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Introduction

Recent years have witnessed an increasing interest towards Analysis and Geometry in
Metric Spaces, in the perspective of generalizing to such structures classical methods
and results. Many areas of research have therefore been investigated, such as Sobolev
spaces [93, 94], the theory of quasiconformal maps [98] and typical subjects of Ge-
ometric Measure Theory such as currents [7] and rectifiable sets [8, 4, 5, 150, 104];
see also [90, 91, 92, 162, 11, 97, 13], and the references therein.

Carnot-Carathéodory spaces are a particular class of metric spaces in which these
investigations have been carried out with prosperous results. Historically, the first
items of this type appear in a 1909 work of C. Carathéodory [38], where a thermo-
dynamic process is represented by a curve in R™ and the heat exchanged during it
by the integral of a suitable 1-form # along the same curve. The physicist J. Carnot
proved the existence of states that are not connectable by means of adiabatic pro-
cesses: in other words, by curves along which # vanishes, that nowadays would be
called horizontal. The problem of connecting points by means of horizontal curves,
i.e. curves whose derivative lies in a proper subspace of the whole tangent bundle,
was attacked by P. K. Rashevsky [151] and W. L. Chow [45]. They independently
proved that a sufficient condition for connectivity is the distribution of subspaces Lie
generating the whole tangent space at every point. This condition has subsequently
played a key role in several branches of Mathematics (e.g. Nonholonomic Mechan-
ics, subelliptic PDE’s and Optimal Control Theory), under the different names of
“total nonholonomicity”, “Hormander condition”, “bracket generating condition”
and “Chow condition”. Let us remark that these results fit the ones by Carnot and
Carathéodory showing that 6 is integrable, i.e. § = T dS for suitable functions S, T,
which implies in particular that ker # does not Lie generate the whole tangent space.

A Carnot-Carathéodory (CC) space is an open subset {2 C R™ (or, more generally,
a manifold) endowed with a family X = (X, ..., X,,) of vector fields such that every
two points z,y € 2 can be joined, for some T' > 0, by an absolutely continuous curve
v [0, T] — € such that

$(0) = 3 mOX,(1) and B[ <1 forae t.
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v Introduction

We will call subunit such a curve and, according to the terminology in [90] and [145],
we define the Carnot-Carathéodory distance between x and y to be

de(z,y) =1inf{T > 0: there exists a subunit curve v : [0,7] — R"
such that v(0) = z and v(T') = y}.

As we said earlier, Chow condition ensures connectivity of points by means of subu-
nit curves, whence d. is an actual finite distance. We stress here some peculiarly
non-Riemannian features of d., such as non uniqueness of geodesics (even in small
neighbourhoods), its anisotropic behaviour (there are directions along which d. ~
|- ]9, j > 1 - see the Nagel-Stein-Wainger Ball-Box Theorem [142]) and the fact
that the Hausdorff dimension is strictly bigger than the topological one.

Among CC spaces, a fundamental role is played by Carnot groups. These are
finite dimensional, connected and simply connected Lie groups G whose Lie algebra
g of left invariant vector fields is stratified, i.e. it can be written as

g=01D - Dg

for suitable subspaces g;’s with the property that g;41 = [g1,9;] and [g1,9,] = {0};
the integer ¢ is called the step of G. Such groups can be endowed with a natural CC
structure given by a basis X = (Xj,...,X,,) of the first layer g;. The importance
of Carnot groups (also known as stratified groups) arose evident in [132], where it
is proved that a suitable blow-up limit of a CC space at a generic point is a Carnot
group. In other words, Carnot groups can be seen [21, 128] as the natural “tangent”
spaces to CC spaces (exactly as Euclidean spaces are tangent to manifolds), and
therefore can be considered as local models of general CC spaces. Moreover, they
possess a rich enough structure for analytical and geometric investigations to be
carried on: in particular, we have to mention the presence of a one-parameter family
of group isomorphism, the so called homogeneous dilations é,,r > 0. We recall that,
in Carnot groups, the CC distance d. is left invariant and homogeneous, i.e.

d.(zx,zy) = d.(z,y) and d.(6,z,0,y) =rd.(x,y) for all z,y,2 € G,r > 0.
Anisotropicity is also evident in this setting, as
do(e,exp(sX)) = C(X)|s|'7 if X € g;,

where e is the group identity. It is well known that the Hausdorff dimension of G
is Q = 23:1 j dimg; > n. Beautiful accounts on CC spaces and Carnot groups,
together with exaustive references, can also be found in [135] and [119].

Even before the formal introduction of CC spaces, their structure proved a key
tool in several areas of research, such as hypoelliptic equations [102, 158], dege-
nerate elliptic equations [28, 71, 72, 88, 70, 76, 108] and singular integrals [51]; see
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also [142, 168, 164] and the more recent results [46, 84, 140, 141, 160, 34, 17, 37, 36].
It is worthwile to remind that Hérmander [102] proved the hypoellipticity of the sub-

Laplacian operator
M=o
j=1

in case bracket generating condition holds. We should mention here also Sobolev
spaces theory and its connections with Poincare-type inequalities [103, 74, 32, 85,
111], the theory of quasiconformal mappings [107, 109] and a suitable differential
calculus on CC spaces [59, 133, 125], but this list of subjects is surely incomplete.
Moreover, many questions are still open, even among the fundamental ones: as an
example, let us recall the problem of regularity of CC geodesics [99, 165, 166, 95,
115,22, 2,1, 134, 169, 29, 113]. We want to stress here that recently the importance
of CC spaces has arisen evident as they have been used to formalize mathematical
models of areas of the visual cortex [149, 50] and of ear’s structure [152, 153].

The attempt to develope a Geometric Measure Theory (see [69, 163, 68, 67,
129, 61, 139, 3]) in CC spaces is more recent; the first result in this sense probably
traces back to the proof of the isoperimetric inequality in the Heisenberg group [144].
About isoperimetric inequality we should mention also [32, 75] and [85]. An essential
item of Geometric Measure Theory such as De Giorgi’s notion of perimeter [62, 63,
64] has been extended in a natural way to CC spaces, by means of the so called
X -perimeter (see [32, 23, 26, 77, 35, 54, 121, 123, 57, 101]): the X-perimeter of a
measurable set £ C () is defined as

|OE|x := sup {/ divyp: p € C}:(Q,Rm), lp| < 1} ,
E

where divyy = — Z;nzl X7pj and X7 is the formal adjoint operator to X;. The
X-perimeter measure has good natural properties, such as an integral represen-
tation [137] in case of sets with smooth boundary, or its (@ — 1)-homogeneity
in Carnot groups setting. More generally, it is also possible to give a good defi-
nition of functions of bounded X-variation [26, 32, 73, 77, 10], which fits the one
given for functions in general metric spaces [131]. The theory of minimal sur-
faces [89] has been investigated [85, 56, 147, 41, 87, 42, 148, 43, 30, 31|, and also
differentiability of Lipschitz maps [145, 127, 39, 105, 170, 171, 40], fractal geom-
etry [18, 16, 19|, area and coarea formulae [77, 117, 118] and the isoperimetric
problem [114, 55, 112, 156, 157, 136, 100, 44, 155] provided prosperous research
themes. More recently, Bernstein type problems in the Heisenberg group have been
attacked with different formulations [42, 86, 157, 60, 20, 58, 138]. However, basic
techniques of classical Euclidean Geometry do not admit any counterpart in the CC
settings, like Besicovitch covering theorem [154], while many others, like extension
of Lipschitz maps between groups, are still open or only partially solved [124].



vi Introduction

Another item which has been deeply analyzed is the possibility of giving good
definitions of rectifiability [79, 80, 146, 52| and currents. The classical Federer’s def-
inition of rectifiability [69], given in terms of Lipschitz images of Euclidean spaces,
does not suit the geometry of CC spaces, which in general are purely unrectifi-
able [161]. However, this problem can be amended by considering instead noncritical
levels of functions whose horizontal derivatives are continuous [73, 79, 80, 48]: no-
tice that rectifiable sets in this new sense can be highly irregular from the Euclidean
viewpoint [106]. It is widely recognized that this notion of rectifiability fits quite
well the nature of CC spaces: let us remind for instance that rectifiability properties
of sets of finite X-perimeter have been proved [81, 47, 82, 9]. In general, however, a
good theory of currents in these settings is far from being achieved [83, 159], expe-
cially for high codimension and even for relatively “good” objects such as Euclidean
surfaces. One of the main problems is that the behaviour of a surface seems to
depend on the “position” of the tangent space with respect to the stratification. We
recall in particular the notion of characteristic points, which received great atten-
tion [14, 42, 120, 122, 123] since they can be considered irregular points from the
viewpoint of intrinsic geometry.

We should mention at this point the remarkable paper [79], where the problem of
rectifiability of finite X-perimeter sets is considered in the setting of the Heisenberg
group H" (see [143, 164, 29] and the recent monograph [33]). The latter is the step
2 Carnot group with stratification b; @ ho, where

h1 =span {Xq,..., X, Y1,..., Y, }, o = span {T'}

and the only nonvanishing commutator relations are given by [X;,Y;] = —47. A
set is called H-rectifiable if contained, up to negligible sets, in a countable union of
H-regular surfaces, i.e. level sets of functions f : H" — R such that (Xif,...,Y,f)
is continuous and nonvanishing. In [79] it is proved that the X-perimeter measure
(rather called H-perimeter) of a set of finite H-perimeter is concentrated on a recti-
fiable set (on which also a blow-up result holds), and moreover an implicit function
theorem for H-regular surfaces is given. More precisely, if the H-regular surface S
is the level set of a function f with X;f # 0, then there exists a unique intrinsic
parametrization

p:wCVi—R

such that S = ®(w). Here we have set w to be a (relatively) open subset of the
normal subgroup

Vi = exp (span {Xo,...,Y,,T}) = R*",
and the map @ is linked to ¢ via the formula
O(A) = exp(0(A)X)(4), Acw.
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We will also say that S is the intrinsic graph of ¢. This structure theorem will
provide a crucial starting point for many of our discussions.

The title of the thesis is “Submanifolds in Carnot groups”: we will in turn con-
sider Euclidean or even intrinsic regular submanifolds, and we will carry on their
analysis in the model setting of Carnot groups. In particular, our aim will be
to examine their most basic properties from the viewpoint of Geometric Measure
Theory, considerig for instance blow-up limits, perimeter measures, area formu-
lae, parametrizations, minimal surface equations, etc. The original contributions
of the author are illustrated in Chapters 2, 4 and 5, and are contained in the pa-
pers [12], [20], [126] and [25].

The structure of the book is the following. In Chapter 1 we state the main
features about CC spaces and Carnot groups in particular. In Section 1.1 we recall
the definition of Carnot-Carathéodory distance and the Chow-Rashevsky theorem,
and then we pass to a brief analysis of functions with bounded X-variation and of
sets of finite X-perimeter; conditions for the existence of X-perimeter minimizing
sets are provided. Section 1.2 is entirely concerned with Carnot groups: after a brief
introduction on Lie groups, we pass to the analysis of Carnot groups, with particular
emphasis on their most relevant peculiarities, such as homogeneous dilations, graded
coordinates and the structure of left invariant vector fields. Also, we will recall their
basic metric properties and the classical technique of convolution in homogeneous
groups.

Chapter 2 is devoted to the exposition of the results obtained in [126] in col-
laboration with V. Magnani. In Section 2.1 we state some definitions which will
be crucial in the rest of the Chapter; we recall in particular the one of degree of a
p-vector 7, which correspond to a sort of stratification of A,(g) analogous to the one
of the algebra g. This allows us to define, for any given p-dimensional submanifold
S, its degree d(.S) as the maximum among the degrees of the tangent p-vectors 7¢(x)
at © € S. Similar notions of degree already appeared in [91] 0.6.B (see also [35])
and correspond to a sort of “pointwise” Hausdorft dimension of the surface. In Sec-
tion 2.2 we prove (see Theorem 2.19) that the intrinsic blow-up limit (i.e., according
to homogeneous dilations) of S exists at points x where 7g(x) has maximum degree
d = d(S) and coincides with (a left translation of) a subgroup Ilg(z). The technique
used to obtain this result, which is probably one of the main contributions of [126],
consists in foliating a neighbourhood of a point x with maximum degree by means of
a certain family of curves (-, A), A € SP~1. These curves, up to higher order terms,
turn out to be invariant under dilations, i.e. of the form (¢, \) = x - (0;(y)) for a
suitable y = y(\) € IIg(z): see Lemma 2.15. The regularity we require for S is C!.
As an immediate consequence (see Theorem 2.20 and Corollary 2.21), around a point
with maximum degree the spherical d-dimensional Hausdorff measure S? possesses
a density with respect to a fixed Riemannian surface measure on S. Therefore, the
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8¢ measure of the set of points with maximum degree can be easily computed via
the integral representation of Corollary 2.21. These observations are contained in
Section 2.3, where we introduce the “natural” measure pg associated with S. An
immediate question rising up is then the one of the d-negligibility of points with
non-maximum degree, which we are able to prove, in Theorem 2.22, for any step
2 Carnot group. We also compare these results with other ones already known in
literature. As an application, in Section 2.4 we analyse cases of submanifolds with
topological dimension 2 in the Engel group E*.

Beginning with Chapter 3, for the rest of the book we focus our attention on the
Heisenberg group H"; for computational convenience, rather than the CC metric d,
we will consider the equivalent distance d., defined as

doo (€, exp(tT + 307 ;X + y;Y5)) i= max{| (2, y)[gon, [¢['/?}
do(P,Q) = du(e, P7'Q) P,Q € H",

where e is the identity of the group. In Section 3.1 we recall some basic features of
H™ and of the H-perimeter measure in particular, and in the following Section 3.2
we introduce Cf; functions as those maps f : H" — R such that the distribution
Vuf = (Xif,...,Y,f) is represented by a continuous function. The main result
of this Section is the Whitney-type extension Theorem 3.12 (see [79]), of which we
give a complete proof. In Section 3.3 we define H-regular surfaces as level sets of
C}; functions with nonvanishing horizontal gradient Vg, and we prove the already
mentioned Implicit Function Theorem 3.16 of [79]. The last Section 3.4 contains a
brief summary of the most important issues about rectifiability in the Heisenberg
group. Almost all the material of Chapter 3 is taken from [79].

In Chapter 4 we show the results contained in [12] in collaboration with L.
Ambrosio and F. Serra Cassano. In Section 4.1 we deepen the notion of intrinsic
graph, introducing a suitable homogeneous structure on V;. We utilize such a struc-
ture in the following Section 4.2 to define, for a fixed ¢ : w — R, the concepts
of W-differentiability and uniform W?-differentiability (see Definition 4.9). These
immediately yield the notion of the W?-differential of a function 1 : w — R, which
is a continuous function from w to R?*~! in case of uniformly W?-differentiable
functions. These notions of differentiability could sound quite strange (indeed, they
depend of ¢ itself!), nevertheless they provide the key tool to characterize all the
maps which parametrize H-regular surfaces. In fact, in Section 4.3 we prove that a
graph S := Im ® is an H-regular surface if and only if its parametrization ¢ is uni-
formly W?-differentiable (see Theorem 4.17); about this result we have to mention
also [48]. Therefore the W-differential W?¢ : w — R?"~! is a continuous function
and it is possible to prove (see Proposition 4.3) an area-type formula

(n)S91(S) = / VI WoR L,
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which is formally identical to the classical one for Euclidean graphs. This suggests
the idea, also supported by a suitable formula for the horizontal normal, that the
intrinsic gradient W®¢ is the correct counterpart of the Euclidean one. The impor-
tance of such a gradient will be evident throughout Chapters 4 and 5; see also [24].
Section 4.4 is devoted to the problem of characterizing those maps which are uni-
formly W?-differentiable. The main result of this Section, Theorem 4.22, shows that
they are exactly those functions ¢ such that

(X209, ..., X0, Y19 — 2T(¢%), Y2, . .., Y30

is represented, in distributional sense, by a continuous function on w (which turns out
to coincide with W?¢) provided it is possible to approximate ¢, locally uniformly
together with its W?-differential, by means of smooth functions. An interesting
application is Corollary 4.32, that furnishes an easy recipe to produce surfaces which
are not Euclidean C!, but still H-regular. We want to mention here that a key tool
in the proof of Theorem 4.22 is provided by the exponential maps of W¢ (recall
that in general ¢ lacks of regularity), which can be thought as those curves that are
lifted, via @, to horizontal curves on S. The last Section 4.5 deals with the problem
of finding a biLipschitz metric model space for C}; surfaces in H': in [52] this space
was individuated in (R, |-|) x (R, |- [*/?) for C' regular surfaces. In Theorem 4.35
(see also [25]) we show that this is no longer true for general H-regular surfaces, in
the sense that we find one of them which does not admit biLipschitz mappings with
that space.

Chapter 5 contains the upshots of the paper [20] and is focused on minimal
surfaces in H™ and the Bernstein problem in particular. In Section 5.1 we extend to
CC spaces the classical method of calibrations, giving sufficient conditions for sets
to be X-perimeter minimizing. Applications to meaningful situations are provided,
also giving some flavour about regularity of minimal surfaces. In Section 5.2, star-
ting from the area formula for intrinsic graphs, we derive suitable first and second
variation formulae which will be of great use in what follows. We stress here that
the minimal surface equation is formally analogous to the classical one and reads as

¢.W—%
VT WogP

thus enforcing the idea that W¢ is the proper replacement of Euclidean gradient.
Section 5.3 is therefore devoted to the study of the structure of entire solutions
of this equation in H', where it can be rewritten as the “double Burgers” equa-
tion W¢(W¢9¢) = 0. The main technical tool for this analysis is the study of the
behaviour of ¢ along characteristics, i.e. integral lines of the vector field W¢ :=
Y] — 4¢T. Finally, in the last Section 5.4 we attack the Bernstein problem for in-
trinsic graphs in H": more precisely, we observe that parametrizations of maximal

=0 on w
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subgroups of H" (or laterals of them) are trivial entire solutions of the minimal
surface equation, and we ask whether there are different ones. A family of such
solutions in the first Heisenberg group H! was exhibited in [60], were it was also
proved that these examples are not perimeter minimizing. In our main result, The-
orem 5.23, we use the issues of Section 5.3 to show that any entire solution which
does not parametrize a subgroup (or laterals) is not a minimizer of the H-perimeter,
but just a stationary point of the area functional. Conversely, a calibration argument
immediately ensures that subgroups are actual minimizers. Using the well known
classical results by Bombieri, De Giorgi and Giusti [27], for n > 5 we also provide
solutions to the minimal surface equation in H" that do not parametrize subgroups
(see Subsection 5.4.2); as far as we know, the Bernstein problem for intrinsic graphs
is still open for n = 2, 3, 4.
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Basic notation

compactly contained

simmetric difference of sets

cardinality of a set A

direct sum of vector spaces

composition of functions

n-dimensional Euclidean space

1-th vector of the standard basis of R”
partial derivative of the function f along 0;
partial derivative of f with respect to x
open set in R"

Lebesgue measure in R”

standard Euclidean inner product of z,y € R”
Euclidean norm of x € R

Lebesgue measure of the unit ball in R*
characteristic function of a measurable set £ C R"
average integral

push-forward of the measure p via f
restriction of a measure p to a set A

time derivative of a curve

a Carnot group

n-th Heisenberg group

Lie algebra of G

Lie algebra of H"

space of p-vectors of g

commutator of vector fields X, Y € g
group product between z,y € G

left translation by an element z € G
homogeneous dilations in G

convolution on groups, see Subsection 1.2.7

1



TM, T, M
HM, H, M
Vf

Xf

Vuf

div

diVX
diVH

spt f
CH(©)
CH(Q)
L)
BVx
BVy
|0E| «
0B

dc

|+ loc, dos
B(z,r)
U(z,r)
H?, 84

Hd Sd
Hfl’ §d
Hff, S;f

Basic notation

tangent bundle to a manifold M and tangent space at x
horizontal subbundle to M and horizontal subspace at x
Euclidean gradient of f

gradient of f with respect to the vector fields Xy,..., X,,
Heisenberg gradient of f

divergence

X-divergence

H-divergence

support of f

continuously k-differentiable real functions in €2

functions in C*(Q) with compact support in {2
continuously Vg-differentiable functions in €2

functions with bounded X-variation

functions with bounded H-variation

X-perimeter of £

H-perimeter of F

Carnot-Carathéodory distance

infinity norm and associated distance on H", see (3.1)
open Euclidean ball

open sub-Riemannian ball (with respect to a fixed metric)
Euclidean d-dimensional Hausdorff and spherical Hausdorff
measures

d-dimensional Hausdorff measures induced by d.
d-dimensional Hausdorff measures on H" induced by d,
d-dimensional Hausdorff measures induced by a distance p



Chapter 1

The Sub-Riemannian geometry of
Carnot groups

This Chapter, which will provide the basic material used throughout the book, is
devoted to the study of Carnot-Carathéodory (CC) spaces, and of Carnot groups in
particular. The presentation will be self-contained: for a more detailed one we refer
to [135] (for CC spaces) and to [119] (for Carnot groups), from which we will take
most of the material. We refer to the Introduction for a motivational and historical
summary of the subjects.

In Section 1.1 we provide a brief exposition of general features concerning CC
spaces; we start, in Subsection 1.1.1, by recalling the definitions of subunitary curve
and of CC metric, which is an actual distance provided Chow’s connectivity condi-
tion (1.5) holds. Subsection 1.1.2 deals instead with the notion of X-perimeter: we
introduce it as the total X-variation (Definition 1.4) of the characteristic function of
a set I/, and we define X-Caccioppoli sets as those with finite X-perimeter. For such
sets a representation result for the X-perimeter holds (see Proposition 1.8) which
allows us to introduce the horizontal normal vg; moreover, for sets with smooth
boundary (see Theorem 1.9) this representation turns into an integral one, that
furnishes also an explicit formula for vg. Finally, in Theorem 1.11, stated without
proof, we give general sufficient conditions for the existence of perimeter minimizing
sets.

Section 1.2, treating of Carnot groups, begins with some standard facts about
Lie groups and algebras (Subsection 1.2.1): we underline in particular Theorem 1.15,
which will ensure that Carnot groups G are diffeomorphic to some R", and the Baker-
Campbell-Hausdorff formula (1.19). Carnot groups are introduced, together with
homogeneous dilations d,, in the following Subsection 1.2.2; then (Subsection 1.2.3)
we will focus on properties of canonical representations of G by means of the so-
called graded coordinates, i.e. exponential coordinates arising from an adapted

3



4 Chapter 1. The Sub-Riemannian geometry of Carnot groups

basis. Examples of graded coordinates are provided in Subsection 1.2.4 in the specific
situations of Heisenberg H" and Engel E* groups. In Subsection 1.2.5 we make use of
graded coordinates to study the properties of left invariant vector fields, showing that
their components are homogeneous polynomials: this result, that will be crucial for
several reasonings in Chapter 2, is contained in Proposition 1.24 and is based on the
already mentioned Baker-Campbell-Hausdorff formula. The CC structure on G is
introduced in Subsection 1.2.6: the CC metric turns out to be homogeneous, i.e. left
invariant and dilation scaling (see Definition 1.27). Any two homogeneous distances
are biLipschitz equivalent, hence the homogeneous Hausdorff dimension @ of G (with
respect to any of them) is well defined, and the corresponding X-perimeter (rather
called G-perimeter) is () — 1)-homogeneous with respect to dilations. Finally, in
Subsection 1.2.7 we recall the classical technique of convolution on homogeneous
groups.

1.1 Carnot-Carathéodory spaces

1.1.1 Carnot-Carathéodory distance
Let X = (X1,...,X,,) be a given family of Lipschitz continuous vector fields on R™

X](x):Za”(x)az j:]_,...,m

i=1
with a;; € Lip(R*) (j = 1,...,m, ¢ = 1,...,n). The subspace of R" = T,R"
generated by Xi(x),..., X,,(z) is called horizontal subspace at the point x, and it
will be denoted by H,R"; the collection of all horizontal fibers H,R" forms the

horizontal subbundle HR™ of TR".
We call subunit a Lipschitz continuous curve 7 : [0, 7] — R" such that

$(t) =D hi()X;(y(1) and D BIt) <1 forae. t€[0,T], (1.1)
j=1 j=1
with hq, ..., h,, measurable coefficients.

Definition 1.1. We define the Carnot-Carathéodory (CC) distance between the
points z,y € R™ as

d.(z,y) =inf{T > 0: there exists a subunit path v:[0,7] — R"

such that v(0) = z and v(T') = y}. (1.2)

If the above set is empty we put d.(x,y) = +o0.
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We will use the notation U(x,r) to denote balls with respect to the CC distance.
It is easy to recognize that if d. is finite on R", i.e. d.(z,y) < oo for every z,y €
R™, it turns out to be a metric on R™: the metric space (R",d,) is called Carnot-
Carathéodory (CC) space (see, for instance, [91] and [134]). In particular we shall
generally assume the following connectivity condition

d. is finite and the identity map (R",d.) — (R",|-|) is a homeomorphism. (1.3)

There is a large variety of situations where condition (1.3) is satisfied; among
them the most important are certainly the CC spaces satisfying Chow’s condition,
also called Sub-Riemannian spaces. Recall that, given two vector fields Y;,Y; €
C>(R",R"), we define the commutator [Y7,Y3] as the C* vector field given by
Y1Ys — Y2V (as common in literature, we tacitly identify vector fields and first order
operators); if Y7 = > a;(2)0; and Yo = > | b;(2)0;, in coordinates [Y7,Y3] is
given by

u bz a;
LRECEDY ()50 - b 5@ ) o (1.4

This product is antisymmetric ([Y7, Ys] = —[Y2,Y1]) and satisfies Jacobi’s identity
[Yla D/Qa )/:3]] + [Y27 [)/237 )/1]] + [}/237 D/la )/2]] = 0.

Therefore if the vector fields X1, ..., X,, are of class C*, they generate a Lie algebra
£(X1,...,X,,) (see Definition 1.13).

Definition 1.2. We say that the C*> vector fields X, ..., X,, satisfy Chow’s con-
dition if
rank £(Xy,..., X)) =n (1.5)
for all z € R".
The proof of the following well-known result can be found in [45, 151] and [110].

Theorem 1.3. If the vector fields X, ..., X,, satisfy Chow’s condition, then the
metric d. verifies (1.3). In particular, there is always a subunit path connecting any
two points x,y € R™ and the topology induced by d. is the usual Fuclidean one on

R™.
1.1.2 X-perimeter and X-Caccioppoli sets

Whenever €2 is an open subset of R™ and f : 2 — R is a measurable function we
define its horizontal gradient X f as

Xf=&f . Xnf)
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where the previous equality must be understood in distributional sense. If ¢ =
(15, om) € CL(R™) we put

divy ¢ == —ZX;QOJ'; (1.6)
j=1

here X7 is the adjoint operator of X in L?*(R™) given by

Xiy(x) == — Z Oi(az; ¥)(x).

Observe also that ¢ can be canonically identified with the section of the horizontal
bundle given by Z;n:1 ©;X;; this identification is also one-to-one if X;,..., X, are
linearly independent.

Definition 1.4. Let Q be an open subset of R™; we say that a function f € L'(Q)
belongs to the space BVx(£2) of functions with bounded X -variation if there exists
a m-vector valued Radon measure p = (1, ..., iy,) on € such that

/fdiVXsOI—Z/SOjdﬂj
Q = Ja

for all ¢ € CL(Q,R™).
It is not difficult to see that f € L'(Q) is of bounded X-variation if and only if
its X -variation in €2

X F1(Q) = sup { [ faive s o€ COR el < 1}

is finite; moreover, we have | X f|(2) = |u[(R2), where p is as in Definition 1.4.
Observe that, if f is regular, then pu; = X;f L"

As in the Euclidean case, an important property of BVx functions is the lower
semicontinuity of the X-variation with respect to the L} convergence:

Proposition 1.5. Let f, f, € L'(Q2) be such that fi, — f in L} (); then

loc

XFI() < liminf | X £,](€)
Proof. For any test function ¢ € C°(2, R™) with 0 < |p| < 1 we have
/ fdivyp = lim / frdivxe < liminf | Xuy|(€)

and the thesis follows taking the supremum with respect to . O
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An argument using Friedrichs regularization (see [77]) also gives the following
approximation result:
Theorem 1.6. A function f € L'(Q) belongs to BVx () if and only if there exists
a sequence { fr}n C C®(Q) N BVx(Q) such that f, — f in L'(Q) and
i [X£31(9) = lim [ X 3] = [XFI(9) < o
—00 —oo Jo
Following the classical De Giorgi’s approach to sets of finite perimeter (see [62]
and [63]), we give the following

Definition 1.7. Given a measurable subset £ C R" we define the X -perimeter
measure |OE| x(€2) of E in €2 as the total variation in € of the characteristic function

XE, 1.e.
|OE| x(£2) := sup {/Edivx<p cp € CHQ,R™), |¢| < 1} : (1.7)
We say that F is an X -Caccioppoli set in Q if |OF|x(2) < oo.
Riesz representation Theorem immediately gives the following

Proposition 1.8. If E is an X-Caccioppoli set in ), then there exist a unique
|OE| x -measurable function vg : @ — R™ such that

lvglgm =1 |OE|x-a.e. in Q
/ divxpdL" = —/(cp, ve)rm d|OE|x  for all p € CL(Q,R™).
E Q
In the following we will call vg horizontal inward normal to E (see [77]).

Whenever E is an open subset with (Euclidean) Lipschitz boundary, one can
give an integral representation for the X-perimeter measure:

Theorem 1.9. Let E C R" be a bounded open set with Lipschitz boundary and let
Q C R"™ be an open set. Then

m 1/2
|\aE\|X(Q):/8Em <Z<Xj,n>2> AH" Y (1.8)

J=1

where n is the Euclidean unit inward normal to OE and the scalar products appearing
in (1.8) are the usual Euclidean ones. Moreover, one has the equality of measures

Xxp=vE |0E|x = ((X1,n),...,(X;n,n)) H" 'LOE. (1.9)
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Proof. The proof we are going to present can be found in [135], Theorem 5.1.3.
First of all, we notice that by divergence Theorem

/diVXgp = /Zaz (ZG@'QOj)
E E =1 j=1
- —/ an‘zaz‘j%‘ dH™ ! = —/ (o, V)gm dH™™ " (1.10)
oE oE

j=1
for any ¢ € C1(Q, R™) with || < 1, where we have set
vi=((X1,n),...,(X;,n)) € R™

Thesis (1.9) immediately follows from (1.10).
Since || < 1, it follows that

|0E]x(Q) < / v dH™ (1.11)
OENQ
and so (1.8) will follow in one stroke if we prove also the converse inequality in (1.11).
Observe that the set
H:={x € dENQ: n(zr) exists and v(z) # 0}

is H™ '-measurable and, since OF is Lipschitz, v is H" !-measurable on H. For
fixed € > 0, by Lusin Theorem there exists a compact set K. C H such that
H"Y(H \ K.) < ¢ and v is continuous on K; therefore v/|v| # 0 is continuous on
K. and so there exists ¢ € C%(2, R™) such that

@zﬁon[(e and |o] <1 on €.
v

A classical regularization argument ensures the existence of a function ¢ € CL(Q)
with ¢ <1 and |@ — ¢ < € therefore

”aEHX(Q) Z /EdiVX(—gp) = /8E<90’ I/> danl
N /8E<‘P — ) AR /BE@, v) dH" Y, (1.12)

We estimate the first term on the right hand side of (1.12) as follows

/ (o — Gv) dH™ > —eH™ ' (OE) V) (1.13)
oFE
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while, for the second term, one has

/ (@, V) dH”—lz/ |v| dH”‘l—/ V| dH”—1+/ (g, vy dH" . (1.14)
OF H H\K. H\K.

Since

/ V] dH < HNEH N Kl < € 7o (1.15)
H\K.

and

/ (@) A > —clv] (1.16)
H\K.

and taking into account that |v|. < oo, by putting together (1.12), (1.13), (1.14),

(1.15) and (1.16) one obtains

I0E]x () > / V] dH — (2 + H N OE)) Voo,

OENQ

whence the thesis follows by letting € | 0. O

Definition 1.10. We will say that E is a minimizer for the X-perimeter in 2 if
[0E]x () < [0F]x (&)
for any open set ' € Q) and any measurable set F' C R™ such that EAF € (V.

The existence of perimeter minimizing set with given boundary condition has
been proved in [85]. We give here the general result therein.

Theorem 1.11. Suppose that the CC space (R™,d.) associated with the family X =
(X1,...,Xm) is such that for any set U C R™, with diam U < oo, there exist
constants C1,Cy > 0, 0 < Ry < oo and A > 1 such that for any xo € U and
R €]0, Ry[ one has

(H.1) the Lebesgue measure L™ is doubling with respect to d., i.e. L"(U(xo,2R)) <
C1L"(U(xo, R)), where U(x, 1) denotes balls with respect to d.;

(H.2) for any f € Lip(U(xo, AR)) and any A >0
L ({x € Ulzo, R) : |f(2) - fU(:vo,R) f| > )‘}> < o fU(zO,AR) [ Xl

(H.3) (R",d,.) is complete and is a length space, i.e. d.(z,y) = inf [(7), where the
inf is taken on all continuous curves «y joining x to y, and l(7y) denotes the

length of v (see [13]).
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Then for any open set Q@ C U with diam(Q)) < Ry/2 and any X -Caccioppoli set
L C R"” there exists an X-Caccioppoli set EE C R™ such that EAL C § which is
perimeter minimaizing, i.e.

|0E]x(R") < [0F] x(R")
for any I C R™ such that FAL € Q.

We want to stress here the fact that conditions (H.1), (H.2) and (H.3) are satisfied
in a large class of CC spaces, e.g. whenever the fields X;,..., X,, are smooth and
satisfy Chow condition (1.5): see also [103, 142] and [165].

1.2 Carnot groups

1.2.1 Lie groups and algebras

Before stating the definition of Carnot groups, we want to briefly recall some basic
facts on Lie groups and algebras: a more complete description of these structures
can be found in [167].

Definition 1.12. A Lie group G is a manifold endowed with the structure of dif-
ferential group, i.e. a group where the maps

GxG>3(r,y)—ayeG
Gozrz—azleG

are of class C*.

We write e for the identity of the group, while for any x € G we will denote with
l, the left translation by z, i.e. the C>* map y — xy.

Definition 1.13. A vector space g is a Lie algebra if there is a bilinear and anti-
symmetric map |-, -] : g X g — g which satisfies Jacobi’s identity

[X7 [Ya Z]] + [Y7 [ZaXH + [Z7 [X7 Y]] =0
forall X)Y,Z € g.

Given two subalgebras a, b of a Lie algebra g we will denote with [a, b] the vector
subspace generated by the elements of {{X,Y]: X € a, Y € b}. Weset g* := g and,
by induction, g**! := [g, g*], and will say that g is nilpotent of step ¢ if g* # {0} and
g+t = {0}.

One can check that the space I'(T'M) of vector fields on a differential manifold
M is a Lie algebra if endowed with the product [X, Y] = XY —Y X defined in (1.4).
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Definition 1.14. A vector field X € I'(T'G) on a Lie group G is left invariant if for
any © € G one has
X(x) =dl.(X(e)).

It is not difficult to prove that X is left invariant if and only if

(X ) (ly) = X(f 0 La)(y)

for any f € C>*(G) and z,y € G. We will denote by g the set of left invariant vector
fields of I'(T'G): since a commutator of left invariant fields is left invariant, g is a
Lie algebra. This algebra is canonically isomorphic to the tangent space T.G at the
identity via the isomorphism

T.G 3 v «— X € g such that X (z) = d/,(v).

We will say that a Lie group G is nilpotent of step k if so is its associated Lie algebra
g.

Given z € G and X € g let us consider the curve 72X solution of the Cauchy
problem

0 = o
The curve 72 is defined for any ¢ € R (i.e. left invariant vector fields are complete):
in fact, one has 72 (t +8) = 72 (s) - 72X (t), and this formula allows to extend X to
all times t € R.

In the following we will set exp(X)(z) := vX (1), where 72X is the solution to the
problem (1.17); the exponential map exp : g — G is defined as

{vf () = X(4X (1))

exp(X) := exp(X)(e).

Therefore one has exp(X)(z) = z exp(X) and so exp(X) (exp(Y)) = exp(Y)-exp(X)
for all X, Y € g.
We recall the following basic result:

Theorem 1.15. Let G be a nilpotent, connected and simply connected Lie group;
then exp : g — G s a diffeomorphism.

For X,Y € g let us define C(X,Y) € g via the formula exp(C(X,Y)) =
exp(X) - exp(Y); then it is possible to compute explicitly C(X,Y’) thanks to the
Baker-Campbell-Hausdorff formula: for each multi-index of nonnegative integers
a = (aq,...,q) we define

lal =1 + -+ o
al =ao! o
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and we will say that [ is the length of a.. If § = (84,..., ) is another multi-index
of length [ such that a; + 5, > 1, and if X,Y € g we set

(ad X) (ad V)P .. (ad X)*(ad Y)#71Y if B, > 0

CaplX,Y) = {(adX)al(adY)ﬁl...(adX)az1X it g, = 0. (19

We used the notation (ad X)(Y) := [X,Y], agreeing that (ad X)° is the identity
map. Then the Baker-Campbell-Hausdorff formula states that

C(X,Y) = i (=)™ L ¢ (X,Y) (1.19)
) — l o= (or o) O('ﬁ"@( -+ 6| aB ) .
B=(61,---,01)
a;+B3;>1Vi

whenever the summation at the right hand side makes sense; in particular, (1.19)
holds in nilpotent groups.

