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Abstract

In this paper, we consider the problem of finding the Least Squares estimators of two isotonic
regression curves g7 and g5 under the additional constraint that they are ordered; e.g., g7 < g5. Given
two sets of n data points y1,...,y, and z1, ..., z, observed at (the same) design points, the esti-
mates of the true curves are obtained by minimizing the weighted Least Squares criterion Lo(a,b) =
> i (Y —ag)?wij + 375 (25 — bj)*wa j over the class of pairs of vectors (a,b) € R"™ x R" such
thata; < as < ... < ap, by <by <...<b,,and a; < b;,7 = 1,...,n. The characterization of
the estimators is established. To compute these estimators, we use an iterative projected subgradient
algorithm, where the projection is performed with a “generalized” pool-adjacent-violaters algorithm
(PAVA), a byproduct of this work. Then, we apply the estimation method to real data from mechanical
engineering.

Keywords: least squares; monotone regression; pool-adjacent-violaters algorithm; shape constraint esti-
mation; subgradient algorithm



1 Introduction and motivation

Estimating a monotone regression curve is one of the most classical estimation problems under shape re-
strictions, see e.g. Brunk (1958)). A regression curve is said to be isotonic if it is monotone nondecreasing.
We chose in this paper to look at the class of isotonic regression functions. The simple transformation
g — —g suffices for the results of this paper to carry over to the antitonic class.

Given n fixed points z1,...,x,, assume that we observe y; at x; for 7 = 1,...,n. When the points
(z,y;) are joined, the shape of the obtained graph can hint at the increasing monotonicity of the true
regression curve, g° say, assuming the model y; = ¢°(z;) + &;, with &; the unobserved errors. This shape
restriction can also be a feature of the scientific problem at hand, and hence the need for estimating the
true curve in the class of antitonic functions. We refer to Barlow et al. (1972) and Robertson et al.| (1988)
for examples. The weighted Least Squares estimate of ¢° in the class of isotonic functions taking y; at x;
is the unique minimizer of the criterion

Lia) = > wi(yi—a;)” (1)
=1

over the class of vectors a € R" such that a; < as... < a, where w; > 0,wy > 0,...,w, > 0 are
given positive weights. In what follows, we will say that a vector v € R" is increasing or isotonic if
v1 < ... < vy, and use the notation v < w for v, w € R™ if the inequality holds componentwise.
It is well known that the solution a™* of the Least Squares problem in (1)) is given by the so-called min-max
formula; i.e.,
a} = maxmin Av({s,...,t 2

¢ = maxmin Av({s,....1}) @
where Av({s,...,t}) = S>\_ yiw;/ S i_, w; (see e.g. Barlow et al.,[1972).
van Eeden (1957alb) has generalized this problem to incorporate known bounds on the regression function
to estimate; i.e., she considered minimization of L under the constraint

aLgagaUy (3)

for two increasing vectors ay, and ay. As in the classical setting, the solution of this problem admits
also a min-max representation. The PAVA can be generalized to efficiently compute this solution and
has been implemented in the R package OrdMonReq (Balabdaoui et al., 2009). Computation relies on a
suitable functional M defined on the sets A C {1,...,n} which generalizes the function Av in (2). This
functional for the bounded monotone regression in (3) is given by

M(A) = (AU(A) \Y max aL> A mjn ay

where ming v = min;e 4 v; and max4 v = max;ec 4 v;. Compare Barlow et al| (1972, p. 57), where a
functional notation is used. However, in the latter reference no formal justification was given for the form
of the functional M nor for the validity of (the modified version of) the PAVA, see the discussion after
Theorem 2.1.



Chakravarti (1989) discusses the bounded isotonic regression problem for the absolute value criterion
function, yielding the bounded isotonic median regressor. He proposes a PAVA-like algorithm as well,
and establishes some connections to linear programming theory. Unbounded isotonic median regression
was first considered by Robertson and Waltman (1968)), who provided a min-max formula for the estimator
and a PAVA-like algorithm to compute it. They also studied its consistency.

Now suppose that instead of having only one set of observations yy, . . . , Y, at the design points z1, . . . , T,
we are interested in analyzing two sets of data yq,...,y, and 21,..., 2, observed at the same design
points. Furthermore, if we have the information that the underlying true regression curves are increasing
and ordered, it is natural to try to construct estimators that fulfill the same constraints.

The current paper presents a solution to this problem of estimating two isotonic regression curves under
the additional constraint that they are ordered. This solution is the unique minimizer (a*,b*) of the
criterion

Lo(a,b) = > wii(yi—ai)+ Y woi(z —bi)’ @)
i=1 =1

over the class of pairs of vectors (a,b) € R™ x R™ such that a and b are increasing and a < b, with w;
and wy given vectors of positive weights in R"™.

The problem was motivated by an application from mechanical engineering. We will make use of experi-
mental data obtained from dynamic material tests (see Shim and Mohr, 2009) to illustrate our estimation
method. In engineering mechanics, it is common practice to determine the deformation resistance and
strength of materials from uniaxial compression tests at different loading velocities. The experimental
results are the so-called stress-strain curves (see Figure (1)), and these may be used to determine the de-
formation resistance as a function of the applied deformation. The recorded signals contain substantial
noise which is mostly due to variations in the loading velocity and electrical noise in the data acquisition
system.

The data in this example consist of 1495 distinct pairs (x;, y;) and (z;, z;) where z; is the measured strain,
while y; (gray curve) and z; (black curve) correspond to the experimental stress results for two different
loading velocities. The true regression curves are expected to be (a) monotone increasing as the stress is
known to be an increasing function of the strain (for a given constant loading velocity), and (b) ordered
as the deformation resistance typically increases as the loading velocity increases. In Section 3, we show
the resulting estimates as well as a smoothed version thereof.

