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Abstract. In the class of Carnot groups we study fine properties of sets of finite perimeter.
Improving a recent result by Ambrosio-Kleiner-Le Donne, we show that the perimeter
measure is local, i.e., that given any pair of sets of finite perimeter their perimeter measures
coincide on the intersection of their essential boundaries. This solves a question left open
in [4]. As a consequence we prove a general chain rule for BV functions in this setting.

Introduction

In this paper we deal with sets of finite perimeter in a Carnot group G. In this context one
can define a good notion of sets of finite perimeter and a left-invariant Carnot-Carathéodory
distance dc and a surface measure |DχE| by fixing a metric in the horizontal layer V1 of the
Lie algebra g of G. More precisely, given an orthonormal basis X1, . . . , Xm of V1, one defines
the vector valued distribution

(X1χE, . . . , XmχE)

(here we think to Xi as derivations) and says that E has finite perimeter if the distribution is
representable by a vector-valued measure. Then, |DχE| is the total variation of this measure,
and plays the role of surface measure in this context. Recall that in this context the Lie
algebra stratification provides an integer Q that plays the role of metric dimension (the
so-called homogeneous dimension) of the group: indeed, the volume measure of the group
is a constant multiple of SQ, where SQ is the Q-dimensional Hausdorff measure induced by
dc.

The structure of |DχE| has been deeply analyzed in [1], [10], [11]. In [1] it has been
proved, actually in a much more general context, that |DχE| can be represented as

|DχE|(B) =

∫
B∩∂∗E

θE dSQ−1 ∀ B ⊆ G Borel,

(here ∂∗E is the measure-theoretic boundary of E, see Definition 6) but no constructive
formula for θE is provided: its existence is ensured only by the Radon-Nikodym theorem.
First in the Heisenberg groups [10], and then in groups of step 2 [11], Franchi-Serapioni-Serra
Cassano made a much more precise analysis of |DχE|, that leads to a precise identification
of θE in terms of ∂∗E; however this analysis depends on the fact that, as in the classical
De Giorgi’s theorem [6], tangent sets to E at x are, for |DχE|-a.e. x, halfspaces. Presently
this information is available only on step 2 groups, but some progress on this problem has
recently been made in [2] by A.-Kleiner-Le Donne: they proved in all Carnot groups G that,
for |DχE|-a.e. x, an halfspace belongs to the collection of tangents sets to E at x. It still
remains to prove, however, that halfspaces are the unique tangent sets.
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In this paper we slightly improve the techniques used in [2] to show a locality property of
the perimeter measure left open in [4]. Precisely, we show that

(0.1) |DχE|(B) = |DχF |(B) for all B ⊂ ∂∗E ∩ ∂∗F Borel

for any pair of sets of locally finite perimeter E and F . The strategy is to consider pairs of
sets (E1, F1) as tangents to (E,F ); a more precise analysis of the techniques in [2] allows to
show the existence of a pair of halfspaces among the tangents. This fact provides equality
of normals, up to the sign, and eventually (0.1).

Using the locality property, it is not difficult to define in a consistent way a surface
measure ρS associated to sets S contained in a countable union of essential boundaries
of sets of finite perimeter: among all measures ρ vanishing on SQ−1-negligible sets, ρS is
uniquely characterized by the property ρS(B) = |DχE|(B) whenever E has locally finite
perimeter and B ⊂ ∂∗E.

As an application we improve the (weak) chain rule formula in BV (G) proved in [4],
proving a result completely analogous to Euclidean case. The chain rule formula involves
ρSu , where Su is the approximate discontinuity set of u.

1. Carnot Groups

1.1. Definitions and basic properties.

Definition 1. Throughout this paper G denotes a Carnot group of step s ≥ 1, whose unit
element shall be denoted by e. Precisely, G is a connected, simply connected Lie group
whose Lie algebra g admits a step s stratification, i.e.,

(1.2) g = V1 ⊕ · · · ⊕ Vs

with [Vj, V1] = Vj+1, 1 ≤ j ≤ s, Vs+1 = 0. We use the notation n =
∑

i dimVi for the
topological dimension of G, and we denote by

(1.3) Q :=
s∑
i=1

idimVi

the so called homogeneous dimension of G.

Definition 2. Consider a family of inhomogeneous dilations δλ : g→ g defined by

(1.4) δλ(
s∑
i=1

vi) :=
s∑
i=1

λivi λ ≥ 0

where X =
∑s

i=1 vi with vi ∈ Vi, 1 ≤ i ≤ s. The dilations δλ belong to GL(g) and are
uniquely determined by the homogeneity conditions

(1.5) δλX = λkX ∀X ∈ Vk.

On a Carnot group G, the Carnot-Carathéodory distance is a left invariant distance
defined as follows: Denote by m the dimension of V1, fix an inner product in V1 and an
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orthonormal basis X1, . . . , Xm of V1. Then, the CC distance d is defined as

(1.6) d2(x, y) := inf

{∫ 1

0

m∑
i=1

|ai(t)|2dt : γ(0) = x, γ(1) = y

}
,

where the infimum is made among all Lipschitz curves γ : [0, 1] → G (where in G a left-
invariant Riemannian distance is fixed) with the property γ′(t) =

∑m
i=1 ai(t)(Xi)γ(t) for a.e.

t ∈ [0, 1].

Remark 1. A Carnot group G is clearly nilpotent, hence the exponential map exp : g → G
is a diffeomorphism. So any element g ∈ G can be identified with exp(X) for some X ∈ g,
and uniquely written in the form

(1.7) exp(
s∑
i=1

vi), vi ∈ Vi, 1 ≤ i ≤ s.

With this identification we can define a family of intrinsic dilations δλ : G → G, λ ≥ 0, by

(1.8) δλ(exp(
s∑
i=1

vi)) := exp(
s∑
i=1

λivi),

or we can write it more briefly exp ◦ δλ = δλ ◦ exp. The Carnot-Carathéodory distance is
well-behaved under these dilations, namely

(1.9) d(δλx, δλy) = λd(x, y) ∀x, y ∈ G.

In exponential coordinates p = exp(p1X1+· · ·+pnXn), we might identify p with the n-uple
(p1, . . . , pn) ∈ Rn and consequently identify G with (Rn, ·), where the explicit expression of
the group operation · is determined by the Baker-Campbell-Hausdorff formula. However,
we shall avoid the use of this identification whenever possible.