1.2.2 Carnot groups

Definition 1.16. We say that a Lie algebra g is stratified if it admits linear subspaces
g1, ..., @, such that

g=01b---Dg (1.20)
g = [g1,0k1] for k=2 ... cand [g1,9.] = {0}.

We will call stratification a decomposition of g as in (1.20).

A group G is called stratified if its Lie algebra admits a stratification; if G is
finite dimensional and stratified, then it is also nilpotent of step ¢, where ¢ is the
same integer appearing in (1.20).

Whenever we are in presence of a stratification, it is possible to define a one-
parameter group {6, } of dilations of the algebra,; for a fixed r > 0 we set 6, X = r*X
if X € gi, and we extend this map to the whole g by linearity. It is immediate to
verify the following properties of dilations:

b 57“5 = 57’ o 55;
e 0. ([X,Y]) =[6:X,0,.Y];
o 5,(C(X,Y)) = C(6,X,5.Y)

for all X|Y € g and all r,s > 0. In the following, it will be sometimes convenient
to agree that 6, X = —4j, X for r <O0.
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Definition 1.17. A Carnot group is a finite dimensional, connected, simply con-
nected and stratified Lie group G. If ¢ is as in Definition 1.16 we will say that G is
a Carnot group of step ¢; observe that such a group is also nilpotent of step ¢.

One of the basic properties of Carnot groups is the fact that, thanks to Theo-
rem 1.15, the exponential map exp : g — G turns out to be a diffeomorphism:
therefore we can define a one-parameter group of automorphism of G, which we still
denote with {4, },~0, via the formula ¢, := exp, o,, i.e.

0r () = exp (8 (exp™ " (2))) -

From the properties of dilations in Lie algebras we immediately deduce the as-
sociated ones for dilations of Carnot groups:

® 0., = 0,00,, indeed
§sexp” ()
0,04 eXp’l(:c))

S, exp ™' (exp s exp ' (x)))
0y expfl(és(x))) = 0,05(7)

drs(r) = exp
= exp

= exp

P e

= exp
o (- -y)=0d.(x)0.(y), indeed
6o(z-y) = expdrexp ! (z-y)
= expo, (C(exp’1 T, exp y))

= exp (C’((L exp ', 6, exp! y))
= €Xp (57’ expil(l’)) - €Xp (57“ eprl(y)) = 57,(1‘) ’ 57‘(y)

1.2.3 Graded coordinates

Very often it is convenient to study Carnot and, more generally, stratified groups in
coordinates, through canonical representations which are called graded coordinates.
Therefore let Xi,..., X, be a basis of Lie algebra g of left invariant vector fields;
for given X,Y € g we will have X = 377 2;X; and Y = 37 | y;X; for unique
x=(x1,...,2,) and y = (y1,...,¥y,) in R™

Definition 1.18. A system of exponential coordinates associated with the basis
Xiq,..., X, of gis the map

F : R" —G

& — exp (Z ijj> . (1.21)
j=1
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The group law we put on R” is the one that makes F' a group isomorphism, i.e.

x-y:z<:>szXj = C(ijXj, Zij]) ) (1.22)
j=1 j=1 j=1

It is easy to check that, in this representation, the group identity is the origin 0 and
that 27! = —z for all z € R™. In this way R", endowed with the group law (1.22),
turns out to be a Lie group, whose Lie algebra is isomorphic to g; since both G
and R" are nilpotent, connected and simply connected, by Theorem 1.15 the map
Fin (1.21) is also a diffeomorphism.

Observe that, up to now, we have not used the fact that G is stratified: therefore
let us consider a Carnot group G with stratified algebra g =g, &--- & g,, and, for
k=1,...,t, set my :=dim @i, ng := mq + --- + my and ng := 0. We will say that
a basis Xi,..., X, of g is adapted to the stratification it X,,, ,41,...,X,, is a basis
of gp foreach k=1,... .

Definition 1.19. A system of exponential coordinates F': R” — G is a system of
graded coordinates if it is associated with and adapted basis of g.

We will call degree of the coordinate x; the unique positive integer d; such that
Na;—1 < J < Ngj.

Therefore let F' : R® — G be a system of graded coordinates: for the sake of
simplicity we will again denote with 4, : R” — R™ the homogeneous dilations read
in coordinates, so that d,o0 F' = F oJ,. It is easy to check that, in this representation
of the group, one has

o, : R"—=R"
2 2 L L
T (TT1, o Ty, T Ty 1y e o s T Ty e ey P Ty 1y ey T T)

for r > 0.

1.2.4 Heisenberg and Engel groups

We give here the representation in graded coordinates of two well-known (and pro-
bably the most important ones) examples of Carnot groups, namely the Heisenberg
and Engel group.

The n-th Heisenberg group H" is the 2n + 1-dimensional Carnot group with
stratified algebra

b = b1 D bha;
here b is 2n-dimensional and generated by the vectors Xy,..., X, Y1, ..., Ys, while
dim by = 1 and by = span {T'}. The only nonvanishing commutation relationships
among the generators are
(X,,Y;| = —4T

7=
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for all j =1,...,n, and so hs = [h1, h1] is the center of the algebra.
Since b is nilpotent of step 2, Baker-Campbell-Hausdorff formula (1.19) reduces

to
1
C(X,Y) = X +Y +5[X,Y]
and so
CX,Y) = (a5 +2)X;+ > (s +y)Ys+ Dt + 1) + 2(hy;) — 2(w))) X;
j=1 j=1 j=1

provided (z,y,t), (2, v/, t') € R" x R" x R are such that

X:iijj—l—iyij—i—tT and Y:ix;ijLiy}Yj—i-t’T.

J=1 J=1 J=1 J=1

Therefore, through graded coordinates associated with the adapted basis X, ...,
X,, Yi,..., Y, T, it is possible to represent H" as R?"*! = R" x R” x R with group

T T e
y |-y |=| vty
t t’ t+t +2(z,y) — 2(x,y")

Observe that the group identity is 0 and that, for » > 0, homogeneous dilations are
given by 6,(x,y,t) = (rz, ry, r’t).

Let us compute the explicit representation of the left invariant vector fields
X;,Y;,T: recall that a left invariant vector field X satisfies X(g) = dl,(X(e))
for any g € G. If 0y,..., 0,41 denotes the standard basis of vectors in R*"*! we
have X;(0) = 0;,Y;(0) = 0;1,, and T'(0) = Oa,11; since

I 0 0
dlzy)(0) = o I 0],
2y 2z 1

where [ is the n x n identity matrix, one can compute that

Xj (33', Y, t) = dg(z,y,t) (a]> = aj + 2,% a2n+1
Yi(@,y,1) = dliayn(04n) = Ojyn — 225 Oan
T(ZL‘, Y, t) = df(z,y,t) (a2n+1) - 8271-1-1-

In what follows, we will always deal with the Heisenberg group H" using this repre-
sentation.

The Engel group E* is the Carnot group associated with the stratified algebra

2221@62@23
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where ¢; = span {X;, Xs}, ¢ = span {X3} and ¢35 = span {X,}. The only nonvani-
shing commutation relationships among the generators are given by

[XlaXQ] = X37 [X17X3] = [X27X3] = X4a

since E* is 3-nilpotent, for all X,Y € ¢ Baker-Campbell-Hausdorff formula becomes

1 1 1
Proceeding as in the Heisenberg group case, we can represent explicitly E* by
means of graded coordinates associated with the adapted basis X7, X5, X3, Xy4; in
this way we have E* = (R%,.) and the group law is given by

. x + o)
/ 2
X X ! 1 / /
; . x? = | w3+ a5+ 5(v175 — 227))
3 3 / 1 / / / /
s ) zy + ) + 3 [(z1ah — z32)) + (woly — z3ah)]+

o5 (z1 — ) + 1 — 2h) (212 — zo2))

Again 0 is the identity element of the group and homogeneous dilations are given
by 6.(z1, 12, 23,74) = (ray,rae, r?x3,7324). Our basis X, Xy, X3, X, is given in
coordinates by

Xi1(21, 02,73, 14) = 01 — G053 — (% + (21 + !E2)) 04
Xo(w1, 29,23, 74) = Oy + 505 — (1—23 — (w1 + 202)) 04
X3(x1, 12,73, 74) = O3 + 5(T1 + 22)04
Xy(xq, 29, T3, 74) = O4.

Another possible representation of E* is given by the adapted basis Y;, Y5, Yy, Y,
and the relations

[YhYZ] = Yéa [}/17)/2’»] = Y;;, [}/'271/3] = 07

which correspond to the change of basis Y1 = (X7 + X3)/2, Yo = (Y] —Y3)/2, Y3 =
—2X3, Yy = —4X,. In the associated graded coordinates the group law reads

Y1 i y1+
- I O I B e Ys )
Y3 Y4 ys +y5 + 5 (Y195 — v211) ’

Y Y Yo+ vh + 5 (s — ysyl) + 15 (v — D) (nivh — yaul)
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group dilations are d,(y1, y2, y3,y4) = (rys, ry2, 7%ys, 73y4) and left invariant vector
fields are generated by the basis

Yi(y1, Y2, Y3, Ys) = Op — %03 — (yg + U 9,
Yo (Y1, Yo, Y3, ya) = Oa + yl@:«; + 7 34
Y3(y1, Y2, Y3, ya) = O3 + 404

Ya(y1, Y2, Y3, ya) = Ou.

1.2.5 Left invariant vector fields

Let G be a Carnot group and F': R — G a system of graded coordinates associated
with the adapted basis X1,..., X,,.

Definition 1.20. A function P : G — R is a polynomial on G if the composition
P o F'is a polynomial function on R".

We observe that the definition of polynomial is well posed: indeed, if G is another
system of graded coordinates, then F~'o G : R® — R" is a linear map (basically, it
is a change of basis of g), and therefore P o F' is a polynomial function if and only
if sois PoG=(PoF)o(F1'o@G).

Let 7/ : R® — R be the canonical projection on the j-th coordinate; for the sake
of simplicity we will denote with 7/ also the map 7/ o F~! : G — R. Finally, for a
given n-multiindex o = (v, . .., ;) of nonnegative integers we set

™ : G—R

T — 1:[(7‘('](1‘)) !

Any such a 7 is a polynomial on G, and it is easy to check that any polynomial on
G can be written as a finite linear combination of the 7*’s. We will call homogeneous
degree of 7 the integer degy () := > 7, dja;.

Definition 1.21. The homogeneous degree of a polynomial P = Y c,m* on G is
the integer

degy (P) := max{degy (7%) : co # 0}.

For example, the polynomial xy? — t? in the Heisenberg group H! has homoge-
neous degree 4.

Proposition 1.22. The homogeneous degree of a polynomial P does not depend on
the choice of graded coordinates.
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Proof. Let F': R} — G and G : R — G be two systems of graded coordinates,
related respectively to the basis Xi,..., X, and Yi,...,Y,, adapted to the strati-
fication g =g, ®--- @ g,. Let A be the n x n matrix associated with the change of
basis X — Y, i.e. such that

y- A,
i=1
Therefore we have
FoGly) = (X0, Ay, 200 ATy)

and, as the two basis are adapted, we have A;'- # 0 only if ng, 1 < i < ng;, whence
A is of the form

A, 0 - 0
: . .0
0 -+ 0 A

where A; denotes an m; X m; matrix, while the 0’s denote null matrices of the proper
size.

To obtain our thesis it will be sufficient to prove that for any o the map 7* o
G : R — R has the same homogeneous degree of the polynomial (7, o F')(x) =
it x%. We have

™o0G = ("0 F)o(F1o@) :H <Z?:1A§yj) |
i=1
Since A is invertible, none of its columns is null and so for any ¢ € {1,...,n} there
is j; such that A5 # 0. As A’ = 0 if d; # d; one has

degy (Z?:l Aé‘yj)ai = diay

where the homogeneous degree is computed according to the coordinates G. Finally
we have

Q

degy(m“o F) = Zldzai = > degy (Z:lAg-yj)
i= = j=

=1

= degy(m®o@G).
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Definition 1.23. A polynomial P : G — R is homogeneous of degree d > 0 if
P, z) =r*P(z) for all x € G and all r > 0.

For example, the polynomial 2%+t on the Heisenberg group H' is homogeneous
of degree 4. It is not difficult to check that a polynomial P is homogeneous of degree
d if and only if it is a linear combination of polynomials 7 with deg, 7* = d.

In graded coordinates, the left translation £, by an element x € G can be written
as

lo(y) = F 1 (F(x) - F(y)) = (Pi(z,y),. .., Pu(z,y)) (1.24)

where the maps P;(z,y) are polynomials which can be derived from the Baker-
Campbell-Hausdorff formula. It is not difficult to prove that they are homogeneous
polynomials of degree d;, in fact

r% Pj(z,y) = 7 06, (Pi(2,y),..., Pz, y)) =7/ 06, (F'(Fa - Fy))
=7 0o F7' (6,(Fx) - 6,(Fy)) =7/ o F7' (F(5,2) - F(6,y)) = P;(0,2,6,y)

where we have set 7/ to be the map z +— ;.
Our next step will be to derive properties of the representation in graded coor-
dinates of the adapted basis X, ..., X,,; we collect them in the following

Proposition 1.24. Let G be a Carnot group identified with R™ through graded coor-
dinates associated with an adapted basis Xy, ..., X,; let {0;}iz1, n be the standard
basis of vectors of R" and set X;(x) := Y., a;;(x)0;. Then

OP;(x
(1) aij(z) = # is a homogeneous polynomial of degree d; — d;;
J =0
(it) X;(z 8—|—Zaw )0 = 0; + Z ai;(2)0;;
i:d;>d; 1= =nd, +1

(11i) a;j(x) depends only on the coordinates x, with d, < d;.
In particular, a;j(x) = a;j(x, ..., x;1).

Proof. As usual, we identify vector fields and first order operators; by left invariance
and the fact that

2 flexp tX;)

X;f(0) = o

= 0,1(0)

t=0

for any smooth f, one has

X, f(x) = 05( Zw
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where ¢! denotes the i-th component of ¢,. From (1.24) we deduce
aij(v) = 0;(;,(0) = 9y, Pi(w, -)(0).
By the homogeneity of P, one gets

Tdiaij(x) - Tdiayjpi(x7 y)}y:() = ayj-P’i((sTxy 57‘y)’ = deayj-Pi(x’ y)’y:() = deaij((ST"L‘)

y=0
and so the a;;’s are homogeneous polynomials of degree d; — d;. This implies that
a;; = 0if d; > d;; moreover, since a 0-homogeneous polynomial is constant, we have

Xj(x) =Y e+ Y ay(x)d;
di=d;

’i:di>dj

for suitable constants ¢;;: since X;(0)0; one must have ¢;; = d;; and so

Xi(x)=0; + i a;;()0;. (1.25)

i:ndj +1

Since each a;; is homogeneous of degree d; — d;, the coordinates x, with d, >
d; —d; cannot appear in the polynomial structure of a;;; therefore a;; cannot depend
on the coordinates x, with d, > d;, i.e.

aij(x) = ai;(xy, ... Tny,_y)-

In particular, one has a;;(z) = a;; (21, ..., z-1). O

1.2.6 Carnot-Carathéodory and homogeneous metrics

Let G be a Carnot group, which we consider represented by (R",-) through a system
of graded coordinates associated with a basis adapted to the stratification g =
91D Dgr. Let m:=my =dimg; and let X = (X4,...,X,,) be a basis of g;: the
stratification assumption ensures that g, Lie generates the whole algebra, whence
the family X satisfies Chow’s condition (1.5) inducing a CC metric d. on R™. As we
did for general CC spaces, we will also use the notations HG and H,G to denote g;
and g;(z) respectively.

The presence of a stratification induces many “good” properties of d., with re-
spect to both left translations and omogeneous dilations, which are collected in the
following Proposition 1.25. According to the subsequent Definition 1.27, we will say
that d. is a homogeneous distance.

Proposition 1.25. For any z,y,z € R" and any r > 0 we have
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(i) de(z -z, 2 - y) = de(2,y);

(i) de(0,x,6,y) = rd.(z,y).

Proof. Part (i) of the thesis follows from the fact that v : [0,7] — R" is a subunit
path from x to y if and only if 4 := £, o v is a subunit path from zz to zy. In fact,

if 4(1) = Y by X (4(1)) then
M) = de(v )W)

= dt.(v(1)) [Z hj(t)Xj(v(t))]

hi (80 (7(8) X5 (v (1) = D by (6)X5(2 - 7(1))

1 j=1

hy () X;(3(1)),

[
NE

<.
Il

[
NE

1

<.
Il

where d/, denotes the differential of the left translation by z.

As for (ii), it will be sufficient to prove that a path v : [0,7] — R” from x to y is
subunit if and only if so is the curve ~, : [0,7T] — R", joining d,x and J,y, defined
by 7,(t) := 0,(v(t/r)). One has

() =Y hi()X;(v Z (Z hj(t)ai; (v ) 0.

j=1 =1

Since d; = 1 for all j = 1,...,m, by Proposition 1.24 all the a;;’s appearing in the
sum are (d; — 1)-homogeneous and so

Yp(t) = Z (Zh (t/r)ay(y t/r)))

1=1
= 2 (Z hj(t/T)azj(%(t))> )
=1 j=1
- Zhj t/r X (’Vr(t))~ (1.26)
Part (ii) follows in one stroke. -

Corollary 1.26. Let Y € g;, then the CC distance behaves like | -|*/7 along Y ; more
precisely,

do(z,exp(sY)(x)) = C(Y)|s|* for any x € G,s € R.
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Definition 1.27. We say that a metric p on a Carnot group G is an homogeneous
distance if

(1) p(z,y) = p(z-z,z-y) and
(i) p(d,z,6,y) =rp(z,y)
for all z,y,2 € G and all p > 0.

Notice that the thesis of Corollary 1.26 holds for general homogeneous distances,
and not only for the CC one.

Apart from d., another important example of homogeneous distance is given by
the distance d., defined as

deo(z,y) == ”y_lx”oo )

where the infinity norm |z|« of a point x = (p1,...,p,) € R* =R™ x ... x R™
(we use graded coordinates) is given by

|7] o0 := max{ Gk‘pk‘%/nlfk ck=1,...,t}.

Here ¢; = 1 and the ¢;’s are suitable positive constants which depends on the group
structure and are chosen in order to make dy, a distance: see also [81], Theorem 5.1.
In particular, in the Heisenberg group H"™ we will often use the distance d, arising
from the norm

[(2, 5, t)loo == max{|(z, y)|zen, [¢]"/2},

where we used the coordinates of Section 1.2.4.

It is not difficult to check that any two homogeneous distances are biLipschitz
equivalent; the integer @) := Z?Zl jdimg; is called homogeneous dimension of G,
and it coincides with the Hausdorff dimension of the group with respect to any ho-
mogeneous metric p. We will denote with Hﬁ and Sg, respectively, the d-dimensional
Hausdorff and spherical Hausdorff measures associated with p (see [69]). It is
straightforward to check that

Hi(z-E)=HIE) and HI(0,E) = r"HI(E)

for any measurable £ C G and any = € G, r > 0; moreover, the same formulae hold
for Sg. If we represent G as R" via graded coordinates, then the Lebesgue measure
L™ is the Haar measure of G and is both left- and right-invariant:

LYz -FE)=L"(E-z)=L"(FE),

whence

L(U(x,r)) =r°L"(U(x,1)) = L*(U(0,1)),
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where U(xz,r) denotes the ball with respect to a fixed homogeneous metric. If not
specified, integration on G or on open subsets of G will be always understood with
respect to this measure.

The X-perimeter measure of a measurable set £ C G, defined as in Section 1.1.2
according to the family X, will be referred to as the G-perimeter measure |OE|¢g of
E; from its definition it is easy to prove that

[0(z - E)lc(x - Q) = [0E]c(?) and  [0(5,E)|s(6:2) = r" [0E]c(%)

for any x € G, for any open set 2 C G and any r > 0.

1.2.7 Convolution on groups

We want to briefly recall the classical technique of intrinsic convolution in homo-
geneous groups (see [73]). Let G be a Carnot group and let ( € CX(G) be such
that

/GQ =1, (@) =((x) and spt¢cCU(0,1), (1.27)

where U(x,r) denote balls of G with respect to a fixed homogeneous metric. Let us
denote

(@) =9 (bye(x)), z€G; (1.28)

(G D)= [ Gl Sl 22 ) = [ Glae ™) Fde ). (129
Then the following results hold
Proposition 1.28. We have

(i) if f € LP(G), 1 < p<oo, then( xf € C®G) and (. x f — f in L’(G) as

e —0;
(i) spt Cex f C U(0,€) - sptf;
(iii) X(Cox f) = Cox (X [) for any f € CHG) and each X € g;
(iv) Jo(Cex f)g= [g(C*g)f for every f € LYG), g € L=(G);

(v) if f € C%Q) for a suitable open set @ C G then (. x f — [ uniformly on
compact subsets of () as e — 0.
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The statements of Proposition 1.28 can be easily proved with standard argu-
ments. For the sake of completeness we show point (iii), where the key tool is the
left invariance of X, in fact

x@n@ = X ([ s o)

lz=2

- /G X (Cly) fly™" - 2)) dL™(y)

= [ e n Hae)
Cex (X [)(2).
However, it is possible to improve this result:

Proposition 1.29. Let f : G — R a continuous function and X € g be such that
the distributional derivative X f is represented by a continuous function on G; then
one has

X(Ce*f):Ce*(Xf)'

Proof. Since (. f is of class C*, it will be sufficient to prove that for any g € C*(G)
one has

(X(Cex [),9) = (Cex (X]), 9),

where for u,v : G — R we use the common notation

(1, v) = /@, w.

Using Proposition 1.28 (i), (iv) and thanks to the following Lemma 1.30 one
has

(X(Cex [),9) = —(Cx [, Xg) = —(f,{c*x Xg)
= —(f, X(Cc*g)) = (Xf,(c*xg) = (C* (X [),9). (1.30)

O

Lemma 1.30. Any left invariant vector field X € g is self-adjoint, i.e.

/’UXUI—/UXU
G G

for any u,v € CX(G).
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Proof. By the invariance of the Lebesgue measure, the integral
/u(:ca)’u(xa) dL"(x)
G

does not depend on a € G. Taking a = exp(tX) and differentiating at ¢ = 0 one
gets

/(vXu—l—uXv):O.
G
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Chapter 2

Measure of submanifolds in
Carnot groups

In this Chapter we will focus our attention on how a submanifold of a Carnot
group G inherits its sub-Riemannian geometry from a stratified group equipped
with its Carnot-Carathéodory distance. Our aim is finding the sub-Riemannian
measure “naturally” associated with a submanifold. For hypersurfaces, this measure
is exactly the G-perimeter, which is widely acknowledged as the appropriate measure
in connection with intrinsic regular hypersurfaces, trace theorems, isoperimetric
inequalities, the Dirichlet problem for sub-Laplacians, minimal surfaces, and more.
Here we address the reader to some relevant papers [32, 35, 47, 54, 57, 75, 85, 83,
123, 137] and the references therein.

Our question is: what is the natural replacement of the G-perimeter for sub-
manifolds of higher codimension? Clearly, once the Hausdorff dimension of the
submanifold is known, the natural candidate should be the corresponding Hausdorff
measure: more precisely, the spherical one, see also [79, 81, 120]. However, this mea-
sure is not manageable, since it is not clear whether it is lower semicontinuous with
respect to the Hausdorff convergence of sets and so it cannot be used in minimization
problems. In general, lower semicontinuity of Hausdorff measures in metric spaces is
a delicate problem, see [7]. It is then convenient to find an equivalent measure, that
can be represented as the supremum among a suitable family of linear functionals,
in analogy with the classical theory of currents.

Our strategy will be to exhibit a natural number d, which will coincide with
the Hausdorff dimension of the submanifold, and a measure g that is “naturally”
associated to it, in the sense that it will coincide with the d-dimensional spherical
Hausdorff measure of the surface. Moreover, this number d is the same conjectured
by Gromov [91]: see also Remark 2.3. The measure ug possesses a density with
respect to any Riemannian surface measure on S, providing an integral representa-

27
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tion of pg. We stress however that our result is not complete, since we are able to
characterize only a “big” portion of S and not the whole of it (see Section 2.3 for
more details). All the results contained in this Chapter have been obtained in [126]
in collaboration with V.Magnani.

We then start, in Section 2.1, by illustrating some preliminary material. More
precisely, in Subsection 2.1.1 we give a stratification of the space A,g of p-vectors,
which allows us to define, for any given p-vector 7 and any integer r, the projection
of 7 with degree r (see Definition 2.1); the degree of 7 will then be the maximum
r such that the r-projection of 7 is not zero. For any fixed p-dimensional C!!
submanifold S we set its degree d = d(S) to be the maximum among the degrees
Dg(x) of the tangent p-vectors 7g(x) for x € S: this number will be exactly the one
we were looking for. Subsection 2.1.2 contains a purely algebraic result, Lemma 2.5,
that will be crucial in Lemma 2.14.

The main result of Section 2.2 is Theorem 2.19, where we prove that the intrinsic
blow-up of S, i.e. the limit (with respect to the Hausdorff convergence of sets) as
r— 0of d1(z7"-5), does exist at points x with maximum degree, i.e. those points
where the degree of 7¢(x) is equal to d. Moreover, this limit is a subgroup Ilg(x)
which is associated with the p-vector given by the d-projection of 7g(x): indeed,
the latter turns out to be simple, and Lemma 2.14 ensures that it is a subgroup.
The proof of the blow-up results is quite technical: first of all, thanks to Lemma 2.6
we are able to conveniently fix a basis of 7S and one of g, and we utilize the
latter to make all computations in the associated graded coordinates. After that, in
Lemma 2.15 we make use of our basis of 7,,S to foliate the submanifold with curves
that are “almost homogeneous”, thus obtaining our blow-up result. More precisely,
we are able to recover a neighbourhood of S as the image of a map 7 : [0,tg] x L — S
with the property that

At N) =2 8,y + O(1)

where y = y(\) € Ig(z). Here L is a compact subset of RP~!  diffeomorphic to
SP~1 which will be specified during the proof; we stress however that it is just a
family of parameters, whose structure we will not care about.

Thanks to Theorem 2.19, in Section 2.3 we finally obtain our desired “natural”
measure: first of all, in Theorem 2.20 we compute the limit

lim oz(SNU(z,1))

r—0 rd

=:q(z),

where « is a point with maximum degree and o; is the p-dimensional surface measure
arising from a Riemannian metric § on G. A standard result about differentiation
of measure will then provide the required measure

s ‘= q0'g|_Sd = SgLSd,
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where S, is the (open) set of points of S with maximum degree; let us stress that
the density ¢ depends uniquely on the fixed homogeneous distance p and on the
d-projection of 7g(z). We conjecture however that S¢(S\ Sz) = 0 and so that
ps = SIL.S: we are able to prove this result for the step 2 case (Theorem 2.22),
while it is an open problem for the general case. Before Theorem 2.22, we also
compare our results with the existing literature.

Finally, in Section 2.4, as an application we study the case of 2-dimensional
submanifolds of the Engel group E*, providing examples of surfaces of degree 3,4,5
and the nonexistence of submanifolds with other degrees.

2.1 Preliminaries

2.1.1 Some linear algebra

Let G be a fixed Carnot group with topological dimension n, whose Lie algebra
admits the stratification

g=01D - Dg; (2.1)
as in Chapter 1, we will denote homogeneous dilations by ¢, and with p a fixed
homogeneous distance, while open balls of radius » > 0 and centered at x with
respect to p will be denoted by U(x,r). By Hg and Sg we will mean, respectively,
the d-dimensional Hausdorff and spherical Hausdorff measures associated with p.

In the sequel, whenever X1,..., X, is an adapted basis of g, we will frequently
alternate the two notations
(X1,.... Xn) = (X],... X,

mi1)

X2 ..., X2

mo? *°

L L.
..,Xl,...,me),

observe that X}, ... ,ank is a basis of the layer g; for every k =1,...,:t. We recall
also that by d; we denote the degree of X;, i.e. the unique integer k such that
<X% € gk
Let
)(JIZZ)gh A "'A<X%p
be a simple p-vector of A,g, where J = (j1,J2,...,Jp) and 1 < j; < jo < -+ < jp <
n. The degree of X is the integer d; defined by the sum d;, +--- +d;,.

Definition 2.1. Let 7 € A,(g) be a simple p-vector and let 1 < r < @ be a natural
number. Let 7 =, 7; X be represented with respect to the fixed adapted basis
(X1,...,X,). The projection of 7 with degree r is defined as

"= Z T X (2.2)

dj=r
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The degree of 7 is defined as the integer
d(t) =max{r e N: 7" # 0} .

Notice that the degree of a p-vector is independent from the adapted basis we
have chosen.

In the sequel, we will fix a graded metric g on G, namely, a left invariant Rieman-
nian metric on G such that the subspaces g; are orthogonal. It is easy to observe
that all left invariant Riemannian metrics such that (X7, ..., X,,) is an orthonormal
basis are graded metrics and the family of X ;’s forms an orthonormal basis of A,(g)
with respect to the induced metric. The norm induced by g on A,(g) will be simply
denoted by |- |;. When an adapted basis (X,...,X,) is also orthonormal with
respect to the fixed graded metric ¢ is called graded basis.

The next definition introduces the metric factor associated with a simple p-
vector. Notice that this definition generalizes the notion of metric factor first intro-
duced in [120].

Definition 2.2. Let g be a Carnot algebra equipped with a graded metric g and
a homogeneous distance p. Let 7 be a simple p-vector of A,(g). We define £(7) as
the unique subspace associated with 7. The metric factor of T with respect to g is

defined by

0(r) =H? (F~"(exp (L(7)) N L)), (2.3)
where F' : R" — G is a system of graded coordinates with respect to an adapted
orthonormal basis (X1, ..., X,). The p-dimensional Hausdorff measure with respect

to the Euclidean norm of R™ has been denoted by H?” and U; is the open unit ball
(with respect to the fixed homogeneous distance p) centered at e.

In the sequel, also an arbitrary auxiliary Riemannian metric g will be given. We
define 7g(z) as the unit tangent p-vector to a C! submanifold S at x € S with
respect to the metric g, i.e. |7s(z)|; = 1; here p is the topological dimension of S.
The degree of z is defined as

ds(z) = d(7s(x)) (2.4)
and the degree of S is d(S) = max,csdg(x). We will say that x € S has mazimum
degree if dg(z) = d(S).

It is not difficult to check that these definitions are independent from the fixed
adapted basis X, ..., X,,: they depend just on the tangent subbundle TS and the
grading of g, namely only on the “geometric” position of the points with respect
to the grading (2.1). According to (2.2), we define 72(z) as the part of 7¢(x) with
maximum degree d = d(S), namely,

d

Tg(x) = (Ts(ZL‘)) ) (2.5)
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Remark 2.3. As an interesting point to be investigated, we emphasize the cor-
respondence between dg(x), d(S) and the numbers D’(z), Dg(S) introduced by
Gromov in 0.6.B of [91], where he also indicates how, for a smooth manifold, Dy (S)
must correspond to the Hausdorff dimension of S.

Definition 2.4. Let z € S be a point of maximum degree. Then we define
Mg(z) :={y € G : y = exp(v) with v € g and v A 7%(x) = 0} .
We will see in Lemma 2.14 that IIg(z) is a subgroup of G. Notice that, with the
notation of Definition 2.2, we have Ilg(x) = exp(L(74(x))) and
0(r5(x)) = H'(Is(x) N Th),

where we have understood the identification of G with R™ via the graded coordinates
of Definition 2.2.

2.1.2 An algebraic Lemma

Let Xi,...,X, be an adapted basis of g; in what follows we will represent G by
means of the associated system of graded coordinates F' : R® — G, according to
which homogeneous dilations can be read as

6 (2) = (ray, ..., %y, r'wy,) for every r > 0.

For XY € g, the vector C(X,Y) € g will be defined as in the Baker-Campbell-
Hausdorff formula (1.19). As in (1.24), we define the families of homogeneous poly-
nomials P = (Py,..., P,) and Q = (@1, ..., Q,) via the formula

- y=Plxy)=z+y+Qy). (2.6)
Remember that, by Proposition 1.24, one has
Pl(ér(x)a 5T(y>> = 'rdi Pl(xa y) and Ql((sT(x)a 5T(y>> = 'rdi Ql(xa y) . (27)
and
i=1 i=1 0y, di>d; dy;

where each a;; is a homogeneous polynomial of degree d; —d;. From the homogeneity
property (2.7) one gets

SR 29)
Qi(r,y) = Qi (Zdjq Tj €5, 0, Ui ej) if d; > 1, '
where (e, ..., e,) denotes the canonical basis of R".

We now present a result which will be crucial for the proof of Lemma 2.15.
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Lemma 2.5. Let J C {1,2,...,n} be such that F = span{X, : j € J} is a
subalgebra of g, where (X1,...,X,,) is an adapted basis of g. Then, for every index
i ¢ J, the polynomial Q;(x,y) lies in the ideal generated by {x;,y; : I ¢ J}; namely,
we have

Qiw,y) = > (wRalz,y) +ySa(z,y)), (2.10)

l§ZJ, d;<d;

where R, Sy are homogeneous polynomials of degree d; — d;.

Proof. Let us fix z,y € R™ and consider

X = ZZL‘ij, Y = Zij]
j=1 j=1

By definition of C(X,Y) and Baker-Campbell-Hausdorff formula (1.19), for any
X,Y € g we have

C(X7 Y) = ZPJ(xay> XJ"

Therefore, defining m; : g — R as the function which associates to every vector its
X;’s coefficient, we clearly have P;(z,y) = m;(C(X,Y)). Thus, formulae (1.19) and
(2.6) yield

() !
Qi(z,y) = Z ] Z mﬂi(c«lﬁ(}(a Y)) =i — i
)

=1 a=(a1,...,0q

a;+p;>1Vi

Observe that C,p(X,Y), which is defined in (1.18), is a commutator of X and Y,
whose length is equal to |a + (]; as the sum of commutator with length 1 gives
X +Y we get

ED S DS >mm<xay»-

B=(61,---,01)
a;+B3;>1Vi
la+-6]>2

When the commutator C,g(X,Y) has length h > 2, we can decompose it into the
sum of commutators of the vector fields {z;X;,y,X; : 1 <1 < n}. Let us focus our
attention on an individual addend of this sum and consider its projection ;. Clearly,
this addend is a commutator of length h. If this term is a commutator containing an
element of the family {x; X;,y,X; : I ¢ J}, then its projection m; will be a multiple
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of x; or y; for some [ ¢ J, i.e. the projection m; of this term is a polynomial of the
ideal

{xlayl ol ¢ J}
On the other hand, if in the fixed commutator only elements of {z; X}, y,X; : [ € J}
appear, then it belongs to F. In view of our hypothesis, we have FNspan{X;} = {0},

hence its projection through m; vanishes. This fact along with (2.9) proves that
Qi(z,y) has the form (2.10). O

2.2 Blow-up at points of maximum degree

Lemma 2.6. Let S be a p-dimensional submanifold of class C' and let x € S be a
point of maximum degree. Then we can find

e a graded basis Xy,..., X, of g;

e a neighbourhood U of x;

o a basis v1(y),...,v,(y) of T,S for ally € U
such that writing v;(y) = > » Cij(y) X;(y), we have

Id,, 0 0
Ol(y) * *
0 | Ida, 0
C(y) ::((JZ--(y));le ,,,,, "= 0 | Os(y) * (2.11)
0 0 |- | Idg,
|0 0 |- |Oly)

where oy, are integers satisfying 0 < agy < my and oy +- - -+, = p. The (my —ay,) X
ag-matriz valued continuous functions Oy vanish at x and * denotes a continuous
bounded matriz valued function.

Proof. Observing that since the degree of a point in .S is invariant under left transla-
tions, it is not restrictive to assume that x coincides with the unit element e of G.

Step 1. Here we wish to find the graded basis (Xi,...,X,) of g and the basis
v, ..., of TS required in the statement of the lemma and that satisfy (2.11)
when y = e. Let us fix a basis (t1,...,t,) of 7.5 and use the same notation to
denote the corresponding basis of left invariant vector fields of g. We denote by 7y
the canonical projection of g onto Vi. Let 0 < a, < m, be the dimension of the
subspace spanned by

m(t1), ..., m(tp).
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Taking linear combinations of the ¢;’s, we can suppose that the first «, projected
vectors {m,(t;) : 1 < j < o} form an orthonormal set of V, with respect to the fixed
graded metric g. Then we set

Xj=m(t;) €V, and vj:=t; €T.S,
whenever 1 < j < «,. Adding proper linear combinations of these ¢; to the re-
maining vectors of the basis, we can assume that {t;»_1 = tita, J1<j<p—a, are linearly
independent and that
m(tg’l) =0 whenever j=1,...,p—a,.
Now consider the p — «a, vectors

Wb_l(tbl_l), ey WL_l(t;__laL)

and let 0 < o, 1 < m,_; be the rank of the subspace of V,_; generated by these
vectors. Taking linear combinations of t;fl, we can suppose that Wb_l(t;fl) with

7=1,...,a,.1 form an orthonormal set of V,_; and that defining
t;.’Q = téjrlaH for1<j<p—a,—a,_;
we have
Wb_l(t;_Q) =0 whenever j=1,...,p—a, —a,_1.