We will show that minimizing Lo is equivalent to minimizing another convex functional over the class of
isotonic vectors a € R". By doing so, we reduce a two-curve problem under the constraints of monotonic-
ity and ordering to a one-curve problem under the constraint of monotonicity and boundedness. Actually,
we can even perform the minimization over the class of isotonic vectors (ai,...,a,—1) of dimension
n — 1 satisfying the constraint a; < ... < ap,—1 < a), as we can explicitly determine a;, by a gen-
eralized min-max formula (see Proposition 2.3). The solution of this equivalent minimization problem,
which gives the solution a* (and also b* because it is a function of a*), is computed using a projected
subgradient algorithm where the projection step is performed using a suitable generalization of the PAVA.
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Figure 1: Original observations.

Alternatively, the solution can be computed using Dykstra’s algorithm (Dykstra, 1983). This point will be
further discussed in Section 3.

We would like to note that Brunk et al.l (1966) considered a related problem, that of nonparametric Max-
imum likelihood estimation of two ordered cumulative distribution functions. In the same class of prob-
lems, Dykstra (1982) treated estimation of survival functions of two stochastically ordered random vari-
ables in the presence of censoring, which was extended by Feltz and Dykstral (1985) to N > 2 stochasti-
cally ordered random variables. The theoretical solution can be related to the well-known Kaplan-Meier
estimator and can be computed using an iterative algorithmic procedure for N > 3 (see Feltz and Dykstral,
1985, p. 1016). The \/n— asymptotics of the estimators for N = 2, whether there is censoring or not,
were established by Prastgaard and Huang (1996).

The paper is organized as follows. In Section 2, we give the characterization of the ordered isotonic
estimates. We also provide the explicit form of the solution of the related bounded isotonic regression
problem where the upper of the two isotonic curves is assumed to be fully known.

In Section 3 we describe the projected subgradient algorithm that we use to compute the Least Squares
estimators of the ordered isotonic regression curves, discuss the connection to Dykstra’s algorithm (Dyk-
stra, [1983), and apply the method to real data from mechanical engineering. The technical proofs are
deferred to appendices Al and Bl



2 Estimation of two ordered isotonic regression curves

If the larger of the two isotonic curves was known, then there would of course be no need to estimate it. If
we put a;y = a, the weighted Least Squares estimate a* of the smaller isotonic curve is the minimizer of

L(a) = Zwi(yi_ai)Q,
i=1

where w € R"” is a vector of given positive weights, and a € Iﬁo, the class of isotonic vectors a € R"
such that a < a” and a® € R™. When the components of a° are all equal, the vector a” will be assimilated
with the common value of its components as done in Proposition 3.4/ below.

The notation Z7” will be used again hereafter to denote the class of isotonic vectors v € R™ such that
v < w.

The statement of Barlow et al. (1972, p. 57) implies that if we define

M(A) = Av(A) A mjn a®

for a subset A C {1,...,n}, then the solution a* can be computed using an appropriately modified
version of the PAVA.
Theorem 2.1. For: =1,...,n, we have

* : _ : 0
a; = r?gfcr?zl?M({s, St = II;%;(I?;?(AU({S, N A as).

To keep this paper at a reasonable length, the proof of Theorem 2.1/is omitted. A short note containing a
more thorough discussion of the one-curve problem and a proof of Theorem 2.1/ can be obtained from the
authors upon request. A general description of the modified PAVA and a proof that it works whenever the
functional M satisfies the so-called Averaging Property can be found in Section 3.

We now return to the main subject of this paper. Theorem 2.1 is crucial for finding the Least Squares
estimates of two ordered isotonic regression curves. In particular, the result will be used to develop an
appropriate algorithm to compute the solution.

Letyi,...,yn and 21,. .., 2, be the observed data from two unknown isotonic curves g7 and g5 such that
97 < g5. Given two vectors in R" of positive weights w; and w2, we would like to minimize (4) over the
class of pairs of vectors (a,b) € R™ x R"™ such that a and b are isotonic and a < b. Call this class Z,,.

Existence and uniqueness of the solution. They follow from convexity and closedness of Z,, and strict

convexity of L.

Characterization of the solution. For completeness, we give the characterization of the solution of
minimizing (4) over Z,,; i.e, a necessary and sufficient condition for (a,b) € Z, to be equal to this
solution. Let 7y < ... < 4% such thati; = 1,7 = n and

* _ * * _ _ * ko _
al—...—ail<ai1+1—...—ai2_1<...<aik—...—an.



We call B?j (resp. Bilj) a set of indices {ij,..., 411 — 1},j = 1,...,k — 1 such that a}, = b (resp.
afj < b;‘j). Similarly, let [ < ... < [, such that [y = 1,/, = n such that

k E

and call C’loj (resp. Cllj) a set of indices {l;,...,l41 — 1},5 = 1,...,7 — 1 such that bfj = aZ‘j (resp.
b;‘j > a}*j).

Theorem 2.2. The pair (a*,b*) € T, is the minimizer of (4) if and only if

Z(af —yi)(aj —a))wy; + Z(b;‘ — )b —b)wa; > 0, V(a,b) €T, 5)
=1 i=1
Z (af —ys)azwis = 0, and (6)
seu]-Bilj
Z (b — Zs)b:wzs = 0. (7
SGUjCllj

Proof. See Appendix Al
An explicit formula in the sense of a min-max representation similar to (2) of (a*,b*) turned out be to
hard to find. However, since a* (resp. b*) is also the minimizer of

n n
Z(a — yi)2w17i (resp. Z(b — zi)2w27i>
i=1 i=1
over the class If;* (resp. the class of isotonic vectors b € R™ such that b > a*), Theorem 2.1/implies that
a; = maxmin (Avi({s,...,t}) Ab}) (8)
s<i t>i
b; = maxmin (Ava({s,...,t})Va;) 9
s<i t>i
for: =1,...,n, where
. W1 5 icA RiW2 i
Avi(A) = 7216‘4 Yit, , and Avg(A) = 72264 2
D ieA Wi D ieA W2,

for AC{1,...,n}.
Thus, the solution (a*, b*) is a fixed point of the operator P : Z,, — Z,, defined as

P((a,b)) = (P1(b), P2(a)) (10)
= <r£125<r%121{1 (Avi({s,...,t}) A bs),rglgfrg? (Ava({s,...,t}) Vv at)) .