Carnot groups are nilpotent and so unimodular, thus the right and the left Haar measures
coincide, up to constants. We shall denote by Hk the Hausdorff k-dimensional measure
associated to the Carnot-Carathéodory distance on G. The Hausdorff measure HQ is a
Radon measure in G and, by the left invariance of the CC distance, is an Haar measure
on G: it will be also denoted by volG. Moreover, in exponential coordinates, this measure
coincides with a constant multiple of the Lebesgue measure on Rn. From these considerations
it follows that

volG(δλ(A)) = λQvolG(A),

for all Borel sets A ⊆ G. In particular

(1.10) volG(Bρ(g)) = cρQ

for some constant c > 0 independent of g.

1.2. X-derivative. As in Definition 2.6 of [2], we introduce the X-derivative in a Carnot
group G. Given a vector field X ∈ Γ(TG) we define the divergence divX in the sense of
distributions as follows:

(1.11)

∫
G
Xud volG = −

∫
G
u divX d volG ∀u ∈ C∞

c (G).
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Definition 3. Let u ∈ L1
loc(G) and let X ∈ Γ(TG) be divergence-free. We denote by Xu

the distribution

〈Xu, v〉 := −
∫

G
uXv d volG, v ∈ C∞

c (G).

If f ∈ L1
loc(G), we write Xu = f if 〈Xu, v〉 =

∫
G vf d volG for all v ∈ C∞

c (G). Analogously,
if µ is a Radon measure on G, we write Xu = µ if 〈Xu, v〉 =

∫
G v dµ for all v ∈ C∞

c (G).

Given X ∈ Γ(TG) we denote by ϕX : G × R → G the flow of X, assuming that X is
sufficiently smooth to ensure its global existence and uniqueness.

Theorem 1.1 (2.12 of [2]). Let u ∈ L1
loc(G) be satisfying Xu = 0 in the sense of distribu-

tions. Then, for all t ∈ R, u = u ◦ ΦX(·, t) volG-a.e. in G.

One can prove that all X ∈ g are divergence free, using the invariance of the right Haar
measure with respect to the flow of X (see Remark 2.13 of [2] for details).

Now we recall the definition of the adjoint map. For k ∈ G the conjugation map Ck is
the composition of Lk with Rk−1 . The adjoint representation Ad of G maps G in Aut(g) as
follows

Adk(X) := (Ck)∗X,

if we consider the elements of g as left-invariant vector fields on G. Equivalently

Adk(X)f(x) = X(f ◦ Ck)(C−1
k (x)),

if X is seen as a derivation on C∞(G).

We recall the following result, proved in Proposition 2.17 of [2].

Proposition 1.2. Assume that G is a connected, simply connected nilpotent Lie group. Let
g
′ be a Lie subalgebra of g satisfying dim(g′)+2 ≤ dim(g), and assume that W := g

′⊕{RX}
generates the whole Lie algebra g for some X /∈ g

′. Then, there exists k ∈ exp(g′) such that
Adk(X) /∈ W .

1.3. Measure theoretic tools. In this section we recall some facts and definitions of
measure theory, the main references for this section are [8] and [5].

Definition 4. For any set E ⊂ G, denote by χE the characteristic function of E. In the
class of Borel set of G we considere the local convergence in measure:

Eh → E ⇐⇒ volG(K ∩ [(Eh \ E) ∪ (E \ Eh)]) → 0 for all K ⊆ G compact.

Notice that the local convergence in measure of Eh to E is equivalent to the convergence
χEh

→ χE in L1
loc(G).

Let M(G) be the class of signed Radon measures in G; any Borel proper map (i.e., such
that the inverse image of bounded set is bounded) f : G → G induces a push-forward
operator f] : M(G) →M(G) defined by

f]µ(B) := µ
(
f−1(B)

)
for all B ⊂ G bounded Borel.
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In the space M(G) we consider the weak∗ convergence induced by the duality with Cc(G),
more precisely µk ⇀ µ if

lim
k→∞

∫
G
udµk =

∫
G
udµ ∀u ∈ Cc(G).

We will use also vector-valued Radon measures, representable as a vector (µ1, . . . , µn) with
µi ∈M(G). Recall that the total variation |µ| of a Rn-valued measure µ is defined by

|µ|(B) := sup

{
∞∑
i=1

|µ(Bi)| : {Bi} Borel partition of B

}
.

For a nonnegative Radon measure µ we have the following useful implications: for all t > 0
and B ⊆ G Borel it holds

(1.12) lim sup
r↓0

µ(Br(x))

ωkrk
≥ t ∀x ∈ B =⇒ µ(B) ≥ tSk(B)

(1.13) lim sup
r↓0

µ(Br(x))

ωkrk
≤ t ∀x ∈ B =⇒ µ(B) ≤ tSk(B).

Here ωk is the Lebesgue measure of the unit ball in Rk and Sk is the spherical Hausdorff
k-dimensional measure.

Definition 5. A nonnegative Radon measure µ in G is said to be asymptotically doubling
if:

(1.14) lim sup
r↓0

µ(B2r(x))

µ(Br(x))
<∞ for µ-a.e. x ∈ G.

For asymptotically doubling measures a Lebesgue differentiation theorem holds, for a
proof see 2.8.17 in [8].

Theorem 1.3. Assume that µ is asymptotically doubling and ν ∈ M(G) is absolutely
continuous with respect to µ. Then the limit

(1.15) f(x) := lim
r↓0

ν(Br(x))

µ(Br(x))

exists and it is finite for µ-a.e. point x ∈ suppµ. Moreover f ∈ L1
loc(µ) and ν = fµ, namely

ν(B) =
∫
B
fdµ for all bounded Borel sets B ⊆ G.

Remark 2. As a consequence of the previous theorem, if µ is an asymptotically doubling
Radon measure and L ⊆ G is a Borel set we have

(1.16) lim
r↓0

µ(L ∩Br(x))

µ(Br(x))
= χL(x) for µ-a.e. x ∈ G.

Given E ⊆ G, we recall the definition of the essential boundary ∂∗E of E.

