo such that g = ug 4+ 99 (with obvious notation). By the estimate on the derivatives of o in
Lemma T UOC is nearly parallel to T,,,C, which implies that 0.J,(@p) = 0, as desired.

It remains to prove existence and uniqueness of critical points of J;|s. For the existence part, one
can use the expansions in Lemmas [5.4] n ﬂ 5.5) and |5.6 ., together with the definition of V(q,¢) to show that
dJ, is non-vanishing on the boundary of C. For example (see (iii) in the definition of V'(q,¢)), suppose

AK(IJ) 9 1

)\2 = — —_— —_— _— = .
1T T K@y T8 a7

10



From Lemma [5.5| one deduces that there exists € > 0, tending to zero as € — 0, such that

Ao, J- (' ;) > %
From Lemmas B.1] and one has also that
NjOx, Jr(u(o, A a)) > li,
2 \3
with a similar reversed inequality, with opposite sign, if )\? = —cy ?{Z(S’T) — 3xz- Analogous estimates

can be derived for the a— and a—derivatives, yielding that the degree of dJ; on C is well-defined and
non-zero. This shows the existence of a critical point for J |z, which is (freely) critical for J. by the
above discussion. Since by construction the negative part of the above solutions is small in W2 norm,
it is possible to show from Sobolev’s inequality that it has to vanish identically, so full positivity follows
then from the maximum principle.

Uniqueness follows from Lemma [3.2] and Proposition implying the strict convexity or concavity
of J;|s with respect to all parameters o’s, A’s and the coordinates of the points a;, provided they are
chosen so that V2K (z;) is diagonal. m

4 The second variation

Let V (g, ¢) be the open set defined in (3.1)): the aim of this section is to find there a nearly diagonal form
of the second differential of J;. Let us recall our notation from Section [2] and in particular that of the

orthogonal space H, in (2.9).

Proposition 4.1. For aig; + v € V(q,€), consider the decomposition

Ve
Wh2(M, go) = Huig, ® (pi)1<i<q ® (MiOx, i) 1<i<q ® <%§0i>1§i§q = V® Xo ® Xy D X

Then there exists a basis B of WY12(M, go), with elements in the subspaces of the above decomposition,
such that the coefficients of the the second differential of J. with respect to B have the form

Ve 0 0 0

. 1[0 Agjwo 0 0 1
(02T, (o + 0)]p = VAR qO Ay + O(F)’ where:
VK
o o0 o0 -

(i) Vi represents the coefficients of a symmetric, positive-definite operator on V with eigenvalues uni-
formly bounded away from zero;

(11) Ag_1,0 has ¢g—1 negative eigenvalues uniformly bounded away from zero and one-dimensional kernel;
(iii) Ay is positive-definite, with eigenvalues uniformly bounded away from zero;

(iv) —WTK stands for the diagonal matriz —(%)izl

Remark 4.1. The basis elements in B corresponding to the first two blocks have norms of order %, while
the ones corresponding to the last two blocks have norm of order 1. We made this choice to guarantee the
off-diagonal terms in the above matriz to be of order 0()\%).

PROOF OF PROPOSITION . We wish to analyse (2.4) for u = a’p; + v € V(q,¢). Recall that

Wl’Q(Ma gO) = <¢k,i>k,i @ Haigoia

11



see Section We then choose a basis {vg,v1,vs,...} for H,:,, which is orthonormal with respect to

(-, )90 and for Ao~ Ay >~ ...~ Ay~ % define

7 ~ Pi Va, Vj -
B= iy Viy i = —,)\18 iy v~ Pis N J» k:1,2,37 :1,..., .
{0n.0, 73k = {5 Nidnpi 500 10 i q
It is not hard to see that, with this choice, the coefficients [02.J; (a*py, + ¥)]g are all of order O(55), and
our goal is to make their estimates more precise, considering different matrix blocks.

First block. The fact that 02.J(a’y;) is (uniformly) positive-definite on H,i,, is well-known, sece e.g.
[5]. The positivity of 9%J.(a‘p; + €,) on the same subspace follows from the Hélder continuity of the
second differential and the fact that [|7]| = O(5z).

First two blocks. Testing the second differential with 7; and QNSL j= % we get

1

ﬁ) (4.1)

0% J- (' pi + 0)Didh j = of
using the orthogonality (7, $17j>l’90 = 0, Lemma and the fact that ||v]| < §z. Moreover, from (2.4)
and the fact that gzgu is of order %, we find
2
16n(n —1)¢} oL dx

aZJT k 7~i~ . — 5 _6 :A17 :/ o, .
(@ pp +0)p1,:01,5 e 2)((1;;,2),,?2)\2( kil + 2 ) g o oD (4.2)

up to an error of order 0()\—12). Let us compare the above expression to

2 2n 2n

q q
« =5 e
fl@) = —=—; ai=Yai, ap =y Kl
(ap) = i=1 i=1

with first- and second-order derivatives given by

n42

1 o Ko o o2 4
iaalf(a) - ,211274 n—2 - 721 771—2 = %’L n—2 (1 - 2112 Kial 2);
(ag )= (ag?) = (ag?) ™ g
1 1 nt2 o . ot aio o o A
*aaiaajf(a) = 51'7]' n_ (1 - s Koy 2) +2 on - s Ko szO‘ ?
2 n—2\2=2 n—2 n-s n—2\2=241 n-2
(QK ) n aK (aK ) n (@)

v 4 4 2 2 n+42 n+2

_9 27?1%,2 (Kio 77 + Kjol 7 ) + - nQ 27104 ——Kja/ " Ko "
(o )54 2 (o)

