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Abstract

This note is dedicated to the study of the asymptotic behaviour of sets of finite
perimeter over RCD(K,N) metric measure spaces. Our main result asserts existence
of a Euclidean tangent half-space almost everywhere with respect to the perimeter
measure and it can be improved to an existence and uniqueness statement when the
ambient is non collapsed.
As an intermediate tool, we provide a complete characterization of the class of
RCD(0, N) spaces for which there exists a nontrivial function satisfying the equality
in the 1-Bakry-Émery inequality. This result is of independent interest and it is new,
up to our knowledge, even in the smooth framework.
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Introduction
In recent years the theory of metric measure spaces (X, d,m) (in short, m.m.s.) satisfying,
in a weak sense, upper bounds on dimension and lower bounds on the Ricci tensor has
undergone fast and remarkable developments, see [A18] for a recent survey on this topic.
In this paper we focus on the CD(K,N) theory pioneered by Lott-Villani and Sturm.
More specifically, we are concerned with the “Riemannian” side of the theory, the class of
RCD(K,N) (with K ∈ R, 1 ≤ N < +∞) m.m.s. introduced in [G15] after the study of
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their infinite-dimensional counterparts RCD(K,∞) in [AGS15] (see also [EKS15, AMS15]
for characterizations based on Bochner’s inequality). By now this class of spaces is known
to include the so-called Ricci limit spaces of the Cheeger-Colding theory, Alexandrov spaces
[P11] and other singular spaces.

Many structural properties of RCD(K,N) spaces have been established in the recent
years, in most cases after their proof in the setting of Ricci limit spaces, and sometimes with
essentially new strategies of proof, given the absence of a smooth approximation. Among
these structural results it is worth to mention the splitting theorem [G13], the second-order
calculus [G18], the existence of an “essential dimension” [BS18], the rectifiability as metric
measure spaces [MN14, KM18, DPMR17, GP16a], the validity of sharp heat kernel bounds
[JLZ14], the well-posedness of ODE’s associated to Sobolev vector fields [AT14].

At this stage of the development of the RCD theory, it is now natural to investigate the
typical themes of Geometric Measure Theory, since GMT provides techniques for dealing
with nonsmooth objects already when the ambient space is smooth. One of the most
fundamental results of GMT, that eventually led to the Federer-Fleming theory of currents
[FF60], is De Giorgi’s structure theorem for sets E of finite perimeter. De Giorgi’s theorem,
established in [DG54, DG55], provides the representation

|DχE | = H n−1 FE

of the perimeter measure |DχE | as the restriction of H n−1 to a suitable measure-theoretic
boundary FE of E. In addition, it provides a description of E on small scales, showing
that for all x ∈ FE the rescaled set r−1(E − x) is close, for r > 0 sufficiently small, to an
halfspace orthogonal to νE(x).

Our goal in this paper is to provide an extension of this result to the setting of
RCD(K,N) m.m.s. In the study of this problem, we realized the importance of the study
of the rigidity case in the Bakry-Emery inequality, namely the analysis of the implications
of the condition

|∇Ptf | = Pt|∇f | m-a.e. in X, for every t ≥ 0 (0.1)

for some nontrivial function f , if the ambient space is RCD(0, N).
Since the study of (0.1) has an independent interest, we first illustrate our result in

this direction, then we move back to sets of finite perimeter. Our rigidity result, stated in
Theorem 2.1, shows that (0.1) is sufficiently strong to imply the splitting of the m.m.s. as
Z×R, in addition with a monotonic dependence on f on the split real variable. This result
could be considered as “dual” to the classical splitting theorem, since the basic assumption
is not the existence of a curve with a special property (namely an entire geodesic), but
rather the existence of a function satisfying (0.1). However, our proof builds on Gigli’s
splitting theorem and is achieved in these steps:
(1) by first variations in (0.1) we prove that the unit vector fields bt = ∇Ptf/|∇Ptf | are
independent of t, divergence-free and with symmetric part of derivative in L2, in a suitable
weak sense;
(2) because of this, the theory of flows developed in [AT14] applies, and provides a measure-
preserving semigroup of isometries Xt;
(3) we use Xt to show in Proposition 2.11 that (Psf) ◦X−t is a value function, more
precisely

Psf(X−t(x)) = min
Bt(x)

Psf ∀x ∈ X, s > 0, t ≥ 0.

In the proof of this fact we have been inspired by the analysis of isotropic Hamilton-Jacobi
equations made in [N14] (see also [AF14]), even though our proof is self-contained. Using
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this representation of (Psf) ◦X−t it is not hard to prove that all flow curves t 7→Xt(x) are
lines and, in particular, Gigli’s theorem applies. Even though this refinement does not play
a role in the second part of the paper, we also prove that the validity of |∇Ptf | = Pt|∇f |
for some t > 0 implies the validity for all t ≥ 0, namely (0.1).

Now, what is the relation between (0.1) and the fine structure of sets of finite perimeter?
In De Giorgi’s proof and its many extensions to currents and other complex objects, the
normal direction νE coming out of the blow-up analysis is identified by looking at the polar
decomposition DχE = νE |DχE | of the distributional derivative (choosing approximate
continuity points of νE , relative to |DχE |). In turn, the polar decomposition essentially
depends on the simple structure of the tangent bundle of the Euclidean space. In the
RCD theory, as in Cheeger’s theory of PI spaces (see [GP16b] for a deeper discussion of
the relation between the two notions of tangent bundle), the tangent bundle is defined
only up to m-negligible sets, not in a pointwise sense. So, it could in principle be used to
write a polar decomposition analogous to the Euclidean theory only for vector-valued (in
a suitable sense) measures absolutely continuous w.r.t. m. We bypass this difficulty by
establishing this new principle: at |DχE |-a.e. point x, any tangent set F to E at x in any
tangent, pointed, metric measure structure (Y, %, µ, y) has to satisfy the condition

|∇PtχF |µ = P ∗t |DχF | ∀t ≥ 0. (0.2)

Notice that |DχF |, the semigroup Pt and its dual P ∗t in (0.2) have, of course, to be
understood in the tangent metric measure structure. The proof of this principle, given
in Theorem 4.2, ultimately relies on the lower semicontinuity of the perimeter measure
|DχE | (as it happens for the powerful principle that lower semicontinuity and locality
imply asymptotic local minimality, see [F66, W89], and [C99]) and gradient contractivity.
From (0.2), gradient contractivity easily yields that all functions f = PsχF satisfy (0.1);
this leads to a splitting both of (Y, %, µ) and F , and to the identification of a “tangent
halfspace” F to E at x.

Using these ideas we can prove the following structure results for sets of finite perimeter
E in RCD(K,N) m.m.s.: first, in Theorem 4.3, we prove that E admits a Euclidean
half-space as tangent at x for |DχE |-a.e. x ∈ X. This result becomes more precise in
the setting of noncollapsed RCD(K,N) m.m.s. of [DPG18]: in this case we prove in
Corollary 4.4 and Corollary 4.7 that |DχE | is concentrated on the N -dimensional regular
set of the ambient metric measure structure and we provide the representation formula
|DχE | = SN−1 FE (where Sk denotes the k-dimensional spherical Hausdorff measure, see
also (4.4) for the precise definition of FE), for an appropriate notion of measure-theoretic
boundary FE.

The paper is organized as follows. After the preliminary section 1, where we collect
basic notation, calculus rules and basic facts about RCD(K,N) spaces, Sobolev and BV
functions and flows associated to vector fields, in section 2 we prove our rigidity results,
allong the lines described above. We dedicate section 3 to the study of the behaviour of
sequences of sets Ei in m.m.s. (Xi, di,mi) convergent in the measured Gromov-Hausdorff
sense to (X, d,m). In particular, using appropriate notions of compactness for sequences of
functions and measures in varying metric measure structures, we focus on compactness
and lower semicontinuity of the perimeter measure. We apply these results in section 4,
where we specialize our analysis to the case when (Xi, di,mi) arise from the rescaling of
a pointed m.m.s. This theme is also investigated in [EGLS18], but in our paper we take
advantage of the curvature/dimension bounds to establish the stronger rigidity property
(0.2) satisfied by tangent sets F in the tangent metric measure structure. Then, using
the splitting property and the principle that “tangents to a tangent are tangent”, we are
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able to recover the above-mentioned structure results of sets of finite perimeter. Finally,
Appendix A is devoted to a self-contained proof of the iterated tangents principle, adapting
the argument of Preiss’ seminal paper [P87] (see also [AKL08, GMR15]).

A natural question arising from the results and methods in this paper is the rectifiability
of the measure-theoretic boundary FE. Our blow up-analysis shows that the measure
|DχE | = SN−1 FE is asymptotically flat |DχE |-a.e., but flatness should be understood
only in the measured-Gromov Hausdorff sense (for instance, a measure concentrated on a
spiral would be asymptotically flat at the origin of the spiral). So, trying to get rectifiability
using only this information is related to the search of rectifiability criteria where Jones’ β
numbers are replaced by smaller numbers built with the scaled and localized Wasserstein
distance. As far as we know, despite important progress on rectifiability criteria for
measures (see for instance [T15, AT15]) this question is open even for measures in the
Euclidean space.

Finally, for sets E of finite perimeter in general RCD(K,N) m.m.s. (X, d,m), it would
be important to get additional informations on the structure of |DχE |, besides the existence
of flat tangents |DχE |-a.e. in X.
Acknowledgements. The authors acknowledge the support of the MIUR PRIN 2015
project “Calculus of Variations”. The authors also wish to thank Andrea Mondino for
fruitful discussions around the topic of this note.

1 Preliminaries
In a metric space (Z, d), we will denote by Br(x) = {d(·, x) < r} and Br(x) = {d(·, x) ≤ r}
the open and closed balls respectively, by Cbs(Z) the space of bounded continuous functions
with bounded support, by Lipbs(Z) ⊂ Cbs(Z) the subspace of Lipschitz functions. We shall
adopt the notation Cb(Z) and Lipb(Z) for bounded continuous and bounded Lipschitz
functions respectively. For any f ∈ Lip(Z) we shall denote by Lip f its global Lipschitz
constant. The characteristic function with values in { 0, 1 } of a set E ⊂ Z will be denoted
by χE .

The Borel σ-algebra of a metric space (Z, d) is denoted by B(Z). We shall denote
by M (Z) the space of signed Borel measures with finite total variation on Z and by
M +(Z),M +

loc(Z),P(Z) the spaces of nonnegative finite Borel measures, nonnegative
measures finite on bounded subsets of Z and probability measures, respectively. We will
denote by suppm the support of any m ∈M +

loc(Z).
We will use the standard notation Lp(Z,m), Lploc(Z,m) for the Lp spaces, whenever m
is nonnegative, and L n,Hn for the n-dimensional Lebesgue measure on Rn and the n-
dimensional Hausdorff measure on a metric space, respectively. We shall denote by ωn the
Lebesgue measure of the unit ball in Rn.

1.1 Calculus tools

Throughout this paper a metric measure space is a triple (X, d,m), where (X, d) is a locally
compact and separable metric space (even though some intermediate results do not need
the local compactness assumption) and m is a nonnegative Borel measure on X finite on
bounded sets. We shall adopt the notation (X, d,m, x) for pointed metric measure spaces,
that is metric measure spaces (X, d,m) with a fixed reference point x ∈ X.

The Cheeger energy Ch : L2(X,m)→ [0,+∞] associated to a m.m.s. (X, d,m) is the
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convex and lower semicontinuous functional defined through

Ch(f) := inf
{

lim inf
n→∞

ˆ
lip2 fn dm : fn ∈ Lipb(X) ∩ L2(X,m), ‖fn − f‖2 → 0

}
, (1.1)

where lip f is the so called slope

lip f(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y) .

The finiteness domain of the Cheeger energy will be denoted by H1,2(X, d,m). We shall
denote by H1,2

loc (X, d,m) the space of those functions f such that ηf ∈ H1,2(X, d,m) for
any η ∈ Lipbs(X, d).
Looking at the optimal approximating sequence in (1.1), it is possible to identify a canonical
object |∇f |, called minimal relaxed slope, providing the integral representation

Ch(f) :=
ˆ
X
|∇f |2 dm ∀f ∈ H1,2(X, d,m).

Any metric measure space such that Ch is a quadratic form is said to be infinitesimally
Hilbertian and from now on we shall always make this assumption, unless otherwise stated.
Let us recall from [AGS14, G15] that, under this assumption, the function

∇f1 · ∇f2 := lim
ε→0

|∇(f1 + εf2)|2 − |∇f1|2

2ε

defines a symmetric bilinear form onH1,2(X, d,m)×H1,2(X, d,m) with values into L1(X,m).

It is possible to define a Laplacian operator ∆ : D(∆) ⊂ L2(X,m)→ L2(X,m) in the
following way. We let D(∆) be the set of those f ∈ H1,2(X, d,m) such that, for some
h ∈ L2(X,m), one has

ˆ
X
∇f · ∇g dm = −

ˆ
X
hg dm ∀g ∈ H1,2(X, d,m) (1.2)

and in that case we put ∆f = h since h is uniquely determined by (1.2). It is easy to check
that the definition is well-posed and that the Laplacian is linear (because Ch is a quadratic
form).
The heat flow Pt is defined as the L2(X,m)-gradient flow of 1

2Ch. Its existence and
uniqueness follow from the Komura-Brezis theory. It can equivalently be characterized
by saying that for any u ∈ L2(X,m) the curve t 7→ Ptu ∈ L2(X,m) is locally absolutely
continuous in (0,+∞) and satisfies

d
dtPtu = ∆Ptu for L 1-a.e. t ∈ (0,+∞), lim

t↓0
Ptu = u in L2(X,m). (1.3)

Under our assumptions the heat flow provides a linear, continuous and self-adjoint con-
traction semigroup in L2(X,m). Moreover Pt extends to a linear, continuous and mass
preserving operator, still denoted by Pt , in all the Lp spaces for 1 ≤ p < +∞.

We recall the following regularization properties of Pt, ensured by the theory of
gradient flows and maximal monotone operators (even without the infinitesimal Hilbertian
assumption):

‖Ptf‖L2(X,m) ≤ ‖f‖L2(X,m) , Ch(Ptf) ≤
‖f‖2L2(X,m)

2t and ‖∆f‖L2(X,m) ≤
‖f‖L2(X,m)

t
,

(1.4)
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for any t > 0 and for any f ∈ L2(X,m).
Let us introduce now vector fields over (X, d,m) as derivations over an algebra of test

functions, following the approach introduced in [We00] and adopted in [AT14] (see also
[G13]).

Definition 1.1. We say that a linear functional b : Lip(X)→ L0(X,m) is a derivation if
it satisfies the Leibniz rule, that is

b(fg) = b(f)g + fb(g), (1.5)

for any f, g ∈ Lip(X).
Given a derivation b and p ∈ [1,+∞], we write b ∈ Lp(TX) (resp. Lploc(TX)) if there

exists g ∈ Lp(X,m) (resp. Lploc(X,m)) such that

|b(f)| ≤ g lip(f) m-a.e. on X, (1.6)

for any f ∈ Lip(X) and we denote by |b| the minimal (in the m-a.e. sense) g with such
property. We also say that b has compact support if |b| has compact support.

Let us remark that any f ∈ H1,2(X, d,m) defines in a canonical way a derivation
bf ∈ L2(TX) through the formula bf (g) = ∇f · ∇g, usually called the gradient derivation
associated to f . We will use the notation b · ∇f in place of b(f) in the rest of the paper.

A notion of divergence can be introduced via integration by parts.

Definition 1.2. Let b be a derivation in L1
loc(TX) and p ∈ [1,+∞]. We say that div b ∈

Lp(X,m) if there exists g ∈ Lp(X,m) such that
ˆ
X
b · ∇f dm = −

ˆ
X
gf dm for any f ∈ Lipbs(X). (1.7)

By a density argument it is easy to check that such a g is unique (when it exists) and we
will denote it by div b.

We refer to [G18] for the introduction of the so-called tangent and cotangent moduli
over an arbitrary metric measure space and for the identification results between derivations
in L2 and elements of the tangent modulus L2(TX) which justify the use of this notation.