Then we set
Xt=gn Y eV, d vwl=¢t1elS
JEmady) eV and of =t € TS

for every j = 1,...,a,_1. Repeating this argument in analogous way, we obtain
integers oy with 0 < ap < my, for every k= 1,...,¢ and vectors

XfEVk, 'U;‘?ETGS, where k=1,...,c and j=1,..., .
Notice that a; + - - -+ o, = p and that

(v1, ... 0L vt k) (2.12)

s Yoo » Yay,

is a basis of T.S. We complete the X]’-‘“s to a graded basis

(X1, X}

mi?

X2 X X LX)

mo? m,
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of g, that will be also denoted by (X7, ..., X,). It is convenient to relabel the basis
(2.12) as (vy,...,vp), hence we write v; = > | C;;X; obtaining

[ Id,, * ]
0 * *
0 | Idq, *
C = (Cy) 0 | 0 *
0 |- |TIda
I 0 [« 0 |

[ Id,, | 0 0
0 * *
0 |Id,, 0
c=1_010 * (2.13)
0 |- | Id,,
— O o 0 -
Step 2. The basis (vy,...,v,) of TS can be extended to a frame of continuous

vector fields (vi(y),...,v,(y)) on S defined in neighborhood U of e. Thanks to the
previous step, defining v;(y) = >+, Ci;(y)Xi(y) we have

[ Id,, +0(1) o(1) o(1) ]
o(1) * *
o(1) Id,, +o(1)|--- o(1)
Cly) = (Cyly)) = | W) o) |- *
o(1) o(1) Id,, +o(1)
| o(D) o(1) o(1)

where o(1) denotes a matrix-valued continuous function vanishing at e. Observing
that Id,, + o(1) are still invertible for every y in a smaller neighbourhood U’ C U
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of e, we can replace the v;’s with linear combinations to get

[ Id,, + o(1) 0 0
o(1) * *
0 Tdo, + o(1) 0
Cly) = o(1) o(1) *
0 0 | Tda, + o(1)
i o(1) o(1) o(1)

The same argument leads us to define a new frame with matrix

Idy, | 0 || 0
Owy) | * |---]
0 |Idw, |--] O
Cly)=|_od) [Oax(y)|--- * , (2.14)
0 0 |- | Idy,
| o(1) | o(1) |--- [Ouy) |

where O; have the same properties as in the statement of the present lemma. To
finish the proof, it remains to show that all o(1)’s of (2.14) are actually null matrix
functions. Here we use the fact that the submanifold has maximum degree at e.
Notice that the simple p-vector

vi(y) A Auply) =D as(y)Xs(y)

is proportional to the unit (according to the Riemannian metric §) tangent vector
7s(y). In addition, if J = (ji1,...,J,), then a;(y) is the determinant of the p x p
submatrix obtained taking the j;-th, jo-th, ..., j,_;-th and j,-th row of C(y). From
(2.13) we immediately conclude that dg(e) = a; +2as+ - - -+ tv,. Finally, whenever
one entry of some o(1) does not vanish, it is possible to find some J; such that
dj, > o1 + 209 + -+ + 1y, and ay(y) # 0. This would imply ds(y) > ds(e),
contradicting the assumption that dg(e) = maxyepr ds(y). O

Remark 2.7. It is easy to interpret the statement and the proof of Lemma 2.6 in
the case some «y vanishes. Clearly, the oy columns in (2.11) intersecting I,, and
the corresponding vectors 'Uf disappear.

Remark 2.8. When S is of class C" the v;’s of the previous lemma are of class
C"!: in fact, the linear transformations performed in the proof of Lemma 2.6 are
of class C"1.
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The previous Lemma 2.6 allows us to state the following definitions.

Definition 2.9. Let S be a C! smooth submanifold and let z € S be a point of
maximum degree. Then we can define the degree o : {1,...,p} — N induced by S

at x as
k—1 k
oj=Fk if Z(xs<j§2as,
s=1 s=1

where the «}’s are defined in Lemma 2.6.

Definition 2.10. Let S be a C! smooth submanifold and let = € S be a point of
maximum degree. Then we will denote by

(X{,..., X}

mi?°

X XA and (v, vl vk uh)

m, ? Yan? ? Yoy

the frames on G and on a neighbourhood U of z in S, respectively, which satisfy the
conditions of Lemma 2.6. We will also denote these frames by

(X1, ..., Xp) and (v1, ..., 1) .

Corollary 2.11. Let S be a C' smooth submanifold with x € S satisfying ds(z) =
d(S). Then td(x) is a simple p-vector which is proportional to

XIA - AXL A AXTAANXL
and we also have

Ig(z) = exp(span{X],..., X, ,..., X{,..., X, })

a1’
Proof. By expression (2.11), 7g is clearly proportional to
X{AANX A AXTA--ANXL + R (2.15)

where R is a linear combination of simple p-vectors with degree less than d(X]A---A
Xt). Thend=d(X{ A---ANXL) =+ 202+ -+, and 74(z) is proportional
to X} A--- ANXE. O

Definition 2.12. We will denote by
(X1, X, X, X)) (2.16)
the frame of Corollary 2.11, arising from Lemma 2.6, and by

ms(z) : G — Tlg(x) (2.17)

the corresponding canonical projection.
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Corollary 2.13. Let e € S be such that ds(e) = d(S). Let us embed S into R"
by the system of graded coordinates F induced by {Xj’»“}kzl ..... v j=1,..my- Lhen there
exists a function

¢ : ACRP — R™P
x:(x%,...,x}h,...,x;)»—% <111+17""¢71m7“'7 (b;LJrl,...,(;ﬁjnL)(x),

defined on an open neighbourhood A C RP of 0, such that $(0) =0 and S D ®(A),
where ® : A — R"™ is the mapping defined by

T (21, Th s Gy 1 (B)s o O (), Tl B (), (). (2.18)
Moreover, ® satisfies V®(0) = C(0), with C given by Lemma 2.6.

Proof. Representing mg(z) with respect to our graded coordinates, we obtain

Ws(x) : R" — R?

1 1 L [2
T (T, Ty, T, Ty, ) -
Taking its restriction
™ : S—RP
1 1 L L
T (T, Ty, T, Ty )

we wish to prove that 7 is invertible near 0, i.e. that dx(0) : 758 — RP is onto.
According to (2.11) and the fact that 7 is the restriction of a linear mapping, it
follows that dr(v}(0)) = 890? for every k =1,...,cand j = 1,..., . This implies
the existence of & = W@l having the representation (2.18), hence one can easily
check that dﬁ(@x;@ (0)) = 890? also holds for every k =1,...,cand j = 1,..., ax.
As a consequence, invertibility of dr(0) : TpS — RP gives v} (0) = 0,1 0). It
follows that each column of V®(0) equals the corresponding one of C(0), i.e. that
Vo(0) = C(0). O
From now on, we will assume that S is a C*! submanifold of G.

Lemma 2.14. Let v € S be such that ds(z) = d(S). Then llg(z) is a subgroup.

Proof. Posing d := d(S), due to Corollary 2.11, 7d(z) is proportional to the simple
p-vector
X{AAX LA ANXPAANXL

=1,..,

to prove that each bracket [XF, X/] lies in F for every 1 < k,l <, 1 < j < o and
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1 <@ < oy this implies that F is a subalgebra and so that IIg(z) = exp(F) is a
subgroup.

Taking into account Remark 2.8, we can find Lipschitz functions ¢, and ),
which vanish at x whenever d, = k or d, = [, such that

V=X ) e X, and vl =X+ e X,
dr<k ds<l
For a.e. y belonging to a neighbourhood U of =, we have

[vf,vll-] = [Xf—l—ZcpTXT, Xf—l—Z@/)SXS]

<k ds<l
= XEXD+ Yo 1 XD+ Y XX+ Y e (XX

dr<k ds<l dr<k,ds<l
+ > (X)X, = ) (X)X, (2.19)
ds<l dr<k
+ Z <()01" (ers) Xs - ws (XSSOT> Xr) .

dr<k,ds<l

By Frobenius theorem we know that this vector is tangent to S, i.e. it is a linear
combination of v{, ... , Vg, and lies in V1 & - - - @ V44, hence Lemma 2.6 implies that
it must be of the form

['Uf, vl = Z vy

or<k+l

Projecting both sides of the previous identity onto Vj,; and taking into account
equation (2.19) we obtain

X5 XD+ o (X, X+ ) e (X5 X+ D o ¥ [Xe, X
dr=k

ds=1 dy=F,ds=l
= Z Gy 7Tk+l(v7“)'

or=k-+I

From (2.11) the projections 7y, (v, (y)) converge to a linear combination of vectors

Xf“ as y goes to x, where 1 < ¢ < agy. We can find a sequence of points
(y») contained in U, where [vf,v]] is defined and y, — = as v — oo. Then the
coefficients a, are defined on ¥, and up to extracting subsequences it is not restrictive
assuming that a,(y,), which is bounded since S is C!!, converges for every r such
that o, < k+1. Thus, restricting the previous equality on the set {y,} and taking the
limit as v — oo, it follows that [X¥, X]] is a linear combination of {XF Y cicon -

This ends the proof. O
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Let us consider the parameters A = (A{,...,AL,,...,Af,..., A, ) € R? and a

Y o1

point e € S with dg(e) = d(S). We aim to study properties of solution (¢, A) of the
Cauchy problem

Ory(t, ) = Y Mk (y(t, ) i+
-11:1 ..... L (220)

where the vector fields 'Uf are defined in Lemma 2.6 with x = e. Notice that for every
compact set L C RP, there exists a positive number ¢, = to(L) such that (-, A) is
defined on [0, ty] for every A € L.

The next lemma gives crucial estimates on the coordinates of v(-, A). Notice that
graded coordinates arising from the corresponding graded basis (X7, ..., X,,) will be
understood.

Lemma 2.15. Let v(-, \) be the solution of (2.20). Then for every k =1,...,1 and
every j = 1,...,my there exist homogeneous polynomials g;-“ of degree k such that

(i) gjl-EOforanyjzl,...,mk;
(ii) gh(\) = gF(AL AL, AT AR ) when k> 1;

Y o1
(i) g4(0) = 0;

(iv) the estimates

ALk k-1 ]k R
L gh (AL 4+ O(t =1,...
fyf(t) /\) :{ [k; +g]( 15 ) Otk—1) + ( ), ] s , O

(2.21)
O(tk+1)7 j:@k—i_la"'amk

hold for every A € L and every t € [0, .
Proof. From (2.8) and Proposition 1.24 (i), we have X, = Y | a;s 0; where

X B 0; it d; <d, 2.22
is(7) = uis(zl, ..., ok ...,xfjf.l. p%i—l ) if d; > d; (2:22)

’Ymy > mg, —1
and wu;, is a homogeneous polynomial satisfying u,(d,(z)) = r%~—%u(x). Setting

A=) = (M, AL N3 A2 AT N ) ERY

ay) s Nag vy

and taking into account the expression of v; given in Lemma 2.6, we can write the
Cauchy problem (2.20) as

p

Oyt N) =D o (v(EN) M) =D 0D Car (71, X)) X (v(1, A)A(E), (2.23)

r=1 r=1 s=1
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where C(+) is given by Lemma 2.6. Now we fix A € L and write for simplicity 7 in
place of v(-, \). The coordinates of v will be also denoted as follows

(Vis - Yomgs e e e s Ve v s Vo )-

Step 1. We start proving (2.21) for the coordinates of v belonging to the first
layer, i.e.

) =Mt Hl<j<o (2.24)
() =0@{) fon+1<j<m.
In view of (2.23), we get
P n
731 = Z Z Cor(7) ajs(7) Ar-
r=1 s=1
For 1 < j < oy we have 1 = d; < d,, then (2.22) imply that a;; = ;5, whence
p ~ ~
3= Ci(NA =X = ],
r=1

where the second equality follows from (2.11), which implies Cj,(z) = d;,. This
shows the first equality of (2.24).

Now we consider the case a; +1 < j < my. Due to (2.22) and 1 = d; < d;, we
have

P
=) CiMA =D Ci(DA + Y Cin(MA (2.25)
r=1 op=1 or>2
From (2.11), we have C},(y) = o(1) whenever o, = 1, hence C},(y(t)) = o(t). From
the same formula, we deduce that Cj,.(z) is bounded whenever o, > 2, and for the
same indices 7 we also have \, = O(t), hence the second addend of (2.25) is equal
to O(t). We have shown that §; = O(t) for every ay +1 < j < m, therefore the
second equality of (2.24) is proved.

Step 2. We will prove (2.21) by induction on k = 1,...,.. The previous step
yields these estimates for kK = 1. Let us fix £ > 2 and suppose that (2.21) holds for
all integers less than or equal to k — 1; we wish to prove (2.21) for components of
~v with degree k and for any fixed 1 < j < my. We denote by ¢ the unique integer
between 1 and n such that X; = X Jk and accordingly we have v; = ’yf, where d; = k.
Taking into account (2.22) and that Cy, vanishes when dg > o, it follows that

p n
Vi = szz‘s(’}/)csr(’}/))\r = Z a;s(7)Csr (V) Ar - (2.26)
r=1 s=1 1<r<p
dsgdi
dsSU'r
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We split this sum into three addends

W=5i= > CalPA+ D awCaMA+ Y a(y)Ca(A . (227)

1<r<p 1<r<p 1<r<p
di<or ds<d; ds<d;
ds=or ds<or

Step 3. We first consider the case 1 < j < ay: (2.11) implies that Cj.() = 4,
therefore the first term of (2.27) coincides with A;(t) = A5t*~'. For the remaining
terms, our inductive hypothesis yields

e { AT+ L N )Y+ O@) ¢ if 1< s <aq
Ys\ly A) =

[T |

2.28
O(t) ¢! ifozl—i—lgsgml( )

whenever | < k—1, where g is a homogeneous polynomial of degree [. Due to (2.22),
a;s are homogeneous polynomials of degree d; —ds = k—d; > 0, then applying (2.28),
we achieve

ais(71, - . . ,%I;_k:) = (NZ-S(/\%, DL O(t)) th—ds (2.29)

Pk

whenever d, < d; = k and u;s = 0;5 if d; = k. Notice that N;; are homogeneous
polynomials of degree k —d; since it is a composition of the homogeneous polynomial
a;s and of the homogeneous polynomials AL/l + gL(A], ..., A ! ) with degree [.

Let us focus our attention on the second addend of (2.27). By definition of A,
we have A\, = )\E’(Zn)t"ﬁl, for some 1 < I(r) < a,,, hence this second term equals

D [Ca(0) + O] [Nia(A, - A % O AT 1o

Ak —1
1<r<p
ds<d;
ds=o,

= Y Ca(0) Nis(M, - A ) A 7 4 O()
1<r<p
ds<d;

ds=or

= N;(\L, N Rt Ok,

71

where Nj is a homogeneous polynomial of degree k = d;. From (2.29) and taking
into account the definition of A, the last term of (2.27) can be written as follows

D Coly(®) [Nis(AL, - A % ot h]o )
1<r<p
ds<d7,
ds<or

= )o@ty = o(th).
1<r<p

ds<d;
ds<or
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Summing up the results obtained for the three addends of (2.27), we have shown
that .
AEE) = (X + Ni(AL A T+ O(tF)
whence the first part of (2.21) follows.
Step 4. Finally, we consider the case ay + 1 < 7 < my. In this case we decom-

pose (2.26) into the following two addends

;Yi = Z Cir(’y) 5\7‘ + Z ais(’y)Csr(’y)S‘r- (230)

1<r<p 1<r<p
k<o ds<k
ds<or

The first term of (2.30) can be written as

Y CeA = D CaMh+ D Cir(MA
1<r<p 1<r<p 1<r<p
k<o, k=o, k<o,

From (2.11), the Lipschitz function C;,(x) vanishes at zero when oy +1 < j < my,
and d; = o,, then C;,.(y(¢)) = O(t) and

S Chlphe= D 0t 4 > 01) e = 0(th). (2.31)

1<r<p 1<r<p 1<r<p

k<o, k=o, k<or
Let us now consider the second term of (2.30). According to (2.29), we know that
ais(y(t)) = O(t*~%). Unfortunately, this estimate is not enough for our purposes,
as one can check observing that A, = O(t”') and C,, = O(1) for some of s,r.
To improve the estimate on a;s we will use Lemma 2.14, according to which the

subspace spanned by

(Xi,..., X,

o1’ ”

XL X))

is a subalgebra. Then we define
F=span{XF|1<k<1,1<s< oy}
along with the set J, that is given by the condition
F =span{X;:j e J}.

We first notice that i ¢ J, due to our assumption ag + 1 < j < my. This will allow
us to apply Lemma 2.5, according to which we have

Pi(z,y) = v+ yi + Qi(w,y) = v +yi + Z (w1 Ra(x, y) + yiSa(z,y)) -
l§ZJ,dl<k‘
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As a result, assuming that s € J, we obtain the key formula

0P, OR;
a;s(r) = =—(x,0) = x (x,0),
9Ys l ¢§<k 9Ys

where 0,, R;(x,0) is a homogeneous polynomial of degree k — ds — d;. By both
inductive hypothesis and definition of J, we get

n(t) = 0",
for every [ ¢ J such that d; < k. By these estimates, we achieve
IRy d+1 k—ds—d k41—ds
as(v() = Y (D) n (3(1),00= > or*ho ") =Oft )

1¢J,d)<k 1¢J, d)<k

Then it is convenient to split the second term of (2.30) as follows

Z Aig (7) Csr(’y)j‘r = Z az‘s(’y) CST(/Y) 5‘r + Z Ais (7) Csr(’y) :\T ) (232)

r=1,...p r=1,...p r=1,...p
ds<k ds<k ds<k
ds<or ds<or ds<or
seJ s¢J

where the first addend of the previous decomposition can be estimated as

Yo aCulMA = Y 0@ o) o) = 0. (233)

1<r<p 1<r<p
ds<k ds<k

ds<op ds<or
sed seJ

Finally, we consider the second addend of (2.32), writing it as the following sum

Z Aig (7) CST(’Y) :\T = Z Ais (7) CST(’Y) /N\T + Z Ais (7) Osr(/y) 5‘7’ . (234)

1<r<p 1<r<p 1<r<p
ds<k ds<k ds<k

ds<op ds=op ds<op
s¢J s¢J s¢J

The first term of (2.34) can be written as

> o*tyowmou) = o),
1<r<p

ds<k

ds=o0r

s¢J

where we have used the fact that Cy,.(z) = O(]z|) when ds = 0, and s ¢ J, according
to (2.11). The second term of (2.34) corresponds to the sum

d Ot ) o) o) = O(t*).
1<r<p

ds<k
ds<or

s¢J
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As a result, the second term of (2.32) is also equal to some O(t*), hence thanks
to (2.33) we get that the second term of (2.30) is O(t*). Thus, taking into account
(2.30) and (2.31) we achieve §(t) = O(t*), which proves the second part of (2.21)
and ends the proof. O

Remark 2.16. Analysing the proof of Lemma 2.15, it is easy to realize that the
functions O(t**!) appearing in the statement of Lemma 2.15 can be estimated by
tF+1 uniformly with respect to A varying in a compact set: more precisely, there
exists a constant M > 0 such that

Ap—1

YRt A)] < Mk if ap +1 <5 < my.

VE(EN) = [NE/R A+ gE(AL L Ak )}t'f’ < Mt i 1< < o 2.35)
for all A belonging to a compact set L and every t < t,.

Our next step will be to prove that our curves (-, A) do cover a neighbourhood
of a point with maximum degree. To do this, we fix graded coordinates with respect
to the basis (X ]k) and consider the diffeomorphism G : R? — RP arising from
Lemma 2.15 and that can be associated with any point of maximum degree in a
C%! smooth submanifold: precisely, we set

Gi(A) == Aifoi + gi(Ar, .., A (2.36)

_ )
2?:1 as’

where (g1,...,9,) = (91,---,9%,---, G}, ---, g, ) and g;? are given by Lemma 2.15.
Then G(0) = 0 and by explicit computation of the inverse function, the defini-
tion (2.36) implies global invertibility of G.

Remark 2.17. The diffeomorphism G also permits us to state Lemma 2.15 as
follows

Y(t,A) = &(G(\) + O(t)) e R, (2.37)

where G(\) belongs to R? x {0}, precisely, it lies in the p-dimensional subspace
[Ig(z) with respect to the associated graded coordinates.

We will denote by ¢(t, \) the projection of v(¢,\) on IIg(x), namely
C(ta )‘) =Ts (l‘) (V(ta A))a (238)

where 7g(z) is as in (2.17) and graded coordinates arising from (2.16) are under-
stood. In the sequel, the estimates

ci(t, \) = Gi(\)t7 + O(t7 ) (2.39)

will be used. They follow from Lemma 2.15 and the definitions of ¢ and G.
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Lemma 2.18. There exists to > 0 such that for every t; €]0,ty[, there exists a
netghbourhood V' of 0 such that

VNS c{ytA): A eGP ) and 0 <t < t1}.

Proof. We fix tg = to(L) > 0 as in Lemma 2.15, where we have chosen L =
GH(SP71). Let t; €]0, o[ be arbitrarily fixed. Taking into account Corollary 2.13,
it suffices to prove that the set {c(t,\) : A € L,0 <t < ¢;} covers a neighbourhood
of 0 in RP. For each ¢ €]0,¢;[, we define the “projected dilations” A; = mg(x) o
corresponding to the following diffeomorphisms of R?

At(yla s 7yp) = (talyla s 7taiy’ia s 7tapyp) .
Now we can rewrite (2.39) as
oft N) = A (G +0(1). (2.0

where O(t) is uniform with respect to A varying in G~1(S?71), according to Re-
mark 2.16. Then we define the mapping

Ly SP'SRP
U Ay (c(t, G’l(u)))

and (2.40) implies
Li(u) =u+ O(t).
As a consequence, L; — Idgr—1 as t — 0, uniformly with respect to u varying
in SP~!. Then, possibly considering a smaller ¢y, for any 0 < 7 < t; we have
L,(SP"') N Byjz = 0 and L, is homotopic to Idg-1 in R? \ {A} for all A € By».
In particular, since Idgy-1 is not homotopic to a constant, L, is not homotopic to a
constant in RP \ {A} for all A € By,.
Now, we are in the position to prove that

{e(t,\): xeGH(SP Hand0<t <7}

covers the open neighbourhood of 0 in R? given by A, (B;/, N1lg(e)) that leads us
to the conclusion. By contradiction, if this were not true, then we could find a point

A € Byj; such that A # Ay, (cx(t)) for all A € GT1(SP71) and 0 < ¢ < 7, but then

H : [0,7] x SP71 - RP\ {4}
(5,0) = Ayyr (s, G (w))

would provide a homotopy in R?\ { A} between the constant 0 and L., which cannot
exist. n
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As an important consequence of Lemma 2.15, we can finally obtain the main
result of this Section.

Theorem 2.19. Let S be a CY! smooth submanifold of G and let x € S be a point
of mazimum degree. Then for every R > 0 we have

1/r(z7'S) NUR — Hg(z) N Ug asr — 0F (2.41)
with respect to the Hausdorff distance; moreover, llg(x) is a subgroup of G.

Proof. We first notice that IIg(x) is a subgroup of G, due to Lemma 2.14. Setting
Sy = 01/,(x7'S), it is sufficient to prove (see [13], Proposition 4.5.5) that S, ,NUg
converges to [T N Uy in the Kuratowski sense, i.e. that

(i) if y = lim,, o yy, for some sequence {yn} such that y,, € S, NUg and r,, — 0,
then y € llg(z) N Ug;

(ii) if y € Ilg(z) N Ug, then there are y, € S,, N Ug such that y, — y.

It is not restrictive assuming that r = e.
To prove (i), we set z, = &,,(y,) € SN U,, g From (2.37), we can find t; > 0
arbitrarily small such that
inf . lu+ O(t)] > 0, (2.42)

ueSP—
0<t<ty

where |- | is the Euclidean norm and O(¢) is defined in (2.37). Then for n sufficiently
large and taking ¢; < tp, Lemma 2.18 yields a sequence {7,} C|0,t;[ and A, €
G1(SP71) such that (7, A\n) = 0, yn- Due to (2.37), we achieve

5Tn/7’n (G()\TL> + O(Tn)) = yn I

hence (2.42) implies that 7,,/r, is bounded. Up to subsequences, we can assume
that G(\,) — ¢ and 7, /7, — s, then y, — §;( = y. From Remark 2.17, we know
that G(X) € Ilg(x) with respect to our graded coordinates, hence y € IIg(x).

To prove (i), we choose y € lg(z) N Ug and set A = G~'(y). By Lemma 2.15
there exists ro > 0 depending on the compact set G~!(Ils(z) N Ug) such that the
solution r — ~(r, ') of (2.20) is defined on [0, ro] for every N € G~ (Ilg(z) N Ug).
Clearly, v(r, \') € S, then (2.37) implies that

51/7" (S) = Yr = 51/7’ (7(“ )‘)) - G()‘> =Y.

This ends the proof. O
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2.3 Measure of submanifolds in Carnot groups

In the following Theorem 2.20 we will denote by o5 the Riemannian p-dimensional
surface measure with respect to an arbitrary metric g. We also stress that the right
hand side of (2.43) is effectively dependent on g like the left hand one, because so is
the definition itself of metric factor 6, and in particular the p-dimensional measure
HP appearing in (2.3) of Definition 2.2.

Theorem 2.20. Let S be a CY1 smooth p-dimensional submanifold of degree d =
d(S) and let x € S be of the same degree. Then we have

L o(SNUG ) _ 0(E()
AT ),

(2.43)

Proof. Without loss of generality we assume that x is the identity element e and
identify G with R™ through graded coordinates centered at 0 with respect to X j’“
According to Corollary 2.13, we parametrize S by the CH! function p : A C Ig(e) —
R"~P_ such that S is the image of

® : AcCTg(e) — R
y'_)(y%a"'7yi1a¢(111+1(y)a"'aqs;zl(y)a"'ayi)"'ay;u ;L-i-l(y)a"'a im(y))

For any sufficiently small r» > 0, we have

. 05(SNU,) 1/
lim 20212~ J5®(y) d
glrél Td Td -1(U,) g (y) 4
- / J0(A(y)dy (2.44)
Aqyp (71(U))

where A, = 0,114 and its jacobian is exactly equal to r¢. Notice that the set
Ay (7HU,)) = (810 0 @ 0 A,)"H(U7) contains exactly those elements y € IIg(e)
such that

(yl 1 ¢i¢1+1(ATy) inl(Ary) . . ;L+1(Ary) (b%u(ATy))
1> iR

oy Yar r g e ey r g ey 1,...,aL’ TL P 7nL

belongs to U; and that
Ay (@7H(U,)) = 7s(e) (Sor N ),

where 7g(e) is the projection onto Ilg(e) with respect to graded coordinates, i.e. the
mapping

R™ D (27, s Zpyseees s 2 ) = (215 s 2y oo o0 2 ooy 25, ) € Hs(€).
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For the sake of simplicity, we will write 7 instead of mg(e). By continuity of m,
for every € > 0 we can find a neighbourhood N' C R" of Ilg(e) N U, such that
7(N) C Ig(e) NUy4c; by Theorem 2.19 and the definition of Hausdorff convergence,
for sufficiently small r» we have Sp, N U; C N and so

Ay (@7HU,)) C 7(So, NUL) C Hs(e) N Upye. (2.45)

If we also prove that
IIg(e) N Ur—e C Ay (@7H(U,)) (2.46)

for small 7, we will have x5, (@-1(v,)) = Xis(e)nrn iR L'(TI5(e)). This fact and (2.44)
imply that

lim O'g(S N Ur)

im —2=5— = J;@(0) H(ILs(e) N TL) = J32(0) 0(75(0))

By Corollary 2.13 we know that V&®(0) = C(0), where C' is given by Lemma 2.6;
therefore J;®(0) must coincide with the Jacobian of the matrix C(0), i.e. with
|v1(0) A -+~ Av,(0)|5. By virtue of Corollary 2.11, we have

7o) XN ANXE N ANXEANANXD 1
Tgl€)lg =
S [01(0) A== Ay (0)

o (0) A A (0)]5

g

Finally, it remains to prove (2.46). We fix

y=(y1,...,Yp) = (y%,...,yél,...,y;L) € llg(e)NU;_.

and set 2z := 6,(y) € Uq—_e)r. Let to > 0 be as in Lemma 2.18 and consider ¢; €]0, to[

to be chosen later. By the same lemma, for every r > 0 sufficiently small there exist
A€ G7HSP71) and t € [0,¢[ such that ®(z) = (¢, \). Since |G(A\)| = 1, we can
find 1 <4 < p such that |G;(A\)| > 1/,/p. Notice that

ms(e)(P(2)) = z = ms(e)((t, A)) = c(t, N), (2.47)
then (2.39) implies

M7 > |Gy(N 7 =[] > 47/ /b — lyilr™,
where M > 0 is given in Remark 2.16 with L = G~'(SP~!). Tt follows that

(1B — ME)E < (15— MO < [y ™.

Now, we can choose ¢; > 0 such that 1/,/p— Mt; > € > 0, getting a constant N > 0
depending only on p, |y| and M such that

t<Nr. (2.48)
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Taking into account (2.47) and the explicit estimates of (2.35), we get some 1 < k <
and a; +1 < j < m; such that

lci(t, N)| = 70 (t, 2)| = |¢F ()] < ME*HT
where we notice that k = ;. By (2.48), the previous estimate yield
|65(6,9)| = |95(2)] < MrFHY, (2.49)

where M = MN**!. Estimate (2.49) has been obtained with M independent from
r > 0 sufficiently small. Therefore

(yl 1 ¢<1>¢1+1(5ry) 71711(57‘9) . . fxﬁl((sry) %L(&y))
1s-

3 Y " ey oY Yy ” e

belongs to Uy definitely as r goes to zero, namely, y € Ay, ®~1(U,) for r > 0 small
enough. We observe that N linearly depends on |y| and is independent from r > 0,
then the constant M in (2.49) can be fixed independently from y varying in the
bounded set IIg(e) N U;—., whence (2.46) follows. O

Let S and d be as in Theorem 2.20; for i = 1,...,d we set
Sii={reS:ds(x)=1i}.

Then, using Theorem 2.20 and standard theorems on differentiation of measures
(see [69]), it is immediate to deduce the following

Corollary 2.21. Suppose that S is a CH' submanifold of degree d; then

i) = | e dogta). 2.50)

In particular, if Sg—almost every point has maximum degree d, i.e. if
SIS\ Sq) =0, (2.51)

one has that

S4(S) = i 'ZS((”)) (z). (2.52)

and S has Hausdorff dimension d.
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In formula (2.52) we used the facts that |72(z)|, = 0 on S\ Sy and that metric
factors are uniformly bounded from below.

Corollary 2.21 shows that Sg is positive and finite on open bounded sets of the
submanifold and yields the “natural” sub-Riemannian measure on

_ el o T80
ps =SILS = e(ig(-)) oz S (2.53)

Also the equivalent measure
fis = 740}, oL (2.54)

can be considered a natural one, with the further property that it does not depend
on the metric g. In fact, parametrizing a piece of S by a mapping ¥ : U — G, we
have

As(V(U)) = / @l dogt)
‘ [(0n U A A 895,,\11)(\11*1(93))]61)
- fw 0T A A0, 0) (T ()]

- / ’(83“\11/\---/\8%111)d
U

* dog(x)

g

e, (2.55)
g

where we used classical area formula and the fact that

 0nUAAD, W
0T A N5

(T~ ().

Ts(7)

Integral formula (2.55) can be seen as an area-type formula where the jacobian is
projected on vectors of fixed degree.

It is possible to prove that the restrictive hypothesis (2.51) holds true in many
interesting cases, namely when

e S is a p-dimensional Legendrian submanifold in the Heisenberg groups H", i.e.
T,S C HH" for any z € S (in this case one must have p < n and it is easy
to check that d = p, see [83]);

e S is a p-dimensional non-Legendrian submanifold in the Heisenberg groups H"
(in this case d = p + 1, see [83] and [122]);

e S is a codimension 1 hypersurface of a Carnot group G, where we have d =
Q — 1 (see [120]);
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e S is a “non-horizontal” submanifold in a Carnot group G, ie. d = Q — k,
where £ is the topological codimension os S (see [121]).

Observe however that, for general submanifolds in a Carnot group, the non-horizon-
tality condition is quite restrictive: for example, it cannot hold when the codimension
k is too large (namely, when k& > m;). Presently, we are not able to prove the
validity of (2.51) in the general case; however, one could expect (possibly requiring
more regularity on S) not only that it holds true, but in fact that

S, (Si) <oo forali=1,...,d. (2.56)
Indeed, this is exactly what happens in step 2 Carnot groups:

Theorem 2.22. Let S be a CYt submanifold of degree d of a step 2 Carnot group
G; then (2.56) holds. In particular, also formula (2.52) holds and the Hausdorff
dimension of S s d.

Proof. In view of Corollary 2.21, it will be sufficient to prove (2.56). By [121],
Theorem 1.3, we know that there exist two real constants ¢, co > 0 such that
o;(SNU(x, 1))

0 < ¢ < liminf -2 < lim sup
r—0+t Tt r—0+ T

az(SN U(x,r)) <e

for any x € S;; therefore one has
618;)(5@> < O'g(Si) < O'g(S) < 00

and this is sufficient to conclude. O

2.4 Some examples in the Engel group

As an application, in this section we wish to present examples of 2-dimensional
submanifolds of all possible degrees in the Engel group E*.

It will be convenient, more than using graded coordinates, to represent E* as R*
equipped with the vector fields X; = 2?21 a;;(x)0;, with

1 0 00
0 1 0 0
Al) = o 1 0|

where x = (z1, xa, 3, 24); observe that d; = dy =1, d3 =2 and dy = 3.
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Let ¥ : U — R* be the parametrization of a 2-dimensional submanifold S,
where U is an open subset of R?. We set (uy,us) € U C R? and consider ¥, =
Z?Zl W7 9;. Taking into account that

1 0 0 0
4 | 0 1 0 0
A= s 1 0
0 22/2 —x; 1
and that
4
9; = Z(A(ﬂf)_l)ijk, (2.57)
k=1
we obtain

()

W, = WL X, U Xy 4 (B — W) X+ (qﬂ w4

\112) X,.
It follows that

\Ijul A \IIUQ - q{,lllQXl VAN XQ + (\Ij,lllg - \Ill\Ij,llﬁ) X1 VAN X3 +

\Ifl 2
(%4 —whgl % \Ifif) Xy A Xy + WX A X+

\Ifl 2
(\Ifqu — ! \Ifig)Xz N Xy+ (\Iji4+( 2) e~ \Iﬂ\pi‘l) X3 A Xy (2.58)

where we have set

v, W,

In the sequel, we will use (2.58) to obtain nontrivial examples of 2-dimensional
submanifolds with different degrees in E*.

Remark 2.23. Recall that 2-dimensional submanifolds of degree 2 in E* cannot
exist, due to non-integrability of the horizontal distribution span{X7j, Xs}.

The next Example wants to give a rather general method to obtain nontri-
vial examples of 2-dimensional submanifolds of degree 3. Clearly, the submanifold
{(0, x9, z3,0} is the simplest example, as one can check using (2.58).
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Example 2.24. Having degree 3 means that the first order fully non-linear condi-
tions

v g2 gly2t — g
P2 gl = (2.59)
v gyl P g2

must hold. By elementary properties of determinants, one can realize that the

previous system is equivalent to requiring that

(¥)?

VU3 — U'VU? s parallel to VU¥* — SN \VAULS (2.60)
VU? is parallel to VU* — ¥ VU3 (2.61)

\111 2
VU s parallel to VU¥* — ¢! VU3 4 %V\Iﬂ . (2.62)

We restrict our search to submanifolds with U!(uy,us) = u; and ¥23 % 0 on U.
This implies that V¥? # 0 and so (2.61) is equivalent to the existence of a function
A : U — R such that

VU —uy VI = A VU2,

Imposing the further assumptions A\(u) = —u?/2 it follows that

2
VI = —%V\Iﬂ +ouy VB, (2.63)

whence also (2.62) is satisfied; since
2
ur (VI3 — 0, VI2) = VIt — % V2,

it follows that also (2.60) is satisfied, namely, the system (2.59) holds whenever we
are able to find U* satisfying (2.63). Clearly, we have an ample choice of families
of functions W2 W3 U satisfying (2.63). We choose the injective embedding of R?
into R* defined by
Uy
up + e"?

u1e“? + %
uf ui u2
3 + 76

One can check that dg(¥(u)) = 3 for every u € R?, where S = U(R?). Here the
part of 7¢ with maximum degree is

\I/(Ul, UQ) -

ev2

Tg(\ll(ul,w)) = —\/(1 u2)2(1 - ) XQ /\X3
+ 5 + eu2
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and due to Corollary 2.21, the spherical Hausdorff measure of bounded portions of
S is positive and finite.

It is clear that submanifolds of higher degree are easier to be contructed.

Example 2.25. Let us consider

2 2
Us U
2 2
\I/(Ul,’dz) = (Ul,UQ, -, —) .