The function f is scaling invariant and restricted to {a;;® = 1} attains its maximum at (o ); satisfying

az _4
— Ko % =1 forall i=1,...,q,
ap?
where we have
1 4 (e 71e 7
§aaiaajf(a) = % o (_5i’j + aQJ ) (43)
(n—2)(ag ")

Comparing (4.2)) and (4.3)) we conclude, with obvious notation

3=V 0 P Jiohy T iy
2 k N 0 A0 PTigige PJrgos 1
TIACATNE = 2605 92dbads P driade 0P rada | TON

PJ s 02 h3dr O Jrds, o 02,33
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Terms off 2x2 blocks. Let us consider next the interaction of 7; with qgk,j = ¢y, for k =2,3. Since

_ 1 ~ 1 1
v = O(ﬁ)’ v = O(X)’ (Pry Phj) Ly, = O(F) and  (Vi, ¢kj)L,, =0
we simply find for (2.4))
2 l N~ T 2 I N\~ 7T 2praiy, I \p—1~ 7
T (o + V)0 = O T (o) D = — = K (o' o))" 0i¢j kdpig, (4.4)
P

up to an error of order o(55). Indeed, by (2.4), the crucial estimates needed to verify (4.4) are

1 -
[ K@t armdng, = ol55) = [ KlaloPdnsduy, (15)

These however follow easily by expansion and interaction estimates using

1 n+2

(@1, Pk,j) Ly, = O(F)’ (Vi, bk,j) Ly, =0, Lgoor = 4n(n — 1), > +o(1) in W2(M, go)

and Lemma For the remaining integral in (4.4)), we then have

L - 1
/K(O/s@z)p i kdpg, = K /(alw)p ij kdpg, +0(p)

) 1 » 1
=K; (&o))P " Db rdpig, + O(< D et il wa1) +0(<3)
{05>%, . aler} ° A ; L% \2 (4.6)
_ - 1 B _ 1
—rjer ! | A ndaditg, + O S IE s + g o) +o(55)
{ij>2]‘;él aler} j#£l L

and therefore, using Lemma (with p = % —7)
o o 1
/K(altpl)p 1Vi¢j,kdlu’go ZKjaé') 1/(,0? 1V¢¢j7kdﬂgo +0(§>-

Then, since ||7;|| = O(1),7 = O(5z) and &, s = O(57=), we find

- A [ A - 1
/K(O/%)p i kdpg, =Kja] /<Pj Ui kdpig, +0(§) ZO(E),

where the last inequality follows from Lemma and (¢g j, %)r, = 0. Thus

90
- 1
*J, (ol +0) i ; = o(ﬁ) for k=2,3. (4.7)

By exactly the same arguments with (;3171- = O(%) as for (4.5) there holds

- . 1 1
9T (algy + D)1 bk j = 07T, (ol + D) ¢j\’ Pk,j = X32Jr(als01)90i¢k,j = O(F)

for k = 2,3. Thus we arrive at

R N
2 l S\ Az 4q-1,0 . - - —
[8 JT(a w1+ U)]B = 0 0 82J7—(;~52§Z~52 82J7?2¢~3 + O()\Q)'
0 0 O Jrd3pa  0*J 3, d3

13



Last 2x2 block. We are left with the estimate of
0T (P o +0) b1ty = 02T (aFor + 0)dridn
for k,1 = 2,3. Using the fact that
/¢;” g0 (¥ <pm+v)d,ugo—0 /q’)kl Q" +0)Pdpg, for k=23,
which follows from ||o]| = O(5%), Lemma [5.1) and Lemma we find for
T (™o + V)b i1
-— / [qsk,iLgoqsl,j - p(”“"ﬂff( " P + D) m,m,j] g,

(k‘r)gilapm+1’) kT)am(Pm—Hj (4.8)
2 2 2
= 2 I =: —5 (Il_IZ):T(Il I2)+0<>\2)
(kT)a”#@mM (kT)(’;:rnltpm_i_@ (00041"( 2 )T

In the latter formula, recalling (2.2) and the definition of V (g, ), we have used the fact that

2n

2 —5\ =2
(kf)émmm = (coag ;) ™ +o(1)

and that both Iy, I are of order y5. Let us first compute I, for which we clearly have
Tam Tam
I2 _ oMM +U /K ¢k zd)l]dﬂgo +p( 1 _Tamom+v /K d)k z¢l]vd,ugo
kr)amon+ kr)am o

up to an error o(5z), as [|9]| = O(5z), and therefore still up to an error o(55)

ra mTU
b —ppsientt / K (@™ o) $rar g,
a7”480m+v
n+2 4
e T e /K 5 0461,

As due to d(a;,a;) ~ 1 for i # j, the interactions terms ¢; ; in (2.7)) are of order ﬁ = 0()\%), we find

THm 5 _ _
I =p 2" EmF0 5, ol 1/K<Pf Yoridridig,
(kf)amgoerz‘)

n+2 4 a?
2n
n—2n—2a;{z

s T

+4n(n—1) va /chZ * r,i1,i0d g,

up to an error of %) Using (3 , up to the same error we may simplify this to

Tame,, +7 _ n+2 VZKz
I =p—"¢m¥V 5, Kol 1/ “lnipridpg, + 4n(n — 1) 8 / 2o ¢k iPu,idpig,

