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Introduction

Recent years have witnessed an increasing interest towards Analysis and Geometry in
Metric Spaces, in the perspective of generalizing to such structures classical methods
and results. Many areas of research have therefore been investigated, such as Sobolev
spaces [93, 94], the theory of quasiconformal maps [98] and typical subjects of Ge-
ometric Measure Theory such as currents [7] and rectifiable sets [8, 4, 5, 150, 104];
see also [90, 91, 92, 162, 11, 97, 13], and the references therein.

Carnot-Carathéodory spaces are a particular class of metric spaces in which these
investigations have been carried out with prosperous results. Historically, the first
items of this type appear in a 1909 work of C. Carathéodory [38], where a thermo-
dynamic process is represented by a curve in Rn and the heat exchanged during it
by the integral of a suitable 1-form θ along the same curve. The physicist J. Carnot
proved the existence of states that are not connectable by means of adiabatic pro-
cesses: in other words, by curves along which θ vanishes, that nowadays would be
called horizontal. The problem of connecting points by means of horizontal curves,
i.e. curves whose derivative lies in a proper subspace of the whole tangent bundle,
was attacked by P. K. Rashevsky [151] and W. L. Chow [45]. They independently
proved that a sufficient condition for connectivity is the distribution of subspaces Lie
generating the whole tangent space at every point. This condition has subsequently
played a key role in several branches of Mathematics (e.g. Nonholonomic Mechan-
ics, subelliptic PDE’s and Optimal Control Theory), under the different names of
“total nonholonomicity”, “Hörmander condition”, “bracket generating condition”
and “Chow condition”. Let us remark that these results fit the ones by Carnot and
Carathéodory showing that θ is integrable, i.e. θ = T dS for suitable functions S, T ,
which implies in particular that ker θ does not Lie generate the whole tangent space.

A Carnot-Carathéodory (CC) space is an open subset Ω ⊂ Rn (or, more generally,
a manifold) endowed with a familyX = (X1, . . . , Xm) of vector fields such that every
two points x, y ∈ Ω can be joined, for some T > 0, by an absolutely continuous curve
γ : [0, T ]→ Ω such that

γ̇(t) =

m∑

j=1

hj(t)Xj(γ(t)) and |h(t)| ≤ 1 for a.e. t .

iii



iv Introduction

We will call subunit such a curve and, according to the terminology in [90] and [145],
we define the Carnot-Carathéodory distance between x and y to be

dc(x, y) = inf{T ≥ 0 : there exists a subunit curve γ : [0, T ]→ Rn

such that γ(0) = x and γ(T ) = y} .

As we said earlier, Chow condition ensures connectivity of points by means of subu-
nit curves, whence dc is an actual finite distance. We stress here some peculiarly
non-Riemannian features of dc, such as non uniqueness of geodesics (even in small
neighbourhoods), its anisotropic behaviour (there are directions along which dc ≃
| · |1/j , j > 1 – see the Nagel-Stein-Wainger Ball-Box Theorem [142]) and the fact
that the Hausdorff dimension is strictly bigger than the topological one.

Among CC spaces, a fundamental role is played by Carnot groups. These are
finite dimensional, connected and simply connected Lie groups G whose Lie algebra
g of left invariant vector fields is stratified, i.e. it can be written as

g = g1 ⊕ · · · ⊕ gι

for suitable subspaces gj’s with the property that gj+1 = [g1, gj ] and [g1, gι] = {0};
the integer ι is called the step of G. Such groups can be endowed with a natural CC
structure given by a basis X = (X1, . . . , Xm) of the first layer g1. The importance
of Carnot groups (also known as stratified groups) arose evident in [132], where it
is proved that a suitable blow-up limit of a CC space at a generic point is a Carnot
group. In other words, Carnot groups can be seen [21, 128] as the natural “tangent”
spaces to CC spaces (exactly as Euclidean spaces are tangent to manifolds), and
therefore can be considered as local models of general CC spaces. Moreover, they
possess a rich enough structure for analytical and geometric investigations to be
carried on: in particular, we have to mention the presence of a one-parameter family
of group isomorphism, the so called homogeneous dilations δr, r > 0. We recall that,
in Carnot groups, the CC distance dc is left invariant and homogeneous, i.e.

dc(zx, zy) = dc(x, y) and dc(δr x, δr y) = r dc(x, y) for all x, y, z ∈ G, r > 0.

Anisotropicity is also evident in this setting, as

dc(e, exp(sX)) = C(X)|s|1/j if X ∈ gj ,

where e is the group identity. It is well known that the Hausdorff dimension of G

is Q :=
∑ι

j=1 j dim gj > n. Beautiful accounts on CC spaces and Carnot groups,
together with exaustive references, can also be found in [135] and [119].

Even before the formal introduction of CC spaces, their structure proved a key
tool in several areas of research, such as hypoelliptic equations [102, 158], dege-
nerate elliptic equations [28, 71, 72, 88, 70, 76, 108] and singular integrals [51]; see
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also [142, 168, 164] and the more recent results [46, 84, 140, 141, 160, 34, 17, 37, 36].
It is worthwile to remind that Hörmander [102] proved the hypoellipticity of the sub-
Laplacian operator

∆X :=

m∑

j=1

X2
j

in case bracket generating condition holds. We should mention here also Sobolev
spaces theory and its connections with Poincarè-type inequalities [103, 74, 32, 85,
111], the theory of quasiconformal mappings [107, 109] and a suitable differential
calculus on CC spaces [59, 133, 125], but this list of subjects is surely incomplete.
Moreover, many questions are still open, even among the fundamental ones: as an
example, let us recall the problem of regularity of CC geodesics [99, 165, 166, 95,
115, 22, 2, 1, 134, 169, 29, 113]. We want to stress here that recently the importance
of CC spaces has arisen evident as they have been used to formalize mathematical
models of areas of the visual cortex [149, 50] and of ear’s structure [152, 153].

The attempt to develope a Geometric Measure Theory (see [69, 163, 68, 67,
129, 61, 139, 3]) in CC spaces is more recent; the first result in this sense probably
traces back to the proof of the isoperimetric inequality in the Heisenberg group [144].
About isoperimetric inequality we should mention also [32, 75] and [85]. An essential
item of Geometric Measure Theory such as De Giorgi’s notion of perimeter [62, 63,
64] has been extended in a natural way to CC spaces, by means of the so called
X-perimeter (see [32, 23, 26, 77, 35, 54, 121, 123, 57, 101]): the X-perimeter of a
measurable set E ⊂ Ω is defined as

||∂E||X := sup

{∫

E

divXϕ : ϕ ∈ C1
c(Ω,R

m), |ϕ| ≤ 1

}
,

where divXϕ = −∑m
j=1X

∗
jϕj and X∗

j is the formal adjoint operator to Xj. The
X-perimeter measure has good natural properties, such as an integral represen-
tation [137] in case of sets with smooth boundary, or its (Q − 1)-homogeneity
in Carnot groups setting. More generally, it is also possible to give a good defi-
nition of functions of bounded X-variation [26, 32, 73, 77, 10], which fits the one
given for functions in general metric spaces [131]. The theory of minimal sur-
faces [89] has been investigated [85, 56, 147, 41, 87, 42, 148, 43, 30, 31], and also
differentiability of Lipschitz maps [145, 127, 39, 105, 170, 171, 40], fractal geom-
etry [18, 16, 19], area and coarea formulae [77, 117, 118] and the isoperimetric
problem [114, 55, 112, 156, 157, 136, 100, 44, 155] provided prosperous research
themes. More recently, Bernstein type problems in the Heisenberg group have been
attacked with different formulations [42, 86, 157, 60, 20, 58, 138]. However, basic
techniques of classical Euclidean Geometry do not admit any counterpart in the CC
settings, like Besicovitch covering theorem [154], while many others, like extension
of Lipschitz maps between groups, are still open or only partially solved [124].
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Another item which has been deeply analyzed is the possibility of giving good
definitions of rectifiability [79, 80, 146, 52] and currents. The classical Federer’s def-
inition of rectifiability [69], given in terms of Lipschitz images of Euclidean spaces,
does not suit the geometry of CC spaces, which in general are purely unrectifi-
able [161]. However, this problem can be amended by considering instead noncritical
levels of functions whose horizontal derivatives are continuous [73, 79, 80, 48]: no-
tice that rectifiable sets in this new sense can be highly irregular from the Euclidean
viewpoint [106]. It is widely recognized that this notion of rectifiability fits quite
well the nature of CC spaces: let us remind for instance that rectifiability properties
of sets of finite X-perimeter have been proved [81, 47, 82, 9]. In general, however, a
good theory of currents in these settings is far from being achieved [83, 159], expe-
cially for high codimension and even for relatively “good” objects such as Euclidean
surfaces. One of the main problems is that the behaviour of a surface seems to
depend on the “position” of the tangent space with respect to the stratification. We
recall in particular the notion of characteristic points, which received great atten-
tion [14, 42, 120, 122, 123] since they can be considered irregular points from the
viewpoint of intrinsic geometry.

We should mention at this point the remarkable paper [79], where the problem of
rectifiability of finite X-perimeter sets is considered in the setting of the Heisenberg
group Hn (see [143, 164, 29] and the recent monograph [33]). The latter is the step
2 Carnot group with stratification h1 ⊕ h2, where

h1 = span {X1, . . . , Xn, Y1, . . . , Yn} , h2 = span {T}
and the only nonvanishing commutator relations are given by [Xj, Yj] = −4T . A
set is called H-rectifiable if contained, up to negligible sets, in a countable union of
H-regular surfaces, i.e. level sets of functions f : Hn → R such that (X1f, . . . , Ynf)
is continuous and nonvanishing. In [79] it is proved that the X-perimeter measure
(rather called H-perimeter) of a set of finite H-perimeter is concentrated on a recti-
fiable set (on which also a blow-up result holds), and moreover an implicit function
theorem for H-regular surfaces is given. More precisely, if the H-regular surface S
is the level set of a function f with X1f 6= 0, then there exists a unique intrinsic
parametrization

φ : ω ⊂ V1 → R

such that S = Φ(ω). Here we have set ω to be a (relatively) open subset of the
normal subgroup

V1 := exp
(
span {X2, . . . , Yn, T}

)
≡ R

2n ,

and the map Φ is linked to φ via the formula

Φ(A) := exp(φ(A)X1)(A) , A ∈ ω .
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We will also say that S is the intrinsic graph of φ. This structure theorem will
provide a crucial starting point for many of our discussions.

The title of the thesis is “Submanifolds in Carnot groups”: we will in turn con-
sider Euclidean or even intrinsic regular submanifolds, and we will carry on their
analysis in the model setting of Carnot groups. In particular, our aim will be
to examine their most basic properties from the viewpoint of Geometric Measure
Theory, considerig for instance blow-up limits, perimeter measures, area formu-
lae, parametrizations, minimal surface equations, etc. The original contributions
of the author are illustrated in Chapters 2, 4 and 5, and are contained in the pa-
pers [12], [20], [126] and [25].

The structure of the book is the following. In Chapter 1 we state the main
features about CC spaces and Carnot groups in particular. In Section 1.1 we recall
the definition of Carnot-Carathéodory distance and the Chow-Rashevsky theorem,
and then we pass to a brief analysis of functions with bounded X-variation and of
sets of finite X-perimeter; conditions for the existence of X-perimeter minimizing
sets are provided. Section 1.2 is entirely concerned with Carnot groups: after a brief
introduction on Lie groups, we pass to the analysis of Carnot groups, with particular
emphasis on their most relevant peculiarities, such as homogeneous dilations, graded
coordinates and the structure of left invariant vector fields. Also, we will recall their
basic metric properties and the classical technique of convolution in homogeneous
groups.

Chapter 2 is devoted to the exposition of the results obtained in [126] in col-
laboration with V. Magnani. In Section 2.1 we state some definitions which will
be crucial in the rest of the Chapter; we recall in particular the one of degree of a
p-vector τ , which correspond to a sort of stratification of Λp(g) analogous to the one
of the algebra g. This allows us to define, for any given p-dimensional submanifold
S, its degree d(S) as the maximum among the degrees of the tangent p-vectors τS(x)
at x ∈ S. Similar notions of degree already appeared in [91] 0.6.B (see also [35])
and correspond to a sort of “pointwise” Hausdorff dimension of the surface. In Sec-
tion 2.2 we prove (see Theorem 2.19) that the intrinsic blow-up limit (i.e., according
to homogeneous dilations) of S exists at points x where τS(x) has maximum degree
d = d(S) and coincides with (a left translation of) a subgroup ΠS(x). The technique
used to obtain this result, which is probably one of the main contributions of [126],
consists in foliating a neighbourhood of a point x with maximum degree by means of
a certain family of curves γ(·, λ), λ ∈ Sp−1. These curves, up to higher order terms,
turn out to be invariant under dilations, i.e. of the form γ(t, λ) = x · (δt(y)) for a
suitable y = y(λ) ∈ ΠS(x): see Lemma 2.15. The regularity we require for S is C1,1.
As an immediate consequence (see Theorem 2.20 and Corollary 2.21), around a point
with maximum degree the spherical d-dimensional Hausdorff measure Sd possesses
a density with respect to a fixed Riemannian surface measure on S. Therefore, the
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Sd measure of the set of points with maximum degree can be easily computed via
the integral representation of Corollary 2.21. These observations are contained in
Section 2.3, where we introduce the “natural” measure µS associated with S. An
immediate question rising up is then the one of the d-negligibility of points with
non-maximum degree, which we are able to prove, in Theorem 2.22, for any step
2 Carnot group. We also compare these results with other ones already known in
literature. As an application, in Section 2.4 we analyse cases of submanifolds with
topological dimension 2 in the Engel group E4.

Beginning with Chapter 3, for the rest of the book we focus our attention on the
Heisenberg group H

n; for computational convenience, rather than the CC metric dc
we will consider the equivalent distance d∞ defined as

d∞
(
e, exp(tT +

∑n
j=1 xjXj + yjYj)

)
:= max{|(x, y)|R2n, |t|1/2} ,

d∞(P,Q) = d∞(e, P−1Q) P,Q ∈ Hn ,

where e is the identity of the group. In Section 3.1 we recall some basic features of
Hn and of the H-perimeter measure in particular, and in the following Section 3.2
we introduce C1

H
functions as those maps f : H

n → R such that the distribution
∇Hf = (X1f, . . . , Ynf) is represented by a continuous function. The main result
of this Section is the Whitney-type extension Theorem 3.12 (see [79]), of which we
give a complete proof. In Section 3.3 we define H-regular surfaces as level sets of
C1

H
functions with nonvanishing horizontal gradient ∇H, and we prove the already

mentioned Implicit Function Theorem 3.16 of [79]. The last Section 3.4 contains a
brief summary of the most important issues about rectifiability in the Heisenberg
group. Almost all the material of Chapter 3 is taken from [79].

In Chapter 4 we show the results contained in [12] in collaboration with L.
Ambrosio and F. Serra Cassano. In Section 4.1 we deepen the notion of intrinsic
graph, introducing a suitable homogeneous structure on V1. We utilize such a struc-
ture in the following Section 4.2 to define, for a fixed φ : ω → R, the concepts
of W φ-differentiability and uniform W φ-differentiability (see Definition 4.9). These
immediately yield the notion of the W φ-differential of a function ψ : ω → R, which
is a continuous function from ω to R2n−1 in case of uniformly W φ-differentiable
functions. These notions of differentiability could sound quite strange (indeed, they
depend of φ itself!), nevertheless they provide the key tool to characterize all the
maps which parametrize H-regular surfaces. In fact, in Section 4.3 we prove that a
graph S := Im Φ is an H-regular surface if and only if its parametrization φ is uni-
formly W φ-differentiable (see Theorem 4.17); about this result we have to mention
also [48]. Therefore the W φ-differential W φφ : ω → R2n−1 is a continuous function
and it is possible to prove (see Proposition 4.3) an area-type formula

c(n)SQ−1(S) =

∫

ω

√
1 + |W φφ|2 dL2n ,
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which is formally identical to the classical one for Euclidean graphs. This suggests
the idea, also supported by a suitable formula for the horizontal normal, that the
intrinsic gradient W φφ is the correct counterpart of the Euclidean one. The impor-
tance of such a gradient will be evident throughout Chapters 4 and 5; see also [24].
Section 4.4 is devoted to the problem of characterizing those maps which are uni-
formly W φ-differentiable. The main result of this Section, Theorem 4.22, shows that
they are exactly those functions φ such that

(X2φ, . . . , Xnφ, Y1φ− 2T (φ2), Y2φ, . . . , Ynφ)

is represented, in distributional sense, by a continuous function on ω (which turns out
to coincide with W φφ) provided it is possible to approximate φ, locally uniformly
together with its W φ-differential, by means of smooth functions. An interesting
application is Corollary 4.32, that furnishes an easy recipe to produce surfaces which
are not Euclidean C1, but still H-regular. We want to mention here that a key tool
in the proof of Theorem 4.22 is provided by the exponential maps of W φ (recall
that in general φ lacks of regularity), which can be thought as those curves that are
lifted, via Φ, to horizontal curves on S. The last Section 4.5 deals with the problem
of finding a biLipschitz metric model space for C1

H
surfaces in H1: in [52] this space

was individuated in (R, | · |)× (R, | · |1/2) for C1 regular surfaces. In Theorem 4.35
(see also [25]) we show that this is no longer true for general H-regular surfaces, in
the sense that we find one of them which does not admit biLipschitz mappings with
that space.

Chapter 5 contains the upshots of the paper [20] and is focused on minimal
surfaces in Hn and the Bernstein problem in particular. In Section 5.1 we extend to
CC spaces the classical method of calibrations, giving sufficient conditions for sets
to be X-perimeter minimizing. Applications to meaningful situations are provided,
also giving some flavour about regularity of minimal surfaces. In Section 5.2, star-
ting from the area formula for intrinsic graphs, we derive suitable first and second
variation formulae which will be of great use in what follows. We stress here that
the minimal surface equation is formally analogous to the classical one and reads as

W φ · W φφ√
1 + |W φφ|2

= 0 on ω ,

thus enforcing the idea that W φ is the proper replacement of Euclidean gradient.
Section 5.3 is therefore devoted to the study of the structure of entire solutions
of this equation in H

1, where it can be rewritten as the “double Burgers” equa-
tion W φ(W φφ) = 0. The main technical tool for this analysis is the study of the
behaviour of φ along characteristics, i.e. integral lines of the vector field W φ :=
Y1 − 4φT . Finally, in the last Section 5.4 we attack the Bernstein problem for in-
trinsic graphs in Hn: more precisely, we observe that parametrizations of maximal
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subgroups of Hn (or laterals of them) are trivial entire solutions of the minimal
surface equation, and we ask whether there are different ones. A family of such
solutions in the first Heisenberg group H1 was exhibited in [60], were it was also
proved that these examples are not perimeter minimizing. In our main result, The-
orem 5.23, we use the issues of Section 5.3 to show that any entire solution which
does not parametrize a subgroup (or laterals) is not a minimizer of the H-perimeter,
but just a stationary point of the area functional. Conversely, a calibration argument
immediately ensures that subgroups are actual minimizers. Using the well known
classical results by Bombieri, De Giorgi and Giusti [27], for n ≥ 5 we also provide
solutions to the minimal surface equation in H

n that do not parametrize subgroups
(see Subsection 5.4.2); as far as we know, the Bernstein problem for intrinsic graphs
is still open for n = 2, 3, 4.
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Basic notation

⋐ compactly contained
∆ simmetric difference of sets
#A cardinality of a set A
⊕ direct sum of vector spaces
◦ composition of functions
Rn n-dimensional Euclidean space
∂i i-th vector of the standard basis of Rn

∂if partial derivative of the function f along ∂i
∂f
∂x
, ∂xf, fx partial derivative of f with respect to x

Ω open set in R
n

Ln Lebesgue measure in Rn

〈x, y〉 standard Euclidean inner product of x, y ∈ Rn

|x| Euclidean norm of x ∈ Rn

ωk Lebesgue measure of the unit ball in Rk

χE characteristic function of a measurable set E ⊂ Rn
∫
– average integral
f♯µ push-forward of the measure µ via f
µ A restriction of a measure µ to a set A
γ̇ time derivative of a curve γ
G a Carnot group
Hn n-th Heisenberg group
g Lie algebra of G

h Lie algebra of H
n

Λp(g) space of p-vectors of g

[X, Y ] commutator of vector fields X, Y ∈ g

x · y group product between x, y ∈ G

ℓx left translation by an element x ∈ G

δr homogeneous dilations in G

⋆ convolution on groups, see Subsection 1.2.7

1



2 Basic notation

TM, TxM tangent bundle to a manifold M and tangent space at x
HM,HxM horizontal subbundle to M and horizontal subspace at x
∇f Euclidean gradient of f
Xf gradient of f with respect to the vector fields X1, . . . , Xm

∇Hf Heisenberg gradient of f
div divergence
divX X-divergence
divH H-divergence
spt f support of f
Ck(Ω) continuously k-differentiable real functions in Ω
Ck
c (Ω) functions in Ck(Ω) with compact support in Ω

C1
H
(Ω) continuously ∇H-differentiable functions in Ω

BVX functions with bounded X-variation
BVH functions with bounded H-variation
||∂E||X X-perimeter of E
||∂E||H H-perimeter of E
dc Carnot-Carathéodory distance
|| · ||∞, d∞ infinity norm and associated distance on Hn, see (3.1)
B(x, r) open Euclidean ball
U(x, r) open sub-Riemannian ball (with respect to a fixed metric)
Hd,Sd Euclidean d-dimensional Hausdorff and spherical Hausdorff

measures
Hd
c ,Sdc d-dimensional Hausdorff measures induced by dc
Hd

∞,Sd∞ d-dimensional Hausdorff measures on H
n induced by d∞

Hd
ρ,Sdρ d-dimensional Hausdorff measures induced by a distance ρ



Chapter 1

The Sub-Riemannian geometry of
Carnot groups

This Chapter, which will provide the basic material used throughout the book, is
devoted to the study of Carnot-Carathéodory (CC) spaces, and of Carnot groups in
particular. The presentation will be self-contained: for a more detailed one we refer
to [135] (for CC spaces) and to [119] (for Carnot groups), from which we will take
most of the material. We refer to the Introduction for a motivational and historical
summary of the subjects.

In Section 1.1 we provide a brief exposition of general features concerning CC
spaces; we start, in Subsection 1.1.1, by recalling the definitions of subunitary curve
and of CC metric, which is an actual distance provided Chow’s connectivity condi-
tion (1.5) holds. Subsection 1.1.2 deals instead with the notion of X-perimeter: we
introduce it as the total X-variation (Definition 1.4) of the characteristic function of
a set E, and we define X-Caccioppoli sets as those with finite X-perimeter. For such
sets a representation result for the X-perimeter holds (see Proposition 1.8) which
allows us to introduce the horizontal normal νE ; moreover, for sets with smooth
boundary (see Theorem 1.9) this representation turns into an integral one, that
furnishes also an explicit formula for νE. Finally, in Theorem 1.11, stated without
proof, we give general sufficient conditions for the existence of perimeter minimizing
sets.

Section 1.2, treating of Carnot groups, begins with some standard facts about
Lie groups and algebras (Subsection 1.2.1): we underline in particular Theorem 1.15,
which will ensure that Carnot groups G are diffeomorphic to some R

n, and the Baker-
Campbell-Hausdorff formula (1.19). Carnot groups are introduced, together with
homogeneous dilations δr, in the following Subsection 1.2.2; then (Subsection 1.2.3)
we will focus on properties of canonical representations of G by means of the so-
called graded coordinates, i.e. exponential coordinates arising from an adapted

3
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basis. Examples of graded coordinates are provided in Subsection 1.2.4 in the specific
situations of Heisenberg H

n and Engel E
4 groups. In Subsection 1.2.5 we make use of

graded coordinates to study the properties of left invariant vector fields, showing that
their components are homogeneous polynomials: this result, that will be crucial for
several reasonings in Chapter 2, is contained in Proposition 1.24 and is based on the
already mentioned Baker-Campbell-Hausdorff formula. The CC structure on G is
introduced in Subsection 1.2.6: the CC metric turns out to be homogeneous, i.e. left
invariant and dilation scaling (see Definition 1.27). Any two homogeneous distances
are biLipschitz equivalent, hence the homogeneous Hausdorff dimension Q of G (with
respect to any of them) is well defined, and the corresponding X-perimeter (rather
called G-perimeter) is (Q − 1)-homogeneous with respect to dilations. Finally, in
Subsection 1.2.7 we recall the classical technique of convolution on homogeneous
groups.

1.1 Carnot-Carathéodory spaces

1.1.1 Carnot-Carathéodory distance

Let X = (X1, . . . , Xm) be a given family of Lipschitz continuous vector fields on R
n

Xj(x) =

n∑

i=1

aij(x)∂i, j = 1, . . . , m

with aij ∈ Lip(Rn) (j = 1, . . . , m, i = 1, . . . , n). The subspace of Rn ≡ TxR
n

generated by X1(x), . . . , Xm(x) is called horizontal subspace at the point x, and it
will be denoted by HxR

n; the collection of all horizontal fibers HxR
n forms the

horizontal subbundle HR
n of TR

n.
We call subunit a Lipschitz continuous curve γ : [0, T ] −→ Rn such that

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) and
m∑

j=1

h2
j (t) ≤ 1 for a.e. t ∈ [0, T ], (1.1)

with h1, . . . , hm measurable coefficients.

Definition 1.1. We define the Carnot-Carathéodory (CC) distance between the
points x, y ∈ Rn as

dc(x, y) = inf{T ≥ 0 : there exists a subunit path γ : [0, T ]→ Rn

such that γ(0) = x and γ(T ) = y}. (1.2)

If the above set is empty we put dc(x, y) = +∞.
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We will use the notation U(x, r) to denote balls with respect to the CC distance.
It is easy to recognize that if dc is finite on R

n, i.e. dc(x, y) < ∞ for every x, y ∈
Rn, it turns out to be a metric on Rn: the metric space (Rn, dc) is called Carnot-
Carathéodory (CC) space (see, for instance, [91] and [134]). In particular we shall
generally assume the following connectivity condition

dc is finite and the identity map (Rn, dc)→ (Rn, | · |) is a homeomorphism. (1.3)

There is a large variety of situations where condition (1.3) is satisfied; among
them the most important are certainly the CC spaces satisfying Chow’s condition,
also called Sub-Riemannian spaces. Recall that, given two vector fields Y1, Y2 ∈
C∞(Rn,Rn), we define the commutator [Y1, Y2] as the C∞ vector field given by
Y1Y2−Y2Y1 (as common in literature, we tacitly identify vector fields and first order
operators); if Y1 =

∑n
i=1 ai(x)∂i and Y2 =

∑n
i=1 bi(x)∂i, in coordinates [Y1, Y2] is

given by

[Y1, Y2](x) =

n∑

i,j=1

(
aj(x)

∂bi
∂xj

(x)− bj(x)
∂ai
∂xj

(x)

)
∂i. (1.4)

This product is antisymmetric ([Y1, Y2] = −[Y2, Y1]) and satisfies Jacobi’s identity

[Y1, [Y2, Y3]] + [Y2, [Y3, Y1]] + [Y3, [Y1, Y2]] = 0.

Therefore if the vector fields X1, . . . , Xm are of class C∞, they generate a Lie algebra
L(X1, . . . , Xm) (see Definition 1.13).

Definition 1.2. We say that the C∞ vector fields X1, . . . , Xm satisfy Chow’s con-
dition if

rank L(X1, . . . , Xm) = n (1.5)

for all x ∈ Rn.

The proof of the following well-known result can be found in [45, 151] and [110].

Theorem 1.3. If the vector fields X1, . . . , Xm satisfy Chow’s condition, then the
metric dc verifies (1.3). In particular, there is always a subunit path connecting any
two points x, y ∈ Rn and the topology induced by dc is the usual Euclidean one on
Rn.

1.1.2 X-perimeter and X-Caccioppoli sets

Whenever Ω is an open subset of R
n and f : Ω → R is a measurable function we

define its horizontal gradient Xf as

Xf = (X1f, . . . , Xmf)
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where the previous equality must be understood in distributional sense. If ϕ =
(ϕ1, . . . , ϕm) ∈ C1

c(Ω; Rm) we put

divX ϕ := −
m∑

j=1

X∗
j ϕj; (1.6)

here X∗
j is the adjoint operator of Xj in L2(Rn) given by

X∗
j ψ(x) := −

n∑

i=1

∂i(aij ψ)(x).

Observe also that ϕ can be canonically identified with the section of the horizontal
bundle given by

∑m
j=1 ϕjXj ; this identification is also one-to-one if X1, . . . , Xm are

linearly independent.

Definition 1.4. Let Ω be an open subset of Rn; we say that a function f ∈ L1(Ω)
belongs to the space BVX(Ω) of functions with bounded X-variation if there exists
a m-vector valued Radon measure µ = (µ1, . . . , µm) on Ω such that

∫

Ω

fdivXϕ = −
m∑

j=1

∫

Ω

ϕj dµj

for all ϕ ∈ C1
c(Ω,R

m).

It is not difficult to see that f ∈ L1(Ω) is of bounded X-variation if and only if
its X-variation in Ω

|Xf |(Ω) := sup

{∫

Ω

f divXϕ : ϕ ∈ C1
c(Ω,R

m), |ϕ| ≤ 1

}

is finite; moreover, we have |Xf |(Ω) = |µ|(Ω), where µ is as in Definition 1.4.
Observe that, if f is regular, then µj = Xjf Ln

As in the Euclidean case, an important property of BVX functions is the lower
semicontinuity of the X-variation with respect to the L1

loc convergence:

Proposition 1.5. Let f, fh ∈ L1(Ω) be such that fh → f in L1
loc(Ω); then

|Xf |(Ω) ≤ lim inf
h→∞

|Xfh|(Ω).

Proof. For any test function ϕ ∈ C∞
c (Ω,Rm) with 0 ≤ |ϕ| ≤ 1 we have

∫

Ω

f divXϕ = lim
h→∞

∫

Ω

fh divXϕ ≤ lim inf
h→∞

|Xuh|(Ω)

and the thesis follows taking the supremum with respect to ϕ.
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An argument using Friedrichs regularization (see [77]) also gives the following
approximation result:

Theorem 1.6. A function f ∈ L1(Ω) belongs to BVX(Ω) if and only if there exists
a sequence {fh}h ⊂ C∞(Ω) ∩ BVX(Ω) such that fh → f in L1(Ω) and

lim
h→∞
|Xfh|(Ω) = lim

h→∞

∫

Ω

|Xfh| = |Xf |(Ω) <∞.

Following the classical De Giorgi’s approach to sets of finite perimeter (see [62]
and [63]), we give the following

Definition 1.7. Given a measurable subset E ⊂ Rn we define the X-perimeter
measure ||∂E||X(Ω) of E in Ω as the total variation in Ω of the characteristic function
χE , i.e.

||∂E||X(Ω) := sup

{∫

E

divXϕ : ϕ ∈ C1
c(Ω,R

m), |ϕ| ≤ 1

}
. (1.7)

We say that E is an X-Caccioppoli set in Ω if ||∂E||X(Ω) <∞.

Riesz representation Theorem immediately gives the following

Proposition 1.8. If E is an X-Caccioppoli set in Ω, then there exist a unique
||∂E||X-measurable function νE : Ω→ Rm such that

|νE|Rm = 1 ||∂E||X-a.e. in Ω∫

E

divXϕdLn = −
∫

Ω

〈ϕ, νE〉Rm d||∂E||X for all ϕ ∈ C1
c(Ω,R

m).

In the following we will call νE horizontal inward normal to E (see [77]).
Whenever E is an open subset with (Euclidean) Lipschitz boundary, one can

give an integral representation for the X-perimeter measure:

Theorem 1.9. Let E ⊂ Rn be a bounded open set with Lipschitz boundary and let
Ω ⊂ Rn be an open set. Then

||∂E||X(Ω) =

∫

∂E∩Ω

(
m∑

j=1

〈Xj,n〉2
)1/2

dHn−1, (1.8)

where n is the Euclidean unit inward normal to ∂E and the scalar products appearing
in (1.8) are the usual Euclidean ones. Moreover, one has the equality of measures

XχE = νE ||∂E||X =
(
〈X1,n〉, . . . , 〈Xm,n〉

)
Hn−1 ∂E. (1.9)
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Proof. The proof we are going to present can be found in [135], Theorem 5.1.3.
First of all, we notice that by divergence Theorem

∫

E

divXϕ =

∫

E

n∑

i=1

∂i

(
m∑

j=1

aijϕj

)

= −
∫

∂E

n∑

i=1

ni

m∑

j=1

aijϕj dHn−1 = −
∫

∂E

〈ϕ, ν〉Rm dHn−1 (1.10)

for any ϕ ∈ C1
c(Ω,R

m) with ||ϕ||∞ ≤ 1, where we have set

ν :=
(
〈X1,n〉, . . . , 〈Xm,n〉

)
∈ R

m.

Thesis (1.9) immediately follows from (1.10).
Since |ϕ| ≤ 1, it follows that

||∂E||X(Ω) ≤
∫

∂E∩Ω

|ν| dHn−1; (1.11)

and so (1.8) will follow in one stroke if we prove also the converse inequality in (1.11).
Observe that the set

H := {x ∈ ∂E ∩ Ω : n(x) exists and ν(x) 6= 0}

is Hn−1-measurable and, since ∂E is Lipschitz, ν is Hn−1-measurable on H . For
fixed ǫ > 0, by Lusin Theorem there exists a compact set Kǫ ⊂ H such that
Hn−1(H \Kǫ) ≤ ǫ and ν is continuous on Kǫ; therefore ν/|ν| 6= 0 is continuous on
Kǫ and so there exists ϕ̃ ∈ C0

c(Ω,R
m) such that

ϕ̃ =
ν

|ν| on Kǫ and |ϕ̃| ≤ 1 on Ω.

A classical regularization argument ensures the existence of a function ϕ ∈ C1
c(Ω)

with ||ϕ||∞ ≤ 1 and ||ϕ̃− ϕ||∞ ≤ ǫ; therefore

||∂E||X(Ω) ≥
∫

E

divX(−ϕ) =

∫

∂E

〈ϕ, ν〉 dHn−1

=

∫

∂E

〈ϕ− ϕ̃, ν〉 dHn−1 +

∫

∂E

〈ϕ̃, ν〉 dHn−1. (1.12)

We estimate the first term on the right hand side of (1.12) as follows
∫

∂E

〈ϕ− ϕ̃, ν〉 dHn−1 ≥ −ǫHn−1(∂E) ||ν||∞ (1.13)
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while, for the second term, one has
∫

∂E

〈ϕ̃, ν〉 dHn−1 =

∫

H

|ν| dHn−1 −
∫

H\Kǫ

|ν| dHn−1 +

∫

H\Kǫ

〈ϕ̃, ν〉 dHn−1. (1.14)

Since ∫

H\Kǫ

|ν| dHn−1 ≤ Hn−1(H \Kǫ)||ν||∞ ≤ ǫ ||ν||∞ (1.15)

and ∫

H\Kǫ

〈ϕ̃, ν〉 dHn−1 ≥ −ǫ||ν||∞ (1.16)

and taking into account that ||ν||∞ < ∞, by putting together (1.12), (1.13), (1.14),
(1.15) and (1.16) one obtains

||∂E||X(Ω) ≥
∫

∂E∩Ω

|ν| dHn−1 − ǫ(2 +Hn−1(∂E))||ν||∞,

whence the thesis follows by letting ǫ ↓ 0.

Definition 1.10. We will say that E is a minimizer for the X-perimeter in Ω if

||∂E||X(Ω′) ≤ ||∂F ||X(Ω′)

for any open set Ω′
⋐ Ω and any measurable set F ⊂ R

n such that E∆F ⋐ Ω′.

The existence of perimeter minimizing set with given boundary condition has
been proved in [85]. We give here the general result therein.

Theorem 1.11. Suppose that the CC space (Rn, dc) associated with the family X =
(X1, . . . , Xm) is such that for any set U ⊂ R

n, with diam U < ∞, there exist
constants C1, C2 > 0, 0 < R0 ≤ ∞ and A ≥ 1 such that for any x0 ∈ U and
R ∈]0, R0[ one has

(H.1) the Lebesgue measure Ln is doubling with respect to dc, i.e. Ln(U(x0, 2R)) ≤
C1Ln(U(x0, R)), where U(x, r) denotes balls with respect to dc;

(H.2) for any f ∈ Lip(U(x0, AR)) and any λ > 0

Ln
({
x ∈ U(x0, R) :

∣∣f(x)−
∫
–
U(x0,R)

f
∣∣ > λ

})
≤ C2

R
λ

∫
U(x0,AR)

|Xf |;

(H.3) (Rn, dc) is complete and is a length space, i.e. dc(x, y) = inf l(γ), where the
inf is taken on all continuous curves γ joining x to y, and l(γ) denotes the
length of γ (see [13]).
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Then for any open set Ω ⊂ U with diam(Ω) < R0/2 and any X-Caccioppoli set
L ⊂ R

n there exists an X-Caccioppoli set E ⊂ R
n such that E∆L ⊂ Ω which is

perimeter minimizing, i.e.

||∂E||X(Rn) ≤ ||∂F ||X(Rn)

for any F ⊂ Rn such that F∆L ⋐ Ω.

We want to stress here the fact that conditions (H.1), (H.2) and (H.3) are satisfied
in a large class of CC spaces, e.g. whenever the fields X1, . . . , Xm are smooth and
satisfy Chow condition (1.5): see also [103, 142] and [165].

1.2 Carnot groups

1.2.1 Lie groups and algebras

Before stating the definition of Carnot groups, we want to briefly recall some basic
facts on Lie groups and algebras: a more complete description of these structures
can be found in [167].

Definition 1.12. A Lie group G is a manifold endowed with the structure of dif-
ferential group, i.e. a group where the maps

G×G ∋ (x, y) 7−→ xy ∈ G

G ∋ x 7−→ x−1 ∈ G

are of class C∞.

We write e for the identity of the group, while for any x ∈ G we will denote with
ℓx the left translation by x, i.e. the C∞ map y 7−→ xy.

Definition 1.13. A vector space g is a Lie algebra if there is a bilinear and anti-
symmetric map [·, ·] : g× g→ g which satisfies Jacobi’s identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

for all X, Y, Z ∈ g.

Given two subalgebras a, b of a Lie algebra g we will denote with [a, b] the vector
subspace generated by the elements of {[X, Y ] : X ∈ a, Y ∈ b}. We set g1 := g and,
by induction, gk+1 := [g, gk], and will say that g is nilpotent of step ι if gι 6= {0} and
gι+1 = {0}.

One can check that the space Γ(TM) of vector fields on a differential manifold
M is a Lie algebra if endowed with the product [X, Y ] = XY −Y X defined in (1.4).



1.2. Carnot groups 11

Definition 1.14. A vector field X ∈ Γ(TG) on a Lie group G is left invariant if for
any x ∈ G one has

X(x) = dℓx(X(e)).

It is not difficult to prove that X is left invariant if and only if

(Xf)(ℓxy) = X(f ◦ ℓx)(y)

for any f ∈ C∞(G) and x, y ∈ G. We will denote by g the set of left invariant vector
fields of Γ(TG): since a commutator of left invariant fields is left invariant, g is a
Lie algebra. This algebra is canonically isomorphic to the tangent space TeG at the
identity via the isomorphism

TeG ∋ v ←→ X ∈ g such that X(x) = dℓx(v).

We will say that a Lie group G is nilpotent of step k if so is its associated Lie algebra
g.

Given x ∈ G and X ∈ g let us consider the curve γXx solution of the Cauchy
problem {

γ̇Xx (t) = X(γXx (t))

γXx (0) = x.
(1.17)

The curve γXx is defined for any t ∈ R (i.e. left invariant vector fields are complete):
in fact, one has γXx (t+ s) = γXx (s) · γXx (t), and this formula allows to extend γXx to
all times t ∈ R.

In the following we will set exp(X)(x) := γXx (1), where γXx is the solution to the
problem (1.17); the exponential map exp : g→ G is defined as

exp(X) := exp(X)(e).

Therefore one has exp(X)(x) = x exp(X) and so exp(X)
(
exp(Y )

)
= exp(Y )·exp(X)

for all X, Y ∈ g.
We recall the following basic result:

Theorem 1.15. Let G be a nilpotent, connected and simply connected Lie group;
then exp : g→ G is a diffeomorphism.

For X, Y ∈ g let us define C(X, Y ) ∈ g via the formula exp(C(X, Y )) =
exp(X) · exp(Y ); then it is possible to compute explicitly C(X, Y ) thanks to the
Baker-Campbell-Hausdorff formula: for each multi-index of nonnegative integers
α = (α1, . . . , αl) we define

|α| := α1 + · · ·+ αl
α! := α1! · · ·αl!
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and we will say that l is the length of α. If β = (β1, . . . , βl) is another multi-index
of length l such that αl + βl ≥ 1, and if X, Y ∈ g we set

Cαβ(X, Y ) :=

{
(adX)α1(adY )β1 . . . (adX)αl(adY )βl−1 Y if βl > 0
(adX)α1(adY )β1 . . . (adX)αl−1X if βl = 0.

(1.18)

We used the notation (adX)(Y ) := [X, Y ], agreeing that (adX)0 is the identity
map. Then the Baker-Campbell-Hausdorff formula states that

C(X, Y ) :=
∞∑

l=1

(−1)l+1

l

∑

α=(α1,...,αl)
β=(β1,...,βl)
αi+βi≥1 ∀i

1

α!β!|α+ β|Cαβ(X, Y ) (1.19)

whenever the summation at the right hand side makes sense; in particular, (1.19)
holds in nilpotent groups.

1.2.2 Carnot groups

Definition 1.16. We say that a Lie algebra g is stratified if it admits linear subspaces
g1, . . . , gι such that

g = g1 ⊕ · · · ⊕ gι
gk = [g1, gk−1] for k = 2, . . . , ι and [g1, gι] = {0}. (1.20)

We will call stratification a decomposition of g as in (1.20).

A group G is called stratified if its Lie algebra admits a stratification; if G is
finite dimensional and stratified, then it is also nilpotent of step ι, where ι is the
same integer appearing in (1.20).

Whenever we are in presence of a stratification, it is possible to define a one-
parameter group {δr} of dilations of the algebra; for a fixed r ≥ 0 we set δrX := rkX
if X ∈ gk, and we extend this map to the whole g by linearity. It is immediate to
verify the following properties of dilations:

• δrs = δr ◦ δs;

• δr([X, Y ]) = [δrX, δrY ];

• δr(C(X, Y )) = C(δrX, δrY )

for all X, Y ∈ g and all r, s > 0. In the following, it will be sometimes convenient
to agree that δrX = −δ|r|X for r < 0.



1.2. Carnot groups 13

Definition 1.17. A Carnot group is a finite dimensional, connected, simply con-
nected and stratified Lie group G. If ι is as in Definition 1.16 we will say that G is
a Carnot group of step ι; observe that such a group is also nilpotent of step ι.

One of the basic properties of Carnot groups is the fact that, thanks to Theo-
rem 1.15, the exponential map exp : g → G turns out to be a diffeomorphism:
therefore we can define a one-parameter group of automorphism of G, which we still
denote with {δr}r>0, via the formula δr := exp∗ δr, i.e.

δr(x) = exp
(
δr(exp−1(x))

)
.

From the properties of dilations in Lie algebras we immediately deduce the as-
sociated ones for dilations of Carnot groups:

• δrs = δs ◦ δr, indeed

δrs(x) = exp
(
δrs exp−1(x)

)

= exp
(
δrδs exp−1(x)

)

= exp
(
δr exp−1(exp δs exp−1(x))

)

= exp
(
δr exp−1(δs(x))

)
= δrδs(x)

• δr(x · y) = δr(x) · δr(y), indeed

δr(x · y) = exp δr exp−1(x · y)
= exp δr

(
C(exp−1 x, exp−1 y)

)

= exp
(
C(δr exp−1 x, δr exp−1 y)

)

= exp
(
δr exp−1(x)

)
· exp

(
δr exp−1(y)

)
= δr(x) · δr(y).

1.2.3 Graded coordinates

Very often it is convenient to study Carnot and, more generally, stratified groups in
coordinates, through canonical representations which are called graded coordinates.
Therefore let X1, . . . , Xn be a basis of Lie algebra g of left invariant vector fields;
for given X, Y ∈ g we will have X =

∑n
j=1 xjXj and Y =

∑n
j=1 yjXj for unique

x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn.

Definition 1.18. A system of exponential coordinates associated with the basis
X1, . . . , Xn of g is the map

F : R
n −→ G

x 7−→ exp

(
n∑

j=1

xjXj

)
. (1.21)



14 Chapter 1. The Sub-Riemannian geometry of Carnot groups

The group law we put on Rn is the one that makes F a group isomorphism, i.e.

x · y = z ⇐⇒
n∑

j=1

zjXj = C

(
n∑

j=1

xjXj ,

n∑

j=1

yjXj

)
. (1.22)

It is easy to check that, in this representation, the group identity is the origin 0 and
that x−1 = −x for all x ∈ R

n. In this way R
n, endowed with the group law (1.22),

turns out to be a Lie group, whose Lie algebra is isomorphic to g; since both G

and Rn are nilpotent, connected and simply connected, by Theorem 1.15 the map
F in (1.21) is also a diffeomorphism.

Observe that, up to now, we have not used the fact that G is stratified: therefore
let us consider a Carnot group G with stratified algebra g = g1 ⊕ · · · ⊕ gι, and, for
k = 1, . . . , ι, set mk :=dim gk, nk := m1 + · · ·+ mk and n0 := 0. We will say that
a basis X1, . . . , Xn of g is adapted to the stratification if Xnk−1+1, . . . , Xnk

is a basis
of gk for each k = 1, . . . , ι.

Definition 1.19. A system of exponential coordinates F : R
n → G is a system of

graded coordinates if it is associated with and adapted basis of g.

