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Abstract.

We consider planar networks minimizing the elastic energy, we
state an existence and regularity result, and we discuss some geometric
properties of minimal configurations. We also consider the evolution
of networks by the gradient flow of the energy, and we give a well–
posedness result in the case of natural boundary conditions.

§1. Introduction

We begin by defining the mathematical objects we consider in this
paper.

Definition 1.1. A planar network N is a connected set in R2, finite
union of sufficiently smooth regular curves N i that meet at junctions.
In general we allow the presence of loops and k–valent vertices (see Fig-
ure 1). We say that the network is regular if it has only triple junctions
and the unit tangent vectors of the three concurring curves form equal
angles at the junctions.

Fig. 1. A planar network

We just defined a network as a set in the Euclidean plane, but in
the following it is more convenient to parametrize each curve N i of a
network N with maps γi : I ⊂ R → R2. A curve is of class Ck (resp.
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Hk, where Hk denotes the Sobolev space of order k and exponent 2) if
it admits a parametrization of class Ck (resp. Hk). We remind that a
curve is regular if |γ′(x)| 6= 0 for every x ∈ I.

Definition 1.2. Let α, β ≥ 0 with α + β > 0. The elastic energy
functional for a network N is defined as

(1) E (N ) :=

∫
N
αk2 + β ds =

∑
i

∫
N i

α(ki)2 + β dsi ,

where ki is the curvature and si the arclength parameter of the curve
N i.

Fixing a certain class C of planar networks, that is, fixing the topol-
ogy of the network in the class (the number of curves and number of
junctions) we are interested in the following two problems:

i) finding the minimizers of E among all networks in C;
ii) studying the solutions of the L2 gradient flow of the energy E

with initial datum N0 in C. In particular, we look for classical
solution of the flow requiring that the evolving network satisfies
certain boundary conditions for all times.

Looking back to the origin of elasticity theory for objects that can
be modelled by one dimensional sets, we see that the first attempts
regard rods and strings. That means reducing to the case of the simplest
possible network: a (closed or open) curve Γ. Moreover the parameters
in (1) are fixed to α = 1 and β = 0, but the length of the curve L(Γ) is
fixed to be ` ∈ (0,∞). The problem was already considered at the times
of Galileo, when clearly scientists had a mechanical point of view: they
looked for equations for equilibrium of moments and forces. The idea to
relate the curvature of the fiber of the beam to the bending moment came
only later when in 1691 Jacob Bernoulli proposed to model the bending
energy of thin inextensible elastic rods with a functional involving the
curvature. Finally in 1742 Daniel Bernoulli, following the principle that
the potential energy of the elastic lamina must be minimal, proposed
(in a letter to Euler) to attack the problem with variational techniques.
The modern formulation of Bernoulli’s Problem reads as follow: find

min
{
E(Γ) :=

∫
Γ

k2 ds
∣∣∣ Γ : [a, b] ⊂ R→ R2 , L(Γ) = `

}
.

A natural approach to this problem is studying the critical points of the
functional E, looking at the Euler–Lagrange equation, which involves
four derivatives of Γ: indeed it reads as

(2) 2kss + k3 − λk = 0 ,
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where k is the scalar curvature and s the arclength parameter and λ
is the Lagrange multiplier associated to the length constraint. Euler
was able to treat these kind of equations and divided the critical points
of the functional in nine classes. He called elastica a solution of (2).
More recently Langer and Singer contributed to the classification of the
elasticae [20, 21].

We remark here that the apparently easier problem

min

{
E(Γ) :=

∫
Γ

k2 ds | Γ : [a, b] ⊂ R→ R2 , Γ closed

}
is not well–posed. Indeed the infimum is zero and not attained. To
convince yourself of this fact it is enough to consider a sequence of circles
CR with radius R, then E(CR) goes to zero as R → ∞ and the value
zero is not attained. To overcome the ill-posedness, one can again fix
the length of the curve, as in the original formulation of Bernoulli’s
problem. Other different additional constraints have been propose in
the literature. Among the others, it is worth to mention:

- the length penalization (that is one asks for β > 0 in (1));
- restrict the ambient space from R2 to a bounded domain (con-

fined elastica, see [14, 15]);
- defining the class C as the set of all embedded closed curves

that enclosed a fixed area. To be more precise consider the
class of all smooth, simply connected and bounded open set
Ω ⊂ R2, bounded by a Jordan curve γ, and call A(Ω) the area
of Ω. One looks for

min{E(∂Ω) := E(γ)
∣∣∣ A(Ω) = A0} .