BE (ai)
n+2 4 _ o _
+4n(n — l)n 5 m&,j% ! /% * ki 1,i0d g,
for some ¢ > 0 small and fixed. Moreover, by orthogonality and (5.12])
2 — ~ —
T iy +0 Taig, a ci C1Co 1
= =4dnn—1)—=1— (= — =)7) + o(—),
(kT)a’i@iJrrf; (kq—)ah‘gi ( )O[ZI)(+91 ( (CO o CO) ) (>\2)
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whence by (3.1) and the fact that p = ”—4'2 — 7 we arrive at

n -+ 2 n—2 ¢ C1 C2

—1
Iy =dn(n —1)—[(1 - (~ ORI 500) TNy [ of Sritridpg,
nt2 V2 KZ 1
+4n(n—1)—— p— i ; / z2p 2¢kl¢lld/¢go
B (az)
n+2 4 Son _
+4n(n — 1)n — 2@5’ jai ! /%' Qi1 g, .

Let us compute the last integral above, which is of order O(5s), as it is ||7]. There holds

7/ I ¢k z¢l Z'Ud,ufgo = /dk 1901 ¢l Z'Udligg
_4 _4
:dk,i/WiTL72¢l,i@dﬂgo —/%L*Qdk,i@,i@dugo —/ 77y idy Od g, -

Due to orthogonality, the first integral above is of order 0(%) and denoting by

W= H<¢k.i>LL90 w for we W2(M, go) (4.9)

the orthogonal projection onto ((bk,i}J‘Lgo we have, up to an error 0(%)

_4 4 —
/ngl72dk7i¢l,i@dﬂgo :/Soinizdk,i(bl,i@dﬂgo

due to the orthogonalities (v, ¢, i) 1, = 0 and the fact that ||| = O(5%). Hence, using the same notation

as in (4.9)), we arrive at

n+2 n—2 ¢ ¢ C

I, =4n(n —1 1— - - Mo | o idiid
2 =dn(n—1)— -5+ % CO) TNXbiy | @i bridridig,
n—+2 VQK
dn(n —1)——=6; ; Lep irid
+4n(n )n—2 g /Bc(ai) oK, ' Oradridig,

n+2 -1 wim T n )
—4n(n — 1)m5 g (o P didrivdpg, + O1,idr,iVdpig, ).

Due to the fact that [|0]| = O(55) we have, still up to a o(5)

2 m, N\ 8n(n—1) L o
O (0" pm)v = @ p+) 4n(n—1)v n—Z;me v

Coy,

and we recall from (3.5)) that 6°J-(a™ )0 = —0J (@™ m)+o(5
again by smallness of interactions terms ¢; ;

N‘H

) on <¢l7j>LL90 . From this we deduce,

_ +1\ =2 _ T

n+2 [ 4 — (eoak )™= —  (0,dritni)L
P dgiri0dpg, =0 (" o )k i1 +

n_o /901 k, ¢l, Vapg, 87’L(7’L — 1) (Oz ® ) k, le, + 4n(n _ 1)

and, by orthogonality and Lemma there holds up to an error 0(%)

T 7 nt2
(0, dk,ib1i) Ly, = — (dk,i0, Gri)L,, = —4n(n — 1)/dk,wdz,isﬁ"*2 dpig,

n+2

=—4n(n—1) 5
n—

_4
/ B7 dy v idiig,
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We therefore conclude that, up to an error o),

)\2
Iy =an(n 1) 20 - (P2 S Dyt [ i
o =4n(n 5 nte % 52 % i.j [ Py k,iPl,illg,
+4n(n—1) 2517]' / oK, ) ¢k iPid g,
Bc(a;)

_ 4n(n — 1)51,3012 maj-,—(a @m)dk7i¢l’i,

at which point o has been eliminated from the main terms in the expansion. By Lemma [3.1] we then have

1
8,].,—(04m(pm) I_(¢>kz> = O(ﬁ))

S0 we may pass from dZ(b\lz to dy ;¢1; in the above formulas and, as d.J,(a™g,,) = O(55), we obtain

22 )5
(coaf(+1) =
ma‘“a’”wm)dwz,i
nt2 G ni2 9 & i
—_—a™r / (% In(1+ X227 — Lop + 1@%2)\m8)\mapm) dye.ibridpg,
C1 n—2 Co
Be(am)
é )\2 7,2 n+2 GG nt2 92 : e
+ a7 / Tl Mo — ~1 2(,0771_2 + 7130;;1_2 AmO,, Pm di,iP1,idpg,
c2 2n C2C1 n—2cy
Bs(am,)

m V2K, 2 AKy 2 e
-« / ( 2Km T 27’LK ) ©m dk,z¢l,zd:u/go'
Be(am)

Still by the fact that ; ; = o(5z) we therefore arrive at

n+2 1 n—2 C1 C1 Co

—1
I =4n(n - 1) —[1 - ( ORI 500) TNy [ & briduidg,
n+2 \v& KZ 2 A
+ 4n(n - ]')n _ 2 ,] 2K ¢k Z¢l Zd/J’gO

n—2c

G A\2r2 nt2 EiEy ni2 2 ¢ 4
+r / <~1 3 90{172 . ~1 2 901'”72 + 7180;—2 Aza)\l @z) dk,i(bl,idﬂgo
Gy 2n CaC1 n—2c