Definition 6. Set mE(x, ρ) = volG(E ∩Bρ(x)), we say that x ∈ ∂∗E if

lim sup
ρ↓0

mE(x, ρ)

volG(Bρ(x))
> 0 and lim sup

ρ↓0

mEc(x, ρ)

volG(Bρ(x))
> 0.
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1.4. Sets of finite perimeter.

Definition 7. Let f ∈ L1
loc(G). We shall denote by Reg(f) the vector subspace of g made

by vectors X such that Xf is representable by a Radon measure. We shall denote by Inv(f)
the subspace of Reg(f) corresponding to the vector fields X such that Xf = 0, and by
Inv0(f) the subset made by homogeneous directions, i.e.,

Inv0(f) := Inv(f) ∩
s⋃
i=1

Vi.

Proposition 1.4 (4.7 of [2]). Let f ∈ L1
loc(G). Then Reg(f), Inv(f), Inv0(f) are invariant

under left translations, and Inv0(f) is invariant under dilations. Moreover:

(1) Inv(f) is a Lie subalgebra of g and [Inv0(f), Inv0(f)] ⊆ Inv0(f),
(2) If X ∈ Inv(f) and k = exp(X), then Adk maps Reg(f) into Reg(f) and Inv(f) into

Inv(f), more precisely

Adk(Y )f = (Rk−1)]Y f ∀Y ∈ Reg(f).

We will consider regular, and invariant directions of characteristic functions, therefore we
set

Reg(E) := Reg(χE), Inv(E) := Inv(χE), Inv0(E) := Inv0(χE).

We may now define halfspaces as the subsets of G having invariance along a codimension
1 space of directions, and monotonicity along one direction. We call vertical halfspace an
halfspace which is invariant along all non-horizontal directions:

Definition 8 (4.2 of [2]). We say that a Borel set H ⊆ G is a vertical halfspace if Inv0(H) ⊇
∪s2Vi, V1 ∩ Inv(H) is a codimension one subspace of V1 and there is X̄ ∈ V1 \ Inv0(H) such
that X̄χH ≥ 0.

Identifying the Lie group G with Rn, vertical halfspaces are images by the exponential
map of halfspaces in Rn, as stated in the following proposition, for a proof see Proposition 4.4
of [2] (recall that m denotes the dimension of V1 and that X1, . . . , Xm is a given orthonormal
basis of V1).

Proposition 1.5. H ⊆ G is a vertical halfspace if there exist c ∈ R and a unit vector
ν ∈ Sm−1 such that H = Hc,ν, where

(1.17) Hc,ν := exp

({
m∑
i=1

aiXi +
s∑
i=2

vi : vi ∈ Vi, a ∈ Rn,

m∑
i=1

aiνi ≤ c

})
.

Now, we can define the class of sets of locally finite perimeter:

Definition 9 (Essential boundary). A Borel set E ⊆ G has locally finite perimeter if XχE
is a Radon measure for any X ∈ V1. Given a set E of locally finite perimeter, we denote by
DχE the vector-valued measure

DχE = (X1χE, . . . , XmχE).
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Let us introduce the reduced boundary FE of a finite perimeter set E: in the rest of the
paper we will use mainly this notion of boundary, only when necessary we will refer to ∂∗E
(see also Remark 4).

Definition 10 (De Giorgi’s reduced boundary). Let E ⊆ G be a set of locally finite perime-
ter. We denote by FE the set of points x ∈ supp|DχE| where:

(1) the limit νE(x) = (νE,1(x), . . . , νE,m(x)) := lim
r↓0

DχE(Br(x))

|DχE|(Br(x))
exists,

(2) |νE(x)| = 1.

We know that Carnot groups are Ahlfors Q-regular spaces, by (1.10). Moreover, see for
instance Proposition 11.17 in [12], they support a 1-Poincaré inequality, thus applying the
theory in [1] to the particular case of Carnot groups we obtain that the perimeter measure
is asymptotically doubling and it is concentrated on ∂∗E:

Theorem 1.6 (4.16 of [2]). Let E ⊆ G be a set of locally finite perimeter. Then |DχE| is
concentrated on ∂∗E. In addition |DχE| is asymptotically doubling, and more precisely the
following property holds: for |DχE|-a.e. x ∈ G there exists r(x) > 0 satisfying

(1.18) `Gr
Q−1 ≤ |DχE|(Br(x)) ≤ LGr

Q−1 ∀r ∈ (0, r(x)),

with `G > 0 and LG depending on G only.

Remark 3. Therem 1.6 also implies, by the density estimates (1.12), (1.13), an upper and
lower bound for |DχE| with respect to the spherical Hausdorff measure SQ−1, i.e.,

(1.19)
`G

ωQ−1

SQ−1(B ∩ ∂∗E) ≤ |DχE|(B) ≤ LG

ωQ−1

SQ−1(B ∩ ∂∗E),

for all Borel sets B ⊆ G. A similar result holds also for HQ−1, since HQ−1 ≤ SQ−1 ≤
2Q−1HQ−1.

Remark 4. The density lower bounds at points x ∈ FE in [11] imply that FE is contained
in ∂∗E; on the other hand, since we know from Theorem 1.3 and the asymptotic doubling
estimates that |DχE| is concentrated on FE, we can choose B = ∂∗E \ FE in (1.19) to
obtain that HQ−1(∂∗E \ FE) = 0.

1.5. Tangent sets. Now we define, as in Definition 5.1 of [2], the tangent set at x of the
set E ⊂ G:

Definition 11 (Tangent set). Let E ⊆ G be a set of locally finite perimeter and x ∈ FE.
Denote by Tan(E, x) all limit points, in the topology of local convergence in measure, of the
translated and rescaled family of sets

{
δ1/r(x

−1E)
}
r>0

as r ↓ 0.

If F ∈ Tan(E, x) we say that F is tangent to E at x. We also set

Tan(E) :=
⋃
x∈FE

Tan(E, x).

We also define the iterated tangent sets Tank(E, x) as

Tank+1(E, x) :=
⋃{

Tan(Ek) : Ek ∈ Tank(E, x)
}
.
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The following proposition provides a first list of properties fulfilled by all tangent sets.