We will call degree of the coordinate xj the unique positive integer dj such that
ndj−1 < j ≤ ndj

.
Therefore let F : R

n → G be a system of graded coordinates: for the sake of
simplicity we will again denote with δr : Rn → Rn the homogeneous dilations read
in coordinates, so that δr ◦F = F ◦δr. It is easy to check that, in this representation
of the group, one has

δr : R
n → R

n

x 7−→ (rx1, . . . , rxn1, r
2xn1+1, . . . , r

2xn2 , . . . , r
ιxnι−1+1, . . . , r

ιxn)

for r ≥ 0.

1.2.4 Heisenberg and Engel groups

We give here the representation in graded coordinates of two well-known (and pro-
bably the most important ones) examples of Carnot groups, namely the Heisenberg
and Engel group.

The n-th Heisenberg group Hn is the 2n + 1-dimensional Carnot group with
stratified algebra

h = h1 ⊕ h2;

here h1 is 2n-dimensional and generated by the vectors X1, . . . , Xn, Y1, . . . , Y2, while
dim h2 = 1 and h2 = span {T}. The only nonvanishing commutation relationships
among the generators are

[Xj , Yj] = −4T
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for all j = 1, . . . , n, and so h2 = [h1, h1] is the center of the algebra.
Since h is nilpotent of step 2, Baker-Campbell-Hausdorff formula (1.19) reduces

to

C(X, Y ) = X + Y +
1

2
[X, Y ]

and so

C(X, Y ) =

n∑

j=1

(xj + x′j)Xj +

n∑

j=1

(yj + y′j)Yj +

n∑

j=1

(
tj + t′j + 2〈x′jyj〉 − 2〈xjy′j〉

)
Xj

provided (x, y, t), (x′, y′, t′) ∈ Rn ×Rn × R are such that

X =
n∑

j=1

xjXj +
n∑

j=1

yjYj + t T and Y =
n∑

j=1

x′jXj +
n∑

j=1

y′jYj + t′T.

Therefore, through graded coordinates associated with the adapted basis X1, . . . ,
Xn, Y1, . . . , Y2, T , it is possible to represent Hn as R2n+1 = Rn×Rn×R with group
law 


x
y
t


 ·




x′

y′

t′


 =




x+ x′

y + y′

t+ t′ + 2〈x′, y〉 − 2〈x, y′〉




Observe that the group identity is 0 and that, for r > 0, homogeneous dilations are
given by δr(x, y, t) = (rx, ry, r2t).

Let us compute the explicit representation of the left invariant vector fields
Xj , Yj, T : recall that a left invariant vector field X satisfies X(g) = dℓg(X(e))
for any g ∈ G. If ∂1, . . . , ∂2n+1 denotes the standard basis of vectors in R2n+1 we
have Xj(0) = ∂j , Yj(0) = ∂j+n and T (0) = ∂2n+1; since

dℓ(x,y,t)(0) =




I 0 0
0 I 0
2y −2x 1


 ,

where I is the n× n identity matrix, one can compute that

Xj(x, y, t) = dℓ(x,y,t)(∂j) = ∂j + 2yj ∂2n+1

Yj(x, y, t) = dℓ(x,y,t)(∂j+n) = ∂j+n − 2xj ∂2n+1

T (x, y, t) = dℓ(x,y,t)(∂2n+1) = ∂2n+1.

In what follows, we will always deal with the Heisenberg group Hn using this repre-
sentation.

The Engel group E4 is the Carnot group associated with the stratified algebra

e = e1 ⊕ e2 ⊕ e3
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where e1 = span {X1, X2}, e2 = span {X3} and e3 = span {X4}. The only nonvani-
shing commutation relationships among the generators are given by

[X1, X2] = X3, [X1, X3] = [X2, X3] = X4;

since E4 is 3-nilpotent, for all X, Y ∈ e Baker-Campbell-Hausdorff formula becomes

[X, Y ] = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]].

Proceeding as in the Heisenberg group case, we can represent explicitly E4 by
means of graded coordinates associated with the adapted basis X1, X2, X3, X4; in
this way we have E4 ≡ (R4, ·) and the group law is given by




x1

x2

x3

x4


 ·




x′1
x′2
x′3
x′4


 =




x1 + x′1
x2 + x′2
x3 + x′3 + 1

2
(x1x

′
2 − x2x

′
1)

x4 + x′4 + 1
2

[
(x1x

′
3 − x3x

′
1) + (x2x

′
3 − x3x

′
2)
]
+

+ 1
12

(x1 − x′1 + x2 − x′2)(x1x
′
2 − x2x

′
1)



.

Again 0 is the identity element of the group and homogeneous dilations are given
by δr(x1, x2, x3, x4) = (rx1, rx2, r

2x3, r
3x4). Our basis X1, X2, X3, X4 is given in

coordinates by

X1(x1, x2, x3, x4) = ∂1 − x2

2
∂3 −

(
x3

2
+ x2

12
(x1 + x2)

)
∂4

X2(x1, x2, x3, x4) = ∂2 + x1

2
∂3 −

(
x3

2
− x1

12
(x1 + x2)

)
∂4

X3(x1, x2, x3, x4) = ∂3 + 1
2
(x1 + x2)∂4

X4(x1, x2, x3, x4) = ∂4.

Another possible representation of E4 is given by the adapted basis Y1, Y2, Y4, Y4

and the relations

[Y1, Y2] = Y3, [Y1, Y3] = Y4, [Y2, Y3] = 0,

which correspond to the change of basis Y1 = (X1 +X2)/2, Y2 = (Y1 − Y2)/2, Y3 =
−2X3, Y4 = −4X4. In the associated graded coordinates the group law reads




y1

y2

y3

y4


 ·




y′1
y′2
y′3
y′4


 =




y1 + y′1
y2 + y′2
y3 + y′3 + 1

2
(y1y

′
2 − y2y

′
1)

y4 + y′4 + 1
2
(y1y

′
3 − y3y

′
1) + 1

12
(y1 − y′1)(y1y

′
2 − y2y

′
1)


 ,
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group dilations are δr(y1, y2, y3, y4) = (ry1, ry2, r
2y3, r

3y4) and left invariant vector
fields are generated by the basis

Y1(y1, y2, y3, y4) = ∂1 − y2
2
∂3 −

(
y3
2

+ y1y2
12

)
∂4

Y2(y1, y2, y3, y4) = ∂2 + y1
2
∂3 +

y21
12
∂4

Y3(y1, y2, y3, y4) = ∂3 + y1
2
∂4

Y4(y1, y2, y3, y4) = ∂4.

1.2.5 Left invariant vector fields

Let G be a Carnot group and F : Rn → G a system of graded coordinates associated
with the adapted basis X1, . . . , Xn.

Definition 1.20. A function P : G → R is a polynomial on G if the composition
P ◦ F is a polynomial function on R

n.

We observe that the definition of polynomial is well posed: indeed, if G is another
system of graded coordinates, then F−1 ◦G : Rn → Rn is a linear map (basically, it
is a change of basis of g), and therefore P ◦ F is a polynomial function if and only
if so is P ◦G = (P ◦ F ) ◦ (F−1 ◦G).

Let πj : Rn → R be the canonical projection on the j-th coordinate; for the sake
of simplicity we will denote with πj also the map πj ◦ F−1 : G → R. Finally, for a
given n-multiindex α = (α1, . . . , αn) of nonnegative integers we set

πα : G→ R

x 7−→
n∏

j=1

(
πj(x)

)αj .

Any such a πα is a polynomial on G, and it is easy to check that any polynomial on
G can be written as a finite linear combination of the πα’s. We will call homogeneous
degree of πα the integer degH(πα) :=

∑n
j=1 djαj .

Definition 1.21. The homogeneous degree of a polynomial P =
∑

α cαπ
α on G is

the integer

degH(P ) := max{degH(πα) : cα 6= 0}.

For example, the polynomial xy2 − t2 in the Heisenberg group H1 has homoge-
neous degree 4.

Proposition 1.22. The homogeneous degree of a polynomial P does not depend on
the choice of graded coordinates.
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Proof. Let F : Rn
x → G and G : Rn

y → G be two systems of graded coordinates,
related respectively to the basis X1, . . . , Xn and Y1, . . . , Yn adapted to the strati-
fication g = g1 ⊕ · · · ⊕ gι. Let A be the n× n matrix associated with the change of
basis X → Y , i.e. such that

Yj =
n∑

i=1

AijXi.

Therefore we have

F−1 ◦G(y) =
(∑n

j=1A
1
jy
j, . . . ,

∑n
j=1A

n
j y

j
)

and, as the two basis are adapted, we have Aij 6= 0 only if ndj−1 < i ≤ ndj
, whence

A is of the form

A =




A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 Ak


 (1.23)

where Aj denotes an mj×mj matrix, while the 0’s denote null matrices of the proper
size.

To obtain our thesis it will be sufficient to prove that for any α the map πα ◦
G : Rn

y → R has the same homogeneous degree of the polynomial (πα ◦ F )(x) =
xα1

1 · · ·xαn
n . We have

πα ◦G = (πα ◦ F ) ◦ (F−1 ◦G) =

n∏

i=1

(∑n
j=1A

i
jy
j
)αi

.

Since A is invertible, none of its columns is null and so for any i ∈ {1, . . . , n} there
is ji such that Aiji 6= 0. As Aij = 0 if dj 6= di one has

degH
(∑n

j=1A
i
jy
j
)αi = diαi

where the homogeneous degree is computed according to the coordinates G. Finally
we have

degH(πα ◦ F ) =
n∑
i=1

diαi =
n∑
i=1

degH (
n∑
j=1

Aijy
j)
αi

= degH

(
n∏

i=1

( n∑
j=1

Aijy
j
)αi

)

= degH(πα ◦G) .
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Definition 1.23. A polynomial P : G → R is homogeneous of degree d > 0 if
P (δr x) = rαP (x) for all x ∈ G and all r > 0.

For example, the polynomial xy3+t2 on the Heisenberg group H1 is homogeneous
of degree 4. It is not difficult to check that a polynomial P is homogeneous of degree
d if and only if it is a linear combination of polynomials πα with degH π

α = d.
In graded coordinates, the left translation ℓx by an element x ∈ G can be written

as
ℓx(y) = F−1(F (x) · F (y)) =

(
P1(x, y), . . . , Pn(x, y)

)
(1.24)

where the maps Pj(x, y) are polynomials which can be derived from the Baker-
Campbell-Hausdorff formula. It is not difficult to prove that they are homogeneous
polynomials of degree dj, in fact

rdjPj(x, y) = πj ◦ δr (P1(x, y), . . . , Pn(x, y)) = πj ◦ δr
(
F−1(Fx · Fy)

)

= πj ◦ F−1 (δr(Fx) · δr(Fy)) = πj ◦ F−1 (F (δrx) · F (δry)) = Pj(δrx, δry)

where we have set πj to be the map x 7→ xj .
Our next step will be to derive properties of the representation in graded coor-

dinates of the adapted basis X1, . . . , Xn; we collect them in the following

Proposition 1.24. Let G be a Carnot group identified with Rn through graded coor-
dinates associated with an adapted basis X1, . . . , Xn; let {∂i}i=1,...,n be the standard
basis of vectors of Rn and set Xj(x) :=

∑n
i=1 aij(x)∂i. Then

(i) aij(x) =
∂Pi(x, ·)
∂yj

∣∣∣∣
y=0

is a homogeneous polynomial of degree di − dj;

(ii) Xj(x) = ∂j +
∑

i:di>dj

aij(x)∂i = ∂j +
n∑

i=ndj
+1

aij(x)∂l;

(iii) aij(x) depends only on the coordinates xr with dr < di.

In particular, aij(x) = aij(x, . . . , xi−1).

Proof. As usual, we identify vector fields and first order operators; by left invariance
and the fact that

Xjf(0) =
d

dt
f(exp tXj)

∣∣∣∣
t=0

= ∂jf(0)

for any smooth f , one has

Xjf(x) = ∂j(f ◦ ℓx)(0) =

n∑

i=1

∂jℓ
i
x(0) ∂if(x),
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where ℓix denotes the i-th component of ℓx. From (1.24) we deduce

aij(x) = ∂jℓ
i
x(0) = ∂yj

Pi(x, ·)(0).

By the homogeneity of Pi one gets

rdiaij(x) = rdi∂yj
Pi(x, y)

∣∣
y=0

= ∂yj
Pi(δrx, δry)

∣∣
y=0

= rdj∂yj
Pi(x, y)

∣∣
y=0

= rdjaij(δrx)

and so the aij ’s are homogeneous polynomials of degree di − dj. This implies that
aij ≡ 0 if dj > di; moreover, since a 0-homogeneous polynomial is constant, we have

Xj(x) =
∑

di=dj

cij∂i +
∑

i:di>dj

aij(x)∂i

for suitable constants cij: since Xj(0)∂j one must have cij = δij and so

Xj(x) = ∂j +
n∑

i=ndj+1

aij(x)∂i. (1.25)

Since each aij is homogeneous of degree di − dj, the coordinates xr with dr >
di−dj cannot appear in the polynomial structure of aij ; therefore aij cannot depend
on the coordinates xr with dr ≥ di, i.e.

aij(x) = aij(x1, . . . , xndi−1
).

In particular, one has aij(x) = aij(x1, . . . , xi−1).

1.2.6 Carnot-Carathéodory and homogeneous metrics

Let G be a Carnot group, which we consider represented by (Rn, ·) through a system
of graded coordinates associated with a basis adapted to the stratification g =
g1 ⊕ · · · ⊕ gk. Let m := m1 = dimg1 and let X = (X1, . . . , Xm) be a basis of g1: the
stratification assumption ensures that g1 Lie generates the whole algebra, whence
the family X satisfies Chow’s condition (1.5) inducing a CC metric dc on Rn. As we
did for general CC spaces, we will also use the notations HG and HxG to denote g1

and g1(x) respectively.
The presence of a stratification induces many “good” properties of dc, with re-

spect to both left translations and omogeneous dilations, which are collected in the
following Proposition 1.25. According to the subsequent Definition 1.27, we will say
that dc is a homogeneous distance.

Proposition 1.25. For any x, y, z ∈ Rn and any r > 0 we have
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(i) dc(z · x, z · y) = dc(x, y);

(ii) dc(δrx, δry) = rdc(x, y).

Proof. Part (i) of the thesis follows from the fact that γ : [0, T ] → R
n is a subunit

path from x to y if and only if γ̃ := ℓz ◦ γ is a subunit path from zx to zy. In fact,
if γ̇(t) =

∑m
j=1 hjXj(γ(t)) then

˙̃γ(t) = dℓz(γ(t))[γ̇(t)]

= dℓz(γ(t))

[
m∑

j=1

hj(t)Xj(γ(t))

]

=

m∑

j=1

hj(t)dℓz(γ(t))Xj(γ(t)) =

m∑

j=1

hj(t)Xj(z · γ(t))

=
m∑

j=1

hj(t)Xj(γ̃(t)),

where dℓz denotes the differential of the left translation by z.
As for (ii), it will be sufficient to prove that a path γ : [0, T ]→ Rn from x to y is

subunit if and only if so is the curve γr : [0, rT ]→ Rn, joining δrx and δry, defined
by γr(t) := δr(γ(t/r)). One has

γ̇(t) =

m∑

j=1

hj(t)Xj(γ(t)) =

n∑

l=1

(
m∑

j=1

hj(t)alj(γ(t))

)
∂l.

Since dj = 1 for all j = 1, . . . , m, by Proposition 1.24 all the alj’s appearing in the
sum are (dl − 1)-homogeneous and so

γ̇r(t) =

n∑

l=1

rdl−1

(
m∑

j=1

hj(t/r)alj(γ(t/r))

)
∂l

=

n∑

l=1

(
m∑

j=1

hj(t/r)alj(γr(t))

)
∂l

=

m∑

j=1

hj(t/r)Xj(γr(t)). (1.26)

Part (ii) follows in one stroke.

Corollary 1.26. Let Y ∈ gj, then the CC distance behaves like | · |1/j along Y ; more
precisely,

dc(x, exp(sY )(x)) = C(Y )|s|1/j for any x ∈ G, s ∈ R .
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Definition 1.27. We say that a metric ρ on a Carnot group G is an homogeneous
distance if

(i) ρ(x, y) = ρ(z · x, z · y) and

(ii) ρ(δrx, δry) = rρ(x, y)

for all x, y, z ∈ G and all ρ > 0.

Notice that the thesis of Corollary 1.26 holds for general homogeneous distances,
and not only for the CC one.

Apart from dc, another important example of homogeneous distance is given by
the distance d∞ defined as

d∞(x, y) := ||y−1x||∞ ,

where the infinity norm ||x||∞ of a point x = (p1, . . . , pι) ∈ Rn = Rm1 × · · · × Rmι

(we use graded coordinates) is given by

||x||∞ := max{ ǫk|pk|1/kR
mk : k = 1, . . . , ι}.

Here ǫ1 = 1 and the ǫk’s are suitable positive constants which depends on the group
structure and are chosen in order to make d∞ a distance: see also [81], Theorem 5.1.
In particular, in the Heisenberg group Hn we will often use the distance d∞ arising
from the norm

||(x, y, t)||∞ := max{|(x, y)|R2n, |t|1/2},
where we used the coordinates of Section 1.2.4.

It is not difficult to check that any two homogeneous distances are biLipschitz
equivalent; the integer Q :=

∑k
j=1 j dim gj is called homogeneous dimension of G,

and it coincides with the Hausdorff dimension of the group with respect to any ho-
mogeneous metric ρ. We will denote withHd

ρ and Sdρ , respectively, the d-dimensional
Hausdorff and spherical Hausdorff measures associated with ρ (see [69]). It is
straightforward to check that

Hd
ρ(x ·E) = Hd

ρ(E) and Hd
ρ(δrE) = rdHd

ρ(E)

for any measurable E ⊂ G and any x ∈ G, r > 0; moreover, the same formulae hold
for Sdρ . If we represent G as Rn via graded coordinates, then the Lebesgue measure
Ln is the Haar measure of G and is both left- and right-invariant:

Ln(x · E) = Ln(E · x) = Ln(E),

whence
Ln(U(x, r)) = rQLn(U(x, 1)) = Ln(U(0, 1)),
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where U(x, r) denotes the ball with respect to a fixed homogeneous metric. If not
specified, integration on G or on open subsets of G will be always understood with
respect to this measure.

The X-perimeter measure of a measurable set E ⊂ G, defined as in Section 1.1.2
according to the family X, will be referred to as the G-perimeter measure ||∂E||G of
E; from its definition it is easy to prove that

||∂(x · E)||G(x · Ω) = ||∂E||G(Ω) and ||∂(δrE)||G(δrΩ) = rQ−1||∂E||G(Ω)

for any x ∈ G, for any open set Ω ⊂ G and any r > 0.

1.2.7 Convolution on groups

We want to briefly recall the classical technique of intrinsic convolution in homo-
geneous groups (see [73]). Let G be a Carnot group and let ζ ∈ C∞

c (G) be such
that

0 ≤ ζ ≤ 1,

∫

G

ζ = 1, ζ(x−1) = ζ(x) and spt ζ ⊂ U(0, 1), (1.27)

where U(x, r) denote balls of G with respect to a fixed homogeneous metric. Let us
denote

ζǫ(x) := ǫ−Qζ
(
δ1/ǫ(x)

)
, x ∈ G ; (1.28)

(ζǫ ⋆ f)(x) :=

∫

G

ζǫ(y) f(y−1 · x)dLn(y) =

∫

G

ζǫ(x · y−1) f(y)dLn(y) . (1.29)

Then the following results hold

Proposition 1.28. We have

(i) if f ∈ Lp(G), 1 ≤ p < ∞, then ζǫ ⋆ f ∈ C∞(G) and ζǫ ⋆ f → f in Lp(G) as
ǫ→ 0;

(ii) spt ζǫ ⋆ f ⊂ U(0, ǫ) · sptf ;

(iii) X(ζǫ ⋆ f) = ζǫ ⋆ (Xf) for any f ∈ C1(G) and each X ∈ g;

(iv)
∫

G
(ζǫ ⋆ f) g =

∫
G
(ζǫ ⋆ g) f for every f ∈ L1(G), g ∈ L∞(G);

(v) if f ∈ C0(Ω) for a suitable open set Ω ⊂ G then ζǫ ⋆ f → f uniformly on
compact subsets of Ω as ǫ→ 0.



24 Chapter 1. The Sub-Riemannian geometry of Carnot groups

The statements of Proposition 1.28 can be easily proved with standard argu-
ments. For the sake of completeness we show point (iii), where the key tool is the
left invariance of X, in fact

X(ζǫ ⋆ f)(z) = X

(∫

G

ζǫ(y) f(y−1 · x)dLn(y)
)

|x=z

=

∫

G

X
(
ζǫ(y) f(y−1 · z)

)
dLn(y)

=

∫

G

ζǫ(y) (Xf)(y−1 · z)dLn(y)

= ζǫ ⋆ (Xf)(z).

However, it is possible to improve this result:

Proposition 1.29. Let f : G → R a continuous function and X ∈ g be such that
the distributional derivative Xf is represented by a continuous function on G; then
one has

X(ζǫ ⋆ f) = ζǫ ⋆ (Xf).

Proof. Since ζǫ⋆f is of class C∞, it will be sufficient to prove that for any g ∈ C∞
c (G)

one has

〈X(ζǫ ⋆ f), g〉 = 〈ζǫ ⋆ (Xf), g〉,
where for u, v : G→ R we use the common notation

〈u, v〉 :=
∫

G

uv.

Using Proposition 1.28 (iii), (iv) and thanks to the following Lemma 1.30 one
has

〈X(ζǫ ⋆ f), g〉 = −〈ζǫ ⋆ f,Xg〉 = −〈f, ζǫ ⋆ Xg〉
= −〈f,X(ζǫ ⋆ g)〉 = 〈Xf, ζǫ ⋆ g〉 = 〈ζǫ ⋆ (Xf), g〉. (1.30)

Lemma 1.30. Any left invariant vector field X ∈ g is self-adjoint, i.e.

∫

G

v Xu = −
∫

G

u Xv

for any u, v ∈ C∞
c (G).
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Proof. By the invariance of the Lebesgue measure, the integral

∫

G

u(xa)v(xa) dLn(x)

does not depend on a ∈ G. Taking a = exp(tX) and differentiating at t = 0 one
gets ∫

G

(v Xu+ u Xv) = 0.
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Chapter 2

Measure of submanifolds in
Carnot groups

In this Chapter we will focus our attention on how a submanifold of a Carnot
group G inherits its sub-Riemannian geometry from a stratified group equipped
with its Carnot-Carathéodory distance. Our aim is finding the sub-Riemannian
measure “naturally” associated with a submanifold. For hypersurfaces, this measure
is exactly the G-perimeter, which is widely acknowledged as the appropriate measure
in connection with intrinsic regular hypersurfaces, trace theorems, isoperimetric
inequalities, the Dirichlet problem for sub-Laplacians, minimal surfaces, and more.
Here we address the reader to some relevant papers [32, 35, 47, 54, 57, 75, 85, 83,
123, 137] and the references therein.

Our question is: what is the natural replacement of the G-perimeter for sub-
manifolds of higher codimension? Clearly, once the Hausdorff dimension of the
submanifold is known, the natural candidate should be the corresponding Hausdorff
measure: more precisely, the spherical one, see also [79, 81, 120]. However, this mea-
sure is not manageable, since it is not clear whether it is lower semicontinuous with
respect to the Hausdorff convergence of sets and so it cannot be used in minimization
problems. In general, lower semicontinuity of Hausdorff measures in metric spaces is
a delicate problem, see [7]. It is then convenient to find an equivalent measure, that
can be represented as the supremum among a suitable family of linear functionals,
in analogy with the classical theory of currents.

Our strategy will be to exhibit a natural number d, which will coincide with
the Hausdorff dimension of the submanifold, and a measure µS that is “naturally”
associated to it, in the sense that it will coincide with the d-dimensional spherical
Hausdorff measure of the surface. Moreover, this number d is the same conjectured
by Gromov [91]: see also Remark 2.3. The measure µS possesses a density with
respect to any Riemannian surface measure on S, providing an integral representa-

27
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tion of µS. We stress however that our result is not complete, since we are able to
characterize only a “big” portion of S and not the whole of it (see Section 2.3 for
more details). All the results contained in this Chapter have been obtained in [126]
in collaboration with V.Magnani.

We then start, in Section 2.1, by illustrating some preliminary material. More
precisely, in Subsection 2.1.1 we give a stratification of the space Λpg of p-vectors,
which allows us to define, for any given p-vector τ and any integer r, the projection
of τ with degree r (see Definition 2.1); the degree of τ will then be the maximum
r such that the r-projection of τ is not zero. For any fixed p-dimensional C1,1

submanifold S we set its degree d = d(S) to be the maximum among the degrees
Ds(x) of the tangent p-vectors τS(x) for x ∈ S: this number will be exactly the one
we were looking for. Subsection 2.1.2 contains a purely algebraic result, Lemma 2.5,
that will be crucial in Lemma 2.14.

The main result of Section 2.2 is Theorem 2.19, where we prove that the intrinsic
blow-up of S, i.e. the limit (with respect to the Hausdorff convergence of sets) as
r → 0 of δ1/r(x

−1 ·S), does exist at points x with maximum degree, i.e. those points
where the degree of τS(x) is equal to d. Moreover, this limit is a subgroup ΠS(x)
which is associated with the p-vector given by the d-projection of τS(x): indeed,
the latter turns out to be simple, and Lemma 2.14 ensures that it is a subgroup.
The proof of the blow-up results is quite technical: first of all, thanks to Lemma 2.6
we are able to conveniently fix a basis of TxS and one of g, and we utilize the
latter to make all computations in the associated graded coordinates. After that, in
Lemma 2.15 we make use of our basis of TxS to foliate the submanifold with curves
that are “almost homogeneous”, thus obtaining our blow-up result. More precisely,
we are able to recover a neighbourhood of S as the image of a map γ : [0, t0]×L→ S
with the property that

γ(t, λ) = x · δt(y + O(t))

where y = y(λ) ∈ ΠS(x). Here L is a compact subset of Rp−1, diffeomorphic to
Sp−1, which will be specified during the proof; we stress however that it is just a
family of parameters, whose structure we will not care about.

Thanks to Theorem 2.19, in Section 2.3 we finally obtain our desired “natural”
measure: first of all, in Theorem 2.20 we compute the limit

lim
r→0

σg̃(S ∩ U(x, r))

rd
=: q(x) ,

where x is a point with maximum degree and σg̃ is the p-dimensional surface measure
arising from a Riemannian metric g̃ on G. A standard result about differentiation
of measure will then provide the required measure

µS := q σg̃ Sd = Sdρ Sd ,
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where Sd is the (open) set of points of S with maximum degree; let us stress that
the density q depends uniquely on the fixed homogeneous distance ρ and on the
d-projection of τS(x). We conjecture however that Sdρ (S \ Sd) = 0 and so that
µS = Sdρ S: we are able to prove this result for the step 2 case (Theorem 2.22),
while it is an open problem for the general case. Before Theorem 2.22, we also
compare our results with the existing literature.

Finally, in Section 2.4, as an application we study the case of 2-dimensional
submanifolds of the Engel group E4, providing examples of surfaces of degree 3,4,5
and the nonexistence of submanifolds with other degrees.

2.1 Preliminaries

2.1.1 Some linear algebra

Let G be a fixed Carnot group with topological dimension n, whose Lie algebra
admits the stratification

g = g1 ⊕ · · · ⊕ gι ; (2.1)

as in Chapter 1, we will denote homogeneous dilations by δr and with ρ a fixed
homogeneous distance, while open balls of radius r > 0 and centered at x with
respect to ρ will be denoted by U(x, r). By Hd

ρ and Sdρ we will mean, respectively,
the d-dimensional Hausdorff and spherical Hausdorff measures associated with ρ.

In the sequel, whenever X1, . . . , Xn is an adapted basis of g, we will frequently
alternate the two notations

(X1, . . . , Xn) = (X1
1 , . . .X

1
m1
, X2

1 , . . . , X
2
m2
, . . . , X ι

1, . . . , X
ι
mι

);

observe that Xk
1 , . . . , X

k
mk

is a basis of the layer gk for every k = 1, . . . , ι. We recall
also that by dj we denote the degree of Xj, i.e. the unique integer k such that
Xj ∈ gk.

Let
XJ := Xj1 ∧ · · · ∧Xjp

be a simple p-vector of Λpg, where J = (j1, j2, . . . , jp) and 1 ≤ j1 < j2 < · · · < jp ≤
n. The degree of XJ is the integer dJ defined by the sum dj1 + · · ·+ djp.

Definition 2.1. Let τ ∈ Λp(g) be a simple p-vector and let 1 ≤ r ≤ Q be a natural
number. Let τ =

∑
J τJ XJ be represented with respect to the fixed adapted basis

(X1, . . . , Xn). The projection of τ with degree r is defined as

τ r :=
∑

dJ =r

τJ XJ . (2.2)
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The degree of τ is defined as the integer

d(τ) = max {r ∈ N : τ r 6= 0} .
Notice that the degree of a p-vector is independent from the adapted basis we

have chosen.
In the sequel, we will fix a graded metric g on G, namely, a left invariant Rieman-

nian metric on G such that the subspaces gk are orthogonal. It is easy to observe
that all left invariant Riemannian metrics such that (X1, . . . , Xn) is an orthonormal
basis are graded metrics and the family of XJ ’s forms an orthonormal basis of Λp(g)
with respect to the induced metric. The norm induced by g on Λp(g) will be simply
denoted by | · |g. When an adapted basis (X1, . . . , Xn) is also orthonormal with
respect to the fixed graded metric g is called graded basis.

The next definition introduces the metric factor associated with a simple p-
vector. Notice that this definition generalizes the notion of metric factor first intro-
duced in [120].

Definition 2.2. Let g be a Carnot algebra equipped with a graded metric g and
a homogeneous distance ρ. Let τ be a simple p-vector of Λp(g). We define L(τ) as
the unique subspace associated with τ . The metric factor of τ with respect to g is
defined by

θ(τ) = Hp
(
F−1

(
exp

(
L(τ)

)
∩ U1

))
, (2.3)

where F : Rn −→ G is a system of graded coordinates with respect to an adapted
orthonormal basis (X1, . . . , Xn). The p-dimensional Hausdorff measure with respect
to the Euclidean norm of Rn has been denoted by Hp and U1 is the open unit ball
(with respect to the fixed homogeneous distance ρ) centered at e.

In the sequel, also an arbitrary auxiliary Riemannian metric g̃ will be given. We
define τS(x) as the unit tangent p-vector to a C1 submanifold S at x ∈ S with
respect to the metric g̃, i.e. |τS(x)|g̃ = 1; here p is the topological dimension of S.
The degree of x is defined as

dS(x) = d(τS(x)) (2.4)

and the degree of S is d(S) = maxx∈S dS(x). We will say that x ∈ S has maximum
degree if dS(x) = d(S).

It is not difficult to check that these definitions are independent from the fixed
adapted basis X1, . . . , Xn: they depend just on the tangent subbundle TS and the
grading of g, namely only on the “geometric” position of the points with respect
to the grading (2.1). According to (2.2), we define τdS(x) as the part of τS(x) with
maximum degree d = d(S), namely,

τdS(x) =
(
τS(x)

)d
. (2.5)
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Remark 2.3. As an interesting point to be investigated, we emphasize the cor-
respondence between dS(x), d(S) and the numbers D′(x), DH(S) introduced by
Gromov in 0.6.B of [91], where he also indicates how, for a smooth manifold, DH(S)
must correspond to the Hausdorff dimension of S.

Definition 2.4. Let x ∈ S be a point of maximum degree. Then we define

ΠS(x) := {y ∈ G : y = exp(v) with v ∈ g and v ∧ τdS(x) = 0} .
We will see in Lemma 2.14 that ΠS(x) is a subgroup of G. Notice that, with the

notation of Definition 2.2, we have ΠS(x) = exp(L(τdS(x))) and

θ(τdS(x)) = Hd(ΠS(x) ∩ U1),

where we have understood the identification of G with R
n via the graded coordinates

of Definition 2.2.

2.1.2 An algebraic Lemma

Let X1, . . . , Xn be an adapted basis of g; in what follows we will represent G by
means of the associated system of graded coordinates F : Rn → G, according to
which homogeneous dilations can be read as

δr(x) = (rx1, . . . , r
djxj , . . . , r

ιxn) for every r > 0.

For X, Y ∈ g, the vector C(X, Y ) ∈ g will be defined as in the Baker-Campbell-
Hausdorff formula (1.19). As in (1.24), we define the families of homogeneous poly-
nomials P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) via the formula

x · y = P (x, y) = x+ y +Q(x, y). (2.6)

Remember that, by Proposition 1.24, one has

Pi(δr(x), δr(y)) = rdi Pi(x, y) and Qi(δr(x), δr(y)) = rdi Qi(x, y) . (2.7)

and

Xj(x) =
n∑

i=1

aij(x) ∂i =
n∑

i=1

∂Pi
∂yj

(x, 0) ∂i = ∂j +
∑

di>dj

∂Qi

∂yj
(x, 0) ∂i , (2.8)

where each aij is a homogeneous polynomial of degree di−dj . From the homogeneity
property (2.7) one gets

{
Q1 = · · · = Qm1 = 0

Qi(x, y) = Qi

(∑
dj<i

xj ej ,
∑

dj<i
yj ej

)
if di > 1,

(2.9)

where (e1, . . . , en) denotes the canonical basis of Rn.
We now present a result which will be crucial for the proof of Lemma 2.15.
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Lemma 2.5. Let J ⊂ {1, 2, . . . , n} be such that F = span{Xj : j ∈ J} is a
subalgebra of g, where (X1, . . . , Xn) is an adapted basis of g. Then, for every index
i /∈ J , the polynomial Qi(x, y) lies in the ideal generated by {xl, yl : l /∈ J}; namely,
we have

Qi(x, y) =
∑

l /∈J, dl<di

(xlRil(x, y) + ylSil(x, y)) , (2.10)

where Ril, Sil are homogeneous polynomials of degree di − dl.

Proof. Let us fix x, y ∈ Rn and consider

X :=
n∑

j=1

xjXj, Y :=
n∑

j=1

yjXj.

By definition of C(X, Y ) and Baker-Campbell-Hausdorff formula (1.19), for any
X, Y ∈ g we have

C(X, Y ) =
n∑

j=1

Pj(x, y) Xj .

Therefore, defining πi : g → R as the function which associates to every vector its
Xi’s coefficient, we clearly have Pi(x, y) = πi

(
C(X, Y )

)
. Thus, formulae (1.19) and

(2.6) yield

Qi(x, y) =

ι∑

l=1

(−1)l+1

l

∑

α=(α1,...,αl)
β=(β1,...,βl)
αi+βi≥1 ∀i

1

α!β!|α+ β|πi(Cαβ(X, Y ))− xi − yi.

Observe that Cαβ(X, Y ), which is defined in (1.18), is a commutator of X and Y ,
whose length is equal to |α + β|; as the sum of commutator with length 1 gives
X + Y we get

Qi(x, y) =

ι∑

l=1

(−1)l+1

l

∑

α=(α1,...,αl)
β=(β1,...,βl)
αi+βi≥1 ∀i
|α+β|≥2

1

α!β!|α+ β|πi(Cαβ(X, Y )).

When the commutator Cαβ(X, Y ) has length h ≥ 2, we can decompose it into the
sum of commutators of the vector fields {xlXl, ylXl : 1 ≤ l ≤ n}. Let us focus our
attention on an individual addend of this sum and consider its projection πi. Clearly,
this addend is a commutator of length h. If this term is a commutator containing an
element of the family {xlXl, ylXl : l /∈ J}, then its projection πi will be a multiple
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of xl or yl for some l /∈ J , i.e. the projection πi of this term is a polynomial of the
ideal

{xl, yl : l /∈ J}.
On the other hand, if in the fixed commutator only elements of {xlXl, ylXl : l ∈ J}
appear, then it belongs to F . In view of our hypothesis, we have F∩span{Xi} = {0},
hence its projection through πi vanishes. This fact along with (2.9) proves that
Qi(x, y) has the form (2.10).

2.2 Blow-up at points of maximum degree

Lemma 2.6. Let S be a p-dimensional submanifold of class C1 and let x ∈ S be a
point of maximum degree. Then we can find

• a graded basis X1, . . . , Xn of g;

• a neighbourhood U of x;

• a basis v1(y), . . . , vp(y) of TyS for all y ∈ U
such that writing vj(y) =

∑n
i=1Cij(y)Xi(y), we have

C(y) := (Cij(y))i=1,...,n
j=1,...,p

=




Idα1 0 · · · 0
O1(y) ∗ · · · ∗

0 Idα2 · · · 0
0 O2(y) · · · ∗
...

...
. . .

...
0 0 · · · Idαι

0 0 · · · Oι(y)




(2.11)

where αk are integers satisfying 0 ≤ αk ≤ mk and α1+ · · ·+αι = p. The (mk−αk)×
αk-matrix valued continuous functions Ok vanish at x and ∗ denotes a continuous
bounded matrix valued function.

Proof. Observing that since the degree of a point in S is invariant under left transla-
tions, it is not restrictive to assume that x coincides with the unit element e of G.

Step 1. Here we wish to find the graded basis (X1, . . . , Xn) of g and the basis
v1, . . . , vp of TeS required in the statement of the lemma and that satisfy (2.11)
when y = e. Let us fix a basis (t1, . . . , tp) of TeS and use the same notation to
denote the corresponding basis of left invariant vector fields of g. We denote by πk
the canonical projection of g onto Vk. Let 0 ≤ αι ≤ mι be the dimension of the
subspace spanned by

πι(t1), . . . , πι(tp).
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Taking linear combinations of the tj’s, we can suppose that the first αι projected
vectors {πι(tj) : 1 ≤ j ≤ αι} form an orthonormal set of Vι with respect to the fixed
graded metric g. Then we set

X ι
j := πι(tj) ∈ Vι and vιj := tj ∈ TeS ,

whenever 1 ≤ j ≤ αι. Adding proper linear combinations of these tj to the re-
maining vectors of the basis, we can assume that {tι−1

j := tj+αι}1≤j≤p−αι are linearly
independent and that

πι(t
ι−1
j ) = 0 whenever j = 1, . . . , p− αι.

Now consider the p− αι vectors

πι−1(t
ι−1
1 ), . . . , πι−1(t

ι−1
p−αι

)

and let 0 ≤ αι−1 ≤ mι−1 be the rank of the subspace of Vι−1 generated by these
vectors. Taking linear combinations of tι−1

j , we can suppose that πι−1(t
ι−1
j ) with

j = 1, . . . , αι−1 form an orthonormal set of Vι−1 and that defining

tι−2
j := tι−1

j+αι−1
for 1 ≤ j ≤ p− αι − αι−1

we have

πι−1(t
ι−2
j ) = 0 whenever j = 1, . . . , p− αι − αι−1.

Then we set

X ι−1
j := πι−1(t

ι−1
j ) ∈ Vι−1 and vι−1

j := tι−1
j ∈ TeS .

for every j = 1, . . . , αι−1. Repeating this argument in analogous way, we obtain
integers αk with 0 ≤ αk ≤ mk for every k = 1, . . . , ι and vectors

Xk
j ∈ Vk , vkj ∈ TeS, where k = 1, . . . , ι and j = 1, . . . , αk.

Notice that α1 + · · ·+ αι = p and that

(v1
1, . . . , v

1
α1
, . . . , vι1, . . . , v

ι
αι

) (2.12)

is a basis of TeS. We complete the Xk
j ’s to a graded basis

(X1
1 , . . .X

1
m1
, X2

1 , . . . , X
2
m2
, . . . , X ι

1, . . . , X
ι
mι

)
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of g, that will be also denoted by (X1, . . . , Xn). It is convenient to relabel the basis
(2.12) as (v1, . . . , vp), hence we write vj =

∑n
i=1CijXi obtaining

C := (Cij) =




Idα1 ∗ · · · ∗
0 ∗ · · · ∗
0 Idα2 · · · ∗
0 0 · · · ∗
...

...
. . .

...
0 0 · · · Idαι

0 0 · · · 0




.

Performing suitable linear combinations of vj ’s, we can assume that

C =




Idα1 0 · · · 0
0 ∗ · · · ∗
0 Idα2 · · · 0
0 0 · · · ∗
...

...
. . .

...
0 0 · · · Idαι

0 0 · · · 0




. (2.13)

Step 2. The basis (v1, . . . , vp) of TeS can be extended to a frame of continuous
vector fields (v1(y), . . . , vp(y)) on S defined in neighborhood U of e. Thanks to the
previous step, defining vj(y) =

∑n
i=1Cij(y)Xi(y) we have

C(y) := (Cij(y)) =




Idα1 + o(1) o(1) · · · o(1)
o(1) ∗ · · · ∗
o(1) Idα2 + o(1) · · · o(1)
o(1) o(1) · · · ∗

...
...

. . .
...

o(1) o(1) · · · Idαι + o(1)
o(1) o(1) · · · o(1)




where o(1) denotes a matrix-valued continuous function vanishing at e. Observing
that Idαk

+ o(1) are still invertible for every y in a smaller neighbourhood U ′ ⊂ U
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of e, we can replace the vj ’s with linear combinations to get

C(y) =




Idα1 + o(1) 0 · · · 0
o(1) ∗ · · · ∗
0 Idα2 + o(1) · · · 0
o(1) o(1) · · · ∗

...
...

. . .
...

0 0 · · · Idαι + o(1)
o(1) o(1) · · · o(1)




.

The same argument leads us to define a new frame with matrix

C(y) =




Idα1 0 · · · 0
O1(y) ∗ · · · ∗

0 Idα2 · · · 0
o(1) O2(y) · · · ∗

...
...

. . .
...

0 0 · · · Idαι

o(1) o(1) · · · Oι(y)




, (2.14)

where Oj have the same properties as in the statement of the present lemma. To
finish the proof, it remains to show that all o(1)’s of (2.14) are actually null matrix
functions. Here we use the fact that the submanifold has maximum degree at e.
Notice that the simple p-vector

v1(y) ∧ · · · ∧ vp(y) =
∑

J

aJ(y)XJ(y)

is proportional to the unit (according to the Riemannian metric g̃) tangent vector
τS(y). In addition, if J = (j1, . . . , jp), then aJ(y) is the determinant of the p × p
submatrix obtained taking the j1-th, j2-th, . . . , jp−1-th and jp-th row of C(y). From
(2.13) we immediately conclude that dS(e) = α1 +2α2 + · · ·+ ιαι. Finally, whenever
one entry of some o(1) does not vanish, it is possible to find some J0 such that
dJ0 > α1 + 2α2 + · · · + ιαι and aJ0(y) 6= 0. This would imply dS(y) > dS(e),
contradicting the assumption that dS(e) = maxy∈U ′ dS(y).

Remark 2.7. It is easy to interpret the statement and the proof of Lemma 2.6 in
the case some αk vanishes. Clearly, the αk columns in (2.11) intersecting Iαk

and
the corresponding vectors vkj disappear.

Remark 2.8. When S is of class Cr the vj’s of the previous lemma are of class
Cr−1: in fact, the linear transformations performed in the proof of Lemma 2.6 are
of class Cr−1.
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The previous Lemma 2.6 allows us to state the following definitions.

Definition 2.9. Let S be a C1 smooth submanifold and let x ∈ S be a point of
maximum degree. Then we can define the degree σ : {1, . . . , p} −→ N induced by S
at x as

σj = k if
k−1∑

s=1

αs < j ≤
k∑

s=1

αs,

where the αk’s are defined in Lemma 2.6.

Definition 2.10. Let S be a C1 smooth submanifold and let x ∈ S be a point of
maximum degree. Then we will denote by

(X1
1 , . . . , X

1
m1
, . . . , X ι

1, . . . , X
ι
mι

) and (v1
1, . . . , v

1
α1
, . . . , vι1, . . . , v

ι
αι

)

the frames on G and on a neighbourhood U of z in S, respectively, which satisfy the
conditions of Lemma 2.6. We will also denote these frames by

(X1, . . . , Xn) and (v1, . . . , vp) .

Corollary 2.11. Let S be a C1 smooth submanifold with x ∈ S satisfying dS(x) =
d(S). Then τdS(x) is a simple p-vector which is proportional to

X1
1 ∧ · · · ∧X1

α1
∧ · · · ∧X ι

1 ∧ · · · ∧X ι
αι
,

and we also have

ΠS(x) = exp
(
span{X1

1 , . . . , X
1
α1
, . . . , X ι

1, . . . , X
ι
αι
}
)

Proof. By expression (2.11), τS is clearly proportional to

X1
1 ∧ · · · ∧X1

α1
∧ · · · ∧X ι

1 ∧ · · · ∧X ι
αι

+R . (2.15)

where R is a linear combination of simple p-vectors with degree less than d(X1
1∧· · ·∧

X ι
αι

). Then d = d(X1
1 ∧ · · · ∧X ι

αι
) = α1 + 2α2 + · · ·+ ιαι and τdS(x) is proportional

to X1
1 ∧ · · · ∧X ι

αι
.

Definition 2.12. We will denote by

(X1
1 , . . . , X

1
α1
, . . . , X ι

1, . . . , X
ι
αι

) (2.16)

the frame of Corollary 2.11, arising from Lemma 2.6, and by

πS(x) : G −→ ΠS(x) (2.17)

the corresponding canonical projection.
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Corollary 2.13. Let e ∈ S be such that dS(e) = d(S). Let us embed S into Rn

by the system of graded coordinates F induced by {Xk
j }k=1,...,ι, j=1,...,mk

. Then there
exists a function

φ : A ⊂ R
p −→ R

n−p

x = (x1
1, . . . , x

1
α1
, . . . , xιαι

) 7−→ (φ1
α1+1, . . . , φ

1
m1
, . . . , φιαι+1, . . . , φ

ι
mι

)(x),

defined on an open neighbourhood A ⊂ Rp of 0, such that φ(0) = 0 and S ⊃ Φ(A),
where Φ : A→ R

n is the mapping defined by

x 7→
(
x1

1, . . . , x
1
α1
, φ1

α1+1(x), . . . , φ
1
m1

(x), . . . , xι1, . . . , x
ι
αι
, φιαι+1(x), . . . , φ

ι
mι

(x)
)
. (2.18)

Moreover, Φ satisfies ∇Φ(0) = C(0), with C given by Lemma 2.6.