Then we have

2 =1, OB =y, UM =q,
U2 =0, UH=0, VF=0

By (2.58) we have

u2

\I/m N \I/u2 = X1 N X2 + (UQ — ul) X1 N Xg + (Ug — UrUs + ?1) X1 VAN X4. (264)

Recall that S; is the subset of points in S with degree equal to . With this notation
we have

S4 = {\P(Ul,’dz) U2 6]0,2[} U {\I/(Ul,’dz) U € R\ [O, 2], ‘UQ — U1|2 7£ U% — 2U2}
S3 = {\IJ (uz + o/ ud — 2u2,u2> ’ oce{l,—1} and wuy € R\ [0,2]}
We will check that the curves

R\ [0,2] 2 up — Y(u2) = ®(us + oy/u3 — 2u, us)

with o € {1, —1} have degree constantly equal to 2. Due to (2.57), we achieve

1\2
Y= X+ X+ (VP -1) X+ (74—7173+ ( 2) 72> Xy,

where one can check that

1\2
("74—71734-%’?2):0 and (73—’ylf'y2):—a us —2uy #0. (2.65)

It follows that S3 is the union of two curves with degree constantly equal to 2.
Applying (2.52) we get that Sp2 L S5 is positive and finite on bounded open pieces of
Ss3, hence 8;1(53) = 0. In particular, we have proved that

SHS\ Sy) =0,

then the Hausdorff dimension of S is 4 and furthermore S;lI_S is positive and finite
on open bounded pieces of S. Clearly, (2.52) holds.
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Example 2.26. Using (2.58) one can check that 2-dimensional submanifolds given
by
0
\IJ2(U1, Uz)
\113 (Ul, Uz)
\114(1147 Ug)

\P(Ul, uQ) -

with ¥3* =£ 0 have degree 5 = Q — k, where Q = 7 is the homogeneous dimension
of E* and k = 2 is the codimension of S. Notice that these submanifolds are then
non-horizontal.

Remark 2.27. Let us consider S as in Example 2.25. It is easy to check that the
thesis of Theorem 2.19 does not hold, indeed

61 SNUR — PNUR

where
P = {($1,0,0,Jf4) | Ty Z 0}

Clearly, P cannot be a subgroup of E4, since all p-dimensional subgroups of Carnot
groups are homeomorphic to RP, see [167]. This fact may occur since the origin in
S has not maximum degree, as one can check in Example 2.25.



Chapter 3

Elements of Geometric Measure
Theory in the Heisenberg group

Starting with this Chapter, in almost all the rest of the book we will concentrate our
attention on the most important example of non Euclidean Carnot group, namely
the Heisenberg group H". In particular, we will summarize the principal results
of Geometric Measure Theory in this setting, taking great part of the material
from [79]. Exhaustive introductions to Heisenberg groups can be found also in [164]
and in the recent book [33].

Section 3.1 contains a brief presentation of H", on which from now on we will fix
a system of graded coordinates, as a CC space; rather than on the CC distance d.,
we will make use of the equivalent homogeneous distance do, defined in (3.1) and of
the associated Hausdorft and spherical Hausdorff measures ‘H?} and S7. Following
the approach of Section 1.1, we will define the H-perimeter of a measurable set
E: some comparisons between this notion and the Euclidean one are provided in
Proposition 3.7 and in Example 3.8, while Theorem 3.9 allows us to introduce the
horizontal normal vg.

Section 3.2 is concerned with Cj; functions, i.e. those continuous real functions
on H" whose horizontal derivatives are represented, in distributional sense, by conti-
nuous functions. This definition goes back to Folland and Stein [73]. Lemma 3.11
contains an estimate on horizontal difference quotients of C}; functions which will be
crucial in the proof of Theorem 4.17, while the main result of the Section is Whitney
Extension Theorem 3.12: its proof was sketched in [79], here we give a complete one.

In Section 3.3 we introduce one of the main objects of the book, namely the H-
regular surfaces. The notion of regular surface is related to a notion of rectifiability in
metric spaces which goes back to Federer (see [69] 3.2.14). It has been used by Am-
brosio and Kirchheim [7, 8] in the framework of a theory of currents in metric spaces
(as for rectifiability in metric spaces, see for instance [104, 150], the monograph [129]

57
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and the references therein). According to this notion, a “good” surface in a metric
space should be the image of an open subset of an FEuclidean space via a Lipschitz
map. Unfortunately, such a viewpoint does not fit the geometry of the Heisenberg
group, that indeed would be, according with this definition, purely unrectifiable
(see [8]). On the other hand, in the Euclidean setting R™, a C'-hypersurface can
be equivalently viewed as the level set of a function f : R™ — R with non-vanishing
gradient. Such a concept was easily transposed in [79] to the Heisenberg group by
means of Cl-functions: we will consequently define H-regular surfaces as noncritical
level sets of Cf; functions. These surfaces can have an extremely bad behaviour from
the Euclidean viewpoint, nevertheless they turn out to be regular with respect to
the intrinsic geometry, thus constituting the natural counterpart of C! surfaces in
a classical setting. See also [32, 104, 109, 91, 78, 85, 54, 7, 8, 79, 146, 137, 80, 81].
In Definition 3.15 we state the notion of intrinsic graph already mentioned in the
Introduction, and in the main result of the Section, Theorem 3.16, we prove that
H-regular surfaces are locally intrinsic graphs: again the proof of this fact, which
is given with several simplifications at some technical points, is taken from [79].
We mention also the recent paper [82], were the notion of H-Lipschitz surface is
introduced, together with the one of H-Lipschitz graph.

Finally, in Section 3.4 we summarize (without proofs) the results of the latter
paper concerning rectifiability of sets £ with finite H-perimeter. More precisely,
we will introduce the H-reduced boundary 0 FE, on which a blow-up result holds
(Theorem 3.20). This set, up to H? l-negligible sets, is contained (Theorem 3.22)
in a countable union of H-regular surfaces. Observe that all these results apply to
H-regular surfaces; in particular, the blow-up result is consistent with Theorem 2.19
for C1! hypersurfaces.

3.1 The Heisenberg group

As in Section 1.2.4, the Heisenberg group H" will be always identified with R?"+1 =
Ry x Ry x Ry with group law
P Q = ("L‘ + l',, Y+ yla 1+ t + 2<l’l, y>R" - 2<l’, y,>R")a

where we denote with P = (z,y,t) and QQ = (2/,y,t') elements of H"; observe that
0 is the identity of the group and that (z,y,t)™* = (—z, —y, —t). We will use the
notation ¢p to denote the left translation by an element P.

The Lie algebra h of left invariant vector fields is generated by

Xj = 895]. + Zyjﬁt, Y; = 8%. — ijat, T = at,

for n +1 < j < 2n we will often use the notation X; := Y;_,. In this way, b is
endowed with the stratification b, ®ho, where h; =span { X7, ..., Xy, } and hs =span
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{T'} and where the only nonvanishing commutation relationships are [X;,Y;] =
—4T 7 =1,...,n. For r > 0 the homogeneous dilations 9, : H* — H" are defined
as

S(m,y,t) = (ra,ry, r’t).
For P = (x,y,t) € H" set |P|o := max{|(z,y)|gen, [t|'/?}; then for any P,Q €
H" the function
doo(P,Q) =P Qlo = Q7" - Pl (3.1)

is a homogeneous distance on H". In particular

doo(lpQ, LpQ) = do(Q, Q") and dw(0,Q,0,Q") =1 deo(Q, Q") (3.2)

for any P, Q, )" € H"; moreover, for any bounded subset §2 of H" there exist positive
constants ¢ (£2), ¢o(€2) such that

()P = Qlazent < doo(P,Q) < 2()|P = Qg (3.3)

for P, € . In particular, the topologies defined by d. and by the Euclidean
distance coincide on H". From now on, U(P,r) will be the open ball with centre P
and radius r with respect to the distance d.,. We notice that U(P,r) is a Euclidean
Lipschitz domain in R?**!,

There is a natural measure on H" which is given by the Lebesgue measure
dL?" ! = dxdydt on R*"™'. This measure is left (and right) invariant and it is
the Haar measure of the group. If E C H" then |E| is its Lebesgue measure.

Definition 3.1. (see [69]) We shall denote by H™ the m-dimensional Hausdorff
measure obtained from the Euclidean distance in R?*"™! ~ H" and by H™ the m-
dimensional Hausdorff measure obtained from the distance d., in H". Analogously,
8™ and 87} will denote the corresponding spherical Hausdorff measures.

Remark 3.2. We stress that, because the topologies defined by d., and by the
Euclidean distance coincide, the topological dimension of H" is 2n + 1. On the
contrary the Hausdorff dimension of (H",dw) is @ = 2n + 2 (see [132] and [143]).
Moreover, one has (see also [79], Theorem 2.18)

£2n+1 _ 2w2n SQ _ 2W2n Q .
w2 o HE(U(0,1))

Here and in the following we adopt the standard notation wy, := £*(B(0, 1)), where
B(0,1) is the unit Euclidean ball in R*.

Translation invariance and homogeneity under dilations of Hausdorff measures
follow directly from (3.2), more precisely we have
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Proposition 3.3. Let Q CH", P € H* and m,r € [0,00). Then
HE(CpQY) = H(Q)  and  HL(0,(2)) = r™HIL ().
The same statements hold for SZ:.

For the sake of completness, we recall that the Carnot-Carathéodory metric d.
on H" is defined as in Section 1.2.6 starting from the family Xy,..., X,,Y1,...,Yy;
it is not difficult to check that also d. is a homogeneous metric and so

Proposition 3.4. The Carnot-Carathéodory distance d. is (globally) equivalent to
the distance du.

We shall denote with U.(P, ) the open balls for d. and with H)*, S the asso-
ciated Hausdorff and spherical Hausdorff measures.

We will identify vector fields and associated first order differential operators;
thus the vector fields Xy, ..., X, Yi,...,Y, generate a vector bundle on H", the so
called horizontal vector bundle HH" according to the notation of Gromov (see [91]
and [109]), that is a vector subbundle of TH", the tangent vector bundle of H". Since
each fiber of HH" can be canonically identified with a vector subspace of R***!
each section ¢ of HH" can be identified with a map ¢ : H* — R**"!. At each point
P ¢ H" the horizontal fiber is denoted as HpH™ and each fiber can be endowed
with the scalar product (-,-)p and the associated norm | - |p that make the vector
fields Xy,...,X,, Yi,...,Y, orthonormal, hence we shall also identify a section of
HH" with its canonical coordinates with respect to this moving frame. In this way, a
section ¢ will be identified with the function ¢ = (1, ..., @,) : H* — R?" such that
Y= Zjil ©;X;. As it is common in Riemannian geometry, when dealing with two
sections ¢ and ¢’ whose argument is not explicitly written, we shall drop the index
P in the scalar product writing (@, ¢’) for (¢(P),¢'(P))p. The same convention
shall be adopted for the norm.

If 2 is an open subset of H” and k£ > 0 is a non negative integer, the symbols
C*k(Q), C>=(9) denote the usual (Euclidean) spaces of real valued continuously dif-
ferentiable functions. We denote by C*(€2, HH") the set of all C*-sections of HH"
where the C* regularity is understood as regularity between smooth manifolds. The
notions of C*(Q, HH"), C*(Q2, HH") and C° (), HH") are defined analogously.

Definition 3.5. If Q is an open subset of H" and ¢ = (1, ..., p2,) € C}(Q, HH")
we define the horizontal divergence of ¢ as

leH(p = Z Xj(pj + )/}(anrj. (34)
j=1
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Observe that, since X7 = —X;, j = 1,...,2n, the horizontal divergence of ¢
coincides with the divergence divyxy (see (1.6)) with X = (Xy,..., Xo,).

Finally, let us recall some of the definitions and results already presented, in a
more general setting, in Section 1.1.2.

Definition 3.6. The H-perimeter of E C H" in an open set ) C H" is
|0F|u(Q) := sup {/ divge dL* o € CHQ, HH™), |p(P)|p <1 VP € ]HI"}
E

We say that F is an H-Caccioppoli set in Q if |OF|g () < oo.

In the same way, and according to Section 1.1.2, one can define the space BVy(€2)
and the H-variation of a L' function f.
Using Theorem 1.9 it is not difficult to show the following

Proposition 3.7. If E is a Euclidean Lipschitz domain, then

0B = /20 (X, 1) a0 HLOE,

where n is a Fuclidean unit normal to OE. Moreover, any Euclidean Caccioppoli
set in H" = R?*" ! 4s an H-Caccioppoli set and the H-perimeter measure |OE|g is
absolutely continuous with respect to the Euclidean surface measure on OF.

It is easy to show that Proposition 3.7 is strict, in the sense that there are H-
Caccioppoli sets that are not Caccioppoli sets in R?"*!; consider in fact the following

Example 3.8. Let {7} be a strictly decreasing sequence of positive real numbers
such that
Z i = 00 and Z 7 < 00

keN keN
and set

By :={PeH" :rys1 < |Ple < ra} and E = Upen Bk

For any open neighbourhood of the origin {2 there is ky sufficiently large such that
Uk>ko 2k C €2 and so

[0B () = Y HA(OER) = ) _[r5 + o] = o0,

k>ko k>ko

i.e. F is not a Euclidean Caccioppoli set. On the other hand, taking into account
Proposition 3.7, it will be sufficient to prove that

Z/@E S (X, ) dH? < oo
k=1 k
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in order to obtain F being an H-Caccioppoli set. An explicit computation gives

[ Emxmae= [eoiwy + [ oo

{I@y,0)lco=rr} {l@y)<rel} {

(z.y)|=re,t|<ri}

For H-Caccioppoli sets the following divergence-type theorem holds (see [79])

Theorem 3.9. Suppose that |OE|u($2) < oo; then there exists a |OE|g-measurable
section vy of HH"™ such that

lve(P)lp =1 for |0E|m-a.e. P € H";
- / divagp dL2 — / (v, ) d|OElw Vg € CL(Q; HE"),
E n

Here, the measurability of vg is meant in the sense that its coordinates vy, ..., Vo,
are |OE|m-measurable functions.

The function vg can be interpreted |OF|g-almost everywhere as a generalized
“horizontal” inward normal to the set £.
Finally, as in Definition 1.10, we say that a set E is H-perimeter minimizing in
Q if
|0E]u(2) < |0F[u(S2)
for any measurable set F' C H" such that EAF € ().

3.2 C} functions and Whitney Extension Theo-
rem

Definition 3.10. We shall denote by Cg(Q) the set of continuous real functions f
in Q such that the distributional derivative

vaI(le’,an’lef,’Ynf) (35)

is represented by a CY section of HH". Moreover, we shall denote by C&(Q, HH")
the set of all sections ¢ of HH™ whose canonical coordinates ¢; belong to Ck(€2)
forj=1,...,2n.

We stress that the inclusion C'(Q) C Cy(Q) is strict; see for example [79)],
Remark 5.9. It is not difficult to prove (e.g. using an intrinsic convolution argument)
that Cl; functions are Lipschitz continuous with respect to the distance dq.
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We introduce the following notation: let P = (x,y,t) € H" and Py € H" be
given, then we set

7p, (P Zx] (Py) +Zy] (Py). (3.6)
J=1

Observe that the map Py —— mp,(P) is a smooth section of HH" and so for k :
H" — HH" = R?" the scalar product of sections (k(Py),mp,(P)) is well defined.
The following Lemma 3.11 will be a key tool in the proof of Theorem 4.17.

Lemma 3.11. Let f € CL(U(P,r)). Then there exists a C = C(P,ry) such that,
for each Q € U(P,r0/2), r €]0,19/4] and Q' € U(Q,r) we have

/(@) — £(Q) — (Vef(Q), mo(Q~'Q")]
dOO(Qa Q/>

Proof. Let us define

<O Vaf = Vaf(Q)]r=(v@2d(@.0)-

9(Q) = [(Q) — (Ve f(Q), m(Q'Q))
and notice that Vgg = Vi f — Vi f(Q). Since a Morrey type inequality
1/p
9@ @l =Cr({ W) oral @ e U@
U(@r)

holds for a certain C' > 0 and for p > 1 (see [116]), we have

£(Q) — f(Q) — (Vuf(Q), m(Q™'Q))q

do(Q, Q)
(@) —9(Q)
deo (@, Q")
1/p

< 20 (][ |VHg|p)

U(Q,2d(Q,Q"))

1/p

= 2C (][ |va —VH(Q)|p) )

U(Q,2d(Q,Q"))

whence the thesis follows. O

We end this Section by presenting Whitney’s extension Theorem 3.12 for C}
functions: we present here the proof given in [79], Theorem 6.8, which in turn
closely follows the one in Euclidean spaces as can be found in Section 6.5 of [67].
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Theorem 3.12. [Whitney Extension Theorem] Let F' C H" be a closed set,
and let f: F — R, k: F — HH" be two continuous functions. We set

(@) = f(P) = (k(P), 7p(P~" - Q))
oo (P, Q)

R(Q,P) :=

and, if K C F is a compact set,
pr(0) :=sup{|R(Q, P)|: P,Q € K, 0 < do(P,Q) < ¢}.

If prc(0) — 0 as 6 — 0 for every compact set K C F, then there erist f :H" — R,
f € Cy(H") such that fir = f and Vufip = k.

Proof. Step 1. Let U be the open set H™ \ F, and set
1
r(P) = %min{l,doo(P,F)}, PcH"

where we have set doo (P, F') := inf{d(P, Q) : Q € F'}. By Vitali’s covering theorem
(see e.g.[3], Teorema 2.1.6) there exist a countable set C' C U such that

U= |]JU®sr(P))

peC
and all the balls U (P, 5r(P)) are pairwise disjoint. For any () € U we set
Co:={PeC:UQ@,r(@Q)NUPr(P)) # 0}
Step 2. Let us prove that #Cq < (129)*"™2 and 1/3 < r(Q)/r(P) < 3 for any
P € Cq. In fact, if P € Cg one has
1 1 1
7(P) ~r(Q)] < gode(P.Q) € o (107(P) +10r(Q)) = L (r(P) + (@)

Hence r(P) < 3r(Q) and r(Q) < 3r(P), whence the upper and lower bounds on
r(Q)/r(P) follow.
In addition, we have

doo(P, Q) +r(P) < 10(r(P)+r(Q)) + r(P) < 43r(Q)

and so U(P,r(P)) C U(Q,r(Q)). Since the balls {U(P,r(P)) : P € Cg} are disjoint
and contained in U(Q, 437“(@)) and r(P) < r(Q)/3 we have

#eo e wo) (M2) 7 < oo, @y
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whence the claim #Cg < (129)**+2,
Step 3. Now let i : R — R be a smooth nonincreasing function such that

0<pu<l, p(t) =1fort <1, u(t) =0 for t > 2%/4,

9p(Q) = p (%) :

here dg is the regularized distance defined by dg (P, P") := ||p/*1 - P"| s, where
| - |5 is the homogeneous gauge

For any P € C' define

1/4
”(xayut)”K = ((|5L'|2 + |y|2)2 +t2) / .

Being a homogeneous distance, dg is globally equivalent to d., and in particular one

has
dOO(P/,P//) S dK(P/,PH) S 21/4doo(Pl,P”).

It follows that gp € C*°(H"), 0 < gp < 1 and

gp=1 onU(P,5r(P))

gp=0 onH"\ U(P,10r(P)). (3.7)
Moreover there is a constant M > 0 such that | X,gp| < M/r(P)forallj =1,...,2n;

it follows that | X;gp(Q)| < 3M/r(Q) if P € Cg. Observing that, thanks to (3.7),
gp(Q) =01if P ¢ Cg, one has

| X;9p(Q)] < 3M/r(Q) forall Q e H",j=1,...,2n. (3.8)

Define 0(Q) = > pec9r(Q), @ € H"; again by (3.7), one obtains that gp = 0 on
U(Q,10r(Q)) whenever P ¢ Cy, and so

o(@)= > gr(Q) ifQ €UQ,10r(Q).

PeCq

Observe that o > 1 on U; in fact, for any ) € U there exists P such that Q €
U(P,5r(P)), whence o(Q) > ¢gp(Q) = 1. Moreover, since #Cg < (129)*"*2? and
because of (3.8), we have o € C*(U) and there is a constant M’ > 0 such that

/

r(Q)

Now we define a partition of the unity subordinate to the covering {U(P, 10r(P)) :
Pe()} as

[ X;0(Q)] < foralQeU,j=1,...,2n.

gr(Q)

AT
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Notice that vp € C* and X;vp = % — gl)g# and so there exists M” > 0 such
that

"

Srl@=1 Y Xue(@ =0 and [Vep(@Q)| < o (39)

pPeC pPeC T(Q>

for any @ € U.

Step 4. For any P € C choose Qp € F such that deo(P,Qp) = do(P, F') and
define f: H" — R as follows:

@ if@QerF
HQ) = { Yo pec tP(Q)f(Qp) + (k(Qp), mo,(Qp' - Q)] if Qe U.

Notice that f € C*(U) and that

Vaf(Q) =) {[f(Qp) + (k(Qp). mn(Q5" - Q)] Vavp(Q) + vp(Q)K(Qr) }

pPeC

on U.

Step 5. We claim that Vi f = k on F. In fact, let Q € F and set H to be the
compact F'NU(Q,1). Define

¥(0) := sup{|R(P,P")| : P,P' € H,0 < d(P,P') <6}
+sup {|k(P) — k(P')| : P,P' € H,do(P,P) < 6}.

By the continuity of £ on F' and the hypothesis py () — 0, we have

P(d) — 0 as 0 — 0. (3.10)

If Q' € H one has

FQ) = F(Q) = (k(Q), (@7 - Q)| = [/(Q)—[(Q) — (k(Q). me(@" - Q)]
|R(Q",Q)llme(@" - @)

< U(deo(Q, @))]deo(Q, Q)] (3.11)

and |k(Q') — k(Q)| < ¥(|d(Q, @)])-
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Instead, if @' € U one has

Q) = F(Q) = Q). (@ - Q)
= /(@)= 1(Q) = k(@) m0(Q - Q)

< Y w(@)|F(Qr) = F(Q) + (K@Qp), mn (@5 Q) — (k(Q), 10(Q " - Q)]
PeCy

< > o @)|F(Qp) = F(Q) + (k(Qp), 7, (Qp' - Q)| +
+ Y vp(@)[(KQp) = K@), 1 (@ Q)]; (3.12)

if moreover one supposes do (@', Q) < 1/6, then r(Q’) < doo(Q', Q)/20 and then for
any P € Cg we obtain

doo(@, QP) < dOO(Qa P) + dOO(Pa QP) < 2d00(Q7P)
< 2(doo(Q, Q) + doo(Q', P)) < 2(doo(@Q', Q) +10(r(Q') + 7(P)))
< 2(dw(Q', Q) + 40r(Q"))
< 6dw(Q', Q).

Therefore by (3.12) and Step 2 we get

Q) = F(Q) = (K(Q), (@ - Q)] < Li(6lduc(Q, Q))|doe( @ Q)

which, together with (3.11), gives

(@) = F(@Q) = k(@) 7@ @) = olld(@. Q).

whence our claim follows. )
Step 6. We conclude by proving that f € Cf. We fix Q € F and Q' € H" with
doo(@, Q') <1/6. If Q' € F then

Vaf(Q) = Vaf(Q)l = [KQ) — KQ)| < ¢(d=(Q', Q)

where ¢ : R — R is defined as in Step 5 and gepends only on H,ie. on () and F'.
If ' € U we choose ) € F such that d(Q', Q) = F), whence

oo (@
Vaf(@Q) = Vaf(Q)] Vaf(Q) = k(Q)|

Vaf(@Q) = Q) + k(@) - k(Q)
Vaf(Q) = k(@) +¢(2dx(Q. Q) (3.13)

IAIA
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where in the last inequality we used the fact that

doo(Q. Q) < doo(Q. Q') + do(Q', Q) < 2de(Q, Q).

Thus we have to estimate the first addend in the right hand side of (3.13);
recalling (3.9) we get

Vaf(@) — k@)
= | D [/(@p) + (KQp), 10, (Qp" - Q)] Vrvp(Q) + [HQp) — k(@)]vr(Q)

PECQ/
< |3 [£(@Qp) — F@) + (KQp), 10 Q5" - Q)] Varvp(Q)| +
PECQ/
1 Y (Qr) — K@), 70 (@ Q) Varvr(@)| +
PECQ/
+ Z [k(Qp) — k(Q)]vp(Q")
PECQ/
Ml/ . .
< e Y W(de(@. Qp))do(@, Qp) +
T(Q ) PECQ/
S 0@ Q@ D)+ S (@ Q) (3.14)
T(Q ) PECQ/ PECQ/

where, in the last inequality, the estimate on the first summation comes from an
argument analogous to the one in (3.11). Since deo(Q', Q) < doo(Q', Q) < 1/6, ome
has 7(Q') = dw(Q', Q) /20 < 1/120 and so

r(P) < 3r(Q") <1/40 < 1/20
) = doo(P, Qp)/20 for such a P. Therefore

doo(@a Q/) +dOO(Q,’P) +dOO(P’ QP)

for all P € C¢g/, whence r(P
<
< 20r(Q") + 10(r(Q") + r(P)) + 20r(P)
<
<

doo (@a QP)

120r(Q") = 6d(Q', Q)
dos (@', Q) (3.15)

holds for any P € Cg. Combining (3.15) with (3.14) we obtain we get
IVaf(Q) = k(Q)] < My (6dw(Q', Q))
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which, together with (3.13), gives

IVaf(Q) — Vaf(Q)] < M (6du(Q', Q)).

and this completes the proof. O

3.3 H-regular surfaces and Implicit Function
Theorem

Definition 3.13. We shall say that S C H" is an H-regular hypersurface if for every
P € S there exist an open ball U(P,r) and a function f € CL(U(P,r)) such that
Vuf # 0 and

SNU(P,r)={Q € U(P,r): f(Q) = 0}.

We will denote with vg(P) the horizontal normal to S at a point P € S, i.e. the

unit vector
 Vaf(P)
Vi f(P)lp

We will see later (see Corollay 3.17) that vg is continuous and well defined, i.e.
it does not depend on the particular choice of f.

If S C H" is an H-regular surface and P € S, we define the tangent group T5S(P)
to S at P as

VS(P) =

TgS(P) :={Q e H" : (Vu(f o £p)(0), m0(Q)) = 0},

where f is any Cj; function defining S near P. Again, this definition does not
depend on the choice of f (one could also define TS(P) as the set {Q € H" :
(vp-1.5(0),m(Q)) = 0}), and it is easy to check that 7S (P) is a maximal subgroup
of H". The tangent plane to S at P is then the lateral

TuS(P) := P - T4S(P).

Remark 3.14. We stress the fact that the classes of Euclidean regular hypersurfaces
and H-regular surfaces are disjoint. In fact, it is not difficult to check that

Si={(z,y,t) eH' : fla,y,t) =2 —/2*+y* + 12 =0}

is H-regular in a neighbourhood of 0 (in fact f € Cf and X;f(0) = 1) but not C!
regular at the origin. One could produce even worse situations: for example, in [106]
an H-regular surface of Eucliden Hausdorff dimension 2.5 is provided.
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On the other hand, the Euclidean plane O := {(x,y,t) € H' : ¢t = 0} is Euclidean
regular but not H-regular at the origin: this can be easily proved observing that
O\ {0} is H-regular and its horizontal normal

v _ (yv _:E)
S

cannot be extended continuously at the origin. However, it is straightforward that
every Euclidean C! surface S is also H-regular provided it has no characteristic
point, (a point P is said characteristic if the Euclidean tangent plane at S coincides
with the horizontal fiber HpH").

The main result of this Section, Theorem 3.16, is an Implicit Function Theorem
for H-regular surfaces: as in the Euclidean setting we can (locally) see C' regular
surfaces as graphs of C! functions defined on a hyperplane, in the Heisenberg group
H-regular surfaces are (locally and in an intrinsic sense) “graphs” of functions (whose
regularity will be studied in Chapter 4). Here the role of Euclidean hyperplanes (i.e.
of maximal subgroups of R") is played by sets of the type

V, = {Q cH": <§:wjxj(0),wo(cg)> - o} (3.16)

for some w € R?*": observe that the V,,’s constitute all the maximal subgroups of
H" and that, for an H-regular surface, one has TgS(P) =V, _, ()
In what follows we will focus our attention on intrinsic graphs over the hyperplane

‘/1 = ‘/(1,0,...,0) = {(.’L’,y,t) € H" : €Ty = 0}7

this will not be restrictive, see also Remark 4.7. We can identify V; with R?" through
the map

Lo RzanxRT—ﬂ/lCH"
(n,7) — (0,m,7) (3.17)

if n =1, while we set

L 1 R™ =R, x R 2 xR, — V; CH"

V=(V2,...,Un,Un+2,...,V2n)

(n,v,7) — (0,09, ..., Uy, My Uy« -+, Vo, T) (3.18)

if n > 2. We stress the strange choice for the enumeration of the components of
v, which however is justified by the structure of ¢«. Finally, for s € R we use the
notation se; := (s,0,...,0) € H".
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Definition 3.15. Let w be an open subset of R*", and let ¢ be a real function
defined on w. The intrinsic X;-graph of ¢ is the map

d . w—-H"
Ar— 1(A) - p(A)ey. (3.19)

In the following, we will make no distinction between an intrinsic X;-graph and
its image, saying that ®(w) is the intrinsic graph of ¢ (also, we will often omit the
Xj-prefix). In coordinates, we have

®(777 v, T) = (gb(na v, T)a V2y .3 Uny 1, Ung2, .- ., U2, T + 277¢(777 v, T)) (320)

if n > 2, and a similar formula for n = 1.

One could also interpret the notion of intrinsic X;-graph in this way (see Figure
3.1): start from the point ((A) € V4 C H" and follow the flux of the field X; (which
is a sort of “normal direction” to V7) for a time ¢(A), then the point one reaches is
exactly ®(A). Observe that this is exactly what happens for Euclidean graphs: one
starts from a point of the hyperplane and follows the flux of the normal for a length
given by the function itself, thus reaching the graph.

t

Figure 3.1: Intrinsic graphs.

Notice that a point P = (x,y,t) € H" can be written in a unique way in the
form ¢(A) - se; for some A € R?", s € R which can be easily computed since s = z;
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and A = (n,v,7) (a similar formula holds in the case n = 1) with

n=vy, V= (To,...,Tn,Y2,.--,Yn), T=1—2x1Y]. (3.21)

We will write 7, (P) to denote the “projection” of P on R?" = V) defined, according
to (3.21), by

m(z,y,t) = (yl, (Toy ooy Ty Y2y ey Yn), b — Qxlyl) . (3.22)

We presently have all the tools to state the main result of this Section, which
has been proved by Franchi, Serapioni and Serra Cassano in [79], Theorem 6.5:

Theorem 3.16. [Implicit Function Theorem]| Let Q) be an open set in H", 0 € €2,
and let f € CL(Q) be such that X;f(0) > 0 and f(0) =0. Let

E={PecQ:f(P)<0} and S:={PeQ:f(P)=0}

then there exist 6,h > 0 such that, if we put w = }—(5,5[%_1 x |—62,6%*[ C R*",
J:={seg e H":s€]—h,h[} and U := 1(w) - J, we have U € Q and

E has finite H-perimeter in U;
oOENU=5SNU;
|OE|uLU is concentrated on S and vg = vg |OF|g-a.e. onU.

Moreover there exists a unique continuous function ¢ : w —| — h, h[ such that SNU
1s the Xi-graph of ¢, and the H-perimeter has the integral representation

o8t = [ 52 @) acna), (3.29

w

where ® depends on ¢ as in (3.19).

Proof. We divide the proof of the Theorem in several steps.

Step 1. We start by proving the existence of the continuous parametrization ¢.
Choose 6, h > 0 small enough to have X;f > 0 on U C €, where U,w and J are
defined as in the statement of the Theorem; take a convolution kernel ¢ € C2°(H")
satsfying (1.27) and, as in (1.29), set

Je(P) := (Cex f)(P). (3.24)

By Propositions 1.28 and 1.29, the maps f. are smooth and for any j = 1,...,n one
has

Xjfez(CG*Xjf>—>Xjfa Y]fGZ(CG*Y]f)—)Y]f as e — 0



3.3. H-regular surfaces and Implicit Function Theorem 73

uniformly on . In particular, for any A € w the map s — f.(¢(A) - se;) is differen-
tiable in | — h, h| and an easy computation gives

a

ds
which converges to (X f)(¢(A)-sep) uniformly in s. Therefore also s +— f(1(A)-seq)
is differentiable for |s| < h with

Je(e(A) - sex) = (X1 fe)((A) - seq)

L Hu(A) - se2) = (KL F)(U(A) - 5e2) > 0. (3.25)

Since f(t(A)-se;) = 0for A = 0and s = 0 we have f(¢(0)-(—hey)) <0 < f(¢(0)-hey),

and by continuity (choosing a smaller ¢ if necessary) one has
f((A) - (=her)) <0< f(u(A) - her)

for any A € w. The existence of an s €] — h, h[ with f(¢(A) - se;) = 0 then follows
from a continuity argument, while its uniqueness is a consequence of (3.25): this
gives the implicitely defined function ¢ : w — R.

In order to show that ¢ is continuous, it is sufficient to prove that, if A*¥ € w are such
that A* — A € w as k — oo, then there is a subsequence A* such that ¢(A*) —
#(A). But one can easily find a subsequence such that ¢(A*) — sy € [~h, h], and
so by the continuity of f and ¢ we have

0= f((A") - p(A")er) — f(u(A) - soer),

whence sy = ¢(A) and the claim is proved.

Step 2. Let us prove that OF NU = S NU. The continuity of f immediately
yields that 0F C S; on the other hand, for any given P = (z,y,t) € SNU let us set
P =(A) 1€, where A = 1;(P) € R% Asin Step 1, the function s — f(¢(A) - se;)
is strictly increasing and vanishes for s = 1 = ¢(A), then there is a sequence s; T 24
such that

f(L(A) - sper) <0

for all k. Since ((A) - sxe; — P we infer P € OF.

Step 3. We want to prove now that E has finite H-perimeter in U/; this will be
done, thanks to Proposition 1.5, by constructing a sequence {h.}. C BVg(U) with
equibounded H-variation and such that h. — yz in L'(U).

Again let f. be defined as in (3.24) and consider the maps

g,9c : wWx[=h,h] — R
9(A,s) = f((A) - ser)
9e(A,s) == fo(L(A) - seq).
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As before, one has %g; (A, s) = (X1f)(t(A) - seq) uniformly on @ x [—h, hl; therefore

there exist constants u, €y > 0 such that

d9.

ge('a _h> <0< ge('a h) on w and a
S

> ponw X [—h,h]

for any 0 < € < €y, and applying the classical implicit function theorem we obtain
smooth functions ¢, : @ —] — h, h[ such that g.(A, ¢.(A)) = fo(L(A) - p(A)er) = 0.
Then for 0 < € < ¢y we set

E.:={PeclU:P=1(A)-se forsome A €w,—h <s< ¢ (A)}
and h. := xp,; observe also that F. coincides with
{L(A)-ser €U : (A, s) €wx] —h,h[, g(A,s) <0} ={PelU: f(P)<0}.

We start by proving that h, — xg in L'(U) as € — 0: by Lebesgue convergence
theorem it will be sufficient to show that yg. — xg pointwise a.e. Observe that,
since fo — f,if P € E (ie. f(P) < 0) for small € one has f.(P) < 0, whence
Xe.(P) = 1 = xg(P) definitively; the same argument can be applied whenever
f(P) > 0 (obtaining xg (P) = 0 = xg(P) definitively) and so it will be enough to
prove that

H{PeU: f(P)=0}=|SNnU|=0.
Setting S, == {P € U : P = 1(A) - se; for A € wand |¢p(A) — s| < 1/n} and
observing that the Jacobian matrix of the map

R* > wx] —h,h[> (4,5) — (L(A) - se;) € H" = R*H!
has determinant equal to 1, we obtain that |S,| < 2|w|/n, whence

1S AUl = ()8l =o.

Let us show now that the functions h. have equibounded H-variation in U, i.e.
that the sets F. have equibounded H-perimeter in . Notice that OF. is Euclidean
regular and so for any ¢ € CL(U, HH") with |¢| < 1 we have

/ hedivge acmtt = / hedivge acitt
u UNE.

= / (o, ) dH?" < / Ing| dH*" (3.26)
UNOE. UNOE.
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and so it is sufficient to give a bound, independent of ¢, on the right hand side
of (3.26); in the previous formula, for P € OE, we have set n(P) to be the section
of HH™ given by

((n(P), Xo(P))gonsr, ..., (0(P), Xon(P))gansr ),

where n°(P) is the Euclidean unit normal to OF, at P. Observe that (3.26) could
have been deduced also directly from Theorem 1.9.
Remember that a parametrization of U N JE, is given by

b, . w—H"

(777 v, T) = (¢6(777 v, T)a V2, ..oy Uny 1, Ung2y .- oy V20, T + 277456(777 v, T))a

from now on we suppose n > 2, since the case n = 1 is completely analogous. By
area formula (see [69]) we infer

/ nfy| dH*" = / Ing; 0 @ | JO AL (3.27)
UNOE. w

where J®, is the Jacobian of V®,.. Explicitly, the Jacobi matrix V&, is

an¢e avg ¢6 e avn ¢e avn+2 ¢6 e ann ¢e 67¢5
0 1 0 0 e 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
: 0 - : : - : :
2¢5 + 2nan¢6 277802 ¢6 e 27]8% ¢e 2navn+2 ¢6 e 277802n ¢e 1+ 27787¢5

and J®? is the sum of the squares of all the deteminants of 2n x 2n minors of VJ®,;
a direct computation gives

2n

JO2 = (1+200:0)° + Y (85,00)% + (9yoe — 20.0:60) + (0-00)".

Notice that & N OE. can be seen also as the zero level of the regular map f!