B.(a;)
n+2 " - n+2 2
—4n(n —1)d; ( -7 / (%—"2 In(l + A2r?) "2 — %%—"’72 + 6*1% P iy, %)dk iP1idpg,
B.(a;i)

Be(a;)
VKZ AKl :fQ
- /(QK ? 2nK»T2)% 2dk,i¢z,idﬂgo>,
Be(ai)
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up to some o(%) By oddness, we may simplify this to

n+2 n—2 ¢ C1C
I, =4 -1 1-— _—— = )x 05,50
 =tn(n >n_2[< e L
V2K; 4
+ 4n(n — 1) 5 J(Sk 1 / 1‘2 7l72¢k,i¢k7idlﬁgo
2K;
Bg(ai)
n42 =
— 4n(n 1)51'7]'(;]@[ < — " 2 111(1 + )\2 2) g
C1
Bs(ai)
02 2n CoCq
Bg(ai)
_ / (V2Ki££2 _ AKZ n+2
2Ki 27’LK,L
Bs(ai)

By Lemma [5.1it follows that, up to some o(5z), for k = 2,3
2
dn(n — 1)i

_4
— /%"72 XiOx, @iy ik idltg, = /
=N\, i, (dk,i)2<,0i>Lg = dki(NiOx, i, dkipi) L,
1
=dk,i{P2,is Pk,i) Ly, — ikiax,;Wi,iHLgo = o(1),

as (¢2.i, Pr.i)L,, and |65 L,

are almost constant in a; and \;.

I n+2 n—2 C1 C1 Ca P /
= 1-— — — = 3)71)|N/ i ;0
dn(n—1) 11 (n+2+ 5250) ALY
n+2 V2K; 4
+ 501,30, / e TP Ok Oidiig, — 5i,j5k,l<
Be(ai)
¢ A ¢e nt2
+7 / < - - ~12><P2n2dk7i¢k7id,ugo - /
Co o CoCy
B (a;) Be(ai)

(V2K
sz

O dn i bridpg,

nts 2 & A

i n_ 27§01 Ai a)\ ; Pi dk 1¢k 7d,UJgO
2 Cl

R

r2)s0{‘2dk,i¢k,idugo>

Ly, (NiOx, i) di,i Or,id g,

= (NiOx, ki 0is Ai,itPi) L,

So we simplify to

O friBr.idpig,

T / <1n(1+)\fr2)n2201>gp
a1

B, (CL'L)

n+2

D2 dgiridpng,

n+2

AK, 2
)l dk,i¢k,idugo>-

B QTLKZ

Next, for the first summand above we find that, up to an error o()

A?/wﬁ-’

T Bridridig, =/ 77 b ik idpng, + /

2

P 2()‘9 ;= 1)bn,idk,idpg,

Bs(ai)
n—2 = 5 2e0
=g | Bl nadng + [ @l (L X" = D idnidug,
B.(a;)
1 n—2 4
_mn+2<¢m,¢m> +0 / @07 7 (1 + N2 i dridng,
B (a;)
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using Lemma, and properly expanding. Recalling (4.8]), we thus conclude

(kr )2:@1 it 52 7 (om _ _ L, I
Wfl)a (@ om + 0) ki, —/mmz@gdﬂgo In(n—1)

n—+2, ¢ C1 Co 4 n—+ 2 4 9 g\ n=2
—5i3000( (1 a_az 7 i h g, — —— T (1 4 A2) T G idnad
J lc,l(( +n_2(50 & EO))T/% Pe,i ki g, — / @; " In(1+ Ar7) 7 dridr,idpg,

Ba(ai)
n—2 C n+2 C )\2 C1C nt2
—T / <1n(1 + )\12’]"2) 2 1)@1 2dk_ 2¢k7 ldugo + 7 / ( 1 _ "12> s0{172 dk7i¢k’idﬂgo
Co on CoC1
Be(a;) B (as)
V Kz 2 AKZ 2 2 n+2 VQKZ 9 %
) d — n—2 i d
/ ( 2K 2nK )Saz k, Z¢k iQlgo n—2 / 2K,L =y, (bk, ¢k,z Lhgo
Be(ai) Bg(ai)
(4.10)
and in particular for i = 1,...,¢, and j = 1,...,n we have, up to an error o(55)
=V 0 0 0
0 xhg-10 0 0
2 k — o N2 fg—1,
[a JT(Oé Pk + U)hB - 0 0 aQJT)\za)\l(pz)\za)\lQDl 0
0 0 0 aZJT (V;;)J ©; (V )J ©;

Last diagonal terms. Concerning A-derivatives, we first notice that mixed derivatives in different \;’s

are of order A>~", which is a o(A2) since n > 5. Therefore it is sufficient to compute second derivatives
with respect to the same \;. This corresponds to