However, this fixed point problem does not admit a unique solution. Therefore, there is no guarantee
that an algorithm based on the above min-max formulas yields the solution, except in the unrealistic and



uninteresting case where the starting point of the algorithm is the solution itself. To see that P does not
admit a unique fixed point, note that the minimizer of the criterion

n

n
D (@i —yi)’wii+ BY (b — ) way
=1

i=1

is a fixed point of P for any B > (. Therefore, a computational method based on starting from an initial
candidate and then alternating between (8) and (9) cannot be successful. In parallel, we have invested a
substantial effort in trying to get a closed form for the estimators. Although we did not succeed, we were
able to obtain a closed form for a7 (and by symmetry for b},).

Proposition 2.3. We have that

¥ = min Av({1,...,t in M({1,...,t},{1,....t
a ftHZl{l v ({1, ’})Atlzri}?l ({1, 1 {1, )

where

Avi(A) (X iea wi,i) + Ava(B) (D je p w2,5)

M(A,B) =
( ) dicAWli D jep W2,

By symmetry, we also have that

b = max Avy({t,...,n})V max M({t',...,n},{t,...,n}). (11)

t<n t<t'<n

Some remarks are in order. The expressions obtained above indicate that the Least Squares estimator
must depend, as expected, on the relative ratio of the weights w; and ws. In particular, if we = 0 (resp.
wy = 0), the expression of aj (resp. b},) specializes to the well-known min-max formula in the classical
Least Squares estimation of an (unbounded) isotonic curve. The expression of b} is essential for our
subgradient algorithm below.

Proof of Proposition|2.3. See Appendix Al

In the next section, we describe how we can make use of the min-max formula in (8) to compute the
estimators using a projected subgradient algorithm. As mentioned above, we use in this algorithm the
identity (11) given in the previous proposition.

3 Algorithms and Application to real data

In this section, we show that the bounded isotonic estimator can be computed using the well-known PAVA,
or to be more precise a modified version of it. Recall that the bounded isotonic estimator in the one-curve
problem is given by

e inM({s,....t
a maxmin M({s, ..., t})



where M (A) = Av(A) V maxa a® forany A C {1,...,n}. That a* can be computed using a PAVA is
a consequence of a more general result. Namely, that a functional M of sets A C {1,...,n} satisfies
what is referred to as the Averaging Property , (see Chakravarti, 1989, p. 138), also called Cauchy Mean
Value Property by [Leurgans| (1981, Section 1). See also Robertson et al. (1988, p. 390). Note that in
the classical unconstrained monotone regression problem, the min-max expression of the Least Squares
estimator follows from Theorem 2.8 in Barlow et al. (1972, p. 80).

3.1 Getting the min-max solution by the PAVA

First, let us describe how the PAVA works for some set functional M.

e At every step the current configuration is given by a subdivision of {1,...,n} into k subsets S1 =
{1,...,i1}, Sy = {’Ll —|—1,...,’i2},..., S = {ik—l —|—1,...,n} for some indices 1 = i < i1 <
T < - vr < g1 < I = N.

e The initial configuration is given by the finest subdivision; i.e., I; = {;j}.

e At every step we look at the values of M on the sets of the subdivision. A violation is noted each
time there exists a value j such that M (S;) > M (S;+1). We consider the first violation (the one
corresponding to the smallest j) and then merge the subsets S; and S;1 into one interval.

e Given a new subdivision (which has one subset less than the previous one), we look for possible
violations.

e The algorithm stops when there are no violations left.

Since for any violation a merging is performed (thus reducing the number of subsets), it is clear that the
algorithm stops after a finite number of iterations.

We require now the set functional M to satisfy the following property. See |Leurgans (1981, Section 1),
Robertson et al. (1988, p. 390) and (Chakravarti (1989, p. 138).

Definition 3.1. We say that the functional M satisfies the Averaging Property if for any sets A and B
such that AN B = () we have that

min{M(A), M(B)} < M(AU B) < max{M(A), M(B)}.

If h and w > 0 are given vectors € R", then beside

A Av(4) = D wihi/ Y w;,

€A i€A



the following examples of functions also satisfy the Averaging Property :

A — (AU(A) \Y% max h}) A mjn h?, with %, h! two vectors € R™,

A +— minh = minh;,
€A

A — medy h= argminz |h; — m|w;
meR  Geca
where the arg min is taken to be the smallest m in case non-uniqueness occurs,

A — maxh = maxh;.
A 1€A
Note that the maximum, the minimum and the sum of two functionals satisfying the Averaging Property
satisfy the same property as well.

Theorem 3.2. The final configuration obtained by the PAVA is such that the two following properties are
satisfied.

1. The functional M is increasing on the sets of the subdivision.

2. If one of the sets S; = C U D is the disjoint union of two subsets C = {i;—1 + 1,...,k} and
D = {k+1,...,i;}, then M(C) > M(D); i.e., a finer subdivision would necessarily cause a

violation.

Proof. The fact that M is increasing on the final configuration is an easy consequence of the absence of
violations (otherwise the algorithm would not have stopped).

As for the second part of the property, note that this is satisfied by the initial configuration (since no set is
the disjoint union of two non-trivial subsets), as well as by any configuration that one could obtain after
the first merging (since a merging occurs only because of a violation). Now we will use an inductive
reasoning.

To this end, we have to check two situations: Suppose we merge two subsequent sets A and B and want to
check whether there is a violation on C' and D, with AU B = C'U D. We are in one of the two following
cases: either A = Ay UAy,C=A1and D = AsUB,orB=B{UBy,C=AUBjand D = By (the
case C' = A and D = B is trivial).