/

Je
(33', Y, t) — T1 — ¢6(7T1(x7y7t)) =T1 — ¢6(y17 (.1'2, oy Ty Y2, e 7yn>7t - 2371191)
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and so the Euclidean unit normal n(x,y,t) to JF, is given by ‘gf::" By explicit
computation one gets
stl(l', Y, t) = (1 + 2778T¢67 _avg(bea ceey _avn¢67
- n¢6 =+ 245 aT(bG _avn+2¢67 R _avzn(bea _aﬂbe) (7Tl (l‘, Y, t)),

for all (x,y,t) € UNOE,, where we have used the fact that z; = ¢.(m1(z,y,t)) there.
Observe that |V f/ o &, = J®, and so equation (3.27) becomes

om 1/2
ey (ZWféofI)e,Xj)z) i -
UNOE. w

j=1
/ [1 + (_av2¢6 - 2vn+287¢6)2 +oe At (_avn¢5 - 2U2n87¢e)2 + (—8n¢5 + 4¢68’T¢6)2
1/2
+(_avn+2¢e + 2“287456)2 +et (_avzn (be + QUTLaT(bG)Q] ace. (328)
By differentiating the equation

0= fe(¢e(77> v, T)) V2.3 Uny 1, Ung2, oo, U2y T + 277¢6(n’ v, T))

one obtains

Oy, b = —axjfﬁ od, and 0, o = —ayjﬂ od,, j=2,...,n
’ Xife e X1 fe
Oy fe +20.0; 1.
an ¢6 = - ylf )_';1;5 tf o ®, (3.29)
atfe
0 e — — o d,
t¢ lee
which, substituted into (3.28), give
v]HIf5|
ng| dH* = | o ®, dL*™. 3.30
/LI08E€| H| w |X1f5| ( )

If we show that ¢ — ¢ uniformly on @, the right hand side of (3.30) will automati-
cally converge to

Vi f|
w ‘X1f|

(where @ is as in (3.19)) and this is enough to prove our goal, i.e. that the functions
he have equibounded H-variation.

od dL* <




3.3. H-regular surfaces and Implicit Function Theorem 7

Suppose on the contrary that there are ¢ > 0, ¢, — 0 and A* € © such that
b, (AF) — ¢(AF)] > 0. By compactness we can suppose that A*¥ — A € T and
be, (AF) — s as k — oo; it follows that [¢(A) — so| > o but, on the other hand, the
uniform convergence of f. to f implies

0= ¢ek(L(Ak) ’ fEk (Ak)el) - f(A ’ 8061)’

whence the contradiction sy = ¢(A).
Step 4. We are now in order to prove the area type formula (3.23). Arguing as
in Step 3, for any ¢ € CL(U, HH"), || < 1 one has

/XE divgy = lim/ he divyp
u =0 Ju

: (¢, Vi fe) 2 / (¢, Vuf) 2
=lim | ———F0®.dL" = | ——F"0ddLT", (3.31)
=0/, |Xif v | X1f]
where in the last equality we used Lebesgue convergence theorem. Taking the supre-
mum with respect to ¢ we obtain (3.23).
Notice that taking the supremum in (3.31) on ¢ € CL(V, HH"), |¢| < 1, where
Y € U is an open set, it is straightforward to prove that

P

Sy XS]
i.e. that c
|OF|uLU = ||XITIJJ:|| D, (L Lw). (3.32)
It follows that |OF|gLU is concentrated on S.
Step 5. We are only left to prove that vy = —% |0F|g-a.e. on SNU. By
Theorem 3.9, (3.31) and (3.32), for any p € CL(U, HH"), |p| < 1 we have

|;HfOI| 2 /
pod rvgod)— — dL" = o, vg) d|OF

. <800(1)7va0(1)> 2
— _ | divgp = — e,
Jovee == | %70

whence vy o ® = _|§§§‘ od L?"-a.e. onw, i.e.
Vi f
vp = — =vg |OF|g-a.e. on SNU.
Vi f]

O

Corollary 3.17. The horizontal normal to an H-regular surface S is well defined,
i.e. it does not depend on the choice of the defining function f.
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3.4 Rectifiability in the Heisenberg group

In this Section we collect, without proof, the most relevant results contained in [79]
which have not been presented in previous Sections; observe that, more generally,
many of them have been established also for step 2 Carnot groups (see [81]).

In the spirit of De Giorgi’s approach to rectifiability for sets of finite perimeter
(see e.g. [65]) we start by defining the H-reduced boundary OfE of an H-Caccioppoli
set F/ as the set of points P € H" such that

(a) |OE|a(U(P,r)) >0 forall r >0,

(b) there exists lim ve d|OFE|x and
r—0 U(P,r)

U(

r—0 Pyr)

(c) =1,

where vg is the horizontal inward normal to £ of Theorem 3.9.

Remark 3.18. Notice that, thanks to Theorem 3.16 and using the notations therein,
for an H-regular surface S one has S = O F.

We have the following
Lemma 3.19 (Lemma 7.3 in [79]). If E is an H-Caccioppoli set, then

lim vg d|OF|g = ve(P) for |OE|g-a.e. P.
r—0 U(P,r)
This implies, in particular, that |0E|g-a.e. point P € H" belongs to 0jFE;
moreover, up to re-defining vg on a |0E|g-negligible set, we are allowed to suppose
that

for any P € O E.

The first key result for rectifiability, exactly as in De Giorgi’s program, is a
blow-up theorem for H-Caccioppoli sets at points of the H-reduced boundary. More
precisely, for any P € H" we define

ET,PO = 51/T(£P(;1E) = {P e H" : P() . 57“(P) c E}

and for v € Hp,H" let us introduce the halfspaces Sy (v) and Sy (v) “orthogonal”
to v as

Sg(v) :={P eH": (rp,(P),v) >0}

Sy(v):={PeH": (nmp,(P),v) <0}.
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The common topological boundary of Sg () and Sg (v) is the maximal subgroup V,,
(see (3.16)), which we will also denote by Tg(v) = {P € H" : (np,(P),v) = 0}. We
then have

Theorem 3.20 (Theorem 4.1 in [79]). Let E be an H-Caccioppoli set and let Py €
0L E; then

11}2% XE,py, = XS (ve(Py)) in Ly (H") (3.33)
and
11}3(1) |0, p, |u(U(0, R)) = ||65ﬂ(VE(P0))||H(U(Oa R))
= L(T§(ve(P)) NU(0, R)) = 2ws, 1 R*™' (3.34)
for any R > 0.

Remark 3.21. Notice that, in the case of an H-regular surface S, the blow up limit
of E at a point Py € S (where E is as in 3.16) is exactly the halfspace Sg (vs(Fp))
whose boundary is the tangent group T5S(F) to S at B.

Analogously to the classical Euclidean case, we say that a set I' C H" is H-
rectifiable if

rc NUlJK, (3.35)
j=1

where HZ'(N) = 0 and each K; is a compact subset of an H-regular surface ;.
We then have

Theorem 3.22 (Theorem 7.1 in [79]). If E C H" is an H-Caccioppoli set, then
its H-reduced boundary OxE is H-rectifiable. More precisely, it is possible to find a
decomposition

0xE=NU| JK;
j=1

such that HZ"Y(N) = 0 and each K; is a compact subset of an H-regular surface S;
with the property that

ve(P) =vs,(P) foral Pc K;.

Finally, one has
2wWon—1

|0F|n = == S 1L o4E. (3.36)

2n+1
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As usual in the literature, one can also define the measure theoretic boundary
O,uFE of E as the set of points P € H" such that

E P P E
limsup| nU( ’T)‘>O and limsup|U( 1)\ B

—— —— > 0.
r—o U7 r—o - |U(P7)|

It is not difficult to prove that for an H-Caccioppoli set E we have
ol C O.wE C OF;
moreover, one has HZ 1 (0,zE \ 9 E) = 0. Finally, the following result also holds

Theorem 3.23 (Corollary 7.6 in [79]). If E is an H-Caccioppoli set, then

Aoy
|0E s = 22201 §Q-11 9 uE
2n+1

and the following divergence formula holds

2
‘/ divip AL = =2 / (vE, @) dSIL.
E O

Wan+1



Chapter 4

Intrinsic parametrization of
H-regular surfaces

The main aim of this Chapter is to give necessary and sufficient conditions for maps
¢ : Vi — R to parametrize H-regular surfaces, in the sense of the X;-graphs intro-
duced in Section 3.3. These conditions turn out to be of crucial importance in the
study of several features regarding H-regular surfaces (regularity of the parametriza-
tions, rectifiability, etc.), allowing for example the explicit exhibition of non Eu-
clidean H-regular surfaces. We will also investigate area-type formulae for H-regular
X;-graphs, thus paving the way for classical questions of Geometric Measure Theory,
such as Minimal Surfaces or the Bernstein problem (see also Chapter 5). Similar
items have been studied also in [48].

All the results of this Chapter are quite technical and will be illustrated in the
following brief overview. We want to stress in particular the importance of the oper-
ator W, which seems to be the correct intrinsic replacement of Euclidean gradient
for C! surfaces: we will see how they share several common features. Regarding
the operator W, we should address the reader also to the recent paper [24]. All
the results contained in this Chapter, except for the ones of Section 4.5, have been
obtained in [12] in collaboration with L. Ambrosio and F. Serra Cassano. Theo-
rem 4.33 is due to Cole and Pauls [52], while Remark 4.34 and Theorem 4.35 are
results contained in a joint work with F. Bigolin [25].

We then begin with Section 4.1, where we deepen the study of implicit graphs; in
particular, we endow R?" = V; with the homogeneous structure inherited from H",
thus defining the group law ¢, the left invariant vector fields X, Y;, T, the homoge-
neous dilations §¢ and the o-linear functionals on R?*". Through Proposition 4.3 and
Corollary 4.5 we provide an integral formula for the S¢~ measure of an H-regular
surface S, in terms of (derivatives of) its intrinsic parametrization only. This for-
mula will be extensively used in the rest of the book. With Remark 4.7 we also

81
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show that it is not restrictive to consider X;-graphs rather than general X;-graphs.

In Section 4.2 we provide the basic tools for the analysis of parametrizations of
H-regular surfaces. Namely, for any fixed continuous function ¢ : w C R*® — R we
introduce the (quasi-)distance ds on w and the concepts of W?-differentiability and
uniform W?-differentiability for functions 1 : w — R, see (4.12) and Definition 4.9.
When ¢ parametrizes an H-regular surface S, it turns out that dy4 is equivalent
to the restriction of d, to S, i.e. to the pull back Q)ﬁ_l ds. The notion of W¢-
differentiability, a sort of intrinsic differentiability taking into account d, (and so
¢ itself) and the homogeneous structure (R?",¢,4°), carries on the concept of the
We-differential of 1. The latter is a function W%y : w — R?"! turning out to
be continuous in case of uniform W?-differentiability (see Proposition 4.14). In the
regular case ¢,1 € C!(w) one can prove that

Wop = (Xoth, ..., Xpth, Vb — 46T, Yaub, ..., Vo)) ;

this quite technical result is proved in Theorem 4.16.

The main item of Section 4.3 is Theorem 4.17, where we prove that a map
¢ parametrizes an H-regular surface S = ®(w) if and only if ¢ is uniformly W¢-
differentiable. Moreover, we get two explicit formulae for the horizontal normal (4.36)
and for the S¢~! measure of S (4.37), which are consistent with Proposition 4.3.
These two formulae suggest that the intrinsic gradient W?¢ is the correct counter-
part of Euclidean gradients for classical graphs, since both of them can be obtained
by formally substituting the classical gradient with W?®. We also remark that
intrinsic regular parametrizations have continuous intrinsic gradient, exactly like
parametrizations of regular C! surfaces have continuous gradient. The proof of
Theorem 4.17 is quite technical and makes use of Lemma 3.11 and Whitney Exten-
sion Theorem 3.12. As a byproduct, we obtain that parametrizations of H-regular
surfaces are 1/2 Holder continuous from the Euclidean viewpoint (a fact already
known [106]) and, in fact, also a bit more regular (see Corollary 4.20).

In Section 4.4 we characterize uniformly W¢-differentiable functions ¢ (i.e. para-
metrizations of H-regular surfaces) by means of equivalent conditions. The main
result in this sense is Theorem 4.22, where we prove that such ¢’s are exactly those
for which B L B B B

(X, Xn, Vi6 — 2T(8%), Yoo, ..., Vad)

coincides, in distributional sense, with a continuous function (and, a posteriori,
with W%¢) and it is possible to find a family {¢.} C C*(w) such that ¢ — ¢ and
W p. — We¢ locally uniformly in w. The proof of this fact is similar to the one
of Theorem 4.16: the main technical obstacle is the absence of a good definition of
integral lines for the vector field Y; —4¢T', which however can be bypassed thanks to
a suitable notion of exponential maps. As an application, Corollary 4.32 furnishes
a recipe to easily construct H-regular surfaces that are not Euclidean C*.
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Finally, in Section 4.5 we restrict our attention to the problem of finding a
model metric space for H-regular surfaces in H'. This was identified [52] in the
space (R,|-]) x (R,|-|"?) for C' surfaces, while this result is no longer true for
general H-regular ones. We are in fact able (Theorem 4.35) to exhibit, by means of
Corollary 4.32, an H-regular surface S such that there are no Lipschitz maps from
S into that space with Lipschitz continuous inverse map.

4.1 More on intrinsic graphs

Let us introduce some subspaces of the Lie algebra h associated with H" (here )?j
means that in an enumeration we omit X;):

0; 1= span{Xl,...,)/(\'j o Xont (1< <2n);
[; :=span{X,;} (1<j <2n);
3 = b2 = span{T’}

and let m,, 7y, , To;, 71, T; be the projections of b, onto 0,v;, 05, [; and 3 respectively.
Define the following subsets of H™:

—eXp( )—{PEHn:p2n+1:O};
V =exp(v;) ={P e H":p;, =0};

O; :==exp(0;) =0NV;={P € H" : p; = pany1 = 0};
-—eXp(]) {PeH" :p; =0Vi#j};
Z =exp(3) ={P€H" :py = =pa, = 0}.

and let 7o, Ty, To,, 7, and 7z be the maps defined by expo 7, o exp !, expo Ty, ©

exp ! and so on; we will refer to them as orthogonal projections of H” on O, V;, O;, L;
and Z. Observe that V; coincides with the maximal subgroup V., according to (3.16),
where e; are the vectors of the canonical basis of R*"*1.

The following properties of these projections are straightforward:

Proposition 4.1. For any P,Q € H" we have

7o, (P) = mp o my, (P) = my, o mo(P)
7o, (P - Q) = 7o, (70, (P) - 70, (Q))

mz(P-Q) =7z(P) 72(Q) - mz(m0(P) - m0(Q))
\|7TM(P)Hoo <|Ple YM €{0,01,Vi, L1, Z}.
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Let us observe that Z is the center of the group, and that only Z, L; and V; are
subgroups; O; is a subgroup only if n = 1 (because in this case it coincides with L;),
while O is never a subgroup. We agree to denote with ae; the point exp(aX;) € Lj;
then for each P = (p1,...,p2ns1) € H" there is a unique way to write it in the
form Py, - P, for points Py, € V;, Pr, € L;: it is sufficient to take P, = p;e; and
Py, =P -P €V

Recalling the definition of the diffeomorphism ¢ : R** — V; given in (3.17)
and (3.18) we can endow R?" with the group law ¢ induced by ¢, i.e.

Ao B =" (u(A)-«(B)) A BeR™ (4.1)

We will use ¢% to denote the left translation by A in R*". Explicitly, if n > 1 and
A= (nv,T1),B= v 1)e€ R?" we have

AoB=n+n,v+v,7+7 +0(v,0))

where .
o(v,v') =2 Z(vnﬂ-v; S K)) (4.2)
j=2
if v = (V2,...,Un,Vps2, ... Van), V' = (V... 0}, VU)o, .Vs,). Instead if n = 1 and

A= (n,1),B=(n,7) € R? we simply have
AoB=n+n,7+7).

Notice that in both cases the induced group structure is the one arising from direct
product R x R if n = 1 and R x H*! if n > 1, via the identification R** =
R, x (RZ"2 x R,) =R x H*" %

Moreover, since V) is closed under group dilations, for » > 0 we can define the
family of induced intrinsic dilations

5(A) =010, (1(A) € R™, (4.3)
which can be written explicitly as

op(n,v,7) = (7“7),7’?1,7’27') forn > 2
6¢(n, 1) = (rn, r°1) for n = 1.

Therefore, (R?",¢,6°) turns out to be a homogeneous group in the sense of Folland
and Stein ([73]), and ¢ is a group isomorphism. We define a o-linear functional
L : R — R as a homomorphism which is also homogeneous of degree 1 with
respect to the dilations, i.e. L o> = rL. The following Proposition comes from
Proposition 5.4 in [79]:
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Proposition 4.2. Let L : R*™ — R be a o-linear functional; then there is a unique
vector wy, € R*"™! such that L(A) = (A, wr), where we write

2n
(A,wr) = nwrp + Z vjwr; i n > 2w = (wra, -+ Wray) and A = (n,v,T)
i=2j7n+1
(A wr) = nwpsy ifn=1,w, =wpy and A= (n,7).

Conversely, through the previous formulae we can associate to each w € R*~1 ¢
unique o-linear functional L.

Observe that the choice of the enumeration of the components of w; has been
made in order to be coherent with the one made for the components of v and with
the fact that 7 is the (n + 1)-th coordinate of t(A).

For n > 1, the tangent space to V} is generated by the restrictions of Xs, ..., X,
Y1,...,Y,, T, and so we can define the vector fields X,..., X, Y1,..., Y, and T on
R2" given by X, := (1), X; and Y; :== (¢7),Y;, T := (1~ )*T. In coordinates, they
can be written as

~ 0 0 _
Xj(n,v,T):%—i—QvﬁnE forj=2,....n
j
~ 0
)/1(77’@’7):8_
"l (4.4)
Yi( ) = O 900 forj=
J 777U7T _a’l}]+n /U_]aT (0) j— ,...’n
~ 0
T(n,v,T):E.

For n +1 < j < 2n we will also use the notation )~(j = z_n.
If n = 1 the tangent space to V; is generated by Y; and T, and as before we can
define 5

Yi(n,7) = ()Y = o~

o (4.5)

T, 7) = ()T = 5

and it could happen that we will write X, instead of Y;. It follows from the definition
that X s Yj, T are ¢-left-invariant.
With these notations, let us provide an improvement of Theorem 3.16:

Proposition 4.3. Under the same assumptions as in Theorem 3.16, let us consider

the distribution
a¢ 8¢2

Bo = Yio - 27() = 5 - 25
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on w =| — 0,5[*" 1 x] — §2, 6], where ¢ and § are given by the same Theorem 3.16.
Then, if n > 1 we have

- Xf . Y, f Y f
Xip=—-"2"0d, Yip=—2-0d Bp=———-0d 4.6
0 Tx Y 0T TR 0= X 0
for 3 = 2,...,n, where the equalities must be understood in distributional sense on

w. Moreover, the H-perimeter has the integral representation

0B 1) = m)S2 LS ) = [ \1eiBol+ ), [1KoPHTof] ac, (@7)

2won—1
W2n+41

where we have set ¢(n) := . If n =1 we have simply

|0E|u(U) = c(1)SEL(SNU) /\/1+|%¢|2 dc?. (4.8)

Proof. We will give the proof only for the case n > 2; the adaptation to n = 1 does
not present difficulties.

Arguing as in Step 1 of the proof of Theorem 3.16, we can suppose that there
exists a family of functions f, : Y — R such that f. € Cl( ), Xife>0onU and

Xife— X,f, Yife—=Y;fe uniformlyonld (j=1,...,n).

Now, following Step 3 of the same proof, we obtain the existence (for ¢y small enough
and h as in Theorem 3.16) of functions ¢, € C'(w,] — h, h[) (0 < € < ¢) such that

fe(t(A) - p(A)er) =0 forall Aecw

¢. — ¢ uniformly on w for € — 0.

Using formulae (3.29), for j =2,...,n we get
oy X; fe

Xj¢e - le @6
~ Y g
}/jgbe = lef od,
09 097 0. do.  Yife
%(be—@n 287'_877 40 or  Xif. °®e,

where as usual @, is the map A —— ((A) - ¢(A)ey; this immediately implies (4.6).
The integral representation (4.7) follows from the area type formula (3.23), together
with (4.6) and (3.36). O
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Remark 4.4. The operator B is known in the literature as Burgers’ operator: see
for example [66], section 3.4.

Corollary 4.5. Let Q be an open subset of H", and let f € C{(Q) be such that
X1f >0 on S :={f =0} Suppose that S is intrinsically parametrized by a real
continuous function ¢ defined on an open set w C R* (i.e. S := ®(w), where as
usual D(A) :=1(A)-p(A)ey), and let E := {f < 0}. Then for each Borel set F C {2
we have

0EL(F) = cn) S (F18) = [ /11804 ), [ Kool + Vo] dc™ (49)

e-H(F)

ifn>2, and
[0 a(F) = (1) 21 (F 1 S) = / VIFIBOE A2 (4.10)
>-1(F)

ifn=1.

Proof. Again we give the proof only for the case n > 2. Let u := m(|0E|u),
where 74 is the usual push-forward of measures through the map defined in (3.22).
Observe that, as m = @' on S and |0E |y is concentrated on S, we have

[0E|u(F) = p(@~ (F N S)).

Therefore by Proposition 4.3 there are locally (i.e. for each A € w) rectangles I such
that py; = \/1 + B2+ >0, [|Xj¢|2 + |§~/j¢|2} L£?". The class of these rectangles
is sufficiently rich to apply the measure coincidence criterion (see for instance [6],
Theorem 1.8), and so u = \/1 + B2+ >0, [|)?j¢|2 + |§~/j¢|2} L£?" on all w, whence

|0E|a(F) = wp(@ '(FNS))
- / \/1+\%¢\2+Z?:2[\)?j¢|2+\%¢|2] ace,
d-1(FNS)

which is the thesis. O

More generally, after fixing an identification ¢; : R*" — V}, for j = 2,...,2n
we can define X;-graphs as those subsets S of H" for which there exists a function
¢ :w C R*™ — R such that S = {¢;(A) - ¢(A)e; : A € w}.

A general definition of intrinsic graph in H", which applies also to surfaces with
topological codimension bigger than 1, is given in [83]. In particular this notion is
stable with respect to left translations of the group; more precisely, from Proposition
3.11 in [83] we infer
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Proposition 4.6. Let S C H" be an X;-graph, i.e. S = {P(A) :=1;(A) - p(Ae; :
A e w}. Let P = (pl,...anJrl) € Hn’ P = ij . PL], with PLj = Dj€; € Lj and
Py, € V;. Then the translated set £pS still is an X;-graph; more precisely, if we
define

op RQn N R2n

Ar— (P -y(A)- Pl = (P)o Ao (P

j J '1)7

J

we have

[p8 = {¥/(4) == 1;(A) - ¢ (A)e; A€ '},

where w' := op(w) and ¢ : W' — R is defined by
¢'(A) = p; + d(op-1(A)).
In addition we have ® = lp o ®oop-1.

Remark 4.7. In Theorem 3.16, and more generally in all related results, we made
a precise choice, i.e. to consider only regular hypersurfaces that are zero sets of
functions f € C} with X;f > 0. This fact, somehow, makes X; a “privileged”
direction: for example, observe that such surfaces turn out to be Xj-graphs, i.e.
functions on Vj, and that we translate points of Vi by an element with all the
coordinates null except the first one. One can prove that this is not restrictive; the
key tool in this sense are the so-called “horizontal rotations” introduced in [120],
section 2.1.

Suppose in fact that, in an open set 2 C H", X, f > 0 for some 2 < k < 2n. Let
us consider a second Heisenberg group, which we denote H™: all the objects related
to this second group will be denoted with the apex ’, such as the algebra b’, the
vector fields X, Y/, T", the subgroup V/, the map ¢/ : V] — R?" etc. If k < n we

jrtgo
define a Lie algebras isomporphism [ : h — b’ given by the extension by linearity of

(X)) =X, (Yp)=Y, I(X1)=X,, (V1))=Y
I(V)y=V" ifV € span{Xy,Y;, X, Vi }+.

In the other case k > n+1, i.e. Yy, > 0, we define [ by extending

[(Yeen) = X1, U Xp—p) =Y, U(X1)=X}, (V1)=Y]
I(V)=V" ifV e span{Xy, Y1, X0, Vi n}t

l'is a group isomorphism and a global diffeomor-

It follows that L := exp’ ol o exp™
phism between H" and H".
Let f':= foL™';as X|f' = X,f > 0 we have that there is an open set w C R?"

and a map ¢ : w — R such that 8" := {f' = 0} N Q' = &'(w), where ' := L(Q)
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and ®'(A) := /(A) - ¢(A)es. Let 1, := L~ o/, which identifies V;, and R?", and
for A € w define ®(A) := L™ H(P'(A)) = tx(A) - p(A)ey: it is immediate to see that
S:={f=0}NQ=>(w).

Also, we can easily extend the results of Theorem 3.16, Proposition 4.3 and
Corollary 4.5. In particular, the distributional equality (4.6) becomes

—-1vy/ —1v7 _ ’
)Zj¢:_moq>7 ?;‘gb:—(l Yi)f (')

Xif °f, Bé=- Xif

o d.

4.2 Graph distance and W¥¢-differentiability

From now on ¢ : w — R will be a fixed continuous function defined on an open,
connected and bounded set w C R?"; we will denote with W¢ the family of first-
order operators (Wf o an) (the reasons of the enumeration from 2 will be clear
later) defined for n > 2 by

(=~ 0 ) ‘

Xj:a—vj‘l—ZUJ_i_nE 1f2§j<n

~ ~ 9 )
W ={ YV, —4¢T = — —4¢p— if j=n+1 (4.11)
J 5 on or

\ijn:a—Uj—ij,nE ifn+2<j<2n,

while for n =1 we put W¢ = W2¢ = }71 — 4¢T: a% — 4¢%_
As usual, by ® we will denote the function w 3 A — (A) - p(A)e; € H", whose

explicit expression is given by (3.20). The graph distance between A, B € w is
defined by

ds(A, B) := |mo, (2(A) - ®(B))oo + |72(P(A) " - @(B))| (4.12)

which is equivalent to |7y, (P(A) ™! ®(B))|e. Explicitly, forn > 2 and A = (n,v, 1),
B = (n,v',7") we have

ds(A, B) = |(f, ) = (n,0)| + |7 = 7+ 2(8(B) + &(A)) (' — 1) + o v/, 0)|'/2

where o(v,v) has been defined in (4.2); if n =1 and A = (n,7),B = (', 7') we
have

ds(A, B) = i — | + 7" = 7+ 2(6(B) + ¢(A)) (of —m)|"/*.

With this definition we are able to prove the following



90 Chapter 4. Intrinsic parametrization of H-regular surfaces

Proposition 4.8. If there is an L > 0 such that
[0(A) = ¢(B)| < Ldy(A, B) (4.13)
for all A, B € w, then the quantity d, in (4.12) is a quasimetric on w, i.e.
(i) dy(A,B) =0 A= B;
(i1) dy(A, B) = dy(B, A);
(iti) there ewists ¢ > 1 such that dy(A, B) < q [dy(A,C) + dy(C, B) |
forall A,B,C € w.

Proof. The assertions in (i) and (i7) are straightforward, while for (i7i) we use the
inequality

oo (D(A), ®(B)) < |¢(A) — ¢(B)| + dy(A, B)

to achieve
dg(A,B) < 2ds(P(A), ©(B))
< 2[deo(P(A), 2(C)) + doo(P(C), 2(B)) ]
< 2[|9(A) = ¢(O) + dy(A, C) + [¢(C) — ¢(B)| + dy(C, B) ]
< 2(L+1)[dy(A,C) +dy(C, B)].

U
Let us observe that if ¢ satisfies the condition (4.13), then it is locally 1/2-Holder

continuous in the Euclidean sense, i.e. for all compact set K C w there exist an
L' = I/(K) > 0 such that

6(B) — ¢(A)] < L'|B — A" (4.14)
for all A, B € K. First, let us observe that for any P € H",a € R

[m2(P - aer)|oe < I72(P)loo + V2]al 2 |my (P)[3?

[7z(aer - P)lo < |m2(P)ls + V2|a]*|my; (P)[2.
Now let = Supg |¢|, A = supucx |A| and, for the sake of simplicity, ¢ =
®(A), ¢ = ¢(B); then

716(B) — ¢(A)| < do(B, A)

o, (=der - t(A) 7 u(B) - den) | + [mz(—der - L(A) - u(B) - der) |
|B = Al + |m2((A) " - o(B) - ¢er) oo + V2M |y, (e(A) ™ - u(B) - ¢fer) 3L
(2VA + V2M)|B = A2 + |mz(((A) " u(B)) oo + V2M |y, (1(A) 7 u(B)) [
(2VA +2V2M + C(K))|B — A2, (4.15)

IN N CIA
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where in the last passage we used (3.3).
Ifn>2and A= (n,v,7) € R* and r > 0 are given, we define

I.(A) = {(77',1/,7") e R*™ :|(n,v) — (n,v)| < |7 —7| < T} ,
while if n =1 and A = (n, 7) we put
L(A)={(n,7)eR*: |y —n| <nr |7 —7| <r}.
Now we have all the tools to state our notion of W?-differentiability:

Definition 4.9. Let A € w and ¥ : w — R be given.
(i) We say that 1 is W®-differentiable at A if there is a o-linear functional
L :R*" — R such that

o I(B) — ¥(A) — LA o B)
B—A dg(A, B)

= 0. (4.16)
(ii) We say that ¢ is uniformly We-differentiable at A if there is a o-linear
functional L : R*" — R such that lim, ;o My(¢, A, L,r) = 0, where

[¥(B') —(B) — L(B~' o B')| }
ds(B, B') '

My, A, L,r):= sup { (4.17)

B,B'el(A)
B#B'

Let us observe that, if ¢ is uniformly W?-differentiable at A, then it is also
Wo-differentiable at A, as (4.16) is satisfied with the same functional L in (4.17).

Remark 4.10. If ¢ is W?-differentiable at A, then it is continuous at A. Indeed,
if L € R?*"~! is such that (4.16) holds and wy, is as in Proposition 4.2, then for any
Becw

W(B) —(A) — (wr, A" o B)

-dy(A, B At'oB
d¢(A,B) d¢>( ) )+<wL7 o >

W(B) —¢(A) =

and we deduce the continuity of 1 at A from the W?-differentiability at A together
with the fact that ds(A, B) is bounded near A.

Remark 4.11. We stress the fact that if ¢ : w — R is uniformly W?-differentiable
at A € w, then ¢ is Lipschitz continuous (between the quasimetric spaces (w, dy)
and (R, deye)) in a neighbourhood of A; in fact there exist C,r > 0 such that

[(B) —p(A) — L(A™" o B)|
(A B) =C

for all B € I,.(A), whence
[(B) = ¥(A)] < [(wr, A7 o B)| + Cdy(A, B) < (Jwr| + C)dy(A, B) .
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We will denote by dys1(A) the o-linear functional L such that (4.16) holds;
we will call the vector wy the W?-differential of v at A, and we will denote it by
WP (A), writing [We(A)]; for wr;, j = 2,...,2n. These definitions are well posed
because of the following

Lemma 4.12. Let ¢, : w — R be such that ¢ is W?-differentiable at A € w, and
let L be a o-linear functional such that (4.16) holds; then L is unique.

Proof. We have to prove that, if w,w’ € R?**~! are W?-differentials of v at A, then
w = w'. We will give the proof only for the case n > 2, as it can be easily adapted
for n = 1. Therefore let A = (n, v, T): it is easy to prove that

) (w—w', (n —n,v" —v))
lim = 0. 4.18
B=(n v/ ,7')—A ds(A, B) ( )

Let
= (v, 7) €w:dy(A B)=|(n —n,v —v)|}
=(n,v,7) Ew:my (P D) =0}
B=W, v 7")ew:7"=17=-2(¢'"+ )0 —n) —o(v,v)}
where, here and in the following, we write ®' &, ¢ and ¢ instead of ®(B), ®(A),

. 2 = )
¢(B) and ¢(A) respectively. Let d2 > 0 be such that [ := I5,(A) C w; we want
to prove that there exists a 9; > 0 with the property that for all (n,v") with

n —n, v —wv)| < there is a 7/ € [T — dy, T + O3 such that (n/,v',7") € A, i.e.
n
T=7=2(¢" 4+ )0 —n) —c(v,v).
Being ¢ continuous we can suppose that |¢| < M on I; then, for each (,v’) with
|(n" —n,v" —v)| < &1, the functions
Vor o) (T) =7 = 2(8(0, 0", 7) + ¢(A)) (" — ) — o (v, v)

map the closed interval [T — dy, 7 + 5] into itself provided 0; is sufficiently small. In
fact

1V ) (7) — 7l
206"+ )0 =)+ 2o 050 = vnast))

= 200+ )0 = 1)+ 2o (0 (Vs = i) = s (0] = 1))

so it is sufficient to choose d; such that (2M +2|v|)d; < 5. The fixed point theorem
guarantees that v,y . has a fixed point 7/(n/,v) if |(’ —n,v" —v)| < &, so that
(', o', 7'(nf,0")) € A, ie.

d¢((77/7 Ula T/(nla UI))? (777 v, T)) = ‘(77/ -1, v — U>| :
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Moreover, it is not difficult to prove that 7'(n/,v") — 7 if (/,v") — (n,v) (it is
sufficient to use the very same estimate as in (4.19)). Now, for each fixed j =
2,...2n, we can easily construct a sequence B" = (n" v" ") € A such that

e B" — A:
e ' =n, v =v;Vi#jand dg(B" A) =v —v; >0 if j#An+1;
e v'=vand dy(B", A)=n"—n>0 ifj=n+1.

By (4.18) we obtain

<w_w,7(77h_€7vh_v)> :wj_w;’

0= lim

T (B A)
whence w = w'. I

Remark 4.13. Let A € w and P := ®(A). With the same notations of Proposition
4.6, set op-1(B) := "} (P™' - «(B) - Pr,) and ' := op-1(w). Let a® denote the
element (0,...,0,a) € R*" and define

¢/: w/ N R
B=(n,v',7") — ¢(op(B)) — ¢(A);

then @' (w') = p-1(P(w)), where as usual ®'(B) = «(B) - ¢'(B)e;.

It is not difficult to show that a function 1 is W?-differentiable (resp. uniformly W -
differentiable) at B € w if and only if 1 o op is W -differentiable (resp. uniformly
W' differentiable) at op-1(B) € w': the key observation is that

d¢(B, B/) = d¢/(0’p—1(B), O'p—l(B/)).

The following Proposition shows that uniformly W ¢-differentiable functions have
continuous W ?-differentials:

Proposition 4.14. Let ¢,¢ : w — R be two continuous functions; suppose that
there exists an A € w such that ¢ is uniformly W?-differentiable at A and that
is We-differentiable in an open neighbourhood U of A. Then W? : U — R?"! s
continuous at A.

Proof. As usual we give the proof only for n > 2. Suppose that the thesis is not
true; then there exist § > 0 and a sequence {A7} C U such that A7 — A and

(Wop(AT) = WP (A)| = 3.
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By the uniform W?-differentiability of ¢ at A we can find an open rectangle I
centered at A such that
. [9(B) — $(A) — (WHH(A). (f — .0/ — )]

A,Bel d¢(B7 A)
A= (%W)?éBZ(??/ 0 77-/)

} <5 (4.20)

There is no loss of generality if we suppose that A7 = (7, v?,77) € I for all j; then,
using the We-differentiability of 1 at A’ and reasoning as in Lemma 4.12, we can
find a sequence of points BY = (7, v, 7"7) € I such that

[Y(B7) — (A7) — WOP(A), (7 — 1,07 — 7))

dy(B7, A7)

dg(B?, A7) = (7 — 1’ ;07 = ); (4.22)

the vectors (n7 —n?, v —v?) and (W? (A7) — W%)(A)) are parallel. (4.23)
Observe that (4.22) and (4.23) imply that

[(WOP(AT) = WPP(A), (n” — 0’ ;07 — o))
= |WP(A)) — WP (A)|dy(B?, A7) > 35dys(B?, A7) .

< 6; (4.21)

Then, using also (4.21), we get
[W(BY) — (A7) — (Wh(A), (7 — 1,07 — 7))

ds(Bi, A7)

W) ~ W), (o = 0 — )] |

N dg(B7, A7)
_[(BY) — (A7) — (WO(AY), (7 — /v — o))

de(BI, A7)

30dy(B7, A7) — ddy(B?, A7)

§ )

which contradicts (4.20). O

It is not clear whether the converse is true, i.e. if W#-differentiability in an open
neighbourhood and continuity of the W?-differential imply uniform W ?-differentia-
bility. Observe that this is true when we consider the classical notion of differentia-
bility in Euclidean spaces.

Recalling how we defined the family W¢ of the 2n-1 first-order operators I/Vj5
(that, as usual, we identify with the associated vector fields), the following Proposi-
tion explains why we call the vector wy, (with L as in (4.16)) the W¢-differential of
¥: the fact is that the j-th component of this vector is (at least for regular maps)
the derivative of ¢ in the Wf—direction:
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Proposition 4.15. Let ¢,v : w — R be continuous functions such that 1 is W-
differentiable at a point A = (n,v,7) € w (respectively A = (n,7) if n = 1). For
j=2,...,2n let v’ : [=§,0] — w be a C'-integral curve of the vector field Wj) with
7(0) = A and such that the map

[=0,8] 3 s — d(7(s)) €R
is of class C'. Then we have

() — e (0)

s—0 S

= [Wop(4)] .. (4.24)

Proof. Again we accomplish the proof only for n > 2. Let us fix the following
notation: if v7(s) = (n(s),v(s),7(s)) we set
’yz() v; () for2<i<2n,i#n+1
(

Y1 (s) == n(s)
’72n+1( s) == 1T(s)

For j # n + 1 the thesis is obvious: indeed we must have 7/ (s) = A ¢ exp(s)?j)
ie. t(79(s)) = t(A) - exp(sX;), and so

ds(A, 7 (s)) = s,

which gives immediately (4.24) as a consequence of the W¢-differentiability and the
fact that

v/(s) = v, fori ¢ {j,2n + 1}, yg(s):vj—i—s.
For 7 =n + 1 we have
Yt (s)=v;  if i#En+1,2n+1
Tmii(s) =n+s (4.25)
’737;}1 —7'_4f Y (r))dr
and so

Aoy (5), 7 (0))
:|ﬂ+kgé¢w“%wM+ﬂww“@»+MMb

1/2

=|ﬂ@+§+4A}WH®MHJWW“®HWMW

= || <1+ |—i||A(s)|1/2).