(k- )p:r”lsa + n+2,¢6 C¢1C _a_
Br)amento g2 1 (4mo 4 5 (b 05)? = (1 a_ac / 3 b d
Sn(n — 1) ( Pm + U)( X P ) ( + " 2(50 % 50))7— (M ¢k, (bk, Lgo
n+2 .
n — 2 / Lpz ln( >‘2 2) 2 |/\ 8/\ 901‘ dlugo
Ba(ai)
n-2 G\ 35 ¢ A2 Ge nt2
_ (1 + \2p2) 252 _ G e A Vosd / €1 _ Gt HE o 5 20
T / ( n(1+ Air?) AL (NiOx,)“pidpg, + 7 % o el ) ¥ (XiOx; ) pidpig,
Be(as) Bl(as)
VIK; 5  AK; 5 5 n+2 V2K; 27
/ (3K, onks,” P = (Aidn,)? Pidpig, = —— / oK, 7 N, i P
Be(a:) Be(a;)

The second-last summand vanishes and [ ¢ _1¢k7iq§k7idugo = ¢, +o(1), cf. Lemma whence

(k)2

m 2 .c C1C
ampmtT 92 5 (M Oy )2 = 1 n+ a1z
8n(n— 1) Jr (@™ @m + ) (A0, 0i) 2 +n72(60 % 50))7—
2 e C n+2
Sn e [ el s i, 7 [ (ln<1+A?r2>22 - )w (D, iy,
- 1
Bg(a) Ba(ai)
C1 )\ r? C1Ca nt2 2 n+2 AK;
— == o2 (N ) pidug, — —— O, pil°d
+7 / (02 5 52(;1)% (AiOx;)“pidpg, 220K, r? % 7 X0, il dpg, -
BS(ai) Bs(ai)
Moreover,
ot = n+2 = 2
/cpi 2 (M0, )2 pidpg, = Nida, /% *XiO pidpg, — m/% X0 piPdpg, = — 5¢2 +o(1),

18



and

P / r2or” 2|)\ O pil*dpg, = / P2 XNi0x, idiOr, ] diig,
BE(ai) Bs(ai)
n+2
=\;0h, / 2 Xi0x, i) dpigy — / T gol" 2()\ O )2 piditg, -
BE(ai) Bs(ai)

Thus, recalling (3.1)), in particular é; 7 + ¢ @fig = o(55), we arrive at
A

(ks )§+1sam+v 27 n+2 e 2 2yn=2 2
ma (@ o + D) (XiOx, i) = coT — -t O In(1 4+ A5r%) 2 [N, @il “dirg,
Be(a;)
2,2\ %5 Tg €1 T .3 2 i3
-7 In(1+Afr7) =" (Nidx, ) 2pidpg, + Z on i O T XiON pip] " dptgy
B (a;) Be(asi)

and for the last integral above we find passing to integration over R™

nt2 nt2
A0, / 72 X0y, Y Pdpg, = A0, / rz)\ﬁ)\iéo,)\ié&;\f dx

Bs(ai)
n—2 oo n—2 72 n—2c
= N )2 [ 26 2 dx = ;O )2 xQ/ — dz) = 2
2n (Aid,) /’" 0,A; & n (Xi0)" (A re (14 72)7 ?) "8 A2
up to some error of order o(1). Consequently,
(k )p+1$0 +v 52 n—2cic
S A emtY 52 1 (™ o + 0)(NiO, i) = e2(1 /=
Snn—1) 0 Jr@"em + D) Nidne)” = el 4 Jarm =TT
n+2 e 2 2 2,2\ 2= TE
e o7 In(L+ APr?) "2 |\l i 2dpg, — In(1+A7r%) =" (Nidx, )2 pidiig, -
- B.(a;)

BE (a,,)

Finally, we calculate passing to integration over R™ and up to a o(1)

n—+ 2 ] n-2
n—2 / ®; zln(1+/\12r2) 2 |/\ia/\z‘@i|2d:u’go

Bg (al)

=/ ( +/\2 2) 2 )\8“50,\)\8,\66‘/\%3:—/\@/ ln(l—l—)\Q 2) 2 /\6,\50>\(50; dx

n

A2 nt2 nt2
—(n—-2) / Wxia&%,&a&;jm— / In(1 + A2r2) "2 (\;05,)2 80,3, 0. da,
R™ i n

where the first summand above vanishes by rescaling, and we are reduced to

%82 I, (@™ +3) (A0 ‘)2_0 (1+n_26152)7_+(n_2)7_/ A7r? VN (5%071‘
871(7171) Pm 1O\ Pi) = C2 16n2 5202 B 1+)\3T2 iUX;00,0; 90, x, )

where, up to some o(1),

Ar? nt2 n—2 [ r}1-r?) n—2_ r2(1 —r?)
/HW)WQM(SO,M(;O,M dl’ = 2 /(1 + r2)n+2 dx = — 2 Cg, C3 = /Wdﬂf (411)
Rn R Rn

By an explicit computation (all the above constants can be explicitly evaluated), we conclude that up to
1
an error o(5z)

(ko) THE n—28&6, (n-2)7° (n —2)°T*(3)
« m UaQ m m — )\la 0, 2 _ 1 _ A I R
snm—1) 0 Trla"em +0)Adrei)” = e+ 355 o 2 )T T 18al(n+ 1)
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,o..,qand g =1,...,

Thence we arrive at (with ¢ =1
=V4 0 0 0
0  Hhg10 O 0
(0% T (* or + 0)]p = 0 0 whAy
0 0 0 020 Ty, Tk,