Proposition 1.7 ([11]). Let E ⊆ G be a set of locally finite perimeter. Then, for HQ−1-a.e.
x ∈ FE the following properties hold:

(1) 0 < lim infr↓0 |DχE|(Br(x))/r
Q−1 ≤ lim supr↓0 |DχE|(Br(x))/r

Q−1 <∞;
(2) if (ri) ↓ 0 there exists a subsequence (ri(k)) such that δ1/ri(k)

(x−1E) locally converge

in measure, so that in particular Tan(E, x) 6= ∅;
(3) if Ei → F locally in measure, with Ei = δ1/ri(x

−1E) and (ri) infinitesimal, then
|DχEi

| and DχEi
weakly∗ converge respectively to |DχF | and DχF ;

(4) for all E1 ∈ Tan(E, x) we have that e ∈ supp |DχE1| and

νE1(y) = νE(x) for |DχE1|-a.e. y ∈ G.

In particular V1 ∩ Inv0(E1) coincides with the codimension 1 subspace of V1{
m∑
i=1

aiXi :
m∑
i=1

aiνE,i(x) = 0

}
and, setting X :=

∑m
i=1 νE,i(x)Xi ∈ g, XχE1 is a nonnegative Radon measure.

The next Lemma, proved in Lemma 5.8 of [2], shows how to build an invariant direction
starting from a regular one.

Lemma 1.8. Let E ⊆ G be of locally finite perimeter, let Z =
∑l

i=1 vi ∈ Reg(E), where
vi ∈ Vi. Then, for HQ−1-a.e. x ∈ FE, vl ∈ Inv0(F ) for all F ∈ Tan(E, x).

Now we state a Lemma which gives us an iterating process to increase the dimension, in
higher tangents, of the set of invariant measures, the proof is based on Proposition 1.2 and
Lemma 1.8 and it makes more precise the arguments implicit in Lemma 5.9 of [2].

Lemma 1.9. Let E ⊆ G be of locally finite perimeter such that

dim(span(Inv0(E))) ≤ n− 2

and assume that Inv(E) has codimension 1 in V1. Then for HQ−1-a.e. x ∈ FE we have

span(Inv0(E1)) ) span(Inv0(E)) for all E1 ∈ Tan(E, x).

Proof. As in Lemma 5.9 of [2], first we prove the existence of

Z ∈ Reg(E) \
(
span(Inv0(E)) + V1

)
.

Indeed, applying Proposition 1.2 with g
′ = span(Inv0(E)) and X =

∑m
1 νE,i(x)Xi we obtain

X ′ ∈ g
′ such that

Z := Adexp(X′)(X) /∈ span(Inv0(E))⊕ {RX} = span(Inv0(E)) + V1,

where the equality follows by the codimension 1 property. By Proposition 1.4(2) we have
that Z ∈ Reg(E).

Since Z has no horizontal component we can write

Z = vi1 + · · ·+ vil , vij ∈ Vij , ij ≥ 2, ij ≤ ij+1.
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Now choose the largest k such that vik /∈ Inv0(E) and consider Z ′ := vi1 + · · ·+ vik . Notice
that Z ′ still belongs to Reg(E), because vik+1

+ · · · + vil ∈ span(Inv0(E)). Choose a point
x ∈ FE where Lemma 1.8 holds (with Z = Z ′) to obtain that vik ∈ Inv0(E1) for all
E1 ∈ Tan(E, x). On the other hand, since

span(Inv0(E)) ∩ Vj ⊆ Inv(E) ∩ Vj ⊆ Inv0(E) ∀j = 1, . . . , s

we have that vik /∈ span(Inv0(E)). �

2. Locality of the perimeter measure

In this section E, F ⊆ G are sets of finite perimeter. Our strategy to prove the locality
property (0.1) is to show first that at HQ−1-a.e. point x ∈ FE ∩FF the unit inner normals
coincide up to sign, i.e., νE(x) = ±νF (x), then the locality property will follow from a
further blow-up argument. The equality of normals will be proved first in the case when one
set is contained in another, by iterating the tangent operator (which preserves the inclusion)
to both sets, until halfspaces are reached. At the level of halfspaces, set-theoretic inclusion
obviously implies equality of the normals.

The locality property requires instead a more sophisticated argument: it will be achieved
by showing the existence of family of scales on which both sets E and F are close to hyper-
planes. In order to get this result, we obviously need to generalize Definition 11 of tangent
space, considering couples of tangent sets at common scales.

Definition 12. Let E,F ⊆ G be sets of locally finite perimeter and x ∈ FE ∩ FF . We
denote by Tan(E,F, x) all limit points, in the topology of local convergence in measure, of
the translated and rescaled family of set pairs (δ1/r(x

−1E), δ1/r(x
−1F )) as r ↓ 0.

If (E1, F1) ∈ Tan(E,F, x) we say that (E1, F1) is tangent to (E,F ) at x. We also set

Tan(E,F ) :=
⋃

x∈FE∩FF

Tan(E,F, x).

Remark 5. By the definition of Tan(E,F, x) it follows directly that (E1, F1) ∈ Tan(E,F, x)
implies E1 ∈ Tan(E, x) and F1 ∈ Tan(F, x); conversely, if E1 ∈ Tan(E, x), F1 ∈ Tan(F, x),
and if

δ1/ri(x
−1E) → E1, δ1/ri(x

−1F ) → F1

for a common sequence ri → 0, then it follows that (E1, F1) ∈ Tan(E,F, x). Thus, when-
ever a property holds for every element of Tan(E, x) and of Tan(F, x) we can extend it to
Tan(E,F, x).

Remark 6. As a consequence of Remark 5 and Proposition 1.7, we know that for HQ−1-a.e.
x ∈ FE ∩ FF , Tan(E,F, x) 6= ∅ and for every element (E1, E2) ∈ Tan(E,F, x), Inv(E1)
and Inv(F1) have codimension 1 in V1. Moreover, if we define X :=

∑m
i=1 νE,i(x)Xi and

Y :=
∑m

i=1 νF,i(x)Xi, we have XχE1 ≥ 0 and Y χF1 ≥ 0.