1/2)
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One has |A(s)| < C's? for a certain C' > 0, indeed

A(s) = —4 / B (1) dr + 206(7(5)) + B(A)]s

0

- / ")) — G(A)]dr + 2/6(y"(s)) — d(A)]s

—_= 82

~—

; (4.26)

it follows that dy(7"*'(s), A) < (1 4++/C)|s| and so

6H1(5) = 6 H0) = V(A
g
67 1(5) — $(4) — Loy (A 07741(5)|
=0V LGTI(5), A) ‘

By letting s — 0 and using the W®-differentiability of 1) at A we obtain the thesis
(4.24). O

The following result shows that the class of ¢, such that v is W?-differentiable
(in fact, uniformly W¢-differentiable) is not empty, and gives an explicit formula for
the differential W% of smooth functions.

Theorem 4.16. Let ¢,¢ € CY(w); then ¢ is uniformly W®-differentiable at A for
all A € w and

WopA) = (X, Ko, Vit = 4670, v, Vo) (4)

or all A € w. In particular, WY : w — R?*™1 is continuous.
J p )

Proof. Let us fix A= (7,7,7) € w (A= (7,7) if n =1) and set

w(A) = <X277Z)7 s ’Xn¢7 i}lw - 4¢fwa 572% sty i\}nqu)) (A) S Ranl
if n > 2, while for n = 1 we set

o, o

w(A) 1= Yit(A) — 46(A) T (A) = %() 49(A) 5 -(4).

According to the notation of Definition 4.9, we have to prove that

lim My (¢, A, w(A),r) = 0. (4.27)

r—0
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Therefore let B, B’ € w be sufficiently close to A (in a way we are going to specify
later), and for n > 2 let X, W be the C! vector fields given by

2n

— ~ — 0 9,
X = | Z (v — vy) X W .= o 4gb$
Jj=2,j#n+1
Let us set
B* = exp(X)(B)
= Bo(0,(vy— V2, ..., 0, — Up,Upyg — Uny2, ...,V — V2),0)
= (n,v',7 =o', v))
B" = exp((n —n)W)(B*) = (/,v',7") (for a certain 7");

observe that B* and B” are well defined if B, B’ € I5,(A) for a sufficiently small d.
For n = 1, X is not defined and we set B* = B and B" := exp((n/ — n)W)(B) =
(,’7/’ 7_//)'

As 1) is of class C! we have

Y(B") —¢(B)
= [(B) =¢(B")] + [(B") = (B + [(B") = ¢(B)]

/

n="n

= W) - B+ [ 70 (exp(sTT)(B) ds+

0

n /0 D (0 = 0))(X;0) (exp(sX)(B)) ds

jEnt1
2n
= [W(B)—o(B)]+ Y. (W —v)X;p(A)+
j=2,j#n+1

+(0' =)W (A) +o(|(n —n,v" = v)])
= [W(B) = ¢(B")] + (w(A), (f = n,v" —v)) +o(dy(B', B)).  (4.28)

For n =1 the same calculation leads to
(BY) = (B) = [(B) = (B")] + w(A)(n —n) + o(ds(B', B)).
Therefore it is sufficient to prove that ¢(B’) — ¢/(B") = o(ds(B’, B)). We have

(¥ (B') = %(B")]
dy(B', B)

|7_/_7_//|1/2

ds(B', B)

< wy(0) (4.29)
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where
wy () == sup { W‘(j/ )__A%(;i ) LA £ A € L;(A)} : (4.30)

and where we know that wy,(d) — 0 as § | 0 because ¢ is C'. So we have to prove
that |7/ —7"|*/2/d,(B’, B) is bounded in a proper neighbourhood of A. Observe that

/ Z
=]

4ot v) + 4 /0" " blexp(sTV)(BY) ds|

7= 4 200(B) + 6B — 1) + o) +

w22 [ ool (B) ds = ((B) + HE) T — )

4B B +210(B) = 6Bl | +2 |6(B) - o(B") I =] +
w22 1 Gl (B ds — [6(B") + 6B ~ )]

=: dy(B',B)*+ R\(B', B) + Ry(B', B) + Rs(B', B). (4.31)

IN

IN

For the case n = 1 we arrive to (4.31) along the same lines (it is sufficient to follow
the same steps “erasing” the term o (v',v)).
Now we want to prove that there exist C, Cy > 0 such that

Rs(B',B) < Cy|n/ —n|? (4.32)
Ry(B', B) < Cydy(B', B)? (4.33)

for all B', B € I5,(A), and that for all € > 0 there is a . €]0, dp] such that
Ri(B',B) <|n —nf* + ¢ — 7" (4.34)

for all B', B € I5.(A). These estimates are sufficient to conclude: in fact, choosing
€ :=1/2 and using (4.31), (4.32), (4.34) and (4.33), we get

|7 = 7| < dy(B', B)? + Ci|ln/ —n|* + |0/ —n|* + |7 = 7"]/2 + Cody(B', B)?

whence
i7" — 7Y% < Csdy(B, B)

which is the thesis.
For s € [—dg, 0p] we can define

o) =2 [ olexpl (B dr = [6(expsTB) + o(B s (135
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as in (4.26) one can prove that there is a C; > 0 such that
lg(s)] < Cys*  for all s € [—dg, dg)

so that (4.32) follows with s =n" —n.
If wy is as in (4.30) (with ¢ instead of ), then
Ri(B.B') < 2wy(0)|r" ="' 1]
< I =0l 4 we(0)° = 7).
Since ¢ is C!, wy(d) — 0 for § | 0, and so for all € > 0 there is a . > 0 such that
for all § €]0, 6] we have wy(8)? < €, whence (4.34) follows.
Finally,(4.33) follows from Ry(B,B’) =0 if n = 1, and from

Ry(B,B") = |0 —nll¢(B) — ¢(B")]
= [ =nl| DY (@ —v)(w(A);+o(1))
=2, j#n+1

< 20Jn' — i’ — v| < Cady(B', BY?

if n > 2. 0

4.3 H-regular graphs and W¢-differentiability

In this section we are going to characterize H-regular graphs in terms of the uniform
We-differentiability of their parametrizations. In the sequel, for a given function f
of class C}; on an open set 2 C H" it will be convenient to write

Vaf = (Xaof, ..., Xof, Yof, . Yaf) € COQR™ ),
The main theorem of the section is the following

Theorem 4.17. Let ¢ : w — R be a continuous function and let ® : w — H"™ be the
function defined by

O(A) :=1(A) - p(A)ey.
Let S := ®(w). Then the following conditions are equivalent:

(i) S is an H-regular surface and vs,(P) < 0 for all P € S, where vg(P) =
(vs1(P),...,vsan(P)) denotes the horizontal normal to S at a point P € S;

(ii) ¢ is uniformly W®-differentiable at any A € w.
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Moreover, for all P € S we have

. 1 W -1 « R201
vs(P) = ( \/1 n \W¢¢|2’ \/1 n \W¢¢\2> (P (P))eRxR ) (4.36)
and
c(n) ngl(S) = / \/1 + |[Wop(A)|? dﬁzn(A). (4.37)

Proof. We will give the proof only for n > 2, since the generalization to n = 1 is
immediate.

Step 1. Let us begin with the proof of the implication (i) = (i7). Let P =
®(A) € 5, where A = (,v,7) € w; then there exist an 7y > 0 and a function
f € CL(U(P,ry)) such that

SNU(P,rg) ={Q € U(P,r) : f(Q) =0}
Vaf(@) = (Xif, - Xofo Voo Yaf) (@) £ 0 for all Q € U(P,ry).

As v5(Q) = —Vif(Q)/|Vaf(Q)], by hypothesis we have that
X1f(Q) >0forall @ e SNU(P,ry). (4.38)
Moreover without loss of generality we can suppose that
A= (n,v,7)=(0,0,0) and P = ®(0,0,0) = 0. (4.39)

Indeed, if this is not the case, let us consider S’ := fp-1(S) = ¥'(w'), where we
use the same notations of Remark 4.13. We have that S’ N U(0,ry) is an H-regular
surface because it is the zero set of the function f' = f o £p, and by left invariance
X1f(Q)=X1f(P-Q) >0 forall @ € U(0,79). Finally (again by Remark 4.13), ¢/
(which is equal to ¢ o op up to an additive constant) is uniformly W -differentiable
if and only if ¢ is uniformly W ?-differentiable.

By the uniqueness of the parametrization provided by the Implicit Function
Theorem we can assume that there is a 0 > 0 such that I5 := I5(0,0,0) € w and

f(@®(B)) =0 for all B € I. (4.40)

With the assumptions in (4.39), by the continuity of ® for each r €]0,7¢/4] there is
a 0 < 6, < r such that

®(15,(0,0,0)) C U(0, r). (4.41)
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For each B = (n,v,7),B' = (/,v',7') € I5.(0), with ¢, sufficiently small, we get, by
applying Lemma 3.11 to f with P =0, Q = ®(B), Q' = ®(B’), that

[(Vaf(2(B)), mas) (2(B) " ®(B)))]

[F(2(B) = f(2(B)) + (Ve f(2(B)), mom)(®(B) " 2(B"))]

01 R(0,) doo(®(B'), ©(B)

R(ér) UIM(@(B )
+H7Tz(<1>( ) O(B)) ]

< Gy R(6:) [[6(B') = ¢(B)| + dy(B, B') ] (4.42)

where (' is given by Lemma 3.11 and

IAIA

)
B))ls + [70,(2(B) " @(B')) o +

R(8) = sup {|Vaf() = Vaf (Pl 2dr.py) : P P" € 2(15(0,0)).}
By the uniform continuity of Vg f : W — HH" we have
13{51 R(6,) = 0. (4.43)
Therefore, (4.42) and (4.38) imply
(Vi(2(B)), (1 —n,v' = v))

X1f(®(B))

(Ve (2(B)), 7as)(2(B) ' (5)))]
X1f(®(B))

< [nt Xif] CR6) [0B) - 6(B) + dulBB)] (440

¢(B') — ¢(B) +

for any B, B' € I5,. By (4.43) we can suppose

Cy
iHfU(o,ro) Xif

for a certain 7 €]0,ro/4[, and so

R(ér) <

Do | =

(Va(®(B)), (' — 1,0/ —v))

6(B) — 6(B)| < |6(B) —o(B) + X, /(9(B)) i
| (Vu(®(B). (f — n.v' ~v))
X, f(@(B))

< [16(B) — 6(B)] + dol(B, B)] /2 + Cal(nf — .0/ — )
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for each B, B’ € I5_. Therefore there exists a constant Cy > 0 such that
6(B') = ¢(B)| < Cady(B, B'). (4.45)

Putting together (4.44) and (4.45) we get that there is a C5 > 0 for which

'¢<B'>—¢<B>+WH@Q}EZ/(;;’%”” < CyR(,) do(B. B (146)
and so
'¢<B'> oB) + (Y of n,v—v>>|
ds(B,B’)

Va/(2())  Va/(0)
Xif(@() X f(0)

for each B, B" € I5,(0) with » <7. Thanks to (4.43) and the fact that f is of class
Ci; we get that

: Vif 0)
17}{51 Maﬁ(‘b’ 1 X1£(0) 5) 0,

i.e. ¢ is uniformly W?-differentiable at 0 and

VHf

W20(0) =~ 0). (4.47
More generally, one has
\Y
oo (P) = - S (p),

from which (4.36) immediately follows; therefore the implication (i) = (ii) is com-
pletely proved.

Step 2. Now we have to prove the converse implication (i7) = (i). Let A =
(n,v,7) € w and P = ®(A) € S. We have to find ry > 0 and a f € CL(U(P,r))
such that

SNU(P,ro) ={Q € U(0,r) : f(Q) =0} (4.48)
X1 f(Q) >0 forall Q € U(P,ro). (4.49)
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Let 07 be such that I5,(A) € w; as ¢ : w — S is a homeomorphism we can suppose
that

SNU = (15 (A))

for a certain open bounded neighbourhood I of P. Let F := SN and g: F — R
be defined by ¢(Q) := 0. Define

k . F— HH"=R>™
Q+— (1,-W?p(271(Q)))

We start by proving that, thanks to Whitney’s extension Theorem 3.12; there is a
function f € Ci(H", R) such that

f=9g=0 onF (4.50)
Vuf(Q) = k(Q) = (1,-W?¢(d1(Q))) forall Q€ F. (4.51)
Consider a compact subset K of F; for Q,Q" € K and 6 > 0 let
_9(@Q) —9(Q) — (k(Q), m(Q@'Q)) _  (k(Q) m(Q™'Q))
' d

7@, Q) 1-(Q.Q) Q@)
p(6) = sup {|R(Q, Q)] : Q. Q' € K,0 < do(Q, Q') < 6}

In order to apply Whitney’s Theorem (which will provide the desired f) we have
only to show that

1;{151 pr(0) =0. (4.52)

Let us suppose that the converse is true, i.e. that there is an ¢y > 0 such that for
all h € N there are

Q" =d(B"), QV=oB") e K,

Bh — (nh Uh Th) Bh/ — (nh/ Uh/ 7_h/)

for which
0 < doo(Q", Q") < 1/h (4.53)
ht _ h W¢> Bh ht _ h bt _ h
o< RQ QM) < B ER A R Z Ol (4

where as usual we denoted by ¢, ¢" the quantities ¢(B") and ¢(B") respectively.
In (4.54) we used the fact that do.(®(B), ®(B’)) > dy(B, B'); this estimate, together
with (4.53), implies that d4(B", B")) < 1/h and so

(" =" 0" = ") < 1/h (4.55)
[T =7t 26" + MY ")+ oW ) < /R (4.56)
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Setting M := supy |¢| and N := supy |(n,v)| we get

[T =< LR 20 M — i 20 (0" M) (%)
< 1/R2+4M|n" — nh| + 2N — " () (4.57)
< C/h

where C' := 1+ 4M + 2N > 0 depends only on K. In () we used that (v, v") =

2370 Ll = o) — o (v, — ol )], while (4.55) justifies (+x). Since K is

compact, up to subsequences there is a B = (n/,v',7") € I5,(A) D K such that

lim B" = lim B" = B.

h—o0 h—o0
In particular B", B" € I,;)(B) (where r(h) — 0 as 7 — 0), and by (4.54) and the
continuity of the W?-differential one has

0 <€y < My(¢, B,W?¢(B),r(h))

for any h, which contradicts the fact that ¢ is uniformly W¢-differentiable at B €
I5,(A). This is sufficient to apply Whitney’s Extension Theorem, and so we get the
existence of an f € C§;(H",R) for which (4.50) and (4.51) hold.

The proof of the implication (i) = (i) will be complete if we show the validity
of (4.48) and (4.49) for a certain ro. Let S" := {Q € H" : f(Q) =0, Vuf(Q) # 0}; as
we have already said, we can suppose that P =0 and A =0. Since 0 € SNU C 5,
one has

f(0)=0 and Vif(0)=(1,-W?%(0))

and by the Implicit Function Theorem there are an open neighbourhood U’ of 0 and

a continuous function ¢’ : I5(0) — R such that

CI)/ : [5/(0) — S’ﬂﬁ
B uB)-¢'(B)e;

is a homeomorphism. Therefore ®~'(S’ N U’) is an open subset of I5(0) which
contains 0, and so there exists a 6" €]0,d'[ for which I;/(0) C ®~1(S"NU’); by the
uniqueness of the parametrization we get that ® = ® on I5(0). Now, let U” and
U" be open neighbourhoods of 0 in H" such that

SOU" = DI (0) = O (I5(0)) = S’ NU" (4.58)

and let ro > 0 be such that U(0,7¢) C U"NU"™. Then by (4.58) we get U(0,r9)NS =
U(0,79) NS, from which (4.48) and (4.49) follow.

Finally, the area type formula (4.37) follows from Corollary 4.5 after finding a
global f (that is given only locally), which can be done by a standard argument
involving a partition of the unity. This completes the proof of the Theorem. O
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Corollary 4.18. With the same notations of Theorem 4.17, suppose that S := ®(w)
is H-regular; then ¢ : (w,dy) — R is locally Lipschitz continuous.

Proof. The thesis follows from Theorem 4.17 and Remark 4.11. U

Now we want to establish some Holder continuity properties for uniformly W¢-
differentiable functions on w and therefore for parametrizations of H-regular graphs;
in particular we want to improve the Hélder continuity obtained in (4.14). More
precisely we have the following

Proposition 4.19. Let ¢ : w — R be uniformly W?-differentiable at A € w. Then
there is an ro > 0 such that I,,(A) € w and

[¢(B') — ¢(B)|
|B' — B|/2

I :B,B'EITO(A),O<|B—B’|<T}:O.

lim sup {

Proof. Again we treat only the case n > 2.
If B= (77771, T) and B/ == (n/,vl, T/) let us set

" — —(W* )
A0 { BV A= OV O =0 =0 g ),

by the uniform W¢-differentiability of ¢ at A we know that limso R(6) = 0. In
particular there is an 9 > 0 such that ¢ is Lipschitz continuous between (1,,(A), dy)
and R, i.e. (4.13) holds. Then by (4.14) (see the steps that lead to (4.15)) there is
a C'1 > 0 such that

dy(B',B) < C1|B' — B|'? for all B', B € I,,(A). (4.59)
But if B’ # B € I,(A), 0 <r < rg, we have

6(B) —¢(B)| _ [¢(B) = ¢(B) = WG(A), (' —n,v' —v))| ~ dy(B', B)

RV 4,(B', B) B - B
¢ |(77/_71avl—v)|
W

< CLR(r) 4 ColWep(A)|r/? — 0 forr | 0.
This completes the proof. O

From Proposition 4.19 and a standard compactness argument we get the follo-
wing
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Corollary 4.20. Let ¢ : w — R be a continuous function and consider the related
¢ w — H". Let S := ®(w) and suppose that S is an H-reqular surface with
vs1(P) <0 for all P € S; then for each w' € I we have
: [¢(A) — o(B)] . :
17}{{)1 Sup{mA,BEW,O<|A—B|<T’ =0.
Finally, we stress an interesting approximation property for the parametrizations
of H-regular graphs:

Proposition 4.21. Let ¢ : w — R be a continuous function which is uniformly
We-differentiable at any A € w; then for any A € w there is a § = §(A) > 0, with
I5(A) € w, and a family {¢¢}eso C C°(I5(A),R) such that

b — ¢ and W¢, — W2 uniformly on Is(A).

Proof. Arguing as in the proof of Theorem 4.17 we can suppose that A = 0, $(0) =0
and
SNU(0,r)={P e U(0,r): f(P)=0}

for certain r > 0 and f € C}(U(0,r)) such that fo® = 0on I5(A), with § sufficiently
small. Moreover, arguing as in the proof of the Implicit Function Theorem 3.16, we
can suppose that, for a certain 0 < r’ < r (and possibly considering a smaller §),

there are two families {f.}c~o C C®(U(0,77)) and {¢¢}e=o C C®(I5(A)) such that

fe — fand Vyf. — Vgf uniformly on U(0, r’)
Ve, Vaf o _
¢ — ¢ and — od, — o® =W?% uniformly on [5(A)

lec _le

where ®.(A) = (A) - ¢.(A)ey is such that f. o &, = 0; indeed the set S, :=
{P € U0,r) : f(P) = 0} D ®(I5(A)) is a (Euclidean) C!-surface, and then

its parametrization ¢, is uniformly Wy -differentiable with

_Vafe
X 1 f €
from which the thesis follows. O

W¢5 ¢6 =

od,,

4.4 Characterization of the uniform W¢?-differen-
tiability and applications

The main result we are going to prove in this section is the following
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Theorem 4.22. Let ¢ : w — R be a continuous function. Then the following
conditions are equivalent:

(i) ¢ is uniformly W-differentiable at A for each A € w;

(ii) there exist a w € C%(w,R*™1) such that, in distributional sense,

w=(Xod, ..., Xnd,Bb Yob,... . Yud) ifn>2
w =B ifn=1

and there is a family {dc}eso C C™®(w) such that, for any open ' € w, we
have
b — ¢ and W ¢, — w uniformly on o' (4.60)

Moreover, w = W% on w and

. [9(A) — o(B)| . : _
TEI(I)I+SUP{WA’BGW’O<|A_B|<T =0. (461)

for each ' € w.

Remark 4.23. Suppose n = 1 and w = 0, then the functions ¢ : w — R satisfying
condition (iz) of Theorem 4.22 are entropy solutions of Burgers’ scalar conservation
law in classical sense. Indeed by performing the change of variables

R2=R, x R, 3 (x,t) —> (t,—4z) € R* =R, x R,

the Burgers’ operator B can be represented in classical way with respect to the
variables (z,t) as

_ Ou  1ouw?

ot - 2 Ox

if u=wu(z,t) € C'{w*) and w* C R? is a fixed open set (see [66], chapter ITI, section
3). In this case condition (ii) of Theorem 4.22 reads as the existence of a function
u:w* — R and of a family {u.}. C C*(w*) such that

Bu

ue —u and Bu.—0 uniformly on «' (4.62)

for any open w’ € w*. Let us assume now w* = (a,b) x (—4,0) and let g(z) := u(z,0)
if € (a,b). We claim that u is an entropy solution of the initial-value problem

ou 10u? )
E+§%—O 1n(a,b)><(0,5)
u=g on (a,b) x {t = 0},
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More precisely, by definition (see [66], chapter XI, section 11.4.3), we have to prove
that

u € C°([0,6), L}, (a,b)) N L2 (w*); (4.63)

u(-,t) — gin L, (a,b) ast—0"; (4.64)
ov ov

/w * {e(u) o du) " | dndt > 0 (4.65)

for each v € Cl(w*), v > 0 and for each entropy/entropy flux pair (e, d), i.e. two
smooth functions e,d : R — R such that e is convex and €' (u)u = d'(u) Vu € R.
Then (4.63) and (4.64) follow at once because v € C°(w*). As u. € C'(w*)

d(e(ucr)) , O(d(uc))
o T ox

pointwise, with w, = Bu, and, by (4.62), we — 0 uniformly in w’. Therefore
multiplying both sides of (4.66) for a given v € Cl(w*), integrating by parts and
taking the limit as e — 07 we get (4.65) too (actually with an equality, so with no
entropy production).

= w, €' (ue) in w* (4.66)

Remark 4.24. Let n > 2 and let assume that ¢ : w — R satisfies condition (i) of
Theorem 4.22 with w = 0 in an open connected set w C R?*"; then ¢ is constant in
w. Indeed for a fixed Ay € w let B = B(Ap,ry) C w be a Euclidean ball centered at
Ag with radius ro > 0 and, for a fixed n € R, let

B, = {(v,7) e R 2 xR, : (n,v,7) € B}, ¢,(v,7):=d(n,v,7) if (v,7) € B,
The open set B, C R?"? x R, = H"! is connected and
Xipy=Y;0y=0in B, (j=2,...,n),
in distributional sense; therefore we get
¢(n,v,7)=¢(n) V(n,v,7)€B. (4.67)

In fact a Poincaré inequality holds in (H""!, d,) with respect to the horizontal gra-
dient Vi := (Xo,..., Xy, Ys,...,Y,) (see, for instance, [94], Proposition 11.17) and
then there exists a constant ¢ > 0 such

/ ‘(bn - ¢n,Uc‘ dc! <ecr / |VH¢W| dc—1
Uc(Pyr)

Uc(Pyr)

for every P € H* ', r > 0 such that U.(P,r) := {Q € H* ' : d.(P,Q) < r} C B,

and
byu. = ][ ¢, dL*
Uc(Pyr)
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On the other hand by (4.67) we infer

%qﬁz%:OinB
on

in distributional sense. Thus ¢ is constant in B(Ay, o) for all Ay € w for suitable
ro > 0. As ¢ is continuous and w is connected we can conclude that ¢ actually is
constant in the whole w.

Observe that the same statement fails when n = 1: see e.g. Example 5.8

In order to prove Theorem 4.22 we will need some further notation and prelimi-
nary results.

Let ¢ : w — R be a continuous function, and suppose that for all A € w there
are 0 < d9 < 071 such that, for each j = 2,...,2n there exists a map

Yio: [—52,52] X ]52(14) — L;l(A) Cw
(5, B) — 77 (s)
such that y7 € C'([—dy,do], R*") for each B € I5,(A) and, with the usual identifi-
cation between vector fields and differential operators,

B WP onB onyf ifj#n+1
E1) T T _ B TR
: Oy —4(@o741)0r i j=n+1
77 (0) = B;

(E.2) there is a suitable continuous function w; : w — R (depending only on ¢) such
that

(15 (s)) — 6(12(0)) = / “wy (P (r)) dr
for each s € [—dq, da).

We will call the {v;} a family of exponential maps of W? at A; we will write
eXpA(st)(B) := 77 (s). Notice that here we are not asking these maps to be
continuous in the parameter B: see also Remark 4.34.

Remark 4.25. Notice that if the exponential maps of W at A exist, then the map
[~02,82] 3 5 +— (expa(sW})(B))

is of class C! for each j = 2,...,2n and each B € I5,(A).
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Remark 4.26. Observe that, because of the left invariance of the fields )?j, for
j # n one must have

eXpA(sVde))(B) =Bou '(expsX;) = Bou !(sej). (4.68)

Moreover, if there exist exponential maps of W at A (in particular there are w;
as in (E£.2)), then for any X\ = (Ao, ..., Ap, Augas - - -5 Aan) € R?"72 there exists also
an exponential map for the field > )\ij, i.e. there are two continuous maps 7, :
[—d2,02] X I5,(A) — Is5,(A) € w (with, possibly, a do > 0 smaller than the one in
(E.1), depending on \) and w) : w — R such that

(s, B) = Z)‘j W]¢(7)\(873))
PYA(OaB> =B

(s B)) — d(1(0, B)) = / “un(y(r, B)) dr

In fact, it is sufficient to take vx(s, B) := B ¢ (0,sA,0) and w) := > A\jw;.

The following Lemma provides sufficient conditions to guarantee the existence
of exponential maps of W¢.

Lemma 4.27. Let ¢ : w — R be a continuous function and suppose that

(i) there exists w € C%(w) such that

w = (’UJQ, .. .,wzn) = ()?Q(ﬁ, .. .,j(vrn(ﬁ, %(ﬁ,XPnJrQ(ﬁ, .. '7)?2TL¢) an Z 2
w = Bo ifn=1

i distributional sense;
(ii) there is a family of functions {¢¢}e=o C C°(w,R) such that
e — ¢, WP, —w  uniformly on o’
for any W' € w.

Then for each A € w there are 0 < dy < &1 such that, for any j = 2,...,2n and all
(s,B) € [—02,00] X Is,(A), there ezists eXpA(SWj’)(B) € I5,(A) € w; moreover,

w;(B) = %¢(6XPA(SW]¢)(B>) |s=0"
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Proof. Again we can suppose n > 2, as for n = 1 the proof can easily be derived.
There is no problem if j # n + 1; in fact by (4.68) it is sufficient to set

eXpA(sVde))(B) =B oexp(s)?j)

which is defined on [—dy, d2] x 15, (A) for a sufficiently small 6, with values in I5, 40y €
w. Then (E.1) is fulfilled by construction and (E.2) comes from the continuity of ¢
and the fact that w; = X ;¢ in distributional sense.

For j =n 41 and € > 0 consider the Cauchy problem

{ ’.}/6(8, B) = 877 - 4¢e(7€(8a B))aT = Wfil(76(87 B))
(0, B) = B

which has a solution 7. : [=d2(€), d2(€)] X Is,)(A) — I5,(A). By Peano’s estimate
on the existence time for solutions of ordinary differential equations we obtain that
d2(€) can be taken greater than C'/|¢e| (1, (a)) (where the constant C' depends only
on ¢1), and so we get a dy > 0 such that ds(€) > o for all e.

Now, for each fixed B € Is,(A) the functions ~.(-, B) are uniformly continuous on
[—02, 0], and by Ascoli-Arzeld’s Theorem we get a sequence {ej, }5, such that e, — 0
and v, (-, B) — ~(-, B) uniformly on [—d3, J2]. Remembering that

S a a
Yor(5.B) = B+ /0 [5’_7) — 460, (e, (5, B))E] s

Dor(Yor (5, A)) — b0y (72, (0, B)) = / W% 0, (e (5, B)) ds

and for j — oo we get (all the involved convergences are uniform)

v(s,B) = B+ /08 [(% — 4o (y(s, B))a%_} ds
6(1(5, B)) — 6(1(0, B)) = / Wnir((s, B)) ds

i.e. (E.1) and (E.2) holds. O

As in Euclidean spaces the gradient of a function is the vector composed by
the derivatives along the exponentials of the vectors of the canonical basis, we will
prove, in the following theorem, that the W?-differential is the vector made by the
derivatives along the exponentials of W¢.

Theorem 4.28. Let ¢ : w — R be a continuous function such that, for a certain
A € w, the following conditions are fulfilled:
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(i) there are 0 < 69 < &1 such that, for each j = 2,...,2n there exist a family of
exponential maps

exp 4 (sW?) 1 [=62, 0] x I5,(A) — I5,(A).

(ii) for each W' € w

|¢(B,> B ¢(B>| . D/ 7 I -
rlirélJrsup{ I :B' ' Beuw,0<|B —B|<r;=0.

Then ¢ is uniformly Wo-differentiable at A and

(W90) (A)); = - o(expa(sW))(A)) .y

Proof. Forn > 2let A= (ﬁ 0,7),B=(nv,7),B = (1,v',7") € w, while for n =1
A={@7),B=(nr71),B =W, €w, and let w = (w,,...,wy,) be as in (E.2).
We have to prove that

lim My(, A, w(A), 5) = 0 (4.69)

where M, is defined as in (4.17).

The proof is exactly the same as in Theorem 4.16: at first, for n > 1, we define
the vector field X := ZJ 9 jni1 (V) 'UJ)W¢ = Z] 9. jotni1 (Vs — )X and then we
set

/ / /! /
= Bo(0,(vy —v2,...,0, —VUp, Uy g = Ung2s- -, Uy, — Vap),0)

If n =1, X is not defined and we set B* := B.

The main obstacle is that in general we cannot integrate along the vector field
Wfﬂ, i.e. we cannot define B” := exp((n’ — 77)(6)@77 — 4¢5%))(B*); however, this
problem can be solved using the existence of exponential maps, more precisely by
posing

* /’ /U/7 T// ifn Z 2
B" = exp,((n' = mWi)(B") = EZ/ ) ) ifn =1
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for a certain 7”. Therefore, we can rewrite (4.28) as

¢(B) —¢(B) = [9(B) = o(B")] +[¢(B") — ¢(B")] + [¢(B") — ¢(B)]

= [0(B) = o(B")] + /O " Wai1 (exp (W1 )(B7)) ds +

+ / S W - v)wexpa(sX)(B) (+)
0 j=2,j#n+1
= B -eBN+ 3 Wf-vwAd)+
J=2,j#n+1

+(1" = nwni1(A) +o(|(n' —n,v" = v)|)
= [¢(B) = ¢(B")] + (w(A), (n —n,v" —v)) + o(dy(B’, B))

if n > 2, and as

¢(B') = ¢(B) = [¢(B') — ¢(B")] + w(A) (0 —n) + o(dy(B’, B))

if n = 1. Observe that in the passage signed with (x) we have used the continuity
of the w; at A. Reasoning as in (4.29) and (4.30), the keypoint is again to prove
that the quantity |7/ — 7"|*/2/d4(B’, B") is bounded in a neighbourhood of A, and

rewriting (4.31) we obtain

|7_/ _ 7_//|

— ’T’—r+a(fu’,fu)+4/0 _ ¢(QXPA(3W5+1><B*>MS)

< =T 2A0(B) + (B — ) +o(v v)] +
22 [ dlexpa W) () ds = (0B + 6(B) o = 1)
< do(B' B +2|6(B) — 6(B)nf —nl +210(B) — 6(B) |l — ] +

w22 1 G a(WE B ds = (9B + 0B~ )
= dy(B',B)*+ R,(B',B) + Ry(B', B) + R3(B', B) (4.70)

for n > 2; for n = 1 simply don’t consider the term o(v’,v). Therefore we have once
again to prove (4.32), (4.33), (4.34); this can be done following exactly the same
line as in the proof of Theorem 4.16 and using (E.1) and (E.2): the only thing one

must pay attention to is to write exp 4(- Wfﬂ) instead of exp(- W) in (4.35). O

We are now in order to give the proof of Theorem 4.22.
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Proof (of Theorem 4.22). We will accomplish the proof only for n > 2, because as
usual the generalization to n = 1 is immediate.

Step 1. Let us begin with the proof of the implication (i) = (4¢). The statement
in (4.61) follows from Theorem 4.17 and Corollary 4.20. By Proposition 4.21 we get
that for each B € w there is a 6(B) > 0 (with I5)(B) € w) and a family of C*

functions {¢c 5 : I5p)(B) — R}ocect such that
¢ep — ¢ and Wy, .¢cp — W‘% uniformly on I5g)(B). (4.71)

As F := {lsyp)(B) : B € w} is an open covering of w we can associate a partition of
the unity {6; : i € N} which is subordinate to it, i.e.

0; € C*(w),0<6; <1onw forall ¢ (4.72)
{spt 6;};en form a locally ﬁnite covering of w, and for all i € N (4.73)
there is an I; := Isp@)) (B(i)) € F such that spt 0; C I;

Yoy =1o0nw. (4.74)

Let ¢ci := ¢ Bi) - R?" — R where from now on, if necessary, we use the convention
of extending functions by letting them vanish outside their domain. Let ¢, :=
Yoy b; @iy by construction ¢, € C*(w) and

= — Pei H0i—
In ; an In
8¢6 = 891 a(bez
— P ) ) >
a’Uj Z ((%j ¢e,z + Ql a’Uj ) (n - 2)
=1
a(be o - aez a(be,i
or _izl (8T¢€’Z+Ql or ) '

In particular
oo

WP p, = Z (¢e,iW¢€9i + eiW¢€¢e,i) on w.
i=1
We have to show that (4.60) holds for any fixed w’ € w; by (4.73) there is only
a finite number of index iy, ..., i such that w'N spt 6;, # 0, and o’ C UF_, spt 6;, .
Then

k k
b= 0,0, and ¢= 6,6 onw (4.75)
h=1 h=1
k
WP =3 (bei,W0s, + 0, W"0.;)  onw. (4.76)

h=1
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Equations (4.75) and (4.76), together with (4.71), give
P — ¢ (4.77)

k
WoGe = Y (SW7 + 6, Wo¢) = w (4.78)
h=1

uniformly on w’, where we put

20;,
or

Wy 4

Y Xneih’ an

Vv;i = (Xgeih,... ,YgQih,...,YnQih) .

Observing that 22:1 gbVVi =0 we get that w = W?p € C%(w, R*!) and

w=(X20, ..., X086, Yas, ..., Yn0)

in distributional sense.

Step 2. The reverse implication (ii) = (i) follows from Lemma 4.27 and Theorem
4.28. The hypothesis (ii) of Theorem 4.28 (i.e. the assertion in (4.61)) is satisfied
because of the following Theorem 4.30: the key observation is that, thanks to the
uniform convergence of ¢ and W% ¢,, we can estimate | ¢c[ o0y and [We | oo )
uniformly in € for any w” € w. Moreover, the uniform convergence of W% ¢, allows
us to choose a modulus of continuity for W% ¢, which is independent of e. There-
fore there is a function « :]0,4+00[— R, which does not depend on €, such that
lim, o a(r) =0 and

¢5 B/ _¢EB
sup{| |(B/)_B|1/(2 Vg Bew,0<|B-Bl<r! <am

which implies (4.61). O

Theorem 4.29. Let I C R*" be a rectangle and let ¢ € CY(I) be such that W¢ =
(’wz, . ,’wzn) € CO([, RQn_l), 1.€.

)?j(b:wj, §7j¢:wj+n forallj=2,...,n

Then for any rectangle I' € I there exists a function « :]0,+oo[— [0, +00|, which
depends only on I", ||y, |[WO@|r~ry and on the modulus of continuity of
Wpy1 on 1" (where I" is any open rectangle satisfying I' € 1" € 1), such that
lim, o a(r) =0 and

up{%:A,Bel’,0< |A— B ST} < a(r). (4.79)
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Proof. As usual we suppose n > 2, since the proof can be easily adapted to the case
n = 1. We start by setting

K = ju}) |Al, M :=|¢|reuny and N :=|W¢|rn,
c 1"

and let # be the modulus of continuity of w,; on I”, i.e. an increasing function
10,400[> r — [B(r) € RT such that |w,41(A) — wus1(B)| < B(]A — B|) for all
A, B € I" and lim,_,o B(r) = 0. We divide the proof in several steps.