We conclude this brief subsection introducing the basic notions and results about
functions of bounded variation and sets of finite perimeter over metric measure spaces.
Let us remark that, for the sake of this discussion, the assumption that Ch is quadratic is
unnecessary.

Definition 1.3 (Function of bounded variation). A function f ∈ L1(X,m) is said to
belong to the space BV(X, d,m) if there exist locally Lipschitz functions fi converging to
f in L1(X,m) such that

lim sup
i→∞

ˆ
X
|∇fi|dm < +∞.

By localizing this construction one can define

|Df | (A) := inf
{

lim inf
i→∞

ˆ
A
|∇fi|dm : fi ∈ Liploc(A), fi → f in L1(A,m)

}
for any open A ⊂ X. In [ADM14] (see also [Mi03] for the case of locally compact spaces)
it is proven that this set function is the restriction to open sets of a finite Borel measure
that we call total variation of f and still denote |Df |.
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Dropping the global integrability condition on f = χE , let us recall now the analogus
definition of set of finite perimeter in a metric measure space (see again [A02, Mi03,
ADM14]).

Definition 1.4 (Perimeter and sets of finite perimeter). Given a Borel set E ⊂ X and an
open set A the perimeter Per(E,A) is defined in the following way:

Per(E,A) := inf
{

lim inf
n→∞

ˆ
A
|∇un|dm : un ∈ Liploc(A), un → χE in L1

loc(A,m)
}
.

We say that E has finite perimeter if Per(E,X) < +∞. In that case it can be proved that
the set function A 7→ Per(E,A) is the restriction to open sets of a finite Borel measure
Per(E, ·) defined by

Per(E,B) := inf {Per(E,A) : B ⊂ A, A open} .

Let us remark for the sake of clarity that E ⊂ X with finite m-measure is a set of finite
perimeter if and only if χE ∈ BV(X, d,m) and that Per(E, ·) = |DχE | (·). In the following
we will say that E ⊂ X is a set of locally finite perimeter if χE is a function of locally
bounded variation, that is to say ηχE ∈ BV(X, d,m) for any η ∈ Lipbs(X, d).

The following coarea formula for functions of bounded variation on metric measure
spaces is taken from [Mi03, Proposition 4.2], dealing with locally compact spaces and its
proof works in the more general setting of metric measure spaces. It will play a key role in
the rest of the paper.

Theorem 1.5 (Coarea formula). Let v ∈ BV(X, d,m). Then, {v > r} has finite perimeter
for L 1-a.e. r ∈ R and, for any Borel function f : X → [0,+∞], it holds

ˆ
X
f d |Dv| =

ˆ +∞

−∞

(ˆ
X
f d Per({v > r}, ·)

)
dr. (1.8)

By applying the coarea formula to the distance function we obtain immediately that,
given x ∈ X, the ball Br(x) has finite perimeter for L 1-a.e. r > 0, and in the sequel this
fact will also be used in the quantitative form provided by (1.8). We also recall (see for
instance [A01, A02]) that sets of locally finite perimeter are an algebra, more precisely
Per(E,B) = Per(X \ E,B) and

Per(E ∩ F,B) + Per(E ∪ F,B) = Per(E,B) + Per(F,B).

We will need also the following localized version of the coarea formula, which is an easy
consequence of [Mi03, Remark 4.3].

Corollary 1.6. Let v ∈ BV(X, d,m) be continuous and nonnegative. Then, for any Borel
function f : X → [0,+∞], it holds

ˆ
{s≤v<t}

f d |Dv| =
ˆ t

s

(ˆ
X
f d Per({v > r}, ·)

)
dr, 0 ≤ s < t < +∞. (1.9)

1.2 RCD(K, N) metric measure spaces

The main object of our investigation in this note are RCD(K,N) metric measure spaces,
that is infinitesimally Hilbertian spaces satisfying a lower Ricci curvature bound and an
upper dimension bound in synthetic sense according to [S06a, S06b, LV09]. Before than
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passing to the description of the main properties of RCD(K,N) spaces that will be relevant
for the sake of this note, let us briefly focus on the adimensional case.
The class of RCD(K,∞) spaces was introduced in [AGS14] (see also [AGMR15] for the
extension to the case of σ-finite reference measures) adding to the CD(K,∞) condition,
formulated in terms of K-convexity properties of the logarithmic entropy over the Wasser-
stein space (P2,W2), the infinitesimally Hilbertianity assumption. Under the RCD(K,∞)
condition it was proved that the dual heat semigroup P ∗t : P2(X)→P2(X), defined by

ˆ
X
f dP ∗t µ =

ˆ
X
Ptf dµ ∀µ ∈P2(X), ∀f ∈ Lipbs(X),

is K-contractive w.r.t. the W2-distance and, for t > 0, maps probability measures into
probability measures absolutely continuous w.r.t. m. Then, for any t > 0, it is possible to
define the heat kernel pt : X ×X → [0,+∞) by

pt(x, ·)m = P ∗t δx. (1.10)

We go on stating a few regularization properties of RCD(K,∞) spaces, referring again to
[AGS14, AGMR15] for a more detailed discussion and for the proofs of these results.
First we have the Bakry-Émery contraction estimate:

|∇Ptf |2 ≤ e−2KtPt |∇f |2 m-a.e., (1.11)

for any t > 0 and for any f ∈ H1,2(X, d,m). This contraction estimate can be generalized
to the whole range of exponents 1 < p < +∞, but in this note we will mainly be concerned
with the case p = 1. In [GH16] it has been proved that on any proper RCD(K,∞) m.m.s.
it holds

|DPtf | ≤ e−KtP ∗t |Df | , (1.12)

for any t > 0 and for any f ∈ BV(X, d,m).
Next we have the so called Sobolev to Lipschitz property, stating that any f ∈ H1,2(X, d,m)
such that |∇f | ∈ L∞(X,m) admits a representative f̃ such that Lip(f̃) ≤ ‖|∇f |‖L∞ , and
the L∞ − Lip regularization: for any f ∈ L∞(X,m) and t > 0 one has Ptf ∈ Lip(X) with
the quantitative estimate √

2I2K(t) Lip(Ptf) ≤ ‖f‖L∞ , (1.13)

where I2K(t) :=
´ t

0 e
2Kr dr.

Eventually let us introduce the space of test functions Test(X, d,m) following [G18]:

Test(X, d,m) := {f ∈ D(∆) ∩ L∞(X,m) : |∇f | ∈ L∞(X,m) and ∆f ∈ H1,2(X, d,m)}.
(1.14)

We shall denote in the sequel by Testc(X, d,m) the space of test functions with compact
support.

In the context of RCD(K,∞) spaces it is possible to introduce a notion of flow associated
to a vector field which reads as follows (see [AT14]).

Definition 1.7. Let us fix a vector field b. We say that a Borel map X : [0,∞)×X → X
is a Regular Lagrangian flow (RLF for short) associated to b if the following conditions
hold true:

1) X(0, x) = x and X(·, x) ∈ C([0,∞);X) for every x ∈ X;

2) there exists L ≥ 0, called compressibility constant, such that

X(t, ·)]m ≤ Lm, for every t ≥ 0;
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3) for every f ∈ Test(X, d,m) the map t 7→ f(X(t, x)) is locally absolutely continuous
in [0,∞) for m-a.e. x ∈ X and

d
dtf(X(t, x)) = b · ∇f(X(t, x)) for a.e. t ∈ (0,∞). (1.15)

The selection of “good” trajectories is encoded in condition 2), which is added to ensure
that the RLF does not concentrate too much the reference measure m. We remark that
the notion of RLF is stable under modification in a negligible set of initial conditions, but
we prefer to work with a pointwise defined map in order to avoid technical issues.

It is well known that to obtain an existence and uniqueness theory for regular Lagrangian
flows it is necessary to restrict to a class of sufficiently regular vector fields, even in the
case of a smooth ambient space.
Below we introduce our working definition of Sobolev vector field with symmetric covariant
derivative in L2, following [AT14]. This definition is sufficient for our purposes, and weaker
than the notion introduced in [G18], which corresponds to a sort of localized version of
(1.16) (actually, we have been unable to prove differentiability in Gigli’s stronger sense of
our vector field bs = ∇Psf/|∇Psf |).

Definition 1.8. Let b ∈ L∞(TX) with div b ∈ L∞(X,m). We write |∇symb| ∈ L2(X,m)
if there exists a constant c > 0 such that∣∣∣∣ˆ

X
∇symb(∇ϕ,∇ψ) dm

∣∣∣∣ ≤ c ‖∇ϕ‖L4 ‖∇ψ‖L4 ∀ϕ, ψ ∈ Test(X, d,m), (1.16)

whereˆ
X
∇symb(∇ϕ,∇ψ) dm := −1

2

ˆ
X
{b · ∇ϕ ∆ψ + b · ∇ψ ∆ϕ− div b ∇ϕ · ∇ψ} dm.

We let ‖∇symb‖L2 be the smallest c in (1.16). In particular we write ∇symb = 0 if
‖∇symb‖L2 = 0.

In the next theorem we resume some general result concerning Regular Lagrangian
flows that will be used in the sequel.

Theorem 1.9. Let (X, d,m) be an RCD(K,∞) space for some K ∈ R. Fix b ∈ L∞(TX)
with div b ∈ L∞(X,m) and ∇symb ∈ L2(X,m). Then

(i) there exists a unique regular Lagrangian flow X : R × X → X associated to b1

(uniqueness is understood in the following sense: if X and X̄ are Regular Lagrangian
flows associated to b, then for m-a.e. x ∈ X one has Xt(x) = X̄t(x) for any t ∈ R);

(ii) X satisfies the semigroup property: for any s ∈ R it holds that, for m-a.e. x ∈ X,

X(t,X(s, x)) = X(t+ s, x) ∀t ∈ R, (1.17)

and the bound
e−t‖div b‖L∞m ≤ (Xt)]m ≤ e

t‖div b‖L∞m; (1.18)
1To be more precise, there exist unique Regular Lagrangian flows X+, X− : [0, +∞)×X → X associated

to b and −b respectively and we let Xt = X+
t for t ≥ 0 and Xt = X−−t for t ≤ 0.

9



(iii) For any ū ∈ L1(X,m) ∩ L∞(X,m) there exists u ∈ L∞loc(R;L1(X,m) ∩ L∞(X,m))
such that (Xt)] (um) = utm and it solves the continuity equation, i.e. for any
ϕ ∈ Test(X, d,m) the map t 7→

´
X ϕut dm is locally absolutely continuous with

distributional derivative

d
dt

ˆ
X
ϕut dm =

ˆ
X

(b · ∇ϕ)ut dm;

(iv) if div b = 0 and ∇symb = 0 then Xt admits a representative which is a measure-
preserving isometry, i.e.

d(Xt(x),Xt(y)) = d(x, y) ∀x, y ∈ X and (Xt)]m = m,

for any t ∈ R. Furthermore in this case the semigroup property (1.17) is satisfied
pointwise.

Proof. (i), (ii), (iii) immediately follow from the results in [AT14] (see Theorem 8.3 together
with Theorem 4.3 and Theorem 4.4). Let us prove (iv). From (1.18) we conclude that
(Xt)]m = m for any t ∈ R. Let us now take ū ∈ L∞(X,m) ∩W 1,2(X, d,m) and u as in (ii).
Thanks to [AT14, Lemma 5.8] we get that Pαut ∈ Test(X, d,m) is still a solution of the
continuity equation for any α ∈ (0, 1). Then we can compute

d
dt

1
2

ˆ
X
|∇Pαut|2 dm = − d

dt
1
2

ˆ
X
Pαut∆Pαut dm

= −
ˆ
X
b · ∇∆Pαut Pαut dm.

Since div b = 0 and ∇symb = 0, we deduce

−
ˆ
X
b · ∇∆Pαut Pαut dm =

ˆ
X
b · ∇Pαut Pα∆ut dm = 0,

therefore ˆ
X
|∇Pαut|2 dm =

ˆ
X
|∇Pαū|2 dm ∀t ∈ R, ∀α ∈ (0, 1). (1.19)

Taking the limit in (1.19) as α→ 0 it easily follows that ut ∈ H1,2(X, d,m) for any t ∈ R
and that

´
X |∇ut|

2 dm does not depend on t ∈ R. Using the identity ut(x) = ū(X(−t, x))
(which can be checked using the semigroup property (1.17) and

(
Xt
)
]
m = m) we deduce

that, for any t ∈ R,

Ch(ū ◦Xt) = Ch(ū) ∀ū ∈ L∞(X,m) ∩H1,2(X, d,m),

and (iv) follows from arguments that have been used several times in the literature, as in
[G13, Proposition 4.20].

As we anticipated above, RCD(K,N) spaces were introduced in [G15] as a finite
dimensional counterpart of RCD(K,∞). Here we just recall that they can be characterized
asking for the quadraticity of Ch, the volume growth condition m(Br(x)) ≤ c1 exp(c2r

2)
for some (and thus for all) x ∈ X, the validity of the Sobolev to Lipschitz property and of a
weak form of Bochner’s inequality

1
2∆ |∇f |2 −∇f · ∇∆f ≥ (∆f)2

N
+K |∇f |2

10



for any f ∈ Test(X, d,m). We refer to [AMS15, EKS15] for a more detailed discussion and
equivalent characterizations of the RCD(K,N) condition.

Let us pass to a brief presentation of the main properties of RCD(K,N) spaces that
will play a role in the sequel.

We recall that, as a consequence of the Bishop-Gromov inequality (see [V09, Theorem
30.11]), RCD(K,N) spaces are locally doubling, that is to say, for any R > 0 there exists
a constant CD depending only on R,K and N such that

m(B2r(x)) ≤ CDm(Br(x)),

for any x ∈ X and for any 0 < r ≤ R. Another consequence of the Bishop-Gromov
inequality is that m(∂Br(x)) = 0 for any x ∈ X and for any r > 0.

In [G13] Gigli proved that in RCD(0, N) spaces the splitting theorem still holds, ex-
tending to this abstract framework the results obtained by Cheeger-Gromoll and Cheeger-
Colding for smooth Riemannian manifolds and Ricci limit spaces, respectively.

Theorem 1.10. Let (X, d,m) be an RCD(0, N) m.m.s. containing a line, that is to say a
curve γ : R→ X such that

d(γ(s), γ(t)) = |t− s| , ∀s, t ∈ R.

Then there exists an RCD(0, N − 1) m.m.s. (X ′, d′,m′) such that (X, d,m) is isomorphic
as a m.m.s. to

(X ′, d′,m′)× (R, deucl,L 1).
Furthermore, γ(t) = (x′, t) for any t ∈ R, for some x′ ∈ X ′.

Since RCD(K,N) spaces are locally doubling and they satisfy a local Poincaré inequality
(see [VR08]), the general theory of Dirichlet forms as developed in [S96] grants that we can
find a locally Hölder continuous representative of the heat kernel p on X ×X × (0,+∞).

Moreover in [JLZ14] the following finer properties of the heat kernel over RCD(K,N)
spaces have been proved: there exist constants C = CK,N > 1 and c = cK,N ≥ 0 such that

1
Cm(B√t(x)) exp

{
−d2(x, y)

3t − ct
}
≤ pt(x, y) ≤ C

m(B√t(x)) exp
{
−d2(x, y)

5t + ct

}
(1.20)

for any x, y ∈ X and for any t > 0. Moreover it holds

|∇pt(x, ·)| (y) ≤ C√
tm(B√t(x))

exp
{
−d2(x, y)

5t + ct

}
for m-a.e. y ∈ X, (1.21)

for any t > 0 and for any x ∈ X. We remark that, in the case K = 0, it is possible to take
c = 0.