Apart from proving that the unique minimizer is the disc, it has
also been established (see [7, 17]) the isoperimetric inequality

E2(∂Ω)A(Ω) ≥ 4π3 .

Let us now consider the “opposite” case, i.e., letting α = 0 and
β = 1 in the definition of the energy functional (1). With such choice
of the parameters we are looking for a network of minimal length. If
we do not fix some points of the network the problem is not well–posed:
indeed the length goes to zero and the network reduces to a point. So
it is meaningful to consider the class of networks with n end–points of
order one fixed in the plane. If we require the networks to be connected
but we do not fix the topology, this gives the well–know Steiner Problem:
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called S a collection of n points p1, . . . , pn in the Euclidean plane, find

(3) min

{
L(K) =

∫
K

1 ds
∣∣∣ K connected network such that S ⊂ K

}
.

The minimal networks are composed of straight segments meeting
at triple junctions forming equal angles. The proof of existence of min-
imizers is considered nowadays very classical, but finding explicitly so-
lutions is extremely challenging (even numerically) because of the lack
of uniqueness due to the strong non convexity of the problem. For this
reason every method to determine solutions is welcome. Motivated by
the research for fast algorithms, the resolution of the Steiner problem
by variational methods has recently aroused an increasing interest (see
for instance [1, 2, 3, 6, 23]).

Another celebrated problem related to the minimization of the length
is the isoperimetric problem. In this case we do not fix points of the net-
work but we fix the area of the regions in which the network divides the
plane, in a certain sense the topology of its complementary. More pre-
cisely an embedded compact network in R2 define a partition of the
plane in finitely many bounded sets E1, . . . , En and an unbounded one
E0 := R2 \∪ni=1Ei. We ask the sets Ei to be open and we fix their area to
mi. We call Ei chambers and E = (E1, . . . , En) cluster. Thus one want
to find

min
{
L(Γ)

∣∣∣ Γc = E = (E1, . . . , En) with |Ei| = mi

}
.

For a detailed analysis of this problem see [22, 24].

§2. Minimization problems

As in the case of the length, also the minimization of the elastic
energy of networks presents several possible variants. We shall present
in particular three problems.

Suppose we fix a set S ⊂ R2 of n points, and α, β > 0 in (1). In
the same spirit of Problem (3) we look for a solution of the following
problem

min
{
E(K)

∣∣∣ K connected network such that S ⊂ K
}
.

The expected minimizers (for every α > 0 and β > 0) coincide with the
Steiner networks (solution of the Steiner Problem (3)), as the length is
minimal and the term that involves the curvature is zero.
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The second option is inspired by the isopetrimetric problem. This
time we want to minimize the functional E, defined in (1), among all
networks that give an n–cluster with the area of each chamber fixed.
This question is widely open, the only known case is n = 1, proven
in [7, 17].

Last but not least, we look for minimizers of the elastic energy
among networks with fixed topology. For simplicity we restrict to net-
works of three curves that meet at two junctions, namely Theta–networks,
and we fix (non zero) angles at the junctions points. More precisely we
are interested in:

(4) inf{E (Γ) | Γ is a Theta–network (α1,α2,α3) } ,

where a Theta–network (α1,α2,α3) is a network composed of three curves

that meet at two triple junctions with fixed angles α1 between γ1 and
γ2, α2 between γ2 and γ3 and, as a consequence, α3 between γ3 and γ1

with
∑3
i=1 αi = 2π. Moreover each curve is regular and of class H2.

P 1

γ2

γ1

γ3

P 2

P 1
γ2

γ1

γ3

P 2

P 1
γ2

γ1

γ3

P 2

Fig. 2. Examples of Theta-networks.

Why do we fix the angles at the junctions? Suppose instead that we
minimize E (with α, β > 0) on the set of Theta–networks without fixing
the angles. Then the infimum is zero and is clearly not attained in the
class of regular networks (think for instance of a minimizing sequence
given by three equal and overlapped segments whose length goes to zero).
Fixing non–zero angles at the junctions we overcome this issue, since it
implies a lower bound on the energy. An embedded Theta–network can
be seen as two closed curve (with a common piece). Consider two of
the three curves of the Theta network that meet forming an (internal)
angle of θ1 at the junction P 1 (θ2 at P 2 respectively), and call γ the
union of these two curves. Combining the Gauss–Bonnet Theorem (in
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the slightly generalized version proved in [10, Appendix A]) with Hölder
inequality we get

c := 2π − (π − θ1)− (π − θ2) ≤
∫
γ

|k|ds ≤
(∫

γ

k2 ds

)1/2

L1/2(γ) ,

then

E(γ) = α

∫
γ

k2 ds+ βL(γ) ≥ α c2

L(γ)
+ βL(γ) ≥ 2

√
αβ c .