In the first case, if we suppose M (D) > M (C), we get

M(AQ UB) > M(Al), M(AQ) < M(Al), M(B) < M(A) = M(Al UAQ),

(the first inequality follows by assumption, the second by induction, and the third is true since A and B
have been merged) and this is impossible since one would conclude that

max{M(Ag), M(B)} > M(A;) > M(Ay),

and hence M(A) > M(B) > M(A;) > M(Asz), which implies M(A) > max{M(A;), M(A2)},
which contradicts the Averaging Property .



In the second case we would have
M(AU Bl) < M(BQ), M(BQ) < M(Bl), M(A) > M(B) = M(Bl U BQ),

which implies
min{M(A), M(B1)} < M(Bs2) < M(By),

and then min{M(A), M (B1)} = M(A) and M(A) < M(B2) < M(Bj), which contradicts either
M(A) < M(B) or the Averaging Property . O

Theorem 3.3. If (S;); is the partition obtained at the end of the PAVA described above, then m; =
M(S;,) such that i € S}, takes the same values given by the min-max formula for the index i.

i

Proof. See Appendix Al

3.2 Shor’s projected subgradient and Dykstra’s iterative cyclic projection algorithm

The minimization problem considered in this paper can be easily recognized as a projection problem onto
the intersection of the three following closed convex cones in R” x R"™

{(a,b) : ais increasing}, {(a,b) : bis increasing}, and {(a,b) : a < b}.

Projections onto the first two cones can be computed by PAVA, and onto the last one by replacing
the components of each pair (a;,b;) violating the constraint (i.e. a; > b;) by the weighted average
(w1 3a; + wa,ib;) /(w1 + wa;) of a; and b;. Implementation of Dykstra’s algorithm (Dykstra, [1983) is
then straightforward.

Yet, our algorithm has preferable features as we will now explain. The algorithm developped by Dykstra
is well-suited for projections onto intersections of convex sets or half-spaces (see Bregman et al., 2003),
while the algorithm we propose can handle a larger class of minimization problems which involve the
set of isotonic vectors, and are not necessarily projections. For instance, simple modifications of our
algorithm would allow us to minimize any objective function of the form

n
(a,0) = F(a,w1) + > wai(zi — b;)?
i=1

under the same constraints on a and b, where F' is any convex and differentiable function. The second
quadratic term can be also replaced by a different penalization term depending e.g. on an L,,-distance. In-
deed, it suffices to modify the computations involved in the PAVA by adapting them to various functionals
satisfying the Averaging Property (see Section 3).

Our algorithm is easy to understand and is only based on a classical gradient method. Once the minimiza-
tion is performed with respect to one of the variables, the objective function with respect to the remaining
variable is still explicit, but no more differentiable. This is the main reason for which the algorithm is
actually a subgradient descent. We believe that the explicit nature of the computations in our subgradient
algorithm are exactly the key feature for the possibility of understanding and/or modifying it.

10



However, we would like to point out the merits of Dykstra’s algorithm in this specific setting. Since it is
tailored for a Least Squares problem, and because only three very simple projection cones are involved,
Dykstra’s algorithm (see below for details) computes the minimum of the criterion Ly given in (4) faster
than the subgradient algorithm, although Dykstra’s algorithm is typically considered to be rather slow
(see e.g. Mammen, |1991al or Birke and Dette, 2007). Note that the choice of the stopping criterion in this
algorithm may be delicate, see Birgin and Raydan| (2005). However, this was not an issue in our setting.

3.3 Preparing for a projected subgradient algorithm

The following proposition is crucial for computing the ordered isotonic estimators via a projected subgra-
dient algorithm.

Proposition 3.4. Let U be the criterion

n n—1
U(by,...,bn Z(maXG“/\b)—yz) wlz—i—Zb—zz) w2 (12)
=1 =1

which is to be minimized on the convex set

I ={(b1,... bp1) ER™ by <by < ... < b,y < b}

where
Gs,i = 212151 Avi({s,...,t}) and b, = b}, in (12).
The criterion ¥ is convex. Furthermore, its unique minimizer (by*, ..., b}* ) equals (b7,..., b _;).
Proof. Let us write
I=Ir={a=(a1,...,an) ER":qa < ap},

Tr = {b: (biy...,bn) : (b1, by_1) €T  and by = b:;}
and consider
T’ ={a:a€Tanda < b}

forb e I;.
Now note that the min-max formula in (8) allows us to write

n
ZI<T§f(GS’j/\b) yj> wlj—i-z zj)*wa ;
j:
n
=min Y (a; — wl,] + Z wg,]

b
aEIJ1

11



Hence, we have for b € 7

n

n—1
Wby, bpoy) = min ) (a; — yi)lwig + Y (b — z) wa,
a . .

ng=1 7j=1

n n—1
= > (@(0) — ) wiy + Y (b — z) wa
j=1

J=1

where @;j(b) = max,<;(Gs,; A bs) is the j-th component of the minimizer of the function 37, (a; —
y;)?wy j in 8. Let A € [0,1], and b and ¥/ in Z;:. By definition of Z% and Z, we have that

Nab)+ (1—N)al) <Ab+(1— M)V

and hence

(aj(A b+ (1—X)b)— yj>2w1,j

j=1
< Y ()\ a(b) + (1= X) a(b') — yj)27ﬂ1,j
j=1
<A S (dj(b) - yj)le,j + (1 =2 Zn: (&j(b’) - yj)le,r
j=1 Jj=1

This shows convexity of the first term of ¥. Convexity of ¥ now follows from convexity of the function
27:—11 (bj — zj)*ws,; and the fact that the sum of two convex functions defined on the same domain is also
convex. O
The idea behind considering the convex functional ¥ is to reduce the dimensionality of the problem as
well as the number of constraints (from 3n — 2 to n — 1 constraints). Once ¥ is minimized; i.e, the
isotonic estimate b* is computed, a™ can be obtained using the min-max formula given in (8). However,
the convex functional ¥ is not continuously differentiable, hence the need for an optimization algorithm

that uses the subgradient instead of the gradient as the latter is not defined everywhere.