Next we recall the notions of tangent space at a given point of a m.m.s. and of regular
k-dimensional set. Given a m.m.s. (X, d,m), x ∈ suppm and r ∈ (0, 1) we shall consider
the rescaled p.m.m.s. (X, r−1d,mx

r , x), where

mx
r := C(x, r)−1m, C(x, r) :=

ˆ
Br(x)

(
1− 1

r
d(·, x)

)
dm. (1.22)

Definition 1.11. Let (X, d,m) be a m.m.s. and let x ∈ suppm. We say that a p.m.m.s.
(Y, %, µ, y) is tangent to (X, d,m) if there exist ri ↓ 0 such that (X, r−1

i d,mx
ri
, x) converge to

(Y, %, µ, y) in the pointed measured Gromov-Hausdorff topology (we refer to the forthcoming
Definition 1.17 for the notion of pointed measured Gromov-Hausdorff convergence).
We shall denote by Tanx(X, d,m) the collection of all the tangent spaces of (X, d,m) at x.
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Definition 1.12. Given an RCD(K,N) m.m.s. (X, d,m) we will say that x ∈ X is a
k-regular point for some integer 1 ≤ k ≤ N if Tanx(X, d,m) = { (Rk, deucl, ckL k, 0k) },
where

ck :=
(ˆ

B1(0)
(1− |x|) dx

)−1

.

We shall denote by Rk ⊂ X the set of k-regular points of (X, d,m).

The following theorem sharpens one of the conclusions of [MN14] and has been proved
in [BS18].

Theorem 1.13. Let (X, d,m) be an RCD(K,N) m.m.s.. Then there exists a unique
integer 1 ≤ k ≤ N such that

m(X \ Rk) = 0.

Let us conclude this subsection recalling the notion of non collapsed RCD(K,N) m.m.s.,
as introduced in [DPG18], and some useful property of this class.

Definition 1.14. Let K ∈ R and N ≥ 1. We say that (X, d,m) is a non collapsed
RCD(K,N) space, ncRCD(K,N) space for short, if it is RCD(K,N) and m = HN .

It is easy to check that, if (X, d,m) is ncRCD(K,N), then N has to be an integer.
Below we state a useful regularity property of ncRCD spaces. Its validity follows from the
volume cone-metric cone property (see [DPG16]) and the volume rigidity theorem (see
[DPG18, Theorem 1.5]) with arguments analogous to the ones adopted in theory of non
collapsed Ricci-limit spaces.

Theorem 1.15. Let (X, d,m) be a ncRCD(K,N) m.m.s.. Assume that for some x ∈ X it
holds (

RN , deucl, cNL N , 0N
)
∈ Tanx(X, d,m).

Then x is a regular point, that is to say the tangent at x is unique (and N-dimensional
Euclidean).

Proof. The conclusion follows from [DPG18, Proposition 2.10], we just provide here a sketch
of the proof for sake of completeness. Let ri ↓ 0 be a sequence of scales such that the rescal-
ings of the p.m.m.s. (X, d,m, x) converge in the pmGH topology to (RN , deucl, cNL N , 0N )
as i→∞. Since L N (∂B1(0)) = 0, we get

lim
i→∞

m(Bri(x))/
(
cNωNr

N
i

)
= 1.

The Bishop-Gromov inequality allows then to improve this conclusion to

lim
r→0

m(Br(x))/
(
cNωNr

N) = 1,

thus, for any (Y, dY ,mY , y) ∈ Tanx(X, d, x) we have thatmY = cNHN by [DPG18, Theorem
1.2] and HN (BY

1 (y)) = ωN . Hence the volume rigidity theorem [DPG18, Theorem 1.5]
applies, yielding that BY

1/2(y) is isometric to BRN

1/2(0). Eventually, thanks to the fact that
(Y, dY ,mY , y) is a metric cone with tip y, we conclude that it is isomorphic to RN .

Remark 1.16. Let us remark that there is no analogue of Theorem 1.15 without the non
collapsing assumption. Indeed Menguy built in [Me01] an example of Ricci limit space
with a strictly weakly regular point, that is to say a point with an Euclidean space in the
tangent cone whose tangent cone is not unique.
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1.3 Convergence and stability results for sequences of RCD(K, N) spaces
We dedicate this subsection to an overview of the subject of convergence and stability for
Sobolev functions defined on converging sequences of metric measure spaces. The main
references for this part are [GMS15] and [AH17].

Definition 1.17. A sequence { (Xi, di,mi, xi) }i∈N of pointed m.m.s. is said to converge
in the pmGH topology to (Y, %, µ, y) if there exist a separable metric measure space (Z, dZ)
and isometric embeddings

Ψi : (suppmi, di)→ (Z, dZ) ∀i ∈ N,
Ψ : (suppµ, dy)→ (Z, dZ),

such that for every ε > 0 and R > 0 there exists i0 such that for every i > i0

Ψ(BY
R (y)) ⊂ [Ψi(BXi

R (xi))]ε, Ψi(BXi
R (xi)) ⊂ [Ψ(BY

R (y))]ε,

where [A]ε := { z ∈ Z : dZ(z,A) < ε } for every A ⊂ Z. Moreover (Ψi)#mi ⇀ Ψ#µ, where
the convergence is understood in duality with Cbs(Z).

In the case of a sequence of RCD(K,N) metric measure spaces (Xi, di,mi, xi), the
pointed measured Gromov-Hausdorff convergence to (Y, %, µ, y) can be equivalently charac-
terized asking for the existence of a proper metric space (Z, dZ) such that all the metric
spaces (Xi, di) are isometrically embedded into (Z, dZ), xi → y and mi ⇀ µ in duality with
Cbs(Z). This is the so called extrinsic approach, that we shall adopt in the rest of the note.

Definition 1.18. [Pointwise/uniform convergence of functions defined on varying spaces]
Let (Xi, di,mi, xi) be pointed m.m.s. converging in the pmGH topology to (Y, %, µ, y) and
let fi : Xi → R, f : Y → R. Assume the convergence to be realized into a common metric
space (Z, dZ) as above. Then we say that fi → f pointwise if fi(xi) → f(x) for every
sequence of points xi ∈ Xi such that xi → x in Z. If moreover for every ε > 0 there
exists δ > 0 such that |fi(xi)− f(x)| ≤ ε for every i ≥ δ−1 and every xi ∈ Xi, x ∈ Y with
dZ(xi, x) ≤ δ, then we say that fi → f uniformly.

We recall below the notions of convergence in Lp and Sobolev spaces for functions
defined over converging sequences of metric measure spaces. We will be concerned only
with the cases p = 2 and p = 1 in the rest of the note. We refer again to [AH17, GMS15]
for a more general treatment and the proofs of the results we state below.

Definition 1.19. We say that fi ∈ L2(Xi,mi) converge in L2-weak to f ∈ L2(Y, µ) if
fimi ⇀ fµ in duality with Cbs(Z) and supi ‖fi‖L2(Xi,mi) < +∞.
We say that fi ∈ L2(Xi,mi) converge in L2-strong to f ∈ L2(Y, µ) if fimi ⇀ fµ in duality
with Cbs(Z) and limi ‖fi‖L2(Xi,mi) = ‖f‖L2(Y,µ).

Definition 1.20. We say that fi ∈ H1,2(Xi, di,mi) are weakly convergent to f ∈ H1,2(Y, %, µ)
if they converge in L2-weak and supi Chi(fi) < +∞. Strong H1,2-converge is defined asking
that fi converge to f in L2-strong and limi Chi(fi) = Ch(f).

The following localized lower semicontinuity result will play a role in the sequel of the
note. It is taken from [AH17, Lemma 5.8].

Proposition 1.21. Let fi ∈ H1,2(Xi, di,mi) be weakly converging in H1,2 to f ∈ H1,2(Y, %, µ).
Then

lim inf
i→∞

ˆ
Z
g |∇fi| dmi ≥

ˆ
Z
g |∇f | dµ, for any nonnegative g ∈ Lipbs(Z).
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Definition 1.22. We say that a sequence (fi) ⊂ L1(Xi,mi) converges L1-strongly to
f ∈ L1(Y, µ) if

σ ◦ fimi ⇀ σ ◦ fµ and
ˆ
Xi

|fi| dmi →
ˆ
Y
|f | dµ,

where σ(z) := sign(x)
√
|z| and the weak convergence is understood in duality with Cbs(Z).

Equivalently, if σ ◦ fi L2-strongly converges to σ ◦ f .
We say that fi ∈ BV(Xi,mi) converge in BV-strong to f ∈ BV(Y, µ) if fi converge

L1-strongly to f and
lim
i→∞
|Dfi|(Xi) = |Df |(Y ).

The following useful stability result is part of [AH17, Proposition 3.3].

Proposition 1.23. Let p ∈ {1, 2}. If fi ∈ Lp(Xi,mi) converge in Lp-strong to f ∈ Lp(Y, µ)
then ϕ ◦ fi converge to ϕ ◦ f in Lp-strong for any ϕ ∈ Lip(R) such that ϕ(0) = 0. In
particular, if gi are uniformly bounded in L∞ and L1-strongly convergent to g then

lim
i→∞
‖gi‖Lp(Xi,mi) = ‖g‖Lp(Y,µ) .

If fi, gi ∈ Lp(Xi,mi) converge in Lp-strong to f and g respectively, then fi + gi converge
to f + g in Lp-strong.

Below we quote a useful compactness criterion borrowed from [GMS15, Theorem 6.3]
(see also [AH17, Theorem 7.4]).

Theorem 1.24. Let fi ∈ H1,2(Xi, di,mi) be such that

sup
i

{ˆ
Z
|fi|2 dmi + Chi(fi)

}
< +∞

and
lim
R→∞

lim sup
i→∞

ˆ
Z\BR(z̄)

|fi|2 dmi = 0,

for some (and thus for all) z̄ ∈ Z. Then (fi) has a L2-strongly convergent subsequence to
f ∈ H1,2(Y, %, µ).

Next we pass to a stability/compactness criterion in H1,2. Its statement is taken from
[AH17, Corollary 5.5].

Proposition 1.25. (a) If fi ∈ H1,2(Xi, di,mi), fi ∈ D(∆i) converge in L2-strong to f
and ∆ifi are uniformly bounded in L2, then f ∈ D(∆), ∆ifi converge in L2-weak to
∆f and fi converge in H1,2-strong to f ;

(b) for all t > 0, P it fi converge in H1,2-strong to Ptf whenever fi converge in L2-strong
to f .

We conclude this subsection with a localized convergence result taken from [AH17,
Theorem 5.7].

Theorem 1.26. Let vi, wi ∈ H1,2(Xi, di,mi) be strongly convergent in H1,2 to v, w ∈
H1,2(Y, %, µ), respectively. Then ∇vi · ∇wi converge L1-strongly to ∇v · ∇w.
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2 Rigidity of the 1-Bakry-Émery inequality and splitting
theorem

Our aim in this section is to prove a rigidity result for RCD(0, N) spaces admitting a non
constant function satisfying the equality in the Bakry-Émery inequality for exponent p = 1
(1.12). Our investigation of the consequences of this rigidity property was motivated by
the study of blow-ups of sets of finite perimeter (see Theorem 4.2 below).

Theorem 2.1. Let (X, d,m) be an RCD(0, N) m.m.s.. Assume that there exist a non
constant function f ∈ Lipb(X) and s > 0 satisfying

|∇Psf | = Ps|∇f | m-a.e. in X. (2.1)

Then there exists an RCD(0, N − 1) m.m.s. (X ′, d′,m′) such that X is isomorphic, as
a metric measure space, to X ′ × R. Moreover, the function f written in coordinates
(x′, t) ∈ X ′ × R depends only on the variable t and it is monotone.

Remark 2.2. Let us point out that the action of the heat semigroup in L∞(X,m) can be
defined by mean of

Ptf(x) :=
ˆ
X
f(y)pt(x, y) dm(y), (2.2)

where pt is the heat kernel (see (1.10)). Using an approximation argument is it possible
to see that, for any f ∈ L∞(X,m) and every ϕ ∈ L1(X,m) the map t →

´
X Ptfϕdm is

absolutely continuous with derivative

d
dt

ˆ
X
Ptfϕdm =

ˆ
X

∆Ptfϕdm,

in other words Ptf is still a solution of the heat equation.
Remark 2.3. The assumption f ∈ Lipb(X) in Theorem 1.10 can be replaced with the more
general f ∈ Lip(X), provided we extend the action of the heat semigroup to the class of
Borel functions with at most linear growth at infinity, i.e.

|f(x)| ≤ C(1 + d(x, x0)) for m-a.e. x ∈ X

for some x0 ∈ X and C ≥ 0. Even though under the RCD(0, N) condition the Gaussian
estimates for the heat kernel provide this extension, we shall consider only the case
f ∈ Lipb(X) that is enough for our purposes.

In order to better motivate the statement of Theorem 2.1 let us spend a few words
about the rigidity case in the Bakry Émery inequality for p = 2. If we assume that on
a smooth Riemannian manifold M with nonnegative Ricci curvature there exists a non
constant function f : M → R such that |∇Ptf |2 = Pt |∇f |2 for some t > 0, then we can
compute

0 = Pt |∇f |2 − |∇Ptf |2 =
ˆ t

0

d
dsPs |∇Pt−sf |

2 ds

=2
ˆ t

0
Ps
(
|HessPt−sf |2 + Ric(∇Pt−sf,∇Pt−sf)

)
ds,

where the second equality follows from the Bochner identity. Therefore HessPsf ≡ 0 for
any 0 ≤ s ≤ t and with a standard argument we obtain that M splits isometrically as
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N × R for some Riemannian manifold N . Furthermore, denoting by z, t the coordinates
on N and R respectively, it holds that Psf(z, t) = f(z, t) = αt for any s ≥ 0 and for any
t ∈ R, for some constant α 6= 0.

Passing to the study of the case p = 1, any function f : Rn → R such that |∇Ptf | ≡
Pt |∇f | is of the form f(z) = φ(z · v) for some monotone function φ : R → R and some
v ∈ Rn. This is due to the commutation between gradient operator and heat flow on the
Euclidean space and to the characterization of the equality case in Jensen’s inequality.
More in general, thanks to the tensorization property of the heat flow, it is possible to
check that on any product m.m.s. X = X ′ × R, any function f depending only on the
variable t ∈ R in a monotone way satisfies |∇Ptf | = Pt |∇f | almost everywhere. Basically
Theorem 2.1 is telling us that, in the setting of RCD(0, N) spaces this is the only possible
case.

About the strategy of the proof let us observe that, as the examples above illustrated
show, in the rigidity case for p = 1 it is not necessarily true that the rigid function has
vanishing Hessian. Therefore we cannot directly use Psf as a splitting function. Still our
strategy relies on the properties of the normalized gradient ∇Psf/ |∇Psf |. First we will
prove that it has vanishing symmetric covariant derivative and then that its flow lines
are metric lines. The conclusion will be eventually achieved building upon the splitting
theorem.

Let us start proving that if the rigidity condition (2.1) holds for some s > 0 then it
must hold for any s ≥ 0.

Lemma 2.4. Let (X, d,m) be an RCD(0, N) metric measure space and f ∈ Lipb(X). If
there exists s > 0 such that

|∇Psf | = Ps|∇f | m-a.e. in X, (2.3)

Then |∇Prf | = Pr|∇f | for any r ≥ 0.

Proof. It is simple to check that |∇Prf | = Pr|∇f | for any 0 ≤ r ≤ s. Indeed, using (2.3)
and the Bakry-Émery inequality (1.12), we have

0 ≤ Ps−r (Pr|∇f | − |∇Prf |) = Ps|∇f | − Ps−r|∇Prf | = |∇Psf | − Ps−r|∇Prf | ≤ 0.

Let us now fix ϕ ∈ Testc(X, d,m) and set

F (r) :=
ˆ
X

((Pr|∇f |)2 − |∇Prf |2)ϕdm. (2.4)

We claim that F (r) is a real analytic function in (0,+∞). Observe that the claim, together
with the information F ≡ 0 in (0, s), implies F (r) = 0 for any r ≥ 0 and thus our conclusion,
due to the arbitrariness of the test function.
Integrating by parts the right hand side in (2.4) and using (1.3), we can write

F (r) =
ˆ
X

(Pr|∇f |)2ϕdm + 1
2

d
dr

ˆ
X

(Prf)2ϕdm− 1
2

ˆ
X

(Prf)2∆ϕdm,

so the claim is a consequence of Lemma 2.5 below.