Hence, by fixing the angles θi 6= 0, we get an uniform bound from below
for the energy.

2.1. Existence of the minimizers

For simplicity from now on we suppose that α1 = α2 = α3 = 2π
3

and write Theta–network for Theta–network( 2π
3 ,

2π
3 ,

2π
3 ) .

First of all we notice that we can reduce to the case α = β = 1.
Indeed, letting

Eα,β(N ) =

∫
N
αk2 + β ds and E1,1(N ) =

∫
N
k2 + 1 ds ,

and recalling the rescaling properties of the energy, we have

Eα,β(N ) =
√
αβ E1,1

(√
β

α
N

)
,

so if Nmin is a minimizer for E1,1, then the rescaled network β
α Nmin is a

minimizer for Eα,β , and vice versa. From now on for simplicity we write
E for E1,1.

We introduce the notion of “degenerate” Theta–network: a network
composed by two regular curves of class H2, forming angles in pairs of
2π
3 and π

3 degrees and by a curve of length zero.

Moreover we define the functional E on networks Γ of three curves
of class H2 as follows:

E(Γ) =



3∑
i=1

1

L3(γi)

∫ 1

0

(γixx)2 dx+ L(γi) if Γ is Theta–network,

2∑
i=1

1

L3(γi)

∫ 1

0

(γixx)2 dx+ L(γi) if Γ is degenerate,

+∞ otherwise.
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The two functionals E and E coincide on Theta–networks, indeed
E is geometrical, invariant by reparametrization and here we simply
parametrized each curve proportionally to arclength.

Theorem 1 (see [11, 10]). The functional E is the relaxation of
the functional E in H2. Moreover there exists Γmin minimizer of the
functional E among 3–networks of class H2 which is a Theta–networks,
each curve γ̃ of Γmin is injective, of class C∞ and solves the equation
(2). Hence, in particular, there exists minimizers of Problem (4).

§3. Gradient flow of the energy in the class of networks

We pass now to consider the dynamical counterpart of the problem.
The questions we want to answer are the following: we fix a certain
class of networks C and we take a network N0 in C. Does there exists
an evolution law that for all times t ∈ [0,+∞) transform the network
N0 into a network Nt (still in the class C), decreasing the elastic energy
along the flow? And if we want that the energy not only decrease, but
that it decreases as efficiently as possible?

The evolution we have in mind can be understood as the L2-gradient
flow of the energy E where the normal velocity induces the steepest
descent of the energy.

3.1. The evolution equation

How do we find an explicit expression for the velocity? Formally
we derive the evolution equation by computing the first variation of E.
We take a map γi : [a, b] → R2 that parametrized the curve N i of
the network and we compute how the energy changes if we vary this
parametrization by adding τψi with ψi ∈ C∞([a, b],R2). We call the
modified parametrization γ̃i := γi + τψi. If we think of ψi encoding the
evolution in time, we can now answer the question what equations an
evolution has to satisfy that decreases E most efficiently. The Cauchy
Schwarz inequality implies that the normal component of the velocity
vi of each curve N i of the network is given by

(5)
〈
vi, νi

〉
= α(−2kiss − (ki)3) + βki on [0,∞)× [a, b], ,

where νi is the unit normal vector of the curve γi. These equations are
coupled with conditions at the end points of the curves N i. To maintain
the structure (topology) of the network we have to require something
on the ψi. For instance if two curves N i,N j (parametrized by γi, γj)
meet at their end points in a junction (let say γi(a) = γj(a)) then
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ψi(a) = ψj(a). In the end, at each junction point we get

(6) ki = 0 and
∑
i=1

α(−2kisν
i −
(
ki
)2
τ i) + βτ i = 0

where νi and τ i are the unit normal and tangent vector, respectively.
Instead at the (fixed) end point of order one the curvature has to be
zero (see [4, 11, 19]).

Once we have established what the system of equations is, we want
to show that there exists a solution, (at least for a shot time). The
strategies to prove existence of classical solutions for all t ∈ [0,+∞) can
be divided into two steps: local (in time) and global existence. The
techniques are very different.