Proof. Representing πS(x) with respect to our graded coordinates, we obtain

πS(x) : R
n → R

p

x 7−→ (x1
1, . . . , x

1
α1
, . . . , xι1, . . . , x

ι
αι

) .

Taking its restriction

π : S → R
p

x 7−→ (x1
1, . . . , x

1
α1
, . . . , xι1, . . . , x

ι
αι

) ,

we wish to prove that π is invertible near 0, i.e. that dπ(0) : T0S → Rp is onto.
According to (2.11) and the fact that π is the restriction of a linear mapping, it
follows that dπ(vkj (0)) = ∂xk

j
for every k = 1, . . . , ι and j = 1, . . . , αk. This implies

the existence of Φ = π−1
|U having the representation (2.18), hence one can easily

check that dπ(∂xk
j
Φ (0)) = ∂xk

j
also holds for every k = 1, . . . , ι and j = 1, . . . , αk.

As a consequence, invertibility of dπ(0) : T0S → Rp gives vkj (0) = ∂xk
j
Φ (0). It

follows that each column of ∇Φ(0) equals the corresponding one of C(0), i.e. that
∇Φ(0) = C(0).

From now on, we will assume that S is a C1,1 submanifold of G.

Lemma 2.14. Let x ∈ S be such that dS(x) = d(S). Then ΠS(x) is a subgroup.

Proof. Posing d := d(S), due to Corollary 2.11, τdS(x) is proportional to the simple
p-vector

X1
1 ∧ · · · ∧X1

α1
∧ · · · ∧X ι

1 ∧ · · · ∧X ι
αι
.

We define F as the space of linear combinations of vectors {Xk
j }k=1,...,ι

j=1,...,αk
. It suffices

to prove that each bracket [Xk
j , X

l
i ] lies in F for every 1 ≤ k, l ≤ ι, 1 ≤ j ≤ αk and
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1 ≤ i ≤ αl: this implies that F is a subalgebra and so that ΠS(x) = exp(F) is a
subgroup.

Taking into account Remark 2.8, we can find Lipschitz functions ϕr and ψs,
which vanish at x whenever dr = k or ds = l, such that

vkj = Xk
j +

∑

dr≤k

ϕr Xr and vli = X l
i +
∑

ds≤l

ψs Xs.

For a.e. y belonging to a neighbourhood U of x, we have

[vkj , v
l
i] =

[
Xk
j +

∑

dr≤k

ϕr Xr, X
l
i +
∑

ds≤l

ψs Xs

]

= [Xk
j , X

l
i ] +

∑

dr≤k

ϕr [Xr, X
l
i ] +

∑

ds≤l

ψs [Xk
j , Xs] +

∑

dr≤k,ds≤l

ϕr ψs [Xr, Xs]

+
∑

ds≤l

(Xk
j ψs)Xs −

∑

dr≤k

(X l
iϕr)Xr (2.19)

+
∑

dr≤k,ds≤l

(
ϕr (Xrψs) Xs − ψs (Xsϕr) Xr

)
.

By Frobenius theorem we know that this vector is tangent to S, i.e. it is a linear
combination of v1

1, . . . , v
ι
αι

and lies in V1⊕ · · · ⊕ Vk+l, hence Lemma 2.6 implies that
it must be of the form

[vkj , v
l
i] =

∑

σr≤k+l

arvr.

Projecting both sides of the previous identity onto Vk+l and taking into account
equation (2.19) we obtain

[Xk
j , X

l
i ] +

∑

dr=k

ϕr [Xr, X
l
i ] +

∑

ds=l

ψs [Xk
j , Xs] +

∑

dr=k,ds=l

ϕr ψs [Xr, Xs]

=
∑

σr=k+l

ar πk+l(vr).

From (2.11) the projections πk+l
(
vr(y)

)
converge to a linear combination of vectors

Xk+l
i as y goes to x, where 1 ≤ i ≤ αk+l. We can find a sequence of points

(yν) contained in U , where [vkj , v
l
i] is defined and yν → x as ν → ∞. Then the

coefficients ar are defined on yν and up to extracting subsequences it is not restrictive
assuming that ar(yν), which is bounded since S is C1,1, converges for every r such
that σr ≤ k+l. Thus, restricting the previous equality on the set {yν} and taking the
limit as ν → ∞, it follows that [Xk

j , X
l
i ] is a linear combination of {Xk+l

i }1≤i≤αk+l
.

This ends the proof.
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Let us consider the parameters λ = (λ1
1, . . . , λ

1
α1
, . . . , λι1, . . . , λ

ι
αι

) ∈ Rp and a
point e ∈ S with dS(e) = d(S). We aim to study properties of solution γ(t, λ) of the
Cauchy problem 




∂tγ(t, λ) =
∑

k=1,...,ι
j=1,...,αk

λkj v
k
j

(
γ(t, λ)

)
tk−1

γ(0, λ) = 0 ,

(2.20)

where the vector fields vkj are defined in Lemma 2.6 with x = e. Notice that for every
compact set L ⊂ Rp, there exists a positive number t0 = t0(L) such that γ(·, λ) is
defined on [0, t0] for every λ ∈ L.

The next lemma gives crucial estimates on the coordinates of γ(·, λ). Notice that
graded coordinates arising from the corresponding graded basis (X1, . . . , Xn) will be
understood.

Lemma 2.15. Let γ(·, λ) be the solution of (2.20). Then for every k = 1, . . . , ι and
every j = 1, . . . , mk there exist homogeneous polynomials gkj of degree k such that

(i) g1
j ≡ 0 for any j = 1, . . . , mk;

(ii) gkj (λ) = gkj (λ
1
1, . . . , λ

1
α1
, . . . , λk−1

1 , . . . , λk−1
αk−1

) when k > 1;

(iii) gkj (0) = 0;

(iv) the estimates

γkj (t, λ) =

{[
λk

j

k
+ gkj (λ

1
1, . . . , λ

k−1
αk−1

)
]
tk+O(tk+1), j = 1, . . . , αk

O(tk+1), j = αk+1, . . . , mk

(2.21)

hold for every λ ∈ L and every t ∈ [0, t0].

Proof. From (2.8) and Proposition 1.24 (i), we have Xs =
∑n

i=1 ais ∂i where

Xis(x) =

{
δis if di ≤ ds
uis(x

1
1, . . . , x

1
m1
, . . . , xdi−1

1, . . . , x
di−1
mdi

−1) if di > ds
(2.22)

and uis is a homogeneous polynomial satisfying uis(δr(x)) = rdi−dsuis(x). Setting

λ̃ = λ̃(t) = (λ1
1, . . . , λ

1
α1
, λ2

1t, . . . , λ
2
α2
t, . . . , λι1t

ι−1, . . . , λιαι
tι−1) ∈ Rp

and taking into account the expression of vj given in Lemma 2.6, we can write the
Cauchy problem (2.20) as

∂tγ(t, λ) =

p∑

r=1

vr
(
γ(t, λ)

)
λ̃r(t) =

p∑

r=1

n∑

s=1

Csr
(
γ(t, λ)

)
Xs

(
γ(t, λ)

)
λ̃r(t) , (2.23)
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where C(·) is given by Lemma 2.6. Now we fix λ ∈ L and write for simplicity γ in
place of γ(·, λ). The coordinates of γ will be also denoted as follows

(γ1
1 , . . . , γ

1
m1
, . . . , γι1, . . . , γ

ι
mι

).

Step 1. We start proving (2.21) for the coordinates of γ belonging to the first
layer, i.e. {

γ1
j (t) = λ1

j t if 1 ≤ j ≤ α1

γ1
j (t) = O(t2) if α1 + 1 ≤ j ≤ m1 .

(2.24)

In view of (2.23), we get

γ̇1
j =

p∑

r=1

n∑

s=1

Csr(γ) ajs(γ) λ̃r.

For 1 ≤ j ≤ α1 we have 1 = dj ≤ ds, then (2.22) imply that ajs = δjs, whence

γ̇1
j =

p∑

r=1

Cjr(γ)λ̃r = λ̃j = λ1
j ,

where the second equality follows from (2.11), which implies Cjr(x) = δjr. This
shows the first equality of (2.24).

Now we consider the case α1 + 1 ≤ j ≤ m1. Due to (2.22) and 1 = dj ≤ ds, we
have

γ̇1
j =

p∑

r=1

Cjr(γ)λ̃r =
∑

σr=1

Cjr(γ)λ̃r +
∑

σr≥2

Cjr(γ)λ̃r . (2.25)

From (2.11), we have Cjr(y) = o(1) whenever σr = 1, hence Cjr(γ(t)) = o(t). From
the same formula, we deduce that Cjr(x) is bounded whenever σr ≥ 2, and for the
same indices r we also have λ̃r = O(t), hence the second addend of (2.25) is equal
to O(t). We have shown that γ̇1

j = O(t) for every α1 + 1 ≤ j ≤ m, therefore the
second equality of (2.24) is proved.

Step 2. We will prove (2.21) by induction on k = 1, . . . , ι. The previous step
yields these estimates for k = 1. Let us fix k ≥ 2 and suppose that (2.21) holds for
all integers less than or equal to k − 1; we wish to prove (2.21) for components of
γ with degree k and for any fixed 1 ≤ j ≤ mk. We denote by i the unique integer
between 1 and n such that Xi = Xk

j and accordingly we have γi = γkj , where di = k.
Taking into account (2.22) and that Csr vanishes when ds > σr, it follows that

γ̇i =

p∑

r=1

n∑

s=1

ais(γ)Csr(γ)λ̃r =
∑

1≤r≤p
ds≤di
ds≤σr

ais(γ)Csr(γ)λ̃r . (2.26)
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We split this sum into three addends

γ̇kj = γ̇i =
∑

1≤r≤p
di≤σr

Cir(γ)λ̃r +
∑

1≤r≤p
ds<di
ds=σr

ais(γ)Csr(γ)λ̃r +
∑

1≤r≤p
ds<di
ds<σr

ais(γ)Csr(γ)λ̃r . (2.27)

Step 3. We first consider the case 1 ≤ j ≤ αk: (2.11) implies that Cir(x) = δir,
therefore the first term of (2.27) coincides with λ̃i(t) = λkj t

k−1. For the remaining
terms, our inductive hypothesis yields

γls(t, λ) =

{ (
λls/l + gls(λ

1
1, . . . , λ

l−1
αl−1

) +O(t)
)
tl if 1 ≤ s ≤ αl

O(t) tl if αl + 1 ≤ s ≤ ml

(2.28)

whenever l ≤ k−1, where gls is a homogeneous polynomial of degree l. Due to (2.22),
ais are homogeneous polynomials of degree di−ds = k−ds > 0, then applying (2.28),
we achieve

ais(γ
1
1 , . . . , γ

k−1
mk−1

) =
(
Nis(λ

1
1, . . . , λ

k−1
αk−1

) +O(t)
)
tk−ds (2.29)

whenever ds ≤ di = k and uis = δis if ds = k. Notice that Nis are homogeneous
polynomials of degree k−ds since it is a composition of the homogeneous polynomial
ais and of the homogeneous polynomials λls/l + gls(λ

1
1, . . . , λ

l−1
αl−1

) with degree l.

Let us focus our attention on the second addend of (2.27). By definition of λ̃,
we have λ̃r = λσr

l(r)t
σr−1, for some 1 ≤ l(r) ≤ ασr , hence this second term equals

∑

1≤r≤p
ds<di
ds=σr

[
Csr(0) +O(t)

][
Nis(λ

1
1, . . . λ

k−1
αk−1

)tk−ds +O(tk−ds+1)
]
λσr

l(r)t
σr−1

=
∑

1≤r≤p
ds<di
ds=σr

Csr(0)Nis(λ
1
1, . . . λ

k−1
αk−1

)λds

l(r) t
k−1 +O(tk)

= Ñi(λ
1
1, . . . , λ

k−1
αk−1

) tk−1 + O(tk),

where Ñi is a homogeneous polynomial of degree k = di. From (2.29) and taking
into account the definition of λ̃r, the last term of (2.27) can be written as follows

∑

1≤r≤p
ds<di
ds<σr

Csr(γ(t))
[
Nis(λ

1
1, . . . , λ

k−1
αk−1

)tk−ds +O(tk−ds+1)
]
O(tσr−1)

=
∑

1≤r≤p
ds<di
ds<σr

O(tk−ds+σr−1) = O(tk) .
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Summing up the results obtained for the three addends of (2.27), we have shown
that

γ̇kj (t) = (λkj + Ñi(λ
1
1, . . . , λ

k−1
αk−1

))tk−1 +O(tk)

whence the first part of (2.21) follows.
Step 4. Finally, we consider the case αk + 1 ≤ j ≤ mk. In this case we decom-

pose (2.26) into the following two addends

γ̇i =
∑

1≤r≤p
k≤σr

Cir(γ) λ̃r +
∑

1≤r≤p
ds<k
ds≤σr

ais(γ)Csr(γ)λ̃r . (2.30)

The first term of (2.30) can be written as

∑

1≤r≤p
k≤σr

Cir(γ)λ̃r =
∑

1≤r≤p
k=σr

Cir(γ)λ̃r +
∑

1≤r≤p
k<σr

Cir(γ)λ̃r.

From (2.11), the Lipschitz function Cir(x) vanishes at zero when αk + 1 ≤ j ≤ mk

and di = σr, then Cir(γ(t)) = O(t) and

∑

1≤r≤p
k≤σr

Cir(γ)λ̃r =
∑

1≤r≤p
k=σr

O(t) tk−1 +
∑

1≤r≤p
k<σr

O(1) tσr−1 = O(tk). (2.31)

Let us now consider the second term of (2.30). According to (2.29), we know that
ais(γ(t)) = O(tk−ds). Unfortunately, this estimate is not enough for our purposes,
as one can check observing that λ̃r = O(tσr−1) and Csr = O(1) for some of s, r.
To improve the estimate on ais we will use Lemma 2.14, according to which the
subspace spanned by (

X1
1 , . . . , X

1
α1
, . . . , X ι

1, . . . , X
ι
αι

)

is a subalgebra. Then we define

F = span{Xk
s | 1 ≤ k ≤ ι , 1 ≤ s ≤ αk}

along with the set J , that is given by the condition

F = span{Xj : j ∈ J}.

We first notice that i /∈ J , due to our assumption αk + 1 ≤ j ≤ mk. This will allow
us to apply Lemma 2.5, according to which we have

Pi(x, y) = xi + yi +Qi(x, y) = xi + yi +
∑

l /∈J, dl<k

(xlRil(x, y) + ylSil(x, y)) .
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As a result, assuming that s ∈ J , we obtain the key formula

ais(x) =
∂Pi
∂ys

(x, 0) =
∑

l /∈J, dl<k

xl
∂Ril

∂ys
(x, 0) ,

where ∂ysRil(x, 0) is a homogeneous polynomial of degree k − ds − dl. By both
inductive hypothesis and definition of J , we get

γl(t) = O(tdl+1) ,

for every l /∈ J such that dl < k. By these estimates, we achieve

ais(γ(t)) =
∑

l /∈J, dl<k

γl(t)
∂Ril

∂ys
(γ(t), 0) =

∑

l /∈J, dl<k

O(tdl+1)O(tk−ds−dl) = O(tk+1−ds) .

Then it is convenient to split the second term of (2.30) as follows
∑

r=1,...,p
ds<k
ds≤σr

ais(γ)Csr(γ)λ̃r =
∑

r=1,...,p
ds<k
ds≤σr
s∈J

ais(γ)Csr(γ) λ̃r +
∑

r=1,...,p
ds<k
ds≤σr
s/∈J

ais(γ)Csr(γ) λ̃r , (2.32)

where the first addend of the previous decomposition can be estimated as
∑

1≤r≤p
ds<k
ds≤σr
s∈J

ais(γ)Csr(γ) λ̃r =
∑

1≤r≤p
ds<k
ds≤σr
s∈J

O(tk+1−ds)O(1)O(tσr−1) = O(tk) . (2.33)

Finally, we consider the second addend of (2.32), writing it as the following sum
∑

1≤r≤p
ds<k
ds≤σr
s/∈J

ais(γ)Csr(γ) λ̃r =
∑

1≤r≤p
ds<k
ds=σr
s/∈J

ais(γ)Csr(γ) λ̃r +
∑

1≤r≤p
ds<k
ds<σr
s/∈J

ais(γ)Csr(γ) λ̃r . (2.34)

The first term of (2.34) can be written as
∑

1≤r≤p
ds<k
ds=σr
s/∈J

O(tk−ds)O(t)O(tσr−1) = O(tk) ,

where we have used the fact that Csr(x) = O(|x|) when ds = σr and s /∈ J , according
to (2.11). The second term of (2.34) corresponds to the sum

∑

1≤r≤p
ds<k
ds<σr
s/∈J

O(tk−ds)O(1)O(tσr−1) = O(tk) .
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As a result, the second term of (2.32) is also equal to some O(tk), hence thanks
to (2.33) we get that the second term of (2.30) is O(tk). Thus, taking into account
(2.30) and (2.31) we achieve γ̇(t) = O(tk), which proves the second part of (2.21)
and ends the proof.

Remark 2.16. Analysing the proof of Lemma 2.15, it is easy to realize that the
functions O(tk+1) appearing in the statement of Lemma 2.15 can be estimated by
tk+1, uniformly with respect to λ varying in a compact set: more precisely, there
exists a constant M > 0 such that
∣∣∣γkj (t, λ)−

[
λkj/k + gkj (λ

1
1, . . . , λ

k−1
αk−1

)
]
tk
∣∣∣ ≤Mtk+1 if 1 ≤ j ≤ αk

|γkj (t, λ)| ≤Mtk+1 if αk + 1 ≤ j ≤ mk.
(2.35)

for all λ belonging to a compact set L and every t < t0.

Our next step will be to prove that our curves γ(·, λ) do cover a neighbourhood
of a point with maximum degree. To do this, we fix graded coordinates with respect
to the basis (Xk

j ) and consider the diffeomorphism G : Rp −→ Rp arising from
Lemma 2.15 and that can be associated with any point of maximum degree in a
C1,1 smooth submanifold: precisely, we set

Gi(λ) := λi/σi + gi(λ1, . . . , λPσi−1
s=1 αs

) , (2.36)

where (g1, . . . , gp) = (g1
1, . . . , g

1
α1
, . . . , gι1, . . . , g

ι
αι

) and gkj are given by Lemma 2.15.
Then G(0) = 0 and by explicit computation of the inverse function, the defini-
tion (2.36) implies global invertibility of G.

Remark 2.17. The diffeomorphism G also permits us to state Lemma 2.15 as
follows

γ(t, λ) = δt
(
G(λ) +O(t)

)
∈ R

n , (2.37)

where G(λ) belongs to Rp × {0}, precisely, it lies in the p-dimensional subspace
ΠS(x) with respect to the associated graded coordinates.

We will denote by c(t, λ) the projection of γ(t, λ) on ΠS(x), namely

c(t, λ) = πS(x)
(
γ(t, λ)

)
, (2.38)

where πS(x) is as in (2.17) and graded coordinates arising from (2.16) are under-
stood. In the sequel, the estimates

ci(t, λ) = Gi(λ)tσi +O(tσi+1) (2.39)

will be used. They follow from Lemma 2.15 and the definitions of c and G.
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Lemma 2.18. There exists t0 > 0 such that for every t1 ∈]0, t0[, there exists a
neighbourhood V of 0 such that

V ∩ S ⊂
{
γ(t, λ) : λ ∈ G−1(Sp−1) and 0 ≤ t < t1

}
.

Proof. We fix t0 = t0(L) > 0 as in Lemma 2.15, where we have chosen L =
G−1(Sp−1). Let t1 ∈]0, t0[ be arbitrarily fixed. Taking into account Corollary 2.13,
it suffices to prove that the set {c(t, λ) : λ ∈ L, 0 ≤ t < t1} covers a neighbourhood
of 0 in Rp. For each t ∈]0, t1[, we define the “projected dilations” ∆t = πS(x) ◦ δt
corresponding to the following diffeomorphisms of Rp

∆t(y1, . . . , yp) = (tσ1y1, . . . , t
σiyi, . . . , t

σpyp) .

Now we can rewrite (2.39) as

c(t, λ) = ∆t

(
G(λ) +O(t)

)
, (2.40)

where O(t) is uniform with respect to λ varying in G−1(Sp−1), according to Re-
mark 2.16. Then we define the mapping

Lt : Sp−1 → R
p

u 7−→ ∆1/t

(
c(t, G−1(u))

)

and (2.40) implies
Lt(u) = u+O(t).

As a consequence, Lt → IdSp−1 as t → 0, uniformly with respect to u varying
in Sp−1. Then, possibly considering a smaller t0, for any 0 < τ < t1 we have
Lτ (S

p−1) ∩ B1/2 = ∅ and Lτ is homotopic to IdSp−1 in R
p \ {A} for all A ∈ B1/2.

In particular, since IdSp−1 is not homotopic to a constant, Lτ is not homotopic to a
constant in Rp \ {A} for all A ∈ B1/2.

Now, we are in the position to prove that

{
c(t, λ) : λ ∈ G−1(Sp−1) and 0 ≤ t < τ

}

covers the open neighbourhood of 0 in Rp given by ∆τ (B1/2 ∩ ΠS(e)) that leads us
to the conclusion. By contradiction, if this were not true, then we could find a point
A ∈ B1/2 such that A 6= ∆1/τ (cλ(t)) for all λ ∈ G−1(Sp−1) and 0 ≤ t < τ , but then

H : [0, τ ]× Sp−1 → R
p \ {A}

(s, u) 7−→ ∆1/τ

(
c
(
s,G−1(u)

))

would provide a homotopy in Rp\{A} between the constant 0 and Lτ , which cannot
exist.
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As an important consequence of Lemma 2.15, we can finally obtain the main
result of this Section.

Theorem 2.19. Let S be a C1,1 smooth submanifold of G and let x ∈ S be a point
of maximum degree. Then for every R > 0 we have

δ1/r(x
−1S) ∩ UR → ΠS(x) ∩ UR as r → 0+ (2.41)

with respect to the Hausdorff distance; moreover, ΠS(x) is a subgroup of G.

Proof. We first notice that ΠS(x) is a subgroup of G, due to Lemma 2.14. Setting
Sx,r := δ1/r(x

−1S), it is sufficient to prove (see [13], Proposition 4.5.5) that Sx,r∩UR
converges to Π ∩ UR in the Kuratowski sense, i.e. that

(i) if y = limn→∞ yn for some sequence {yn} such that yn ∈ Sx,rn∩UR and rn → 0,
then y ∈ ΠS(x) ∩ UR;

(ii) if y ∈ ΠS(x) ∩ UR, then there are yr ∈ Sx,r ∩ UR such that yr → y.

It is not restrictive assuming that x = e.
To prove (i), we set zn = δrn(yn) ∈ S ∩ UrnR. From (2.37), we can find t1 > 0

arbitrarily small such that

inf
u∈Sp−1

0<t<t1

|u+O(t)| > 0, (2.42)

where | · | is the Euclidean norm and O(t) is defined in (2.37). Then for n sufficiently
large and taking t1 < t0, Lemma 2.18 yields a sequence {τn} ⊂]0, t1[ and λn ∈
G−1(Sp−1) such that γ(τn, λn) = δrnyn. Due to (2.37), we achieve

δτn/rn (G(λn) +O(τn)) = yn ,

hence (2.42) implies that τn/rn is bounded. Up to subsequences, we can assume
that G(λn) → ζ and τn/rn → s, then yn → δsζ = y. From Remark 2.17, we know
that G(λ) ∈ ΠS(x) with respect to our graded coordinates, hence y ∈ ΠS(x).

To prove (ii), we choose y ∈ ΠS(x) ∩ UR and set λ = G−1(y). By Lemma 2.15
there exists r0 > 0 depending on the compact set G−1(ΠS(x) ∩ UR) such that the
solution r → γ(r, λ′) of (2.20) is defined on [0, r0] for every λ′ ∈ G−1(ΠS(x) ∩ UR).
Clearly, γ(r, λ′) ∈ S, then (2.37) implies that

δ1/r
(
S
)
∋ yr = δ1/r

(
γ(r, λ)

)
−→ G(λ) = y .

This ends the proof.
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2.3 Measure of submanifolds in Carnot groups

In the following Theorem 2.20 we will denote by σg̃ the Riemannian p-dimensional
surface measure with respect to an arbitrary metric g̃. We also stress that the right
hand side of (2.43) is effectively dependent on g̃ like the left hand one, because so is
the definition itself of metric factor θ, and in particular the p-dimensional measure
Hp appearing in (2.3) of Definition 2.2.

Theorem 2.20. Let S be a C1,1 smooth p-dimensional submanifold of degree d =
d(S) and let x ∈ S be of the same degree. Then we have

lim
r↓0

σg̃(S ∩ U(x, r))

rd
=
θ(τdS(x))

|τdS(x)|g
. (2.43)

Proof. Without loss of generality we assume that x is the identity element e and
identify G with Rn through graded coordinates centered at 0 with respect to Xk

j .
According to Corollary 2.13, we parametrize S by the C1,1 function ϕ : A ⊂ ΠS(e)→
Rn−p, such that S is the image of

Φ : A ⊂ ΠS(e) −→ R
n

y 7→ (y1
1, . . . , y

1
α1
, φ1

α1+1(y), . . . , φ
1
m1

(y), . . . , yι1, . . . , y
ι
αι
, φιαι+1(y), . . . , φ

ι
mι

(y)).

For any sufficiently small r > 0, we have

lim
r↓0

σg̃(S ∩ Ur)
rd

=
1

rd

∫

Φ−1(Ur)

Jg̃Φ(y) dy

=

∫

∆1/r(Φ−1(Ur))

Jg̃Φ(∆r(y))dy , (2.44)

where ∆r = δr |ΠS(e) and its jacobian is exactly equal to rd. Notice that the set
∆1/r(Φ

−1(Ur)) = (δ1/r ◦ Φ ◦ ∆r)
−1(U1) contains exactly those elements y ∈ ΠS(e)

such that
(
y1

1, . . . , y
1
α1
,
φ1
α1+1(∆ry)

r
, . . . ,

φ1
m1

(∆ry)

r
, . . . , yι1, . . . , y

ι
αι
,
φιαι+1(∆ry)

rι
, . . . ,

φιmι
(∆ry)

rι

)

belongs to U1 and that

∆1/r(Φ
−1(Ur)) = πS(e)(S0,r ∩ U1),

where πS(e) is the projection onto ΠS(e) with respect to graded coordinates, i.e. the
mapping

R
n ∋ (z1

1 , . . . , z
1
m1
, . . . , zι1, . . . , z

ι
mι

) 7−→ (z1
1 , . . . , z

1
α1
, . . . , zι1, . . . , z

ι
αι

) ∈ ΠS(e).
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For the sake of simplicity, we will write π instead of πS(e). By continuity of π,
for every ǫ > 0 we can find a neighbourhood N ⊂ R

n of ΠS(e) ∩ Ur such that
π(N ) ⊂ ΠS(e)∩U1+ǫ; by Theorem 2.19 and the definition of Hausdorff convergence,
for sufficiently small r we have S0,r ∩ U1 ⊂ N and so

∆1/r(Φ
−1(Ur)) ⊂ π(S0,r ∩ U1) ⊂ ΠS(e) ∩ U1+ǫ. (2.45)

If we also prove that
ΠS(e) ∩ U1−ǫ ⊂ ∆1/r(Φ

−1(Ur)) (2.46)

for small r, we will have χδ1/r(Φ−1(Ur)) → χΠS(e)∩U1
in L1(ΠS(e)). This fact and (2.44)

imply that

lim
r↓0

σg̃(S ∩ Ur)
rd

= Jg̃Φ(0) Hp(ΠS(e) ∩ U1) = Jg̃Φ(0) θ(τdS(0)).

By Corollary 2.13 we know that ∇Φ(0) = C(0), where C is given by Lemma 2.6;
therefore Jg̃Φ(0) must coincide with the Jacobian of the matrix C(0), i.e. with
|v1(0) ∧ · · · ∧ vp(0)|g̃. By virtue of Corollary 2.11, we have

|τdS(e)|g =

∣∣∣∣
X1

1 ∧ · · · ∧X ι
α1
∧ · · · ∧X ι

1 ∧ · · · ∧X ι
αι

|v1(0) ∧ · · · ∧ vp(0)|g̃

∣∣∣∣
g

=
1

|v1(0) ∧ · · · ∧ vp(0)|g̃
.

Finally, it remains to prove (2.46). We fix

y = (y1, . . . , yp) = (y1
1, . . . , y

1
α1
, . . . , yιαι

) ∈ ΠS(e) ∩ U1−ǫ

and set z := δr(y) ∈ U(1−ǫ)r. Let t0 > 0 be as in Lemma 2.18 and consider t1 ∈]0, t0[
to be chosen later. By the same lemma, for every r > 0 sufficiently small there exist
λ ∈ G−1(Sp−1) and t ∈ [0, t1[ such that Φ(z) = γ(t, λ). Since |G(λ)| = 1, we can
find 1 ≤ i ≤ p such that |Gi(λ)| ≥ 1/

√
p. Notice that

πS(e)(Φ(z)) = z = πS(e)(γ(t, λ)) = c(t, λ), (2.47)

then (2.39) implies

Mtσi+1 ≥ |Gi(λ)|tσi − |zi| ≥ tσi/
√
p− |yi|rσi,

where M > 0 is given in Remark 2.16 with L = G−1(Sp−1). It follows that

(1/
√
p−Mt1)t

σi ≤ (1/
√
p−Mt)tσi ≤ |yi| rσi .

Now, we can choose t1 > 0 such that 1/
√
p−Mt1 ≥ ǫ > 0, getting a constant N > 0

depending only on p, |y| and M such that

t ≤ N r . (2.48)
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Taking into account (2.47) and the explicit estimates of (2.35), we get some 1 ≤ k ≤ ι
and αj + 1 ≤ j ≤ mj such that

|ci(t, λ)| = |γkj (t, z)| = |φkj (z)| ≤Mtk+1 ,

where we notice that k = σi. By (2.48), the previous estimate yield

|φkj (δry)| = |φkj (z)| ≤ M̃rk+1 , (2.49)

where M̃ = MNk+1. Estimate (2.49) has been obtained with M̃ independent from
r > 0 sufficiently small. Therefore

(
y1

1, . . . , y
1
α1
,
φ1
α1+1(δry)

r
, . . . ,

φ1
m1

(δry)

r
, . . . , yι1, . . . , y

ι
αι
,
φιαι+1(δry)

rι
, . . . ,

φιmι
(δry)

rι

)

belongs to U1 definitely as r goes to zero, namely, y ∈ ∆1/rΦ
−1(Ur) for r > 0 small

enough. We observe that N linearly depends on |y| and is independent from r > 0,
then the constant M̃ in (2.49) can be fixed independently from y varying in the
bounded set ΠS(e) ∩ U1−ǫ, whence (2.46) follows.

Let S and d be as in Theorem 2.20; for i = 1, . . . , d we set

Si := {x ∈ S : dS(x) = i}.

Then, using Theorem 2.20 and standard theorems on differentiation of measures
(see [69]), it is immediate to deduce the following

Corollary 2.21. Suppose that S is a C1,1 submanifold of degree d; then

Sdρ (Sd) =

∫

Sd

|τdS(x)|g
θ(τdS(x))

dσg̃(x) . (2.50)

In particular, if Sdρ -almost every point has maximum degree d, i.e. if

Sdρ (S \ Sd) = 0 , (2.51)

one has that

Sdρ (S) =

∫

S

|τdS(x)|g
θ(τdS(x))

dσg̃(x) . (2.52)

and S has Hausdorff dimension d.
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In formula (2.52) we used the facts that |τdS(x)|g = 0 on S \ Sd and that metric
factors are uniformly bounded from below.

Corollary 2.21 shows that Sdρ is positive and finite on open bounded sets of the
submanifold and yields the “natural” sub-Riemannian measure on Σ

µS = Sdρ S =
|τdS(·)|g
θ(τdS(·))

σg̃ S . (2.53)

Also the equivalent measure

µ̃S := |τdS(·)|g σg̃ S (2.54)

can be considered a natural one, with the further property that it does not depend
on the metric g̃. In fact, parametrizing a piece of S by a mapping Ψ : U −→ G, we
have

µ̃S
(
Ψ(U)

)
=

∫

Ψ(U)

|τdS(x)|g dσg̃(x)

=

∫

Ψ(U)

∣∣∣
[
(∂x1Ψ ∧ · · · ∧ ∂xpΨ)(Ψ−1(x))

]d∣∣∣
g∣∣(∂x1Ψ ∧ · · · ∧ ∂xpΨ)(Ψ−1(x))

∣∣
g̃

dσg̃(x)

=

∫

U

∣∣∣
(
∂x1Ψ ∧ · · · ∧ ∂xpΨ

)d∣∣∣
g
dLp , (2.55)

where we used classical area formula and the fact that

τS(x) =
∂x1Ψ ∧ · · · ∧ ∂xpΨ

|∂x1Ψ ∧ · · · ∧ ∂xpΨ|g̃
(Ψ−1(x)) .

Integral formula (2.55) can be seen as an area-type formula where the jacobian is
projected on vectors of fixed degree.

It is possible to prove that the restrictive hypothesis (2.51) holds true in many
interesting cases, namely when

• S is a p-dimensional Legendrian submanifold in the Heisenberg groups Hn, i.e.
TxS ⊂ HxH

n for any x ∈ S (in this case one must have p ≤ n and it is easy
to check that d = p, see [83]);

• S is a p-dimensional non-Legendrian submanifold in the Heisenberg groups Hn

(in this case d = p+ 1, see [83] and [122]);

• S is a codimension 1 hypersurface of a Carnot group G, where we have d =
Q− 1 (see [120]);
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• S is a “non-horizontal” submanifold in a Carnot group G, i.e. d = Q − k,
where k is the topological codimension os S (see [121]).

Observe however that, for general submanifolds in a Carnot group, the non-horizon-
tality condition is quite restrictive: for example, it cannot hold when the codimension
k is too large (namely, when k > m1). Presently, we are not able to prove the
validity of (2.51) in the general case; however, one could expect (possibly requiring
more regularity on S) not only that it holds true, but in fact that

Siρ(Si) <∞ for all i = 1, . . . , d. (2.56)

Indeed, this is exactly what happens in step 2 Carnot groups:

Theorem 2.22. Let S be a C1,1 submanifold of degree d of a step 2 Carnot group
G; then (2.56) holds. In particular, also formula (2.52) holds and the Hausdorff
dimension of S is d.

Proof. In view of Corollary 2.21, it will be sufficient to prove (2.56). By [121],
Theorem 1.3, we know that there exist two real constants c1, c2 > 0 such that

0 < c1 ≤ lim inf
r→0+

σg̃(S ∩ U(x, r))

ri
≤ lim sup

r→0+

σg̃(S ∩ U(x, r))

ri
≤ c2

for any x ∈ Si; therefore one has

c1Siρ(Si) ≤ σg̃(Si) ≤ σg̃(S) <∞

and this is sufficient to conclude.

2.4 Some examples in the Engel group

As an application, in this section we wish to present examples of 2-dimensional
submanifolds of all possible degrees in the Engel group E4.

It will be convenient, more than using graded coordinates, to represent E4 as R4

equipped with the vector fields Xj =
∑4

j=1 aij(x)∂i, with

A(x) =




1 0 0 0
0 1 0 0
0 x1 1 0
0 x2

1/2 x1 1


 ,

where x = (x1, x2, x3, x4); observe that d1 = d2 = 1, d3 = 2 and d4 = 3.
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Let Ψ : U −→ R4 be the parametrization of a 2-dimensional submanifold S,
where U is an open subset of R

2. We set (u1, u2) ∈ U ⊂ R
2 and consider Ψui

=∑4
j=1 Ψj

ui
∂j . Taking into account that

A(x)−1 =




1 0 0 0
0 1 0 0
0 −x1 1 0
0 x2

1/2 −x1 1




and that

∂j =
4∑

k=1

(A(x)−1)kjXk , (2.57)

we obtain

Ψui
= Ψ1

ui
X1 + Ψ2

ui
X2 +

(
Ψ3
ui
−Ψ1 Ψ2

ui

)
X3 +

(
Ψ4
ui
−Ψ1 Ψ3

ui
+

(Ψ1)2

2
Ψ2
ui

)
X4 .

It follows that

Ψu1 ∧Ψu2 = Ψ12
u X1 ∧X2 +

(
Ψ13
u −Ψ1Ψ12

u

)
X1 ∧X3 +

(
Ψ14
u −Ψ1 Ψ13

u +
(Ψ1)2

2
Ψ12
u

)
X1 ∧X4 + Ψ23

u X2 ∧X3 +

(
Ψ24
u −Ψ1 Ψ23

u

)
X2 ∧X4 +

(
Ψ34
u +

(Ψ1)2

2
Ψ23
u −Ψ1Ψ24

u

)
X3 ∧X4 (2.58)

where we have set

Ψij
u = det

(
Ψi
u1

Ψi
u2

Ψj
u1

Ψj
u2

)
.

In the sequel, we will use (2.58) to obtain nontrivial examples of 2-dimensional
submanifolds with different degrees in E4.

Remark 2.23. Recall that 2-dimensional submanifolds of degree 2 in E4 cannot
exist, due to non-integrability of the horizontal distribution span{X1, X2}.

The next Example wants to give a rather general method to obtain nontri-
vial examples of 2-dimensional submanifolds of degree 3. Clearly, the submanifold
{(0, x2, x3, 0} is the simplest example, as one can check using (2.58).
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Example 2.24. Having degree 3 means that the first order fully non-linear condi-
tions 




Ψ34
u + (Ψ1)2

2
Ψ23
u −Ψ1Ψ24

u = 0

Ψ24
u −Ψ1 Ψ23

u = 0

Ψ14
u −Ψ1 Ψ13

u + (Ψ1)2

2
Ψ12
u = 0

(2.59)

must hold. By elementary properties of determinants, one can realize that the
previous system is equivalent to requiring that

∇Ψ3 −Ψ1∇Ψ2 is parallel to ∇Ψ4 − (Ψ1)2

2
∇Ψ2 , (2.60)

∇Ψ2 is parallel to ∇Ψ4 −Ψ1∇Ψ3 , (2.61)

∇Ψ1 is parallel to ∇Ψ4 −Ψ1∇Ψ3 +
(Ψ1)2

2
∇Ψ2 . (2.62)

We restrict our search to submanifolds with Ψ1(u1, u2) = u1 and Ψ23
u 6= 0 on U .

This implies that ∇Ψ2 6= 0 and so (2.61) is equivalent to the existence of a function
λ : U → R such that

∇Ψ4 − u1∇Ψ3 = λ ∇Ψ2 .

Imposing the further assumptions λ(u) = −u2
1/2 it follows that

∇Ψ4 = −u
2
1

2
∇Ψ2 + u1∇Ψ3 , (2.63)

whence also (2.62) is satisfied; since

u1(∇Ψ3 − u1∇Ψ2) = ∇Ψ4 − u2
1

2
∇Ψ2 ,

it follows that also (2.60) is satisfied, namely, the system (2.59) holds whenever we
are able to find Ψ4 satisfying (2.63). Clearly, we have an ample choice of families
of functions Ψ2,Ψ3,Ψ4 satisfying (2.63). We choose the injective embedding of R2

into R4 defined by

Ψ(u1, u2) =




u1

u1 + eu2

u1e
u2 +

u2
1

2
u3
1

6
+

u2
1

2
eu2


 .

One can check that dS(Ψ(u)) = 3 for every u ∈ R2, where S = Ψ(R2). Here the
part of τS with maximum degree is

τ 3
S

(
Ψ(u1, u2)

)
= − eu2

√(
1 +

u2
1

2

)2
(1 + e2u2)

X2 ∧X3
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and due to Corollary 2.21, the spherical Hausdorff measure of bounded portions of
S is positive and finite.

It is clear that submanifolds of higher degree are easier to be contructed.

Example 2.25. Let us consider

Ψ(u1, u2) =

(
u1, u2,

u2
2

2
,
u2

2

2

)
.

Then we have

Ψ12
u = 1, Ψ13

u = u2, Ψ14
u = u2

Ψ23
u = 0, Ψ24

u = 0, Ψ34
u = 0.

By (2.58) we have

Ψu1 ∧Ψu2 = X1 ∧X2 + (u2 − u1)X1 ∧X3 +

(
u2 − u1u2 +

u2
1

2

)
X1 ∧X4. (2.64)

Recall that Si is the subset of points in S with degree equal to i. With this notation
we have

S4 =
{
Ψ(u1, u2) : u2 ∈]0, 2[

}
∪
{
Ψ(u1, u2) : u2 ∈ R \ [0, 2], |u2 − u1|2 6= u2

2 − 2u2

}

S3 =
{

Ψ
(
u2 + σ

√
u2

2 − 2u2, u2

) ∣∣∣ σ ∈ {1,−1} and u2 ∈ R \ [0, 2]
}

S2 = {Ψ(0, 0),Ψ(2, 2)} .
We will check that the curves

R \ [0, 2] ∋ u2 7−→ γ(u2) = Φ
(
u2 + σ

√
u2

2 − 2u2, u2

)

with σ ∈ {1,−1} have degree constantly equal to 2. Due to (2.57), we achieve

γ̇ = γ̇1X1 + γ̇2X2 +
(
γ̇3 − γ1 γ̇2

)
X3 +

(
γ̇4 − γ1 γ̇3 +

(γ1)2

2
γ̇2

)
X4 ,

where one can check that
(
γ̇4 − γ1 γ̇3 +

(γ1)2

2
γ̇2

)
= 0 and

(
γ̇3 − γ1 γ̇2

)
= −σ

√
u2

2 − 2u2 6= 0 . (2.65)

It follows that S3 is the union of two curves with degree constantly equal to 2.
Applying (2.52) we get that S2

ρ S3 is positive and finite on bounded open pieces of
S3, hence S4

ρ(S3) = 0. In particular, we have proved that

S4
ρ(S \ S4) = 0,

then the Hausdorff dimension of S is 4 and furthermore S4
ρ S is positive and finite

on open bounded pieces of S. Clearly, (2.52) holds.
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Example 2.26. Using (2.58) one can check that 2-dimensional submanifolds given
by

Ψ(u1, u2) =




0
Ψ2(u1, u2)
Ψ3(u1, u2)
Ψ4(u1, u2)




with Ψ34
u 6= 0 have degree 5 = Q − k, where Q = 7 is the homogeneous dimension

of E4 and k = 2 is the codimension of S. Notice that these submanifolds are then
non-horizontal.

Remark 2.27. Let us consider S as in Example 2.25. It is easy to check that the
thesis of Theorem 2.19 does not hold, indeed

δ1/rS ∩ UR −→ P ∩ UR

where
P = {(x1, 0, 0, x4) | x4 ≥ 0} .

Clearly, P cannot be a subgroup of E4, since all p-dimensional subgroups of Carnot
groups are homeomorphic to Rp, see [167]. This fact may occur since the origin in
S has not maximum degree, as one can check in Example 2.25.



Chapter 3

Elements of Geometric Measure
Theory in the Heisenberg group

Starting with this Chapter, in almost all the rest of the book we will concentrate our
attention on the most important example of non Euclidean Carnot group, namely
the Heisenberg group Hn. In particular, we will summarize the principal results
of Geometric Measure Theory in this setting, taking great part of the material
from [79]. Exhaustive introductions to Heisenberg groups can be found also in [164]
and in the recent book [33].

Section 3.1 contains a brief presentation of Hn, on which from now on we will fix
a system of graded coordinates, as a CC space; rather than on the CC distance dc,
we will make use of the equivalent homogeneous distance d∞ defined in (3.1) and of
the associated Hausdorff and spherical Hausdorff measures Hm

∞ and Sm∞. Following
the approach of Section 1.1, we will define the H-perimeter of a measurable set
E: some comparisons between this notion and the Euclidean one are provided in
Proposition 3.7 and in Example 3.8, while Theorem 3.9 allows us to introduce the
horizontal normal νE.

Section 3.2 is concerned with C1
H

functions, i.e. those continuous real functions
on H

n whose horizontal derivatives are represented, in distributional sense, by conti-
nuous functions. This definition goes back to Folland and Stein [73]. Lemma 3.11
contains an estimate on horizontal difference quotients of C1

H
functions which will be

crucial in the proof of Theorem 4.17, while the main result of the Section is Whitney
Extension Theorem 3.12: its proof was sketched in [79], here we give a complete one.

In Section 3.3 we introduce one of the main objects of the book, namely the H-
regular surfaces. The notion of regular surface is related to a notion of rectifiability in
metric spaces which goes back to Federer (see [69] 3.2.14). It has been used by Am-
brosio and Kirchheim [7, 8] in the framework of a theory of currents in metric spaces
(as for rectifiability in metric spaces, see for instance [104, 150], the monograph [129]

57
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and the references therein). According to this notion, a “good” surface in a metric
space should be the image of an open subset of an Euclidean space via a Lipschitz
map. Unfortunately, such a viewpoint does not fit the geometry of the Heisenberg
group, that indeed would be, according with this definition, purely unrectifiable
(see [8]). On the other hand, in the Euclidean setting Rn, a C1-hypersurface can
be equivalently viewed as the level set of a function f : Rn → R with non-vanishing
gradient. Such a concept was easily transposed in [79] to the Heisenberg group by
means of C1

H
-functions: we will consequently define H-regular surfaces as noncritical

level sets of C1
H

functions. These surfaces can have an extremely bad behaviour from
the Euclidean viewpoint, nevertheless they turn out to be regular with respect to
the intrinsic geometry, thus constituting the natural counterpart of C1 surfaces in
a classical setting. See also [32, 104, 109, 91, 78, 85, 54, 7, 8, 79, 146, 137, 80, 81].
In Definition 3.15 we state the notion of intrinsic graph already mentioned in the
Introduction, and in the main result of the Section, Theorem 3.16, we prove that
H-regular surfaces are locally intrinsic graphs: again the proof of this fact, which
is given with several simplifications at some technical points, is taken from [79].
We mention also the recent paper [82], were the notion of H-Lipschitz surface is
introduced, together with the one of H-Lipschitz graph.