Lemma 2.5. Let (X, d,m) be an RCD(K,N) m.m.s.. For any g ∈ L∞(X,m) and any
ϕ ∈ L1(X,m) the map t 7→

´
X(Ptg)2ϕdm is real analytic in (0,+∞).
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Proof. Exploiting a well-known analyticity criterion for real functions, it is enough to show,
for any [a, b] ⊂ (0,+∞), the existence of a constant C = C(K,N, a, b) such that∣∣∣∣ dn

dtn

ˆ
X

(Ptg)2ϕdm
∣∣∣∣ ≤ Cn ‖g‖2L∞ ‖ϕ‖L1 ∀t ∈ (a, b), ∀n ∈ N. (2.5)

Observe that (2.5) can be checked commuting the operators Pt and ∆ and using iteratively
the estimate

‖∆Ptg‖L∞ ≤ C
′ ‖g‖L∞ ∀t ∈ (a, b), (2.6)

where C ′ > 0 depends only on N , K, a and b.
Let us prove (2.6) arguing by duality. For any ψ ∈ L1 ∩ L2(X,m), we have∣∣∣∣ˆ

X
∆Ptg ψ dm

∣∣∣∣ =
∣∣∣∣ˆ
X
∇Pt/2g · ∇Pt/2ψ dm

∣∣∣∣
≤
∥∥∥∇Pt/2g∥∥∥

L∞

∥∥∥∇Pt/2ψ∥∥∥
L1

≤C ′′ ‖g‖L∞ C ′′ ‖ψ‖L1 ,

where the last inequality is a consequence of the following general fact: there exists
C ′′(N,K, a, b) > 0 such that

‖∇Pth‖Lp ≤ C ′′ ‖h‖Lp ∀t ∈ (a, b), ∀h ∈ Lp(X,m) with 1 ≤ p ≤ ∞. (2.7)

In order to check (2.7) we use the Gaussian estimates for the heat kernel and its gradient
(1.20), (1.21) obtaining that there exists a constant α > 1 such that

|∇Pth|(x) ≤ C ′′Pαt |h| (x), for m-a.e. x ∈ X, ∀t ∈ (a, b),

and we take the Lp norm both sides.

Let us introduce the most important object of our investigation. For any s > 0 we
consider the vector field

bs := ∇Psf
Ps|∇f |

, (2.8)

that, since Ps |∇f | > 0 m-a.e., is well defined and satisfies

|bs| = 1 m-a.e. in X, ∀s > 0, (2.9)

thanks to (2.1).
The first important ingredient of the proof of Theorem 2.1 is the following proposition.

Its proof is inspired by an analogous result in [G13].

Proposition 2.6 (Variation formula, version 1). For any s > 0, t ≥ 0 and any g ∈
Test(X, d,m) it holds

bt+s · ∇Ptg = Pt(bs · ∇g), m-a.e. in X. (2.10)

Before proving Proposition 2.6 we need to state a simple lemma.

Lemma 2.7. For any s ≥ 0 the function Psf satisfies the rigidity condition (2.11), that
is to say

|∇Pt+sf | = Pt|∇Psf |, m-a.e. in X, ∀t ≥ 0. (2.11)
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Proof. Using first the Bakry-Emery inequality (1.12) and then twice (2.1) we get

|∇Pt+sf | ≤ Pt|∇Psf | = Pt+s|∇f | = |∇Pt+sf |,

that proves our claim.

Proof of Proposition 2.6. Let s > 0, t ≥ 0 be fixed. The idea of the proof is to obtain
(2.10) as the Euler equation associated to the functional

Ψ(h) :=
ˆ
X

(Pt|∇h| − |∇Pth|)ϕdm h ∈ Lip(X),

where ϕ ∈ Lipbs is a fixed nonnegative cut-off function. Indeed, thanks to Lemma 2.7 and
the Bakry-Émery contraction estimate (1.12), we know that Psf is a minimum of Ψ. Thus

d
dε |ε=0Ψ(Psf + εg) = 0 ∀g ∈ Test(X, d,m).

Notice that the differentiability of ε 7→ Ψ(Psf + εg) at ε = 0 can be easily checked using
|∇Psf | = Ps|∇f | > 0. Then we compute

0 = d
dε |ε=0Ψ(Psf + εg)

= d
dε |ε=0

ˆ
X

(Pt|∇Psf + ε∇g| − |∇(Pt+sf + εPtg)|)ϕdm

=
ˆ
X

(
Pt

( ∇Psf
|∇Psf |

· ∇g
)
− ∇Pt+sf
|∇Pt+sf |

· ∇Ptg
)
ϕdm

=
ˆ
X

(Pt(bs · ∇g)− bt+s · ∇Ptg)ϕdm.

The conclusion follows from the arbitrariness of ϕ.

As a first consequence of Proposition 2.6 we get the following.

Proposition 2.8. For any s > 0 it holds div bs = 0 and ∇symbs = 0 according to
Definition 1.8.

In particular, there exists a regular Lagrangian flow Xs : R×X → X of bs with

(Xs
t )# m = m, d(Xs

t (x),Xs
t (y)) = d(x, y) ∀t ∈ R, ∀x, y ∈ X.

Proof. Let g ∈ Testc(X, d,m) be fixed. Using (2.10) we obtain∣∣∣∣ˆ
X
bs · ∇g(x) dm(x)

∣∣∣∣ =
∣∣∣∣ˆ
X
Pt(bs · ∇g)(x) dm(x)

∣∣∣∣
=
∣∣∣∣ˆ
X
bt+s · ∇Ptg(x) dm(x)

∣∣∣∣
≤
ˆ
X
|∇Ptg|(x) dm(x).

To get div bs = 0 it suffices to show that

lim
t→∞

ˆ
X
|∇Ptg|(x) dm(x) = 0, (2.12)
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for any nonnegative g ∈ Testc(X, d,m). To this aim we use the Gaussian estimates for
the heat kernel and its gradient (1.20), (1.21) concluding that there exist a constant
C = C(N) > 0 and α > 1 such that

|∇Ptg|(x) ≤ C√
t
Pαtg(x), for m-a.e. x ∈ X. (2.13)

Let us prove that∇symbs = 0 for any s > 0. First observe that, since bs is divergence-free
we have ˆ

X
bt+s · ∇Ptg Ptg dm = 1

2

ˆ
X
bt+s · ∇(Ptg)2 dm = 0, (2.14)

for any g ∈ Test(X, d,m), for any s > 0 and t ≥ 0. Using again (2.10) and (2.14) we deduce

0 = d
dt
∣∣
t=0

ˆ
X
bt+s · ∇Ptg Ptg dm = d

dt
∣∣
t=0

ˆ
X
Pt (bs · ∇g)Ptg dm

=
ˆ
X

∆(bs · ∇g) g dm +
ˆ
X
bs · ∇g∆g dm

=2
ˆ
X
bs · ∇g ∆g dm,

that, by polarization, implies our claim.
The second part of the statement follows from (iv) in Theorem 1.9.

We are now in position to show that bs does not depend on s > 0.

Lemma 2.9 (Variation formula, version 2). The vector field b := bs does not depend on
s > 0. In particular, it holds

b · ∇Ptg = Pt(b · ∇g) m-a.e., (2.15)

for every g ∈ Test(X, d,m) and every t ≥ 0.

The most important ingredient in the proof of Lemma 2.9 is the following lemma.

Lemma 2.10. Let (X, d,m) be an RCD(K,∞) m.m.s. and let T : X → X be a measure
preserving isometry. Then, for any f ∈ L2(X,m), it holds

Pt(f ◦ T )(x) = (Ptf) ◦ T (x), (2.16)

for any t > 0 and for m-a.e. x ∈ X.

Proof. We just provide a sketch of the proof since the result is quite standard in the field.
First we observe that, since T is a measure preserving isometry, it holds that f ∈
H1,2(X, d,m) if and only if f ◦T ∈ H1,2(X, d,m) and in that case Ch(f ◦T ) = Ch(f). From
this observation we deduce (2.16), since the heat flow is the gradient flow of the Cheeger
energy in L2(X,m).

Proof of Lemma 2.9. Let s > 0 and let Xs, the regular Lagrangian flow associated to bs,
be fixed.
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We know from Proposition 2.8 that for any t ∈ R the flow map Xs
t is a measure

preserving isometry of X. Therefore, for any r ≥ 0 and any g ∈ Test(X, d,m), using (2.16)
with T = Xs

t and (2.10), we get

(bs · ∇Prg) ◦Xs
t = d

dtPr(g) ◦Xs
t = d

dtPr(g ◦Xs
t )

=Pr((bs · ∇g) ◦Xs
t ) = Pr(bs · ∇g) ◦Xs

t

=(br+s · ∇Prg) ◦Xs
t .

Since g is arbitrary, the first conclusion in the statement follows. The second one is a direct
consequence of Proposition 2.6.

Let us denote by X the regular Lagrangian flow of b from now on, choosing in particular
the “good representative” of Theorem 1.9 (iv). Our next aim is to prove that for any x ∈ X
the curve t 7→ Xt(x) is a line. This will yield the sought conclusion about the product
structure of (X, d,m) by means of the splitting theorem Theorem 1.10.

Proposition 2.11. For all s > 0 the identity

Psf(X−t(x)) = min
Bt(x)

Psf (2.17)

holds true for any t ≥ 0 and any x ∈ X.

Before than passing to the proof we wish to explain the heuristic standing behind it
with a formal computation:

d
dtPsf(X−t(x)) = −∇Psf ·

∇Psf
|∇Psf |

(X−t(x)) = − |∇Psf | (X−t(x)) = − |∇ (Psf ◦Xt)| (x).

Therefore, setting u(t, x) := Psf(X−t(x)), it holds that

∂tu(t, x) + |∇xu(t, x)| = 0 (2.18)

and it is well known that the Hopf-Lax semigroup

Qtu0(x) := min
Bt(x)

u0 (2.19)

provides a solution of (2.18), and the unique viscosity solution (see [N14]). Proposition 2.11
is just telling us that u(t, x) = Psf(X−t(x)) is precisely the Hopf-Lax semigroup solution.

Proof of Proposition 2.11. Let us denote by u(t, x) the left hand side in (2.17). Since
d(X−t(x), x) ≤ t, the inequality ≥ in (2.17) is obvious.

Now, we claim that for all γ ∈ Lip1([0,∞);X) the function t 7→ u(t, γ(t)) is nonincreas-
ing. In order to prove the claim, first we observe that t 7→ u(t, x) = Psf(X−t(x)) is of
class C1, since its derivative is −Ps|∇f |(X−t(x)) that is a continuous function. Indeed,
the validity of this condition for m-a.e. x ∈ X follows from the defining conditions of
RLF and we can extend it to all x ∈ X by continuity of the maps (t, x) 7→ u(t, x) and
(t, x) 7→ −Ps |∇f | (X−t(x)). Then by the Leibniz rule in [AGS05, Lemma 4.3.4], it suffices
to show that

lim sup
h→0+

|u(t, γ(t+ h))− u(t, γ(t))|
h

≤ Ps|∇f |(X−t(γ(t))).
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This inequality follows easily from Lemma 2.12 and the inequality |∇Psf | ≤ Ps|∇f |, since

|u(t, γ(t+ h))− u(t, γ(t))|
h

≤ −
ˆ t+h

t
Ps|∇f |(X−t(γ(r))) dr,

(here we also used that r 7→X−t(γ(r)) is 1-Lipschitz), by taking the limit as h ↓ 0.
From the claim, the converse inequality in (2.17) follows easily, because for all x ∈ X

and all minimizers x̄ of Psf in Bt(x) the geodesic property of (X, d) grants the existence
of γ ∈ Lip1([0,∞);X) with γ(t) = x and γ(0) = x̄. It follows that

u(t, x) = u(t, γ(t)) ≤ u(0, γ(0)) = u(0, x̄) = Psf(x̄) = min
Bt(x)

Psf.

Lemma 2.12. Let (X, d,m) be an RCD(K,∞) m.m.s. and u ∈ Lip(X). Assume that
|∇u| has a continuous representative in L∞(X,m). Then

|u(γ(t))− u(γ(s))| ≤
ˆ t

s
|∇u|(γ(r))

∣∣γ′∣∣ (r) dr, (2.20)

for any s < t and for any Lipschitz curve γ : R → X (where we denoted by |∇u| the
continuous representative of the minimal relaxed slope of u).

Proof. To get the sought conclusion we argue by regularization via heat flow as in the
proof of [AGS14, Theorem 6.2].
Let

(
µλr

)
r∈R

be defined by µλr := (Pλ)∗ δγr . Contractivity yields now that

|Pλu (γ(t))− Pλu(γ(s))| ≤
ˆ t

s

(ˆ
|∇u|2 dµλr

) 1
2 ∣∣∣µ̇λr ∣∣∣ dr

≤e−Kλ
ˆ t

s

(ˆ
|∇u|2 dµλr

) 1
2
|γ̇r| dr (2.21)

=e−Kλ
ˆ t

s
Pλ |∇u|2 (γ(r)) |γ̇r|dr,

for any λ > 0 and for any s, t ∈ R. Passing to the limit as λ ↓ 0 both the first and the
last expression in (2.21) and taking into account the continuity of u and |∇u|, we obtain
(2.20).

By means of Proposition 2.11 we can easily prove the following.

Corollary 2.13. For any x ∈ X the curve t 7→Xt(x) is a line, that is to say

d(Xt(x),Xs(x)) = |t− s| ∀s, t ∈ R.

Proof. Let us start observing that any xt ∈ Bt(x) such that

min
y∈Bt(x)

Psf(y) = Psf(xt)

has to satisfy d(x, xt) = t. Otherwise we might replace xt with X−ε(xt) (that belongs to
Bt(x) for ε sufficiently small) and, since Psf is strictly increasing along the flow lines of
X, we would get a contradiction.
Furthermore Xt(x) ∈ Bt(x) since |b| = 1. Thus it follows from (2.17) that d(X−t(x), x) = t
for any t ≥ 0. Using the semigroup property and the fact that Xt is an isometry for any
t ∈ R (see Proposition 2.8) we get the sought conclusion.
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Proof of Theorem 2.1. As we anticipated the conclusion that X is isomorphic to X ′×R for
some RCD(0, N − 1) m.m.s. (X ′, d′,m′) follows from Corollary 2.13 applying Theorem 1.10.

Let us deal with the second part of the statement.
First of all we claim that all the flow lines of X are vertical lines in X, that is to say,
denoting by (z, s) ∈ X ′ ×R the coordinates on X, Xt(z, s) = (z, t+ s) for any z ∈ X ′ and
for any s, t ∈ R. Indeed, since we proved that all integral curves of b are lines in (X, d),
the construction provided by the splitting theorem shows that this is certainly true for a
fixed z̄ ∈ X ′. Let us consider any other z ∈ X ′ and call Xt((z, 0)) =

(
X1
t ((z, 0)),X2

t (z, 0)
)
.

Taking into account the semigroup property (1.17) and the fact that Xt is an isometry for
any t ∈ R, for any τ ∈ R we can compute

τ2 + d2
Z(z̄, z) =d2 (Xτ ((z̄, 0)), (z, 0)) = d2 (Xt+τ ((z̄, 0)),Xt((z, 0)))

=d2
(
(z̄, t+ τ), (X1

t ((z, 0)),X2
t ((z, 0)))

)
=
∣∣(X2

t ((z, 0))− t)− τ
∣∣2 + d2

Z

(
z̄,X1

t ((z, 0))
)
.

Since τ is arbitrary, it easily follows that X2
t ((z, 0)) = t for any t ∈ R and therefore

X1
t ((z, 0)) = z for any t ∈ R, as we claimed.
From what we just proved it follows that ∇Psf is trivial in the z variable and we can

conclude that Psf depends only on the t-variable for any s > 0 thanks to the tensorization
of the Cheeger energy (see [AGS14, Theorem 6.19]). Passing to the limit as s ↓ 0 we obtain
that the same holds true also for f .

Knowing that f depends only on the t-variable, the monotonicity in this variable can
be immediately checked.

3 Convergence and stability results for sets of finite perime-
ter

In this section we establish some useful compactness and stability results for sequences
of sets of finite perimeter defined on a pmGH converging sequence of RCD(K,N) m.m.
spaces. Most of the results we present here adapt and extend to the case of our interest
those of [AH17].

Until the end of this section we fix a sequence { (Xi, di,mi, xi) }i∈N of pointed RCD(K,N)
m.m. spaces converging in the pmGH topology to (Y, %, µ, y) and a proper metric space
(Z, dZ) that realizes this convergence according to Definition 1.17.