3.4 A projected subgradient algorithm to compute b7,...,0;

n

To minimize the non-smooth convex function ¥ we use a projected subgradient algorithm. Since the gra-
dient does not exist on the entire domain of the function, one has to resort to computation of a subgradient,
the analogue of the gradient at points where the latter does not exist. As opposed to classical methods
developed for minimizing smooth functions, the procedure of searching for the direction of descent and
steplengths is entirely different. The classical reference for subgradient algorithms is|Shorl (1985). Boyd
et al. (2003) provide a nice summary of the topic, including the projected variant. Note that a recent ap-
plication in statistics of the subgradient algorithms gives now the possibility to compute the log-concave
density estimator in high dimensions; see Cule et al.| (2008).

12



The main steps of the algorithm. Now recall that the functional ¥ should be minimized over the
(n—1)— dimensional convex set IZ:LI given in Proposition 3.4, Of course, this is the same as minimizing
U over the n— dimensional convex set {(b1,...,b,) | b1 < ... < b,_1}, starting with an initial vector
(bgo), RN bﬁf’)) such that b,(lo) = b}, and constraining the n—th component of the sub-gradient of ¥ to be
equal to 0.

Given a steplength 73, the new iterate b* ! = (bF, ..., bk) at the k—th iteration of a subgradient algorithm
is given by

Vg1 = by — 71Dy,

where Dy, is the subgradient calculated at the previous iterate; i.e., Dy = @\I/(vk) (see Appendix B).

k+1
»¥n—1

However, it may happen that vy is not admissible; i.e. (b'f“, e ) does not belong to IZ”_I.
When this occurs, an L9 projection of this iterate onto Iz"_l is performed. This is equivalent to finding
the minimizer of

n

Z(ai _ biﬁ-l)Q

i=1

over the set 1'22. The latter problem can be solved using the generalized PAVA for bounded isotonic
regression as described above.

The computation of the subgradient Dy, is described in detail in Appendix Bl As for the steplength 73, we
start the algorithm with a constant steplength. Once a pre-specified number of iterations has been reached
we switch to

Ther = (R Dyll2)™!

where v, = h; "' is such that 0 < 7, — Oas k — oo and 3 50,7 = co. Here, || - || denotes
the Lo-norm of a vector in R™. This combination of constant and non-summable diminishing steplength
showed a good performance in our implementation of the algorithm over other classical choices of ().
Furthermore, convergence is ensured by the following theorem.

Theorem 3.5. (Boyd et al.|(2003)) A subgradient algorithm complemented with least-square projection
and using non-summable diminishing steplength yields for any ) > 0 after k = k(n) iterations a vector
b= (bF, ..., b%) such that

'_Hllink\I/(bi)—\I/(b*) < n,

where b* = (b7, ..., b},) is the vector given in Proposition|3.4.

The proof can be found in Boyd et al.| (2003) by combining their arguments in Sections 2 and 3. Note
that in our implementation we do not keep track of the iterate that yielded the minimal value of W, since
we apply a problem-motivated stopping criterion that guarantees us to have reached an iterate that is
sufficiently close to b* = (b7, ...,b}).
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Choice of stopping rule. Since in subgradient algorithms the convex target functional does not nec-
essarily monotonically decrease with increasing number of iterations, the choice of a suitable stopping
criterion is delicate. However, in our specific setting we use the fact that (a*,b*) is a fixed point of the
operator P defined in (10) where a* = P;(b*); the solution of (1) with upper bound b*. This motivates
iterating the algorithm until the difference of entries of the two vectors b* and b’;é where

bk, = Pyo P (bF)

is below a pre-specified positive constant d.

The implementation. The Dykstra and the projected subgradient algorithms as well as the generalized
PAVA for computing the solution in the one curve problem under the constraints in (3) were all imple-
mented in R (R Development Core Team, 2008). The corresponding package OrdMonReg Balabdaoui
et al. (2009) is available on CRAN. Note that the data analyzed in Section 3.5 is made available as a
dataset in OrdMonReg.

To conclude this section on the algorithmic aspects of our work, we would like to mention the work
by Beran and Diimbgen! (2009) who propose an active set algorithm which can be tailored to solve the
problem given in (4)) for an arbitrary number of ordered monotone curves. However, Beran and Diimbgen
(2009) do not provide an analysis of the structure of the estimated curves such as characterizations and
rather put their emphasis on the algorithmic developments of the problem.

3.5 Real data example from mechanical engineering

We would like to estimate the stress-strain curves based on the available experimental data for two differ-
ent velocity levels (see Figure 1). The expected curves have to be isotonic and ordered. The data consist
of 1495 pairs (x;,y;) and (x;, z;). The values of the measured strain of the material (on the z-axis), are
actually defined as (—) the logarithm of the ratio of the current over the initial specimen length. The
values are positive and take the maximal value 1, which corresponds to a maximum shortening of 63%.
Furthermore, since the stress measurements for different velocities are not performed exactly at the same
strain, the values of the stress have been interpolated at equally spaced values of the strain. As pointed
out by a referee, this will induce correlation between the strain data. Even if the strain measurement were
not interpolated, having correlated stress measurements is rather inevitable in this particular application
because of the data processing procedures associated with the measurement technique (see [Shim and
Mohr, 2009). The estimation method is however still applicable. When studying statistical properties of
the isotonic estimators such as consistency and convergence, the correlation between the data should, of
course, be taken into account.

In such problems, practitioners usually fit parametric models using a trial and error approach in an attempt
to capture monotonicity of the stress-strain curves as well as their ordering. The methods used are rather
arbitrary and can also be time consuming, hence the need for an alternative estimation approach. Our
main goal is to provide those practitioners with a rigorous way for estimating the ordered stress-strain
curves.