Lemma 2.1. Let E,F ⊆ G as above, let X ∈ Reg(E) and Y ∈ Reg(F ) and write X =∑l
i=1 vi and Y =

∑h
i=0wi, where vi, wi ∈ Vi. Then, for HQ−1-a.e. x ∈ FE ∩ FF , vl ∈

Inv0(E1) and wh ∈ Inv0(F1) for all (E1, F1) ∈ Tan(E,F, x).

Proof. The lemma is a direct consequence of Remark 5 and Lemma 1.8. �
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As in Definition 5.1 of [2] we can define the iterated tangent spaces.

Definition 13. Let x ∈ FE ∩ FF . We define Tan1(E,F, x) := Tan(E,F, x) and

Tank+1(E,F, x) :=
⋃{

Tan(Ek
1 , F

k
1 ) : (Ek

1 , F
k
1 ) ∈ Tank(E,F, x)

}
.

In order to prove that regular directions become invariant in a sufficiently high tangent
space, we need to look at the reduced boundary of a couple in Tan(E,F, x).

Proposition 2.2. For HQ−1-a.e. x ∈ FE ∩ FF the following property holds: for all
(E1, F1) ∈ Tan(E,F, x) the reduced boundaries FE1 and FF1 are HQ−1 equivalent (i.e.,
their symmetric difference is HQ−1-negligible).

Proof. Let us prove the inclusion FE1 ⊆ FF1 up to HQ−1-negligible sets (the proof of the
opposite one being similar). Set Ex,r = δ1/r(x

−1E), Fx,r = δ1/r(x
−1F ). By (1.19) and

Remark 4 we have |DχEx,r | ≤ LG
ωQ−1

SQ−1 FEx,r. We decompose the right hand side of the

previous inequality in two terms, one concentrated on FFx,r and the other one concentrated
on FEx,r \ FFx,r:

|DχEx,r | ≤
LG

ωQ−1

SQ−1 FFx,r +
LG

ωQ−1

SQ−1 (FEx,r \ FFx,r).

Using again (1.19) we have

(2.20) |DχEx,r | ≤
LG

`G
|DχFx,r |+

LG

ωQ−1

SQ−1 (FEx,r \ FFx,r).

If we prove that the second term in the right hand part of (2.20) is infinitesimal (i.e., its mass
in any ball BR(e) is infinitesimal), choosing a sequence (ri) ↓ 0 such that (Ex,ri , Fx,ri) →
(E1, F1) we get |DχE1| ≤ LG

`G
|DχF1|, hence (1.19) again gives FE1 ⊂ FF1 up to HQ−1-

negligible sets.

Consider the measure SQ−1 FE which is asymptotically doubling as a consequence of
(1.18) and (1.19). Choose L = G \ FF in Remark 2, so that

(2.21) lim
r↓0

SQ−1(Br(x) ∩ FE \ FF )

SQ−1(Br(x) ∩ FE)
= 0

for SQ−1-a.e. x ∈ FE ∩ FF . By the scaling property of SQ−1 and the reduced boundary
we have

SQ−1(BR(e) ∩ FEx,r \ FFx,r)
RQ−1

=
SQ−1(BRr(x) ∩ FE \ FF )

SQ−1(BRr(x) ∩ FE)

SQ−1(BRr(x) ∩ FE)

(Rr)Q−1
.

Choosing a point x where (2.21) holds, and taking into account that SQ−1(Br(x)∩FE)/rQ−1

is bounded above as r ↓ 0 we obtain

SQ−1(BR(e) ∩ FEx,r \ FFx,r) → 0 ∀R > 0.

�

The following Lemma is the fundamental step in order to prove the locality property:
we can use it to start an iterating process that leads to the existence of a pair of vertical
halfspaces in the iterated tangent sets Tank(E,F, x).
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Lemma 2.3. Let E,F ⊆ G be sets of locally finite perimeter such that

i := min {dim(span(Inv0(E))), dim(span(Inv0(F )))} ≤ n− 2

and assume that Inv(E), Inv(F ) have codimension 1 in V1. Then, for HQ−1-a.e x ∈ FE ∩
FF , for all (E1, F1) ∈ Tan(E,F, x) we have

min {dim(span(Inv0(E1))), dim(span(Inv0(F1)))} > i.

Proof. Assume first that both span(Inv0(E)) and span(Inv0(F )) have dimension less than
n− 2. Choose x̄ ∈ FE ∩ FF such that Lemma 1.9 holds for E and F , this means

span(Inv0(E1)) ) span(Inv0(E)) ∀ E1 ∈ Tan(E, x).(2.22)

span(Inv0(F1)) ) span(Inv0(F )) ∀ F1 ∈ Tan(F, x).(2.23)

Combining (2.22), (2.23) we get that for HQ−1-a.e. x ∈ FE∩FF we have span(Inv0(E1)) )
span(Inv0(E)) and span(Inv0(F1)) ) span(Inv0(F )) for all (E1, F1) ∈ Tan(E,F, x).

If one of the dimensions, say the one of span(Inv0(E)), exceeds n − 2, then it must be
n− 1 and E is an halfspace. Since vertical halfspaces H are self-similar (i.e., x−1H = H for
all x ∈ ∂H and δλH = H for all λ > 0) iterating once more the blow-up procedure improves
the number of invariant directions of the second set of the pair. �

Remark 7. The condition on the codimension of Inv(E) and Inv(F ) in V1 will be automat-
ically satisfied when dealing with tangent spaces, by Proposition 1.7.

Theorem 2.4. Let E,F ⊆ G be sets of locally finite perimeter. Then, for HQ−1-a.e.
x ∈ FE ∩ FF

(H0,νE(x), H0,νF (x)) ∈ Tank(E,F, x) with k := 1 + (n−m).

Proof. By Proposition 1.7, sets in Tan(E,F, x) are invariant in at least m−1 directions and
have at least a non-invariant direction, provided by the inner normals νE(x), νF (x). Define
the integers w(T ) = dim(span(Inv0(T ))), T ⊆ G, and ik as follows:

ik = max{min{w(E1), w(F1)}, (E1, F1) ∈ Tank(E,F, x)}, k ≥ 1.