Since in the rest of the note we will be mainly interested on the case of indicator
functions, let us observe that, in that case, we can rephrase the notion of L1-strong
convergence introduced in Definition 1.22 in the following way.

Definition 3.1. We say that a sequence of Borel sets Ei ⊂ Xi such that mi(Ei) <∞ for
any i ∈ N converges in L1-strong to a Borel set F ⊂ Y with µ(F ) <∞ if χEimi ⇀ χFµ in
duality with Cbs(Z) and mi(Ei)→ µ(F ).

We also say that a sequence of Borel sets Ei ⊂ Xi converges in L1
loc to a Borel set

F ⊂ Y if Ei ∩BR(xi)→ F ∩BR(y) in L1-strong for any R > 0.

Remark 3.2. Let us remark that L1-strong convergence implies L1
loc-strong convergence as

a consequence of Lemma 3.5 and the following observation:

χBR(xi) → χBR(y) in L1-strong, for any R > 0.

This convergence property follows from the fact, that we already remarked, that spheres
have vanishing measure on RCD(K,N) spaces.
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Let us begin with a compactness result which adapts [AH17, Proposition 7.5] to the
case of our interest (basically, we add the uniform L∞ bound and this allows to remove
the assumption on the existence of a common isoperimetric profile).

Proposition 3.3. Let (Xi, di,mi, xi), (Y, %, µ, y), and (Z, dZ) be as above and fix r > 0.
For any sequence of functions fi ∈ BV(Xi,mi) such that supp fi ⊂ Br(xi) for any i ∈ N
and

sup
i∈N

{
|Dfi|(Xi) + ‖fi‖L∞(Xi,mi)

}
<∞, (3.1)

there exist a subsequence i(k) and f ∈ L∞(Y, µ) ∩ BV(Y, %, µ) with supp f ⊂ Br(y) such
that fi(k) → f in L1-strong.

As a corollary, a truncation and a diagonal argument provide a compactness result for
sequences of sets with locally uniformly bounded perimeters.

Corollary 3.4. For any sequence of Borel sets Ei ⊂ Xi such that

sup
i∈N

Per(Ei, BR(xi)) <∞ ∀R > 0 (3.2)

there exist a subsequence i(k) and a Borel set F ⊂ Y such that Ei(k) → F in L1
loc.

We postpone the proof of Proposition 3.3 and Corollary 3.4 after a technical lemma
that will play a role also in the sequel.

Lemma 3.5. Let (Xi, di,mi, xi), (Y, %, µ, y), and (Z, dZ) be as above and Ei, Ẽi ⊂ Xi

satisfy mi(Ei) + mi(Ẽi) < ∞. If Ei → F and Ẽi → F̃ in L1-strong, for some Borel sets
F, F̃ ⊂ Y , then Ei ∩ Ẽi → F ∩ F̃ in L1-strong.

Proof. Observing that

χEi∩Ẽi
= χEi · χẼi

= 1
4
[
(χEi + χẼi

)2 − (χEi − χẼi
)2
]
,

the conclusion follows from Proposition 1.23.

Proof of Corollary 3.4. We claim that, possibly extracting a subsequence that we do not
relabel, there exist radii R` ↑ ∞ as `→∞ with the following property

sup
i∈N

Per(BR`
(xi), Xi) <∞ ∀l ∈ N. (3.3)

Indeed, applying the coarea formula in the localized version of Corollary 1.6 to the functions
d(xi, ·) and recalling that |∇d(xi, ·)|i = 1 mi-a.e. for any i, we obtain

ˆ R

0
Per(Br(xi), Xi) dr = mi(BR(xi)) for any R > 0 and i ∈ N.

Observing that for any R > 0 it holds mi(BR(xi))→ µ(BR(y)), an application of Fatou’s
lemma yields now
ˆ R

0
lim inf
i→∞

Per(Br(xi), Xi) dr ≤ lim inf
i→∞

mi(BR(xi)) = µ(BR(y)) for any R > 0. (3.4)

The claimed conclusion (3.3) can be obtained from (3.4) via a diagonal argument.
For any ` ∈ N we can now estimate

sup
i∈N

Per(Ei ∩BR`
(xi), X) ≤ sup

i∈N
Per(Ei, BR`+1(xi)) + sup

i∈N
Per(BR`

(xi), X) <∞,
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thanks to the locality and subadditivity of perimeters (see [A02, pg. 8]) for the first
inequality and to (3.2), (3.3) for the second one. Thus for any ` ∈ N we can apply
Proposition 3.3 to the functions fi := χEi∩BR`

(xi). Observing that L1-strong limits of
characteristic functions are characteristic functions (as a consequence of Proposition 1.23),
we can use a diagonal argument together with Lemma 3.5 to recover the global limit
set.

Proof of Proposition 3.3. Let us fix t > 0. For any i ∈ N we write fi = P it fi + (fi − P it fi)
where, for any i ∈ N, P it denotes the heat semigroup on (Xi, di,mi). Observe that, as a
consequence of the regularizing estimates (1.4), it holds that

sup
i∈N

{ˆ
Z
|P it fi|2 dmi + Chi(P it fi)

}
< +∞, (3.5)

where Chi is the Cheeger energy on (Xi, di,mi). Moreover, we claim that

lim sup
R→∞

sup
i∈N

ˆ
Z\BR(xi)

|P it fi|2 dmi = 0 ∀t > 0. (3.6)

Indeed, using both the Gaussian estimates for the heat kernel in (1.20), we get
ˆ
Z\BR(xi)

|P it fi|2 dmi

≤‖fi‖L∞(Xi,mi)

ˆ
Z\BR(xi)

P it |fi|dmi

≤C ‖fi‖L∞(Xi,mi)

ˆ
Z\BR(xi)

ˆ
Br(xi)

e−
d2(x,y)

5t
+ct

mi(B√t(x)) |fi(y)|dmi(y) dmi(x)

≤Ce−
(R−r)2

10t ‖fi‖L∞(Xi,mi)

ˆ
Z\BR(xi)

ˆ
Br(xi)

e−
d2(x,y)

10t
+ct

mi(B√t(x)) |fi(y)|dmi(y) dmi(x)

≤Cte−
(R−r)2

10t ‖fi‖L∞(Xi,mi)

ˆ
Z
P iαt|fi| dmi

≤Cte−
(R−r)2

10t ‖fi‖L∞(Xi,mi) ‖fi‖L1(Xi,mi) ,

where α > 0 is a constant depending only on K and N .
Taking into account (3.5) and (3.6), we can apply Theorem 1.24 to get that P it fi admits

a subsequence converging in L1-strong. In order to conclude the proof it suffices to observe
that

lim
t→0+

sup
i∈N

ˆ
Xi

|P it fi − fi|dmi = 0,

as it follows from the inequality
ˆ
Xi

|P it fi − fi|dmi ≤ C(K, t)|Dfi|(Xi),

with C(K, t) ∼
√
t as t→ 0 (see for instance [AH17, Proposition 6.3]).

Let us pass to a lower semicontinuity result for the total variations.
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Proposition 3.6. Let (Xi, di,mi, xi) be RCD(K,N) m.m. spaces converging in the pmGH
topology to (Y, %, µ, y) and (Z, dZ) realizing the convergence as above. Let fi ∈ BV(Xi,mi)
converge in L1-strong to f ∈ L1(Y, µ). If supi |Dfi| (Xi) <∞ then f ∈ BV(Y, %, µ) and

lim inf
i→∞

|Dfi|(Xi) ≥ |Df |(Y ). (3.7)

Furthermore, if
sup
i∈N
‖fi‖L∞(Xi,mi) <∞, (3.8)

then

lim inf
i→∞

ˆ
Xi

g d|Dfi| ≥
ˆ
Y
g d|Df |, for all g ∈ Lipbs(Z) nonnegative. (3.9)

Before than proving Proposition 3.6 we state and prove a simple corollary of it.

Corollary 3.7. Let (Xi, di,mi, xi) be RCD(K,N) m.m. spaces converging in the pmGH
topology to (Y, %, µ, y) and (Z, dZ) realizing the convergence as above. For any fi ∈
BV(Xi, di,mi) convergent in BV-strong to f ∈ BV(Y, %, µ) such that supi ‖fi‖L∞(Xi,mi) <
+∞, it holds that |Dfi|⇀ |Df | in duality with Cbs(Z).

Proof of Corollary 3.7. From (3.9) we can deduce with a standard measure theoretic
argument that

lim inf
i→∞

|Dfi|(A) ≥ |Df |(A) ∀A ⊂ Z open and bounded. (3.10)

Let ν be any weak limit point of |Dfi|, in the weak topology induced by Cbs(Z), along some
subsequence i(k) (the sequence |Dfi|(Xi) is bounded and therefore the family {|Dfi|}i is
weakly compact). For any open and bounded set A ⊂ Z such that ν(∂A) = 0, it holds
limk |Dfi(k)|(A) = ν(A). Hence, taking into account also (3.10), we get |Df |(A) ≤ ν(A).
Thus |Df | ≤ ν, as measures in Z. On the other hand, since the evaluation on open sets
is lower semicontinuous w.r.t. the weak convergence induced by Cbs(Z), by definition
of BV-strong convergence, we have ν(Z) ≤ lim infk |Dfi(k)|(Z) = |Df |(Z) and therefore
ν = |Df |.

Proof of Proposition 3.6. The first part of the statement has been proved in [AH17, Theo-
rem 6.4].

Let us deal with the second one. Fix any t > 0 and observe that P it fi → Ptf in H1,2

according to Definition 1.20. Indeed, the L1-strong convergence of fi to f , combined with
(3.8), yields that fi converge in L2-strong to f by Proposition 1.23. Therefore we can apply
Proposition 1.25 to obtain the claimed conclusion. Hence Proposition 1.21 applies, yielding
that

lim inf
i→∞

ˆ
Z
g|∇P it fi| dmi ≥

ˆ
Z
g|∇Ptf |dµ, for all g ∈ Lipbs(Z) nonnegative. (3.11)

In order to prove (3.9) starting from its regularized version (3.11), we argue as in the
proof of [AH17, Lemma 5.8]. Taking into account the Bakry-Emery contraction estimate
|∇Pth| ≤ e−KtP ∗t |Dh| (see (1.12)) and the estimate

‖Ptg − g‖L∞ ≤ C(K,N, t)Lip(g), with C(K,N, t) ∼
√
t as t→ 0
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which is available over any RCD(K,N) m.m.s. (and can be proved using the Gaussian
estimates for the heat kernel (1.20)), we obtain

lim inf
i→∞

ˆ
Z
g d |Dfi| ≥ lim inf

i→∞

ˆ
Z
P it g d |Dfi| − lim sup

i→∞

ˆ
Z
|P it g − g|d |Dfi| (3.12)

≥eKt lim inf
i→∞

ˆ
Z
g
∣∣∣∇P it fi∣∣∣ dmi − C(K,N, t)Lip(g) lim sup

i→∞
|Dfi| (Xi)

≥eKt
ˆ
Z
g |∇Ptf | dµ− C(K,N, t)Lip(g) lim sup

i→∞
|Dfi| (Xi).

The sought conclusion (3.9) can be obtained passing to the lim inf as t → 0 in (3.12),
recalling that |∇Ptf |µ ⇀ |Df | in duality with Cbs(Z) as t ↓ 0.

The next result deals with the possibility of approximating in BV-strong a set of finite
perimeter in the limit space with a sequence of sets of finite perimeter defined on the
approximating spaces.

Proposition 3.8. Let (Xi, di,mi, xi) be RCD(K,N) m.m. spaces converging in the pmGH
topology to (Y, %, µ, y) and let (Z, dZ) be realizing the convergence as above. Let F ⊂ Y
be a bounded set of finite perimeter. Then there exists a subsequence (ik) and (uniformly
bounded) sets of finite perimeter Eik ⊂ Xik such that χEik

→ χF in BV-strong as k →∞.

Proof. Let us begin observing that the first part of [AH17, Theorem 8.1] provides existence
of a sequence (gi) ⊂ BV(Xi,mi) strongly converging in BV to χF . Since by assumption
F b BR(y) for some R > 0, we can find a Lipschitz function η : Z → [0, 1] with support
contained in B2R(y) such that η|BR(y) ≡ 1 and it is easy to check that the sequence fi := ηgi
still converges in L1-weak to χF and satisfies |Dfi| → Per(F ) as i → ∞. Furthermore,
possibly composing with ϕ(z) := (z ∧ 1) ∨ 0, using Proposition 1.23 and observing that
|Dϕ ◦ fi| (Xi) ≤ |Dfi| (Xi) for any i ∈ N while |Dϕ ◦ χF | (Y ) = |DχF | (Y ), we can assume
that 0 ≤ fi ≤ 1 for any i ∈ N. In particular supi∈N ‖fi‖L∞(Xi,mi) < +∞. Therefore,
Proposition 3.3 applies and we obtain that, possibly extracting a subsequence that we do
not relabel, fi converge in BV-strong to χF .

Let us now assume, possibly extracting one more subsequence, that the measures
(fi)#(χB2R(y)mi) weakly converge to some measure σ in [0, 1]. Under this assumption, we
claim that χ{fi>λ} still converge to χF in L1-strong for L 1-a.e. λ ∈ (0, 1).
In order to prove this claim, we fix λ ∈ (0, 1) that is not an atom of σ, so that

lim
ε→0

lim
i→∞

mi({λ− ε < fi ≤ λ }) = 0. (3.13)

From (3.13), using Proposition 1.23, it is immediate to get the L1-strong convergence of
χ{fi>λ} to χF : indeed, it suffices to observe that for all ε ∈ (0, λ) the functions ψε ◦ fi
still L1-strongly converge to ψε ◦ χF = χF for any ψ continuous, identically equal to 0 on
[0, λ− ε] and identically equal to 1 on [λ, 1]. From the L1-strong convergence we get, in
particular,

lim inf
i→∞

Per({ fi > λ } , Xi) ≥ Per(F, Y ) for L 1-a.e. λ ∈ (0, 1). (3.14)

On the other hand, the coarea formula Theorem 1.5 and the strong convergence of fi yield

lim sup
i→∞

ˆ 1

0
Per({ fi > λ } , Xi) dλ = lim sup

i→∞
|Dfi|(Xi) = Per(F, Y ). (3.15)
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Thanks to Scheffè’s lemma, the combination of (3.14) and (3.15) gives that Per({ fi > λ } , Xi)
converge in L1(0, 1) to the constant Per(F, Y ). Extracting a subsequence (i(k)) pointwise
convergent on (0, 1) \ I with L 1(I) = 0 and setting Ek = {fi(k) > λ} ⊂ B2R(y) with
λ ∈ (0, 1) \ I and σ({λ}) = 0, the conclusion is achieved.

Let us conclude this section with a convergence result for quasi-minimal sets of finite
perimeter. It will play a key role in the study of blow-ups of sets of finite perimeter we are
going to perform in section 4. The strategy of the proof is classical, see for instance [A97,
Theorem 4.8].

Proposition 3.9. Let (Xi, di,mi, xi) be RCD(K,N) m.m. spaces converging in the pmGH
topology to (Y, %, µ, y) and let (Z, dZ) be realizing the convergence as above. For any i ∈ N,
let λi ≥ 1 and let Ei ⊂ Xi be a set of finite perimeter satisfying the following λi-minimality
condition: there exists Ri > 0 such that

Per(Ei, Xi) ≤ λi Per(E′, Xi) ∀E′ ⊂ Xi such that Ei∆E′ b BRi(xi).

Assume that, as i → ∞, Ei → F in L1
loc for some set F ⊂ Y of locally finite perimeter,

λi → 1 and Ri →∞. Then

(i) F is an entire minimizer of the perimeter (relative to (Y, %, µ)), namely

Per(F,Br(y)) ≤ Per(F ′, Br(y)) whenever F∆F ′ b Br(y) b Y and r > 0;

(ii) |DχEi |⇀ |DχF | in duality with Cbs(Z).