Finally, in Section 3.4 we summarize (without proofs) the results of the latter
paper concerning rectifiability of sets E with finite H-perimeter. More precisely,
we will introduce the H-reduced boundary ∂∗

H
E, on which a blow-up result holds

(Theorem 3.20). This set, up to HQ−1-negligible sets, is contained (Theorem 3.22)
in a countable union of H-regular surfaces. Observe that all these results apply to
H-regular surfaces; in particular, the blow-up result is consistent with Theorem 2.19
for C1,1 hypersurfaces.

3.1 The Heisenberg group

As in Section 1.2.4, the Heisenberg group Hn will be always identified with R2n+1 =
Rn
x × Rn

y ×Rt with group law

P ·Q = (x+ x′, y + y′, t+ t′ + 2〈x′, y〉Rn − 2〈x, y′〉Rn),

where we denote with P = (x, y, t) and Q = (x′, y′, t′) elements of Hn; observe that
0 is the identity of the group and that (x, y, t)−1 = (−x,−y,−t). We will use the
notation ℓP to denote the left translation by an element P .

The Lie algebra h of left invariant vector fields is generated by

Xj = ∂xj
+ 2yj∂t, Yj = ∂yj

− 2xj∂t, T = ∂t;

for n + 1 ≤ j ≤ 2n we will often use the notation Xj := Yj−n. In this way, h is
endowed with the stratification h1⊕h2, where h1 =span {X1, . . . , X2n} and h2 =span
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{T} and where the only nonvanishing commutation relationships are [Xj , Yj] =
−4T, j = 1, . . . , n. For r > 0 the homogeneous dilations δr : H

n → H
n are defined

as
δr(x, y, t) = (rx, ry, r2t).

For P = (x, y, t) ∈ Hn set ||P ||∞ := max{|(x, y)|R2n, |t|1/2}; then for any P,Q ∈
H
n the function

d∞(P,Q) := ||P−1 ·Q||∞ = ||Q−1 · P ||∞ (3.1)

is a homogeneous distance on Hn. In particular

d∞(ℓPQ, ℓPQ
′) = d∞(Q,Q′) and d∞(δrQ, δrQ

′) = r d∞(Q,Q′) (3.2)

for any P,Q,Q′ ∈ Hn; moreover, for any bounded subset Ω of Hn there exist positive
constants c1(Ω), c2(Ω) such that

c1(Ω)|P −Q|R2n+1 ≤ d∞(P,Q) ≤ c2(Ω)|P −Q|1/2
R2n+1 (3.3)

for P,Q ∈ Ω. In particular, the topologies defined by d∞ and by the Euclidean
distance coincide on Hn. From now on, U(P, r) will be the open ball with centre P
and radius r with respect to the distance d∞. We notice that U(P, r) is a Euclidean
Lipschitz domain in R

2n+1.
There is a natural measure on Hn which is given by the Lebesgue measure

dL2n+1 = dx dy dt on R2n+1. This measure is left (and right) invariant and it is
the Haar measure of the group. If E ⊂ Hn then |E| is its Lebesgue measure.

Definition 3.1. (see [69]) We shall denote by Hm the m-dimensional Hausdorff
measure obtained from the Euclidean distance in R2n+1 ≃ Hn, and by Hm

∞ the m-
dimensional Hausdorff measure obtained from the distance d∞ in Hn. Analogously,
Sm and Sm∞ will denote the corresponding spherical Hausdorff measures.

Remark 3.2. We stress that, because the topologies defined by d∞ and by the
Euclidean distance coincide, the topological dimension of Hn is 2n + 1. On the
contrary the Hausdorff dimension of (Hn, d∞) is Q = 2n + 2 (see [132] and [143]).
Moreover, one has (see also [79], Theorem 2.18)

L2n+1 =
2ω2n

ω2n+2
SQ∞ =

2ω2n

HQ
∞(U(0, 1))

HQ
∞.

Here and in the following we adopt the standard notation ωk := Lk(B(0, 1)), where
B(0, 1) is the unit Euclidean ball in Rk.

Translation invariance and homogeneity under dilations of Hausdorff measures
follow directly from (3.2), more precisely we have
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Proposition 3.3. Let Ω ⊆ Hn, P ∈ Hn and m,r ∈ [0,∞). Then

Hm
∞(ℓPΩ) = Hm

∞(Ω) and Hm
∞(δr(Ω)) = rmHm

∞(Ω).

The same statements hold for Sm∞.

For the sake of completness, we recall that the Carnot-Carathéodory metric dc
on Hn is defined as in Section 1.2.6 starting from the family X1, . . . , Xn, Y1, . . . , Yn;
it is not difficult to check that also dc is a homogeneous metric and so

Proposition 3.4. The Carnot-Carathéodory distance dc is (globally) equivalent to
the distance d∞.

We shall denote with Uc(P, r) the open balls for dc and with Hm
c ,Smc the asso-

ciated Hausdorff and spherical Hausdorff measures.
We will identify vector fields and associated first order differential operators;

thus the vector fields X1, . . . , Xn, Y1, . . . , Yn generate a vector bundle on Hn, the so
called horizontal vector bundle HHn according to the notation of Gromov (see [91]
and [109]), that is a vector subbundle of THn, the tangent vector bundle of Hn. Since
each fiber of HHn can be canonically identified with a vector subspace of R2n+1,
each section ϕ of HH

n can be identified with a map ϕ : H
n → R

2n+1. At each point
P ∈ Hn the horizontal fiber is denoted as HPHn and each fiber can be endowed
with the scalar product 〈·, ·〉P and the associated norm | · |P that make the vector
fields X1, . . . , Xn, Y1, . . . , Yn orthonormal, hence we shall also identify a section of
HHn with its canonical coordinates with respect to this moving frame. In this way, a
section ϕ will be identified with the function ϕ = (ϕ1, . . . , ϕ2n) : Hn → R2n such that
ϕ =

∑2n
j=1 ϕjXj . As it is common in Riemannian geometry, when dealing with two

sections ϕ and ϕ′ whose argument is not explicitly written, we shall drop the index
P in the scalar product writing 〈ϕ, ϕ′〉 for 〈ϕ(P ), ϕ′(P )〉P . The same convention
shall be adopted for the norm.

If Ω is an open subset of Hn and k ≥ 0 is a non negative integer, the symbols
Ck(Ω), C∞(Ω) denote the usual (Euclidean) spaces of real valued continuously dif-
ferentiable functions. We denote by Ck(Ω, HHn) the set of all Ck-sections of HHn

where the Ck regularity is understood as regularity between smooth manifolds. The
notions of Ck

c (Ω, HH
n), C∞(Ω, HH

n) and C∞
c (Ω, HH

n) are defined analogously.

Definition 3.5. If Ω is an open subset of Hn and ϕ = (ϕ1, . . . , ϕ2n) ∈ C1(Ω, HHn)
we define the horizontal divergence of ϕ as

divHϕ :=

n∑

j=1

Xjϕj + Yjϕn+j. (3.4)
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Observe that, since X∗
j = −Xj , j = 1, . . . , 2n, the horizontal divergence of ϕ

coincides with the divergence divXϕ (see (1.6)) with X = (X1, . . . , X2n).
Finally, let us recall some of the definitions and results already presented, in a

more general setting, in Section 1.1.2.

Definition 3.6. The H-perimeter of E ⊂ Hn in an open set Ω ⊂ Hn is

||∂E||H(Ω) := sup

{∫

E

divHϕ dL2n+1 : ϕ ∈ C1
c(Ω, HH

n), |ϕ(P )|P ≤ 1 ∀P ∈ H
n

}

We say that E is an H-Caccioppoli set in Ω if ||∂E||H(Ω) <∞.

In the same way, and according to Section 1.1.2, one can define the space BVH(Ω)
and the H-variation of a L1 function f .

Using Theorem 1.9 it is not difficult to show the following

Proposition 3.7. If E is a Euclidean Lipschitz domain, then

||∂E||H =
√∑2n

j=1〈Xj ,n〉2R2n+1 H2n ∂E,

where n is a Euclidean unit normal to ∂E. Moreover, any Euclidean Caccioppoli
set in Hn ≡ R2n+1 is an H-Caccioppoli set and the H-perimeter measure ||∂E||H is
absolutely continuous with respect to the Euclidean surface measure on ∂E.

It is easy to show that Proposition 3.7 is strict, in the sense that there are H-
Caccioppoli sets that are not Caccioppoli sets in R2n+1; consider in fact the following

Example 3.8. Let {rk} be a strictly decreasing sequence of positive real numbers
such that ∑

k∈N

r2
k =∞ and

∑

k∈N

r3
k <∞

and set

Ek := {P ∈ H
1 : r2k+1 ≤ ||P ||∞ ≤ r2k} and E :=

⋃
k∈N

Ek.

For any open neighbourhood of the origin Ω there is k0 sufficiently large such that
∪k≥k0Ek ⊂ Ω and so

||∂E||Eucl(Ω) ≥
∑

k≥k0

H2(∂Ek) ≃
∑

k≥k0

[r2
2k + r2

2k+1] =∞,

i.e. E is not a Euclidean Caccioppoli set. On the other hand, taking into account
Proposition 3.7, it will be sufficient to prove that

∞∑

k=1

∫

∂Ek

√∑2n
j=1〈Xj,n〉 dH2 <∞
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in order to obtain E being an H-Caccioppoli set. An explicit computation gives

∫

{||(x,y,t)||∞=rk}

√∑2n
j=1〈Xj ,n〉 dH2 =

∫

{|(x,y)≤rk|}

|(x, y)| dx dy +

∫

{|(x,y)|=rk,|t|≤r
2
k}

dH2 ≃ r3
k.

For H-Caccioppoli sets the following divergence-type theorem holds (see [79])

Theorem 3.9. Suppose that ||∂E||H(Ω) <∞; then there exists a ||∂E||H-measurable
section νE of HHn such that

|νE(P )|P = 1 for ||∂E||H-a.e. P ∈ H
n;

−
∫

E

divHϕ dL2n+1 =

∫

Hn

〈νE, ϕ〉 d||∂E||H ∀ϕ ∈ C1
c(Ω;HH

n).

Here, the measurability of νE is meant in the sense that its coordinates ν1, . . . , ν2n

are ||∂E||H-measurable functions.

The function νE can be interpreted ||∂E||H-almost everywhere as a generalized
“horizontal” inward normal to the set E.

Finally, as in Definition 1.10, we say that a set E is H-perimeter minimizing in
Ω if

||∂E||H(Ω) ≤ ||∂F ||H(Ω)

for any measurable set F ⊂ Hn such that E∆F ⋐ Ω.

3.2 C1
H

functions and Whitney Extension Theo-

rem

Definition 3.10. We shall denote by C1
H
(Ω) the set of continuous real functions f

in Ω such that the distributional derivative

∇Hf := (X1f, . . . , Xnf, Y1f, . . . , Ynf). (3.5)

is represented by a C0 section of HHn. Moreover, we shall denote by Ck
H
(Ω, HHn)

the set of all sections ϕ of HHn whose canonical coordinates ϕj belong to Ck
H
(Ω)

for j = 1, . . . , 2n.

We stress that the inclusion C1(Ω) ⊂ C1
H
(Ω) is strict; see for example [79],

Remark 5.9. It is not difficult to prove (e.g. using an intrinsic convolution argument)
that C1

H
functions are Lipschitz continuous with respect to the distance d∞.
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We introduce the following notation: let P = (x, y, t) ∈ Hn and P0 ∈ Hn be
given, then we set

πP0(P ) :=

n∑

j=1

xjXj(P0) +

n∑

j=1

yjYj(P0). (3.6)

Observe that the map P0 7−→ πP0(P ) is a smooth section of HHn and so for k :
Hn → HHn ≡ R2n the scalar product of sections 〈k(P0), πP0(P )〉 is well defined.

The following Lemma 3.11 will be a key tool in the proof of Theorem 4.17.

Lemma 3.11. Let f ∈ C1
H
(U(P, r0)). Then there exists a C = C(P, r0) such that,

for each Q ∈ U(P, r0/2), r ∈]0, r0/4[ and Q′ ∈ U(Q, r) we have

|f(Q′)− f(Q)− 〈∇Hf(Q), πQ(Q−1Q′)〉|
d∞(Q,Q′)

≤ C ||∇Hf −∇Hf(Q)||L∞(U(Q,2d∞(Q,Q′)) ).

Proof. Let us define

g(Q′) := f(Q′)− 〈∇Hf(Q), πQ(Q−1Q′)〉

and notice that ∇Hg = ∇Hf −∇Hf(Q). Since a Morrey type inequality

|g(Q′)− g(Q)| ≤ Cr

(∫
–
U(Q,r)

|∇Hg|p
)1/p

for all Q′ ∈ U(Q, r)

holds for a certain C > 0 and for p ≥ 1 (see [116]), we have

|f(Q′)− f(Q)− 〈∇Hf(Q), πQ(Q−1Q′)〉Q|
d∞(Q,Q′)

=
|g(Q′)− g(Q)|
d∞(Q,Q′)

≤ 2C

(∫
–
U(Q,2d∞(Q,Q′))

|∇Hg|p
)1/p

= 2C

(∫
–
U(Q,2d∞(Q,Q′))

|∇Hf −∇H(Q)|p
)1/p

,

whence the thesis follows.

We end this Section by presenting Whitney’s extension Theorem 3.12 for C1
H

functions: we present here the proof given in [79], Theorem 6.8, which in turn
closely follows the one in Euclidean spaces as can be found in Section 6.5 of [67].
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Theorem 3.12. [Whitney Extension Theorem] Let F ⊂ Hn be a closed set,
and let f : F → R, k : F → HH

n be two continuous functions. We set

R(Q,P ) :=
f(Q)− f(P )− 〈k(P ), πP (P−1 ·Q)〉

d∞(P,Q)

and, if K ⊂ F is a compact set,

ρK(δ) := sup{|R(Q,P )| : P,Q ∈ K, 0 < d∞(P,Q) < δ}.

If ρK(δ) → 0 as δ → 0 for every compact set K ⊂ F , then there exist f̃ : Hn → R,
f̃ ∈ C1

H
(Hn) such that f̃|F ≡ f and ∇Hf̃|F ≡ k.

Proof. Step 1. Let U be the open set H
n \ F , and set

r(P ) :=
1

20
min{1, d∞(P, F )}, P ∈ H

n

where we have set d∞(P, F ) := inf{d∞(P,Q) : Q ∈ F}. By Vitali’s covering theorem
(see e.g.[3], Teorema 2.1.6) there exist a countable set C ⊂ U such that

U =
⋃

P∈C

U(P, 5r(P ))

and all the balls U(P, 5r(P )) are pairwise disjoint. For any Q ∈ U we set

CQ := {P ∈ C : U(Q, r(Q)) ∩ U(P, r(P )) 6= ∅}.

Step 2. Let us prove that #CQ ≤ (129)2n+2 and 1/3 ≤ r(Q)/r(P ) ≤ 3 for any
P ∈ CQ. In fact, if P ∈ CQ one has

|r(P )− r(Q)| ≤ 1

20
d∞(P,Q) ≤ 1

20
(10r(P ) + 10r(Q)) =

1

2
(r(P ) + r(Q)).

Hence r(P ) ≤ 3r(Q) and r(Q) ≤ 3r(P ), whence the upper and lower bounds on
r(Q)/r(P ) follow.

In addition, we have

d∞(P,Q) + r(P ) ≤ 10(r(P ) + r(Q)) + r(P ) ≤ 43r(Q)

and so U(P, r(P )) ⊂ U(Q, r(Q)). Since the balls {U(P, r(P )) : P ∈ CQ} are disjoint
and contained in U(Q, 43r(Q)) and r(P ) ≤ r(Q)/3 we have

#CQ L2n+1(U(0, 1))

(
r(Q)

3

)2n+2

≤ L2n+1(U(0, 1)) (43r(Q))2n+2
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whence the claim #CQ ≤ (129)2n+2.
Step 3. Now let µ : R→ R be a smooth nonincreasing function such that

0 ≤ µ ≤ 1, µ(t) = 1 for t ≤ 1, µ(t) = 0 for t ≥ 23/4.

For any P ∈ C define

gP (Q) := µ

(
dK(P,Q)

5r(P )

)
;

here dK is the regularized distance defined by dK(P ′, P ′′) := ||P ′−1 · P ′′||K , where
|| · ||K is the homogeneous gauge

||(x, y, t)||K =
(
(|x|2 + |y|2)2 + t2

)1/4
.

Being a homogeneous distance, dK is globally equivalent to d∞ and in particular one
has

d∞(P ′, P ′′) ≤ dK(P ′, P ′′) ≤ 21/4d∞(P ′, P ′′).

It follows that gP ∈ C∞(Hn), 0 ≤ gP ≤ 1 and

gP ≡ 1 on U(P, 5r(P ))

gP ≡ 0 on H
n \ U(P, 10r(P )). (3.7)

Moreover there is a constantM > 0 such that |XjgP | ≤ M/r(P ) for all j = 1, . . . , 2n;
it follows that |XjgP (Q)| ≤ 3M/r(Q) if P ∈ CQ. Observing that, thanks to (3.7),
gP (Q) = 0 if P /∈ CQ, one has

|XjgP (Q)| ≤ 3M/r(Q) for all Q ∈ H
n, j = 1, . . . , 2n. (3.8)

Define σ(Q) =
∑

P∈C gP (Q), Q ∈ Hn; again by (3.7), one obtains that gP ≡ 0 on
U(Q, 10r(Q)) whenever P /∈ CQ, and so

σ(Q′) =
∑

P∈CQ

gP (Q′) if Q′ ∈ U(Q, 10r(Q)).

Observe that σ ≥ 1 on U ; in fact, for any Q ∈ U there exists P such that Q ∈
U(P , 5r(P )), whence σ(Q) ≥ gP (Q) = 1. Moreover, since #CQ < (129)2n+2 and
because of (3.8), we have σ ∈ C∞(U) and there is a constant M ′ > 0 such that

|Xjσ(Q)| ≤ M ′

r(Q)
for all Q ∈ U, j = 1, . . . , 2n.

Now we define a partition of the unity subordinate to the covering {U(P, 10r(P )) :
P ∈ C)} as

vP (Q) :=
gP (Q)

σ(Q)
.
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Notice that vP ∈ C∞ and XjvP =
XjgP

σ
− gP Xjσ

σ2 and so there exists M ′′ > 0 such
that

∑

P∈C

vP (Q) = 1,
∑

P∈C

XjvP (Q) = 0 and |∇HvP (Q)| ≤ M ′′

r(Q)
(3.9)

for any Q ∈ U .

Step 4. For any P ∈ C choose QP ∈ F such that d∞(P,QP ) = d∞(P, F ) and
define f̃ : Hn → R as follows:

f̃(Q) :=

{
f(Q) if Q ∈ F∑

P∈C vP (Q)[f(QP ) + 〈k(QP ), πQP
(Q−1

P ·Q)〉] if Q ∈ U.

Notice that f̃ ∈ C∞(U) and that

∇Hf̃(Q) =
∑

P∈C

{[
f(QP ) + 〈k(QP ), πQP

(Q−1
P ·Q)〉

]
∇HvP (Q) + vP (Q)k(QP )

}

on U .

Step 5. We claim that ∇Hf̃ ≡ k on F . In fact, let Q ∈ F and set H to be the
compact F ∩ U(Q, 1). Define

ψ(δ) := sup {|R(P, P ′)| : P, P ′ ∈ H, 0 < d∞(P, P ′) ≤ δ}
+ sup {|k(P )− k(P ′)| : P, P ′ ∈ H, d∞(P, P ′) ≤ δ} .

By the continuity of k on F and the hypothesis ρH(δ)→ 0, we have

ψ(δ)→ 0 as δ → 0. (3.10)

If Q′ ∈ H one has

∣∣∣f̃(Q′)− f̃(Q)− 〈k(Q), πQ(Q−1 ·Q′)〉
∣∣∣ =

∣∣f(Q′)− f(Q)− 〈k(Q), πQ(Q−1 ·Q′)〉
∣∣

= |R(Q′, Q)||πQ(Q−1 ·Q′)|
≤ ψ(|d∞(Q,Q′)|)|d∞(Q,Q′)| (3.11)

and |k(Q′)− k(Q)| ≤ ψ(|d∞(Q,Q′)|).
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Instead, if Q′ ∈ U one has
∣∣∣f̃(Q′)− f̃(Q)− 〈k(Q), πQ(Q−1 ·Q′)〉

∣∣∣

=
∣∣∣f̃(Q′)− f(Q)− 〈k(Q), πQ(Q−1 ·Q′)〉

∣∣∣

≤
∑

P∈CQ′

vP (Q′)
∣∣f(QP )− f(Q) + 〈k(QP ), πQP

(Q−1
P ·Q′)〉 − 〈k(Q), πQ(Q−1 ·Q′)〉

∣∣

≤
∑

P∈CQ′

vP (Q′)
∣∣f(QP )− f(Q) + 〈k(QP ), πQP

(Q−1
P ·Q)〉

∣∣+

+
∑

P∈CQ′

vP (Q′)
∣∣〈k(QP )− k(Q), πQP

(Q−1 ·Q′)〉
∣∣; (3.12)

if moreover one supposes d∞(Q′, Q) ≤ 1/6, then r(Q′) ≤ d∞(Q′, Q)/20 and then for
any P ∈ CQ′ we obtain

d∞(Q,QP ) ≤ d∞(Q,P ) + d∞(P,QP ) ≤ 2d∞(Q,P )

≤ 2(d∞(Q,Q′) + d∞(Q′, P )) ≤ 2(d∞(Q′, Q) + 10(r(Q′) + r(P )))

≤ 2(d∞(Q′, Q) + 40r(Q′))

≤ 6 d∞(Q′, Q).

Therefore by (3.12) and Step 2 we get
∣∣∣f̃(Q′)− f̃(Q)− 〈k(Q), πQ(Q−1 ·Q′)〉

∣∣∣ ≤ Lψ(6|d∞(Q′, Q)|)|d∞(Q′, Q)|

which, together with (3.11), gives
∣∣∣f̃(Q′)− f̃(Q)− 〈k(Q), πQ(Q−1 ·Q′)〉

∣∣∣ = o(|d∞(Q′, Q)|),

whence our claim follows.
Step 6. We conclude by proving that f̃ ∈ C1

H
. We fix Q ∈ F and Q′ ∈ Hn with

d∞(Q,Q′) ≤ 1/6. If Q′ ∈ F then

|∇Hf̃(Q′)−∇Hf̃(Q)| = |k(Q′)− k(Q)| ≤ ψ(d∞(Q′, Q))

where ψ : R → R is defined as in Step 5 and depends only on H , i.e. on Q and F .
If Q′ ∈ U we choose Q ∈ F such that d∞(Q′, Q) = d∞(Q′, F ), whence

|∇Hf̃(Q′)−∇Hf̃(Q)| = |∇Hf̃(Q′)− k(Q)|
≤ |∇Hf̃(Q′)− k(Q)|+ |k(Q)− k(Q)|
≤ |∇Hf̃(Q′)− k(Q)|+ ψ(2d∞(Q,Q′)) (3.13)
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where in the last inequality we used the fact that

d∞(Q,Q) ≤ d∞(Q,Q′) + d∞(Q′, Q) ≤ 2d∞(Q,Q′).

Thus we have to estimate the first addend in the right hand side of (3.13);
recalling (3.9) we get

|∇Hf̃(Q′)− k(Q)|

=

∣∣∣∣∣∣

∑

P∈CQ′

[
f(QP ) + 〈k(QP ), πQP

(Q−1
P ·Q′)〉

]
∇HvP (Q′) +

[
k(QP )− k(Q)

]
vP (Q′)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

P∈CQ′

[
f(QP )− f(Q) + 〈k(QP ), πQP

(Q−1
P ·Q)〉

]
∇HvP (Q′)

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

∑

P∈CQ′

〈k(QP )− k(Q), πQP
(Q

−1 ·Q′)〉∇HvP (Q′)

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

∑

P∈CQ′

[
k(QP )− k(Q)

]
vP (Q′)

∣∣∣∣∣∣

≤ M ′′

r(Q′)

∑

P∈CQ′

ψ(d∞(Q,QP ))d∞(Q,QP ) +

+
M ′′

r(Q′)

∑

P∈CQ′

ψ(d∞(Q,QP ))d∞(Q′, Q) +
∑

P∈CQ′

ψ(d∞(Q,QP )) (3.14)

where, in the last inequality, the estimate on the first summation comes from an
argument analogous to the one in (3.11). Since d∞(Q′, Q) ≤ d∞(Q′, Q) ≤ 1/6, one
has r(Q′) = d∞(Q′, Q)/20 ≤ 1/120 and so

r(P ) ≤ 3r(Q′) ≤ 1/40 < 1/20

for all P ∈ CQ′, whence r(P ) = d∞(P,QP )/20 for such a P . Therefore

d∞(Q,QP ) ≤ d∞(Q,Q′) + d∞(Q′, P ) + d∞(P,QP )

≤ 20r(Q′) + 10(r(Q′) + r(P )) + 20r(P )

≤ 120r(Q′) = 6d∞(Q′, Q)

≤ d∞(Q′, Q) (3.15)

holds for any P ∈ CQ′. Combining (3.15) with (3.14) we obtain we get

|∇Hf̃(Q′)− k(Q)| ≤ M̃ψ(6d∞(Q′, Q))
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which, together with (3.13), gives

|∇Hf̃(Q′)−∇Hf̃(Q)| ≤ M̃ ′ψ(6d∞(Q′, Q)).

and this completes the proof.

3.3 H-regular surfaces and Implicit Function

Theorem

Definition 3.13. We shall say that S ⊂ H
n is an H-regular hypersurface if for every

P ∈ S there exist an open ball U(P, r) and a function f ∈ C1
H
(U(P, r)) such that

∇Hf 6= 0 and

S ∩ U(P, r) = {Q ∈ U(P, r) : f(Q) = 0}.
We will denote with νS(P ) the horizontal normal to S at a point P ∈ S, i.e. the
unit vector

νS(P ) := − ∇Hf(P )

|∇Hf(P )|P
.

We will see later (see Corollay 3.17) that νS is continuous and well defined, i.e.
it does not depend on the particular choice of f .

If S ⊂ H
n is an H-regular surface and P ∈ S, we define the tangent group T g

H
S(P )

to S at P as

T g
H
S(P ) := {Q ∈ H

n : 〈∇H(f ◦ ℓP )(0), π0(Q)〉 = 0},

where f is any C1
H

function defining S near P . Again, this definition does not
depend on the choice of f (one could also define T g

H
S(P ) as the set {Q ∈ H

n :
〈νP−1·S(0), π0(Q)〉 = 0}), and it is easy to check that T g

H
S(P ) is a maximal subgroup

of Hn. The tangent plane to S at P is then the lateral

THS(P ) := P · T g
H
S(P ).

Remark 3.14. We stress the fact that the classes of Euclidean regular hypersurfaces
and H-regular surfaces are disjoint. In fact, it is not difficult to check that

S := {(x, y, t) ∈ H
1 : f(x, y, t) = x−

√
x4 + y4 + t2 = 0}

is H-regular in a neighbourhood of 0 (in fact f ∈ C1
H

and X1f(0) = 1) but not C1

regular at the origin. One could produce even worse situations: for example, in [106]
an H-regular surface of Eucliden Hausdorff dimension 2.5 is provided.
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On the other hand, the Euclidean plane O := {(x, y, t) ∈ H1 : t = 0} is Euclidean
regular but not H-regular at the origin: this can be easily proved observing that
O \ {0} is H-regular and its horizontal normal

νO\{0} =
(y,−x)√
x2 + y2

cannot be extended continuously at the origin. However, it is straightforward that
every Euclidean C1 surface S is also H-regular provided it has no characteristic
point, (a point P is said characteristic if the Euclidean tangent plane at S coincides
with the horizontal fiber HPHn).

The main result of this Section, Theorem 3.16, is an Implicit Function Theorem
for H-regular surfaces: as in the Euclidean setting we can (locally) see C1 regular
surfaces as graphs of C1 functions defined on a hyperplane, in the Heisenberg group
H-regular surfaces are (locally and in an intrinsic sense) “graphs” of functions (whose
regularity will be studied in Chapter 4). Here the role of Euclidean hyperplanes (i.e.
of maximal subgroups of Rn) is played by sets of the type

Vw =
{
Q ∈ H

n :
〈 2n∑

j=1

wjXj(0), π0(Q)
〉

= 0
}

(3.16)

for some w ∈ R2n: observe that the Vw’s constitute all the maximal subgroups of
H
n and that, for an H-regular surface, one has T g

H
S(P ) = VνP−1·S(0).

In what follows we will focus our attention on intrinsic graphs over the hyperplane

V1 := V(1,0,...,0) = {(x, y, t) ∈ H
n : x1 = 0};

this will not be restrictive, see also Remark 4.7. We can identify V1 with R2n through
the map

ι : R
2 = Rη ×Rτ −→ V1 ⊂ H

n

(η, τ) 7−→ (0, η, τ) (3.17)

if n = 1, while we set

ι : R
2n = Rη ×R

2n−2
v=(v2,...,vn,vn+2,...,v2n) ×Rτ −→ V1 ⊂ H

n

(η, v, τ) 7−→ (0, v2, . . . , vn, η, vn+2, . . . , v2n, τ) (3.18)

if n ≥ 2. We stress the strange choice for the enumeration of the components of
v, which however is justified by the structure of ι. Finally, for s ∈ R we use the
notation se1 := (s, 0, . . . , 0) ∈ Hn.
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Definition 3.15. Let ω be an open subset of R2n, and let φ be a real function
defined on ω. The intrinsic X1-graph of φ is the map

Φ : ω → H
n

A 7−→ ι(A) · φ(A)e1. (3.19)

In the following, we will make no distinction between an intrinsic X1-graph and
its image, saying that Φ(ω) is the intrinsic graph of φ (also, we will often omit the
X1-prefix). In coordinates, we have

Φ(η, v, τ) =
(
φ(η, v, τ), v2, . . . , vn, η, vn+2, . . . , v2n, τ + 2ηφ(η, v, τ)

)
(3.20)

if n ≥ 2, and a similar formula for n = 1.
One could also interpret the notion of intrinsic X1-graph in this way (see Figure

3.1): start from the point ι(A) ∈ V1 ⊂ Hn and follow the flux of the field X1 (which
is a sort of “normal direction” to V1) for a time φ(A), then the point one reaches is
exactly Φ(A). Observe that this is exactly what happens for Euclidean graphs: one
starts from a point of the hyperplane and follows the flux of the normal for a length
given by the function itself, thus reaching the graph.

yt

ι(ω) ⊂ V1

X1ι(A)

Φ(A)

x

Figure 3.1: Intrinsic graphs.

Notice that a point P = (x, y, t) ∈ Hn can be written in a unique way in the
form ι(A) · se1 for some A ∈ R2n, s ∈ R which can be easily computed since s = x1
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and A = (η, v, τ) (a similar formula holds in the case n = 1) with

η = y1, v = (x2, . . . , xn, y2, . . . , yn), τ = t− 2x1y1. (3.21)

We will write π1(P ) to denote the “projection” of P on R2n ≡ V1 defined, according
to (3.21), by

π1(x, y, t) :=
(
y1, (x2, . . . , xn, y2, . . . , yn), t− 2x1y1

)
. (3.22)

We presently have all the tools to state the main result of this Section, which
has been proved by Franchi, Serapioni and Serra Cassano in [79], Theorem 6.5:

Theorem 3.16. [Implicit Function Theorem] Let Ω be an open set in Hn, 0 ∈ Ω,
and let f ∈ C1

H
(Ω) be such that X1f(0) > 0 and f(0) = 0. Let

E := {P ∈ Ω : f(P ) < 0} and S := {P ∈ Ω : f(P ) = 0};

then there exist δ, h > 0 such that, if we put ω :=
]
−δ, δ

[2n−1 ×
]
−δ2, δ2

[
⊂ R2n,

J := {se1 ∈ Hn : s ∈]− h, h[ } and U := ι(ω) · J , we have U ⋐ Ω and

E has finite H-perimeter in U ;
∂E ∩ U = S ∩ U ;
||∂E||H U is concentrated on S and νE = νS ||∂E||H-a.e. on U .

Moreover there exists a unique continuous function φ : ω →]− h, h[ such that S ∩U
is the X1-graph of φ, and the H-perimeter has the integral representation

||∂E||H(U) =

∫

ω

|∇Hf |
X1f

(Φ(A)) dL2n(A), (3.23)

where Φ depends on φ as in (3.19).

Proof. We divide the proof of the Theorem in several steps.
Step 1. We start by proving the existence of the continuous parametrization φ.

Choose δ, h > 0 small enough to have X1f > 0 on U ⊂ Ω, where U , ω and J are
defined as in the statement of the Theorem; take a convolution kernel ζ ∈ C∞

c (Hn)
satsfying (1.27) and, as in (1.29), set

fǫ(P ) := (ζǫ ⋆ f)(P ). (3.24)

By Propositions 1.28 and 1.29, the maps fǫ are smooth and for any j = 1, . . . , n one
has

Xjfǫ = (ζǫ ⋆ Xjf)→ Xjf, Yjfǫ = (ζǫ ⋆ Yjf)→ Yjf as ǫ→ 0
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uniformly on U . In particular, for any A ∈ ω the map s 7→ fǫ(ι(A) · se1) is differen-
tiable in ]− h, h[ and an easy computation gives

d

ds
fǫ(ι(A) · se1) = (X1fǫ)(ι(A) · se1)

which converges to (X1f)(ι(A) ·se1) uniformly in s. Therefore also s 7→ f(ι(A) ·se1)
is differentiable for |s| < h with

d

ds
f(ι(A) · se1) = (X1f)(ι(A) · se1) > 0. (3.25)

Since f(ι(A)·se1) = 0 forA = 0 and s = 0 we have f(ι(0)·(−he1)) < 0 < f(ι(0)·he1),
and by continuity (choosing a smaller δ if necessary) one has

f(ι(A) · (−h e1)) < 0 < f(ι(A) · he1)

for any A ∈ ω. The existence of an s ∈] − h, h[ with f(ι(A) · se1) = 0 then follows
from a continuity argument, while its uniqueness is a consequence of (3.25): this
gives the implicitely defined function φ : ω → R.
In order to show that φ is continuous, it is sufficient to prove that, if Ak ∈ ω are such
that Ak → A ∈ ω as k → ∞, then there is a subsequence Akl such that φ(Akl) →
φ(A). But one can easily find a subsequence such that φ(Akl) → s0 ∈ [−h, h], and
so by the continuity of f and ι we have

0 = f(ι(Akl) · φ(Akl)e1)→ f(ι(A) · s0e1),

whence s0 = φ(A) and the claim is proved.
Step 2. Let us prove that ∂E ∩ U = S ∩ U . The continuity of f immediately

yields that ∂E ⊂ S; on the other hand, for any given P = (x, y, t) ∈ S ∩U let us set
P = ι(A) ·x1e1, where A = π1(P ) ∈ R2. As in Step 1, the function s 7→ f(ι(A) · se1)
is strictly increasing and vanishes for s = x1 = φ(A), then there is a sequence sk ↑ x1

such that
f(ι(A) · ske1) < 0

for all k. Since ι(A) · ske1 → P we infer P ∈ ∂E.
Step 3. We want to prove now that E has finite H-perimeter in U ; this will be

done, thanks to Proposition 1.5, by constructing a sequence {hǫ}ǫ ⊂ BVH(U) with
equibounded H-variation and such that hǫ → χE in L1(U).

Again let fǫ be defined as in (3.24) and consider the maps

g, gǫ : ω × [−h, h] −→ R

g(A, s) := f(ι(A) · se1)
gǫ(A, s) := fǫ(ι(A) · se1).
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As before, one has ∂gǫ

∂s
(A, s)→ (X1f)(ι(A) · se1) uniformly on ω× [−h, h]; therefore

there exist constants µ, ǫ0 > 0 such that

gǫ(·,−h) < 0 < gǫ(·, h) on ω and
∂gǫ
∂s
≥ µ on ω × [−h, h]

for any 0 < ǫ < ǫ0, and applying the classical implicit function theorem we obtain
smooth functions φǫ : ω →]− h, h[ such that gǫ(A, φǫ(A)) = fǫ(ι(A) · φǫ(A)e1) ≡ 0.
Then for 0 < ǫ < ǫ0 we set

Eǫ := {P ∈ U : P = ι(A) · se1 for some A ∈ ω,−h < s < φǫ(A)}

and hǫ := χEǫ; observe also that Eǫ coincides with

{
ι(A) · se1 ∈ U : (A, s) ∈ ω×]− h, h[ , gǫ(A, s) < 0

}
= {P ∈ U : fǫ(P ) < 0}.

We start by proving that hǫ → χE in L1(U) as ǫ→ 0: by Lebesgue convergence
theorem it will be sufficient to show that χEǫ → χE pointwise a.e. Observe that,
since fǫ → f , if P ∈ E (i.e. f(P ) < 0) for small ǫ one has fǫ(P ) < 0, whence
χEǫ(P ) = 1 = χE(P ) definitively; the same argument can be applied whenever
f(P ) > 0 (obtaining χEǫ(P ) = 0 = χE(P ) definitively) and so it will be enough to
prove that

|{P ∈ U : f(P ) = 0}| = |S ∩ U| = 0.

Setting S̃n := {P ∈ U : P = ι(A) · se1 for A ∈ ω and |φ(A) − s| < 1/n} and
observing that the Jacobian matrix of the map

R
2n+1 ⊃ ω×]− h, h[∋ (A, s) 7−→ (ι(A) · se1) ∈ H

n ≡ R
2n+1

has determinant equal to 1, we obtain that |S̃n| ≤ 2|ω|/n, whence

|S ∩ U| = |
⋂

n

S̃n| = 0.

Let us show now that the functions hǫ have equibounded H-variation in U , i.e.
that the sets Eǫ have equibounded H-perimeter in U . Notice that ∂Eǫ is Euclidean
regular and so for any ϕ ∈ C1

c(U , HH
n) with |ϕ| ≤ 1 we have

∫

U

hǫdivHϕ dL2n+1 =

∫

U∩Eǫ

hǫdivHϕ dL2n+1

=

∫

U∩∂Eǫ

〈ϕ,nǫH〉 dH2n ≤
∫

U∩∂Eǫ

|nǫH| dH2n (3.26)
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and so it is sufficient to give a bound, independent of ǫ, on the right hand side
of (3.26); in the previous formula, for P ∈ ∂Eǫ we have set nǫ

H
(P ) to be the section

of HHn given by

(
〈nǫ(P ), X1(P )〉R2n+1, . . . , 〈nǫ(P ), X2n(P )〉R2n+1

)
,

where nǫ(P ) is the Euclidean unit normal to ∂Eǫ at P . Observe that (3.26) could
have been deduced also directly from Theorem 1.9.

Remember that a parametrization of U ∩ ∂Eǫ is given by

Φǫ : ω −→ H
n

(η, v, τ) 7−→ (φǫ(η, v, τ), v2, . . . , vn, η, vn+2, . . . , v2n, τ + 2ηφǫ(η, v, τ));

from now on we suppose n ≥ 2, since the case n = 1 is completely analogous. By
area formula (see [69]) we infer

∫

U∩∂Eǫ

|nǫ
H
| dH2n =

∫

ω

|nǫ
H
◦ Φǫ| JΦǫ dL2n (3.27)

where JΦǫ is the Jacobian of ∇Φǫ. Explicitly, the Jacobi matrix ∇Φǫ is




∂ηφǫ ∂v2φǫ · · · ∂vnφǫ ∂vn+2φǫ · · · ∂v2nφǫ ∂τφǫ
0 1 · · · 0 0 · · · 0 0
... 0

. . .
...

...
. . .

...
...

0 0 · · · 1 0 · · · 0 0
1 0 · · · 0 0 · · · 0 0
0 0 · · · 0 1 · · · 0 0
... 0

. . .
...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0
2φǫ + 2η∂ηφǫ 2η∂v2φǫ · · · 2η∂vnφǫ 2η∂vn+2φǫ · · · 2η∂v2nφǫ 1 + 2η∂τφǫ




and JΦ2
ǫ is the sum of the squares of all the deteminants of 2n×2n minors of ∇JΦǫ;

a direct computation gives

JΦǫ
2 = (1 + 2η∂τφǫ)

2 +

2n∑

j=2
j 6=n+1

(∂vj
φǫ)

2 + (∂ηφǫ − 2φǫ∂τφǫ)
2 + (∂τφǫ)

2.

Notice that U ∩ ∂Eǫ can be seen also as the zero level of the regular map f ′
ǫ

(x, y, t)
f ′ǫ7−→ x1 − φǫ(π1(x, y, t)) = x1 − φǫ(y1, (x2, . . . , xn, y2, . . . , yn), t− 2x1y1)
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and so the Euclidean unit normal nǫ(x, y, t) to ∂Eǫ is given by ∇f ′ǫ
|∇f ′ǫ|

. By explicit
computation one gets

∇f ′
ǫ(x, y, t) =

(
1 + 2η∂τφǫ, −∂v2φǫ, . . . , −∂vnφǫ,

− ∂ηφǫ + 2φ ∂τφǫ, −∂vn+2φǫ, . . . , −∂v2nφǫ, −∂τφǫ
)
(π1(x, y, t)),

for all (x, y, t) ∈ U ∩∂Eǫ, where we have used the fact that z1 = φǫ(π1(x, y, t)) there.
Observe that |∇f ′

ǫ ◦ Φǫ| = JΦǫ and so equation (3.27) becomes

∫

U∩∂Eǫ

|nǫ
H
| dH2n =

∫

ω

(
2n∑

j=1

〈∇f ′
ǫ ◦ Φǫ, Xj〉2

)1/2

dL2n =

∫

ω

[
1 + (−∂v2φǫ − 2vn+2∂τφǫ)

2 + · · ·+ (−∂vnφǫ − 2v2n∂τφǫ)
2 + (−∂ηφǫ + 4φǫ∂τφǫ)

2

+(−∂vn+2φǫ + 2v2∂τφǫ)
2 + · · ·+ (−∂v2nφǫ + 2vn∂τφǫ)

2
]1/2

dL2n. (3.28)

By differentiating the equation

0 ≡ fǫ(φǫ(η, v, τ), v2, . . . , vn, η, vn+2, . . . , v2n, τ + 2ηφǫ(η, v, τ))

one obtains

∂vj
φǫ = −∂xj

fǫ

X1fǫ
◦ Φǫ and ∂vj+n

φǫ = −∂yj
fǫ

X1fǫ
◦ Φǫ , j = 2, . . . , n

∂η φǫ = −∂y1fǫ + 2φǫ ∂tfǫ
X1fǫ

◦ Φǫ

∂t φǫ = − ∂tfǫ
X1fǫ

◦ Φǫ

(3.29)

which, substituted into (3.28), give

∫

U∩∂Eǫ

|nǫ
H
| dH2n =

∫

ω

|∇Hfǫ|
|X1fǫ|

◦ Φǫ dL2n. (3.30)

If we show that φǫ → φ uniformly on ω, the right hand side of (3.30) will automati-
cally converge to ∫

ω

|∇Hf |
|X1f |

◦ Φ dL2n <∞

(where Φ is as in (3.19)) and this is enough to prove our goal, i.e. that the functions
hǫ have equibounded H-variation.
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Suppose on the contrary that there are σ > 0, ǫk → 0 and Ak ∈ ω such that
|φǫk(Ak) − φ(Ak)| ≥ σ. By compactness we can suppose that Ak → A ∈ ω and
φǫk(A

k)→ s0 as k →∞; it follows that |φ(A)− s0| ≥ σ but, on the other hand, the
uniform convergence of fǫ to f implies

0 = φǫk(ι(A
k) · fǫk(Ak)e1)→ f(A · s0e1),

whence the contradiction s0 = φ(A).
Step 4. We are now in order to prove the area type formula (3.23). Arguing as

in Step 3, for any ϕ ∈ C1
c(U , HHn), |ϕ| ≤ 1 one has

∫

U

χE divHϕ = lim
ǫ→0

∫

U

hǫ divHϕ

= lim
ǫ→0

∫

ω

〈ϕ,∇Hfǫ〉
|X1fǫ|

◦ Φǫ dL2n =

∫

ω

〈ϕ,∇Hf〉
|X1f |

◦ Φ dL2n, (3.31)

where in the last equality we used Lebesgue convergence theorem. Taking the supre-
mum with respect to ϕ we obtain (3.23).

Notice that taking the supremum in (3.31) on ϕ ∈ C1
c(V, HHn), |ϕ| ≤ 1, where

V ⋐ U is an open set, it is straightforward to prove that

||∂E||H(V) =

∫

Φ−1(V)

|∇Hf |
|X1f |

◦ Φ dL2n,

i.e. that

||∂E||H U =
|∇Hf |
|X1f |

Φ♯

(
L2n ω

)
. (3.32)

It follows that ||∂E||H U is concentrated on S.
Step 5. We are only left to prove that νE = − ∇Hf

|∇Hf |
||∂E||H-a.e. on S ∩ U . By

Theorem 3.9, (3.31) and (3.32), for any ϕ ∈ C1
c(U , HH

n), |ϕ| ≤ 1 we have
∫

ω

〈ϕ ◦ Φ, νE ◦ Φ〉 |∇Hf ◦ Φ|
|X1f ◦ Φ| dL

2n =

∫

U

〈ϕ, νE〉 d||∂E||H

= −
∫

E

divHϕ = −
∫

ω

〈ϕ ◦ Φ,∇Hf ◦ Φ〉
|X1f ◦ Φ| dL2n,

whence νE ◦ Φ = − ∇Hf
|∇Hf |

◦ Φ L2n-a.e. on ω, i.e.

νE = − ∇Hf

|∇Hf |
= νS ||∂E||H-a.e. on S ∩ U .

Corollary 3.17. The horizontal normal to an H-regular surface S is well defined,
i.e. it does not depend on the choice of the defining function f .
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3.4 Rectifiability in the Heisenberg group

In this Section we collect, without proof, the most relevant results contained in [79]
which have not been presented in previous Sections; observe that, more generally,
many of them have been established also for step 2 Carnot groups (see [81]).