), where Ay > 0 is as in the statement. We are left with the computation of the terms

up to 0(% ,
(k, )P,t; 4o Vi V.
o m U82 m m = a; li s
8n(n —1) (@ pm +0) YA
for instance we consider
(k )ap:rﬂlap +v ( )
777182 m ai)1 i2
Snn—1) Jr (@™ om +0)( N ®i)
n+2c  Cic iz (Va0 n+2 / = 2 2v222 (Vi) 1o
-1 B " Lo [dpg, — P In(1+ A i|“d
1+ 2@ - 22y [ B pay, - 250 (1 +33r) 7| e P,
Bs(ai)
C n2 (V ) Cl )\2 6162 n+t2 (V )
_ 1/\22 2_071 n—2 aleid / n—2 aleid
T (L+ A7) o o O e % on g )P U )i
B (a;) Be(as)
VK; , AK; .2 42 (V)10 n—+ 2 V2K; 5 -+ (Va,)
_ 7 7 a; zd _ 2 n—2 ai)1 i 2d .
/ (QKiw ok, Yo ( N ) pidpg, — —— ok, ¢ |7)\i @il “dpg,
Be(ai) Be(ai)
At this point some simplifications occur. From the relation
- . AK; 1
ClTJrCQW = O(F)
we obtain cancellation of the terms involving AK; and Cl ’\ T . Using as well the relations
iz (vﬂi) c3 :tz (vﬂi)l n+263
/‘Pi 2|T1<Pi|2d#go = +o(1); /‘Pi Q(T)z%dﬂgo = o +o(1)
together with (£ — é—;g—i)% = (& - 22)2 due to the fact that & = ¢; and ¢z = c3, to obtain
(k )ap:rnlap +v (V )
m 82 )1 i 2
c3 n+2 n-2 n—2 242 (V,,
-, nr2 / ) kg, r [z Tk gy,
Be(a;) Z Be(ai) '
v K; n+2 (v i)l n+ 2 V2K n% (v i)l
- / ok, L *( /{‘ )2 idpg, — / =207 | ; @il dpug, -
B (a;) Be(ai)
Moreover we have, passing to integration over R™, up to an error o(1)
n+2 n% n-2 (v 1',)1 (v 1',)1 %(v i)l
— / "2 In(1 4 Ar?) e \#(piﬁdugo :/nln(l—l—)\2 ) )[; ox, ;\z do,x; dx
n+2
(vdz‘)l )§O,Aidx

Bg(ai)
Airy 22 (V) 2.2 e
T (n - 2) /Rn 1+ )\227“2 O’kf Al : 50,>\idx B /n ln(l + )\ ) 5O’>\j ( Ai
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and find for the first summand

Aizy 2 (Va ) / c3
-2 0032 Lo, dr = 6 =——.
(n )/Rn 14 222 0 0= n
We therefore are left with
(k );j—"lw 10 52 (V )
7”’ a m m v 1
Sn(n—1) Jr (@™o + 0)( N, ;)2
szi o1z (Val) n+2 VQKZ 4 (Vai)
= — / e x2<pi Z( y ) widjtg, — — / v 20! 2|Tl%‘|2d'u90'
B (a;) Be(a;)
Finally, passing to integration over R™, up to some o(1) there holds
n+2 74 (Va,) (Va), 22 (Va,)
p— / o 2\T180i|2dug0 = /Rn x? ¥ SO0 5. " =00\, dx
Be(ai)
Va,) (Va): 222 (Va,)
=—20 ﬂs“( 2L Soxd —/ 22 2 (L LN250 o dx,
vl N, oo x i N, o0 ( N, )=d0,x, dx
and similarly for j = 2,...,n. Diagonalizing the Hessian we have V2K;z? = Zle afmx% and
xy 242 (V) / 2n g2 nf2/ 72
—005: Lo, dr=— (n—2 5032 de = — d
/n A\ OA ) 0,2, 4% (n ) rn 0N + A2p2 nA? Jgn (14 72)ntl .
(and similarly for j = 2,...,n), so we conclude that
(k- )”ﬁfw 4 (Va,) ?K;
«@ U82 m " — a; )1 ’ 2 I 12 .
Snn—1) 0 Jr@em + D) ()T = ey

Similarly, one can show analogous formula for any couple of indices

(kI o 21 (o _(Va), (V) RIS
8n(n—1)8 r(0"om + ) N T TR

The proof is thereby complete. B

From Proposition we deduce that the kernel of 92J, is exactly one-dimensional. The presence of a
kernel is unavoidable due to the scaling invariance of J., but this degeneracy turns out to be minimal.
We can therefore restrict ourselves to some homogeneous constraint.

Corollary 4.1. Let I; = J; ||

of (L) in V(q,e). Then

gy =11 OF I = Je {1, =11, and let @ be normalization of a solution u

(IT,u)—q—l—FZn— (K, a;)).

=1

5 Appendix: some technical estimates

In this appendix, recalling our notation, we collect some useful statements and formulas proved in [30].

n+2
Lemma 5.1. There holds Lg,pa,x = O(p; ). More precisely on a geodesic ball Bq(a) for o> 0 small

n+2 n+2 2 n n+2

LonPar = Anln — 1)g 5 — 2neart™((n ~ DHo + radp, Hopi: + 20i 913 + ol )l

where rq = dg, (a,-). Since Ry, = O(r?) in conformal normal coordinates, cf. [23], we obtain
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(i)

Lgypax =4n(n —1)[1 — C7”7“;‘_2(Ha(a) +

n+2

nVH,(a)x )]90; N

n+2 n+2
(11))  Lgypar =4n(n — 1)(,0;’}\2 =4dn(n - 1)1+ FW(a )lnr]go >+ O\ "2p,)  forn=6;
n+2
(i) Lgypar =4n(n — 1)y " = ON2pan) forn>T,
where W (a) = [W(a)|?. The expansions stated above persist upon taking \OX and S= derivatives.