Before proceeding with our analysis we point out that:

- if α = 1, β = 0 we have the Willmore flow;
- if α > 0, β > 0 the flow is called “curve straight–shortening

flow”;
- if α = 0, β = 1 we have the curve shortening flow (one dimen-

sional Mean Curvature Flow).

Several authors considered the first two cases for the simplest net-
work: a (closed or open) curve (see for instance [8, 12, 13, 16, 25, 27]).

3.2. Short–time existence

We shall now state the existence result for a solution of the flow.

Theorem 2 (see [19]). Let N0 be a geometrically admissible initial
network for the curve straight–shortening flow. Then there exists a pos-
itive time T such that within the interval [0, T ] the flow admits a unique
solution.

We have seen that our evolution problem is geometric, indeed both
the motion equations (5) and the boundary conditions (6) are related
only to geometric quantities and independent on the parametrization of
the curves. But unfortunately the motion equations (5) are degener-
ate. Although we consider variations in any direction only the normal
movement is specified. To turn these degenerate equations into a well–
posed parabolic system of quasilinear PDEs one has to specify a suitable
tangential movement. Equations (5) have the following structure:

〈
γit , ν

i
〉
νi = −Aiνi = −

〈
2
γixxxx
|γix|4

+ g(γix, γ
i
xx, γ

i
xxx), νi

〉
νi .
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Choosing as tangential velocity

T i :=

〈
2
γixxxx
|γix|4

+ g(γix, γ
i
xx, γ

i
xxx), τ i

〉
,

we get

γt = −2
γxxxx

|γx|4
+ f̃(γxxx, γxx, γx) .

Proceeding as for the motion equations (5) we arrive to the following
system:

(7)



γit(t, x) = −Ai(t, x)νi(t, x)− T i(t, x)τ i(t, x)

γ1 (t, y) = γ2 (t, y) = γ3 (t, y) for y ∈ {0, 1}
γixx(t, y) = 0 for y ∈ {0, 1}∑3
i=1

(
2kisν

i − µτ i
)

(t, y) = 0 for y ∈ {0, 1}
γi(0, x) = ϕi(x)

for every t ∈ [0, T ) , x ∈ [0, 1] and for i ∈ {1, 2, 3} with ϕi admissible
initial parametrization. Once solved in a unique way system (7), the
last step is to pass from the parametrizations back to the curve and
the degenerate geometric problem. A crucial point is to check that the
tangential velocity does not change the geometry of the problem, and
can always be obtained by reparametrizing the curves in the right way.

3.3. Long time behavior

Recently also the long time behavior of the elastic flow of networks
has been considered (see [18, 9]).

Theorem 3. Let N0 be a geometrically admissible initial network.
Suppose that (N (t))t∈[0,Tmax) is a maximal solution to the elastic flow

with initial datum N0 in the maximal time interval [0, Tmax) with Tmax ∈
(0,∞) ∪ {∞}. Then

Tmax =∞
or at least one of the following happens:

(i) the inferior limit of the length of at least one curve of N (t) is
zero as t↗ Tmax.

(ii) at one of the triple junctions

lim inf
t↗Tmax

max
{∣∣sinα1(t)

∣∣ , ∣∣sinα2(t)
∣∣ , ∣∣sinα3(t)

∣∣} = 0 ,

where α1(t), α2(t) and α3(t) are the angles at the respective
triple junction.
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We observe that existence of a global weak solution for a second
order gradient flow for the energy E(N ), fixing the length of the curves,
has been established in [26].

§4. Open problems

We list below a few open questions which we find interesting.

4.1. Statics

- Is the minimizer of Theorem 1 unique? Is it an embedded,
symmetric Theta–network?

- Does Theorem 1 hold if two angles are greater then 3π
4 or in-

stead there exists a minimizer of Problem (4) with a 4–point
in the class of Theta-networks(α1,α2,α3)?

- Generalize Problem (4) to networks composed of N curves; in
particular find the lower semicontinuous envelope of the energy
in general situations (for result in this direction we refer to [5,
28] in the case N = 1 in the more complicated setting of elastic
clusters).

4.2. Dynamics

- Analysis of the possible singularities listed in Theorem 3.
- Definition of the flow past singularities.
- Definition of a global weak solution (for instance by variational

schemes such as minimizing movements).
- Are there self–similar (for instance translating or rotating) so-

lutions of the elastic flow?
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