In the spirit of De Giorgi’s approach to rectifiability for sets of finite perimeter
(see e.g. [65]) we start by defining the H-reduced boundary ∂∗

H
E of an H-Caccioppoli

set E as the set of points P ∈ Hn such that

(a) ||∂E||H(U(P, r)) > 0 for all r > 0,

(b) there exists lim
r→0

∫
–
U(P,r)

νE d||∂E||H and

(c)

∣∣∣∣limr→0

∫
–
U(P,r)

νE d||∂E||H
∣∣∣∣ = 1,

where νE is the horizontal inward normal to E of Theorem 3.9.

Remark 3.18. Notice that, thanks to Theorem 3.16 and using the notations therein,
for an H-regular surface S one has S = ∂∗

H
E.

We have the following

Lemma 3.19 (Lemma 7.3 in [79]). If E is an H-Caccioppoli set, then

lim
r→0

∫
–
U(P,r)

νE d||∂E||H = νE(P ) for ||∂E||H-a.e. P.

This implies, in particular, that ||∂E||H-a.e. point P ∈ Hn belongs to ∂∗
H
E;

moreover, up to re-defining νE on a ||∂E||H-negligible set, we are allowed to suppose
that

νE(P ) = lim
r→0

∫
–
U(P,r)

νE d||∂E||H

for any P ∈ ∂∗
H
E.

The first key result for rectifiability, exactly as in De Giorgi’s program, is a
blow-up theorem for H-Caccioppoli sets at points of the H-reduced boundary. More
precisely, for any P ∈ Hn we define

Er,P0 := δ1/r(ℓP−1
0
E) = {P ∈ H

n : P0 · δr(P ) ∈ E}

and for ν ∈ HP0H
n let us introduce the halfspaces S+

H
(ν) and S−

H
(ν) “orthogonal”

to ν as

S+
H

(ν) := {P ∈ H
n : 〈πP0(P ), ν〉 ≥ 0}

S−
H

(ν) := {P ∈ H
n : 〈πP0(P ), ν〉 ≤ 0}.
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The common topological boundary of S+
H
(ν) and S−

H
(ν) is the maximal subgroup Vν

(see (3.16)), which we will also denote by T g
H
(ν) = {P ∈ H

n : 〈πP0(P ), ν〉 = 0}. We
then have

Theorem 3.20 (Theorem 4.1 in [79]). Let E be an H-Caccioppoli set and let P0 ∈
∂∗

H
E; then

lim
r→0

χEr,P0
= χS+

H
(νE(P0)) in L1

loc(H
n) (3.33)

and

lim
r→0
||∂Er,P0 ||H(U(0, R)) = ||∂S+

H
(νE(P0))||H(U(0, R))

= L2n
(
T g

H
(νE(P0)) ∩ U(0, R)

)
= 2ω2n−1R

2n+1 (3.34)

for any R > 0.

Remark 3.21. Notice that, in the case of an H-regular surface S, the blow up limit
of E at a point P0 ∈ S (where E is as in 3.16) is exactly the halfspace S+

H
(νS(P0))

whose boundary is the tangent group T g
H
S(P0) to S at P0.

Analogously to the classical Euclidean case, we say that a set Γ ⊂ Hn is H-
rectifiable if

Γ ⊂ N ∪
∞⋃

j=1

Kj (3.35)

where HQ−1
∞ (N) = 0 and each Kj is a compact subset of an H-regular surface Sj.

We then have

Theorem 3.22 (Theorem 7.1 in [79]). If E ⊂ H
n is an H-Caccioppoli set, then

its H-reduced boundary ∂∗
H
E is H-rectifiable. More precisely, it is possible to find a

decomposition

∂∗HE = N ∪
∞⋃

j=1

Kj

such that HQ−1
∞ (N) = 0 and each Kj is a compact subset of an H-regular surface Sj

with the property that

νE(P ) = νSj
(P ) for all P ∈ Kj .

Finally, one has

||∂E||H =
2ω2n−1

ω2n+1
SQ−1
∞ ∂∗

H
E. (3.36)
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As usual in the literature, one can also define the measure theoretic boundary
∂∗HE of E as the set of points P ∈ H

n such that

lim sup
r→0

|E ∩ U(P, r)|
|U(P, r)| > 0 and lim sup

r→0

|U(P, r) \ E|
|U(P, r)| > 0.

It is not difficult to prove that for an H-Caccioppoli set E we have

∂∗
H
E ⊂ ∂∗HE ⊂ ∂E;

moreover, one has HQ−1
∞ (∂∗HE \ ∂∗HE) = 0. Finally, the following result also holds

Theorem 3.23 (Corollary 7.6 in [79]). If E is an H-Caccioppoli set, then

||∂E||H =
2ω2n−1

ω2n+1

SQ−1
∞ ∂∗HE

and the following divergence formula holds

−
∫

E

divHϕ dL2n+1 =
2ω2n−1

ω2n+1

∫

∂∗HE

〈νE, ϕ〉 dSQ−1
∞ .



Chapter 4

Intrinsic parametrization of
H-regular surfaces

The main aim of this Chapter is to give necessary and sufficient conditions for maps
φ : V1 → R to parametrize H-regular surfaces, in the sense of the X1-graphs intro-
duced in Section 3.3. These conditions turn out to be of crucial importance in the
study of several features regarding H-regular surfaces (regularity of the parametriza-
tions, rectifiability, etc.), allowing for example the explicit exhibition of non Eu-
clidean H-regular surfaces. We will also investigate area-type formulae for H-regular
X1-graphs, thus paving the way for classical questions of Geometric Measure Theory,
such as Minimal Surfaces or the Bernstein problem (see also Chapter 5). Similar
items have been studied also in [48].

All the results of this Chapter are quite technical and will be illustrated in the
following brief overview. We want to stress in particular the importance of the oper-
ator W φ, which seems to be the correct intrinsic replacement of Euclidean gradient
for C1 surfaces: we will see how they share several common features. Regarding
the operator W φ, we should address the reader also to the recent paper [24]. All
the results contained in this Chapter, except for the ones of Section 4.5, have been
obtained in [12] in collaboration with L. Ambrosio and F. Serra Cassano. Theo-
rem 4.33 is due to Cole and Pauls [52], while Remark 4.34 and Theorem 4.35 are
results contained in a joint work with F. Bigolin [25].

We then begin with Section 4.1, where we deepen the study of implicit graphs; in
particular, we endow R2n ≡ V1 with the homogeneous structure inherited from Hn,
thus defining the group law ⋄, the left invariant vector fields X̃j , Ỹj, T̃ , the homoge-
neous dilations δ⋄r and the ⋄-linear functionals on R2n. Through Proposition 4.3 and
Corollary 4.5 we provide an integral formula for the SQ−1

∞ measure of an H-regular
surface S, in terms of (derivatives of) its intrinsic parametrization only. This for-
mula will be extensively used in the rest of the book. With Remark 4.7 we also
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show that it is not restrictive to consider X1-graphs rather than general Xj-graphs.
In Section 4.2 we provide the basic tools for the analysis of parametrizations of

H-regular surfaces. Namely, for any fixed continuous function φ : ω ⊂ R2n → R we
introduce the (quasi-)distance dφ on ω and the concepts of W φ-differentiability and
uniform W φ-differentiability for functions ψ : ω → R, see (4.12) and Definition 4.9.
When φ parametrizes an H-regular surface S, it turns out that dφ is equivalent
to the restriction of d∞ to S, i.e. to the pull back Φ−1

♯ d∞. The notion of W φ-
differentiability, a sort of intrinsic differentiability taking into account dφ (and so
φ itself) and the homogeneous structure (R2n, ⋄, δ⋄r), carries on the concept of the
W φ-differential of ψ. The latter is a function W φψ : ω → R

2n−1 turning out to
be continuous in case of uniform W φ-differentiability (see Proposition 4.14). In the
regular case φ, ψ ∈ C1(ω) one can prove that

W φψ = (X̃2ψ, . . . , X̃nψ, Ỹ1ψ − 4φT̃ψ, Ỹ2ψ, . . . , Ỹnψ) ;

this quite technical result is proved in Theorem 4.16.
The main item of Section 4.3 is Theorem 4.17, where we prove that a map

φ parametrizes an H-regular surface S = Φ(ω) if and only if φ is uniformly W φ-
differentiable. Moreover, we get two explicit formulae for the horizontal normal (4.36)
and for the SQ−1 measure of S (4.37), which are consistent with Proposition 4.3.
These two formulae suggest that the intrinsic gradient W φφ is the correct counter-
part of Euclidean gradients for classical graphs, since both of them can be obtained
by formally substituting the classical gradient with W φφ. We also remark that
intrinsic regular parametrizations have continuous intrinsic gradient, exactly like
parametrizations of regular C1 surfaces have continuous gradient. The proof of
Theorem 4.17 is quite technical and makes use of Lemma 3.11 and Whitney Exten-
sion Theorem 3.12. As a byproduct, we obtain that parametrizations of H-regular
surfaces are 1/2 Hölder continuous from the Euclidean viewpoint (a fact already
known [106]) and, in fact, also a bit more regular (see Corollary 4.20).

In Section 4.4 we characterize uniformly W φ-differentiable functions φ (i.e. para-
metrizations of H-regular surfaces) by means of equivalent conditions. The main
result in this sense is Theorem 4.22, where we prove that such φ’s are exactly those
for which

(X̃2φ, . . . , X̃nφ, Ỹ1φ− 2T̃ (φ2), Ỹ2φ, . . . , Ỹnφ)

coincides, in distributional sense, with a continuous function (and, a posteriori,
with W φφ) and it is possible to find a family {φǫ} ⊂ C∞(ω) such that φǫ → φ and
W φǫφǫ → W φφ locally uniformly in ω. The proof of this fact is similar to the one
of Theorem 4.16: the main technical obstacle is the absence of a good definition of
integral lines for the vector field Ỹ1−4φT̃ , which however can be bypassed thanks to
a suitable notion of exponential maps. As an application, Corollary 4.32 furnishes
a recipe to easily construct H-regular surfaces that are not Euclidean C1.
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Finally, in Section 4.5 we restrict our attention to the problem of finding a
model metric space for H-regular surfaces in H

1. This was identified [52] in the
space (R, | · |) × (R, | · |1/2) for C1 surfaces, while this result is no longer true for
general H-regular ones. We are in fact able (Theorem 4.35) to exhibit, by means of
Corollary 4.32, an H-regular surface S such that there are no Lipschitz maps from
S into that space with Lipschitz continuous inverse map.

4.1 More on intrinsic graphs

Let us introduce some subspaces of the Lie algebra h associated with Hn (here X̂j

means that in an enumeration we omit Xj):

o := h1 = span{X1, . . . , X2n};
vj := span{X1, . . . , X̂j . . . , X2n, T} (1 ≤ j ≤ 2n);

oj := span{X1, . . . , X̂j . . . , X2n} (1 ≤ j ≤ 2n);
lj := span{Xj} (1 ≤ j ≤ 2n);
z := h2 = span{T}

and let πo, πvj
, πoj

, πlj , πz be the projections of hn onto o, vj, oj, lj and z respectively.
Define the following subsets of Hn:

O := exp(o) = {P ∈ Hn : p2n+1 = 0};
Vj := exp(vj) = {P ∈ Hn : pj = 0};
Oj := exp(oj) = O ∩ Vj = {P ∈ H

n : pj = p2n+1 = 0};
Lj := exp(lj) = {P ∈ Hn : pi = 0 ∀i 6= j};
Z := exp(z) = {P ∈ Hn : p1 = · · · = p2n = 0}.

and let πO, πVj
, πOj

, πLj
and πZ be the maps defined by exp ◦ πo ◦ exp−1, exp ◦ πvj

◦
exp−1 and so on; we will refer to them as orthogonal projections of Hn onO, Vj, Oj, Lj
and Z. Observe that Vj coincides with the maximal subgroup Vej

according to (3.16),
where ej are the vectors of the canonical basis of R2n+1.

The following properties of these projections are straightforward:

Proposition 4.1. For any P,Q ∈ Hn we have

πO1(P ) = πO ◦ πV1(P ) = πV1 ◦ πO(P )
πO1(P ·Q) = πO1(πO1(P ) · πO1(Q))
πZ(P ·Q) = πZ(P ) · πZ(Q) · πZ(πO(P ) · πO(Q))
||πM(P )||∞ ≤ ||P ||∞ ∀M ∈ {O,O1, V1, L1, Z} .
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Let us observe that Z is the center of the group, and that only Z,Lj and Vj are
subgroups; Oj is a subgroup only if n = 1 (because in this case it coincides with Lj),
while O is never a subgroup. We agree to denote with αej the point exp(αXj) ∈ Lj ;
then for each P = (p1, . . . , p2n+1) ∈ Hn there is a unique way to write it in the
form PVj

· PLj
for points PVj

∈ Vj, PLj
∈ Lj : it is sufficient to take PLj

= pjej and
PVj

= P · P−1
Lj
∈ Vj.

Recalling the definition of the diffeomorphism ι : R2n → V1 given in (3.17)
and (3.18) we can endow R

2n with the group law ⋄ induced by ι, i.e.

A ⋄B := ι−1(ι(A) · ι(B)) A,B ∈ R
2n. (4.1)

We will use ℓ⋄A to denote the left translation by A in R2n. Explicitly, if n > 1 and
A = (η, v, τ), B = (η′, v′, τ ′) ∈ R2n we have

A ⋄B = (η + η′, v + v′, τ + τ ′ + σ(v, v′))

where

σ(v, v′) = 2
n∑

j=2

(vn+jv
′
j − vjv′n+j) (4.2)

if v = (v2, . . . , vn, vn+2, . . . v2n), v
′ = (v′2, . . . , v

′
n, v

′
n+2, . . . v

′
2n). Instead if n = 1 and

A = (η, τ), B = (η′, τ ′) ∈ R2 we simply have

A ⋄B = (η + η′, τ + τ ′).

Notice that in both cases the induced group structure is the one arising from direct
product R × R if n = 1 and R × Hn−1 if n > 1, via the identification R2n =
Rη × (R2n−2

v × Rτ ) = R×Hn−1.
Moreover, since V1 is closed under group dilations, for r > 0 we can define the

family of induced intrinsic dilations

δ⋄r(A) := ι−1(δr(ι(A)) ∈ R
2n; (4.3)

which can be written explicitly as

δ⋄r(η, v, τ) = (rη, rv, r2τ) for n ≥ 2
δ⋄r(η, τ) = (rη, r2τ) for n = 1.

Therefore, (R2n, ⋄, δ⋄r) turns out to be a homogeneous group in the sense of Folland
and Stein ([73]), and ι is a group isomorphism. We define a ⋄-linear functional
L : R2n → R as a homomorphism which is also homogeneous of degree 1 with
respect to the dilations, i.e. L ◦ δ⋄r = rL. The following Proposition comes from
Proposition 5.4 in [79]:
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Proposition 4.2. Let L : R2n → R be a ⋄-linear functional; then there is a unique
vector wL ∈ R

2n−1 such that L(A) = 〈A,wL〉, where we write

〈A,wL〉 = ηwLn+1 +

2n∑

j=2,j 6=n+1

vjwLj if n ≥ 2, wL = (wL2, . . . , wL2n) and A = (η, v, τ)

〈A,wL〉 = ηwL2 if n = 1, wL = wL2 and A = (η, τ) .

Conversely, through the previous formulae we can associate to each w ∈ R
2n−1 a

unique ⋄-linear functional Lw.

Observe that the choice of the enumeration of the components of wL has been
made in order to be coherent with the one made for the components of v and with
the fact that η is the (n+ 1)-th coordinate of ι(A).

For n > 1, the tangent space to V1 is generated by the restrictions of X2, . . . , Xn,
Y1, . . . , Yn, T , and so we can define the vector fields X̃2 . . . , X̃n, Ỹ1, . . . , Ỹn and T̃ on
R

2n given by X̃j := (ι−1)∗Xj and Ỹj := (ι−1)∗Yj, T̃ := (ι−1)∗T . In coordinates, they
can be written as

X̃j(η, v, τ) =
∂

∂vj
+ 2vj+n

∂

∂τ
for j = 2, . . . , n

Ỹ1(η, v, τ) =
∂

∂η

Ỹj(η, v, τ) =
∂

∂vj+n
− 2vj

∂

∂τ
for j = 2, . . . , n

T̃ (η, v, τ) =
∂

∂τ
.

(4.4)

For n+ 1 ≤ j ≤ 2n we will also use the notation X̃j := Ỹj−n.
If n = 1 the tangent space to V1 is generated by Y1 and T , and as before we can
define

Ỹ1(η, τ) := (ι−1)∗Y1 =
∂

∂η

T̃ (η, τ) := (ι−1)∗T =
∂

∂τ

(4.5)

and it could happen that we will write X̃2 instead of Ỹ1. It follows from the definition
that X̃j , Ỹj, T̃ are ⋄-left-invariant.

With these notations, let us provide an improvement of Theorem 3.16:

Proposition 4.3. Under the same assumptions as in Theorem 3.16, let us consider
the distribution

Bφ := Ỹ1φ− 2 T̃ (φ2) =
∂φ

∂η
− 2

∂φ2

∂τ
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on ω =]− δ, δ[2n−1×]− δ2, δ2[, where φ and δ are given by the same Theorem 3.16.
Then, if n > 1 we have

X̃jφ = −Xjf

X1f
◦ Φ, Ỹjφ = − Yjf

X1f
◦ Φ, Bφ = − Y1f

X1f
◦ Φ (4.6)

for j = 2, . . . , n, where the equalities must be understood in distributional sense on
ω. Moreover, the H-perimeter has the integral representation

||∂E||H(U)= c(n)SQ−1
∞ (S ∩ U)=

∫

ω

√
1+|Bφ|2+∑n

j=2

[
|X̃jφ|2+|Ỹjφ|2

]
dL2n , (4.7)

where we have set c(n) := 2ω2n−1

ω2n+1
. If n = 1 we have simply

||∂E||H(U) = c(1)SQ−1
∞ (S ∩ U) =

∫

ω

√
1 + |Bφ|2 dL2. (4.8)

Proof. We will give the proof only for the case n ≥ 2; the adaptation to n = 1 does
not present difficulties.

Arguing as in Step 1 of the proof of Theorem 3.16, we can suppose that there
exists a family of functions fǫ : U → R such that fǫ ∈ C1(U), X1fǫ > 0 on U and

Xjfǫ → Xjf, Yjfǫ → Yjfǫ uniformly on U (j = 1, . . . , n).

Now, following Step 3 of the same proof, we obtain the existence (for ǫ0 small enough
and h as in Theorem 3.16) of functions φǫ ∈ C1(ω, ]− h, h[) (0 < ǫ < ǫ0) such that

fǫ(ι(A) · φǫ(A)e1) = 0 for all A ∈ ω
φǫ → φ uniformly on ω for ǫ→ 0.

Using formulae (3.29), for j = 2, . . . , n we get

X̃jφǫ = −Xjfǫ
X1fǫ

◦ Φǫ

Ỹjφǫ = − Yjfǫ
X1fǫ

◦ Φǫ

Bφǫ =
∂φǫ
∂η
− 2

∂φ2
ǫ

∂τ
=
∂φǫ
∂η
− 4φǫ

∂φǫ
∂τ

= − Y1fǫ
X1fǫ

◦ Φǫ ,

where as usual Φǫ is the map A 7−→ ι(A) · φǫ(A)e1; this immediately implies (4.6).
The integral representation (4.7) follows from the area type formula (3.23), together
with (4.6) and (3.36).
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Remark 4.4. The operator B is known in the literature as Burgers’ operator: see
for example [66], section 3.4.

Corollary 4.5. Let Ω be an open subset of Hn, and let f ∈ C1
H
(Ω) be such that

X1f > 0 on S := {f = 0}. Suppose that S is intrinsically parametrized by a real
continuous function φ defined on an open set ω ⊂ R2n (i.e. S := Φ(ω), where as
usual Φ(A) := ι(A) ·φ(A)e1), and let E := {f < 0}. Then for each Borel set F ⊂ Ω
we have

||∂E||H(F ) = c(n) SQ−1
∞ (F ∩ S) =

∫

Φ−1(F )

√
1+|Bφ|2+∑n

j=2

[
|X̃jφ|2+|Ỹjφ|2

]
dL2n (4.9)

if n ≥ 2, and

||∂E||H(F ) = c(1) SQ−1
∞ (F ∩ S) =

∫

Φ−1(F )

√
1 + |Bφ|2 dL2 (4.10)

if n = 1.

Proof. Again we give the proof only for the case n ≥ 2. Let µ := π1♯(||∂E||H),
where π1♯ is the usual push-forward of measures through the map defined in (3.22).
Observe that, as π1 ≡ Φ−1 on S and ||∂E||H is concentrated on S, we have

||∂E||H(F ) = µ(Φ−1(F ∩ S)).

Therefore by Proposition 4.3 there are locally (i.e. for each A ∈ ω) rectangles I such

that µ|I =
√

1 + |Bφ|2 +
∑n

j=2

[
|X̃jφ|2 + |Ỹjφ|2

]
L2n. The class of these rectangles

is sufficiently rich to apply the measure coincidence criterion (see for instance [6],

Theorem 1.8), and so µ =
√

1 + |Bφ|2 +
∑n

j=2

[
|X̃jφ|2 + |Ỹjφ|2

]
L2n on all ω, whence

||∂E||H(F ) = µ(Φ−1(F ∩ S))

=

∫

Φ−1(F∩S)

√
1 + |Bφ|2 +

∑n
j=2[|X̃jφ|2 + |Ỹjφ|2] dL2n,

which is the thesis.

More generally, after fixing an identification ιj : R2n → Vj, for j = 2, . . . , 2n
we can define Xj-graphs as those subsets S of Hn for which there exists a function
φ : ω ⊂ R

2n → R such that S = {ιj(A) · φ(A)ej : A ∈ ω}.
A general definition of intrinsic graph in Hn, which applies also to surfaces with

topological codimension bigger than 1, is given in [83]. In particular this notion is
stable with respect to left translations of the group; more precisely, from Proposition
3.11 in [83] we infer
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Proposition 4.6. Let S ⊂ Hn be an Xj-graph, i.e. S = {Φ(A) := ιj(A) · φ(A)ej :
A ∈ ω}. Let P = (p1, . . . p2n+1) ∈ H

n, P = PVj
· PLj

with PLj
= pjej ∈ Lj and

PVj
∈ Vj. Then the translated set ℓPS still is an Xj-graph; more precisely, if we

define

σP : R
2n → R

2n

A 7−→ ι−1
j (P · ιj(A) · P−1

Lj
) = ι−1

j (P ) ⋄ A ⋄ ι−1
j (P−1

Lj
) ,

we have
ℓPS = {Φ′(A) := ιj(A) · φ′(A)ej : A ∈ ω′},

where ω′ := σP (ω) and φ′ : ω′ → R is defined by

φ′(A) = pj + φ(σP−1(A)).

In addition we have Φ′ = ℓP ◦ Φ ◦ σP−1 .

Remark 4.7. In Theorem 3.16, and more generally in all related results, we made
a precise choice, i.e. to consider only regular hypersurfaces that are zero sets of
functions f ∈ C1

H
with X1f > 0. This fact, somehow, makes X1 a “privileged”

direction: for example, observe that such surfaces turn out to be X1-graphs, i.e.
functions on V1, and that we translate points of V1 by an element with all the
coordinates null except the first one. One can prove that this is not restrictive; the
key tool in this sense are the so-called “horizontal rotations” introduced in [120],
section 2.1.

Suppose in fact that, in an open set Ω ⊂ Hn, Xkf > 0 for some 2 ≤ k ≤ 2n. Let
us consider a second Heisenberg group, which we denote Hn′: all the objects related
to this second group will be denoted with the apex ′, such as the algebra h′, the
vector fields X ′

j , Y
′
j , T

′, the subgroup V ′
1 , the map ι′ : V ′

1 → R
2n, etc. If k ≤ n we

define a Lie algebras isomporphism l : h→ h′ given by the extension by linearity of

l(Xk) = X ′
1, l(Yk) = Y ′

1 , l(X1) = X ′
k, l(Y1) = Y ′

k

l(V ) = V ′ if V ∈ span{X1, Y1, Xk, Yk}⊥.

In the other case k ≥ n+ 1, i.e. Yk−n > 0, we define l by extending

l(Yk−n) = X ′
1, l(Xk−n) = −Y ′

1 , l(X1) = X ′
k, l(Y1) = Y ′

k

l(V ) = V ′ if V ∈ span{X1, Y1, Xk−n, Yk−n}⊥.

It follows that L := exp′ ◦l ◦ exp−1 is a group isomorphism and a global diffeomor-
phism between Hn and Hn′.

Let f ′ := f ◦L−1; as X ′
1f

′ = Xkf > 0 we have that there is an open set ω ⊂ R2n

and a map φ : ω → R such that S ′ := {f ′ = 0} ∩ Ω′ = Φ′(ω), where Ω′ := L(Ω)
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and Φ′(A) := ι′(A) · φ(A)e1. Let ιk := L−1 ◦ ι′, which identifies Vk and R2n, and
for A ∈ ω define Φ(A) := L−1(Φ′(A)) = ιk(A) · φ(A)ek: it is immediate to see that
S := {f = 0} ∩ Ω = Φ(ω).

Also, we can easily extend the results of Theorem 3.16, Proposition 4.3 and
Corollary 4.5. In particular, the distributional equality (4.6) becomes

X̃jφ = −(l−1X ′
j)f

Xkf
◦ Φ, Ỹjφ = −(l−1Y ′

j )f

Xkf
◦ Φ, Bφ = −(l−1Y ′

1)

Xkf
◦ Φ.

4.2 Graph distance and W φ-differentiability

From now on φ : ω → R will be a fixed continuous function defined on an open,
connected and bounded set ω ⊂ R2n; we will denote with W φ the family of first-
order operators (W φ

2 , . . .W
φ
2n) (the reasons of the enumeration from 2 will be clear

later) defined for n ≥ 2 by

W φ
j :=





X̃j =
∂

∂vj
+ 2vj+n

∂

∂τ
if 2 ≤ j ≤ n

Ỹ1 − 4φT̃ =
∂

∂η
− 4φ

∂

∂τ
if j = n+ 1

Ỹj−n =
∂

∂vj
− 2vj−n

∂

∂τ
if n+ 2 ≤ j ≤ 2n,

(4.11)

while for n = 1 we put W φ = W φ
2 := Ỹ1 − 4φT̃ = ∂

∂η
− 4φ ∂

∂τ
.

As usual, by Φ we will denote the function ω ∋ A 7→ ι(A) · φ(A)e1 ∈ Hn, whose
explicit expression is given by (3.20). The graph distance between A,B ∈ ω is
defined by

dφ(A,B) := ||πO1(Φ(A)−1 · Φ(B))||∞ + ||πZ(Φ(A)−1 · Φ(B))||∞ (4.12)

which is equivalent to ||πV1(Φ(A)−1 ·Φ(B))||∞. Explicitly, for n ≥ 2 and A = (η, v, τ),
B = (η′, v′, τ ′) we have

dφ(A,B) = |(η′, v′)− (η, v)|+ |τ ′ − τ + 2(φ(B) + φ(A))(η′ − η) + σ(v′, v)|1/2

where σ(v′, v) has been defined in (4.2); if n = 1 and A = (η, τ), B′ = (η′, τ ′) we
have

dφ(A,B) = |η′ − η|+ |τ ′ − τ + 2(φ(B) + φ(A))(η′ − η)|1/2 .

With this definition we are able to prove the following
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Proposition 4.8. If there is an L > 0 such that

|φ(A)− φ(B)| ≤ Ldφ(A,B) (4.13)

for all A,B ∈ ω, then the quantity dφ in (4.12) is a quasimetric on ω, i.e.

(i) dφ(A,B) = 0⇔ A = B;

(ii) dφ(A,B) = dφ(B,A);

(iii) there exists q > 1 such that dφ(A,B) ≤ q
[
dφ(A,C) + dφ(C,B)

]

for all A,B,C ∈ ω.

Proof. The assertions in (i) and (ii) are straightforward, while for (iii) we use the
inequality

d∞(Φ(A),Φ(B)) ≤ |φ(A)− φ(B)|+ dφ(A,B)

to achieve

dφ(A,B) ≤ 2d∞(Φ(A),Φ(B))

≤ 2[ d∞(Φ(A),Φ(C)) + d∞(Φ(C),Φ(B)) ]

≤ 2[ |φ(A)− φ(C)|+ dφ(A,C) + |φ(C)− φ(B)|+ dφ(C,B) ]

≤ 2(L+ 1)[ dφ(A,C) + dφ(C,B) ].

Let us observe that if φ satisfies the condition (4.13), then it is locally 1/2-Hölder
continuous in the Euclidean sense, i.e. for all compact set K ⊂ ω there exist an
L′ = L′(K) > 0 such that

|φ(B)− φ(A)| ≤ L′|B −A|1/2 (4.14)

for all A,B ∈ K. First, let us observe that for any P ∈ Hn, α ∈ R

||πZ(P · αe1)||∞ ≤ ||πZ(P )||∞ +
√

2|α|1/2||πV1(P )||1/2∞

||πZ(αe1 · P )||∞ ≤ ||πZ(P )||∞ +
√

2|α|1/2||πV1(P )||1/2∞ .

Now let M := supK |φ|,∆ := supA∈K |A| and, for the sake of simplicity, φ :=
φ(A), φ′ := φ(B); then

1
L
|φ(B)− φ(A)| ≤ dφ(B,A)

= ||πO1(−φe1 · ι(A)−1 · ι(B) · φ′e1)||∞ + ||πZ(−φe1 · ι(A)−1 · ι(B) · φ′e1)||∞
≤ |B − A|+ ||πZ(ι(A)−1 · ι(B) · φ′e1)||∞ +

√
2M ||πV1(ι(A)−1 · ι(B) · φ′e1)||1/2∞

≤ (2
√

∆ +
√

2M)|B −A|1/2 + ||πZ(ι(A)−1ι(B))||∞ +
√

2M ||πV1(ι(A)−1ι(B))||1/2∞

≤ (2
√

∆ + 2
√

2M + C(K))|B − A|1/2. (4.15)
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where in the last passage we used (3.3).
If n ≥ 2 and A = (η, v, τ) ∈ R

2n and r > 0 are given, we define

Ir(A) :=
{
(η′, v′, τ ′) ∈ R

2n : |(η′, v′)− (η, v)| < r, |τ ′ − τ | < r
}
,

while if n = 1 and A = (η, τ) we put

Ir(A) :=
{
(η′, τ ′) ∈ R

2 : |η′ − η| < r, |τ ′ − τ | < r
}
.

Now we have all the tools to state our notion of W φ-differentiability:

Definition 4.9. Let A ∈ ω and ψ : ω → R be given.
(i) We say that ψ is W φ-differentiable at A if there is a ⋄-linear functional

L : R2n → R such that

lim
B→A

|ψ(B)− ψ(A)− L(A−1 ⋄B)|
dφ(A,B)

= 0. (4.16)

(ii) We say that ψ is uniformly W φ-differentiable at A if there is a ⋄-linear
functional L : R2n → R such that limr↓0 Mφ(ψ,A, L, r) = 0, where

Mφ(ψ,A, L, r) := sup
B,B′∈Ir(A)
B 6=B′

{ |ψ(B′)− ψ(B)− L(B−1 ⋄B′)|
dφ(B,B′)

}
. (4.17)

Let us observe that, if ψ is uniformly W φ-differentiable at A, then it is also
W φ-differentiable at A, as (4.16) is satisfied with the same functional L in (4.17).

Remark 4.10. If ψ is W φ-differentiable at A, then it is continuous at A. Indeed,
if L ∈ R2n−1 is such that (4.16) holds and wL is as in Proposition 4.2, then for any
B ∈ ω

ψ(B)− ψ(A) =
ψ(B)− ψ(A)− 〈wL, A−1 ⋄B〉

dφ(A,B)
· dφ(A,B) + 〈wL, A−1 ⋄B〉

and we deduce the continuity of ψ at A from the W φ-differentiability at A together
with the fact that dφ(A,B) is bounded near A.

Remark 4.11. We stress the fact that if ψ : ω → R is uniformly W φ-differentiable
at A ∈ ω, then ψ is Lipschitz continuous (between the quasimetric spaces (ω, dφ)
and (R, deucl)) in a neighbourhood of A; in fact there exist C, r > 0 such that

|ψ(B)− ψ(A)− L(A−1 ⋄B)|
dφ(A,B)

≤ C

for all B ∈ Ir(A), whence

|ψ(B)− ψ(A)| ≤ |〈wL, A−1 ⋄B〉|+ Cdφ(A,B) ≤ (|wL|+ C)dφ(A,B) .
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We will denote by dWφψ(A) the ⋄-linear functional L such that (4.16) holds;
we will call the vector wL the W φ-differential of ψ at A, and we will denote it by
W φψ(A), writing [W φψ(A)]j for wLj , j = 2, . . . , 2n. These definitions are well posed
because of the following

Lemma 4.12. Let φ, ψ : ω → R be such that ψ is W φ-differentiable at A ∈ ω, and
let L be a ⋄-linear functional such that (4.16) holds; then L is unique.

Proof. We have to prove that, if w,w′ ∈ R2n−1 are W φ-differentials of ψ at A, then
w = w′. We will give the proof only for the case n ≥ 2, as it can be easily adapted
for n = 1. Therefore let A = (η, v, τ): it is easy to prove that

lim
B=(η′,v′,τ ′)→A

〈w − w′, (η′ − η, v′ − v)〉
dφ(A,B)

= 0. (4.18)

Let
A = {B = (η′, v′, τ ′) ∈ ω : dφ(A,B) = |(η′ − η, v′ − v)|}

= {B = (η′, v′, τ ′) ∈ ω : πZ(Φ′−1 · Φ) = 0}
= {B = (η′, v′, τ ′) ∈ ω : τ ′ = τ − 2(φ′ + φ)(η′ − η)− σ(v′, v)}

where, here and in the following, we write Φ′,Φ, φ′ and φ instead of Φ(B), Φ(A),
φ(B) and φ(A) respectively. Let δ2 > 0 be such that I := Iδ2(A) ⊂ ω; we want
to prove that there exists a δ1 > 0 with the property that for all (η′, v′) with
|(η′ − η, v′ − v)| ≤ δ1 there is a τ ′ ∈ [τ − δ2, τ + δ2] such that (η′, v′, τ ′) ∈ A, i.e.

τ ′ = τ − 2(φ′ + φ)(η′ − η)− σ(v′, v) .

Being φ continuous we can suppose that |φ| ≤ M on I; then, for each (η′, v′) with
|(η′ − η, v′ − v)| ≤ δ1, the functions

γ(η′,v′)(τ
′) := τ − 2(φ(η′, v′, τ ′) + φ(A))(η′ − η)− σ(v′, v)

map the closed interval [τ − δ2, τ + δ2] into itself provided δ1 is sufficiently small. In
fact

|γ(η′,v′)(τ
′)− τ |

=
∣∣∣2(φ′ + φ)(η′ − η) + 2

∑n
j=2(vjv

′
n+j − vn+jv

′
j)
∣∣∣

=
∣∣∣2(φ′ + φ)(η′ − η) + 2

∑n
j=2(vj(v

′
n+j − vn+j)− vn+j(v

′
j − vj))

∣∣∣
≤ 2Mδ1 + 2|v|δ1 (4.19)

so it is sufficient to choose δ1 such that (2M +2|v|)δ1 ≤ δ2. The fixed point theorem
guarantees that γ(η′,v′) has a fixed point τ ′(η′, v′) if |(η′ − η, v′ − v)| ≤ δ1, so that
(η′, v′, τ ′(η′, v′)) ∈ A, i.e.

dφ((η
′, v′, τ ′(η′, v′)), (η, v, τ)) = |(η′ − η, v′ − v)| .
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Moreover, it is not difficult to prove that τ ′(η′, v′) → τ if (η′, v′) → (η, v) (it is
sufficient to use the very same estimate as in (4.19)). Now, for each fixed j =
2, . . . 2n, we can easily construct a sequence Bh = (ηh, vh, τh) ∈ A such that

• Bh → A;

• ηh ≡ η, vhi ≡ vi ∀ i 6= j and dφ(B
h, A) = vhj − vj > 0 if j 6= n+ 1;

• vh ≡ v and dφ(B
h, A) = ηh − η > 0 if j = n+ 1.

By (4.18) we obtain

0 = lim
h→∞

〈w − w′, (ηh − e, vh − v)〉
dφ(Bh, A)

= wj − w′
j ,

whence w = w′.

Remark 4.13. Let A ∈ ω and P := Φ(A). With the same notations of Proposition
4.6, set σP−1(B) := ι−1(P−1 · ι(B) · PL1) and ω′ := σP−1(ω). Let αΘ denote the
element (0, . . . , 0, α) ∈ R2n and define

φ′ : ω′ −→ R

B = (η′, v′, τ ′) 7−→ φ(σP (B))− φ(A);

then Φ′(ω′) = ℓP−1(Φ(ω)), where as usual Φ′(B) = ι(B) · φ′(B)e1.
It is not difficult to show that a function ψ is W φ-differentiable (resp. uniformly W φ-
differentiable) at B ∈ ω if and only if ψ ◦ σP is W φ′-differentiable (resp. uniformly
W φ′-differentiable) at σP−1(B) ∈ ω′: the key observation is that

dφ(B,B
′) = dφ′(σP−1(B), σP−1(B′)).

The following Proposition shows that uniformly W φ-differentiable functions have
continuous W φ-differentials:

Proposition 4.14. Let φ, ψ : ω → R be two continuous functions; suppose that
there exists an A ∈ ω such that ψ is uniformly W φ-differentiable at A and that ψ
is W φ-differentiable in an open neighbourhood U of A. Then W φ : U → R2n−1 is
continuous at A.

Proof. As usual we give the proof only for n ≥ 2. Suppose that the thesis is not
true; then there exist δ > 0 and a sequence {Aj} ⊂ U such that Aj → A and

|W φψ(Aj)−W φψ(A)| ≥ 3δ.
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By the uniform W φ-differentiability of ψ at A we can find an open rectangle I
centered at A such that

sup
A,B∈I

A=(η,v,τ)6=B=(η′ ,v′,τ ′)

{ |ψ(B)− ψ(A)− 〈W φψ(A), (η′ − η, v′ − v)〉|
dφ(B,A)

}
≤ δ. (4.20)

There is no loss of generality if we suppose that Aj = (ηj, vj, τ j) ∈ I for all j; then,
using the W φ-differentiability of ψ at Aj and reasoning as in Lemma 4.12, we can
find a sequence of points Bj = (η′j, v′j, τ ′j) ∈ I such that

|ψ(Bj)− ψ(Aj)− 〈W φψ(Aj), (η′j − ηj, v′j − vj)〉|
dφ(Bj, Aj)

≤ δ; (4.21)

dφ(B
j, Aj) = |(η′j − ηj , v′j − vj)|; (4.22)

the vectors (η′j − ηj, v′j − vj) and (W φψ(Aj)−W φψ(A)) are parallel. (4.23)

Observe that (4.22) and (4.23) imply that

|〈W φψ(Aj)−W φψ(A), (η′j − ηj, v′j − vj)〉|
= |W φψ(Aj)−W φψ(A)|dφ(Bj, Aj) ≥ 3δdφ(B

j, Aj) .

Then, using also (4.21), we get

|ψ(Bj)− ψ(Aj)− 〈W φψ(A), (η′j − ηj, v′j − vj)〉|
dφ(Bj, Aj)

≥ |〈W φψ(Aj)−W φψ(A), (η′j − ηj, v′j − vj)〉|
dφ(Bj, Aj)

+

− |ψ(Bj)− ψ(Aj)− 〈W φψ(Aj), (η′j − ηj, v′j − vj)〉|
dφ(Bj , Aj)

≥ 3δdφ(B
j , Aj)− δdφ(Bj , Aj)

dφ(Bj , Aj)
≥ 2δ

which contradicts (4.20).

It is not clear whether the converse is true, i.e. if W φ-differentiability in an open
neighbourhood and continuity of the W φ-differential imply uniform W φ-differentia-
bility. Observe that this is true when we consider the classical notion of differentia-
bility in Euclidean spaces.

Recalling how we defined the family W φ of the 2n-1 first-order operators W φ
j

(that, as usual, we identify with the associated vector fields), the following Proposi-
tion explains why we call the vector wL (with L as in (4.16)) the W φ-differential of
ψ: the fact is that the j-th component of this vector is (at least for regular maps)
the derivative of ψ in the W φ

j -direction:
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Proposition 4.15. Let φ, ψ : ω → R be continuous functions such that ψ is W φ-
differentiable at a point A = (η, v, τ) ∈ ω (respectively A = (η, τ) if n = 1). For
j = 2, . . . , 2n let γj : [−δ, δ] → ω be a C1-integral curve of the vector field W φ

j with
γj(0) = A and such that the map

[−δ, δ] ∋ s 7−→ φ(γj(s)) ∈ R

is of class C1. Then we have

lim
s→0

ψ(γj(s))− ψ(γj(0))

s
=
[
W φψ(A)

]
j
. (4.24)

Proof. Again we accomplish the proof only for n ≥ 2. Let us fix the following
notation: if γj(s) = (η(s), v(s), τ(s)) we set

γji (s) := vi(s) for 2 ≤ i ≤ 2n, i 6= n+ 1

γjn+1(s) := η(s)

γj2n+1(s) := τ(s)

For j 6= n + 1 the thesis is obvious: indeed we must have γj(s) = A ⋄ exp(sX̃j)
i.e. ι(γj(s)) = ι(A) · exp(sXj), and so

dφ(A, γ
j(s)) = |s| ,

which gives immediately (4.24) as a consequence of the W φ-differentiability and the
fact that

γji (s) ≡ vi for i /∈ {j, 2n+ 1}, γjj (s) = vj + s.

For j = n + 1 we have




γn+1
i (s) = vi if i 6= n + 1, 2n+ 1

γn+1
n+1(s) = η + s

γn+1
2n+1(s) = τ − 4

∫ s
0
φ(γn+1(r))dr

(4.25)

and so

dφ(γ
n+1(s), γn+1(0))

= |s|+
∣∣∣∣−4

∫ s

0

φ(γn+1(r))dr + 2[φ(γn+1(s)) + φ(A)]s

∣∣∣∣
1/2

= |s|
(

1 +
1

|s|

∣∣∣∣−4

∫ s

0

φ(γn+1(r))dr + 2[φ(γn+1(s)) + φ(A)]s

∣∣∣∣
1/2
)

=: |s|
(

1 +
1

|s| |∆(s)|1/2
)
.
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One has |∆(s)| ≤ Cs2 for a certain C > 0, indeed

∆(s) = −4

∫ s

0

φ(γn+1(r))dr + 2[φ(γn+1(s)) + φ(A)]s

= −4

∫ s

0

[φ(γn+1(r))− φ(A)]dr + 2[φ(γn+1(s))− φ(A)]s

= O(s2) ; (4.26)

it follows that dφ(γ
n+1(s), A) ≤ (1 +

√
C)|s| and so

|ψ(γn+1(s))− ψ(γn+1(0))− [W φψ(A)]n+1s |
|s|

≤ (1 +
√
C)
|ψ(γn+1(s))− ψ(A)− LWφψ(A)(A

−1 ⋄ γn+1(s)) |
dφ(γn+1(s), A)

.

By letting s → 0 and using the W φ-differentiability of ψ at A we obtain the thesis
(4.24).

The following result shows that the class of φ, ψ such that ψ is W φ-differentiable
(in fact, uniformly W φ-differentiable) is not empty, and gives an explicit formula for
the differential W φψ of smooth functions.

Theorem 4.16. Let φ, ψ ∈ C1(ω); then ψ is uniformly W φ-differentiable at A for
all A ∈ ω and

W φψ(A) =
(
X̃2ψ, . . . , X̃nψ, Ỹ1ψ − 4φT̃ψ, Ỹ2ψ, . . . , Ỹnψ

)
(A)

for all A ∈ ω. In particular, W φψ : ω → R2n−1 is continuous.

Proof. Let us fix A = (η, v, τ) ∈ ω (A = (η, τ) if n = 1) and set

w(A) :=
(
X̃2ψ, . . . , X̃nψ, Ỹ1ψ − 4φT̃ψ, Ỹ2ψ, . . . , Ỹnψ

)
(A) ∈ R

2n−1

if n ≥ 2, while for n = 1 we set

w(A) := Ỹ1ψ(A)− 4φ(A) T̃ ψ(A) =
∂ψ

∂η
(A)− 4φ(A)

∂ψ

∂τ
(A) .

According to the notation of Definition 4.9, we have to prove that

lim
r→0

Mφ(ψ,A,w(A), r) = 0. (4.27)
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Therefore let B,B′ ∈ ω be sufficiently close to A (in a way we are going to specify
later), and for n ≥ 2 let X,W be the C1 vector fields given by

X :=
2n∑

j=2,j 6=n+1

(v′j − vj)X̃j, W :=
∂

∂η
− 4φ

∂

∂τ
.

Let us set

B∗ := exp(X)(B)

= B ⋄ (0, (v′2 − v2, . . . , v
′
n − vn, v′n+2 − vn+2, . . . , v

′
2n − v2n), 0)

= (η, v′, τ − σ(v′, v))

B′′ := exp((η′ − η)W )(B∗) = (η′, v′, τ ′′) (for a certain τ ′′);

observe that B∗ and B′′ are well defined if B,B′ ∈ Iδ0(A) for a sufficiently small δ0.
For n = 1, X is not defined and we set B∗ = B and B′′ := exp((η′ − η)W )(B) =
(η′, τ ′′).
As ψ is of class C1 we have

ψ(B′)− ψ(B)

= [ψ(B′)− ψ(B′′)] + [ψ(B′′)− ψ(B∗)] + [ψ(B∗)− ψ(B)]

= [ψ(B′)− ψ(B′′)] +

∫ η′−η

0

(Wψ)
(
exp(sW )(B∗)

)
ds+

+

∫ 1

0

2n∑

j=2
j 6=n+1

(v′j − vj)(X̃jψ)
(
exp(sX)(B)

)
ds

= [ψ(B′)− ψ(B′′)] +

2n∑

j=2,j 6=n+1

(v′j − vj)X̃jψ(A) +

+(η′ − η)Wψ(A) + o(|(η′ − η, v′ − v)|)
= [ψ(B′)− ψ(B′′)] + 〈w(A), (η′ − η, v′ − v)〉+ o(dφ(B

′, B)). (4.28)

For n = 1 the same calculation leads to

ψ(B′)− ψ(B) = [ψ(B′)− ψ(B′′)] + w(A)(η′ − η) + o(dφ(B
′, B)).