Proof. Let us fix ȳ ∈ Y and let F ′ ⊂ Y be a set of locally finite perimeter satisfying
F∆F ′ b Br(ȳ). Let x̄i ∈ Xi converging to ȳ in Z and R > 0 be such that the following
properties hold true:

sup
i∈N

Per(BR(xi), Xi) < +∞ and Br(x̄i) b BR(xi) ∀i ∈ N. (3.16)

Using Proposition 3.8 we can find a sequence of sets of finite perimeter E′i ⊂ Xi converging
to F ∩ BR(y) in BV-strong (note that F ∩ BR(y) is a set of finite perimeter thanks to
(3.16)).

Let ν be any weak limit of the sequence of measures with uniformly bounded mass
|DχEi |. We claim that

ν(Bs(ȳ)) ≤ Per(F ′, Bs(ȳ)) for L 1-a.e. s ∈ (0, r). (3.17)

Before proving (3.17) let us illustrate how to use it to conclude the proof. First of all, notice
that (3.10) gives ν ≥ |DχF |; if we apply (3.17) with F ′ = F we conclude that ν = |DχF |
locally and then globally, achieving the conclusion (ii) in the statement. The validity of the
local minimality condition (i) follows combining the identification ν = |DχF | with (3.17),
letting s ↑ r.

Let us pass to the proof of (3.17). We fix a parameter s ∈ (0, r) with ν(∂Bs(ȳ)) = 0,
Per(F ′, ∂Bs(ȳ)) = 0 and set

Ẽsi :=
(
E′i ∩Bs(xi)

)
∪ (Ei \Bs(xi)) . (3.18)
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Using the locality of the perimeter (see [A01, A02]) and the λi-minimality of Ei (notice
that Ri ≥ r for i big enough), we get

Per(Ei, Bs(x̄i)) = Per(Ei, Br(x̄i))− Per(Ei, Br(x̄i) \Bs(x̄i))
≤λi Per(Ẽsi , Br(x̄i))− Per(Ei, Br(x̄i) \Bs(x̄i))
=λi Per(Ẽsi , Bs(x̄i)) + λi Per(Ẽsi , ∂Bs(x̄i))

+ λi Per(Ẽsi , Br(x̄i) \Bs(x̄i))− Per(Ei, Br(x̄i) \Bs(x̄i))
=λi Per(E′i, Bs(x̄i)) + λi Per(Ẽsi , ∂Bs(x̄i)) + (λi − 1) Per(Ei, Br(x̄i) \Bs(x̄i)).

Observe that, taking the limit as i → ∞, thanks to our choice of s, it holds that: (λi −
1) Per(Ei, Br(x̄i)\Bs(x̄i))→ 0, Per(Ei, Bs(x̄i))→ ν(Bs(ȳ)) and eventually λi Per(E′i, Bs(x̄i))→
Per(F ′, Bs(ȳ)), since χE′i → χF ′∩BR(y) in BV-strong and therefore Corollary 3.7 applies. It
remains only to prove that

lim inf
i→∞

Per(Ẽsi , ∂Bs(x̄i)) = 0, for L 1-a.e. s ∈ (0, r). (3.19)

Applying (3.22) of Lemma 3.10 below with f = χE′i − χEi we get

Per(Ẽsi , X\Bs(x̄i)) ≤
ˆ
Xi

|χE′i−χEi | d|DχBs(x̄i)|+Per(Ei, X\Bs(x̄i)) for L 1-a.e. s ∈ (0, r),

that, together with the strong locality the perimeter, yields

P (Ẽsi , ∂Bs(x̄i)) ≤
ˆ
Xi

|χE′i − χEi |d|DχBs(x̄i)|, for L 1-a.e. s ∈ (0, r). (3.20)

Using Fatou’s lemma, (3.20), the local version of the coarea formula of Corollary 1.6 and
eventually Lemma 3.5 to prove that χE′i − χEi → χF − χF ′ in L1-strong, we conclude that

ˆ r

0
lim inf
i→∞

Per(Ẽsi , ∂Bs(x̄i)) ds ≤ lim inf
i→∞

ˆ r

0
Per(Ẽsi , ∂Bs(x̄i)) ds

≤ lim inf
i→∞

ˆ r

0

ˆ
Xi

|χE′i − χEi |d|DχBs(x̄i)|

= lim inf
i→∞

ˆ
Br(x̄i)

|χE′i − χEi |dmi = 0,

therefore yielding (3.19).

Lemma 3.10 (Leibniz rule in BV). Let (X, d,m) be an RCD(K,∞) m.m.s. and let x ∈ X.
For any f ∈ BV(X, d,m) ∩ L∞(X,m) and L 1-a.e. r ∈ (0,+∞) it holds

∣∣D(fχBr(x)
)∣∣(X) ≤

ˆ
X
|f | d|DχBr(x)|+ |Df |(Br(x)) (3.21)

and therefore locality gives

∣∣D(fχBr(x)
)∣∣(X \Br(x)) ≤

ˆ
X
|f |d|DχBr(x)|, for L 1-a.e. r ∈ (0,+∞). (3.22)

Proof. Let us begin observing that the stated conclusion makes sense since, in view of the
coarea formula Theorem 1.5,

´
|f | d|DχBr(x)| is well defined for L 1-a.e. r ∈ (0,+∞).

We divide the proof into two intermediate steps. In the first one we are going to prove
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that (3.21) holds true under the assumption f ∈ Lipb(X, d). In the second one we prove
the sought inequality passing to the limit the inequalities for regularized functions that we
obtained previously.

Step 1. More generally in this step we are going to prove, arguing by regularization on g,
that, for any f ∈ Lipb(X, d) and for any nonnegative function g ∈ BV(X, d,m)∩L∞(X,m),
it holds

|D (fg)| (X) ≤
ˆ
X
|f |d |Dg|+

ˆ
X
|g| |∇f | dm. (3.23)

Observe that, if g ∈ Lipb(X, d) then (3.23) follows from the Leibniz rule. Hence, by the
L∞ − Lip regularization of the heat semigroup it follows that, for any t > 0,∣∣D(fPtg)∣∣(X) ≤

ˆ
X
|f | |∇Ptg| dm +

ˆ
X
Ptg |∇f | dm. (3.24)

The convergence of Ptg to g in L1(X,m) as t→ 0, the lower semicontinuity of the total
variation and the Bakry-Emery contraction estimate allow us to pass to the lim inf at the
left hand-side and to the limit at the right hand-side in (3.24) to get (3.23) (see also the
proof of the second step for further details on the limiting procedure).

Step 2. It follows from what we just proved and from the L∞ − Lip regularization
property of the heat flow on RCD(K,∞) m.m. spaces that, for any t > 0,∣∣D(PtfχBr(x)

)∣∣(X) ≤
ˆ
X
|Ptf | d|DχBr(x)|+ |DPtf |(Br(x)) for L 1-a.e. r ∈ (0,+∞).

(3.25)
Next we observe that PtfχBr(x) → fχBr(x) in L1(X,m) as t→ 0+ and therefore, by the
lower semicontinuity of the total variation w.r.t. L1 convergence it holds∣∣D(fχBr(x)

)∣∣(X) ≤ lim inf
t→0+

∣∣D(PtfχBr(x))
∣∣(X). (3.26)

Furthermore, the L1(X,m) convergence of Ptf to f and the coarea formula Theorem 1.5
grant that we can find a sequence ti ↓ 0 in such a way that Ptif converges in L1(X, |DχBr(x)|)
to f for L 1-a.e. r ∈ (0,+∞). Eventually, let us observe that, due to the Bakry-Emery
contraction estimate (1.12),

lim sup
t→0+

|DPtf | (Br(x)) ≤ lim sup
t→0+

e−KtP ∗t |Df | (Br(x)) ≤ |Df | (Br(x)), ∀r ∈ (0,+∞).

Passing to the lim inf as ti ↓ 0 at the left hand-side of (3.25) taking into account (3.26)
and to the limit at the right hand-side taking into account what we observed above, we get
the sought estimate (3.21).

4 Tangents to sets of finite perimeter in RCD(K, N) spaces
In this section we study the structure of blow-ups of sets of finite perimeter over RCD(K,N)
metric measure spaces. Inspired by the Euclidean theory developed by De Giorgi in the
pioneering papers [DG54, DG55], this can be seen as a first step in a program aimed at
understanding the fine structure of sets of finite perimeter.

Before than stating the main results we introduce a definition of tangent for sets of
finite perimeter in this abstract setting.

Definition 4.1 (Tangents to a set of finite perimeter). Let (X, d,m) be an RCD(K,N)
m.m.s., x ∈ X and let E ⊂ X be a set of locally finite perimeter. We denote by
Tanx(X, d,m, E) the collection of quintuples (Y, %, µ, y, F ) satisfying the following two
properties:
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(a) (Y, %, µ, y) ∈ Tanx(X, d,m) and ri ↓ 0 are such that the rescaled spaces (X, r−1
i d,mri

x , x)
converge to (Y, %, µ, y) in the pointed measured Gromov-Hausdorff topology;

(b) F is a set of locally finite perimeter in Y with µ(F ) > 0 and, if ri are as in (a), then
the sequence fi = χE converges in L1

loc to χF according to Definition 3.1.

It is clear that the following locality property of tangents holds:

m
(
A ∩ (E∆F )

)
= 0 =⇒ Tanx(X, d,m, E) = Tanx(X, d,m, F ) ∀x ∈ A. (4.1)

whenever E, F are sets of locally finite perimeter and A ⊂ X is open.
We are ready to state the main results of this section.

Theorem 4.2. Let (X, d,m) be an RCD(K,N) m.m.s. and let E ⊂ X be a set of locally
finite perimeter. For |DχE |-a.e. x ∈ X the set Tanx(X, d,m, E) is not empty and for all
(Y, %, µ, y, F ) ∈ Tanx(X, d,m, E), one has

|∇PsχF |µ = P ∗s |DχF | ∀s > 0, (4.2)

where Ps = P Ys is the heat semigroup relative to (Y, %, µ). In particular, for all t ≥ 0, all
functions f = PtχE satisfy

|∇Psf | = Ps|∇f | µ-a.e. in Y , for all s > 0.

Moreover, for each x ∈ X as above there exists a pointed RCD(0, N−1) m.m.s. (Z, dZ ,mZ , z̄)
such that

(Y, %, µ, y, F ) =
(
(Z × R), dZ × deucl,mZ ×L 1, (z̄, 0), { t > 0 }

)
, (4.3)

where we denoted by t the coordinate of the Euclidean factor in Z × R.

A suitable version of the iterated tangent theorem by Preiss (see Theorem A.1) implies
also the following.

Theorem 4.3. Let (X, d,m) be an RCD(K,N) m.m.s. and let E ⊂ X be a set of locally
finite perimeter. Then E admits a Euclidean half-space as tangent at x for |DχE |-a.e.
x ∈ X, that is to say(

Rk, deucl, ckL k, 0k, {xk > 0 }
)
∈ Tanx(X, d,m, E), for some k ∈ [1, N ].

Proof of Theorem 4.3. We claim that the stated conclusion holds true at all points x ∈ X
such that both the iterated tangent property of Theorem A.1 and the rigidity property
stated in Theorem 4.2 are satisfied (observe that |DχE |-a.e. point satisfies these two
properties).
Indeed, if (Y, %, µ, y, F ) ∈ Tanx(X, d,m, E), combining Theorem 4.2 with Theorem 2.1, we
can say that (Y, %, µ) is isomorphic to Z × R for some RCD(0, N − 1) m.m.s. (Z, dZ ,mZ).
Furthermore, another consequence of Theorem 2.1 is that F = { t > t0 } for some t0 ∈ R,
where we denoted by t the coordinate on the Euclidean factor of Y . Up to a translation
we can also assume that y = (z, 0) for some z ∈ Z.
We go on observing that, if i : Z → Y denotes the canonical inclusion i(z) := (z, 0), it
holds |DχF | = i]mZ and, for this reason, we shall identify in the sequel |DχF | and mZ .
Moreover, it is easy to check that, if (W, dW ,mW , w̄) ∈ Tanz(Z, dZ ,mZ), then

(W × R, dW × deucl,mW ×L 1, (w̄, 0), { t > 0 }) ∈ Tan(z,0)(Y, %, µ, F ).
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The sought conclusion can now be obtained choosing z to be a regular point of (Z, dZ ,mZ)
(recall that mZ-a.e. point of Z is regular), so that W is a Euclidean space of dimension
k ∈ [0, N − 1] and applying Theorem A.1 to conclude that

(W × R, dW × deucl,mW ×L 1, (w̄, 0), { t > 0 }) ∈ Tanx(X, d,m, E).

In the case when the ambient space is non collapsed (see Definition 1.14) one can
improve the conclusion of Theorem 4.3 above.

Corollary 4.4. Let (X, d,m) be a ncRCD(K,N) m.m.s. and let E ⊂ X a set of locally
finite perimeter. Then |DχE | is concentrated on the N -dimensional regular set of X and,
in addition,

Tanx(X, d,m, E) =
{

(RN , deucl, cNL N , 0N , {xN > 0 })
}

for |DχE | -a.e. x ∈ X.

Proof Corollary 4.4. Observe that Theorem 4.3 gives that |DχE | is concentrated on the
set of points where at least one metric measured tangent is Euclidean. In the case when
the ambient space is a non collapsed RCD(K,N) m.m.s. this set coincides with the regular
set (see Theorem 1.15 and [DPG18]). To conclude, it remains to invoke Theorem 4.2 and
to observe that, in the case of a Euclidean ambient space (4.2) easily yields that F is a
half-space (even without appealing to Theorem 2.1).

Remark 4.5. Let us remark that, without the non collapsing assumption, it is not directly
possible to improve Theorem 4.3 to Corollary 4.4, as the example mentioned in Remark 1.16
shows. We leave the problem of the concentration of the perimeter measure on the regular
set in the general case to a forthcoming work.

Given the statement of Corollary 4.4, it sounds natural to introduce the following.

Definition 4.6. Let (X, d,m) be ncRCD(K,N) metric measure space and let E ⊂ X be
of locally finite perimeter. Then we define the reduced boundary FE of E by

FE :=
{
x ∈ supp |DχE | : Tanx(X, d,m, E) =

{
(RN , deucl, cNL N , 0N , {xN > 0 })

}}
.

(4.4)

It is easily seen that FE is contained in the essential boundary ∂∗E, namely the
complement of the sets of density and rarefaction. In the more general context of PI
spaces it is known after [A02] that |DχE | is representable as θS ∂∗E for some density θ,
where S denotes the measure induced by the gauge function ζ(Br(x)) = m(Br(x))/r with
Carathéodory’s construction. The following result refines this representation formula in
the setting of non collapsed RCD(K,N) spaces.

Corollary 4.7. Let (X, d,m) be a ncRCD(K,N) m.m.s. and let E ⊂ X be a set of locally
finite perimeter. Then

Per(E, ·) = SN−1 FE,

where we denote by Sα the α-dimensional spherical Hausdorff measure.

Proof. We claim that
lim
r↓0

Per(E,Br(x))
ωN−1
2N−1 diamN−1(Br(x))

= 1, (4.5)
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for any x ∈ FE. Let us write

Per(E,Br(x))
ωN−1
2N−1 diamN−1(Br(x))

=rPer(E,Br(x))
ωN−1C(x, r)

C(x, r)
m(B(x, r))

m(B(x, r))
rN

( 2r
diam(B(x, r))

)N−1

=PerXr (E,B1(x))
ωN−1

1
mr
x(B1(x))

m(B(x, r))
rN

( 2r
diam(B(x, r))

)N−1
,

where C(x, r) is the constant in (1.22). The claim follows using the very definition of the
reduced boundary FE, the continuity of the diameter w.r.t. GH-convergence, the weak
convergence of the perimeters proved in Corollary 4.10 and the fact limr→0

m(Br(x))
rN = ωN

when x ∈ X is regular (see [DPG18, Corollary 1.7]). The stated conclusion follows now
from (4.5) applying [M15, Theorem 5] and checking that (X, d) is diametrically regular, i.e.
for every x ∈ X and R > 0 there exists δx,R > 0 such that (0, δx,R) 3 t 7→ diam(Bt(y)) is
continuous for every y ∈ BR(x) (see the discussion above Theorem 5 in [M15]). To this
aim we prove a stronger claim: for any x ∈ X it holds

|diam(Bt(x))− diam(Bs(x))| ≤ 2|t− s| ∀t, s ≥ 0.