Then i1 ≥ m− 1, and by Lemma 2.3 if follows that ik+1 > ik as long as ik ≤ n− 2. Indeed,
Proposition 2.2 ensures that the reduced boundaries of sets (Ek+1, Fk+1) ∈ Tan(Ek, Fk, yk)
(for k ≥ 0, E0 = E, F0 = F ) are HQ−1-equivalent, so we can repeatedly apply Lemma 2.3.
On the other hand, if ik = n − 1, then there exists (E1, F1) ∈ Tank(E,F, x) with w(E1) =
w(F1) = n− 1, hence both E1 and F1 are halfspaces. �

Corollary 2.5. Let F ⊆ E ⊆ G be sets of locally finite perimeter. Then, for HQ−1-a.e.
x ∈ FE ∩ FF we have νE(x) = νF (x).

Proof. Consider the set N ⊂ FE ∩ FF where the property stated in Theorem 2.4 holds
and fix an x ∈ N . Then (H0,νE(x), H0,νF (x)) ∈ Tank(E,F, x) for some k. Since L ⊆ M
implies L1 ⊆ M1 whenever (L1,M1) ∈ Tan(L,M, y), we know that H0,νF (x) ⊆ H0,νE(x). In
exponential coordinates this means{

n∑
i=1

yiXi :
m∑
i=1

yiνF,i(x) ≤ 0

}
⊆

{
n∑
i=1

yiXi :
m∑
i=1

yiνE,i(x) ≤ 0

}
,
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where (X1, . . . , Xn) is a basis of g extending the basis (X1, . . . , Xm) of V1. This implies
νE(x) = νF (x). �

In order to prove the locality property we need to extend the previous corollary to all
possible sets E,F ⊆ G of locally finite perimeter, not necessarily one contained in the other.

Corollary 2.6. Let F,E ⊆ G be sets of locally finite perimeter. Then for HQ−1-a.e. x ∈
FE ∩ FF we have νE(x) = ±νF (x).

Proof. Consider the set E ∩ F , clearly E ∩ F ⊆ F and the same holds for E. Then
Corollary 2.5 yields

νE∩F = νE HQ−1-a.e. on F(E ∩F )∩FE, νE∩F = νF HQ−1-a.e. on F(E ∩F )∩FF.
Noticing that νF = −νG\F , Corollary 2.5 also yields

νE\F = νE HQ−1-a.e. on F(E \F )∩FE, νE\F = −νF HQ−1-a.e. on F(E \F )∩FF.

Since analogous relations hold for F \ E, it follows that νE = ±νF HQ−1-a.e. on (F(E ∩
F ) ∪ F(E \ F ) ∪ F(F \ E)) ∩ (FE ∩ FF ). It remains to show that

F(E ∩ F ) ∪ F(E \ F ) ∪ F(F \ E) ⊇ FE ∩ FF
up to HQ−1-negligible sets. In order to show this fact we shall work with the essential
boundaries, equivalent in HQ−1-measure to the reduced boundaries by Remark 4. Writing
E = (E ∩ F ) ∪ (E \ F ) since the union is disjoint we have the obvious inclusion

∂∗E ⊆ ∂∗(E ∩ F ) ∪ ∂∗(E \ F ),

and the same relation holds also for F . Therefore taking the intersection we get

∂∗E ∩ ∂∗F ⊆ ∂∗(E ∩ F ) ∩ (∂∗(E \ F ) ∪ ∂∗(F \ E)),

and the proof is complete. �

By the locality property of the outer normal, a blow-up argument and a measure differ-
entiation we can prove the locality property of the perimeter measure.

We say that a measure µ ∈Mm(G) is asymptotically q-regular if

(2.24) 0 < lim inf
r↓0

|µ|(Br(x))

rq
≤ lim sup

r↓0

|µ|(Br(x))

rq
< +∞ for |µ|-a.e. x ∈ G.

Notice that asymptotically q-regular measures are asymptotically doubling, and that the
perimeter measure |DχE| is asymptotically (Q− 1)-regular, thanks to Theorem 1.6.

In the sequel we shall denote the scaling map y 7→ δ1/r(x
−1y) by Ix,r.

Definition 14 (Tangents to a measure). Let µ ∈Mm(G) be asymptotically q-regular. We
denote by Tan(µ, x) the family of all measures ν ∈ Mm(G) that are weak* limit point as
r ↓ 0 of the family of measures r−q(Ix,r)]µ.

The following theorem shows the principle that iterated tangents are tangents, see [14]
or [13, Theorem 14.16]; see Theorem 6.4 of [2] for the proof of the statement given below,
involving vector-valued measures in Carnot groups.
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Theorem 2.7 ([2]). Let µ ∈ Mm(G) be asymptotically q-regular. Then, for |µ|-a.e. x, the
following property holds:

Tan(ν, y) ⊆ Tan(µ, x) ∀ν ∈ Tan(µ, x), ∀y ∈ supp |ν|.

Theorem 2.8. Let F,E ⊆ G be sets with locally finite perimeter. Then for HQ−1-a.e.
x ∈ FE ∩ FF we have

∞⋃
k=1

Tank(E,F, x) ⊆ Tan(E,F, x).

Proof. Consider the vector-valued measure µ = (DχE, DχF ) ∈ M2m(G). Then, for x ∈
FE ∩ FF we have the equivalence

(2.25) (E1, F1) ∈ Tan(F,E, x) ⇐⇒ (DχE1 , DχF1) ∈ Tan(µ, x), DχE1 6= 0, DχF1 6= 0.

Indeed, assume without loss of generality that x = e and that (DχE1 , DχF1) is the weak∗

limit of (r1−Q
i (Ie,ri)]DχE, r

1−Q
i (Ie,ri)]DχF ), with ri ↓ 0 as i→∞ and DχE1 6= 0, DχF1 6= 0.

Set Ei = δ1/riE, Fi = δ1/riF , by the compactness properties of finite perimeter sets we can as-

sume that (Ei, Fi) → (E ′, F ′) locally in measure. Then (r1−Q
i (Ie,ri)]DχE, r

1−Q
i (Ie,ri)]DχF ) =

(DχEi
, DχFi

) weakly∗ converge to (DχE′ , DχF ′) so that (DχE′ , DχF ′) = (DχE1 , DχF1).
Since χE1 − χE′ has zero horizontal distributional derivative, it is equivalent to a constant
(here we use the validity of the Sobolev-Poincarè inequality in BV (G)). This holds only
when E1 = E ′ or E1 = G \ E ′ and the second possibility is ruled out because it implies
0 = DχE1 −DχE′ = 2DχE1 . Clearly the same is true also for F1 and we have proved that
(E1, F1) ∈ Tan(E,F, e). The converse implication follows easily by a scaling argument.