Therefore it is sufficient to prove that ψ(B′)− ψ(B′′) = o(dφ(B
′, B)). We have

|ψ(B′)− ψ(B′′)|
dφ(B′, B)

≤ ωψ(δ0) ·
|τ ′ − τ ′′|1/2
dφ(B′, B)

(4.29)
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where

ωψ(δ) := sup

{ |ψ(A′)− ψ(A′′)|
|A′ − A′′|1/2 : A′ 6= A′′ ∈ Iδ(A)

}
, (4.30)

and where we know that ωψ(δ) → 0 as δ ↓ 0 because ψ is C1. So we have to prove
that |τ ′−τ ′′|1/2/dφ(B′, B) is bounded in a proper neighbourhood of A. Observe that

|τ ′ − τ ′′|

=
∣∣∣τ ′ − τ + σ(v′, v) + 4

∫ η′−η

0

φ(exp(sW )(B∗)) ds
∣∣∣

≤ |τ ′ − τ + 2(φ(B′) + φ(B))(η′ − η) + σ(v′, v)|+

+2
∣∣∣2
∫ η′−η

0

φ(exp(sW )(B∗)) ds− (φ(B′) + φ(B))(η′ − η)
∣∣∣

≤ dφ(B
′, B)2 + 2 |φ(B′)− φ(B′′)||η′ − η|+ 2 |φ(B)− φ(B∗)||η′ − η|+

+2
∣∣∣2
∫ η′−η

0

φ(exp(sW )(B∗) ds− [φ(B′′) + φ(B∗)](η′ − η)
∣∣∣

=: dφ(B
′, B)2 +R1(B

′, B) +R2(B
′, B) +R3(B

′, B). (4.31)

For the case n = 1 we arrive to (4.31) along the same lines (it is sufficient to follow
the same steps “erasing” the term σ(v′, v)).

Now we want to prove that there exist C1, C2 > 0 such that

R3(B
′, B) ≤ C1|η′ − η|2 (4.32)

R2(B
′, B) ≤ C2dφ(B

′, B)2 (4.33)

for all B′, B ∈ Iδ0(A), and that for all ǫ > 0 there is a δǫ ∈]0, δ0] such that

R1(B
′, B) ≤ |η′ − η|2 + ǫ|τ ′ − τ ′′| (4.34)

for all B′, B ∈ Iδǫ(A). These estimates are sufficient to conclude: in fact, choosing
ǫ := 1/2 and using (4.31), (4.32), (4.34) and (4.33), we get

|τ ′ − τ ′′| ≤ dφ(B
′, B)2 + C1|η′ − η|2 + |η′ − η|2 + |τ ′ − τ ′′|/2 + C2dφ(B

′, B)2

whence
|τ ′ − τ ′′|1/2 ≤ C3dφ(B,B

′)

which is the thesis.
For s ∈ [−δ0, δ0] we can define

g(s) := 2

∫ s

0

φ(exp(rW )(B∗)) dr −
[
φ
(
exp(sW )(B∗)

)
+ φ(B∗)

]
s; (4.35)
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as in (4.26) one can prove that there is a C1 > 0 such that

|g(s)| ≤ C1s
2 for all s ∈ [−δ0, δ0] ,

so that (4.32) follows with s = η′ − η.
If ωφ is as in (4.30) (with φ instead of ψ), then

R1(B,B
′) ≤ 2ωφ(δ)|τ ′ − τ ′′|1/2|η′ − η|
≤ |η′ − η|2 + ωφ(δ)

2|τ ′ − τ ′′|.

Since φ is C1, ωφ(δ) → 0 for δ ↓ 0, and so for all ǫ > 0 there is a δǫ > 0 such that
for all δ ∈]0, δǫ] we have ωφ(δ)

2 ≤ ǫ, whence (4.34) follows.
Finally,(4.33) follows from R2(B,B

′) = 0 if n = 1, and from

R2(B,B
′) = |η′ − η||φ(B)− φ(B∗)|

= |η′ − η|
∣∣∣∣∣

2n∑

j=2, j 6=n+1

(v′j − vj)(w(A)j + o(1))

∣∣∣∣∣

≤ 2C2|η′ − η||v′ − v| ≤ C2dφ(B
′, B)2

if n ≥ 2.

4.3 H-regular graphs and W φ-differentiability

In this section we are going to characterize H-regular graphs in terms of the uniform
W φ-differentiability of their parametrizations. In the sequel, for a given function f
of class C1

H
on an open set Ω ⊂ Hn it will be convenient to write

∇̂Hf := (X2f, . . . , Xnf, Y1f, . . . , Ynf) ∈ C0(Ω,R2n−1).

The main theorem of the section is the following

Theorem 4.17. Let φ : ω → R be a continuous function and let Φ : ω → H
n be the

function defined by
Φ(A) := ι(A) · φ(A)e1.

Let S := Φ(ω). Then the following conditions are equivalent:

(i) S is an H-regular surface and νS,1(P ) < 0 for all P ∈ S, where νS(P ) =
(νS,1(P ), . . . , νS,2n(P )) denotes the horizontal normal to S at a point P ∈ S;

(ii) φ is uniformly W φ-differentiable at any A ∈ ω.
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Moreover, for all P ∈ S we have

νS(P ) =

(
− 1√

1 + |W φφ|2
,

W φφ√
1 + |W φφ|2

)
(Φ−1(P )) ∈ R×R

2n−1. (4.36)

and

c(n)SQ−1
∞ (S) =

∫

ω

√
1 + |W φφ(A)|2 dL2n(A). (4.37)

Proof. We will give the proof only for n ≥ 2, since the generalization to n = 1 is
immediate.

Step 1. Let us begin with the proof of the implication (i) ⇒ (ii). Let P =
Φ(A) ∈ S, where A = (η, v, τ) ∈ ω; then there exist an r0 > 0 and a function
f ∈ C1

H
(U(P, r0)) such that

S ∩ U(P, r0) = {Q ∈ U(P, r0) : f(Q) = 0}
∇Hf(Q) = (X1f, . . . , Xnf, Y1f, . . . , Ynf)(Q) 6= 0 for all Q ∈ U(P, r0).

As νS(Q) = −∇Hf(Q)/|∇Hf(Q)|, by hypothesis we have that

X1f(Q) > 0 for all Q ∈ S ∩ U(P, r0). (4.38)

Moreover without loss of generality we can suppose that

A = (η, v, τ) = (0, 0, 0) and P = Φ(0, 0, 0) = 0. (4.39)

Indeed, if this is not the case, let us consider S ′ := ℓP−1(S) = Φ′(ω′), where we
use the same notations of Remark 4.13. We have that S ′ ∩ U(0, r0) is an H-regular
surface because it is the zero set of the function f ′ = f ◦ ℓP , and by left invariance
X1f

′(Q) = X1f(P ·Q) > 0 for all Q ∈ U(0, r0). Finally (again by Remark 4.13), φ′

(which is equal to φ ◦σP up to an additive constant) is uniformly W φ′-differentiable
if and only if φ is uniformly W φ-differentiable.

By the uniqueness of the parametrization provided by the Implicit Function
Theorem we can assume that there is a δ > 0 such that Iδ := Iδ(0, 0, 0) ⋐ ω and

f(Φ(B)) = 0 for all B ∈ Iδ. (4.40)

With the assumptions in (4.39), by the continuity of Φ for each r ∈]0, r0/4[ there is
a 0 < δr < r such that

Φ(Iδr(0, 0, 0)) ⊂ U(0, r). (4.41)
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For each B = (η, v, τ), B′ = (η′, v′, τ ′) ∈ Iδr(0), with δr sufficiently small, we get, by
applying Lemma 3.11 to f with P = 0, Q = Φ(B), Q′ = Φ(B′), that

|〈∇Hf(Φ(B)), πΦ(B)(Φ(B)−1Φ(B′))〉|
= |f(Φ(B′))− f(Φ(B)) + 〈∇Hf(Φ(B)), πΦ(B)(Φ(B)−1Φ(B′)) 〉|
≤ C1R(δr) d∞(Φ(B′), Φ(B))

≤ C2R(δr)
[
||πL1(Φ(B)−1Φ(B′))||∞ + ||πO1(Φ(B)−1Φ(B′))||∞ +

+ ||πZ(Φ(B)−1Φ(B′))||∞
]

≤ C2R(δr) [ |φ(B′)− φ(B)|+ dφ(B,B
′) ] (4.42)

where C1 is given by Lemma 3.11 and

R(δ) := sup
{
||∇Hf(·)−∇Hf(P ′)||L∞(U(P ′,2d∞(P ′,P ′′))) : P ′, P ′′ ∈ Φ(Iδ(0, 0)).

}

By the uniform continuity of ∇Hf : U(0, r0/2)→ HHn we have

lim
r↓0

R(δr) = 0. (4.43)

Therefore, (4.42) and (4.38) imply

∣∣∣∣∣φ(B′)− φ(B) +
〈∇̂H(Φ(B)), (η′ − η, v′ − v)〉

X1f(Φ(B))

∣∣∣∣∣

=

∣∣〈∇Hf(Φ(B)), πΦ(B)(Φ(B)−1Φ(B′))〉
∣∣

X1f(Φ(B))

≤
[

inf
U(0,r0)

X1f
]−1

C2R(δr)
[
|φ(B′)− φ(B)|+ dφ(B,B

′)
]

(4.44)

for any B,B′ ∈ Iδr . By (4.43) we can suppose

C2

infU(0,r0)X1f
R(δr) ≤

1

2

for a certain r ∈]0, r0/4[, and so

|φ(B′)− φ(B)| ≤
∣∣∣∣∣φ(B′)− φ(B) +

〈∇̂H(Φ(B)), (η′ − η, v′ − v)〉
X1f(Φ(B))

∣∣∣∣∣+

+

∣∣∣∣∣
〈∇̂H(Φ(B)), (η′ − η, v′ − v)〉

X1f(Φ(B))

∣∣∣∣∣
≤

[
|φ(B′)− φ(B)|+ dφ(B,B

′)
]
/2 + C3|(η′ − η, v′ − v)|
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for each B,B′ ∈ Iδr . Therefore there exists a constant C4 > 0 such that

|φ(B′)− φ(B)| ≤ C4dφ(B,B
′). (4.45)

Putting together (4.44) and (4.45) we get that there is a C5 > 0 for which

∣∣∣∣∣φ(B′)− φ(B) +
〈∇̂H(Φ(B)), (η′ − η, v′ − v)〉

X1f(Φ(B))

∣∣∣∣∣ ≤ C5 R(δr) dφ(B,B
′) (4.46)

and so

∣∣∣∣∣φ(B′)− φ(B) +

〈∇̂Hf(0)

X1f(0)
, (η′ − η, v′ − v)

〉∣∣∣∣∣
dφ(B,B′)

≤ C5R(δr) + sup
Iδr (0)

∣∣∣∣∣
∇̂Hf(Φ(·))
X1f(Φ(·)) −

∇̂Hf(0)

X1f(0)

∣∣∣∣∣

for each B,B′ ∈ Iδr(0) with r ≤ r. Thanks to (4.43) and the fact that f is of class
C1

H
we get that

lim
r↓0

Mφ

(
φ, 0,

c∇Hf(0)
X1f(0)

, δr
)

= 0 ,

i.e. φ is uniformly W φ-differentiable at 0 and

W φφ(0) = −∇̂Hf

X1f
(0). (4.47)

More generally, one has

W φφ(Φ−1(P )) = −∇̂Hf

X1f
(P ) ,

from which (4.36) immediately follows; therefore the implication (i) ⇒ (ii) is com-
pletely proved.

Step 2. Now we have to prove the converse implication (ii) ⇒ (i). Let A =
(η, v, τ) ∈ ω and P = Φ(A) ∈ S. We have to find r0 > 0 and a f ∈ C1

H
(U(P, r0))

such that

S ∩ U(P, r0) = {Q ∈ U(0, r0) : f(Q) = 0} (4.48)

X1f(Q) > 0 for all Q ∈ U(P, r0). (4.49)
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Let δ1 be such that Iδ1(A) ⋐ ω; as Φ : ω → S is a homeomorphism we can suppose
that

S ∩ U = Φ
(
Iδ1(A)

)

for a certain open bounded neighbourhood U of P . Let F := S ∩ U and g : F → R

be defined by g(Q) := 0. Define

k : F −→ HH
n ≡ R

2n

Q 7−→ (1,−W φφ(Φ−1(Q)))

We start by proving that, thanks to Whitney’s extension Theorem 3.12, there is a
function f ∈ C1

H
(Hn,R) such that

f ≡ g ≡ 0 on F (4.50)

∇Hf(Q) = k(Q) =
(
1,−W φφ(Φ−1(Q))

)
for all Q ∈ F. (4.51)

Consider a compact subset K of F ; for Q,Q′ ∈ K and δ > 0 let

R(Q,Q′) :=
g(Q′)− g(Q)− 〈 k(Q), πQ(Q−1Q′) 〉

d∞(Q,Q′)
= −〈 k(Q), πQ(Q−1Q′) 〉

d∞(Q,Q′)

ρK(δ) := sup {|R(Q,Q′)| : Q,Q′ ∈ K, 0 < d∞(Q,Q′) < δ} .

In order to apply Whitney’s Theorem (which will provide the desired f) we have
only to show that

lim
δ↓0

ρK(δ) = 0. (4.52)

Let us suppose that the converse is true, i.e. that there is an ǫ0 > 0 such that for
all h ∈ N there are

Qh = Φ(Bh), Qh′ = Φ(Bh′) ∈ K ,
Bh = (ηh, vh, τh), Bh′ = (ηh′, vh′, τh′)

for which

0 < d∞(Qh, Qh′) < 1/h (4.53)

ǫ0 ≤ |R(Qh, Qh′)| ≤ |φ
h′ − φh − 〈W φφ(Bh), (ηh′ − ηh, vh′ − vh) 〉|

dφ(Bh, Bh′)
(4.54)

where as usual we denoted by φh′, φh the quantities φ(Bh′) and φ(Bh) respectively.
In (4.54) we used the fact that d∞(Φ(B),Φ(B′)) ≥ dφ(B,B

′); this estimate, together
with (4.53), implies that dφ(B

h, Bh′)) ≤ 1/h and so

|(ηh′ − ηh, vh′ − vh)| ≤ 1/h (4.55)

|τh′ − τh + 2(φh′ + φh)(ηh′ − ηh) + σ(vh′, vh)| ≤ 1/h2. (4.56)
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Setting M := supK |φ| and N := supK |(η, v)| we get

|τh′ − τh| ≤ 1/h2 + 2|φh′ + φh||ηh′ − ηh|+ 2|σ(v′h, vh)| (∗)
≤ 1/h2 + 4M |ηh′ − ηh|+ 2N |vh′ − vh| (∗∗)
≤ C/h

(4.57)

where C := 1 + 4M + 2N > 0 depends only on K. In (∗) we used that σ(vh′, vh) =
2
∑n

j=2[v
h′
n+j(v

h
j − vh′j ) − vh′j (vhn+j − vh′n+j)], while (4.55) justifies (∗∗). Since K is

compact, up to subsequences there is a B = (η′, v′, τ ′) ∈ Iδ1(A) ⊃ K such that

lim
h→∞

Bh = lim
h→∞

Bh′ = B.

In particular Bh, Bh′ ∈ Ir(h)(B) (where r(h) → 0 as r → 0), and by (4.54) and the
continuity of the W φ-differential one has

0 < ǫ′0 ≤Mφ(φ,B,W
φφ(B), r(h))

for any h, which contradicts the fact that φ is uniformly W φ-differentiable at B ∈
Iδ1(A). This is sufficient to apply Whitney’s Extension Theorem, and so we get the
existence of an f ∈ C1

H
(Hn,R) for which (4.50) and (4.51) hold.

The proof of the implication (ii) ⇒ (i) will be complete if we show the validity
of (4.48) and (4.49) for a certain r0. Let S ′ := {Q ∈ H

n : f(Q) = 0,∇Hf(Q) 6= 0}; as
we have already said, we can suppose that P = 0 and A = 0. Since 0 ∈ S ∩U ⊂ S ′,
one has

f(0) = 0 and ∇Hf(0) = (1,−W φφ(0))

and by the Implicit Function Theorem there are an open neighbourhood U ′ of 0 and
a continuous function φ′ : Iδ′(0)→ R such that

Φ′ : Iδ′(0)→ S ′ ∩ U ′

B 7−→ ι(B) · φ′(B)e1

is a homeomorphism. Therefore Φ′−1(S ′ ∩ U ′) is an open subset of Iδ′(0) which
contains 0, and so there exists a δ′′ ∈]0, δ′[ for which Iδ′′(0) ⊂ Φ′−1(S ′ ∩ U ′); by the
uniqueness of the parametrization we get that Φ′ ≡ Φ on Iδ′′(0). Now, let U ′′ and
U ′′′ be open neighbourhoods of 0 in H

n such that

S ∩ U ′′ = Φ(Iδ′′(0)) = Φ′(Iδ′′(0)) = S ′ ∩ U ′′′ (4.58)

and let r0 > 0 be such that U(0, r0) ⊂ U ′′∩U ′′′. Then by (4.58) we get U(0, r0)∩S =
U(0, r0) ∩ S ′, from which (4.48) and (4.49) follow.

Finally, the area type formula (4.37) follows from Corollary 4.5 after finding a
global f (that is given only locally), which can be done by a standard argument
involving a partition of the unity. This completes the proof of the Theorem.
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Corollary 4.18. With the same notations of Theorem 4.17, suppose that S := Φ(ω)
is H-regular; then φ : (ω, dφ)→ R is locally Lipschitz continuous.

Proof. The thesis follows from Theorem 4.17 and Remark 4.11.

Now we want to establish some Hölder continuity properties for uniformly W φ-
differentiable functions on ω and therefore for parametrizations of H-regular graphs;
in particular we want to improve the Hölder continuity obtained in (4.14). More
precisely we have the following

Proposition 4.19. Let φ : ω → R be uniformly W φ-differentiable at A ∈ ω. Then
there is an r0 > 0 such that Ir0(A) ⋐ ω and

lim
r↓0

sup

{ |φ(B′)− φ(B)|
|B′ −B|1/2 : B,B′ ∈ Ir0(A), 0 < |B − B′| < r

}
= 0.

Proof. Again we treat only the case n ≥ 2.
If B = (η, v, τ) and B′ = (η′, v′, τ ′) let us set

R(δ) := sup

{ |φ(B′)− φ(B)− 〈W φφ(A), (η′ − η, v′ − v) 〉|
dφ(B′, B)

: B′ 6= B ∈ Iδ(A)

}
;

by the uniform W φ-differentiability of φ at A we know that limδ↓0 R(δ) = 0. In
particular there is an r0 > 0 such that φ is Lipschitz continuous between (Ir0(A), dφ)
and R, i.e. (4.13) holds. Then by (4.14) (see the steps that lead to (4.15)) there is
a C1 > 0 such that

dφ(B
′, B) ≤ C1|B′ − B|1/2 for all B′, B ∈ Ir0(A). (4.59)

But if B′ 6= B ∈ Ir(A), 0 < r < r0, we have

|φ(B′)− φ(B)|
|B′ −B|1/2 ≤ |φ(B′)− φ(B)− 〈W φφ(A), (η′ − η, v′ − v)〉|

dφ(B′, B)
· dφ(B

′, B)

|B′ − B|1/2 +

+|W φφ(A)| |(η
′ − η, v′ − v)|
|B′ −B|1/2

≤ C1R(r) + C2|W φφ(A)|r1/2 −→ 0 for r ↓ 0.

This completes the proof.

From Proposition 4.19 and a standard compactness argument we get the follo-
wing
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Corollary 4.20. Let φ : ω → R be a continuous function and consider the related
Φ : ω → H

n. Let S := Φ(ω) and suppose that S is an H-regular surface with
νS,1(P ) < 0 for all P ∈ S; then for each ω′

⋐ I we have

lim
r↓0

sup

{ |φ(A)− φ(B)|
|A−B|1/2 : A,B ∈ ω′, 0 < |A− B| < r

}
= 0.

Finally, we stress an interesting approximation property for the parametrizations
of H-regular graphs:

Proposition 4.21. Let φ : ω → R be a continuous function which is uniformly
W φ-differentiable at any A ∈ ω; then for any A ∈ ω there is a δ = δ(A) > 0, with
Iδ(A) ⋐ ω, and a family {φǫ}ǫ>0 ⊂ C∞(Iδ(A),R) such that

φǫ → φ and W φǫφǫ →W φφ uniformly on Iδ(A).

Proof. Arguing as in the proof of Theorem 4.17 we can suppose that A = 0, Φ(0) = 0
and

S ∩ U(0, r) = {P ∈ U(0, r) : f(P ) = 0}
for certain r > 0 and f ∈ C1

H
(U(0, r)) such that f◦Φ ≡ 0 on Iδ(A), with δ sufficiently

small. Moreover, arguing as in the proof of the Implicit Function Theorem 3.16, we
can suppose that, for a certain 0 < r′ < r (and possibly considering a smaller δ),
there are two families {fǫ}ǫ>0 ⊂ C∞(U(0, r′)) and {φǫ}ǫ>0 ⊂ C∞(Iδ(A)) such that

fǫ → f and ∇Hfǫ → ∇Hf uniformly on U(0, r′)

φǫ → φ and − ∇̂Hfǫ
X1fǫ

◦ Φǫ → −
∇̂Hf

X1f
◦ Φ = W φφ uniformly on Iδ(A)

where Φǫ(A) := ι(A) · φǫ(A)e1 is such that fǫ ◦ Φǫ = 0; indeed the set Sǫ :=
{P ∈ U(0, r′) : fǫ(P ) = 0} ⊃ Φǫ(Iδ(A)) is a (Euclidean) C1-surface, and then
its parametrization φǫ is uniformly Wφǫ-differentiable with

Wφǫφǫ = −∇̂Hfǫ
X1fǫ

◦ Φǫ ,

from which the thesis follows.

4.4 Characterization of the uniform W φ-differen-

tiability and applications

The main result we are going to prove in this section is the following
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Theorem 4.22. Let φ : ω → R be a continuous function. Then the following
conditions are equivalent:

(i) φ is uniformly W φ-differentiable at A for each A ∈ ω;

(ii) there exist a w ∈ C0(ω,R2n−1) such that, in distributional sense,

w = (X̃2φ, . . . , X̃nφ,Bφ, Ỹ2φ, . . . , Ỹnφ) if n ≥ 2
w = Bφ if n = 1

and there is a family {φǫ}ǫ>0 ⊂ C∞(ω) such that, for any open ω′
⋐ ω, we

have
φǫ → φ and W φǫφǫ → w uniformly on ω′. (4.60)

Moreover, w = W φφ on ω and

lim
r→0+

sup

{ |φ(A)− φ(B)|
|A−B|1/2 : A,B ∈ ω′, 0 < |A− B| < r

}
= 0. (4.61)

for each ω′
⋐ ω.

Remark 4.23. Suppose n = 1 and w ≡ 0, then the functions φ : ω → R satisfying
condition (ii) of Theorem 4.22 are entropy solutions of Burgers’ scalar conservation
law in classical sense. Indeed by performing the change of variables

R
2 = Rx × Rt ∋ (x, t) 7−→ (t,−4x) ∈ R

2 = Rη ×Rτ

the Burgers’ operator B can be represented in classical way with respect to the
variables (x, t) as

Bu =
∂u

∂t
+

1

2

∂u2

∂x

if u = u(x, t) ∈ C1(ω∗) and ω∗ ⊂ R2 is a fixed open set (see [66], chapter III, section
3). In this case condition (ii) of Theorem 4.22 reads as the existence of a function
u : ω∗ → R and of a family {uε}ε ⊂ C∞(ω∗) such that

uǫ → u and Buǫ → 0 uniformly on ω′ (4.62)

for any open ω′
⋐ ω∗. Let us assume now ω∗ = (a, b)×(−δ, δ) and let g(x) := u(x, 0)

if x ∈ (a, b). We claim that u is an entropy solution of the initial-value problem





∂u

∂t
+

1

2

∂u2

∂x
= 0 in (a, b)× (0, δ)

u = g on (a, b)× {t = 0},
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More precisely, by definition (see [66], chapter XI, section 11.4.3), we have to prove
that

u ∈ C0([0, δ), L1
loc(a, b)) ∩ L∞

loc(ω
∗) ; (4.63)

u(·, t)→ g in L1
loc(a, b) as t→ 0+ ; (4.64)∫

ω∗

[
e(u)

∂v

∂t
+ d(u)

∂v

∂x

]
dxdt ≥ 0 (4.65)

for each v ∈ C1
c(ω

∗), v ≥ 0 and for each entropy/entropy flux pair (e, d), i.e. two
smooth functions e, d : R → R such that e is convex and e′(u)u = d′(u) ∀u ∈ R.
Then (4.63) and (4.64) follow at once because u ∈ C0(ω∗). As uε ∈ C1(ω∗)

∂(e(uǫ))

∂t
+
∂(d(uǫ))

∂x
= wǫ e

′(uǫ) in ω∗ (4.66)

pointwise, with wǫ = Buǫ and, by (4.62), wǫ → 0 uniformly in ω′. Therefore
multiplying both sides of (4.66) for a given v ∈ C1

c(ω
∗), integrating by parts and

taking the limit as ǫ → 0+ we get (4.65) too (actually with an equality, so with no
entropy production).

Remark 4.24. Let n ≥ 2 and let assume that φ : ω → R satisfies condition (ii) of
Theorem 4.22 with w ≡ 0 in an open connected set ω ⊂ R2n; then φ is constant in
ω. Indeed for a fixed A0 ∈ ω let B = B(A0, r0) ⊂ ω be a Euclidean ball centered at
A0 with radius r0 > 0 and, for a fixed η ∈ R, let

Bη := {(v, τ) ∈ R
2n−2
v ×Rτ : (η, v, τ) ∈ B}, φη(v, τ) := φ(η, v, τ) if (v, τ) ∈ Bη .

The open set Bη ⊂ R2n−2
v × Rτ ≡ Hn−1 is connected and

X̃jφη = Ỹjφη = 0 in Bη (j = 2, . . . , n) ,

in distributional sense; therefore we get

φ(η, v, τ) ≡ φ(η) ∀(η, v, τ) ∈ B . (4.67)

In fact a Poincaré inequality holds in (Hn−1, dc) with respect to the horizontal gra-

dient ∇H := (X̃2, . . . , X̃n, Ỹ2, . . . , Ỹn) (see, for instance, [94], Proposition 11.17) and
then there exists a constant c > 0 such

∫

Uc(P,r)

|φη − φη,Uc| dL2n−1 ≤ c r

∫

Uc(P,r)

|∇Hφη| dL2n−1

for every P ∈ Hn−1, r > 0 such that Uc(P, r) := {Q ∈ Hn−1 : dc(P,Q) < r} ⊂ Bη

and

φη,Uc :=

∫
–
Uc(P,r)

φη dL2n−1 .
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On the other hand by (4.67) we infer

Bφ =
∂φ

∂η
= 0 in B

in distributional sense. Thus φ is constant in B(A0, r0) for all A0 ∈ ω for suitable
r0 > 0. As φ is continuous and ω is connected we can conclude that φ actually is
constant in the whole ω.

Observe that the same statement fails when n = 1: see e.g. Example 5.8

In order to prove Theorem 4.22 we will need some further notation and prelimi-
nary results.

Let φ : ω → R be a continuous function, and suppose that for all A ∈ ω there
are 0 < δ2 < δ1 such that, for each j = 2, . . . , 2n there exists a map

γj : [−δ2, δ2]× Iδ2(A)→ Iδ1(A) ⋐ ω

(s, B) 7−→ γBj (s)

such that γBj ∈ C1([−δ2, δ2],R2n) for each B ∈ Iδ2(A) and, with the usual identifi-
cation between vector fields and differential operators,

(E.1)





γ̇Bj = W φ

j ◦ γBj =

{
X̃j ◦ γBj if j 6= n+ 1

∂η − 4(φ ◦ γBn+1)∂τ if j = n+ 1

γBj (0) = B;

(E.2) there is a suitable continuous function wj : ω → R (depending only on φ) such
that

φ(γBj (s))− φ(γBj (0)) =

∫ s

0

wj(γ
B
j (r)) dr

for each s ∈ [−δ2, δ2].

We will call the {γj} a family of exponential maps of W φ at A; we will write

expA(sW φ
j )(B) := γBj (s). Notice that here we are not asking these maps to be

continuous in the parameter B: see also Remark 4.34.

Remark 4.25. Notice that if the exponential maps of W φ at A exist, then the map

[−δ2, δ2] ∋ s 7−→ φ(expA(sW φ
j )(B))

is of class C1 for each j = 2, . . . , 2n and each B ∈ Iδ2(A).
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Remark 4.26. Observe that, because of the left invariance of the fields X̃j, for
j 6= n one must have

expA(sW φ
j )(B) = B ⋄ ι−1(exp sXj) = B ⋄ ι−1(s ej). (4.68)

Moreover, if there exist exponential maps of W φ at A (in particular there are wj
as in (E.2)), then for any λ = (λ2, . . . , λn, λn+2, . . . , λ2n) ∈ R2n−2 there exists also
an exponential map for the field

∑
λjW

φ
j , i.e. there are two continuous maps γλ :

[−δ2, δ2] × Iδ2(A) → Iδ1(A) ⋐ ω (with, possibly, a δ2 > 0 smaller than the one in
(E.1), depending on λ) and wλ : ω → R such that

γ̇λ(s, B) =
∑

λjW
φ
j (γλ(s, B))

γλ(0, B) = B

φ(γλ(s, B))− φ(γλ(0, B)) =

∫ s

0

wλ(γ(r, B)) dr

In fact, it is sufficient to take γλ(s, B) := B ⋄ (0, sλ, 0) and wλ :=
∑
λjwj.

The following Lemma provides sufficient conditions to guarantee the existence
of exponential maps of W φ.

Lemma 4.27. Let φ : ω → R be a continuous function and suppose that

(i) there exists w ∈ C0(ω) such that

w = (w2, . . . , w2n) = (X̃2φ, . . . , X̃nφ,Bφ, X̃n+2φ, . . . , X̃2nφ) if n ≥ 2
w = Bφ if n = 1

in distributional sense;

(ii) there is a family of functions {φǫ}ǫ>0 ⊂ C∞(ω,R) such that

φǫ → φ, W φǫφǫ → w uniformly on ω′

for any ω′
⋐ ω.

Then for each A ∈ ω there are 0 < δ2 < δ1 such that, for any j = 2, . . . , 2n and all
(s, B) ∈ [−δ2, δ2]× Iδ2(A), there exists expA(sW φ

j )(B) ∈ Iδ1(A) ⋐ ω; moreover,

wj(B) =
d

ds
φ
(
expA(sW φ

j )(B)
)
|s=0

.
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Proof. Again we can suppose n ≥ 2, as for n = 1 the proof can easily be derived.
There is no problem if j 6= n+ 1; in fact by (4.68) it is sufficient to set

expA(sW φ
j )(B) := B ⋄ exp(sX̃j)

which is defined on [−δ2, δ2]×Iδ2(A) for a sufficiently small δ2 with values in Iδ1(A0) ⋐

ω. Then (E.1) is fulfilled by construction and (E.2) comes from the continuity of φ

and the fact that wj = X̃jφ in distributional sense.
For j = n + 1 and ǫ > 0 consider the Cauchy problem

{
γ̇ǫ(s, B) = ∂η − 4φǫ(γǫ(s, B))∂τ = W φǫ

n+1(γǫ(s, B))
γǫ(0, B) = B

which has a solution γǫ : [−δ2(ǫ), δ2(ǫ)] × Iδ2(ǫ)(A) → Iδ1(A). By Peano’s estimate
on the existence time for solutions of ordinary differential equations we obtain that
δ2(ǫ) can be taken greater than C/||φǫ||L∞(Iδ1(A)) (where the constant C depends only
on δ1), and so we get a δ2 > 0 such that δ2(ǫ) ≥ δ2 for all ǫ.
Now, for each fixed B ∈ Iδ2(A) the functions γǫ(·, B) are uniformly continuous on
[−δ2, δ2], and by Ascoli-Arzelá’s Theorem we get a sequence {ǫh}h such that ǫh → 0
and γǫh(·, B)→ γ(·, B) uniformly on [−δ2, δ2]. Remembering that

γǫh(s, B) = B +

∫ s

0

[
∂

∂η
− 4φǫh(γǫh(s, B))

∂

∂τ

]
ds

φǫh(γǫh(s, A))− φǫh(γǫh(0, B)) =

∫ s

0

W
φǫh
n+1φǫh(γǫh(s, B)) ds

and for j →∞ we get (all the involved convergences are uniform)

γ(s, B) = B +

∫ s

0

[
∂

∂η
− 4φ(γ(s, B))

∂

∂τ

]
ds

φ(γ(s, B))− φ(γ(0, B)) =

∫ s

0

wn+1(γ(s, B)) ds

i.e. (E.1) and (E.2) holds.

As in Euclidean spaces the gradient of a function is the vector composed by
the derivatives along the exponentials of the vectors of the canonical basis, we will
prove, in the following theorem, that the W φ-differential is the vector made by the
derivatives along the exponentials of W φ.

Theorem 4.28. Let φ : ω → R be a continuous function such that, for a certain
A ∈ ω, the following conditions are fulfilled:
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(i) there are 0 < δ2 < δ1 such that, for each j = 2, . . . , 2n there exist a family of
exponential maps

expA(sW φ
j ) : [−δ2, δ2]× Iδ2(A)→ Iδ1(A).

(ii) for each ω′
⋐ ω

lim
r→0+

sup

{ |φ(B′)− φ(B)|
|B′ −B|1/2 : B′, B ∈ ω′, 0 < |B′ − B| ≤ r

}
= 0.

Then φ is uniformly W φ-differentiable at A and

[(W φφ)(A)]j =
d

ds
φ
(
expA(sW φ

j )(A)
)
|s=0

.

Proof. For n ≥ 2 let A = (η, v, τ ), B = (η, v, τ), B′ = (η′, v′, τ ′) ∈ ω, while for n = 1
A = (η, τ), B = (η, τ), B′ = (η′, τ ′) ∈ ω, and let w = (w2, . . . , w2n) be as in (E.2).
We have to prove that

lim
δ→0

Mφ(φ,A, w(A), δ) = 0 (4.69)

where Mφ is defined as in (4.17).

The proof is exactly the same as in Theorem 4.16: at first, for n > 1, we define
the vector field X :=

∑2n
j=2,j 6=n+1(v

′
j − vj)W φ

j =
∑2n

j=2,j 6=n+1(v
′
j − vj)X̃j, and then we

set

B∗ := expA(X)(B)

= B ⋄ (0, (v′2 − v2, . . . , v
′
n − vn, v′n+2 − vn+2, . . . , v

′
2n − v2n), 0)

= (η, v′, τ − σ(v′, v)).

If n = 1, X is not defined and we set B∗ := B.

The main obstacle is that in general we cannot integrate along the vector field
W φ
n+1, i.e. we cannot define B′′ := exp

(
(η′ − η)( ∂

∂η
− 4φ ∂

∂τ
)
)
(B∗); however, this

problem can be solved using the existence of exponential maps, more precisely by
posing

B′′ := expA((η′ − η)W φ
n+1)(B

∗) =
(η′, v′, τ ′′) if n ≥ 2
(η′, τ ′′) if n = 1
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for a certain τ ′′. Therefore, we can rewrite (4.28) as

φ(B′)− φ(B) = [φ(B′)− φ(B′′)] + [φ(B′′)− φ(B∗)] + [φ(B∗)− φ(B)]

= [φ(B′)− φ(B′′)] +

∫ η′−η

0

wn+1(expA(sW φ
n+1)(B

∗)) ds+

+

∫ 1

0

2n∑

j=2, j 6=n+1

(v′j − vj)wj(expA(sX)(B)) (∗)

= [φ(B′)− φ(B′′)] +
2n∑

j=2, j 6=n+1

(v′j − vj)wj(A) +

+(η′ − η)wn+1(A) + o(|(η′ − η, v′ − v)|)
= [φ(B′)− φ(B′′)] + 〈w(A), (η′ − η, v′ − v)〉+ o(dφ(B

′, B))

if n ≥ 2, and as

φ(B′)− φ(B) = [φ(B′)− φ(B′′)] + w(A)(η′ − η) + o(dφ(B
′, B))

if n = 1. Observe that in the passage signed with (∗) we have used the continuity
of the wj at A. Reasoning as in (4.29) and (4.30), the keypoint is again to prove
that the quantity |τ ′ − τ ′′|1/2/dφ(B′, B′′) is bounded in a neighbourhood of A, and
rewriting (4.31) we obtain

|τ ′ − τ ′′|

=
∣∣∣τ ′ − τ + σ(v′, v) + 4

∫ η′−η

0

φ(expA(sW φ
n+1)(B

∗)) ds
∣∣∣

≤ |τ ′ − τ + 2(φ(B′) + φ(B))(η′ − η) + σ(v′, v)|+

+2
∣∣∣2
∫ η′−η

0

φ(expA(sW φ
n+1)(B

∗)) ds− (φ(B′) + φ(B))(η′ − η)
∣∣∣

≤ dφ(B
′, B)2 + 2 |φ(B′)− φ(B′′)||η′ − η|+ 2 |φ(B)− φ(B∗)||η′ − η|+

+2
∣∣∣2
∫ η′−η

0

φ(expA(sW φ
n+1)(B

∗) ds− [φ(B′′) + φ(B∗)](η′ − η)
∣∣∣

=: dφ(B
′, B)2 +R1(B

′, B) +R2(B
′, B) +R3(B

′, B) (4.70)

for n ≥ 2; for n = 1 simply don’t consider the term σ(v′, v). Therefore we have once
again to prove (4.32), (4.33), (4.34); this can be done following exactly the same
line as in the proof of Theorem 4.16 and using (E.1) and (E.2): the only thing one
must pay attention to is to write expA(·W φ

n+1) instead of exp(·W ) in (4.35).

We are now in order to give the proof of Theorem 4.22.
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Proof (of Theorem 4.22). We will accomplish the proof only for n ≥ 2, because as
usual the generalization to n = 1 is immediate.

Step 1. Let us begin with the proof of the implication (i)⇒ (ii). The statement
in (4.61) follows from Theorem 4.17 and Corollary 4.20. By Proposition 4.21 we get
that for each B ∈ ω there is a δ(B) > 0 (with Iδ(B)(B) ⋐ ω) and a family of C∞

functions {φǫ,B : Iδ(B)(B)→ R}0<ǫ<1 such that

φǫ,B → φ and Wφǫ,B
φǫ,B →W φφ uniformly on Iδ(B)(B). (4.71)

As F := {Iδ(B)(B) : B ∈ ω} is an open covering of ω we can associate a partition of
the unity {θi : i ∈ N} which is subordinate to it, i.e.

θi ∈ C∞
c (ω), 0 ≤ θi ≤ 1 on ω for all i (4.72)

{spt θi}i∈N form a locally finite covering of ω, and for all i ∈ N

there is an Ii := Iδ(B(i))(B(i)) ∈ F such that spt θi ⊂ Ii
(4.73)

∑∞
i=1 θi ≡ 1 on ω. (4.74)

Let φǫ,i := φǫ,B(i) : R2n → R where from now on, if necessary, we use the convention
of extending functions by letting them vanish outside their domain. Let φǫ :=∑∞

i=1 θi φǫ,i ; by construction φǫ ∈ C∞(ω) and

∂φǫ
∂η

=

∞∑

i=1

(
∂θi
∂η

φǫ,i + θi
∂φǫ,i
∂η

)

∂φǫ
∂vj

=
∞∑

i=1

(
∂θi
∂vj

φǫ,i + θi
∂φǫ,i
∂vj

)
(n ≥ 2)

∂φǫ
∂τ

=
∞∑

i=1

(
∂θi
∂τ

φǫ,i + θi
∂φǫ,i
∂τ

)
.

In particular

W φǫφǫ =
∞∑

i=1

(
φǫ,iW

φǫθi + θiW
φǫφǫ,i

)
on ω.

We have to show that (4.60) holds for any fixed ω′
⋐ ω; by (4.73) there is only

a finite number of index i1, . . . , ik such that ω′∩ spt θih 6= ∅, and ω′ ⊂ ∪kh=1 spt θih .
Then

φǫ =
k∑

h=1

θihφǫ,ih and φ =
k∑

h=1

θihφ on ω′ (4.75)

W φǫφǫ =
k∑

h=1

(φǫ,ihW
φǫθih + θihW

φǫφǫ,ih) on ω′. (4.76)
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Equations (4.75) and (4.76), together with (4.71), give

φǫ → φ (4.77)

W φǫφǫ →
k∑

h=1

(φW φ
ih

+ θihW
φφ) =: w (4.78)

uniformly on ω′, where we put

W φ
ih

:=

(
X̃2θih , . . . , X̃nθih ,

∂θih
∂η
− 4φ

∂θih
∂τ

, Ỹ2θih , . . . , Ỹnθih

)
.

Observing that
∑k

h=1 φW
φ
ih

= 0 we get that w = W φφ ∈ C0(ω,R2n−1) and

w = (X̃2φ, . . . , X̃nφ,Bφ, Ỹ2φ, . . . , Ỹnφ)

in distributional sense.
Step 2. The reverse implication (ii)⇒ (i) follows from Lemma 4.27 and Theorem

4.28. The hypothesis (ii) of Theorem 4.28 (i.e. the assertion in (4.61)) is satisfied
because of the following Theorem 4.30: the key observation is that, thanks to the
uniform convergence of φǫ and W φǫφǫ, we can estimate ||φǫ||L∞(ω′′) and ||W φǫφǫ||L∞(ω′′)

uniformly in ǫ for any ω′′
⋐ ω. Moreover, the uniform convergence of W φǫφǫ allows

us to choose a modulus of continuity for W φǫφǫ which is independent of ǫ. There-
fore there is a function α : ]0,+∞[→ R, which does not depend on ǫ, such that
limr→0 α(r) = 0 and

sup

{ |φǫ(B′)− φǫ(B)|
|B′ − B|1/2 : B′, B ∈ ω′, 0 < |B′ − B| ≤ r

}
≤ α(r).

which implies (4.61).

Theorem 4.29. Let I ⊂ R2n be a rectangle and let φ ∈ C1(I) be such that W φφ =
(w2, . . . , w2n) ∈ C0(I,R2n−1), i.e.






X̃jφ = wj, Ỹjφ = wj+n for all j = 2, . . . , n

∂φ

∂η
− 4φ

∂φ

∂τ
= wn+1.

Then for any rectangle I ′ ⋐ I there exists a function α :]0,+∞[→ [0,+∞[, which
depends only on I ′′, ||φ||L∞(I′′), ||W φφ||L∞(I′′) and on the modulus of continuity of
wn+1 on I ′′ (where I ′′ is any open rectangle satisfying I ′ ⋐ I ′′ ⋐ I), such that
limr→0 α(r) = 0 and

sup

{ |φ(A)− φ(B)|
|A−B|1/2 : A,B ∈ I ′, 0 < |A−B| ≤ r

}
≤ α(r). (4.79)
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Proof. As usual we suppose n ≥ 2, since the proof can be easily adapted to the case
n = 1. We start by setting

K := sup
A∈I′′
|A|, M := ||φ||L∞(I′′) and N := ||W φφ||L∞(I′′) ,

and let β be the modulus of continuity of wn+1 on I ′′, i.e. an increasing function
]0,+∞[∋ r → β(r) ∈ R+ such that |wn+1(A) − wn+1(B)| ≤ β(|A − B|) for all
A,B ∈ I ′′ and limr→0 β(r) = 0. We divide the proof in several steps.

Step 1. Let us fix another rectangle J ⊂ R2n such that I ′ ⋐ J ⋐ I ′′, and let us
introduce the following notation: for A = (η, v, τ) ∈ J we define γA as the curve
solution of the Cauchy problem





γ̇A(t) =

∂

∂η
− 4φ(γA(t))

∂

∂τ
γA(η) = A

Standard considerations on ordinary differential equations ensure that γA belongs
to C1([η−ǫ, η+ǫ], I ′′) for a certain ǫ > 0 which does not depend on A; moreover, we
can choose ǫ so that γA([η− ǫ, η+ ǫ]) ⊂ J for all A ∈ I ′. Let γA(t) = (η+ t, v, τA(t)),
then

d2

dt2
τA0(t) =

d

dt
[−4φ(γA0(t))] = −4wn+1(γA0(t)). (4.80)

Step 2. Set δ(r) := max{r1/4, β(Er1/4)1/2}, where E > 0 is a constant which will
be specified later; we start by proving that α′(r) ≤ δ(r) + 2N1/2δ(r) + Nr1/2 for r
“sufficiently small” (in a way we are going to specify, but depending on K,M,N
and β only), where we have set

α′(r) := sup

{ |φ(A)− φ(B)|
|A− B|1/2 : A = (η, v, τ), B = (η′, v, τ ′) ∈ I ′, 0 < |A−B| ≤ r

}
.