Step 1. Let us fix another rectangle J C R?*" such that I’ € J € I”, and let us
introduce the following notation: for A = (n,v,7) € J we define v4 as the curve
solution of the Cauchy problem

Talt) = 5 = 4001057

va(n) = A

Standard considerations on ordinary differential equations ensure that 4 belongs
to C'([n—e€,n+¢], I") for a certain ¢ > 0 which does not depend on A; moreover, we
can choose € so that va([n—e,n+e¢]) C Jforall A€ I'. Let va(t) = (n+t,v,7a(t)),
then
d? d
@ raal) = 40040 ()] = s (a0 (0). (4.50)
Step 2. Set §(r) := max{r'/4, B(Er'/*)'/?}, where E > 0 is a constant which will
be specified later; we start by proving that o/(r) < 6(r) + 2N'2§(r) + Nr'/? for r
“sufficiently small” (in a way we are going to specify, but depending on K, M, N
and [ only), where we have set

A)— o(B
ao'(r) = Sup{% tA=nv,7),B=1,v1)el,0<|]A-B|< r}.
Suppose on the contrary that there exist A = (n,v,7), B = (n',v,7’) € I’ such that
r:=|A — BJ is “sufficiently small” and

[6(A) — o(B)|

g Z O INT N

where from now on we will write § instead of 6(|A — B|). We observe explicitly that
by definition of §(r) we have ¢’ := §(|7 — 7'|) < 9 and so

ﬁ(\T—T’| + 8M|T —T’\1/2/(5) ﬁ(|T—T’| +8M\T—T’\1/2/(5’)

52 — 5/2
- ﬁ(|T—T’|—|—8M\T—T’\1/4)
~ 5/2
< 1 (4.81)
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provided E > 0 is such that |7 — 7| + 8M|7 — 7/|/* < E|7’ — 7/|V4 Let C =
(n,v,7) € I';as |A— C|'? = |r —7'|"? and |C — B|'/? = '|'/2 we have

1/2 1/2 [#(4) — ¢(B)|
0+2N7“6 + Nr < ‘77_77/‘1/2_'_‘7__7_/‘1/2
?(A) —o(C o(C) — ¢(B
| |(7')—7"|1(/2 : - | (|7))—77'|1(/2 A = ft H.

Thereforeone must have Ry > § or Ry > 2NY/2§ + Nr1/2,
Step 3. We want to prove that the first case cannot occur; indeed, we will prove

that
6(4) ~9(0)] _

‘7. _ 7_/‘1/2 -

for A, B € J (not for I’ only!). We can suppose that 7 > 7" (for the other case it is
sufficient to exchange the roles of A and C'). Consider 4 and v¢; thanks to (4.80)
we have, for t € [n —e,n + €

Ta(t) — Tc(t)

= T—T’+/nt [T'A(U) — 7c(n) +/S[%A( ) —7ic(o )}da] ds

— (= ) [6(A) - 6(C)] — 4 / / W1 (14(0)) s (16(0))] dor ds
" n
<74t —n) [¢<A>—¢<O>} 2(|r — | +8MIE—nl),  (4.82)
where in the last inequality we used the fact that

[7alo) =qc(o)] < vam) —aem) +lo —nl (ITale + I7e]s)
< r—7] +8M|t—77|

We substitute in (4.82) the value

o (=25 if p(A) —o(C) >0
= = (r =25 otherwise;

if |7 —7'| is “sufficiently small”, v4(t) and vy (t) € I” are well defined (it is sufficient

to take € > (1 — 7)Y/* > (1 —7)/2/5 = |t — n|) and from (4.81), (4.82) and R, > §
we get (in both cases)

Ta(t) — 7 ()
(t—7")—4(r —7") +2(7 — T')B(|7’ — 7|+ 8M|T — 7"|1/2/5)/(52
—(r—=7") < 0. (4.83)

VARVAN
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This leads to a contradiction: in fact 74 and 7¢ are solutions to the same Cauchy
problem
7(s) = —4¢(s, v, 7(s))

with initial data 7(n) = 7,7’ respectively. The contradiction is given by the fact
that two such solutions cannot meet, while 74(n) — 7(n) > 0 and 74(t) — 7¢(t) < 0.

Step 4. Now let us examine the second case Ry > 2NY25+ Nrl/2; we can suppose
that ' < n (otherwise it is sufficient to exchange the roles of B and C'). Consider
vp; again, the point D := yg(n) = (n,v,7") € J is well defined for n—»’ “sufficiently
small”, and

[¢(B) — ¢(D)] =

[ wnH(vB(t))dt] < Nly—1l (4.84)

/

moreover

o= vl =l [ otm(e) de < AN~ . (485)
n

Then for |’ —n| “sufficiently small” (and precisely when N|n—n'|"/? < |n—n'|}/* < )
we obtain

6(C) = o(D)] = [9(C) = &(B)| — [¢(B) — ¢(D)|
> [2N1/25—|— Npl/2 N|77 . 77/|1/2] |71 . 77/|1/2
> 2N'Y25n —o/|'? = S| — |1 (4.86)

so that we are in the first case again (with the couple C, D € J instead of A, C)
which we have seen is not possible. This proves that lim,_,oa/(r) = 0, and that we
are able to control o with only K, M, N and (3. Observe that what we said up to
now, properly translated in the notation we use when n = 1, gives directly the thesis
for the case n = 1.

Step 5. For the general case, let A = (n,v,7), B = (1,v',7') € I, and set

A= Ao (O,’Ul -, O) = (77,’0/, T+ J(U,’U/))'

We can see A* also as eXp(Zizl#nH(U} — vj)Wj’)(A) and so

2n 1
A = oA < | 3 [ = oW (explt £ a5 = )W) A
J’sﬁ«zﬂ
< NR/—v| < N|A-B|.

As [o (v, )| = |2 357 o[var (V) = vj) = (v — vary)]| < 2K]A — B| we get

A" =B < [ =nl+ 7" = 7| +]o(v, )]
< (2K +2)|A— B|
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and so

[0(A) = o(B)] _ [6(A) = o(A")] | |6(A%) = &(B)]
|A—B|'/2 =  |A— B|\/2 |A— B|\/2
[9(A4%) — (B)]
|A* _ B|1/2
N|A — B|Y? + (2K + 2)d/(|A* — B|Y/?)
N|A = B|Y? + (2K + 2)d/([(K + 2)|A — B[]"/?).

IN

N|A - B'? + 2K +2)

IAINA

Step 6. The proof is accomplished for r “sufficiently small” only; however, this
is sufficient to conclude. O

By a standard compactness argument we get the following

Theorem 4.30. Let ¢ € Cl(w) and set W@ = (wy, . .., wa,) € C®(w, R*1). Then
for all W' €@ w there exists a function « :)0,4+o00[— [0, +00], which depends only on
W', | @ Loy (where W is any open set such that W' € W" € w), WP () and
on the modulus of continuity of w,11 on W”, such that lim,_oa(r) =0 and

Sup{% :A,Becuw,0<|A-B| Sr} <a(r). (4.87)

We end this section with two applications of Theorem 4.22; the first one is
a negative answer to the problem of a good parametrization of H-regular hyper-
surfaces. Indeed a natural question arising is the (local) Lipschitz continuity of
¢:w C (R?, ) — R, where p denotes the restriction distance of d., to V; = R?".
More precisely we investigate the case n = 1, when p concides with the so-called
parabolic distance on R, x R, defined by

Q((na T>7 (77/7 T/)) = |77/ - 77| + |T/ - T‘l/Q :

Corollary 4.31. There exist a functions ¢ : w — R which parametrizes an H-reqular
surface S = ®(w) C H' and for which there is no constant L > 0 such that

(0, 7") = (0, 7) < Llln = n'| + |7 = 7'['*) for all (n,7), (1, 7") € w.
In particular, ® : (w, 0) — H' is not Lipschitz continuous.

Proof. We argue by contradiction. Whithout loss of generality we can assume that
w = (a,b) x (c,d): it follows that for each 7 € (¢, d) the function ¢(-, 7) is Lipschitz
continuous in (a, b), and so for any 7 € (¢, d) there exists the distributional derivative

%(-,7) € L*>(a,b) with Hg—i(‘ﬂ')HLw(a,b) < L for all 7 € (¢,d). In particular there
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exists the distributional derivative g—f; € L*®(w) on all w. By Theorem 4.22 we know

that ,
_ 99 09" _ o
%(b—an 87_EC(w)

in distributional sense, thus %’f € L° (w). Tt follows that ¢* € Lipe(w).

loc

We claim that S is Euclidean 2-rectifiable. Indeed there is no loss of generality
in supposing that actually ¢* € Lip(w), i.e. |¢*(A) — ¢*(B)| < M|B — A| for some
M >0 and all A, B € w. Then for h € N set

wi i ={A€ew:¢(A)>1/h}
w, ={Acw:¢(A) <—-1/h}
wo:={A€w: p(A) =0}

and observe that, when A, B € w;" or A, B € w, , we have

2p(A) = (B)|/h < [d(A) = ¢(B)] - |¢(A) + ¢(B)]
= [¢*(4) — ¢*(B)| < M|B — A,

ie. (b\wff is Lipschitz continuous; extending it to (bf : w — R (with the same

Lipschitz constant) and defining ®7 in the usual way, we get that ®(w;") C @7 (w)
is Euclidean 2-rectifiable. Observing that ®(wg) C V3, we get that also

B(w) C B(wo) U P(wi) U 2(wi)
h h

is Fuclidean 2-rectifiable. On the other hand there are H-regular surfaces S =
®(w) C H' which are not Euclidean 2-rectifiable (see [106], Theorem 3.1), that gives
a contradiction. O

A second interesting corollary of Theorem 4.22 provides a simple way to exihibit
H-regular surfaces in H!' which are not Euclidean regular.

Corollary 4.32. Let ¢ : w C R? — R be a continuous function which depends
only on 7, i.e. ¢ = ¢(1) : I — R for a certain open (and possibly unbounded)
interval I C R, and suppose that ¢* : I — R* is of class C1. Then ¢ is uniformly
We-differentiable at A for every A € w and

WPo(A) = =2(¢%)'(A).

In particular, W%¢ is continuous and ¢ parametrizes an H-reqular surface in H!.
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Proof. Thanks to Theorem 4.22, it is sufficient to find a family {¢. }. such that (4.60)
holds. The family we are going to consider is of the form ¢, = ¢(7) := (¢*4+62)'/%-g.,
where J,. and g. are to be found; the key idea is to construct g. such that g. — sign ¢
and ¢! is "controlled”, in a way we are going to specify; then our thesis becomes

¢ — ¢ and (¢?) — (¢?)" uniformly on J (4.88)

for each J € I.
We recall the following general fact: let D, E two closed subsets of I such

that d(D,FE) := inf{la — b] : a« € D,b € E} > C > 0; then there exists a
g € C*(I,[—1,1]) such that gjp = 1,9jp = —1 and |¢'|- < 4/C.
Now let us set
/ J—
o) = up { =000

Ep—TTE el 0<|r -7 ST},

and suppose that a(r) — 0 as r — 0%: then if we set J, := a(e)e!/?/2 we have
lim,_, 0. = 0. For each € let

D.:={r:9¢(1) >d6}NJ and E.:={7:6(1) <=} NJ;
by construction d(D., E.) > € and so there exists a g. € C>(I,[—1,1]) with
go=1lonD,, g.=-1lonkE. and |g'|e <4/e=al(e)?/62

As we said earlier, set ¢, := (¢ + 02)/2g,; it is easy to prove that ¢, — ¢ uniformly
on J and

2[(02) — (8% 1y < 49egi(@d® + 6D Loy + 21 (92 — 1)(0°) | oo ()
< A gegi(¢° + 02| e\ (peuE) + (%) |1 (n\(DeuE)
8a(€)2
52

€

IN

02 + 41 (%) | L= ungiel<s) — O

for ¢ — 0T; in the last passage we used the implication ¢(7) = 0 = (¢?)' (1) = 0,
and 5o [[(¢?)'| e (nfje/<s.y) — 0 because of the continuity of (¢?)'.

Let us remark that ¢, actually depends on J; however, if we consider a sequence
{J"}nen of closed intervals such that J* € J™™ and J" 1], B[, we get sequences
{¢"}. for each n, and one can conclude with a diagonal argument.

Finally, we have to prove that a(r) — 0 as r — 0. Suppose that the converse is
true; then there exist ¢ > 0 and ay, b, € J such that

\(b(ah) — ¢(bh)| > 20"0Jh — bh|1/2 and |CLh — bh| — 0. (489)
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We can suppose that ¢(ay) and ¢(b,) have the same sign (i.e. ¢(an)p(by) > 0); in
fact, if this is not the case, by the continuity of ¢ there is a ¢ €]ay, by[ such that
¢(cp) = 0, and we can suppose that ¢;, € J (because there is no loss of generality
supposing that J is an interval). As

o 19an) = on)| _ |#lan) = dlen)] | [d(en) — ¢(bn)]

|ah_bh|1/2 - ‘ah_ch|1/2 |Ch_bh‘1/2

20

there exists a dj, € {ap, by} such that |p(cy) — ¢(dn)| > olen — dy|'/2. Therefore
(possibly considering ¢, and dj instead of a; and by,) we can assume that a; and
by, satisfy (4.89) (possibly with o instead of 20) and that ¢(ap) and ¢(by,) have the
same sign.

As J is compact, we can suppose (up to subsequences) that there is a 7 € J
such that a, — 7 and b, — 7. It is not possible that ¢(7) # 0: in fact, ¢ is of
class C! in the open set {7 : ¢(7) # 0} (it is easy to show that here ¢’ = (¢?)'/2¢)
that would imply the boundedness of the quantities |¢(an) — ¢(by)|/|an — bp| for
h sufficiently large, which is in contradiction with (4.89). Therefore ¢(7) = 0 and
so one must have (¢?)'(7) = 0. As ¢(ay) and ¢(b,) have the same sign, we have

|p(an) — @(bn)| < |P(an) + ¢(by)| and so
2 < (|¢|(5:)_—b;b|3?;)|)
(|¢(ah) - ¢(bh)|) (|¢(ah) + ¢(bh)|)

|ah_bh|1/2 |ah_bh|1/2
2 b 2
'“712 - f(| L @y

for a certain 73, contained in the interval between a;, and b;,. Therefore 75, — 7 and
so (¢*)(T) > o by the continuity of (¢?)’, which is a contradiction. O

4.5 BiLipschitz parametrization of hypersurfaces
in H!'

In the spirit of Federer’s definition of rectifiable sets (see [69]), a natural question
is the one of finding a model metric space for H-regular surfaces in H! with no
characteristic points (see Remark 3.14), i.e. a metric space (M, o) which (locally)
parametrizes any H-regular surface S. It turns out that the natural candidate is R?
with the so-called “parabolic” distance

o((z,2), (¢, 2) = |w — /| + |z = Z|'/?;
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this space can be naturally identified with the subgroup V; € H! endowed with
the restriction of d.. The following result, of which we give a slightly different
proof [15], is due to Cole and Pauls [52].

Theorem 4.33. Let S be a C! surface; then for any non characteristic point P € S
there is a Lipschitz continuous mapping

V(A 0) — U d),

from an open set A C R? to a neighbourhood U of P in S, with Lipschitz inverse
map L.

Proof. As usual, it is not restrictive to suppose that P = 0; moreover, since any suf-
ficiently small neighbourhood U of P in S can be intrinsically parametrized through
a C! map ¢ : w C R? — R, and since

D (w,dy) — (U, d)

is biLipschitz (see Corollary 4.18), our problem is equivalent to that of finding a
biLipschitz mapping

Y (A o) — (w,dy).

We claim that the map

U(x,z) = exp(xW¢)(O,z) = (z,7(x,2)) = (ZL‘,Z — 4f0x o(s,7(s,2)) ds)

satisfies our requests.
Step 1. We start by proving that ¢ is Lipschitz continuous, i.e. that

IT(2,2) —7(2/,2) + 20+ ¢)(x — 2| 2 o — 2P + |z — 2| (4.90)

where, here and in the following, we denote ¢ := ¢(¢(x, 2)), ¢' := o(¢¥(2,2")) and
we write < whenever an inequality < holds up to a multiplicative constant. The
left hand side of (4.90) can be split as

7(z,2) = 72", 2) + 2(¢ + &) (z — 2)]
<3l 2) = (@' 2) +46(x = )| + |72, 2) = 7(2/, ) + 40/ (x = )|
+ |72, 2) = 7(x, )| + |7(a', 2) = 7(, )| }. (4.91)
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The first and second addend in (4.91) can be estimated in a similar way:
|7(z,2) = 7(2', 2) + 4 (x — o)
[ [=otsim(s,2) + 6l 7o )]s

’

/x“x — 5|+ |7(x,2) = 7(s,2)[]ds

/

/ [|x —s|+ / |6(r, 7(, )| dr] ds

= ‘x - x/‘Qa

=4

(%)

A

IN

where, in the step marked by (x), we used the fact that ¢ is Lipschitz.
Therefore, it will be sufficient to estimate the third and fourth addend in (4.91);
more precisely, we need an estimate

|7(x,2) — 7(x,2")| < |2 — 2| (4.92)

uniformly in . We also observe that, in order for ¢ to be Lipschitz, (4.92) is also
necessary, since the left hand side is (part of the square of) the distance between
(x, z) and ¥ (x, 2'), while the right hand one is (the square of) the distance between
(x,z) and (z, 2’). By the Lipschitz continuity of ¢, one has

7(z,2) — 7(2,2")] < [e—2|+ 4/; 9(s,7(s,2)) — ¢(s,7(s,2))| ds
< |z—=2+ /OJ»‘ |7(s,2) — 7(s,2")| ds (4.93)

and (4.92) follows thanks to Gronwall’s lemma.
Step 2. The inverse map of v is

W ) = (0,7 = 4 ) $s, hy(9))ds) =: (n, 2(n, 7)),

where h,, ; solves the Cauchy problem

{ hn,T(S) = —4¢(s, hn,T(S))
hn,’r(n) =T.

Notice also that (0, z(n, 7)) = exp(—nW?®)(n, 7).
For the Lipschitz continuity of 1)~! it will be sufficient to show that the inequality

|2(n,7) = 201, 7)] = do((n,7), (0, 7))? (4.94)
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holds in a neighbourhood of 0. Notice that when n = 7’ one can use the Lipschitz
continuity of ¢ exactly as in (4.93) obtaining

|2(n, 7 ) = [hy(0) =

T—/gbshnT ds—T—/gbshnT

< |r—7 +/ |hyr(8) = iy (8)|ds
n

By Gronwall’s lemma we conclude

2(n,7) = 2(n, 7)| X |7 = 7] (4.95)
For the general case, as in Theorem 4.16 one can set
(', 7") := exp((n —n)W*)(n,7) (4.96)
and, as in the proof of the same Theorem, one has
7 = 7" 2 dy((n, 7). (', 7)) (4.97)
Observing that, by construction, z(n,7) = z(n’,7"), we obtain the thesis (4.94) by
combining (4.95), (4.96) and (4.97). O

Remark 4.34. When ¢ is just uniformly W?-differentiable, one could be tempted
to follow the same line of Theorem 4.33 by using the exponential maps of Section 4.4
and define

(@, 2) = (2, expy(W?)(0, 2)).
Beside the problems given by the non-uniqueness of this exponential map, it is not
difficult to check that such a v is in general not continuous: consider in fact the
function
ifr>0

4.
if 7<0. (4.98)

¢(n,7) = { g@

For % < a < 1, the Xj-graph of ¢ is an H-regular surface because of Corollary 4.32
and it is not difficult to check that the only possible definition of exponential maps
provides

l-o _ )1a) ifz<0and 2> 0
W0, 2) = 4 (@ (2 z)==) ifz < 4.99
expy (W) (0, 2)) { (z, 2) ifr<0and z<0 (4.99)
which is not continuous since

Tim, exp(21V)(0,2)) = (2, 2] %) # (2,0) = L expy ()0, 2)

z—0~

for any x < 0.
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The following result shows that the statement of Theorem 4.33 fails for general
H-surfaces:

Theorem 4.35. Let S be the H-regular surface given by the Xy-graph of the map ¢
in (4.98) with % < a <1, and suppose that

V(A ) — (U dx)

is a Lipschitz continuous and surjective map from an open set A C R? to a neigh-
bourhood U of 0 in S. Then v is not a homeomorphism; in particular, it cannot be
biLipschitz.

Proof. Step 1. For any fixed 2z the curve v, := 9(-,z) : R — H! is Lipschitz
continuous; in particular (see [145]) it must be horizontal, i.e. absolutely continuous
and such that 4, € H, H' almost everywhere. Since 7, lies on S, it must be
contained in (a piece of) an integral curve of the vector field

Yi+ (Wepod™ )Xy,

which is (up to a normalization) the unique vector field which is both horizontal
and tangent to S. Since

(@ (Y1 4+ (WPho &) X)) =0, — 460, = W,

it follows that v, o ®~1 is (a piece of) an integral curve of W¢ in R2.

Let us investigate the qualitative behaviour of the integral curves of W¢. If one
of these curves lies in the upper half-plane {7 > 0} (where we have uniqueness for
solutions of the associated ODE) at a certain time x, then its second 7 coordinate is
decreasing, so it must lie in the upper (open) half-plane also before x; however, after
x, it must reach the zero level in a finite time, and it is not difficult to prove that it
must stay at 0 after that. In the lower half-plane {7 < 0} we have again uniqueness of
solutions and the curves are straight lines parallel to the 7 axis; therefore, according
to (4.99) we can divide the integral curves of W into two families (see also Figure
4.1):

(a) for w € R, the curves

(b) for ¢ <0, the curves ¢/ (z) = (z, ().



4.5. BiLipschitz parametrization of hypersurfaces in H! 127

o+t

Figure 4.1: Exponential lines of W¢ for ¢ as in (4.98).

Notice that for curves ¢, the parameter w denotes the point where they touch the
n axis, i.e. (w,0); we will also write ¢t to denote the restriction of ¢, to | — oo, w].
The upper (closed) halfplane is connected by means of ¢; and of paths of type ¢.

Step 2. It will not be restrictive to suppose (0,0) =0 € S and U = <I>(] -0, (5[2)
for some 0 > 0. For the sake of simplicity let us write 1) also for the (o-d,)-Lipschitz
induced map ® 1oy : A —]—4, 6[?, which is surjective and such that 1(0,0) = (0,0);
suppose by contradiction that it is also a homeomorphism. Then the set

L= {(0,7) 7 € [0,5/2]}
is a compact subset of A, and so for sufficiently small » > 0 one has that
{(x+h,2): (z,z) e L,—r < h<r}CA. (4.100)

Let us set
ryi=sup{z > 0:¢(z,0) e Rx{0}} >0
r_:=inf{z <0:9¢(z,0) € R x {0}} <0.

Step 3. First of all, we prove that we cannot have r, = r_ = 0; indeed, this
would imply that

{(z,0): x>0} CIm g™\ {0} and  {¢(z,0):2 <0} CImcft\ {0},
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and by continuity we obtain

{(x,0) : x>0} N{Y(x,0): 2 <0} #0

i.e. 1 is not injective, a contradiction.

Step 4. Since ry # r_, one of them is nonzero: by substituting v, if necessary,
with the map QL(ZL‘,t) := 1(—x,t) we can suppose that r, > 0. It is not difficult to
prove that

{Y(x,0):0<z<r,} CRx{0},
for otherwise the curve ¥(-,0)j,,; would leave the n axis R x {0} and then re-
turn on it after some time, which can be done only by covering forward and then
backward a piece of some ¢ ", and contradicting in particular the injectivity of 1.

Choose therefore r €]0, r, [ such that (4.100) holds, and set A := v (r,0) = (7,0); by
continuity one must have

0,7] x {0} C {(x,0):0<z<r} i[>0
M,0] x {0} C {¢(z,0):0<z<r} iff<O.

Since A # 0 (i.e. 7 # 0) we easily find an € > 0 such that

(4.101)

Vl N V2 = (Z)a
where (see Figure 4.2)
V)= U Imct and  Vy:= U Im ¢ "3 A.
O<w<e n—e<w<n+e

Notice that A € Vs, since A € Im c%rJr. Now, in order to join a point A; € V; with a
point A, € V, by following only exponential lines of W?, one must cover the whole
segment I, where I := [¢,77 — €] x {0} in case 77 > 0 and [ := [7+¢,0] x {0} in case
7 < 0.

Therefore set (z,,2,) := ¢ ~(0,7), and notice that

lim (. + 7, 27) = (r,0) = A,

For sufficiently small 7 > 0 the curve ¢(-, z;) goes from A; := (0,7) € V; to the
point Ay := ¥(x, + r,2,;) following only exponentials of W?; moreover, A, must
belong to V,. This implies that I C Im ¥(+, z;); since (see (4.101)) we have also I C
Im (-, 0), this would contradict the injectivity of ¢ in case we were able to find a
sufficiently small 7 such that z. # 0. If this were not possible, there would exist
A > 0 such that ¥71(0,7) = (z,,0) for any 7 € [0, \], i.e.

{0} % [0,A] C Im (-, 0).

Therefore, the segment {0} x [0, A] would be of finite length, which is not possible
since it is not contained in an exponential curve of W¢. ]
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Vi

++ ++
i—e Cipte

Vo

Figure 4.2: The sets V; and Vs, and the interval [.

We end this Section by remembering that, as far as we know, the analogous of
Theorem 4.33 in H",n > 2 is still an open problem even for smooth (C*) hyper-
surfaces; the natural candidate metric space in this case seems to be R x H" L.
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Chapter 5

The Bernstein problem in
Heisenberg groups and
calibrations

In this final Chapter we investigate a question that, although under different formu-
lations, has recently received an increasing attention: namely, the Bernstein problem
in the Heisenberg group, see [42, 86, 157, 41, 60, 20, 58, 138]. Recall that the clas-
sical Bernstein problem consists in finding entire functions ¢ : R™ — R solving the
minimal surface equation

Vi B
v (W) =0 (5.1)

and that are not affine, i.e. functions parametrizing hyperplanes or, which is the
same, (translations of) maximal subgroups of R™. Tt is well known that this
problem has been completely solved thanks to many contributions (see [89] for an
interesting historical survey). Here we summarize these celebrated results in the
following

Theorem 5.1. Every smooth function 1 : R™ — R solving (5.1) must be an affine
function if m < 7. If m > 8 there are analytic solutions which are not affine
functions.

We will then compute the minimal surface equation (5.17) for intrinsic graphs
and we will observe that maps parametrizing (laterals of) maximal subgroups (the
so called vertical hyperplanes) are entire solutions of the equation. In analogy with
the classical case, our formulation of the Bernstein problem in the Heisenberg group
H"™ will consist in looking for solutions of the minimal surface equation which are

131
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not vertical hyperplanes. We will exhibit such solutions in the cases n = 1 (where,
however, hyperplanes are the only minimizers) and n > 5, while the case n = 2, 3,4
are still open. In the discussion, we will also extend to CC spaces the classical
calibration argument [96, 3|, providing sufficient conditions for measurable sets to
be X-perimeter minimizing. This result has been suggested by L. Ambrosio, while
all the other ones have been obtained in [20] in collaboration with V. Barone Adesi
and F. Serra Cassano.

In Section 5.1 we state (Theorem 5.2) the calibration argument for CC spaces,
which is refined in Theorem 5.3 for the Carnot groups setting. Applications of these
results are also exhibited, showing the minimality in significant cases, in Exam-
ples 5.5, 5.6, 5.7 and 5.8. We particularly stress the last two ones, where, respec-
tively, we analyse the case of t-graphs in H' and we show that in general X-perimeter
minimizers are not smooth (see also [148]).

In Section 5.2 we derive first and second variation formulae for intrinsic graphs
of class C?; therefore obtaining the minimal surface equation (5.17) and the second
variation formula (5.26) which will be of use in our main result about the Bernstein
problem in H', Theorem 5.23. Similar formulae have been obtained also in [56, 59,
133, 100, 101]. We stress that again the minimal surface equation (5.17) can be
obtained by formally substituting classical gradient in (5.1) with the operator W¢.

In Section 5.3 we restrict to the case of the first Heisenberg group H' and study
the structure of entire solutions of the minimal surface equation. Up to a change of
coordinates, in H! this turns out to be equivalent to the “double Burgers” equation
(0; + ud;)?*u = 0 in R?. The key observation for the analysis of solutions u is that
they must be linear along characteristic lines, i.e. integral curves of the vector field
Oy +ud,. Starting from this fact we are able (Theorem 5.9) to implicitly characterize
such functions only in terms of their value B and derivative A at time 0, with some
restrictions on A and B too. An existence result (Theorem 5.19) for entire solution
is provided together with some example of them.

Last Section 5.4 deals with the Bernstein problem in the Heisenberg group. In
Subsection 5.4.1 we restrict to the H' case, where it is known [60] that counterexam-
ples exist. Our main result, Theorem 5.23, states that hyperplanes are the unique
entire C? solutions to the Bernstein problem provided H-perimeter minimization is
assumed. Indeed, for any other solution we can exhibit a family of competitors with
strictly negative second variation of area, thus proving that it is not a minimizer.
In this approach we will heavily use the second variation formula (5.26) and the
structure Theorem 5.9. We stress that this phenomenon is quite unexpected, since
in the classical case a calibration argument ensures that any solution to (5.1) is
actually a minimizer. In Subsection 5.4.2 we analyse the Bernstein problem in
H", n > 2: as we already said, we are able to provide counterexamples when n > 5,
while the cases n = 2, 3,4 are still open. Some of the results of the present Chapter
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have been generalized in [58]. It was shown recently [138] that Theorem 5.23 fails
when the C? assumption on the function is dropped: namely, there exists entire
minimizing solutions (in a weak sense) that are not C? regular.

5.1 A calibration method for the X-perimeter and
applications

The following result is a refinement of one due to L. Ambrosio and extends the
classical calibration method (see e.g. [96, 3]) giving sufficient conditions for a Borel
set £ C R" to be minimizer of X-perimeter (as in Definition 1.10).

Theorem 5.2. Let 2 C R™ be an open set, let Xy, ..., X,, be a family of Lipschitz
continuous vector fields in ) and let E be a set of locally finite X -perimeter in Q.
Suppose there are two sequences (), and (vy)n, h € N, such that

(i) Q, C Q is open, Qp € i1, QU T 82

(ii) vy, € CHGR™), |vp(2)|gm < 1 for all w € Q and any h € N;
(iii) divxvy, =0 in Q, for each h;

(v) vp(x) — vg(x) |OE|x-a.e. x € .
Then E is a minimizer for the X -perimeter in €.

Proof. Fix an open set ' € 2 and a measurable set F' C R" such that EAF & Q.
Let Q" be another open set with EAF € Q" € . Let h and ¢ € CL(') be such
that ' C Q5,0 <% <1 and

Ve{py=1}1eeq. (5.2)

Now notice that for each h > h

/(@DVh,VE)Rm d|OE|x = /<¢Vh>VF>Rm d|OF | x (5.3)
Q Q
Indeed by (5.2) and (7i7)
/<¢Vh>VE>Rm d|OE|x — /<¢Vh>VF>Rm d|OF | x
Q Q
= = [ (xe = xr)divitom) ac®

= —/ (XE—XF)diVxl/hdﬁn =0
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By (5.3)

OF]x () > ' [ o vedin dioF

= ’/w@h,z/E)RdeaEHX .
Q

By (#7) and (iv) and thanks to Lebesgue convergence theorem, as h — oo we get
0FLx(®) = [ 4 dIoELx = 0B (). (5.4
Q/

We obtain the thesis by increasing Q" T €. O
In Carnot groups one can refine Theorem 5.2 as follows:

Theorem 5.3. Let G = (R",:) be a Carnot group. Let E, € be respectively a
measurable and open set of R", and denote by vg : 0 — R™ the horizontal inward
normal to E in €. Suppose that

(i) E has locally finite X -perimeter in Q);

(ii) divx vg =0 in Q in distributional sense;
(iii) there exists an open set Q C Q such that |0E|x(Q\ Q) = 0 and vy € C*(Q).
Then E is a minimizer of the X -perimeter in €.

Proof. Let (. be the family of mollifiers introduced in Proposition 1.28 and set
7:R"™ — R™ to be defined by 7 = v in Q, 7 =0 in R™ \ Q. Let us define

v(2) = (CxP)(@) = (AP (@), (CxT)(@)), xR,
Let us begin to prove that for a fixed open set ' € Q2

/Q W divyve dL" = 0 (5.5)

for every ¢p € C*() and 0 < € < w. Since 9. := (. x1 € C() and
the vector fields X;’s are self-adjoint, by Proposition 1.28 we can integrate by parts
getting

/ Ydivyr, dC" = —/ > v, Xjthe)gm dL” = 0.
Q Q5

From (5.5) we get
divyve=0  in (5.6)
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for every open set ' € Q) provided 0 < € < dist(V RS

Let (2,)n be a sequence of open subsets of 2 verifying (i) of Theorem 5.2. Then
by (5.6) there exists a sequence €, — 0 such that the maps v, = v,, satisfy the
assumptions of Theorem 5.2: indeed (7)-(i77) therein are immediately satisfied, while
by (iii) and Proposition 1.28 we get that v, — v uniformly on compact subsets of
Q, whence (iv) of Theorem 5.2 follows. O

Remark 5.4. Notice that, through the calibration argument 5.3, one can prove that
every Euclidean subgraph parametrized by an entire solution of (5.1) is a minimizer
for the classical perimeter.

We have now all the tools to state some results about minimizers of the X-
perimeter in CC spaces: for all of them our calibration results will be crucial.

Example 5.5 (Hypersurfaces with constant horizontal normal). Let X be a family
of Lipschitz continuous vector fields X, ..., X,, on R". Suppose £ C R" is a set of
locally finite X-perimeter in an open set {2 C R"™ which admits a constant inward
horizontal normal vz in €2, i.e.

vg =1y |OFE|x-a.e. in Q

for a suitable constant vector vy € R™. Then, thanks to Theorem 5.2, it is straight-
forward to check that E is a minimizer for the X-perimeter.

Observe that many interesting questions, such as regularity and rectifiability, are
open even in this quite simple class of sets: see e.g. Example 5.8.

Example 5.6 ({-graphs in H'). Let G = H' = R? and ¢ € C?*(w) for a suitable
open set w C R?, and let E be defined by

E:={(z,y,t) e H' : t <t(x,y)}.
Let Q:=wxRCH!, S=0EN and set

C(S) = {(z,y,1) € Q: Vu(2,y) — 2y = Yy(2,y) + 20 = 0}

to be the set of so-called characteristic points of S, i.e. those points P € S such that
TpS = HpH'. Then C(S) is closed in 2 and it was proved in [14] that H?(C(S)) = 0.
On the other hand |0F |y < H*L S by virtue of Proposition 3.7, and so

[0E]m(2\ €2) = 0 (5.7)
where Q := Q\ C(S). A simple calculation shows the horizontal normal vg(z, y, t)

1S
va(ZL‘, Y, t)

Vel )l N(z,y) = (N(z,y), Na(z,y)) (5.8)

ve(x,y,t) =
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for each (z,y,t) € S\ C(S), where f(z,y,t) =1t —(z,y) if (z,y,1) € Q and

N(z,y) := (—=a(@,y) + 2y, —¢y(2,y) — 27) (z,y,1) € Q.

V(=u(@,y) +29)? + (Uy(2,) + 22)?

The minimal surface equation has been studied in [147, 86] and [42] when C'(S) =0
and it simply reads as

N N.
0 1—1—220 in w. (5.9)

diVHI/E =div N = % ay

In particular, whenever (5.9) is satisfied pointwise, we can apply Theorem 5.3 ob-
taining that F is a minimizer for the H-perimeter measure in ).

Very recently the more delicate case C'(S) # () has been studied in [157] and [43].
In particular, in [43] it has been proved that (5.9) holds in weak sense, i.e.

/(N, Vg dL? =0 V(€ Clw), (5.10)

iff ¢ is a minimizer of the area functional in H! for Euclidean t-graph. When n > 2,
if ¢ is a classic solution of (5.9) in Q\ C(S), then it also satisfies (5.10) (see [43],
Corollary F), while counterexamples are provided when n =1 (see [43], section 7).

We can get a strong result by exploiting Theorem 5.3: in fact, if (5.10) holds,
by (5.7) and (5.8) we obtain that E is a minimizer for H-perimeter in 2. In particular
FE minimizes the H-perimeter not only among sets whose boundary is a Euclidean
t-graph, but in a very much larger class of competitors.

Eventually let us stress our technique applies to the case studied in [157], Theo-
rem 5.3. Indeed in our setting w = R?, ¥ (z,y) = 2ry + ay + b, and

dr — a

N(x,y):(() ), (z,y,t) € Q = {(z,y,1) : = # a/4}

"4z — al

being a, b € R fixed constants. On the other hand, a simple calculation shows
that (5.10) holds, whence E is a minimizer of the H-perimeter in 2 = R3.

Example 5.7. In the Heisenberg group H! let E be the set defined by

E = {L(’I],T) t 861 ¢ (7777—) S R27 s < gb(nﬂ—)}?

o anT
1+2am?
been extensively studied in [60], where it was proved that S = OF is an entire X;-

graph which is not minimizing for the H-perimeter measure in the whole H!. Let

where we choose ¢(n,7) = for a fixed constants a > 0. This family has
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us stress the difference with Example 5.6: here in fact S is not a minimizer for H-
perimeter measure though it satisfies the intrinsic minimal surface equation (5.17)
on all R?.

On the other hand we can prove it is a minimizer in = R3\ {y = 0}: indeed
with a simple calculation we get

va(ZL‘,y,t) Yy ( ) xr )

Vaf(ey, )yl
where f(x,y,t) := x + ayt. Moreover it easy to see that vy € C*({2) and
divgrg =0 in €.