This property is a consequence of the fact that X is a geodesic metric measure space.
Indeed, assuming t > s without loss of generality, for any y ∈ Bt(x) we can find y′ ∈ Bs(x)
realizing d(y, y′) ≤ |t− s|. In particular, for any ε > 0, we can consider y1, y2 ∈ Bt(x) such
that d(y1, y2) ≥ diam(Bt(x))− ε and, taking y′1, y′2 ∈ Bs(x) as above, we conclude

diam(Bt(x)) ≤ d(y1, y2) + ε ≤ 2|t− s|+ d(y′1, y′2) + ε ≤ 2|t− s|+ ε+ diam(Bs(x)),

that implies the sought conclusion letting ε ↓ 0.

The rest of this section is devoted to the proof Theorem 4.2. First, we are going to prove
that tangents are non empty almost everywhere with respect to the perimeter measure, as
a consequence of the compactness results developed in section 3 and Proposition 4.9. Then,
we will prove that they are rigid, in a suitable sense. This rigidity property will be achieved
building mainly on two ingredients: lower semicontinuity and locality of the perimeter and
the Bakry-Émery inequality, together with the characterization of its equality cases we
obtained in section 2.

We start stating an asymptotic minimality result that stems from the lower semicon-
tinuity of the perimeter. It has been proved, in a slightly weaker form (namely with a
smaller class of competitors E′), first in [A01] under Ahlfors regularity assumption and
then, in [A02], for the general case. We refer to the very recent [EGLS18, Theorem 6.1]
for the present form. The basic idea originates, to the author’s knowledge, in the work of
Fleming [F66] (see also [W89, C99] for variants of this idea in different contexts).

Proposition 4.8 (Asymptotic minimality and doubling). Let (X, d,m) be an RCD(K,N)
m.m.s. and E ⊂ X be a set of locally finite perimeter. For |DχE |-a.e. x ∈ X there exist
rx > 0 and ωx(r) : (0, rx)→ [0,+∞) such that ωx(r)→ 0 as r → 0+ and

Per(E,Br(x)) ≤ (1 + ωx(r)) Per(E′, Br(x)) (4.6)

whenever E∆E′ b Br(x). In addition,

lim sup
r→0+

|DχE |(B2r(x))
|DχE |(Br(x)) < +∞. (4.7)
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Also the following density estimates are important to prove that tangents are almost
everywhere non empty. We refer again to [A01, A02] for its proof.

Proposition 4.9. Let (X, d,m) be an RCD(K,N) m.m.s. and E ⊂ X be a set of locally
finite perimeter. For |DχE |-a.e. x ∈ X it holds

0 < lim inf
r→0+

r|DχE |(Br(x))
m(Br(x)) ≤ lim sup

r→0+

r|DχE |(Br(x))
m(Br(x)) < +∞, (4.8)

and
lim inf
r→0+

min
{
m(E ∩Br(x))
m(B(x, r)) ; m(Ec ∩Br(x))

m(B(x, r))

}
> 0. (4.9)

Corollary 4.10. Let (X, d,m) be an RCD(K,N) m.m.s. and let E ⊂ X be a set of
locally finite perimeter. Then, for |DχE |-a.e. x ∈ X one has Tanx(X, d,m, E) 6= ∅ and, if
(Y, %, µ, y, F ) is as in Definition 4.1, the following properties hold true:

(a) F is an entire minimizer of the perimeter (relative to (Y, %, τ)), i.e.

|DχF |(Br(y)) ≤ |DχF ′ |(Br(y)) whenever F∆F ′ b Br(y) b Y ;

(b) realizing the convergence in a proper metric space (Z, dZ), the perimeters |DiχE |
relative to the rescaled spaces in condition (a) of Definition 4.1 weakly converge, in
duality with Cbs(Z), to |DχF |.

Proof. Let us consider x ∈ X such that the statements of Proposition 4.8 and Proposition 4.9
hold true and a sequence of radii ri → 0 such that (X, r−1d, µrx, x) → (Y, %, µ, y) in the
pmGH topology. Thanks to (4.8) and Corollary 3.4 with χEi = χE , possibly extracting
a subsequence we can assume that there exists a set F ⊂ Y with locally finite perimeter
such that χE → χF in L1

loc. Note that µ(F ) > 0 thanks to (4.9). This implies that
(Y, %, µ, y, F ) ∈ Tan(E, x). To achieve (a) and (b) it is enough to apply Proposition 3.9,
recalling (4.6).

A proof of the following useful result, based on Cavalieri’s formula, can be found for
instance in [AGS15, Lemma 3.3] (notice that since we are assuming that µ and all µn
are probability measures, weak convergence in duality w.r.t Cbs(Z) and w.r.t. Cb(Z) are
equivalent).

Lemma 4.11. Let (Z, dZ) be a complete and separable metric space. Let (µn) ⊂P(Z) be
weakly converging in duality with Cbs(Z) to µ ∈ P(Z) and let fn be uniformly bounded
Borel functions such that

lim sup
n→∞

fn(zn) ≤ f(z) whenever suppµn 3 zn → z ∈ suppµ, (4.10)

for some Borel function f . Then

lim sup
n→∞

ˆ
Z
fn dµn ≤

ˆ
Z
f dµ.

Remark 4.12. If (Z, dZ) is proper, fn and f are continuous, and µn have uniformly bounded
supports, then the uniform bound from above for fn is a direct consequence of (4.10).

The proof of Lemma 4.11 can be easily adapted to the case when we need to estimate
the liminf of

´
Z fn dµn.
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Lemma 4.13. Let (Z, dZ) be a complete and separable metric space. Let (µn) be a sequence
of nonnegative Borel measures on Z finite on bounded sets and assume that µn weakly
converge to µ in duality w.r.t. Cbs(Z). Let (fn) and f be nonnegative Borel functions on
Z such that

f(z) ≤ lim inf
n→∞

fn(zn) whenever suppµn 3 zn → z ∈ suppµ. (4.11)

Then ˆ
f dµ ≤ lim inf

n→∞

ˆ
fn dµn.

Lemma 4.14. Let (Xn, dn,mn) be RCD(K,N) m.m. spaces mGH converging to (Y, %, µ)
and assume that the convergence is realized into a proper metric space (Z, dZ). Let ηn, η be
nonnegative Borel measures giving finite mass to bounded sets, such that suppµn ⊂ suppmn,
supp η ⊂ suppµ and ηn weakly converge to η in duality with Cbs(Z). Then

P Yt η(x) ≤ lim inf
n→∞

Pnt ηn(xn), for any t > 0 and for any suppmn 3 xn → x ∈ suppµ.
(4.12)

Proof. In [AHT18, Theorem 3.3], building on [GMS15], it is proved that, denoting by pn
and pY the heat kernels of (Xn, dn,mn) and (Y, %, µ) respectively, it holds

lim
n→∞

pnt (xn, yn, t) = pYt (x, y), for any t > 0, (4.13)

whenever suppmn × suppmn 3 (xn, yn)→ (x, y) ∈ suppµ× µ. Since

P Yt η(x) =
ˆ
pYt (x, y) dη(y) and Pnt ηn(xn) =

ˆ
pnt (xn, y) dη(y),

the validity of (4.12) follows from Lemma 4.13 and Fatou’s lemma with the obvious choice
for the weakly convergent sequence of measures and fn(·) := pnt (xn, ·), f := pt(x, ·), which
satisfy the lower semicontinuity condition (4.11) in view of (4.13).

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let us consider the case when E has finite perimeter. The general-
ization to sets of locally finite perimeter can be obtained building upon Lemma 3.10 and
(4.1), arguing in a standard way.

Recall that the BV -version (1.12) of the 1-Bakry-Émery contraction estimate gives

|∇PtχE |m ≤ e−KtP ∗t |DχE | ∀t > 0.

Let ht : X → [0, 1] be the density of eKt|∇PtχE |m with respect to P ∗t |DχE |. Then, one
hasˆ
X

(1− Ptht) d|DχE | = |DχE |(X)−
ˆ
X
htdP

∗
t |DχE | = |DχE |(X)− eKt

ˆ
X
|∇PtχE |dm.

By lower semicontinuity, this proves that gt := 1 − Ptht converges to 0 strongly in
L1(X, |DχE |).

Now, setting for simplicity of notation ν = |DχE |, we claim that

lim
t↓0

1
ν(BR√t(x))

ˆ
BR
√

t(x)
gt dν = 0 ∀R > 0, for ν-a.e. x ∈ X. (4.14)
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Thanks to the asymptotic doubling property (4.7), it is sufficient to prove the result ν-a.e.
on a Borel set F with this property: for some L > 0, for all x ∈ F and 0 < r < 1/L one
has ν(B5r(x)) ≤ Lν(Br(x)). By Vitali’s theorem, it follows that the localized maximal
function

M |g|(x) :=


sup

r∈(0,1/L)

´
Br(x) |g|dν
ν(Br(x)) if x ∈ F ;

0 if x ∈ X \ F ;
satisfies

ν({M |g| > τ}) ≤ L

τ

ˆ
|g|dν ∀τ > 0.

Let us apply this estimate to the functions gt = 1− Ptht: given ε > 0, for t < t(ε) one has´
gt dν < ε2, and then ν({Mgt > ε}) ≤ Lε. We obtain that

ˆ
Br(x)

gt dν ≤ εν(Br(x)) for r < 1
L
, t < t(ε)

for all x ∈ Fε ⊂ F , with µ(F \ Fε) smaller than Lε. In particular, on Fε one has

lim sup
t↓0

1
ν(BR√t(x))

ˆ
BR
√

t(x)
gt dν ≤ ε ∀R > 0.

Since ε is arbitrary, we have proved that (4.14) holds ν-a.e. on F .
The claimed conclusion (4.2) will be achieved through two intermediate steps starting

from (4.14).
First, let us observe that, for any R, s, t > 0 and for any x ∈ X, it holds

1
ν(BR√t(x))

ˆ
BR
√

t(x)
gts dν = 1

|DtχE |
(
Bt
R(x)

) ˆ
Bt

R(x)
P ts

(
1− eKt

∣∣∇tP tsχE∣∣
(P ts)

∗ |DtχE |

)
d|DtχE |,

(4.15)
where we denoted by P t, ∇t, Dt and Bt the heat semigroup, the minimal weak upper gra-
dients, the total variation measure and the balls associated to the rescaled metric measure
structure (X,

√
t
−1d,m

√
t

x , x) and we are identifying measures absolutely continuous w.r.t.
the reference one with their densities.

Step 1. We claim that, if (Y, %, µ, y, F ) ∈ Tanx(X, d,m, E) and ti ↓ 0 is a sequence
realizing the convergence in Definition 4.1, then

ˆ
Ps

(
1− |∇PsχF |

P ∗s |DχF |

)
dηR ≤ lim inf

i→∞

ˆ
P tis

(
1− eKsti |∇

tiP tis χE |(
P tis
)∗|DtiχE |

)
dηiR, (4.16)

for L 1-a.e. R > 0, where
ηR := 1

|DχF | (BR(y)) |DχF | BR(y),

ηiR := 1
|DtiχE | (Bti

R(x))
|DtiχE | Bti

R(x).

In order to prove (4.16), we begin observing that ηiR weakly converges to ηR for L 1-a.e.
R > 0. Therefore, the validity of (4.16) will follow from Lemma 4.13 if we prove that

Ps

(
1− |∇PsχF |(

Ps
)∗|DχF |

)
(w) ≤ lim inf

i→∞
P tis

(
1− eKsti |∇

tiP tis χE |(
P tis
)∗|DtiχE |

)
(wi), (4.17)
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whenever wi ∈ Xi → w ∈ Y . Let us observe that, for any φ ∈ Cbs(Z), it holds

lim sup
i→∞

eKsti
ˆ
φ

∣∣∇tiP tis χE∣∣(
P tis
)∗|DtiχE |

dmi ≤
ˆ
φ
|∇PsχF |
P ∗s |DχF |

dµ. (4.18)

Indeed, by Proposition 4.15, |∇tiP tis χE |mi weakly converge to |∇PsχF |µ in duality with
Cbs(Z), and the functions

fi := φ(
P tis
)∗|DtiχE |

and f := φ

P ∗s |DχF |

are continuous, have uniformly bounded supports and satisfy the upper semicontinuity
property (4.10) thanks to Lemma 4.14 (recall that |DtiχE | weakly converge to |DχF | in
duality with Cbs(Z)). Hence (4.17) and then (4.16) follow from Lemma 4.11, taking into
account also Remark 4.12.
Step 2. We can now prove (4.2). If we choose x ∈ X such that (4.14) holds true (we
proved above that |DχE |-a.e. x ∈ X has this property), combining (4.15) with (4.16), we
obtain ˆ

BR(y)
Ps

(
1− |∇PsχF |

P ∗s |DχF |

)
d|DχF | = 0. (4.19)

Observing that, by gradient contractivity on the RCD(0, N) space (Y, %, µ), it holds

1− |∇PsχF |
P ∗s |DχF |

≥ 0 µ-a.e. on Y , (4.20)

we can let R→∞ in (4.19) to get
ˆ
Ps

(
1− |∇PsχF |

P ∗s |DχF |

)
d|DχF | = 0. (4.21)

Then, using once more the sign property (4.20), we obtain (4.2).
Combining the just proved rigidity (4.2) with Theorem 2.1, we can say that (Y, %, µ) is

isomorphic to Z × R for some RCD(0, N − 1) m.m.s. (Z, dZ ,mZ). Furthermore, another
consequence of Theorem 2.1 is that F = { t > t0 } for some t0 ∈ R, where we denoted by t
the coordinate on the Euclidean factor of Y . Up to a translation we can also assume that
y = (z̄, 0) for some z̄ ∈ Z.

Proposition 4.15. Let E ⊂ X be a set of finite perimeter and let (Y, %, µ, y, F ) ∈
Tanx(X, d,m, E) for some x ∈ X. Let ri ↓ 0 be a sequence of radii realizing the con-
vergence in Definition 4.1. Then

|∇iP itχE |mi ⇀ |∇Y P Yt χF |µ in duality with Cbs(Z), for any t > 0.

Proof. We wish to implement a strategy very similar to the one adopted in the proof of
Proposition 1.25 (see [AH17, Theorem 5.4, Corollary 5.5] and [GMS15]).

Let us begin proving that, for any suppmi 3 xi → x ∈ suppµ and for any t > 0, it
holds

lim
i→∞

P itχE(xi) = P Yt χF (x). (4.22)

To this aim we first observe that, by the very definition of tangent, it holds that χEmn ⇀
χFµ in duality with Cbs(Z) and therefore Lemma 4.14 yields

P Yt χF (x) ≤ lim inf
i→∞

P itχE(xi). (4.23)
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Moreover, since (1− χE)mn ⇀ (1− χF )µ in duality with Cbs(Z), applying Lemma 4.14
once more and with a simple algebraic manipulation, we obtain

lim sup
i→∞

P itχE(xi) ≤ P Yt χF (x). (4.24)

Combining (4.23) with (4.24) we obtain (4.22).
Let us proceed observing that, in view of the quantitative form of the L∞-Lip regular-

ization on RCD(K,∞) spaces provided by (1.13), for any t > 0 the functions P itχE and
P Yt χF are uniformly Lipschitz.