Suppose on the contrary that there exist A = (η, v, τ), B = (η′, v, τ ′) ∈ I ′ such that
r := |A− B| is “sufficiently small” and

|φ(A)− φ(B)|
|A−B|1/2 > δ + 2N1/2δ +Nr1/2,

where from now on we will write δ instead of δ(|A−B|). We observe explicitly that
by definition of δ(r) we have δ′ := δ(|τ − τ ′|) ≤ δ and so

β
(
|τ − τ ′|+ 8M |τ − τ ′|1/2/δ

)

δ2
≤ β

(
|τ − τ ′|+ 8M |τ − τ ′|1/2/δ′

)

δ′2

≤ β
(
|τ − τ ′|+ 8M |τ − τ ′|1/4

)

δ′2

≤ 1 (4.81)
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provided E > 0 is such that |τ − τ ′| + 8M |τ − τ ′|1/4 ≤ E|τ − τ ′|1/4. Let C :=
(η, v, τ ′) ∈ I ′; as |A− C|1/2 = |τ − τ ′|1/2 and |C −B|1/2 = |η − η′|1/2 we have

δ + 2N1/2δ +Nr1/2 ≤ |φ(A)− φ(B)|
|η − η′|1/2 + |τ − τ ′|1/2

≤ |φ(A)− φ(C)|
|τ − τ ′|1/2 +

|φ(C)− φ(B)|
|η − η′|1/2 =: R1 +R2.

Thereforeone must have R1 ≥ δ or R2 ≥ 2N1/2δ +Nr1/2.
Step 3. We want to prove that the first case cannot occur; indeed, we will prove

that
|φ(A)− φ(C)|
|τ − τ ′|1/2 ≤ δ

for A,B ∈ J (not for I ′ only!). We can suppose that τ > τ ′ (for the other case it is
sufficient to exchange the roles of A and C). Consider γA and γC; thanks to (4.80)
we have, for t ∈ [η − ǫ, η + ǫ]

τA(t)− τC(t)

= τ − τ ′ +
∫ t

η

[
τ̇A(η)− τ̇C(η) +

∫ s

η

[
τ̈A(σ)− τ̈C(σ)

]
dσ

]
ds

= τ−τ ′−4(t− η)
[
φ(A)−φ(C)

]
− 4

∫ t

η

∫ s

η

[
wn+1(γA(σ))−wn+1(γC(σ))

]
dσ ds

≤ τ−τ ′−4(t− η)
[
φ(A)−φ(C)

]
+2(t−η)2β

(
|τ − τ ′|+8M |t− η|

)
, (4.82)

where in the last inequality we used the fact that

|γA(σ)− γC(σ)| ≤ |γA(η)− γC(η)|+ |σ − η| (||τ̇A||∞ + ||τ̇C ||∞)

≤ |τ − τ ′|+8M |t− η|.

We substitute in (4.82) the value

t :=
η + (τ − τ ′)1/2/δ if φ(A)− φ(C) > 0
η − (τ − τ ′)1/2/δ otherwise;

if |τ − τ ′| is “sufficiently small”, γA(t) and γC(t) ∈ I ′′ are well defined (it is sufficient
to take ǫ ≥ (τ − τ ′)1/4 ≥ (τ − τ ′)1/2/δ = |t− η|) and from (4.81), (4.82) and R1 ≥ δ
we get (in both cases)

τA(t)− τC(t)

≤ (τ−τ ′)−4(τ − τ ′) + 2(τ − τ ′)β
(
|τ − τ ′|+ 8M |τ − τ ′|1/2/δ

)
/δ2

≤ −(τ − τ ′) < 0. (4.83)
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This leads to a contradiction: in fact τA and τC are solutions to the same Cauchy
problem

τ̇(s) = −4φ(s, v, τ(s))

with initial data τ(η) = τ, τ ′ respectively. The contradiction is given by the fact
that two such solutions cannot meet, while τA(η)− τC(η) > 0 and τA(t)− τC(t) < 0.

Step 4. Now let us examine the second case R2 ≥ 2N1/2δ+Nr1/2; we can suppose
that η′ < η (otherwise it is sufficient to exchange the roles of B and C). Consider
γB; again, the point D := γB(η) = (η, v, τ ′′) ∈ J is well defined for η−η′ “sufficiently
small”, and

|φ(B)− φ(D)| =
∣∣∣∣
∫ η

η′
wn+1(γB(t))dt

∣∣∣∣ ≤ N |η − η′|; (4.84)

moreover

|τ ′′ − τ ′| =
∣∣4
∫ η

η′
φ(γB(t)) dt

∣∣ ≤ 4N |η − η′|. (4.85)

Then for |η′−η| “sufficiently small” (and precisely when N |η−η′|1/2 ≤ |η−η′|1/4 ≤ δ)
we obtain

|φ(C)− φ(D)| ≥ |φ(C)− φ(B)| − |φ(B)− φ(D)|
≥

[
2N1/2δ +Nr1/2 −N |η − η′|1/2

]
|η − η′|1/2

≥ 2N1/2δ|η − η′|1/2 ≥ δ|τ ′′ − τ ′|1/2 (4.86)

so that we are in the first case again (with the couple C,D ∈ J instead of A,C)
which we have seen is not possible. This proves that limr→0 α

′(r) = 0, and that we
are able to control α′ with only K,M,N and β. Observe that what we said up to
now, properly translated in the notation we use when n = 1, gives directly the thesis
for the case n = 1.

Step 5. For the general case, let A = (η, v, τ), B = (η′, v′, τ ′) ∈ I, and set

A∗ := A ⋄ (0, v′ − v, 0) = (η, v′, τ + σ(v, v′)).

We can see A∗ also as exp(
∑2n

j=2,j 6=n+1(v
′
j − vj)W φ

j )(A) and so

|φ(A)− φ(A∗)| ≤

∣∣∣∣∣∣∣∣

2n∑

j=2
j 6=n+1

∫ 1

0

(v′j − vj)W φ
j φ
(
exp(t

∑2n
j=2,j 6=n+1(v

′
j − vj)W φ

j )(A)
)
dt

∣∣∣∣∣∣∣∣
≤ N |v′ − v| ≤ N |A−B|.

As
∣∣σ(v, v′)

∣∣ =
∣∣2
∑n

j=2[vn+j(v
′
j − vj)− vj(v′n+j − vn+j)]

∣∣ ≤ 2K|A− B| we get

|A∗ −B| ≤ |η′ − η|+ |τ ′ − τ |+ |σ(v, v′)|
≤ (2K + 2)|A− B|
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and so

|φ(A)− φ(B)|
|A−B|1/2 ≤ |φ(A)− φ(A∗)|

|A− B|1/2 +
|φ(A∗)− φ(B)|
|A− B|1/2

≤ N |A−B|1/2 + (2K + 2)
|φ(A∗)− φ(B)|
|A∗ − B|1/2

≤ N |A−B|1/2 + (2K + 2)α′(|A∗ − B|1/2)
≤ N |A−B|1/2 + (2K + 2)α′([(K + 2)|A−B|]1/2).

Step 6. The proof is accomplished for r “sufficiently small” only; however, this
is sufficient to conclude.

By a standard compactness argument we get the following

Theorem 4.30. Let φ ∈ C1(ω) and set W φφ = (w2, . . . , w2n) ∈ C0(ω,R2n−1). Then
for all ω′

⋐ ω there exists a function α :]0,+∞[→ [0,+∞[, which depends only on
ω′, ||φ||L∞(ω′′) (where ω′′ is any open set such that ω′

⋐ ω′′
⋐ ω), ||W φφ||L∞(ω′′) and

on the modulus of continuity of wn+1 on ω′′, such that limr→0 α(r) = 0 and

sup

{ |φ(A)− φ(B)|
|A− B|1/2 : A,B ∈ ω′, 0 < |A− B| ≤ r

}
≤ α(r). (4.87)

We end this section with two applications of Theorem 4.22; the first one is
a negative answer to the problem of a good parametrization of H-regular hyper-
surfaces. Indeed a natural question arising is the (local) Lipschitz continuity of
φ : ω ⊂ (R2n, ̺) → R, where ̺ denotes the restriction distance of d∞ to V1 ≡ R

2n.
More precisely we investigate the case n = 1, when ̺ concides with the so-called
parabolic distance on Rη × Rτ defined by

̺((η, τ), (η′, τ ′)) = |η′ − η|+ |τ ′ − τ |1/2 .

Corollary 4.31. There exist a functions φ : ω → R which parametrizes an H-regular
surface S = Φ(ω) ⊂ H

1 and for which there is no constant L > 0 such that

|φ(η′, τ ′)− φ(η, τ)| ≤ L(|η − η′|+ |τ − τ ′|1/2) for all (η, τ), (η′, τ ′) ∈ ω.

In particular, Φ : (ω, ̺)→ H
1 is not Lipschitz continuous.

Proof. We argue by contradiction. Whithout loss of generality we can assume that
ω = (a, b)× (c, d): it follows that for each τ ∈ (c, d) the function φ(·, τ) is Lipschitz
continuous in (a, b), and so for any τ ∈ (c, d) there exists the distributional derivative
∂φ
∂η

(·, τ) ∈ L∞(a, b) with ||∂φ
∂η

(·, τ)||L∞(a,b) ≤ L for all τ ∈ (c, d). In particular there



120 Chapter 4. Intrinsic parametrization of H-regular surfaces

exists the distributional derivative ∂φ
∂η
∈ L∞(ω) on all ω. By Theorem 4.22 we know

that

Bφ =
∂φ

∂η
− 2

∂φ2

∂τ
∈ C0(ω)

in distributional sense, thus ∂φ2

∂τ
∈ L∞

loc(ω). It follows that φ2 ∈ Liploc(ω).

We claim that S is Euclidean 2-rectifiable. Indeed there is no loss of generality
in supposing that actually φ2 ∈ Lip(ω), i.e. |φ2(A)− φ2(B)| ≤ M |B − A| for some
M > 0 and all A,B ∈ ω. Then for h ∈ N set

ω+
h := {A ∈ ω : φ(A) > 1/h}
ω−
h := {A ∈ ω : φ(A) < −1/h}
ω0 := {A ∈ ω : φ(A) = 0}

and observe that, when A,B ∈ ω+
h or A,B ∈ ω−

h , we have

2|φ(A)− φ(B)|/h ≤ |φ(A)− φ(B)| · |φ(A) + φ(B)|
= |φ2(A)− φ2(B)| ≤M |B − A|,

i.e. φ|ω±

h
is Lipschitz continuous; extending it to φ±

h : ω → R (with the same

Lipschitz constant) and defining Φ±
h in the usual way, we get that Φ(ω±

h ) ⊂ Φ±
h (ω)

is Euclidean 2-rectifiable. Observing that Φ(ω0) ⊂ V1, we get that also

Φ(ω) ⊂ Φ(ω0) ∪
⋃

h

Φ(ω+
h ) ∪

⋃

h

Φ(ω+
h )

is Euclidean 2-rectifiable. On the other hand there are H-regular surfaces S =
Φ(ω) ⊂ H1 which are not Euclidean 2-rectifiable (see [106], Theorem 3.1), that gives
a contradiction.

A second interesting corollary of Theorem 4.22 provides a simple way to exihibit
H-regular surfaces in H1 which are not Euclidean regular.

Corollary 4.32. Let φ : ω ⊂ R2 → R be a continuous function which depends
only on τ , i.e. φ = φ(τ) : I → R for a certain open (and possibly unbounded)
interval I ⊂ R, and suppose that φ2 : I → R+ is of class C1. Then φ is uniformly
W φ-differentiable at A for every A ∈ ω and

W φφ(A) = −2(φ2)′(A).

In particular, W φφ is continuous and φ parametrizes an H-regular surface in H1.
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Proof. Thanks to Theorem 4.22, it is sufficient to find a family {φǫ}ǫ such that (4.60)
holds. The family we are going to consider is of the form φǫ = φǫ(τ) := (φ2+δ2

ǫ )
1/2·gǫ,

where δǫ and gǫ are to be found; the key idea is to construct gǫ such that gǫ → sign φ
and g′ǫ is ”controlled”, in a way we are going to specify; then our thesis becomes

φǫ → φ and (φ2
ǫ)

′ → (φ2)′ uniformly on J (4.88)

for each J ⋐ I.
We recall the following general fact: let D,E two closed subsets of I such

that d(D,E) := inf{|a − b| : a ∈ D, b ∈ E} ≥ C > 0; then there exists a
g ∈ C∞(I, [−1, 1]) such that g|D ≡ 1, g|E ≡ −1 and ||g′||∞ ≤ 4/C.

Now let us set

α(r) := sup

{ |φ(τ ′)− φ(τ)|
|τ ′ − τ |1/2 : τ ′, τ ∈ J, 0 < |τ ′ − τ | ≤ r

}
,

and suppose that α(r) → 0 as r → 0+: then if we set δǫ := α(ǫ)ǫ1/2/2 we have
limǫ→0 δǫ = 0. For each ǫ let

Dǫ := {τ : φ(τ) ≥ δǫ} ∩ J and Eǫ := {τ : φ(τ) ≤ −δǫ} ∩ J ;

by construction d(Dǫ, Eǫ) ≥ ǫ and so there exists a gǫ ∈ C∞(I, [−1, 1]) with

gǫ ≡ 1 on Dǫ, gǫ ≡ −1 on Eǫ and ||g′ǫ||∞ ≤ 4/ǫ = α(ǫ)2/δ2
ǫ .

As we said earlier, set φǫ := (φ2 + δ2
ǫ )

1/2gǫ; it is easy to prove that φǫ → φ uniformly
on J and

2||(φ2
ǫ)

′ − (φ2)′||L∞(J) ≤ 4||gǫg′ǫ(φ2 + δ2
ǫ )||L∞(J) + 2||(g2

ǫ − 1)(φ2)′||L∞(J)

≤ 4||gǫg′ǫ(φ2 + δ2
ǫ )||L∞(J\(Dǫ∪Eǫ)) + 4||(φ2)′||L∞(J\(Dǫ∪Eǫ))

≤ 8
α(ǫ)2

δ2
ǫ

δ2
ǫ + 4||(φ2)′||L∞(J∩{|φ|≤δǫ}) −→ 0

for ǫ → 0+; in the last passage we used the implication φ(τ) = 0 ⇒ (φ2)′(τ) = 0,
and so ||(φ2)′||L∞(J∩{|φ|≤δǫ}) → 0 because of the continuity of (φ2)′.

Let us remark that φǫ actually depends on J ; however, if we consider a sequence
{Jn}n∈N of closed intervals such that Jn ⊂ Jn+1 and Jn ↑ ]α, β[, we get sequences
{φnǫ }ǫ for each n, and one can conclude with a diagonal argument.

Finally, we have to prove that α(r)→ 0 as r → 0. Suppose that the converse is
true; then there exist σ > 0 and ah, bh ∈ J such that

|φ(ah)− φ(bh)| > 2σ|ah − bh|1/2 and |ah − bh| → 0. (4.89)
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We can suppose that φ(ah) and φ(bh) have the same sign (i.e. φ(ah)φ(bh) ≥ 0); in
fact, if this is not the case, by the continuity of φ there is a ch ∈]ah, bh[ such that
φ(ch) = 0, and we can suppose that ch ∈ J (because there is no loss of generality
supposing that J is an interval). As

2σ <
|φ(ah)− φ(bh)|
|ah − bh|1/2

≤ |φ(ah)− φ(ch)|
|ah − ch|1/2

+
|φ(ch)− φ(bh)|
|ch − bh|1/2

there exists a dh ∈ {ah, bh} such that |φ(ch) − φ(dh)| > σ|ch − dh|1/2. Therefore
(possibly considering ch and dh instead of ah and bh) we can assume that ah and
bh satisfy (4.89) (possibly with σ instead of 2σ) and that φ(ah) and φ(bh) have the
same sign.

As J is compact, we can suppose (up to subsequences) that there is a τ ∈ J
such that ah → τ and bh → τ . It is not possible that φ(τ) 6= 0: in fact, φ is of
class C1 in the open set {τ : φ(τ) 6= 0} (it is easy to show that here φ′ = (φ2)′/2φ)
that would imply the boundedness of the quantities |φ(ah) − φ(bh)|/|ah − bh| for
h sufficiently large, which is in contradiction with (4.89). Therefore φ(τ) = 0 and
so one must have (φ2)′(τ) = 0. As φ(ah) and φ(bh) have the same sign, we have
|φ(ah)− φ(bh)| ≤ |φ(ah) + φ(bh)| and so

σ2 <

( |φ(ah)− φ(bh)|
|ah − bh|1/2

)2

≤
( |φ(ah)− φ(bh)|
|ah − bh|1/2

)( |φ(ah) + φ(bh)|
|ah − bh|1/2

)

=
|φ(ah)

2 − φ(bh)
2|

|ah − bh|
= (φ2)′(τh)

for a certain τh contained in the interval between ah and bh. Therefore τh → τ and
so (φ2)′(τ ) ≥ σ by the continuity of (φ2)′, which is a contradiction.

4.5 BiLipschitz parametrization of hypersurfaces

in H
1

In the spirit of Federer’s definition of rectifiable sets (see [69]), a natural question
is the one of finding a model metric space for H-regular surfaces in H1 with no
characteristic points (see Remark 3.14), i.e. a metric space (M, ̺) which (locally)
parametrizes any H-regular surface S. It turns out that the natural candidate is R2

with the so-called “parabolic” distance

̺
(
(x, z), (x′, z′)

)
:= |x− x′|+ |z − z′|1/2 ;
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this space can be naturally identified with the subgroup V1 ⊂ H1 endowed with
the restriction of d∞. The following result, of which we give a slightly different
proof [15], is due to Cole and Pauls [52].

Theorem 4.33. Let S be a C1 surface; then for any non characteristic point P ∈ S
there is a Lipschitz continuous mapping

ψ : (A, ̺) −→ (U , d∞) ,

from an open set A ⊂ R2 to a neighbourhood U of P in S, with Lipschitz inverse
map ψ−1.

Proof. As usual, it is not restrictive to suppose that P = 0; moreover, since any suf-
ficiently small neighbourhood U of P in S can be intrinsically parametrized through
a C1 map φ : ω ⊂ R2 → R, and since

Φ : (ω, dφ) −→ (U , d∞)

is biLipschitz (see Corollary 4.18), our problem is equivalent to that of finding a
biLipschitz mapping

ψ : (A, ̺) −→ (ω, dφ).

We claim that the map

ψ(x, z) := exp(xW φ)(0, z) = (x, τ(x, z)) =
(
x, z − 4

∫ x
0
φ(s, τ(s, z)) ds

)

satisfies our requests.

Step 1. We start by proving that ψ is Lipschitz continuous, i.e. that

|τ(x, z)− τ(x′, z′) + 2(φ+ φ′)(x− x′)| � |x− x′|2 + |z − z′| (4.90)

where, here and in the following, we denote φ := φ(ψ(x, z)), φ′ := φ(ψ(x′, z′)) and
we write � whenever an inequality ≤ holds up to a multiplicative constant. The
left hand side of (4.90) can be split as

|τ(x, z)− τ(x′, z′) + 2(φ+ φ′)(x− x′)|
≤ 1

2

{∣∣τ(x, z)− τ(x′, z) + 4φ(x− x′)
∣∣+
∣∣τ(x, z′)− τ(x′, z′) + 4φ′(x− x′)

∣∣
+
∣∣τ(x, z)− τ(x, z′)

∣∣ +
∣∣τ(x′, z)− τ(x′, z′)

∣∣}. (4.91)
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The first and second addend in (4.91) can be estimated in a similar way:

|τ(x, z)− τ(x′, z) + 4φ(x− x′)|

= 4

∣∣∣∣
∫ x

x′

[
−φ(s, τ(s, z)) + φ(x, τ(x, z))

]
ds

∣∣∣∣ (∗)

�
∫ x

x′

[
|x− s|+ |τ(x, z)− τ(s, z)|

]
ds

≤
∫ x

x′

[
|x− s|+

∫ x

s

|φ(r, τ(r, z))| dr
]
ds

� |x− x′|2,

where, in the step marked by (∗), we used the fact that φ is Lipschitz.
Therefore, it will be sufficient to estimate the third and fourth addend in (4.91);

more precisely, we need an estimate

|τ(x, z)− τ(x, z′)| � |z − z′| (4.92)

uniformly in x. We also observe that, in order for ψ to be Lipschitz, (4.92) is also
necessary, since the left hand side is (part of the square of) the distance between
ψ(x, z) and ψ(x, z′), while the right hand one is (the square of) the distance between
(x, z) and (x, z′). By the Lipschitz continuity of φ, one has

|τ(x, z)− τ(x, z′)| ≤ |z − z′|+ 4

∫ x

0

|φ(s, τ(s, z))− φ(s, τ(s, z′))| ds

� |z − z′|+
∫ x

0

|τ(s, z)− τ(s, z′)| ds (4.93)

and (4.92) follows thanks to Gronwall’s lemma.
Step 2. The inverse map of ψ is

ψ−1(η, τ) =
(
η, τ − 4

∫ 0

η
φ(s, hη,τ (s))ds

)
=: (η, z(η, τ)),

where hη,τ solves the Cauchy problem

{
ḣη,τ (s) = −4φ(s, hη,τ (s))
hη,τ (η) = τ .

Notice also that (0, z(η, τ)) = exp(−ηW φ)(η, τ).
For the Lipschitz continuity of ψ−1 it will be sufficient to show that the inequality

|z(η, τ)− z(η′, τ ′)| � dφ((η, τ), (η
′, τ ′))2 (4.94)
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holds in a neighbourhood of 0. Notice that when η = η′ one can use the Lipschitz
continuity of φ exactly as in (4.93), obtaining

|z(η, τ)− z(η, τ ′)| = |hη,τ (0)− hη,τ ′(0)|

=

∣∣∣∣τ − 4

∫ 0

η

φ(s, hη,τ (s))ds− τ ′ − 4

∫ 0

η

φ(s, hη,τ ′(s))ds

∣∣∣∣

� |τ − τ ′|+
∫ 0

η

|hη,τ (s)− hη,τ ′(s)|ds .

By Gronwall’s lemma we conclude

|z(η, τ)− z(η, τ ′)| � |τ − τ ′| . (4.95)

For the general case, as in Theorem 4.16 one can set

(η′, τ ′′) := exp((η′ − η)W φ)(η, τ) (4.96)

and, as in the proof of the same Theorem, one has

|τ ′ − τ ′′| � dφ((η, τ), (η
′, τ ′))2 . (4.97)

Observing that, by construction, z(η, τ) = z(η′, τ ′′), we obtain the thesis (4.94) by
combining (4.95), (4.96) and (4.97).

Remark 4.34. When φ is just uniformly W φ-differentiable, one could be tempted
to follow the same line of Theorem 4.33 by using the exponential maps of Section 4.4
and define

ψ(x, z) := (x, exp0(xW
φ)(0, z)).

Beside the problems given by the non-uniqueness of this exponential map, it is not
difficult to check that such a ψ is in general not continuous: consider in fact the
function

φ(η, τ) :=

{ τα

4(1−α)
if τ ≥ 0

0 if τ < 0 .
(4.98)

For 1
2
< α < 1, the X1-graph of φ is an H-regular surface because of Corollary 4.32

and it is not difficult to check that the only possible definition of exponential maps
provides

exp0(xW
φ)(0, z)) =

{
(x, (z1−α − x) 1

1−α ) if x ≤ 0 and z > 0
(x, z) if x ≤ 0 and z < 0

(4.99)

which is not continuous since

lim
z→0+

exp0(xW
φ)(0, z)) = (x, |x| 1

1−α ) 6= (x, 0) = lim
z→0−

exp0(xW
φ)(0, z))

for any x < 0.
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The following result shows that the statement of Theorem 4.33 fails for general
H-surfaces:

Theorem 4.35. Let S be the H-regular surface given by the X1-graph of the map φ
in (4.98) with 1

2
< α < 1, and suppose that

ψ : (A, ̺) −→ (U , d∞)

is a Lipschitz continuous and surjective map from an open set A ⊂ R2 to a neigh-
bourhood U of 0 in S. Then ψ is not a homeomorphism; in particular, it cannot be
biLipschitz.

Proof. Step 1. For any fixed z the curve γz := ψ(·, z) : R → H1 is Lipschitz
continuous; in particular (see [145]) it must be horizontal, i.e. absolutely continuous
and such that γ̇z ∈ HγzH

1 almost everywhere. Since γz lies on S, it must be
contained in (a piece of) an integral curve of the vector field

Y1 + (W φφ ◦ Φ−1)X1 ,

which is (up to a normalization) the unique vector field which is both horizontal
and tangent to S. Since

(Φ−1)∗(Y1 + (W φφ ◦ Φ−1)X1) = ∂η − 4φ∂τ = W φ ,

it follows that γz ◦ Φ−1 is (a piece of) an integral curve of W φ in R2.
Let us investigate the qualitative behaviour of the integral curves of W φ. If one

of these curves lies in the upper half-plane {τ > 0} (where we have uniqueness for
solutions of the associated ODE) at a certain time x, then its second τ coordinate is
decreasing, so it must lie in the upper (open) half-plane also before x; however, after
x, it must reach the zero level in a finite time, and it is not difficult to prove that it
must stay at 0 after that. In the lower half-plane {τ < 0} we have again uniqueness of
solutions and the curves are straight lines parallel to the η axis; therefore, according
to (4.99) we can divide the integral curves of W φ into two families (see also Figure
4.1):

(a) for w ∈ R, the curves

c+w(x) =

{
(x, (w − x) 1

1−α ) if x ≤ w
(x, 0) if x ≥ w;

(b) for ζ ≤ 0, the curves c−ζ (x) = (x, ζ).
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c−ζζ

τ

η

w

c+w

c++
w

Figure 4.1: Exponential lines of W φ for φ as in (4.98).

Notice that for curves c+w the parameter w denotes the point where they touch the
η axis, i.e. (w, 0); we will also write c++

w to denote the restriction of c+w to ]−∞, w].
The upper (closed) halfplane is connected by means of c−0 and of paths of type c+w .

Step 2. It will not be restrictive to suppose ψ(0, 0) = 0 ∈ S and U = Φ
(
]−δ, δ[2

)

for some δ > 0. For the sake of simplicity let us write ψ also for the (̺-dφ)-Lipschitz
induced map Φ−1◦ψ : A →]−δ, δ[2, which is surjective and such that ψ(0, 0) = (0, 0);
suppose by contradiction that it is also a homeomorphism. Then the set

L := ψ−1{(0, τ) : τ ∈ [0, δ/2]}

is a compact subset of A, and so for sufficiently small r > 0 one has that

{(x+ h, z) : (x, z) ∈ L,−r ≤ h ≤ r} ⊂ A . (4.100)

Let us set
r+ := sup{x > 0 : ψ(x, 0) ∈ R× {0}} ≥ 0

r− := inf{x < 0 : ψ(x, 0) ∈ R× {0}} ≤ 0 .

Step 3. First of all, we prove that we cannot have r+ = r− = 0; indeed, this
would imply that

{ψ(x, 0) : x > 0} ⊂ Im c++
0 \ {0} and {ψ(x, 0) : x < 0} ⊂ Im c++

0 \ {0} ,
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and by continuity we obtain

{ψ(x, 0) : x > 0} ∩ {ψ(x, 0) : x < 0} 6= ∅
i.e. ψ is not injective, a contradiction.

Step 4. Since r+ 6= r−, one of them is nonzero: by substituting ψ, if necessary,
with the map ψ̃(x, t) := ψ(−x, t) we can suppose that r+ > 0. It is not difficult to
prove that

{ψ(x, 0) : 0 ≤ x ≤ r+} ⊂ R× {0},
for otherwise the curve ψ(·, 0)|[0,r+] would leave the η axis R × {0} and then re-
turn on it after some time, which can be done only by covering forward and then
backward a piece of some c++

w , and contradicting in particular the injectivity of ψ.
Choose therefore r ∈]0, r+[ such that (4.100) holds, and set A := ψ(r, 0) = (η, 0); by
continuity one must have

[0, η]× {0} ⊂ {ψ(x, 0) : 0 ≤ x < r} if η > 0
[η, 0]× {0} ⊂ {ψ(x, 0) : 0 ≤ x < r} if η < 0.

(4.101)

Since A 6= 0 (i.e. η 6= 0) we easily find an ǫ > 0 such that

V1 ∩ V2 = ∅,
where (see Figure 4.2)

V1 :=
⋃

0<w<ǫ

Im c++
w and V2 :=

⋃

η−ǫ<w<η+ǫ

Im c++
w ∋ A .

Notice that A ∈ V2, since A ∈ Im c++
η̄ . Now, in order to join a point A1 ∈ V1 with a

point A2 ∈ V2 by following only exponential lines of W φ, one must cover the whole
segment I, where I := [ǫ, η − ǫ]× {0} in case η > 0 and I := [η + ǫ, 0]× {0} in case
η < 0.

Therefore set (xτ , zτ ) := ψ−1(0, τ), and notice that

lim
τ→0

ψ(xτ + r, zτ ) = ψ(r, 0) = A.

For sufficiently small τ > 0 the curve ψ(·, zτ ) goes from A1 := (0, τ) ∈ V1 to the
point A2 := ψ(xτ + r, zτ ) following only exponentials of W φ; moreover, A2 must
belong to V2. This implies that I ⊂ Im ψ(·, zτ ); since (see (4.101)) we have also I ⊂
Im ψ(·, 0), this would contradict the injectivity of ψ in case we were able to find a
sufficiently small τ such that zτ 6= 0. If this were not possible, there would exist
λ > 0 such that ψ−1(0, τ) = (xτ , 0) for any τ ∈ [0, λ], i.e.

{0} × [0, λ] ⊂ Im ψ(·, 0) .

Therefore, the segment {0} × [0, λ] would be of finite length, which is not possible
since it is not contained in an exponential curve of W φ.
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A

V1

c++
η̄−ǫ c++

η̄+ǫ

V2

I
η̄ − ǫ η̄ + ǫǫ0

Figure 4.2: The sets V1 and V2 and the interval I.

We end this Section by remembering that, as far as we know, the analogous of
Theorem 4.33 in Hn, n ≥ 2 is still an open problem even for smooth (C∞) hyper-
surfaces; the natural candidate metric space in this case seems to be R×H

n−1.
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Chapter 5

The Bernstein problem in
Heisenberg groups and
calibrations

In this final Chapter we investigate a question that, although under different formu-
lations, has recently received an increasing attention: namely, the Bernstein problem
in the Heisenberg group, see [42, 86, 157, 41, 60, 20, 58, 138]. Recall that the clas-
sical Bernstein problem consists in finding entire functions ψ : Rm → R solving the
minimal surface equation

div

(
∇ψ√

1 + |∇ψ|2

)
= 0 (5.1)

and that are not affine, i.e. functions parametrizing hyperplanes or, which is the
same, (translations of) maximal subgroups of R

m+1. It is well known that this
problem has been completely solved thanks to many contributions (see [89] for an
interesting historical survey). Here we summarize these celebrated results in the
following

Theorem 5.1. Every smooth function ψ : Rm → R solving (5.1) must be an affine
function if m ≤ 7. If m ≥ 8 there are analytic solutions which are not affine
functions.

We will then compute the minimal surface equation (5.17) for intrinsic graphs
and we will observe that maps parametrizing (laterals of) maximal subgroups (the
so called vertical hyperplanes) are entire solutions of the equation. In analogy with
the classical case, our formulation of the Bernstein problem in the Heisenberg group
Hn will consist in looking for solutions of the minimal surface equation which are

131
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not vertical hyperplanes. We will exhibit such solutions in the cases n = 1 (where,
however, hyperplanes are the only minimizers) and n ≥ 5, while the case n = 2, 3, 4
are still open. In the discussion, we will also extend to CC spaces the classical
calibration argument [96, 3], providing sufficient conditions for measurable sets to
be X-perimeter minimizing. This result has been suggested by L. Ambrosio, while
all the other ones have been obtained in [20] in collaboration with V. Barone Adesi
and F. Serra Cassano.

In Section 5.1 we state (Theorem 5.2) the calibration argument for CC spaces,
which is refined in Theorem 5.3 for the Carnot groups setting. Applications of these
results are also exhibited, showing the minimality in significant cases, in Exam-
ples 5.5, 5.6, 5.7 and 5.8. We particularly stress the last two ones, where, respec-
tively, we analyse the case of t-graphs in H1 and we show that in generalX-perimeter
minimizers are not smooth (see also [148]).

In Section 5.2 we derive first and second variation formulae for intrinsic graphs
of class C2, therefore obtaining the minimal surface equation (5.17) and the second
variation formula (5.26) which will be of use in our main result about the Bernstein
problem in H1, Theorem 5.23. Similar formulae have been obtained also in [56, 59,
133, 100, 101]. We stress that again the minimal surface equation (5.17) can be
obtained by formally substituting classical gradient in (5.1) with the operator W φ.

In Section 5.3 we restrict to the case of the first Heisenberg group H1 and study
the structure of entire solutions of the minimal surface equation. Up to a change of
coordinates, in H1 this turns out to be equivalent to the “double Burgers” equation
(∂t + u∂x)

2u = 0 in R
2. The key observation for the analysis of solutions u is that

they must be linear along characteristic lines, i.e. integral curves of the vector field
∂t+u∂x. Starting from this fact we are able (Theorem 5.9) to implicitly characterize
such functions only in terms of their value B and derivative A at time 0, with some
restrictions on A and B too. An existence result (Theorem 5.19) for entire solution
is provided together with some example of them.

Last Section 5.4 deals with the Bernstein problem in the Heisenberg group. In
Subsection 5.4.1 we restrict to the H1 case, where it is known [60] that counterexam-
ples exist. Our main result, Theorem 5.23, states that hyperplanes are the unique
entire C2 solutions to the Bernstein problem provided H-perimeter minimization is
assumed. Indeed, for any other solution we can exhibit a family of competitors with
strictly negative second variation of area, thus proving that it is not a minimizer.
In this approach we will heavily use the second variation formula (5.26) and the
structure Theorem 5.9. We stress that this phenomenon is quite unexpected, since
in the classical case a calibration argument ensures that any solution to (5.1) is
actually a minimizer. In Subsection 5.4.2 we analyse the Bernstein problem in
Hn, n ≥ 2: as we already said, we are able to provide counterexamples when n ≥ 5,
while the cases n = 2, 3, 4 are still open. Some of the results of the present Chapter
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have been generalized in [58]. It was shown recently [138] that Theorem 5.23 fails
when the C2 assumption on the function is dropped: namely, there exists entire
minimizing solutions (in a weak sense) that are not C2 regular.

5.1 A calibration method for theX-perimeter and

applications

The following result is a refinement of one due to L. Ambrosio and extends the
classical calibration method (see e.g. [96, 3]) giving sufficient conditions for a Borel
set E ⊂ Rn to be minimizer of X-perimeter (as in Definition 1.10).

Theorem 5.2. Let Ω ⊂ Rn be an open set, let X1, . . . , Xm be a family of Lipschitz
continuous vector fields in Ω and let E be a set of locally finite X-perimeter in Ω.
Suppose there are two sequences (Ωh)h and (νh)h, h ∈ N, such that

(i) Ωh ⊂ Ω is open, Ωh ⋐ Ωh+1, Ωh ↑ Ω;

(ii) νh ∈ C1(Ω; Rm), |νh(x)|Rm ≤ 1 for all x ∈ Ω and any h ∈ N;

(iii) divXνh = 0 in Ωh for each h;

(iv) νh(x)→ νE(x) ||∂E||X-a.e. x ∈ Ω.

Then E is a minimizer for the X-perimeter in Ω.

Proof. Fix an open set Ω′
⋐ Ω and a measurable set F ⊂ R

n such that E∆F ⋐ Ω′.
Let Ω′′ be another open set with E∆F ⋐ Ω′′

⋐ Ω′. Let h and ψ ∈ C1
c(Ω

′) be such
that Ω′ ⊂ Ωh, 0 ≤ ψ ≤ 1 and

Ω′′
⋐ {ψ = 1} ⋐ Ω′

⋐ Ω . (5.2)

Now notice that for each h > h
∫

Ω

〈ψνh, νE〉Rm d||∂E||X =

∫

Ω

〈ψνh, νF 〉Rm d||∂F ||X (5.3)

Indeed by (5.2) and (iii)
∫

Ω

〈ψνh, νE〉Rm d||∂E||X −
∫

Ω

〈ψνh, νF 〉Rm d||∂F ||X

= −
∫

Ω′

(χE − χF ) divX(ψνh) dLn

= −
∫

Ω′′

(χE − χF ) divXνh dLn = 0
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By (5.3)

||∂F ||X(Ω′) ≥
∣∣∣∣
∫

Ω

〈ψνh, νF 〉Rm d||∂F ||X
∣∣∣∣ =

∣∣∣∣
∫

Ω

ψ〈νh, νE〉Rmd||∂E||X
∣∣∣∣ .

By (ii) and (iv) and thanks to Lebesgue convergence theorem, as h→∞ we get

||∂F ||X(Ω′) ≥
∫

Ω′

ψ d||∂E||X ≥ ||∂E||X(Ω′′). (5.4)

We obtain the thesis by increasing Ω′′ ↑ Ω′.

In Carnot groups one can refine Theorem 5.2 as follows:

Theorem 5.3. Let G = (Rn, ·) be a Carnot group. Let E, Ω be respectively a
measurable and open set of Rn, and denote by νE : Ω → Rm the horizontal inward
normal to E in Ω. Suppose that

(i) E has locally finite X-perimeter in Ω;

(ii) divX νE = 0 in Ω in distributional sense;

(iii) there exists an open set Ω̃ ⊂ Ω such that ||∂E||X(Ω \ Ω̃) = 0 and νE ∈ C0(Ω̃).

Then E is a minimizer of the X-perimeter in Ω.

Proof. Let ζǫ be the family of mollifiers introduced in Proposition 1.28 and set
ν : Rn → Rm to be defined by ν ≡ ν in Ω, ν ≡ 0 in Rn \ Ω. Let us define

νǫ(x) := (ζǫ ⋆ ν)(x) =
(
(ζǫ ⋆ ν1)(x), . . . , (ζǫ ⋆ νm)(x)

)
, x ∈ R

n .

Let us begin to prove that for a fixed open set Ω′
⋐ Ω

∫

Ω

ψ divXνǫ dLn = 0 (5.5)

for every ψ ∈ C∞
c (Ω′) and 0 < ǫ < dist(Ω′,Rn\Ω)

2
. Since ψǫ := ζǫ ⋆ ψ ∈ C∞

c (Ω) and
the vector fields Xj’s are self-adjoint, by Proposition 1.28 we can integrate by parts
getting ∫

Ω

ψ divXνǫ dLn = −
∫

Ω

m∑

j=1

〈ν,Xjψǫ〉Rm dLn = 0 .

From (5.5) we get
divXνǫ = 0 in Ω′ (5.6)
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for every open set Ω′
⋐ Ω provided 0 < ǫ < dist(Ω′,Rn\Ω)

2
.

Let (Ωh)h be a sequence of open subsets of Ω verifying (i) of Theorem 5.2. Then
by (5.6) there exists a sequence ǫh → 0 such that the maps νh := νǫh satisfy the
assumptions of Theorem 5.2: indeed (i)-(iii) therein are immediately satisfied, while
by (iii) and Proposition 1.28 we get that νh → ν uniformly on compact subsets of

Ω̃, whence (iv) of Theorem 5.2 follows.

Remark 5.4. Notice that, through the calibration argument 5.3, one can prove that
every Euclidean subgraph parametrized by an entire solution of (5.1) is a minimizer
for the classical perimeter.

We have now all the tools to state some results about minimizers of the X-
perimeter in CC spaces: for all of them our calibration results will be crucial.

Example 5.5 (Hypersurfaces with constant horizontal normal). Let X be a family
of Lipschitz continuous vector fields X1, . . . , Xm on Rn. Suppose E ⊂ Rn is a set of
locally finite X-perimeter in an open set Ω ⊂ Rn which admits a constant inward
horizontal normal νE in Ω, i.e.

νE ≡ ν0 ||∂E||X -a.e. in Ω

for a suitable constant vector ν0 ∈ Rm. Then, thanks to Theorem 5.2, it is straight-
forward to check that E is a minimizer for the X-perimeter.

Observe that many interesting questions, such as regularity and rectifiability, are
open even in this quite simple class of sets: see e.g. Example 5.8.

Example 5.6 (t-graphs in H1). Let G = H1 ≡ R3 and ψ ∈ C2(ω) for a suitable
open set ω ⊂ R2, and let E be defined by

E := {(x, y, t) ∈ H
1 : t < ψ(x, y)}.

Let Ω := ω × R ⊂ H
1, S = ∂E ∩ Ω and set

C(S) = {(x, y, t) ∈ Ω : ψx(x, y)− 2y = ψy(x, y) + 2x = 0}

to be the set of so-called characteristic points of S, i.e. those points P ∈ S such that
TPS = HPH1. Then C(S) is closed in Ω and it was proved in [14] thatH2(C(S)) = 0.
On the other hand ||∂E||H ≪ H2 S by virtue of Proposition 3.7, and so

||∂E||H(Ω \ Ω̃) = 0 (5.7)

where Ω̃ := Ω \ C(S). A simple calculation shows the horizontal normal νE(x, y, t)
is

νE(x, y, t) = − ∇Hf(x, y, t)

|∇Hf(x, y, t)| = N(x, y) = (N1(x, y), N2(x, y)) (5.8)
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for each (x, y, t) ∈ S \ C(S), where f(x, y, t) := t− ψ(x, y) if (x, y, t) ∈ Ω and

N(x, y) :=
(−ψx(x, y) + 2y,−ψy(x, y)− 2x)√
(−ψx(x, y) + 2y)2 + (ψy(x, y) + 2x)2

(x, y, t) ∈ Ω̃ .

The minimal surface equation has been studied in [147, 86] and [42] when C(S) = ∅
and it simply reads as

divHνE = div N =
∂N1

∂x
+
∂N2

∂y
= 0 in ω. (5.9)

In particular, whenever (5.9) is satisfied pointwise, we can apply Theorem 5.3 ob-
taining that E is a minimizer for the H-perimeter measure in Ω.

Very recently the more delicate case C(S) 6= ∅ has been studied in [157] and [43].
In particular, in [43] it has been proved that (5.9) holds in weak sense, i.e.

∫

ω

〈N,∇ζ〉R2 dL2 = 0 ∀ζ ∈ C1
c(ω) , (5.10)

iff ψ is a minimizer of the area functional in H1 for Euclidean t-graph. When n ≥ 2,
if φ is a classic solution of (5.9) in Ω \ C(S), then it also satisfies (5.10) (see [43],
Corollary F), while counterexamples are provided when n = 1 (see [43], section 7).

We can get a strong result by exploiting Theorem 5.3: in fact, if (5.10) holds,
by (5.7) and (5.8) we obtain that E is a minimizer for H-perimeter in Ω. In particular
E minimizes the H-perimeter not only among sets whose boundary is a Euclidean
t-graph, but in a very much larger class of competitors.

Eventually let us stress our technique applies to the case studied in [157], Theo-
rem 5.3. Indeed in our setting ω = R2, ψ(x, y) = 2xy + ay + b, and

N(x, y) =

(
0,

4x− a
|4x− a|

)
, (x, y, t) ∈ Ω̃ = {(x, y, t) : x 6= a/4}

being a, b ∈ R fixed constants. On the other hand, a simple calculation shows
that (5.10) holds, whence E is a minimizer of the H-perimeter in Ω = R3.

Example 5.7. In the Heisenberg group H1 let E be the set defined by

E := {ι(η, τ) · se1 : (η, τ) ∈ R
2, s < φ(η, τ)},

where we choose φ(η, τ) := − αητ
1+2αη2

for a fixed constants α > 0. This family has

been extensively studied in [60], where it was proved that S = ∂E is an entire X1-
graph which is not minimizing for the H-perimeter measure in the whole H1. Let
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us stress the difference with Example 5.6: here in fact S is not a minimizer for H-
perimeter measure though it satisfies the intrinsic minimal surface equation (5.17)
on all R2.

On the other hand we can prove it is a minimizer in Ω = R3 \ {y = 0}: indeed
with a simple calculation we get

νE(x, y, t) := − ∇Hf(x, y, t)

|∇Hf(x, y, t)| =
y

|y|

(
− y√

x2 + y2
,

x√
x2 + y2

)
,

where f(x, y, t) := x+ α yt. Moreover it easy to see that νE ∈ C∞(Ω) and

divHνE = 0 in Ω .

Therefore applying Theorem 5.3 we obtain the thesis. It is still not known whether
S is H-perimeter minimizing in a neighbourhood of a point (0, y, 0).

Example 5.8 (Nonsmooth minimal surfaces in H1). We provide a way to produce
minimizers of the H-perimeter in H1 whose regularity is not better than (Euclidean)
Lipschitz. Examples with this regularity are also provided in [43] for minimal Eu-
clidean t-graphs and very recently S. Pauls informed us of a work in progress on this
subject.

Our key idea is to construct a “not too regular” parametrization φ : ω → R

such that W φφ = 0 on an open set ω ⊂ R2
η,τ : indeed this property ensures that the

horizontal normal to the surface is constant ν ≡ X1, and we conclude by calibrating
with a constant section ν ≡ X1.

We will prove later that for a Lipschitz map φ the distribution Bφ = ∂φ
∂η
−2∂(φ2)

∂τ

is represented by the L∞
loc function (∂η − 4φ∂τ )φ: therefore the required condition

is equivalent to φ being constant along the integral curves of the vector field W φ,
i.e. to these integral curves being straight lines. Notice that, using the notations
of Section 5.3, this is equivalent to look for (local) solutions of (5.29) with initial
conditions A ≡ 0.

We then start by fixing a Lipschitz function β : R→ R, with L :=Lip β < +∞,
which will give the “initial value” of φ in the sense that we look for a φ such that
φ(0, ·) = β (β is simply the counterpart of the function B of Section 5.3). Fix a
point (η, τ) ∈ R2, consider the integral curve of W φ passing through it and let (0, t)
be the point in which this line meets the τ -axis: the condition of φ being constant
along this line then becomes −4φ(η, τ) = −4β(t) = τ−t

η
, i.e.

τ = t− 4ηβ(t). (5.11)

Consider the Lipschitz continuous map

F : R
2
x,t → R

2
η,τ

(x, t) 7−→ (x, t− 4xβ(t)) ;
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F plays the role of the F of Section 5.3, and the variable t the one of c. Observe
that F−1(η, τ) is well defined when |η| < 1/4L: this is an easy consequence of

||F (x, t1)− F (x, t2)|| = |t1 − 4xβ(t1)− t2 + 4xβ(t2)| ≥ (1− 4L|x|)|t1 − t2|.