Lemma 5.2. Let 0 = "T’zf and k,l =1,2,3 andi,j =1,...
uniformly as 0 <17 — 0

(i) kil N0 bril, |5 Vas ril < Cis

(i) A st" > ki idpig, = cx - id + O(T + 7)), o > 0;

n42

for i # j up to some error of order O(t% + 2175](/\4 +e.7))

(iii)

ni2
/\6/ ¢ka3d“90 = bidyici —/ “Tdg j‘Pj dﬂgm

(iv) )\efgol T oridridpg, —O(%) for k #1 and for k =2,3
- /\?_" forn=5
N @i bridug, =0 [ 7+ | B3 forn=6| |
N forn>T

X [0l dpg, =

[el?

(1, \:0n,, + v

(v)
(vi)

(zj>f07'27éj70é+ﬁ_m, T>%>5217

= O(Ef,? Ing; ), i # j;
(vii) O(eij), i # J.

with constants by, = [ 77“ fork=1,2,3 and
Rn (1+72)

@7 dpg,

Va, )i =

+ O(A"2pq40) for n=5;

,q. Then, for e;; as in (2.7), there holds

r2dz

/ dx
Ccl = S Co =
1 (1+T2)n, 2

R Rm Rn

Lemma 5.3. Foru € V(q,e) with k, =1, ¢f. (2.2),and v € H,(q,€) there holds

AT (o) = ([Z/erz +Z>\2+9+ZEM

r#S

VK, |
ALHO

(n2)2/ |r? — 12dx B (n2)2/
4 (1+T2)”+2’ €3 = n <1+T2)n+2'

}nun).

Lemma 5.4. Foru € V(q,€) and € > 0 sufficiently small the three quantities 0.J-(u)¢1 j, OJ,(a

O, J7 (i) can be written as

2
a; ( o’ Kj o, AK}, ak
= ., 00(1* 130 Y ) 2 E: 2 2
(a;{f) 2 a’;(J )\j J K )\ KpX; a

L-v,
Z azEzJ) _dl W; ln)\ Z
o T T 2k

J#i O

LT
= o=

Q
>
BTN

In \g

N (097167}
+ b1< g 5 €kl —
e

k£l
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up to an error of order O(T2 + Zr;&s hZ:Ja

n+2 NN
T )\4 +ert +|0J-(uw)]?), with positive constants ¢o, &2, b1, dy
N 8n(n—1)(n+2 . 8n(n —1 . 8n(n—1) - . 2
by = (,L 5 i )bh Co = ¥027 dy = %dh ¢o =8n(n—1)cg . (5.1)
& (n—2) Gy G
In particular for all j
a? K; -
F)\@ a2t =14 0( T+Z +srs+\aj( ).
K,

r;és

Lemma 5.5. Foru € V(q,e) and £ > 0 sufficiently small the three quantities OJ;(u)p2 j, OJr(a'p;)pa,;
and 2L aA (alp;) can be written as

AK, I;\I—?J for n=5
Q; ~ Q; 7| w,ma,
Py (ClT + CzK )\2 — by Z EjAjaAjEi’j +dy -7/\; i for n=6]| |,
(O‘K,T) " J# 0 for n>17
S 5T 2 VK2 1, P 2
with positive constants ¢1,¢a,d1,by up to some error O(T + Z#s =t ar Ferd 107 (u)] )

Lemma 5.6. For u € V(q,e) and € > 0 sufficiently small the three quantities 0J-(u)@3 ;, 8J7(aicp¢)¢37j
avaj -(alp;) can be written as

. O[j p VK 4+ & VAK B (673 &6 )
@iz \ K AN T Lo
K,

j#i J

with positive constants ¢s,C4,bs up to some error O(

3 VB 0 1 o, (w)]?).
Lemma 5.7. For every u € V(q,¢€) there holds

|VK\ o K, :
0T (W) ST+ + - el Yored ol
r#s T KT T

Theorem 2. Suppose that n > 5, K : M — R is positive, Morse and satisfies (1.3)). Then for e > 0
sufficiently small there exists ¢ > 0 such that for any u € V(q,e) with k, = 1 there holds

\V -l a? K
0J (w)| > ¢(r +Z )\2+|1 7 /\g o +eps),
r#s

unless there is a violation of at least one of the four conditions
(i) T>0;
(i1)  there exists x; # x; € {VK =0} N {AK < 0} and d(a;, z;) = O(%),
6
(iii) ;=0 (3£)77 1+0(%)'

(iv) &1 = —czﬁ v 0(%)

where © is a positive constant, uniformly bounded and bounded away from zero, that depends on u (see
Remark 6.2 in [30]). In the latter case there holds Ay =~ ... \; ~ \ = —=

75 and setting a; = eXPgw.(aj)
J
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we still have up to an error o(55) the lower bound

2AKI’) 512H (4, 4)
0J(u)| 2 ) |7+ ] + G ral

Z o | ; %(A ok

a; C4 VAK (x
+Z\ . + o (V2 () 1%

J
AK(x H(x
i 1 AK(z) | 2816 H(z;) 2% Ty 2'&)2 + 2%36 7;«;3‘;3) )