Let x ∈ FE∩FF be satisfying the property stated in Theorem 2.7 with µ = (DχE, DχF ).
Consider (E1, F1) ∈ Tan(E,F, x) and (E2, F2) ∈ Tan(E1, F1, y) for some y ∈ FE1∩FF1. By
(2.25) we know that (DχE2 , DχF2) ∈ Tan((DχE1 , DχF1), y) \ {(0, 0)} and (DχE1 , DχF1) ∈
Tan(µ, x) \ {(0, 0)} hence (DχE2 , DχF2) ∈ Tan(µ, x). By applying (2.25) once more we get
(E2, F2) ∈ Tan(E,F, x), and this ends the proof. �

Theorem 2.9 (Locality property). Let E,F ⊆ G be sets of locally finite perimeter. Then

(2.26) |DχE|(B) = |DχF |(B) for all B ⊂ FE ∩ FF Borel.

Proof. If we prove that the density K := |DχE|/|DχF | is constant and HQ−1-a.e. equal to
1 in FE ∩ FF the theorem follows, however we need to clearly define this density. Indeed,
|DχE| and |DχF | have different supports, but we can overcome this difficulty.
We first claim that

lim
r↓0

|DχE|((FE \ FF ) ∩Br(x))

rQ−1
= 0

for HQ−1-a.e. x ∈ FE ∩ FF . Indeed, if A ⊂ FE ∩ FF is the Borel set where the property
fails, we can find A′ ⊆ A and ε > 0 such that SQ−1(A′) > 0 and the lim sup of the ratio
above is larger than ε at all x ∈ A′. Then (1.12) gives

|DχE|((FE \ FF ) ∩ A′) ≥ εωQ−1SQ−1(A′) > 0.
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This is impossible because (FE \ FF ) ∩ A′ = ∅. Then write

|DχE| = |DχE| (FE ∩ FF ) + |DχE| (FE \ FF ) = µE + νE

|DχF | = |DχF | (FE ∩ FF ) + |DχF | (FE \ FF ) = µF + νF .

Notice that µE is absolutely continuous with respect to µF and both measures are asymptot-
ically doubling, by Theorem 1.6 and by the fact that νE(Br(x)) = o(rQ−1) = o(µE(Br(x))))
and νF (Br(x)) = o(rQ−1) = o(µF (Br(x))) at HQ−1-a.e. point. Then we can define K(x) :=
limr↓0 µE(Br(x))/µF (Br(x)) at points x ∈ FE ∩ FF where the limit exists (this happens
HQ−1-a.e. on FE ∩ FF thanks to Theorem 1.3).

Fix a point x ∈ FE∩FF such that νE(x) = νF (x) (the case νE(x) = −νF (x) is analogous),
K(x) is defined and νE(Br(x)) = o(µE(Br(x))), νF (Br(x)) = o(µF (Br(x))). We obtain that
also the quotient |DχE|(Br(x))/|DχF |(Br(x)) tends to K(x) as r ↓ 0, i.e.,

K(x) = lim
r↓0

∫
Br(x)

〈νE(y), DχE(y)〉∫
Br(x)

〈νF (y), DχF (y)〉
.

If we replace νE(y) with the constant νE(x) in the numerator, and νF (y) with νF (x) in the
denominator, we still have

K(x) = lim
r↓0

∫
Br(x)

〈νE(x), dDχE(y)〉∫
Br(x)

〈νF (x), dDχF (y)〉

because∣∣∣∣∫
Br(x)

〈νE(y)− νE(x), dDχE(y)〉
∣∣∣∣ =

∣∣∣∣∫
Br(x)

〈νE(y)− νE(x), νE(y)〉 d |DχE|
∣∣∣∣

= |DχE|(Br(x))−
〈
νE(x),

∫
Br(x)

νE(y)d |DχE|
〉

= o(|DχE|(Br(x)))

and the same holds for F . Changing variables one has

K(x) = lim
r↓0

∫
B1(e)

〈
νE(x), dDχEx,r(y)

〉∫
B1(e)

〈
νF (x), dDχFx,r(y)

〉
where Ex,r, Fx,r are the left translated and rescaled sets of E and F respectively and e is
the identity of the group. Since the limit exists, we can choose any sequence (ri) ↓ 0 to
compute K(x).
Setting H := H0,νE(x) = H0,νF (x), we choose ri such that (Ex,ri , Fx,ri) → (H,H). We know
that

DχEx,ri
⇀ DχH , DχFx,ri

⇀ DχH , |DχEx,ri
|⇀ |DχH |, |DχFx,ri

|⇀ |DχH |,

and the thesis follows if we prove that both DχEx,ri
(B1(e)) and DχFx,ri

(B1(e)) converge to
DχH(B1(e)). Indeed, since |DχH |(∂Bs(e)) = 0 with at most countable many exceptions
(by the finiteness of |DχH |), by scaling invariance of H we have |DχH |(∂B1(e)) = 0. Thus,
applying Proposition 1.62(b) in [3] we get the desired convergence property. Therefore
K(x) = 1 and the theorem is proved. �
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2.1. Consequences of locality. As a first consequence we can define a surface measure
ρS associated to Borel sets S contained in a countable union of essential boundaries of sets
of locally finite perimeter.

Proposition 2.10. Let S be a Borel set contained in a countable union of sets ∂∗Ei, with Ei
of locally finite perimeter. Then there exists a unique σ-additive Borel measure ρS satisfying

(2.27) ρS(B) = |DχE|(B) for all E with locally finite perimeter, B ⊆ S ∩ ∂∗E Borel.

Proof. Write S a disjoint union of Borel sets Si, each one contained in ∂∗Ei, with Ei of
locally finite perimeter, and define

ρS(B) :=
∑
i

|DχEi
|(Si ∩B).