Fix now reference points y ∈ Y andXi 3 xi → y. Building upon [MN14, Lemma 3.1], for
any R > 0 it is possible to find Lipschitz cut-off functions ηR : Y → [0, 1], ηiR : Xi → [0, 1]
such that supp ηR ⊂ BY

2R(y), supp ηiR ⊂ Bi
2R(xi), ηR|BY

R (y) ≡ 1, ηiR|Bi
R(xi) ≡ 1, uniformly

Lipschitz, with uniformly bounded laplacians and such that ηiR converge to ηR both
pointwise and L2-strongly. We remark indeed that, in view of [AHT18, Proposition 3.2],
pointwise and L2-strong convergence are equivalent for uniformly bounded, uniformly
continuous and uniformly boundedly supported functions. Let us observe that, if we are
able to prove that

fi := ηiRP
i
tχE → ηRP

Y
t χF =: f strongly in H1,2 for all R > 0,

the conclusion will follow from the locality of the minimal weak upper gradient and
Theorem 1.26, which grants the L1-strong convergence of |∇i

(
ηiRP

i
tχE

)
|2 to |∇Y ηRP Yt χF |2

(that we can improve to L1-strong convergence of |∇i
(
ηiRP

i
tχE

)
| to |∇Y ηRP Yt χF | in view

of the uniform Lipschitz bounds and of Proposition 1.23).
In order to prove the above claimed convergence, we begin observing that fi converge

pointwise to f by (4.22) and the very construction of the family of cut-off functions ηiR.
Therefore, taking into account the uniform Lipschitz bounds, the uniform boundedness and
the uniform bounds on the supports, fi → f strongly in L2 by [AHT18, Proposition 3.2]. To
improve the convergence from L2-strong to H1,2-strong we wish to apply Proposition 1.25.
In order to do so, it remains to prove that ∆fi are uniformly bounded in L2. To this aim
we compute

∆fi = ∆ηiRP itχE + 2∇ηiR · ∇P itχE + ηiR∆P itχE (4.25)

and observe that all the terms at the right hand side in (4.25) are uniformly bounded
in L2 in view of the uniform L∞ bounds on values, minimal weak upper gradients and
laplacians of the cut-off functions, the uniform L∞ and Lipschitz bounds on P itχE and the
regularizing estimate for the Laplacian under heat flow in (1.4).

A Appendix
In this appendix we prove a version of the iterated tangent theorem by Preiss (see [P87]).
The proof is inspired by those of [GMR15, Theorem 3.2] and [AKL08, Theorem 6.4], dealing
with pmGH tangents to RCD(K,N) spaces and tangents to sets of finite perimeters over
Carnot groups, respectively (see also [LD11] for a previous result regarding pGH-tangents
of metric spaces equipped with a doubling measure).

Theorem A.1. Let (X, d,m) be an RCD(K,N) m.m.s. and let E ⊂ X be a set of finite
perimeter. Then for |DχE |-a.e. x ∈ X the following property holds true: for every
(Y, %, µ, y, F ) ∈ Tanx(X, d,m, E) one has

Tany′(Y, %, µ, F ) ⊂ Tanx(X, d,m, E) for every y′ ∈ supp |DχF |.
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Thanks to Corollary 4.10 we need only to prove the result at |DχE |-a.e. x ∈ X
for all (Y, %, µ, y, F ) ∈ Tan∗x(X, d,m, E), where Tan∗x(X, d,m, E) is defined adding to the
conditions in Definition 4.1 the condition (b) of Corollary 4.10, namely that the perimeter
measures of the rescaled spaces weakly converge, in the duality with Cbs(X), to the
perimeter measure of F .

Let us briefly recall the notion of outer measure and its main properties. Given a
positive measure µ over a metric space (X, d) we set

µ∗(A) := inf {µ(B) : B Borel, A ⊂ B } , ∀A ⊂ X. (A.1)

It is immediate to see that µ∗ is countably sub-additive. Let us remark that if µ is
asymptotically doubling then

lim
r↓0

µ∗(A ∩Br(x))
µ(Br(x)) = 1 for µ∗-a.e. x ∈ A. (A.2)

Indeed, we can find a set B ∈ B(X) containing A such that µ(B) = µ∗(A), so that
µ∗(C ∩A) = µ(C ∩B) for every C ∈ B(X). In particular, taking C = Br(x), we have

lim
r↓0

µ∗(A ∩Br(x))
µ(Br(x)) = lim

r↓0

µ(B ∩Br(x))
µ(Br(x)) = 1,

for every x ∈ B of density 1 for the measure µ. Since µ is asymptotically doubling, µ-a.e
x ∈ B has this property and (A.2) follows.

Let us start with a technical lemma.

Lemma A.2. Let (X, d,m) and let E ⊂ X be as in the assumptions of Theorem A.1. Let
A ⊂ X and x ∈ A be such that

lim
r↓0

|DχE |∗(A ∩Br(x))
|DχE |(Br(x)) = 1,

where |DχE |∗ is the outer measure associated to |DχE | according to (A.1). Assume that
(Y, %, µ, F ) ∈ Tan∗x(X, d,m, E) and consider

Ψi : (X, r−1
i d)→ (Z, dZ) ∀i ∈ N,

Ψ : (Y, dY )→ (Z, dZ),

a family of isometries realizing the pmGH convergence as in Definition 1.17. Then, for
any y′ ∈ supp |DχF |, there exists a sequence (xi) ⊂ A such that

lim
i→∞

dZ(Ψi(xi),Ψ(y′)) = 0.

Roughly speaking, Lemma A.2 tells us that it is possible to approximate every point
in the support of any tangent by means of points in A, whenever A is “large” in a
measure-theoretic sense.

Proof of Lemma A.2. As a first step we show the existence of an auxiliary sequence
(xi) ⊂ X, satisfying limi dZ(Ψi(xi),Ψ(y′)) = 0 and

lim
i→∞

ri|DχE |(Brri(xi))
C(x, ri)

= |DχF |(Br(y′)), for L 1-a.e. r > 0, (A.3)

where C(x, ri) was introduced in (1.22).
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Let us set Xi := Ψi(X), Ei := Ψi(E) and, with a slight abuse of notation, identity F
to Ψ(F ) and y′ to Ψ(y′). Since by assumption it holds that |DχEi |⇀ |DχF |, we have

lim
i→∞
|DχEi |(BZ

r (y′)) = |DχF |(BZ
r (y′)), for L 1-a.e. r > 0.

This implies that the distance of y′ from Xi is infinitesimal as i→∞, hence we can find
points zi ∈ Xi converging to y′ in Z satisfying

lim
i→∞
|DχEi |(BZ

r (zi)) = |DχF |(BZ
r (y′)), for L 1-a.e. r > 0.

Let us set xi := Ψ−1
i (zi). Observe that |DχF |(BZ

r (y′)) = |DχF |(BY
r (y′)) and

|DχEi |(BZ
r (zi)) = ri|DχE |(Brri(xi))

C(x, ri)
,

so that we get (A.3).
Let us now argue by contradiction. Assuming the conclusion of the lemma to be false

we might find ε > 0 such that the limit in (A.3) holds with r = ε and

Bεri(xi) ∩A = ∅ for i sufficiently large,

with xi and ri as in (A.3). Let M > 0 be large enough to grant that

Bεri(xi) ⊂ BMri(x) (A.4)

(it is simple to see that such a constant exists, since the convergence in Z of zi = Ψ(xi)
ensures d(x, xi) = O(ri)). Arguing as in the first part of the proof it is possible to see that

lim
i→∞

ri|DχE |(BMri(x))
C(x, ri)

= |DχF |(BM (y′)) for L 1-a.e. M > 0 (A.5)

and from now on we assume, possibly increasing M , that both (A.4) and (A.5) hold true.
Then, in view of (A.4), we have

|DχE |∗(A ∩BMri(x))
|DχE |(BMri(x)) = |DχE |

∗(A ∩ (BMri(x) \Bεri(xi)))
|DχE |(BMri(x)) ≤ 1− |DχE |(Bεri(xi))

|DχE |(BMri(x)) .

Observe that the left hand side converges to 1 as i → ∞, since x is of density 1 for A.
Therefore, to get the sought contradiction, it suffices to show that

lim inf
i→∞

|DχE |(Bεri(xi))
|DχE |(BMri(x)) > 0.

Using (A.3) and (A.5), we get

lim inf
i→∞

|DχE |(Bεri(xi))
|DχE |(BMri(x)) =

limi
ri|DχE |(Bεri (xi))

C(x,ri)

limi
ri|DχE |(BMri

(x))
C(x,ri)

≥ |DχF |(Bε(y
′))

|DχF | (BM (y′)) > 0,

where the last inequality holds true since we are assuming that y′ ∈ supp |DχF |.

Before passing to the proof of Theorem A.1 we need to introduce a definition and a
lemma.
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Definition A.3. We shall denote by F(K,N) the set of equivalence classes of quintuples
X = (X, d,m, x, ν) where (X, d,m, x) is a pointed RCD(K,N) m.m.s and ν is a nonnegative
and locally finite Borel measure in (X, d), modulo the equivalence relation ∼ defined as
follows. We say that (X1, d1,m1, x1, ν1) ∼ (X2, d2,m2, x2, ν2) if there exists an isometry
T : (suppm1, d1) → (suppm2, d2) such that T]m1 = m2, T (x1) = x2 and T]ν1 = ν2. We
shall denote by F the union of the sets F(K,N) for K ∈ R, 1 ≤ N < +∞. Observe that
F can be realized as a countable union of sets F(K,N).

Let us introduce a distance in F . Fix X1 = (X1, d1,m1, x1, ν1), X2 = (X2, d2,m2, x2, ν2)
in F , a proper metric measure space (Z, dZ) and isometric embeddings Ψi : (Xi, di) →
(Z, dZ), i = 1, 2. For any integer n ≥ 1 we define

Dn,Ψ1,Ψ2(X1,X2) :=
dH(Ψ1(X1 ∩B(x1, n)),Ψ2(X2 ∩B(x2, n))) ∧ 1

+
∣∣∣∣log

(
m1(B(x1, n))
m2(B(x2, n))

)∣∣∣∣ ∧ 1 +WZ
1

(
(Ψ1)]

χB(x1,n)
m1(B(x1, n))m1, (Ψ2)]

χB(x2,n)
m2(B(x2, n))m2

)
+
∣∣∣∣log

(
ν1(B(x1, n))
ν2(B(x2, n))

)∣∣∣∣ ∧ 1 +WZ
1

(
(Ψ1)]

χB(x1,n)
ν1(B(x1, n))ν1, (Ψ2)]

χB(x2,n)
ν2(B(x2, n))ν2

)
,

where dH is the Hausdorff distance between compact subsets of Z and WZ
1 is the 1-

Wasserstein distance in (Z, dZ ∧ 1), namely

WZ
1 (µ, ν) := inf

{ˆ
Z

dZ(x, y) ∧ 1 dπ(x, y) : π ∈ Γ(µ, ν)
}
, (A.6)

with Γ(µ, ν) ⊂ P(X ×X) the set of probability measures having µ and ν as marginals.
We finally define

D(X1,X2) := inf
Ψ1,Ψ2

{
dZ(Ψ1(x1),Ψ2(x2)) +

∞∑
n=1

1
2nDn,Ψ1,Ψ2(X1,X2)

}
, (A.7)

the infimum being taken among all possible proper metric spaces (Z, dZ) and all isometric
embeddings Ψi : (Xi, di)→ (Z, dZ) for i = 1, 2.

Lemma A.4. D is a distance over F and a sequence (Xi, di,mi, xi, νi) ⊂ F converges to
(Y, %, µ, y, ν) in the topology induced by D if and only if (Xi, di,mi, xi)→ (Y, %, µ, y) in the
pmGH topology and νi ⇀ ν in duality with Cbs(Z), where (Z, dZ) is a metric space where
the pmGH convergence is realized. Moreover the subspace

F := { (X, d,m, x, ν) ∈ F : ν = hm, with h ∈ L∞(X,m) } (A.8)

is separable.

Proof. The verification that D is a distance is quite standard, see for instance [GMS15]
. The equivalence between the two notions of convergence can be proved following the
same strategy in the proof of [GMS15, Theorem 3.15], the only difference here being the
addition to the quadruple of the measure ν. Let us prove that F is separable. It is enough
to prove that, given K and N , for any k > 0 the set

Fk(K,N) := { (X, d,m, x, ν) ∈ F(K,N) : ν = hm, with ‖h‖L∞(X,m) ≤ k } (A.9)

is compact. Let us fix a sequence (Xi, di,mi, xi, νi) ⊂ Fk(K,N). We can assume, up to
extract a subsequence, that (Xi, di,mi, xi)→ (Y, %, µ, y) in the pmGH topology. Let us fix
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a proper metric space (Z, dZ) realizing this convergence. Since νi ≤ kmi and mi ⇀ µ in
duality with Cbs(Z) we deduce that the measures νi are locally bounded in Z, uniformly
in i ∈ N. Therefore, possibly extracting a subsequence, there exists a positive measure ν
in Z such that νi ⇀ ν in duality with Cbs(Z). It is immediate to check that ν � µ, with
density uniformly bounded by k. This concludes the proof.

We are ready to prove Theorem A.1.

Proof of Theorem A.1. Since tangents are invariant w.r.t. rescaling and closed w.r.t. D-
convergence, it is enough to prove that the set of points x ∈ X such that there exist
(Y, %, µ, y, F ) ∈ Tan∗x(X, d,m, E) and y′ ∈ supp |DχF | such that

(Y, %, µ1
y′ , y

′, F ) /∈ Tanx(X, d,m, E)

is |DχE |∗-negligible, where µy
′

1 := C(y′, 1)−1µ (see Definition 4.1).
Let us fix positive integers k, m and a closed subset U ⊂ F with diameter, measured

w.r.t. the distance D in (A.7), smaller than (2k)−1. Since, according to Lemma A.4, F is
separable, it is enough to prove that

Ak,m :=
{
x ∈ X : ∃ (Y, %, µ, y, F ) ∈ Tan∗x(X, d,m, E) ∩ U and y′ ∈ supp |DχF | such that

D((Y, %, µ1
y′ , y

′, F ), (X, r−1d,mr
x, x, E)) ≥ 2k−1 ∀r ∈ (0, 1/m)

}
is |DχE |∗-negligible, where we identified the set F with the measure χFµ.

If, by contradiction, |DχE |∗(Ak,m) > 0, then, since |DχE | is asymptotically doubling
by Proposition 4.8, we can find x ∈ Ak,m such that

lim
r↓0

|DχE |∗(Ak,m ∩Br(x))
|DχE |(Br(x)) = 1,

see (A.2). Since x ∈ Ak,m there exist (Y, %, µ, y, F ) ∈ Tan∗x(X, d,m, E) ∩ U and y′ ∈
supp |DχF | such that D((Y, %, µ1

y′ , y
′, F ), (X, r−1d,mr

x, x, E)) ≥ 2k−1 for any r ∈ (0, 1/m)
and Lemma A.2 grants the existence of a sequence (xi) ⊂ Ak,m such that

lim
i→∞

dZ(Ψi(xi),Ψ(y′)) = 0,

where Ψi, Ψ are the embedding maps of Definition 1.17. Then, by definition of pmGH
convergence, using the space (Z, dZ) we deduce

(X, r−1
i d,mri

x , xi)→ (Y, %, µ, y′).

Since χBZ(z̄,1)(1− dZ(·, z̄)) belongs to Cb(Z) for every z̄ ∈ Z, it is immediate to check that

(X, r−1
i d,mri

xi
, xi)→ (Y, %, µ1

y′ , y
′), in the pmGH topology,

and (Ψ)#χEm
ri
xi
⇀ Ψ#χFµ

1
y′ in duality with Cbs(Z), that, thanks to (A.4), is equivalent

to
D((X, r−1

i d,mri
xi
, xi, E), (Y, %, µ1

y′ , y
′, F ))→ 0, (A.10)

see Definition A.3. Since xi ∈ Ak,m we can find (Yi, %i, µi, yi, Fi) ∈ Tan∗xi
(X, d,m, E) ∩ U

and y′i ∈ supp |DχFi | such that D((Yi, %i, (µi)1
y′i
, y′i, Fi), (X, r−1d,mr

xi
, xi, E)) ≥ 2k−1 for

any r ∈ (0, 1/m).
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Using (A.10) and taking into account that by construction diam U < (2k)−1, we find
the sought contradiction

2k−1 ≤ D((Yi, %i, (µi)1
y′i
, y′i, Fi), (X, r−1

i d,mri
xi
, xi, E))

≤ D((Y, %, µ1
y′ , y

′, F ), (X, r−1
i d,mri

xi
, xi, E)) +D((Yi, %i, (µi)1

y′i
, y′i, Fi), (Y, %, µ1

y′ , y
′, F ))

≤ D((Y, %, µ1
y′ , y

′, F ), (X, r−1
i d,mri

xi
, xi, E)) + (2k)−1

≤ k−1,

for i large enough.
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