14



In Figure 2| (upper plot) we provide the original data (black and gray dots) and the proposed ordered
isotonic estimates a* and b* as described above. Being step functions, the estimated isotonic curves are
non-smooth, a well known drawback of isotonic regression, see among others Wright (1978)) and Muker-
jee (1988). The latter author pioneered the combination of isotonization followed by kernel smoothing.
A thorough asymptotic analysis of the smoothed isotonized and the isotonic smooth estimators was given
by Mammen! (1991b). Mukerjee (1988, p. 743) shows that monotonicity of the regression function is
preserved by the smoothing operation if the used kernel is log-concave. Thus, we define our smoothed
ordered monotone estimators by

" Kp(r —t)ar . " Kp(z — )b}
_ Zz;l h(CL' )az and b;(x) — Zzﬂ:l h(‘r ) [
>ic1 Kn(z — ) >ic1 Kn(z — )

for 0 < = < 1. For simplicity, we used the kernel K}, (x) = ¢(x/h) where ¢ is the density function of

ap,(z)

a standard normal distribution which is clearly log-concave. Figure 2/ (lower plot) depicts the smoothed
isotonic estimates. We set the bandwidth to = 0.1n~ /% ~ 0.023.

Motivated by estimation of stress-strain curves, an application from mechanical engineering, we consider
in this paper weighted Least Squares estimators in the problem of estimating two ordered isotonic regres-
sion curves. We provide characterizations of the solution and describe a projected subgradient algorithm
which can be used to compute this solution. As a by-product, we show how an adaptation of the well-
known PAVA can be used to compute min-max estimators for any set functional satisfying the Averaging
Property.

Acknowledgements.

The first author would like to thank Cécile Durot for some interesting discussions around the subject. We
also thank JongMin Shim for having made the data available to us, a reviewer for drawing our attention
to Dykstra’s algorithm, and another reviewer for helpful remarks.

References

BALABDAOUI, F., RUFIBACH, K. and SANTAMBROGIO, F. (2009). OrdMonReg: Compute least squares

estimates of one bounded or two ordered isotonic regression curves. R package version 1.0.2.

BARLOW, R. E., BARTHOLOMEW, D. J., BREMNER, J. M. and BRUNK, H. D. (1972). Statistical
inference under order restrictions. The theory and application of isotonic regression. John Wiley &
Sons, London-New York-Sydney. Wiley Series in Probability and Mathematical Statistics.

BERAN, R. and DUMBGEN, L. (2009). Least squares and shrinkage estimation under bimonotonicity

constraints. Statistics and Computing, to appear .

15



stress

stress

25
20
15
10
—— upper isotonic estimate b*
5 —— lower isotonic estimate a*
0o - 8
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
measured strain, X
25
20
15
10 N
’ —— upper isotonic smoothed estimate b*
5 — —— lower isotonic smoothed estimate a*
O —

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

measured strain, X

Figure 2: Original observations, isotonic and isotonic smoothed estimates.

16



BIRGIN, E. G. and RAYDAN, M. (2005). Robust stopping criteria for Dykstra’s algorithm. SIAM J. Sci.
Comput. 26 1405-1414 (electronic).

BIRKE, M. and DETTE, H. (2007). Estimating a convex function in nonparametric regression. Scand. J.
Statist. 34 384-404.

BoyD, S., X1A0, L. and MUTAPCIR, A. (2003). Subgradient methods. Lecture Notes, Stanford Univer-
sity.
URL http://www.stanford.edu/class/ee3920/subgrad_method.pdf

BREGMAN, L. M., CENSOR, Y., REICH, S. and ZEPKOWITZ-MALACHI, Y. (2003). Finding the projec-

tion of a point onto the intersection of convex sets via projections onto half-spaces. J. Approx. Theory
124 194-218.

BRUNK, H. D. (1958). On the estimation of parameters restricted by inequalities. Ann. Math. Statist. 29
437-454.

BRUNK, H. D., FRANCK, W. E., HANSON, D. L. and HOGG, R. V. (1966). Maximum likelihood
estimation of the distributions of two stochastically ordered random variables. J. Amer. Statist. Assoc.
61 1067-1080.

CHAKRAVARTI, N. (1989). Bounded isotonic median regression. Comput. Statist. Data Anal. 8 135-142.

CULE, M., SAMWORTH, R. and STEWART, M. (2008). Maximum likelihood estimation of a multidi-
mensional log-concave density.
URL http://www.citebase.org/abstract?id=ocai:arXiv.org:0804.3989

DYKSTRA, R. L. (1982). Maximum likelihood estimation of the survival functions of stochastically
ordered random variables. J. Amer. Statist. Assoc. T7 621-628.

DYKSTRA, R. L. (1983). An algorithm for restricted least squares regression. J. Amer. Statist. Assoc. 78
837-842.

FELTZ, C. J. and DYKSTRA, R. L. (1985). Maximum likelihood estimation of the survival functions of
N stochastically ordered random variables. J. Amer. Statist. Assoc. 80 1012-1019.

LEURGANS, S. (1981). The Cauchy mean value property and linear functions of order statistics. Ann.
Statist. 9 905-908.

MAMMEN, E. (1991a). Estimating a smooth monotone regression function. Ann. Statist. 19 724-740.
MAMMEN, E. (1991b). Estimating a smooth monotone regression function. Ann. Statist. 19 724-740.

MUKERIJEE, H. (1988). Monotone nonparameteric regression. Ann. Statist. 16 741-750.

17


http://www.stanford.edu/class/ee392o/subgrad_method.pdf�
http://www.citebase.org/abstract?id=oai:arXiv.org:0804.3989�

PRESTGAARD, J. T. and HUANG, J. (1996). Asymptotic theory for nonparametric estimation of survival
curves under order restrictions. Ann. Statist. 24 1679-1716.