If we put F−1(η, τ) =: (η, t(η, τ)) it turns out that condition (5.11) is equivalent to
define φ(η, τ) := β(t(η, τ)), where from now on we suppose

(η, τ) ∈ ω :=
]
- 1
4L
, 1

4L

[
× R;

observe that φ has the same (Lipschitz or better) regularity of β (but no more since
φ(0, τ) = β(τ)).

Let us verify that (∂η − 4φ∂τ )φ ≡ 0: as

∇F (x, t) =

(
1 0

−4β(t) 1− 4xβ ′(t)

)

holds almost everywhere, one must have

∇F−1(η, τ) =
(
∇F (F−1(η, τ))

)−1
=




1 0

4β(t(η, τ))

1− 4ηβ ′(t(η, τ))

1

1− 4ηβ ′(t(η, τ))




a.e., and so

(∂η − 4φ∂τ )φ(η, τ) =
(
∂η − 4β(t(η, τ))∂τ

)
β(t(η, τ))

= β ′(t(η, τ))
∂t(η, τ)

∂η
− 4β(t(η, τ))β ′(t(η, τ))

∂t(η, τ)

∂τ

= β ′(t(η, τ))
4β(t(η, τ))

1− 4ηβ(t(η, τ))
− 4β(t(η, τ))β ′(t(η, τ))

1− 4ηβ ′(t(η, τ))
= 0 .

Therefore we are only left to prove that Bφ = (∂η − 4φ∂τ )φ in distributional

sense. In this perspective, it will be sufficient to show that the distribution ∂(φ2)
∂τ

is
represented by the function 2φ ∂τφ: this in turn is true since φ2 is locally Lipschitz
continuous, whence the pointwise partial derivative

∂(φ2)

∂τ
(η, τ) = lim

σ→τ

φ(η, σ)2 − φ(η, τ)2

σ − τ
= lim

σ→τ
(φ(η, σ) + φ(η, τ)) · φ(η, σ)− φ(η, τ)

σ − τ = 2φ(η, τ)
∂φ

∂τ
(η, τ)

exists almost everywhere in ω and coincides with ∂(φ2)
∂τ

in distributional sense.
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We stress that all the maps φ : ω → R arising from the previous discussion
effectively parametrize a C1

H
surface; in fact by Theorem 4.22 it is sufficient to find

C∞ functions φǫ : ω → R such that

φǫ → φ locally uniformly on ω
W φǫφǫ → 0 locally uniformly on ω

as ǫ→ 0. Fix then (e.g. mollifying β) a sequence βǫ ∈ C∞ such that Lip βǫ ≤ L and
βǫ → β locally uniformly in R, and consider the maps φǫ arising from the previous
discussion but considering βǫ instead of β. By construction we have W φǫφǫ ≡ 0;
moreover, φǫ are well defined on all ω (since Lip βǫ ≤ L) and it is not difficult to
check that they converge locally uniformly to φ. Observe that if β is not C1, then
the surface parametrized by φ cannot be of class C1, since its intersection with the
plane {y = 0} is the line {(β(t), 0, t) : t ∈ R} which is not C1.

For instance, let us put β(t) = |t|: it is not difficult to compute that the associa-
ted parametrization is

φ : ]− 1/4, 1/4[×R→ R

(η, τ) 7−→





τ

1− 4η
if τ ≥ 0

− τ

1 + 4η
if τ < 0.

The surface parametrized by this φ is then perimeter minimizing of class C1
H

but
not C1.

5.2 First and second variation of the area func-

tional for intrinsic graphs

In this section we want to obtain first and second variation formulae of the area
functional for intrinsic graphs; similar formulae have been obtained also in [56, 59,
133, 100, 101]. We will study in Section 5.3 the structure of all entire stationary
points (i.e. those functions with vanishing first variation), while a proper second
variation formula (see (5.26)) will be crucial in the study of the Bernstein problem
in H1 (see Section 5.4.1).

5.2.1 First variation of the area

Let us fix a C1 map φ : ω → R, where ω is an open subset of R2n, and put

Eφ := {ι(A) · se1 ∈ H
n : A ∈ ω and s < φ(A)} ⊂ CX1(ω) (5.12)



140 Chapter 5. The Bernstein problem in Heisenberg groups and calibrations

where we CX1(ω) is the cylinder of base ι(ω) along X1 defined by

CX1(ω) := ι(ω) · {se1 ∈ H
n : s ∈ R};

observe that CX1(ω) is an open neighbourhood of S := Φ(ω), where as usual Φ is
the map A 7→ ι(A) · φ(A)e1.

Let us assume that Eφ is a minimizer for the H-perimeter in CX1(ω), fix ψ ∈
C∞
c (ω) and set φs := φ+ sψ; we can therefore consider the class of competitors Eφs,

which are defined as in (5.12) (observe that E∆Eφs ⋐ CX1(ω)), and set

g(s) := ||∂Eφs ||H(CX1(ω)) =

∫

ω

√
1 + |W φsφs|2dL2n. (5.13)

The fact that g(s) ≥ g(0) for all s ∈ R implies that g′(0) = 0. It is not difficult to
check that

(W φ
n+1)

∗ψ = −W φ
n+1ψ + 4ψT̃φ for all ψ ∈ C∞,

whence

W φs

n+1φs = Ỹ1φ+ sỸ1ψ − 4(φ+ sψ)(T̃φ+ sT̃ψ)

= W φ
n+1φ− s (W φ

n+1)
∗
ψ − 4s2ψT̃ψ

and so

g(s) =

∫

ω

[
1+

2n∑

j=2
j 6=n+1

(X̃jφ+sX̃jψ)2+
(
W φ
n+1φ−s(W φ

n+1)
∗
ψ−4s2ψT̃ψ

)2
]1/2

dL2n. (5.14)

From now on we will write just
∑

j to mean the sum on indices j = 2, . . . , 2n with
j 6= n + 1; when n = 1 the previous formula and the following ones are to be
understood by “erasing” all sums of this type.

Starting from (5.14) it is not difficult to compute

g′(s) =

∫

ω

∑
j X̃jφs X̃jψ +W φs

n+1φs (−(W φ
n+1)

∗
ψ − 8sψT̃ψ)

√
1 + |W φsφs|2

dL2n (5.15)

and in particular

g′(0) =

∫

ω

∑
j X̃jφ X̃jψ −W φ

n+1φ (W φ
n+1)

∗
ψ

√
1 + |W φφ|2

dL2n (5.16)

The Euler equation for stationary points of the area functional is then

W φ · W φφ√
1 + |W φφ|2

= 0 on ω, (5.17)

where the previous equality must be understood in distributional sense.
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5.2.2 Second variation of the area

If φ ∈ C1, from (5.15) we can compute

g′′(s) =

∫

ω

1

1 + |W φsφs|2

{
√

1 + |W φsφs|2 ×

×
[
∑

j

(X̃jψ)2 +
(
(W φ

n+1)
∗
ψ + 8sψT̃ψ

)2 − 8ψT̃ψW φs

n+1φs

]
+

−
[[∑

j X̃jφs X̃jψ +W φs

n+1φs
(
−(W φ

n+1)
∗
ψ − 8sψT̃ψ

)]2

√
1 + |W φsφs|2

]}
dL2n (5.18)

and so

g′′(0) =

∫

ω

(1 + |W φφ|2)
[
|W φ∗ψ|2 − 8ψT̃ψW φ

n+1φ
]
−
(
W φφ ·W φ∗ψ

)2

[1 + |W φφ|2]3/2
dL2n, (5.19)

where we put

W φ∗ψ :=
(
X̃∗

2ψ, . . . , X̃
∗
nψ, (W

φ
n+1)

∗
ψ, X̃∗

n+2ψ, . . . , X̃
∗
2nψ
)

if n ≥ 2

W φ∗ψ := (W φ
2 )

∗
ψ if n = 1;

the fact that Eφ is a minimizer implies that g′′(0) ≥ 0 for all ψ ∈ C1
c(ω).

Notice that when n = 1 formula (5.19) for the second variation reads as

g′′(0) =

∫

ω

|W φ∗ψ|2 − 8ψT̃ψW φφ(1 + |W φφ|2)
[1 + |W φφ|2]3/2

dL2; (5.20)

in particular when W φφ ≡ 0 one has g′′(0) ≥ 0 for all C1
c(ω). If we suppose φ ∈ C2

we can further exploit (5.20) as

g′′(0) =

∫

ω

|W φ∗ψ|2 − 4T̃ (ψ2)W φφ(1 + |W φφ|2)
[1 + |W φφ|2]3/2

dL2

=

∫

ω

[
|W φ∗ψ|2

[1 + |W φφ|2]3/2
+ 4ψ2T̃

(
W φφ

[1 + |W φφ|2]1/2

)]
dL2. (5.21)

We will see in Section 5.3 that if n = 1 and φ is a stationary point of the area
functional, i.e. if φ solves (5.17), then

(W φ)2φ = 0 (5.22)
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and thanks to this the first term of (5.21) becomes, integrating by parts,

∫

ω

|W φ∗ψ|2 dL2

[1 + |W φφ|2]3/2
=

∫

ω

ψW φ

(
W φ∗ψ

[1 + |W φφ|2]3/2

)
dL2

=

∫

ω

ψ
W φW φ∗ψ

[1 + |W φφ|2]3/2
dL2. (5.23)

Since

(W φW φ∗ −W φ∗W φ)ψ = W φ
(
−W φ + 4T̃φ Id

)
ψ −

(
−W φ + 4T̃φ Id

)
W φψ

= 4ψ W φT̃ φ

we can rewrite (5.23) as

∫

ω

|W φ∗ψ|2
[1 + |W φφ|2]3/2

dL2 =

∫

ω

ψ
W φ∗W φψ + 4ψ W φT̃ φ

[1 + |W φφ|2]3/2
dL2

=

∫

ω

[
(W φψ)2

[1 + |W φφ|2]3/2
+ 4ψ2 W φT̃ φ

[1 + |W φφ|2]3/2

]
dL2 , (5.24)

where we used (5.22) again. Therefore (5.21) becomes

g′′(0) =

∫

ω

{
(W φψ)2

[1 + |W φφ|2]3/2
+ 4ψ2

[
W φT̃φ

[1 + |W φφ|2]3/2
+ T̃

(
W φφ

[1 + |W φφ|2]1/2

)]}
dL2

=

∫

ω

{
(W φψ)2

[1 + |W φφ|2]3/2
+

+ 4ψ2

[
W φT̃ φ

[1 + |W φφ|2]3/2
+

[1 + |W φφ|2]T̃W φφ− |W φφ|2T̃W φψ

[1 + |W φφ|2]3/2

]}
dL2

=

∫

ω

(W φψ)2 + 4ψ2 [W φT̃φ+ T̃W φφ]

[1 + |W φφ|2]3/2
dL2 (5.25)

Finally, one has
W φT̃ φ = φητ − 4φφττ = T̃W φφ+ 4(T̃ φ)2

and so from (5.25) we can also write

g′′(0) =

∫

ω

(W φψ)2 + 8ψ2 [T̃W φφ+ 2(T̃φ)2]

[1 + |W φφ|2]3/2
dL2. (5.26)

Equation (5.26) will be crucial in the proof of Theorem 5.23.
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5.3 Entire solutions of the minimal surface equa-

tion in H
1

In this section we will give a characterization (see Corollary 5.20) of all the entire
C2 solutions φ : R2

η,τ → R of the minimal surface equation for intrinsic graphs in
H1, i.e. of

W φ

(
W φφ√

1 + |W φφ|2

)
= 0 in R

2; (5.27)

this result will provide the key tool to attack the Bernstein problem in H
1. Observe

that (5.27) can be written as

0 =
(W φ)2φ

√
1 + |W φφ|2 − W φφ Wφφ·(Wφ)2φ√

1+|Wφφ|2

1 + |W φφ|2 =
(W φ)2φ

(1 + |W φφ|2)3/2

which means that φ is a solution of (5.27) if and only if it solves

(W φ)2 φ = 0 in R
2. (5.28)

Notice that (5.28) is equivalent to a “double” Burgers’ equation: in fact by
performing the change of variables

G : R
2
x,t → R

2
η,τ

(x, t) 7−→ (t,−4x),

setting u(x, t) := (φ ◦G)(x, t) = φ(t,−4x) and defining Lu to be the operator

(Luv)(x, t) = (vt + u vx)(x, t) (v ∈ C1(R2)),

we get

(Lu(Luu))(x, t) = ((W φ)2φ)(t,−4x).

This means that we can restrict to consider the C2 solutions u of the “double”
Burgers’ equation

L2
uu = 0 in R

2 (5.29)

(recall that Luu = 0 is the classical Burgers’ equation, see [66]). We will focus our
attention on the problem (5.29) rather than (5.27) or (5.28).
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5.3.1 Characteristic curves for entire solutions of L2
uu = 0

Suppose u is an entire C2 solution of (5.29) and let us consider the characteristic
curves (see [66]) of the equation Luv = 0, i.e., for any fixed c ∈ R, the maximal
solution x = x(c, ·) : Ic → R of the Cauchy problem

{
ẋ(c, t) = u(x(c, t), t)
x(c, 0) = c.

(5.30)

From (5.29) one gets d
dt
Luu(x(c, t), t) = 0 and so

Luu(x(c, t), t) = A(c) for all t ∈ Ic .

Since

d

dt
u(x(c, t), t) =

(
ut(x(c, t), t) + ux(x(c, t), t) ẋ(c, t)

)
= Luu(x(c, t), t) = A(c)

we obtain

u(x(c, t), t) = A(c)t + B(c) for all t ∈ Ic, (5.31)

where we have set B(c) := u(c, 0). Equation (5.31), together with (5.30), gives

x(c, t) =
A(c)

2
t2 +B(c)t+ c;

in particular, Ic = R. We have therefore the following

Theorem 5.9. Let u be an entire C2 solution of (5.29) and for c, t ∈ R set

x(c, t) :=
A(c)

2
t2 +B(c)t+ c ,

where A(c) := Luu(c, 0) and B(c) := u(c, 0). Then for all c, t we have

(i) u(x(c, t), t) = A(c)t+B(c);

(ii) Luu(x(c, t), t) = A(c);

(iii) x(·, t) is strictly increasing for any fixed time t;

(iv) for all c ∈ R we have either A′(c) = B′(c) = 0 or B′(c)2 < 2A′(c).

In particular, the family of characteristics x(c, ·) are parabolas which do not intersect.
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Proof. We have already proved (i) and (ii); for (iii), it will be sufficient to prove
that, for every t,

x(c, t) 6= x(c′, t) if c 6= c′; (5.32)

in fact, were (iii) false, we could find c < c′ and t′ such that x(c, t′) ≥ x(c′, t′), but
since the characteristics are continuous and x(c, 0) = c < c′ = x(c′, 0) we could find
a t between 0 and t′ such that (5.32) does not hold.

Arguing by contradiction, let us assume that (5.32) does not hold for some c 6= c′

and t; observe that from (i) and (ii) one has

A(c) = Luu(x(c, t), t) = A(c′)
A(c)t+B(c) = u(x(c, t), t) = A(c′)t+B(c′)

whence c = x(c, t)− A(c)
2
t2 −B(c)t = c′, which is a contradiction.

Notice that (iii) implies that

∂x

∂c
(c, t) =

A′(c)

2
t2 +B′(c)t+ 1 ≥ 0

for all c, t, and this in turn implies B′(c)2 ≤ 2A′(c). Observe in particular that
A′(c) ≥ 0 and ∂x

∂c
(c, t) ≥ 0. In order to prove (iv), suppose by contradiction that for

a certain c we have B′(c)2 = 2A′(c) 6= 0. Differentiating (i) with respect to c one
gets

∂u

∂c
(x(c, t), t) =

A′(c)t+B′(c)
∂x
∂c

(c, t)
=

A′(c)
(
t+ B′(c)

A′(c)

)

A′(c)
(
t+ B′(c)

A′(c)

)2 =
1

t+ B′(c)
A′(c)

for all t

which contradicts the hypothesis u ∈ C2(R2).

Remark 5.10. Observe that if u is a C2 solution of





L2
uu = 0

u(x, 0) = B(x)
Luu(x, 0) ≡ A ∈ R

then one must have also B(x) ≡ B(0) = B. In particular, Theorem 5.9 (i) implies
that u(x, t) = At+B.

Remark 5.11. Following the same proof of Theorem 5.9 (i), it is possible to prove
that if u is a C1 solution of the Burgers’ equation

Luu = ut + uux ≡ k

for a suitable constant k ∈ R, then B = u(·, 0) must be constant.
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It is not difficult to extend the proof of Theorem 5.9 and get the following

Theorem 5.12. Let Ω be an open set of R2
x,t such that {(x, 0) : x ∈ R} ⊂ Ω, let

u ∈ C2(Ω) be a solution of
L2
uu = 0 in Ω , (5.33)

and let A(c), B(c) and x(c, t) be as in Theorem 5.9. Suppose moreover that the set
{(x(c, t), t) : c, t ∈ R} is contained in Ω. Then the statements (i)-(iv) of Theorem
5.9 still hold.

From Theorem 5.12 we get the following uniqueness result for the “double”
Burgers’ equation (see also [53], Chap V, Section 7, and [130]).

Theorem 5.13. Let u0 ∈ C2(R), u1 ∈ C1(R) be given functions and set A :=
u0, B := u1 + u0u

′
0. Let x(c, t) := A(c)t2/2 +B(c)t+ c and set

Ω = {(x(c, t), t) : c, t ∈ R}. (5.34)

Then there is at most one solution u ∈ C2(Ω) of the problem




L2
uu = 0 in Ω

u(x, 0) = u0(x) ∀ x ∈ R

ut(x, 0) = u1(x) ∀ x ∈ R.
(5.35)

Proof. By Theorem 5.12 any solution u ∈ C2(Ω) of (5.35) has to satisfy

u(x(c, t), t) = A(c)t+B(c);

however, hypothesis (5.34) ensures that for all (x, t) ∈ Ω we can find a c such that
x = x(c, t). This proves that u is uniquely determined in Ω by A and B, i.e. by u0

and u1.

Corollary 5.14. Let u0, u1, A,B, x(t, c) and Ω be as in Theorem 5.13, and suppose
moreover that for all c ∈ R we have A′(c) = B′(c) = 0 or B′(c)2 < A′(c). Then

(i) Ω is an open neigbourhood of the x-axis {(x, 0) : x ∈ R};

(ii) there is at most one solution u ∈ C2(Ω) of the problem (5.35).

Proof. Observe that the map

F : R
2 → R

2

(c, t) 7−→ (x(c, t), t)

is regular and one-to-one; in particular, it is an open map and (i) follows. This
means that condition (5.34) of Theorem 5.13 is automatically fulfilled, and so (ii)
must hold too.
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Corollary 5.15. Under the same assumptions as in Theorem 5.9 let us denote
l1 := limc→+∞A(c) (respectively l2 := limc→−∞A(c)). Then for any fixed t ∈ R we
can conclude

lim
c→+∞

x(c, t) = +∞ (resp. lim
c→−∞

x(c, t) = −∞) (5.36)

if either l1 ∈ R (resp. l2 ∈ R), or l1 = +∞ (resp. l2 = −∞) and one of the following
conditions is satisfied:

lim inf
c→+∞

A(c)

c
= 0

(
resp. lim inf

c→−∞

A(c)

c
= 0

)
(5.37)

lim sup
c→+∞

A(c)

c
= +∞

(
resp. lim sup

c→+∞

A(c)

c
= −∞

)
(5.38)

lim inf
c→+∞

∣∣∣∣∣
B(c)√
cA(c)

∣∣∣∣∣ <
√

2

(
resp. lim inf

c→−∞

∣∣∣∣∣
B(c)√
cA(c)

∣∣∣∣∣ <
√

2

)
. (5.39)

In particular, when limc→+∞ x(c, t) = +∞ and limc→−∞ x(c, t) = −∞ we have that
x(·, t) : R→ R is a homeomorphism and Ω := {(x(c, t), t) : c, t ∈ R} = R2.

Proof. Observe that for fixed t ∈ R and c 6= 0 one can write

x(c, t) =
√
|c|
[

1

2

(
A(c)−A(0)√

|c|
+
A(0)√
|c|

)
t2 +

(
B(c)− B(0)√

|c|
+
B(0)√
|c|

)
t+
√
c

]
.

(5.40)
Being A increasing there exist

m1 := lim
c→+∞

(A(c)− A(0))
(
resp. m2 := lim

c→−∞
(A(c)− A(0))

)

with −∞ ≤ m2 ≤ 0 ≤ m1 ≤ +∞. Notice also that, using Theorem 5.9 (iv), one
can get

|B(c)− B(0)| ≤
∫ c

0

|B′(s)| ds ≤
√

2

∫ c

0

√
A′(s) ds ≤

√
2 |c| |A(c)−A(0)| (5.41)

and this allows us to conclude when l1 ∈ R (resp. l2 ∈ R), since in this case we have
m1 ∈ R (resp. m2 ∈ R) and so x(c, t) ≈ c for large (resp. small) c.

Instead, when l1 = +∞, for large c we can write

x(c, t) =
√
c(A(c)−A(0))

[
1

2

(√
A(c)−A(0)

c
+

A(0)√
c(A(c)−A(0))

)
t2 +

+

(
B(c)−B(0)√
c(A(c)−A(0))

+
B(0)√

c(A(c)−A(0))

)
t+

√
c

A(c)−A(0)

]
(5.42)
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whence (using (5.41) again) lim supc→∞ x(c, t) = +∞ in case (5.37) or (5.38) hold;
however, this implies (5.36) since x(·, t) is increasing. When c → −∞ we have
instead

x(c, t) =
√
c(A(c)− A(0))

[
−1

2

(√
A(c)−A(0)

c
+

A(0)√
c(A(c)−A(0))

)
t2 +

+

(
B(c)− B(0)√
c(A(c)− A(0))

+
B(0)√

c(A(c)− A(0))

)
t−
√

c

A(c)−A(0)

]

and analogously we conclude lim infc→−∞ x(c, t) = −∞, which is sufficient.

Instead if (5.39) holds together with l1 = +∞, we have a sequence ch → +∞
such that

B′(ch)
2

2A′(ch)
≤ (1− ǫ)ch ∀h; (5.43)

observe that the parabola x(ch, ·) reaches its minimum at t = −B(ch)
A(ch)

and so

x(ch, t) ≥ x(ch,−B(ch)
A(ch)

) = ch −
B′(ch)

2

2A′(ch)
≥ ǫch

h→∞−→ +∞

which, together with the fact that x(·, t) is increasing, proves (5.36) when c→ +∞.
It is a little more complicated to prove the thesis when l2 = −∞ and c → −∞;
however, as in (5.43) we get a sequence ch → −∞ such that

−B
′(ch)

2

2A′(ch)
≤ ǫch − ch ∀h

and so

x(ch, t) =
A(ch)

2

(
t+

B(ch)

A(ch)

)2

+

(
ch −

B′(ch)
2

2A′(ch)

)

≤ A(ch)

2

(
t+

B(ch)

A(ch)

)2

+ ǫch

which allows us to conclude since A(c)→ −∞ as c→ −∞.

Example 5.16. Set A(c) := c/2 and B(c) := −c; then it is easy to check that the
family of characteristic curves for the related problem (5.29) are

x(c, t) = (t− 2)2c/4.
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Notice that x(c, 2) ≡ 0, i.e. the thesis of Corollary 5.15 does not hold; here in fact
(5.39) is not fulfilled since

lim
c→±∞

B(c)√
cA(c)

=
√

2.

Moreover, taking into account Theorem 5.9, a global C2 solution u of (5.29), with
u(x, 0) = −x and Luu(x, 0) = x/2, cannot exist.

Example 5.17. Let A(c) = c and B(c) =
√

2(1 + c2), and let us consider the
associated family of characteristic parabolas

x(c, t) =
c

2
t2 +

√
2(1 + c2)t+ c.

Then for fixed t we have

∂x

∂c
(c, t) =

t2

2
+

√
2 c√

1 + c2
t+ 1

which is (strictly) positive for any c: in particular, the family the characteristics
cannot intersect, and in fact one has

B′(c)2 = 2
c2

1 + c2
< 2 = 2A′(c).

Observe also that

lim
c→±∞

∣∣∣∣∣
B(c)√
cA(c)

∣∣∣∣∣ =
√

2.

If we set F (c, t) := (x(c, t), t) it is easy to see that the image F (R2) is the open
set

Ω := R
2 \
(
{(x,
√

2) : x ≤ 0} ∪ {(x,−
√

2) : x ≥ 0}
)
.

Indeed a simple calculation gives F−1(x, t) = (c(x, t), t) where

c(x, t) =





x(1 + t2/2)−
√

2|t|
√
x2 + (1− t2/2)2

(1− t2/2)2
if |t| 6=

√
2

x2 − 4

4x
if t =

√
2, x > 0 or t = −

√
2, x < 0.

We will see that u(x, t) := A(c(x, t))t+B(c(x, t)) is the unique solution of (5.33) in
Ω such that Luu(x, 0) = A(x) and u(x, 0) = B(x).

Example 5.18. If we require B ≡ 0, then the solution to the “double” Burgers’
equation with initial data A,B is defined everywhere for any C2 increasing function
A. Obviously, even if it is possible to characterize it intrinsically as in Theorem 5.9
(i), in general it is not possible to give an explicit formula for the solution.
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5.3.2 Existence of entire solutions

In the following theorem we provide an existence and uniqueness result for the
equation (5.29).

Theorem 5.19. Let A,B ∈ C2(R) and for c, t ∈ R set

x(c, t) :=
A(c)

2
t2 +B(c)t+ c

F : R2 ∋ (c, t) 7−→ (x(c, t), t) ∈ R

Ω := F (R2) = {(x(c, t), t) : c, t ∈ R}

and suppose that

for all c ∈ R one has either A′(c) = B′(c) = 0 or B′(c)2 < 2A′(c). (5.44)

Then

(i) F is C2 regular and one-to-one and, in particular, Ω is open;

(ii) if F−1(x, t) := (c(x, t), t), (x, t) ∈ Ω, then u(x, t) := A(c(x, t))t + B(c(x, t))
is the unique C2 solution of L2

uu = 0 in Ω satisfying Luu(x, 0) = A(x) and
u(x, 0) = B(x).

Proof. We begin by proving that the C2 map F : R2 → R2 is one-to-one. By
construction it is enough to prove that for any fixed t the map x(·, t) is strictly
increasing, and this is an easy consequence of (5.44) which implies that

∂x

∂c
(t, c) =

A′(c)

2
t2 +B′(c) + 1 > 0

for any c. Being one-to-one and continuous, F is also an open map, i.e. Ω ⊂ R2 is
open, and (i) is proved.

For (ii), observe that the Jacobian matrix of F is given by

JF (c, t) =

(
A′(c)

2
t2 +B′(c) + 1 A(c)t+B(c)

0 1

)

and so the Inverse Function Theorem implies that the Jacobian matrix of F−1 is

JF−1(x, t) =
(
JF (F−1(x, t))

)−1

=
1

A′(c(x,t))
2

t2 +B′(c(x, t)) + 1

(
1 −A(c(x, t))t −B(c(x, t))

0 A′(c(x,t))
2

t2 +B′(c(x, t)) + 1

)
.
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Thus

∂c

∂x
(x, t) =

1
A′(c(x,t))

2
t2 +B′(c(x, t)) + 1

(5.45)

∂c

∂t
(x, t) = −A(c(x, t))t+B(c(x, t))

A′(c)
2
t2 +B′(c) + 1

(5.46)

and so one can compute

Luu(x, t) =
[
A′(c(x, t))t+B′(c(x, t))

]∂c
∂t

(x, t) + A(c(x, t)) +

+
[
A′(c(x, t))t+B′(c(x, t))

][
A(c(x, t))t+B(c(x, t))

] ∂c
∂x

(x, t)

= A(c(x, t))

and

L2
uu(x, t) = A′(c(x, t))

∂c

∂t
(x, t) +

[
A(c(x, t))t+B(c(x, t))

]
A′(c(x, t))

∂c

∂x
(x, t) = 0.

Therefore u is a solution of the given problem, and the proof is completed since
uniqueness follows from Theorem 5.13.

Corollary 5.20. Suppose that A,B ∈ C2(R) and that u : R
2 → R is a C2 entire

solution of the problem 



L2
uu = 0

u(x, 0) = B(x)
Luu(x, 0) = A(x)

Let Ω, c(x, t) be as in Theorem 5.19; then

u(x, t) = A(c(x, t))t+ B(c(x, t)) for all (x, t) ∈ Ω

and u is the unique solution in Ω of the same problem.

5.3.3 Examples of entire solutions of L2
uu = 0

Example 5.21. Let A(c) = αc (α > 0) and B ≡ 0, then it is easy to see that in
this case Ω = R2; since c(x, t) = 2x

2+αt2
, the required solution of (5.29) is given by

u(x, t) =
2αxt

2 + αt2
.

These solutions correspond to the maps φα′(η, τ) = − α′ητ
1+2α′η2

(where α′ := α/4)

solutions of (W φ)2φ = 0 (see also Example 5.7); it is not difficult to notice that the



152 Chapter 5. The Bernstein problem in Heisenberg groups and calibrations

surfaces parametrized by φα′ corresponds to {(x, y, t ∈ H1 : x = −α′yt)}, which are
deeply studied in [60]: in particular (see Theorem 1.2 therein) it is proved that they
are not H-perimeter minimizing (see also Theorem 5.23).

Example 5.22. Let B ≡ 0 and choose a bounded, not constant and strictly in-
creasing A ∈ C2 ; then, if Ω and c(x, t) are as in Theorem 5.19, by Corollary 5.15 we
have Ω = R2 and that u(x, t) := A(c(x, t))t+B(c(x, t)) is the unique entire solution
of (5.29); moreover, Luu(x, t) = A(c(x, t)) is bounded.

Observe that an analogous situation cannot occur in the Euclidean case: in fact
(see [89], Theorem 17.5), any smooth global solution ψ of the classical minimal
surface equation with ||∇ψ||L∞ < ∞ must be linear. Here, instead, it happens that
the map φ, which arises from the u of this construction, solves (5.27), is not linear
(and, in particular, not of type (5.48), see Section 5.4) but is such that ||W φφ||L∞ <
∞.

5.4 The Bernstein problem in H
n

Let us recall the minimal surface equation for minimal H-graphs in Hn

W φ ·
(

W φφ√
1 + |W φφ|2

)
= 0, (5.47)

where φ : R2n → R is of class C2. Observe that the “affine” functions given by

φ(η, v, τ) = c+ 〈(η, v), w〉R2n−1 (5.48)

for c ∈ R, w ∈ R
2n−1 (the previous formula has to be read as φ(η, τ) = c+ ηw when

n = 1) are trivial solutions of (5.47), and that they parametrize the so called “vertical
hyperplanes”, i.e. (right-translations of) maximal subgroups of Hn (see also (3.16)):
it follows that these hypersurfaces are stationary points of the area functional, and a
calibration argument implies that they are also minimizers since they have constant
horizontal normal (see Example 5.5). These considerations suggest that the right
counterpart of the classical Bernstein problem in the Heisenberg setting is

Bernstein problem for X1-graphs in Hn: are there entire solutions φ : R2n →
R of the minimal surface equation (5.47) which cannot be written as in (5.48)?

As we will see, again the answer seems to depend on the dimension n of the
space; however, new and unexpected phenomena arise, e.g. the fact that we have
solutions to (5.1) which are not area minimizing.
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5.4.1 The Bernstein problem in H1

We have seen in Section 5.3 that for n = 1 there exist solutions of (5.47) which cannot
be written as in (5.48); see for instance Examples 5.21 and 5.22. We already pointed
out that every solution of the classic minimal surface equation (5.1) parametrizes
(the boundary of) a global minimizer; in H1 instead a new phenomenon occurs, in
the sense that there are entire solutions of the intrinsic minimal surface equation
(5.47) which parametrize a surface which is not a minimizer. Anyway, whenever the
surface is H-perimeter minimizing in H1 it has to be a vertical plane: more precisely,
we have the following

Theorem 5.23 (Minimizers vs. stationary entire X1-graphs). Suppose that φ :
R2 → R is of class C2 and define S,E ⊂ H1 to be respectively the X1-graph and the
X1-subgraph induced by φ, i.e.

S := {Φ(η, τ) := ι(η, τ) · φ(η, τ)e1 : (η, τ) ∈ R2}
E := {ι(η, τ) · se1 : (η, τ) ∈ R2, s < φ(η, τ)} .

Let us suppose E is a minimizer for the H-perimeter measure in H1; then S is a
vertical plane, i.e. φ(η, τ) = wη + c for all (η, τ) ∈ R2 for some constants w, c ∈ R.

Proof. Step 1. First of all, we want to rewrite the second variation formula (5.26)
in the coordinates c, t introduced in Section 3. Therefore let G be defined by

G : R
2
x,t → R

2
η,τ

(x, t) 7−→ (t,−4x)

and set
A(x) := (W φφ ◦G)(x, 0), B(x) := (φ ◦G)(x, 0);

in particular, φ ◦G is an entire solution of (5.29). As in Section 5.3 we set x(c, t) :=
A(c)

2
t2 +B(c)t+ c and

F : R
2
c,t → R

2
x,t

(c, t) 7−→ (x(c, t), t)

Therefore, if we define

Ω := F (R2) ⊂ R2
x,t,

F ∗ := G ◦ F,
Ω∗ := F ∗(R2) = G(Ω) ⊂ R2

η,τ

and c : Ω→ R through the formula F−1(x, t) = (c(x, t), t), thanks to Theorem 5.12
one gets
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• for any c ∈ R we have either A′(c) = B′(c) = 0 or B′(c)2 < 2A′(c);

• F ∗ is a C2 diffeomorphism between R2
c,t and Ω∗. Moreover, Ω and Ω∗ are open

neighbourhood of the lines {t = 0} and {η = 0} respectively.

It is not difficult to prove that for all (η, τ) ∈ Ω∗ one has

φ(η, τ) = A(c(−τ/4, η))η +B(c(−τ/4, η))) =
∂x

∂t
(F ∗−1(η, τ)); (5.49)

W φφ(η, τ) = A(c(−τ/4, η)). (5.50)

and taking into account that

∂c

∂x
(x, t) =

1
∂x
∂c

(F−1(c, t))
=

1
A′(c(x,t))

2
t2 + B′(c(x, t)) + 1

(5.51)

∂c

∂t
(x, t) = −

∂x
∂t

(F−1(c, t))
∂x
∂c

(F−1(c, t))
= − A(c(x, t))t+B(c(x, t))

A′(c(x,t))
2

t2 +B′(c(x, t)) + 1
(5.52)

for all x, t ∈ Ω, we get for all (η, τ) ∈ Ω∗ that

T̃W φφ+ 2(T̃ φ)2 = −1

4

A′(c(F ∗−1(η, τ)))
∂x
∂c

(F ∗−1(η, τ))
+

+2

[
1

4

A′(c(F ∗−1(η, τ))) +B′(c(F ∗−1(η, τ)))
∂x
∂c

(F ∗−1(η, τ))

]2

=
−2A′(c)∂x

∂c
+ ( ∂

2x
∂c∂t

)2

8 (∂x
∂c

)2
(F ∗−1(η, τ)). (5.53)

Observe that for any (c, t) ∈ R2 we have

−2A′(c)∂x
∂c

(c, t) + ( ∂
2x

∂c∂t
(c, t))2

8 (∂x
∂c

(c, t))2
=
−2A′(c)(A

′(c)
2
t2 +B′(c)t+ 1) + (A′(c)t+B′(c))2

8 (A
′(c)
2
t2 +B′(c)t+ 1)2

=
−2A′(c) +B′(c)2

8 (A
′(c)
2
t2 +B′(c)t+ 1)2

≤ 0 (5.54)

and notice that the correspondance

C1
c(R

2
c,t) ∋ ζ ←→ ψ := ζ ◦ F ∗−1 ∈ C1

c(Ω
∗)
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is bijective and

(W φψ)(F ∗(c, t)) =
∂ψ

∂η
(F ∗(c, t))− 4φ(F ∗(c, t))

∂ψ

∂τ
(F ∗(c, t))

=
∂ψ

∂η
(F ∗(c, t))− 4

∂x

∂t
(c, t)

∂ψ

∂τ
(F ∗(c, t))

=
∂ζ

∂t
(c, t). (5.55)

Since

det JF ∗(c, t) = det JG(F (c, t))det JF (c, t)

= 4(A
′(c)
2
t2 +B′(c)t+ 1) > 0

a change of variable and equations (5.26), (5.53), (5.54) and (5.55) give

g′′(0) =

∫

Ω∗

(W φψ)2 + 8ψ2 [T̃W φφ+ 2(T̃φ)2]

[1 + |W φφ|2]3/2
dηdτ

= 4

∫

R2

(∂ζ
∂t

)2 + ζ2 −2A′(c)+B′(c)2

(A′(c)
2

t2+B′(c)t+1)2

[1 + A(c)2]3/2

[
A′(c)

2
t2 +B′(c)t+ 1

]
dc dt

= 4

∫

R2

[(
∂ζ

∂t

)2

u+ ζ2v

]
dc dt (5.56)

where g is as in (5.13) and we have set ζ := ψ ◦ F ∗ and

u(c, t) :=
A′(c)

2
t2 +B′(c)t+ 1

[1 + A(c)2]3/2

v(c, t) :=
B′(c)2 − 2A′(c)

[1 + A(c)2]3/2[A
′(c)
2
t2 +B′(c)t+ 1]

.

The fact that φ parametrizes a minimizer implies that g′′(0) ≥ 0 for all ψ ∈ C1
c(Ω

∗);
since F ∗ : R2 → Ω∗ is a C2 diffeomorphism we deduce that

∫

R2

[(
∂ζ

∂t

)2

u+ ζ2v

]
dc dt ≥ 0 ∀ζ ∈ C1

c(R
2). (5.57)

Step 2. It is easy to see that our thesis on φ is equivalent to A and B being
constant, i.e. to A′ = B′ ≡ 0. Suppose by contradiction that there exist a c0 ∈ R

such that this does not hold, then by Theorem 5.12 we have b2 < 2a, where b :=
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B′(c0) and a := A′(c0) > 0. We want to use the second variation formula (5.57) to
obtain simpler conditions, namely inequalities on certain one-dimensional integrals
involving a and b (see equation (5.62)).
Fix therefore a function ζ ∈ C1

c(R
2) and set

ζǫ(c, t) :=
1√
ǫ
ζ
(
c0 + c−c0

ǫ
, t
)
;

by (5.57) we get

0 ≤
∫

R2

(
∂ζǫ
∂t

)2

u dc dt+

∫

R2

ζ2
ǫ v dc dt =: Iǫ + IIǫ (5.58)

Observe that

Iǫ =
1

ǫ

∫

R2

(
∂ζ

∂t

(
c0 + c−c0

ǫ
, t
))2

u(c, t) dc dt

=

∫

R2

(
∂ζ

∂t
(u, t)

)2

u(c0 + ǫ(u− c0), t) du dt

and by Lebesgue convergence theorem one obtains

lim
ǫ→0

Iǫ =

∫

R2

(
∂ζ

∂t
(c, t)

)2

u(c0, t) dc dt. (5.59)

Analogously one gets

lim
ǫ→0

IIǫ =

∫

R2

ζ(c, t)2v(c0, t) dc dt. (5.60)

Combining (5.58), (5.59) and (5.60) we obtain

∫

R2

(
∂ζ

∂t
(c, t)

)2

h(t) dc dt ≥ (2a− b2)
∫

R2

ζ(c, t)2 1

h(t)
dc dt (5.61)

for all ζ ∈ C1
c(R

2), where we have put

h(t) :=
a

2
t2 + bt+ 1.

By standard arguments (taking for example ζ(c, t) of the form ζ1(c)ζ2(t)) we can
infer the one-dimensional inequalities

∫

R

ζ ′ 2h dt ≥ (2a− b2)
∫

R

ζ2 1

h
dt for all ζ ∈ C1

c(R). (5.62)
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Step 3. We will follow here the technique used in [60] to provide a counterexample
to (5.62), which will give a contradiction. For ǫ > 0 fix χǫ ∈ C1

c(R) such that

0 ≤ χǫ ≤ 1

χǫ ≡ 1 on
(
−1
ǫ
, 1
ǫ

)
, spt χǫ ⋐

(
−2
ǫ
, 2
ǫ

)

|χ′
ǫ| ≤ Cǫ, C > 0 independent of ǫ

and set

ζǫ(t) :=
χǫ(t)√
h(t)

.

Equation (5.62) becomes then
∫

R

ζ ′ 2ǫ h dt ≥ (2a− b2)
∫

R

ζ2
ǫ

1

h
dt (5.63)

and observe that

lim
ǫ→0

∫

R

ζ2
ǫ

1

h
dt =

∫

R

dt
(
a
2
t2 + bt+ 1

)2 . (5.64)

As for the left hand side of (5.63), we have

∫

R

ζ ′ 2ǫ h dt =

∫

R

(
χ′
ǫ√
h
− χǫh

′

2h3/2

)2

h dt =

∫

R

χ′ 2
ǫ dt−

∫

R

χǫχ
′
ǫh

′

h
dt+

1

4

∫

R

χ2
ǫ

h′ 2

h2
dt; (5.65)

an integration by parts gives

∫

R

χǫχ
′
ǫ

h′

h
dt = −1

2

∫

R

χ2
ǫ

h′′

h
dt+

1

2

∫

R

χ2
ǫ

h′ 2

h2
dt

whence (5.65) rewrites as

∫

R

ζ ′ 2ǫ h dt =

∫

R

χ′ 2
ǫ dt+

1

2

∫

R

χ2
ǫ

h′′

h
dt− 1

4

∫

R

χ2
ǫ

h′ 2

h2
dt .

Finally, by Lebesgue convergence theorem we infer

lim
ǫ→0

∫

R

ζ ′ 2ǫ h dt =
1

2

∫

R

h′′

h
dt− 1

4

∫

R

h′ 2

h2
dt =

1

4

∫

R

h′′

h
dt (5.66)

where, in the last equality, we integrated by parts again.
From (5.63), (5.64) and (5.66) we obtain therefore

1

4

∫

R

a dt
a
2
t2 + bt+ 1

≥ (2a− b2)
∫

R

dt
(
a
2
t2 + bt+ 1

)2 . (5.67)
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Since for α > 0 we have∫

R

dt

1 + αt2
=

π√
α

and

∫

R

dt

(1 + αt2)2
=

π

2
√
α

and observing that
∫

R

dt(
a
2
t2 + bt+ 1

)m =

(
2a

2a− b2
)m ∫

R

dt

(1 + αt2)m
m = 1, 2

with α := a2

2a−b2
, by (5.67) we obtain

a

4

2a

2a− b2π
√

2a− b2
a

≥ (2a− b2) 4a2

(2a− b2)2

π

2

√
2a− b2
a

which reduces to 1/2 ≥ 2 (recall that a > 0), which gives a contradiction.
Step 4. We have proved that A and B are constant functions, and this in turn

implies that Ω∗ = R2 and φ(η, τ) = Aη + B. This completes the proof of the
Theorem.

5.4.2 The Bernstein problem in Hn for n ≥ 2

Let us exploit equation the minimal surface equation (5.47) and write it as

n∑

j=2

X̃j

(
X̃jφ√

1 + |W φφ|2

)
+W φ

n+1

(
W φ
n+1φ√

1 + |W φφ|2

)
+

n∑

j=2

Ỹj

(
Ỹjφ√

1 + |W φφ|2

)
= 0

(5.68)
where φ : R

2n = Rη × R
2n−2
v × Rτ → R is of class C2. Notice that, if one looks for

solutions φ which do not depend on the τ variable, i.e. such that φ(η, v, τ) = ψ(η, v)
for some ψ : R2n−1 → R, equation (5.68) rewrites as the classic minimal surface
equation (5.1). This observation allows us to easily construct a counterexample to
the Bernstein problem for X1-graphs in Hn when n ≥ 5; in fact in this case we have
2n− 1 ≥ 9 and Theorem 5.1 provides a function ψ : R

2n−1 → R which solves (5.1)
and is not affine, i.e. the related φ(η, v, τ) = ψ(η, v) solves (5.68) and cannot be
written as in (5.48).

We also notice that X1-graphs of such τ -independent functions φ(η, v, τ) =
ψ(η, v) (where again ψ solves (5.1)) are actually minimizers of the H-perimeter;
in fact it is easy to check that the smooth section ν : Hn → HHn defined by

ν(x, y, t) =

(
− 1√

1 + |W φφ|2
,

W φφ√
1 + |W φφ|2

)
(η, v, 0)

=

(
− 1√

1 + |∇ψ|2
,

∇ψ√
1 + |∇ψ|2

)
(η, v),
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where we put η := y1 and v := (x2, . . . , xn, y2, . . . , yn), is a calibration for the graph
of φ according to Theorem 5.3, i.e.

• divX ν = 0;

• |ν(P )| = 1 for all P ∈ Hn;

• ν coincides with the horizontal inward normal to the X1-graph of φ (see Theo-
rem 4.17).

Observe that in this argument it was essential the non-dependance of φ on the
vertical variable τ : as we have seen in Section 5.4.1, in general it is not true that an
entire solution of (5.47) parametrizes a minimizer.

The Bernstein problem for intrinsic graphs in Hn, as far as we know, is still open
for n = 2, 3, 4; observe that any possible negative answer must effectively depend on
the variable τ , or the previous argument leading to the classic Bernstein equation
could apply, contradicting Theorem 5.1.
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[76] B. Franchi & E. Lanconelli, Hölder regularity theorem for a class of non
uniformly elliptic operators with measurable coefficients, Ann. Scuola Norm.
Sup. Pisa 10 (1983), 523–541.

[77] B. Franchi, R. Serapioni & F. Serra Cassano, Meyers-Serrin Type
Theorems and Relaxation of Variational Integrals Depending Vector Fields,
Houston J. of Mathematics 22 (1996), 859–889.

[78] B. Franchi, R. Serapioni & F. Serra Cassano, Sur les ensembles des
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