+ ‘a._@.P* 7]( _
Z ! K(a;) 90 | K(z;)A\2 = = A3 Yk Ry

n casen =5 and

02 AK () 9 1 VAK(x;)
97 (u \>Z R\ |+| + VK (y) 7 Ity -0
in case n > 6. The constants appearing above are defined by ¢y = fRn W
—1)(n—2)? 1—1r2 1 —1(n-2 2(1 —r?
C1 = n(n 25721 ) /(1 + 7n2’r)‘n+1 In 1+ r2 dl‘, 62 = _(n g )/(7]1. _(;'_ /,12)77;21 dl‘7
EO " R” EO " Rn
4(n—1)(n—2 2(n—1
m [ N0, A,
n (1 + T2)rb n (1 + 7'2)"
~ 4 -1 d = 4 -1 2 — nr?
el e e oy
EO n n (]_ =+ TQ)T EO n n (]. +r )
From the proof of Proposition 5.1 and Sections 4,5 and 6 in [30] we will need the following estimates
n+t2 —
(i) up to an error of order O (7'2 +>. )\% + D e ) there holds (b = 2%b)
_ K; _K; 2 _ AK; 2n
/K Soi)p-’_ld/””go = Z <Co)\eaf+1 +01Fai 2T+ngai 2)
Hy (5.2)
7 K; 22 Wi lo X - nt2 K ) = r"dx )
+dlzﬁo‘i 2 1)\;171 + by a; QO[jFEi,jv dy = 7(1 +r2)n+17
i T i#j i R
(i) recalling (2.7]), one has
n+2 ~
/(p, g0 Pitg, = blf—:” + O( Z Y +ert ), by = 4n(n — 1)by; (5.3)
r#s
111) up to an error T7° + <% ), there holds
(iif) up O(7* + 3), there hold
@iLg, pi _
/ 4dn(n — 1) Hgo =C0; (5-4)
n+2
(iv) up to an error of order O (T +3, % SC iR DN ) one has
(5.5)

/gongogon,ugo =4n(n — 1)cy Za + by Za QjE; j-
i i#]
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(v) If ; is as in (2.6)), then

nis L. o io . )\;3 y for n=5
[ | < | 2o - e L 0 mtaac® o nms| Il G0

Lg, )‘;4 for n>7

(vi) up to an error O(7% + 3r) one has
H;
A3+e 2
11 coK; KT AK; Wiln A, 1 rdr
/K@f dpg, = /\9 +1—5 Y, +Co—p )\2+6 +d K AT » G2 = 5~ 7(1 FREIEY (5.7)
0 R

2 n+2
(vii) up to an error or order O(72 + Dot ‘vf\({‘ + 51 + &4 ) there holds

. . . . 271
; (ai(p,) atad f@z 90950l go B atad f%pz 9095 go ( — & Z
T 1) — 271,
fK i QP4 p+1)p+1 (CO Zz 20 O‘p+l)p+l i 1 OZKT
2n % 2n_ nt2 (5'8)
AK; o] ? i a? - a o K;
ALPY j
_CQZAW f” 12 7 e | _blzlf;AGQJ)
K, 0 aK,‘r i7#j aKT
(vii) if ; ; is as in (2.7]), then
2—n 1 n+2 . .
AjOx,€ij = G T O(F +e;7 ) incase j<i or dg,(a;a;) # o(1). (5.9)
J

Finally, we derive one last technical estimate. Recalling (2.1), from (5.5) we have, up to an error o(sz),

Taigp, =a'al /Lgowmdugo = dn(n—1)eg »_ af = dn(n — 1)ega’ (5.10)

i

with ¢y = fRn (Hd%)n. From (j5.2) instead, still up to an error 0()\%), we get

i _K; 1, o K g _AK; 2y
/K(Oé @i)p—i_ld/’(‘go :Z <CO AG p+ —|— Clygai T +CQ}\T+;O¢7; )

[

2n
-2

+1 1y — — 7
—C()OépKe + Ez )\720 (ClT + 621-)\12)

with constants given by

2 In(1 + r? 1 2
c1 = / n(l+r )dzr, and Co = —/ ;Y (5.11)
n—2 Jgn (L+72)" 2n Jgn (14727

Therefore

T oios a? a? Ko™ (& s AK; 1
X% _y 1) —— —4 —1 Gt} - = ¢ —
(kT)aitpi n(n )Oéz;(+91 n(n )( p+1) zl: )\9 <COT+ o Kz>\12) + 0()\2)

and we conclude again from ([3.1)) that

9 _ .
Taig; « C1 C1 C2 1

—— =4dnn—-1)—1 - (= — ==)7) +o(=)- 5.12
(kr)aip, ( )a?;( (Co Co Co) ) ()\2) (5.12)



5.1 List of constants

For the reader’s convenience, we display the equations where some dimensional constants appear.

co 5.10 (15.1))

c1 || Lemmal|5.2[ | (5.11 Theorem [2

co || Lemmal5.2| | (5.11 (5.1) | Theorem [2

cs || Lemmal5.2 (4.11) Theorem [2
cq Theorem [2
dq 5.2 5.1f) | Theorem H

by || Lemmal(5.2| | (5.2 5.1 (5.3)

by || Lemmal5.2 Theorem H

b3 || Lemmal5.2
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