R DEVELOPMENT CORE TEAM (2008). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
URL http://www.R-project.orqg

ROBERTSON, T. and WALTMAN, P. (1968). On estimating monotone parameters. Ann. Math. Statist 39
1030-1039.

ROBERTSON, T., WRIGHT, F. T. and DYKSTRA, R. L. (1988). Order restricted statistical inference.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John
Wiley & Sons Ltd., Chichester.

SHIM, J. and MOHR, D. (2009). Using split hopkinson pressure bars to perform large strain compression

tests on polyurea at low, intermediate and high strain rates. International Journal of Impact Engineering
361116 —-1127.

SHOR, N. (1985). Minimization Methods for Non-Differentiable Functions. Springer, Berlin.

VAN EEDEN, C. (1957a). Maximum likelihood estimation of partially or completely ordered parameters.
1. Nederl. Akad. Wetensch. Proc. Ser. A. 60 = Indag. Math. 19 128-136.

VAN EEDEN, C. (1957b). Maximum likelihood estimation of partially or completely ordered parameters.
II. Nederl. Akad. Wetensch. Proc. Ser. A. 60 = Indag. Math. 19 201-211.

WRIGHT, F. T. (1978). Estimating strictly increasing regression functions. Journal of the American
Statistical Association 73 636-639.
URL http://www. jstor.org/stable/2286615

A Proofs

Proof of Theorem 2.2, Suppose that (a*, b*) is the solution. For € € (0, 1), and (a,b) € Z,, consider the
pair (a¢, b) € R™ x R™ defined as
a® = a"+ela—a")

B = b+ e(b—b").
Fori <j e {1,...,n}, we have

aj—a; = (1—e)(aj —a;)+e(aj—a;)>0

b5 —b; = (1—e€)(b; —b;)+e(bj —bi) > 0.
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Also, fori € {1,...,n} we have
a; =i = (1—e)(aj —b;) +e(ai —bi) <0
Hence, (a, b) € Z,,, and

0 < lim- (Lz(a b¢) — La(a™,b%))

e\0 €
n n
= > (af —yi)ai — af)wii+ Y (b — 2)(bi — b )way
i=1 =1
yielding the inequality in (3).
Now consider the vectors a and b° such that for{ = 1,...,n
a = af+eaf Ly
i
by = b

Letr <se{l,...,n}. Ifr ¢ Bilj and s ¢ B1 thena§ —al =af —af > 0. If r € B1 and s ¢ B
then a > a; and af — a;. = a} — a; + €a; > 0 for |e| small enough. The same reasomng applies 1f
r ¢ B} and s € B} . Finally, if 7, s € B} , then a5 — a5 = 0.

Now, for r € {1,...,n}, we have al = a} < b} ifr ¢ lej Otherwise, at = a}(1+€) < b} if |e] is
small enough. Hence, (a¢, b) € Z,,, and

0 = lim > (La(a,b) - Lafa",b")

n

§ : * *
= (ar - y”‘)lreBil_ a,Wi,p-
J

r=1

Summing up over all the sets Bilj yields the identity in (6). We can prove very similarly the identity in (7).
Conversely, suppose that (a*, b*) € Z,, satisfies the inequality in (5). For any (a,b) € Z,,, we have

Ly(a,b) — Lo(a™,b") = 72 — a; w“—l— Z wgl
+ Z(af —yi)(ai — ai)wii
=1
+ > (0 = zi) (b — b} wa
=1

> 0.

We conclude that (a*, b*) is the solution of the minimization problem. O

Proof of Proposition 2.3, Let € > 0 and consider (a,b) € R™ x R" such that

a; = a’:_elie{l,...,t}a tE{].,...,TZ}
b= b
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fori =1,...,n. For small ¢, (a,b) € Z,,. Using the characterization in Theorem 2.2, it follows that

t
Z w1j§0

7j=1
implying that

t

Z 1—yjw; <0, for te{l,...,n}
7=1

or equivalently

Now, consider (a,b) € R™ x R" such that

a; = a;ffelje{l’m’t}, te{l,...,n}
b] = b;k — 61j€{1,...,t’}7 1 S t/ S t
forj =1,...,n, with € > 0. For small ¢, we have that (a, b) € Z5, and hence

t

t
D (@) —yi)wig+ Y (b5 — zj)wa; <0

J=1 J=1

It follows that

7j=1
that is
1< : St}
ay —1<?,1<1£l<nM({ 7t}7{17 7t})
We conclude that
< . ot
ay < minAvi({1,....1}) A tg}glM({ st ALt
Now if aj < b, leti1{1,...,n} be such that a] = ... = a; . Then (a,b) is such that
(Lj = CL;f + € 1jE{1,---,i1}
bj = b
for j =1,...,nisin Z, when |e| is small enough. It follows that

Al}l({l, ce ,il}) = a’{.
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If o} = b}, and i} and i{ are such that af = ... = a}, and b7 = ... = b}, then (a, b) such that
1 1

aj = aj+eljen, i)
b] = b}k + € 1j€{1,...,i’1’
forj =1,...,nisinZ, for |¢| small enough. Hence,

af =M1, {1,. ).
(note that i} < ¢}). Therefore,

® s Y !
ay —ItIlZl{lAUl({l,...,t}) /\tIZI}tgagclM({l,...,t},{l,...,t -

The expression of b} follows easily by replacing respectively y; and z; by —z,—;+1 and —y,_; 41 for
t1=1,...,n. 0

Proof of Theorem|3.3\ Consider a € R" given by

= in M({s,....t
a; maxmin M({s, ..., 1})

and also the subdivision into subsets S; = {i;_1 +1,...,;} obtained by the PAVA. Let us denote by G~
(resp. G) the grid set of indices which correspond to points at the beginning (resp. end) of those subsets;
i.e. of the form 7; + 1 (resp. ;).