In order to check (2.27), fix a set with locally finite perimeter E and a Borel set B ⊆ S∩∂∗E
and assume, by σ-additivity of both sides, that B ⊆ Si for some i. Then the identity reduces
to |DχEi

|(B) = |DχE|(B), which follows by the locality property. The uniqueness of ρS is
a direct consequence of (2.27) with E = Ei. �

3. A chain rule for BV functions on Carnot groups

In this section we present some fine properties of BV functions in Carnot groups, we refer
to [4] for the general theory of BV functions on doubling metric measure spaces, for the
theory in the Euclidean case we refer to the book [3].

Definition 15. Let u : G → R be a measurable function and let x ∈ G; we define the upper
and lower approximate limits of u at x respectively by

u∨(x) = inf

{
t ∈ R : lim

ρ↓0

volG({u > t} ∩Bρ(x))

volG(Bρ(x))
= 0

}
u∧(x) = sup

{
t ∈ R : lim

ρ↓0

volG({u < t} ∩Bρ(x))

volG(Bρ(x))
= 0

}
.

If u∨(x) = u∧(x) we call their common value, denoted by ũ(x), the approximate limit of u
at x. We also set Su = {x | u∨(x) > u∧(x)}, the discontinuity set of u.

When u = χE, then obviously Su = ∂∗E. We have the following useful characterization
of Su:

Proposition 3.1 ([4]). Let u : G → R be a measurable function then

(3.28) Su =
⋃

t,s∈D,s 6=t

∂∗{u > t} ∩ ∂∗{u > s},

where D ⊂ R is any dense set. In particular if u ∈ BV (G) we can choose D such that for
every s ∈ D the set {u > s} has finite perimeter. Furthermore, we have the implications:

(3.29) t ∈ (u∧(x), u∨(x)) ⇒ x ∈ ∂∗{u > t} ⇒ t ∈ [u∧(x), u∨(x)] .
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Remark 8. Assume that u ∈ BV (G). Arguing as in Proposition 2.10, using the locality of
the normal provided by Theorem 2.5 and the representation of Su as a countable union of
intersections of essential boundaries of sets of finite perimeter, one can define a Borel map
νu : Su → Sm−1 such that

(3.30) νu = ν{u>t} HQ−1-a.e. on Su ∩ ∂∗{u > t}
for all t ∈ R such that {u > t} has finite perimeter. It is also easy to check that (3.30)
characterizes uniquely νu, up to HQ−1-negligible sets.

Proposition 3.2. Let u ∈ BV (G), then for all Borel set B ⊆ Su we have
(3.31)

|Du|(B) =

∫
B

(u∨(x)− u∧(x)) dρSu(x), Du(B) =

∫
B

(u∨(x)− u∧(x))νu(x)dρSu(x)

where ρSu and νu are defined respectively in (2.27) and (3.30).

Proof. Set Et = {u > t}. Notice first that Su =
⋃
s,t∈D, t6=s ∂

∗Es ∩ ∂∗Et, by the characteri-
zation of Su given in Proposition 3.1. Thus, for the set S := Su the measure ρS is defined.
If we apply the coarea formula to |Du|, for every Borel set B ⊆ S we have

(3.32) |Du|(B) =

∫ ∞

−∞
|DχEt|(B) dt.

Clearly, by the definition of ρS, we get

|DχEt|(B) = ρS(B ∩ ∂∗Et),
so that we can rewrite (3.32) as

|Du|(B) =

∫ ∞

−∞
ρS(B ∩ ∂∗Et) dt.

Using Fubini’s theorem and (3.29), we get

|Du|(B) =

∫
B

∫ ∞

−∞
χ{s:x∈∂∗Es}(t) dtdρS(x) =

∫
B

∫ u∨(x)

u∧(x)

dtdρS(x) =

∫
B

(u∨(x)−u∧(x))dρS(x).

The proof of the second identity in (3.31) is analogous, and uses the identity Du =∫∞
−∞DχEt dt and (3.30). �

Now we prove the chain rule for BV functions on G:

Proposition 3.3. Let u ∈ BV (G). Then for every ψ ∈ C1(R)∩W 1,∞(R) the function ψ ◦u
belongs to BVloc(G) and

(3.33) D(ψ ◦ u) = ψ′(ũ(x))Du (G \ Su) + [ψ(u∨)− ψ(u∧)]νSuρSu .

Proof. We can assume with no loss of generality ψ(0) = 0. Under this assumption ψ ◦ u ∈
L1(G) and it is easy to prove that ψ ◦ u ∈ BV (G): indeed, by the Meyers-Serrin type
theorem for anisotropic Sobolev spaces proved in [9], we can find a sequence (uh) ⊆ C1(G)
with uh → u in L1(G) and |Duh|(G) → |Du|(G). Since for C1 functions v the total
variation |Dv| is the L1 norm of the horizontal gradient, the classical chain rule gives that
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|D(ψ ◦ uh)|(G) is uniformly bounded. As a consequence, the L1(G) limit of ψ ◦ uh, namely
ψ ◦ u, belongs to BV (G).

Since any ψ ∈ C1(R)∩W 1,∞(R) can be written as the difference of two strictly increasing
functions with the same properties, by the linearity of (3.33) we can assume in the rest
of the proof that ψ is strictly increasing. Under this assumption, Sψ◦u = Su, νψ◦u = νu,
(ψ ◦ u)∨ = ψ(u∨), (ψ ◦ u)∧ = ψ(u∧), hence the validity of (3.33) on Borel sets B ⊆ Su is a
direct consequence of (3.31).

Let now B ⊂ G \ Su be a Borel set. Appling the coarea formula to ψ ◦ u one has

D(ψ ◦ u)(B) =

∫ ∞

−∞
DχEt(B) dt,

where Et = {ψ ◦ u > t}. The change of variables t = ψ(s) gives∫ ∞

−∞
DχEt(B) dt =

∫ ∞

−∞
ψ′(s)Dχ{u>s}(B) ds.

Since B does not intersect Su, for x ∈ B we have that x ∈ ∂∗ {u > s} only if s = ũ(x) (by
the definitions of u∨ and u∧), thus we can rewrite the integral as∫ ∞

−∞
ψ′(s)Dχ{u>s}(B) ds =

∫ ∞

−∞

∫
B

ψ′(ũ(x)) dDχ{u>s} ds.

Finally, using the coarea formula once more we have

D(ψ ◦ u)(B) =

∫
B

ψ′(ũ) dDu.

�
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