We obviously have

< in M({s,....t}).
¢; < max  min ({s,...,t})

Then, consider s ¢ G~. This means that we have a set {s,...,t} of the form B U C, C being a union
of subsets in the subdivision and B a right subset of a set of the partition of the form A U B. We want to
prove that M ({s,...,t}) = M(B U C) is either smaller than M (C') or M (A U B U C). Suppose this is
not the case. Then we would have

M(BUC) > M(C), M(BUC) > M(AUBUC), M(A) > M(B),

where the last inequality is implied by the second property in Theorem 3.2. Yet, the second inequality,
together with the Averaging Property , implies that M (A) < M (B U C). In the end we get

M(BUC) > M(C), M(BUC) > M(A) > M(B),

which contradicts the Averaging Property .

We conclude that M ({s,...,t}) is smaller than the value of M at a set which is a union of sets of the
subdivision; i.e. either AU B U C or C itself. But on sets of this kind it is obvious, by the Averaging
Property , that M is smaller than the value m,, since this is the maximal value of M on the intervals
composing such a set (this is a consequence of M being increasing). Hence, M ({zs,...,x1}) < my,
implying that

a; <max min  my = m,.
s<i t>i,teGt

The opposite inequality is obtained exactly in a symmetric way (first take s € G, then prove that
M({zs,...,x}) is larger than the value of M on a union of intervals). O
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B Computing the subgradient
Computing the subgradient of ¥ on a dense set. Consider the set

D = {b: (b, ... bpo1) € R by £ b Vi G,
and by # Gy V1<i' <n—11<s<n-1,1<7 <n}.
We denote by (e!,...,e" 1) the canonical basis of R"~!. The set D is a dense open subset of R"~!
where the function VU is differentiable. Actually, for a fixed b € D, in the explicit formula for ¥ there is

no ex-aequo (up to possible equalities between the G; s terms). The same will be true in a neighborhood
of b. For each value of i € {1,...,n}, we define the function

2
\lli = (max(GSJ VAN bs) - yl) W1 4
s<i

Let us first consider ¢ € {1,...,n — 1}. We define {s;,,...,s; } to be the set of indices s where
max,<i(Gs,i A bs) is attained.

If k =1, then Gy, i ANbs, > Gy Absforall s € {1,...,i} \ {s;, }. This implies that the same strict
inequalities will be true in a neighborhood of b and hence there are two cases: either the function is locally
constant or the square of an affine function. Hence,

o If bSil > Gsilyi’ then V\I’l(b) = 0.
o Ifbs, < Gs, i, then VU, (b) = 2((GS¢17’£ A bsil) — yl> wi; €%,

Now if £ > 2, then this implies that only G i j =1,...,k can be equal (by definition of the set D),
and hence the function is locally constant. Therefore, V¥;(b) = 0.

For ¢ = n, the calculation also requires distinction between the cases £k = 1 and k > 2. Thus, if £ = 1
and the maximum max<, (Gsn A bs) is attained at s;, # n, then

o If by, > Gsz-l,nv then VW,(b) = 0.
o Ifb,, < Gy, o then VT, (b) = 2((0% 0 Nbs ) — yn> Wi €.

If £ = 1 and s;; = n (in this case b, = b} is known) or k£ > 2, then V¥, (b) = 0. Now the gradient
VU(b) is given by

n n—1
V\If(b) = Z V\Iiz(b) + 2 Z(bZ — Zi)U)Q’iei.
i=1 =1
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Calculating the subgradient of ¥ at any point. Take now any point b € R”~! which does not neces-
sarily belong to D. We want to approximate b by points of D in the perspective of using the following
property: If W is convex, p. — p, 7e — v as € — 0, and 7. € 0¥(p.), then v € O¥(p). This is useful
when we only want to find one element of the subdifferential at a given point and we already know the
gradients at nearby points.

We use the following approximation:

be =b+eu, whereu = (1,2,...,4,...,n—1).

We claim that b, may belong to the complement of D for a finite number of values ¢ at most. Indeed, for
any pair (4, j) with ¢ # j, the equality b; + ic = b; + je is satisfied for a unique value of ¢, and for any
i,4" and s, the same thing holds true for the equality G; ; = b; + i’. Hence, there exists 9 > 0 such that
for € €]0, e[, we have b, € D, where the expression of the gradient is fully known by our calculations
above.

We can act as follows: Take b and fix ¢ < n — 1. For any s < ¢, determine which one is minimal among
G s and b,. In case of equality, priority will be given to (; s since in the approximation with b., the value
of G; s would be smaller than bs + es. This way we classify the indices in two categories: The G-type and
b-type. Next, look at all the indices s1, ..., s; realizing the minimum of G; s V bs. If among s1,..., sy
there are some which are of the b-type, this would imply that in the approximation with b., those indices
will yield even a higher value for G; 5, V (bs; +€s;). In particular the maximal one will correspond to the
largest b-type index since it is the one where the coordinate is increased the most in the approximation.
Due to the fact that b}, is fixed, we adopt, for ¢ = n, the convention that the index s = n is of the G-type
when G, ,, A\ by, is maximal. Thus, we can define the vector

VU;(b) = 2((Gs,, i N bs;, ) — Yi) wii €*m or 0,

Sim

where the index s;,, is the largest index of b-type such that G; ; A b, is maximal (note that s;,, is always
< n —1). If no such index exists (i.e. if the maximal ones are all of G-type), then this is the case where
the vector equals 0. Now consider

n n—1
@W(b) = Z @\I/Z(b) +2 Z(bz — ZZ) w2 ; el
=1 =1

This vector belongs to 9V (b) by approximation and closedness of the subdifferential.

Note that we would have obtained another element of the subdifferential if we had fixed a different
order of priority on the coordinates of b; for instance the first index instead of the last one (if u =
(1,2,...,%,...n — 1) was replaced with (n — 1,...,2,1)). We could also have decreased (instead of
increased) the components, thus giving priority to b, instead of G; 5 in the minimum G; s A bs. In that
case, we would have obtained O for the subgradient of W; as soon as one of the components realizing the
maximum was of the G-type.
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