Therefore applying Theorem 5.3 we obtain the thesis. It is still not known whether
S is H-perimeter minimizing in a neighbourhood of a point (0, y, 0).

Example 5.8 (Nonsmooth minimal surfaces in H'). We provide a way to produce
minimizers of the H-perimeter in H' whose regularity is not better than (Euclidean)
Lipschitz. Examples with this regularity are also provided in [43] for minimal Eu-
clidean t-graphs and very recently S. Pauls informed us of a work in progress on this
subject.

Our key idea is to construct a “not too regular” parametrization ¢ : w — R
such that W@ = 0 on an open set w C R?N: indeed this property ensures that the
horizontal normal to the surface is constant ¥ = X, and we conclude by calibrating
with a constant section v = X;.

We will prove later that for a Lipschitz map ¢ the distribution B¢ = g—i — 2%’3_2)
is represented by the L7? function (0, — 4¢0;)¢: therefore the required condition
is equivalent to ¢ being constant along the integral curves of the vector field W,
i.e. to these integral curves being straight lines. Notice that, using the notations
of Section 5.3, this is equivalent to look for (local) solutions of (5.29) with initial
conditions A = 0.

We then start by fixing a Lipschitz function §: R — R, with L :=Lip § < 400,
which will give the “initial value” of ¢ in the sense that we look for a ¢ such that
¢(0,-) = B (B is simply the counterpart of the function B of Section 5.3). Fix a
point (1, 7) € R?, consider the integral curve of W passing through it and let (0, ¢)
be the point in which this line meets the 7-axis: the condition of ¢ being constant
along this line then becomes —4¢(n, 7) = —44(t) = %’ ie.

T =1—4np(t). (5.11)
Consider the Lipschitz continuous map
F : R, —R.
(x,t) — (x,t — 4z6(t)) ;
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F plays the role of the F' of Section 5.3, and the variable ¢ the one of ¢. Observe
that F~!(n,7) is well defined when || < 1/4L: this is an easy consequence of

If we put F~'(n,7) =: (n,t(n, 7)) it turns out that condition (5.11) is equivalent to
define ¢(n, 7) := B(t(n, 7)), where from now on we suppose

(n,7) €w:=]-qp, 7 [ X R;

observe that ¢ has the same (Lipschitz or better) regularity of § (but no more since

¢(0,7) = B()).
Let us verify that (9, — 4¢0;)¢ = 0: as

1 0
VF(x,t) = ( —46(t) 1 —4zp'(¢) >

holds almost everywhere, one must have

1 0
VE 1) = (VEE 0.0) = | 480, 7)) 1
1—Anp'(t(n,7)) 1—4ns'(t(n, 1))

a.e., and so

(8, 460,)6(n.7) = (3, ~ 48(t(n. 7))0)B(t(0.7))
= 1t ) LT — (a2
. 1007 A8 I )
I T T () R R e T ) R

Therefore we are only left to prove that B¢ = (9, — 4¢0;)¢ in distributional

sense. In this perspective, it will be sufficient to show that the distribution % is

represented by the function 2¢ 0.¢: this in turn is true since ¢? is locally Lipschitz
continuous, whence the pointwise partial derivative

%(nm) iy 001002 = 6(n,7)

o—T o—T

gb(n’g(j:f(n’ﬂ - 2¢(n,7)%(nﬁ)

= lim (¢(n,0) + ¢, 7)) -

2
exists almost everywhere in w and coincides with (T in distributional sense.
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We stress that all the maps ¢ : w — R arising from the previous discussion
effectively parametrize a Cj; surface; in fact by Theorem 4.22 it is sufficient to find
C* functions ¢, : w — R such that

G — @ locally uniformly on w
W g — 0 locally uniformly on w

as € — 0. Fix then (e.g. mollifying ) a sequence . € C* such that Lip . < L and
B¢ — [ locally uniformly in R, and consider the maps ¢, arising from the previous
discussion but considering £, instead of 3. By construction we have W%g¢, = 0;
moreover, ¢, are well defined on all w (since Lip f. < L) and it is not difficult to
check that they converge locally uniformly to ¢. Observe that if 3 is not C!, then
the surface parametrized by ¢ cannot be of class C!, since its intersection with the
plane {y = 0} is the line {(3(¢),0,¢) : t € R} which is not C'.

For instance, let us put 5(¢) = |¢|: it is not difficult to compute that the associa-
ted parametrization is

¢ : ]—-1/4,1/4[ xR =R
T if7>0
1—4n
(n,7) — A
—— 1 0.
1+ 47 7 <

The surface parametrized by this ¢ is then perimeter minimizing of class Cf but
not C!.

5.2 First and second variation of the area func-
tional for intrinsic graphs

In this section we want to obtain first and second variation formulae of the area
functional for intrinsic graphs; similar formulae have been obtained also in [56, 59,
133, 100, 101]. We will study in Section 5.3 the structure of all entire stationary
points (i.e. those functions with vanishing first variation), while a proper second
variation formula (see (5.26)) will be crucial in the study of the Bernstein problem
in H' (see Section 5.4.1).

5.2.1 First variation of the area

Let us fix a C! map ¢ : w — R, where w is an open subset of R?", and put

Ey:={1(A) -se; e H": Acwand s < ¢(A)} C Cx, (w) (5.12)
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where we C'y, (w) is the cylinder of base ¢(w) along X; defined by
Cx, (w) == t(w) - {se; e H" : s € R};

observe that Cx, (w) is an open neighbourhood of S := ®(w), where as usual ® is
the map A +— ((A) - ¢(A)e;.

Let us assume that Ey is a minimizer for the H-perimeter in Cy, (w), fix ¢ €
CX(w) and set ¢, := ¢+ s1; we can therefore consider the class of competitors E,_,
which are defined as in (5.12) (observe that EAE, € Cy,(w)), and set

(Cx, (w / V1 [Wésg 2L (5.13)

The fact that g(s) > g(0) for all s € R implies that ¢’(0) = 0. It is not difficult to
check that

9(5) = [0Es,|u

(W) = =Wi W +49T¢  for all € C,
whence
Witios = Yig+ Vit — (g + s0)(To + sT0)
= Wiho—s (W) 0 — 45Ty
and so
o 1/2
g(s) = / 1+) (X;0+s X004 (W2 o—s(We ) w—4s2gTe)* | dL?. (5.14)
ok
From now on we will write just > ; to mean the sum on indices 7 = 2,...,2n with

j # n+1; when n = 1 the previous formula and the following ones are to be
understood by “erasing” all sums of this type.
Starting from (5.14) it is not difficult to compute

/ 8) _ / Zj Xj¢s ij + Wr?i1¢s (_(W;f-‘,—l) Y — 88¢T¢)dﬁ2 (5.15)
V1 |Wesgg?
and in particular
X Xjp — W "
g/(()) _ Z] ]¢ jd) n+1¢( n—l—l) ¢d£2n (516)
w V1 |Weol?
The Euler equation for stationary points of the area functional is then
¢

we. W on w, (5.17)

VIH WGP

where the previous equality must be understood in distributional sense.
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5.2.2 Second variation of the area

If ¢ € C!, from (5.15) we can compute

1
" = — ./ Wosp, |2
g'(s) (Al+ﬂv%%P{ FIWEoul

x| (X + (W) + 8s9T0)" — 8OTYW, 04| +
L J
([ %o K Wit (O Y ST L
| ViEare o1
and so
~ 2
(14 W2oP2) [[W" 2 — SyTuws, 0] - (Weo- we"y)
"oy ac>, (5.
0= [T+ WeoP™ o

where we put
Wy = ()’E;¢, X, (W), X 755531@/)) ifn>2
W = (W) if n=1;
the fact that E, is a minimizer implies that ¢”(0) > 0 for all ¢ € C(w).
Notice that when n = 1 formula (5.19) for the second variation reads as

poo [ WO = SYTYW (1 + [Wee[?)
ro- | [+ ool

dL?; (5.20)

in particular when W% = 0 one has ¢”(0) > 0 for all C!(w). If we suppose ¢ € C?
we can further exploit (5.20) as

gy [ WP = AT )WL+ [W9[)
0 = [ 1+ (1720

|I/V¢*w|2 27 W(% 2
T, |W¢¢|2]3/2 + 47T o |W¢¢|2]1/2 dce. (5.21)
We will see in Section 5.3 that if n = 1 and ¢ is a stationary point of the area
functional, i.e. if ¢ solves (5.17), then

dL?

(W?)?%p =0 (5.22)
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and thanks to this the first term of (5.21) becomes, integrating by parts,

W2 ) W™y )
[u[1+\w¢¢\213/2 N /wW (MW%W "

WoWwey
- dL?. 5.23
/w [1+ | Weg|2*? 5:23)
Since
(WOW — WO W) = WO(=W?+4T¢ 1d)p — (—W? + 4T 1d) W)
= 4 W*T¢
we can rewrite (5.23) as
W, WO Wy + 4 WTo |,
dL? = ac
/w [+ [Weg[2*? / 1+ [Weog[2]*?
_ (Woy)? ,  WOT¢ 2

where we used (5.22) again. Therefore (5.21) becomes

" (We)? 2 WeT¢ ~ Woe )
V= 1 T dc
7o /W{ [1 4 [Weg[2)*? i 1+ [Wegp|2]*? * ([1 n |W¢¢|2]1/2>] }

_ / (Wew?
o L[+ [Weop”

g | WOTe D WOGPITWO — WoGPTWOy | |
[1+ [Wegl2]? [1+ [Weogl2)?
(WO)? + 442 W*T + TW?g]

Finally, one has B B B
WOT = ¢y — 4prr = TWO¢ + 4(T )’
and so from (5.25) we can also write
J(0) = / (W20)* + 89 [TW*6 + 2(T)’
IR
Equation (5.26) will be crucial in the proof of Theorem 5.23.

dc?. (5.26)
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5.3 Entire solutions of the minimal surface equa-
tion in H'

In this section we will give a characterization (see Corollary 5.20) of all the entire
C? solutions ¢ : R?N — R of the minimal surface equation for intrinsic graphs in

H!, i.e. of
¢
- (%) (527

VI+ WogP

this result will provide the key tool to attack the Bernstein problem in H!. Observe
that (5.27) can be written as

W(b 2 1 W¢> 2 W(b W¢¢'(W¢)2¢
O:( )¢ "“ ¢| (b\/w _ (W¢)2¢

T+ WP (1+ [Wegp)r

which means that ¢ is a solution of (5.27) if and only if it solves
(W9?2¢6=0  in R (5.28)

Notice that (5.28) is equivalent to a “double” Burgers’ equation: in fact by
performing the change of variables

G o Ri,t—ﬂ&z”
(x,t) — (t, —4z),

setting u(z,t) := (¢ o G)(x,t) = ¢(t, —4x) and defining L, to be the operator
(Luv)(z,t) = (v +uve)(z,t) (v € CHRY)),

we get
(Lu(Low))(@, 1) = (W?)*0)(t, —4z).

This means that we can restrict to consider the C? solutions u of the “double”
Burgers’ equation

L’u=0 inR? (5.29)

u

(recall that L,u = 0 is the classical Burgers’ equation, see [66]). We will focus our
attention on the problem (5.29) rather than (5.27) or (5.28).
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5.3.1 Characteristic curves for entire solutions of L?u =0

Suppose u is an entire C? solution of (5.29) and let us consider the characteristic
curves (see [66]) of the equation L,v = 0, i.e., for any fixed ¢ € R, the maximal
solution x = z(c,-) : I. — R of the Cauchy problem

{ xgi 8)): Z(x(c, t),t) (5.30)

From (5.29) one gets 4 L,u(z(c,t),t) = 0 and so
Lou(z(c,t),t) = A(c) forallt e I..

Since
%u(x(c, t),t) = (w(xz(c,t), t) + ug(2(c, t), 1) &(c, 1)) = Lyu(z(c, t),t) = A(c)

we obtain
u(z(c,t),t) = A(e)t + B(c) forall t € I, (5.31)

where we have set B(c) := u(c,0). Equation (5.31), together with (5.30), gives

x(c,t) = ?ﬂ + B(e)t + ¢;

in particular, I, = R. We have therefore the following

Theorem 5.9. Let u be an entire C? solution of (5.29) and for c,t € R set

A(c)

z(c,t) == TtQ + B(e)t + ¢,
where A(c) := Lyu(c,0) and B(c) := u(c,0). Then for all ¢,t we have
(i) u(x(c,t),t) = A(c)t + B(c);
(ii) Lyu(z(c,t),t) = A(c);
(1i) x(-,t) is strictly increasing for any fived time t;
(i) for all c € R we have either A'(c) = B'(c) =0 or B'(c)* < 24'(c).

In particular, the family of characteristics x(c,-) are parabolas which do not intersect.
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Proof. We have already proved (i) and (ii); for (¢ii), it will be sufficient to prove

that, for every t,

z(e,t) #x(d,t) ifc# (5.32)
in fact, were (#ii) false, we could find ¢ < ¢ and t' such that z(c,t') > x(c,t'), but
since the characteristics are continuous and z(¢,0) = ¢ < ¢ = z(c, 0) we could find
a t between 0 and ¢’ such that (5.32) does not hold.

Arguing by contradiction, let us assume that (5.32) does not hold for some ¢ # ¢
and ¢; observe that from (7) and (i7) one has

A(d)t + B(d)
whence ¢ = z(c, t) — %C)tz — B(c)t = ¢/, which is a contradiction.
Notice that (zii) implies that

Ox Al(e) 4 p
_ >
—C(c,t)— 5 t“+B'(c)t+1>0

for all ¢,t, and this in turn implies B’(c)> < 2A’(c). Observe in particular that
A'(c) > 0 and Z%(c,t) > 0. In order to prove (iv), suppose by contradiction that for
a certain ¢ we have B'(c)? = 2A4'(¢) # 0. Differentiating (i) with respect to ¢ one
gets

0 A+ Be) A+ TG |
a—u(;p(g t)’ t) = (%)x =+ (C) — ( ;((C)) )2 = e for all ¢
c (e t) Ale)(t + A,(C)) t+ 36
which contradicts the hypothesis u € C?(R?). O

Remark 5.10. Observe that if u is a C? solution of

L2u=0
u(z,0) = B(z)
Lu(z,0)=AeR

then one must have also B(x) = B(0) = B. In particular, Theorem 5.9 (i) implies
that u(z,t) = At + B.

Remark 5.11. Following the same proof of Theorem 5.9 (i), it is possible to prove
that if u is a C! solution of the Burgers’ equation

L,u=u +uu, =k

for a suitable constant k£ € R, then B = u(-,0) must be constant.
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It is not difficult to extend the proof of Theorem 5.9 and get the following

Theorem 5.12. Let Q be an open set of R2, such that {(x,0) : € R} C Q, let
u € C*(Q) be a solution of

LPu=0 inQ, (5.33)
and let A(c), B(c) and z(c,t) be as in Theorem 5.9. Suppose moreover that the set
{(z(c,t),t) : c,t € R} is contained in Q). Then the statements (i)-(iv) of Theorem

5.9 still hold.

From Theorem 5.12 we get the following uniqueness result for the “double”
Burgers’ equation (see also [53], Chap V, Section 7, and [130]).

Theorem 5.13. Let ug € C*(R),u; € C'(R) be given functions and set A :=
ug, B := uy + upuy. Let z(c,t) := A(c)t?/2 + B(c)t + ¢ and set

Q={(x(c,t),t) : c,t € R}. (5.34)
Then there is at most one solution u € C*(2) of the problem

L2u =0 in Q
u(z,0) =up(x) VzeR (5.35)
ur(z,0) = us(x) VaekR.

Proof. By Theorem 5.12 any solution u € C?(f2) of (5.35) has to satisfy
u(z(c,1),t) = A(c)t + B(c);

however, hypothesis (5.34) ensures that for all (x,t) € £ we can find a ¢ such that
x = x(c,t). This proves that u is uniquely determined in Q by A and B, i.e. by ug
and wu;. O

Corollary 5.14. Let ug,uq, A, B, z(t,c) and Q be as in Theorem 5.13, and suppose
moreover that for all ¢ € R we have A'(c) = B'(¢) =0 or B'(c)> < A'(c). Then

(i) Q is an open neigbourhood of the x-axis {(x,0) : © € R};
(ii) there is at most one solution u € C*(2) of the problem (5.35).
Proof. Observe that the map
F : R®>R
(c,t) — (z(c, t),1)

is regular and one-to-one; in particular, it is an open map and (i) follows. This
means that condition (5.34) of Theorem 5.13 is automatically fulfilled, and so (i)
must hold too. 0



5.3. Entire solutions of the minimal surface equation in H! 147

Corollary 5.15. Under the same assumptions as in Theorem 5.9 let us denote
li :=lim. o A(c) (respectively ly := lim._._, A(c)). Then for any fivred t € R we
can conclude

lim z(c,t) = +o0  (resp. lim x(c,t) = —o0) (5.36)

c——+00 c——00

if eitherl; € R (resp. ls € R), orly = 400 (resp. Il = —o0) and one of the following
conditions is satisfied:

A A
lim inf (©) =0 (resp. liminfﬁ = ) (5.37)

c——+00 C =0 C
A A
lim sup ﬂ = 400 (resp. lim sup ﬂ = —oo) (5.38)
c——+o0 C c—+00 &
B B
lim inf (€) <V2 resp. liminf (€) <V2|. (539
e=+o0 | /cA(c) =00 | y/cAc)
In particular, when im,._ o z(c,t) = +00 and lim._,_,, x(c,t) = —o0 we have that

z(-,t) : R — R is a homeomorphism and 0 := {(x(c,t),t) : c,t € R} = R%
Proof. Observe that for fixed t € R and ¢ # 0 one can write

1 (A(e) = A0) | A©0)) ,, , (Ble) = B(0)  B(0) -
2( N +m>t+< N +m>t+\f

Being A increasing there exist

my = lim (A(c) — A(0)) (resp. ma = lim (A(c) — A(0)))

c—+00 c——00

z(c, t) = /||

(5.40)

with —oo < my < 0 < my < +oo. Notice also that, using Theorem 5.9 (iv), one
can get

w@—mwzlhww@sﬁANW@@s¢mwwwA@|@w

and this allows us to conclude when [; € R (resp. Iy € R), since in this case we have
my € R (resp. my € R) and so z(c,t) ~ ¢ for large (resp. small) c.
Instead, when [y = +o00, for large ¢ we can write

1 ( [Al - A A(0) :
5( : +vﬂﬂ@—ﬂ®)t+

[ Bo-BO) B(0) - c
Ve(Ale) = A(0))  /e(A(e) = A(0)) A(e) — A(0)

z(c,t) = e(Ale) — A(0))

(5.42)
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whence (using (5.41) again) limsup,_, . z(c,t) = 400 in case (5.37) or (5.38) hold,;
however, this implies (5.36) since x(-,t) is increasing. When ¢ — —oo we have
instead

z(c,t) = V/e(A(e) = A(0))

1 [A{Q) —A() A(0) 2
( c " ¢c<A<c>—A<o>>)t ’

. ( Be) -BO) B(0) ) . c
Ve(Ale) = A(0))  /e(A(e) = A(0)) A(c) — A(0)

and analogously we conclude liminf, . z(c,t) = —oo, which is sufficient.
Instead if (5.39) holds together with [; = +o00, we have a sequence ¢;, — +00
such that

B/(Ch)Q
<(1- Vh; 5.43
QA’(Ch) = ( E)Ch ) ( )
observe that the parabola x(cy, -) reaches its minimum at ¢ = —ﬁgi:g and so
B/(Ch)2

wlep, t) > x(cy, — By = ¢, — > ecp, =X 400

A(en)

2A/(Ch)

which, together with the fact that x(-,¢) is increasing, proves (5.36) when ¢ — +oc.
It is a little more complicated to prove the thesis when l; = —o0 and ¢ — —o0;
however, as in (5.43) we get a sequence ¢, — —oo such that

B/(Ch)2
—— <ecp, — h
A ey = €cp, — Cp W
and so
A(cn) B(en)\® B'(cn)”
t) = ¢ -
l’(C}“ ) 2 ( + A(Ch) + Ch QA/(Ch)
Alen) B(en)\®
< t
< 7 ( =+ Alcr) + ecy,
which allows us to conclude since A(c) — —oo as ¢ — —o0. O

Example 5.16. Set A(c) := ¢/2 and B(c) := —¢; then it is easy to check that the
family of characteristic curves for the related problem (5.29) are

z(c,t) = (t — 2)°c/4.
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Notice that z(c,2) = 0, i.e. the thesis of Corollary 5.15 does not hold; here in fact
(5.39) is not fulfilled since

lim B(c) = 2.

Moreover, taking into account Theorem 5.9, a global C? solution u of (5.29), with
u(z,0) = —z and L,u(z,0) = /2, cannot exist.

Example 5.17. Let A(c) = ¢ and B(c) = y/2(1+ ¢?), and let us consider the
associated family of characteristic parabolas

z(c, t) = gtz +v2(1+ )t +c.

Then for fixed t we have

0 t? 2
—x(c,t):—+ v2e t+1
oc 2 V14 c?

which is (strictly) positive for any ¢: in particular, the family the characteristics
cannot intersect, and in fact one has

C

2 _
B'(¢) —21 = <2=2A4c).
Observe also that
lim B(c) = \/5
c—=+o0 CA(C)

If we set F(c,t) := (z(c,t),t) it is easy to see that the image F(R?) is the open
set

0= R?\ <{(x,\/§) L1 <0} U {(z, —V2) :xZO}).
Indeed a simple calculation gives F~!(z,t) = (c¢(x,t),t) where
2(1+12/2) — V2/t| /22 + (1 — 12/2)?

c(x,t) = 2>y (1—t2/2)?
T if t=v2,2>0 or t=—-V2,2<0.

if [t] # V2

We will see that u(z,t) := A(c(z,t))t + B(c(z,t)) is the unique solution of (5.33) in
Q) such that L,u(z,0) = A(z) and u(z,0) = B(z).

Example 5.18. If we require B = 0, then the solution to the “double” Burgers’
equation with initial data A, B is defined everywhere for any C? increasing function
A. Obviously, even if it is possible to characterize it intrinsically as in Theorem 5.9
(7), in general it is not possible to give an explicit formula for the solution.
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5.3.2 Existence of entire solutions

In the following theorem we provide an existence and uniqueness result for the
equation (5.29).

Theorem 5.19. Let A, B € C*(R) and for ¢,t € R set

x(c,t) = @ﬂ + B(e)t + ¢

F:R?> (¢, t) — (z(c,t),t) €R
Q= F(R?) = {(z(c,t),t) : c,t € R}

and suppose that
for all ¢ € R one has either A'(c) = B'(c) = 0 or B'(c)* < 24/ (c). (5.44)
Then
(1) F is C? regular and one-to-one and, in particular, Q is open;

(ii) if F~Y(z,t) := (c(z,t),t), (z,t) € Q, then u(z,t) := A(c(z,t))t + Blc(z,t))
is the unique C? solution of L?u = 0 in Q satisfying Lyu(z,0) = A(z) and
u(z,0) = B(x).

Proof. We begin by proving that the C?> map F : R?> — R? is one-to-one. By
construction it is enough to prove that for any fixed ¢ the map z(-,t) is strictly
increasing, and this is an easy consequence of (5.44) which implies that

oz Al(e)

—(t,e)=——t"+B'(c)+1>0

()= (©
for any c. Being one-to-one and continuous, F' is also an open map, i.e.  C R? is
open, and (i) is proved.

For (i7), observe that the Jacobian matrix of F' is given by

Ale)y2 (¢ c c
JF(C’t):< (©y +£(3)()+1 A( )th())

and so the Inverse Function Theorem implies that the Jacobian matrix of F~1 is

1

JF Yz, t) = (JE(F~Y(x,1)))
1 (1 —A(c(z, )t — B(c(z, 1)) )

Aleleyz 4 Br(e(z, ) +1 \ 0 4G22 4 B(e(x,) + 1
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Thus
oc 1
—(z,t) = — 5.45
895( ) Alelzt) (C;x’t))tz + B'(c(x,t)) + 1 ( )
A B
@(:c, t)=— (jgx’t))t + Blelz, ) (5.46)
ot 92 4 Br(e) +1
and so one can compute
0
Lou(a,t) = [A(c(e, )t + B'(cla,0))] 3 (2. 1) + Ale(a, 1)) +
0
+ [A el )1+ B (el )] [Alel, 1)t + Ble(a, ) 5,1
= Alc(z,1))
and
9 , oc , dc
Therefore u is a solution of the given problem, and the proof is completed since
uniqueness follows from Theorem 5.13. O

Corollary 5.20. Suppose that A, B € C*([R) and that u : R> — R is a C? entire
solution of the problem

Liu=0

u(z,0) = B(x)

Lyu(x,0) = A(x)

Let Q, c(x,t) be as in Theorem 5.19; then
u(z,t) = A(c(z,t))t + B(c(x, 1)) for all (x,t) € Q

and u is the unique solution in  of the same problem.

5.3.3 Examples of entire solutions of L2u = (

Example 5.21. Let A(c) = ac (o > 0) and B = 0, then it is easy to see that in
this case 0 = R?; since c(z,t) = ﬁ#, the required solution of (5.29) is given by

2axt

These solutions correspond to the maps ¢u(n,7) = —% (where o = «a/4)
solutions of (W?)%¢ = 0 (see also Example 5.7); it is not difficult to notice that the
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surfaces parametrized by ¢, corresponds to {(z,y,t € H! : x = —a’yt)}, which are
deeply studied in [60]: in particular (see Theorem 1.2 therein) it is proved that they
are not H-perimeter minimizing (see also Theorem 5.23).

Example 5.22. Let B = 0 and choose a bounded, not constant and strictly in-
creasing A € C? ; then, if Q and c(z, t) are as in Theorem 5.19, by Corollary 5.15 we
have Q = R? and that u(x,t) :== A(c(x,t))t + B(c(x,t)) is the unique entire solution
of (5.29); moreover, L,u(z,t) = A(c(x,t)) is bounded.

Observe that an analogous situation cannot occur in the Euclidean case: in fact
(see [89], Theorem 17.5), any smooth global solution ¥ of the classical minimal
surface equation with |V~ < oo must be linear. Here, instead, it happens that
the map ¢, which arises from the u of this construction, solves (5.27), is not linear
(and, in particular, not of type (5.48), see Section 5.4) but is such that |W%¢| e~ <
00.

5.4 The Bernstein problem in H"

Let us recall the minimal surface equation for minimal H-graphs in H"

@
we. W—¢ =0, (5.47)
V14 |Wee|?
where ¢ : R*™ — R is of class C2. Observe that the “affine” functions given by

o(n,v,7) =c+ {(n,v), w)gzn—1 (5.48)

for c € R,w € R*~! (the previous formula has to be read as ¢(n, 7) = ¢ + nw when
n = 1) are trivial solutions of (5.47), and that they parametrize the so called “vertical
hyperplanes”, i.e. (right-translations of) maximal subgroups of H" (see also (3.16)):
it follows that these hypersurfaces are stationary points of the area functional, and a
calibration argument implies that they are also minimizers since they have constant
horizontal normal (see Example 5.5). These considerations suggest that the right
counterpart of the classical Bernstein problem in the Heisenberg setting is

Bernstein problem for X -graphs in H": are there entire solutions ¢ : R?" —
R of the minimal surface equation (5.47) which cannot be written as in (5.48)7

As we will see, again the answer seems to depend on the dimension n of the
space; however, new and unexpected phenomena arise, e.g. the fact that we have
solutions to (5.1) which are not area minimizing.
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5.4.1 The Bernstein problem in H'

We have seen in Section 5.3 that for n = 1 there exist solutions of (5.47) which cannot
be written as in (5.48); see for instance Examples 5.21 and 5.22. We already pointed
out that every solution of the classic minimal surface equation (5.1) parametrizes
(the boundary of) a global minimizer; in H' instead a new phenomenon occurs, in
the sense that there are entire solutions of the intrinsic minimal surface equation
(5.47) which parametrize a surface which is not a minimizer. Anyway, whenever the
surface is H-perimeter minimizing in H' it has to be a vertical plane: more precisely,
we have the following

Theorem 5.23 (Minimizers vs. stationary entire Xj-graphs). Suppose that ¢ :
R? — R is of class C? and define S, E C H! to be respectively the X,-graph and the
X1 -subgraph induced by ¢, i.e.

Si= {q)(nﬂ—) = L(’?J) '¢(7777—)61 : (7777—) € R2}
E:={un,7) se:(n,7) R s<(n,7)}.

Let us suppose E is a minimizer for the H-perimeter measure in H'; then S is a
vertical plane, i.e. ¢(n,7) = wn+ c for all (n,7) € R? for some constants w,c € R.

Proof. Step 1. First of all, we want to rewrite the second variation formula (5.26)
in the coordinates c,t introduced in Section 3. Therefore let G be defined by

G : R,—-R,
(x,t) — (t,—4x)
and set
Alx) == (W0 G)(x,0),  B(x) = (¢0G)(x,0);
in particular, ¢ o G is an entire solution of (5.29). As in Section 5.3 we set x(c,t) :=
Ale)

=22 + B(e)t + ¢ and

F . R}, - R2,
(e, 1) — (z(c, 1), 1)

Therefore, if we define

0 := F(R?) C Ri’t,
F*:=GoF,
0= F*(R*)=G(Q) C Rfm

and ¢ : Q — R through the formula F~!(x,t) = (¢(z,t),t), thanks to Theorem 5.12
one gets
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e for any ¢ € R we have either A'(c) = B'(c) = 0 or B'(c)* < 2A4'(c);

e [*is a C? diffeomorphism between R? -+ and Q*. Moreover, () and (2" are open
neighbourhood of the lines {t = 0} and {n = 0} respectively.

It is not difficult to prove that for all (n,7) € Q* one has

6(0.7) = Ale(—r/A.)n+ Blel=r/4.m)) = SL(F(7)): (5.49)
W2 (n, ) = Ac(—7/4,1)). (5.50)
and taking into account that
oc 1 1
%(L t) = a—i F~1(c,t)) - 7’4’(69’“)152 + B'(c(x,t)) + 1 (5.51)
de - &(F (1) _ Ale(z, 1)t + Ble(x, 1))
A N R o E
for all z,t € Q, we get for all (n,7) € Q* that
= = 32 LA (c(F*1(n,7)))
e 2lor = )
Lo |1 AT (0, 7)) + B'(c(F7 (1, 7))
4 Se(F==Y(n, 7))
—92A (¢ &%z
= (8)(%2) (5e5i)° (F*1(n,7)). (5.53)
Observe that for any (c,t) € R? we have
—24(0) 5 (e t) + (g (e ) —24(e) (528 + B/(e)t +1) + (A()t + B'(¢))”
8 (5(c,1))? 8 (Xdp2 4 Br(c)t +1)2
—2A'(¢) + B'(c)? (5.5)

829 4 B(e)t +1)?
and notice that the correspondance

Ci(R,) 3¢ +— ¢ = (o " e CL()
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is bijective and

W) (F(e.t) = o (Fe.t) = 400" () G (P (cr0)
o, . ox o, .
= SLF () - a5 @) (P (a)
¢
= et (5.55)

Since

det JF*(c,t) = det JG(F(c,t))det JF(c,t)

= 429 4 B(e)t+1) >0

a change of variable and equations (5.26), (5.53), (5.54) and (5.55) give

wion [ (WO)? 4 892 [TWo¢ + 2(T¢)?
I o T

N2 | 2 —2A/(0)+B'(0)?
(at) +¢ (AL 2y Br(c)i41)2 {A,(C)

=4 /R T+ A()o2 2

2
o [(5) v

where g is as in (5.13) and we have set ¢ := 1 o F* and

dndt

t* + B'(c)t +1| dcdt

de dt (5.56)

A2 4 Bre)t+1

u(c,t) == [1+ A(c)2]?/?

B'(c)? — 2A'(c)
v(e, t) = e :
[+ Al)?]PP[==1* + B (o)t + 1]
The fact that ¢ parametrizes a minimizer implies that g”(0) > 0 for all ¢» € CL(Q*);
since F* : R? — Q* is a C? diffeomorphism we deduce that

/R? [(%>2u+g2v

Step 2. It is easy to see that our thesis on ¢ is equivalent to A and B being
constant, i.e. to A” = B’ = 0. Suppose by contradiction that there exist a ¢y € R
such that this does not hold, then by Theorem 5.12 we have b* < 2a, where b :=

dedt >0 V(€ CLR?). (5.57)
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B'(¢p) and a := A’(¢p) > 0. We want to use the second variation formula (5.57) to
obtain simpler conditions, namely inequalities on certain one-dimensional integrals
involving a and b (see equation (5.62)).

Fix therefore a function ¢ € C!(R?) and set

C(e,t) == %C(Co + C;co)t);

by (5.57) we get

.\’
0< / ( s ) wdedt+ | Cvdedt=: 1.+ 11, (5.58)
R2 3t R2

Observe that

2
I, = %/RQ (%(CO—I—%J)) u(e,t) dedt
[.(Geo)
= —(u,t) | ulco+ e(u—cp),t) dudt
R2 875

and by Lebesgue convergence theorem one obtains

2
lii% I. = /R2 (%(c, t)) u(co, t) dedt. (5.59)

Analogously one gets

e—0

im Il = [ ((c t)*v(co,t) dedt. (5.60)
R2

Combining (5.58), (5.59) and (5.60) we obtain

1

/RQ (%(c, t)) 1) dedt > (20— 1) | (et s dedt (361)

for all ¢ € CL(R?), where we have put
h(t) == th + bt +1.

By standard arguments (taking for example ((c,t) of the form (;(c)(2(t)) we can
infer the one-dimensional inequalities

/g’% dt > (2a — b%) / cla forall e CUR). (5.62)
R R h
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Step 8. We will follow here the technique used in [60] to provide a counterexample
o (5.62), which will give a contradiction. For € > 0 fix y. € C}(R) such that

O0<xe<1

Xe=1on (—%, %), spt X € (_%’ %)

IX.| < Ce, C >0 independent of €

and set

Xe(t
C(t) == ®) .
h(t)
Equation (5.62) becomes then
1
/g?h dt > (2a — b?) / C2— dt (5.63)
R r D
and observe that i@t
lim C — dt / (5.64)
=0 a2 4 pt 1)

As for the left hand side of (5.63), we have

/ I 2 XX/h/ 1 h/2
’2hdt:/ Xe _ Xe hdt:/ ’Zdt—/ AL / 22 gt (5.
Jeena= [ (- [z [ A9 e [ gz 65.69

an integration by parts gives

h 1 N 1 h'?
c dt = 2 dt dt
[ellane L[ [

whence (5.65) rewrites as

1 h// 1 h/2
12 12
/g hdt = / dt + - /Ghdt 4/6h2dt.

Finally, by Lebesgue convergence theorem we infer

h// h/2 h//
lim C*hdt = /—d ——/—d = /—dt (5.66)
YR

where, in the last equality, we integrated by parts again.
From (5.63), (5.64) and (5.66) we obtain therefore

1 dt dt
—/”ai > (2a—b2)/ 7 (5.67)
4 Jr g2+ 0+ 1 R (442 + bt + 1)
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Since for a > 0 we have

/ dt T d / dt o
cltar Ja 0 L 0ra)?  2va

and observing that

/ dt ( 2a )m/ dt
= ———  m=1,2
r (862 + 0t +1) 20—0%)  Jp (1+at?)m

with o = ﬁ, by (5.67) we obtain

a 2a V2a-b > (20— 1) 4a® mV2a —b?
12— a =16 (2a —0?)22 a

which reduces to 1/2 > 2 (recall that a > 0), which gives a contradiction.

Step 4. We have proved that A and B are constant functions, and this in turn
implies that Q* = R? and ¢(n,7) = An + B. This completes the proof of the
Theorem. O

5.4.2 The Bernstein problem in H" for n > 2

Let us exploit equation the minimal surface equation (5.47) and write it as

n ayd 1) n s
S, (—ﬁ fr$¢¢|2> WP (41?;412@2_) +) Y, (—ﬁ +Y]|$/%‘2> =0
Jj=2 \ Jj=2
(5.68)

where ¢ : R* = R, x R2*"2 x R, — R is of class C*. Notice that, if one looks for
solutions ¢ which do not depend on the 7 variable, i.e. such that ¢(n,v,7) = (n,v)
for some ¢ : R*"~! — R, equation (5.68) rewrites as the classic minimal surface
equation (5.1). This observation allows us to easily construct a counterexample to
the Bernstein problem for X;-graphs in H” when n > 5; in fact in this case we have
2n — 1 > 9 and Theorem 5.1 provides a function ¢ : R**~! — R which solves (5.1)
and is not affine, i.e. the related ¢(n,v,7) = ¥(n,v) solves (5.68) and cannot be
written as in (5.48).

We also notice that Xj-graphs of such 7-independent functions ¢(n,v,7) =
¥(n,v) (where again 1 solves (5.1)) are actually minimizers of the H-perimeter;
in fact it is easy to check that the smooth section v : H* — HH" defined by

(0 1 Wee
V(:L‘ayvt) - ( \/1+|W¢¢‘27\/1—|—|W¢¢‘2> (777U70)

= [-—— ) )
V14 VYR 1+ VY2 G
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where we put n :=y; and v := (29,...,Zpn, Y2, ..., Yn), is a calibration for the graph
of ¢ according to Theorem 5.3, i.e.

o divy v =0;
o |v(P)| =1 forall PeH"

e v coincides with the horizontal inward normal to the X;-graph of ¢ (see Theo-
rem 4.17).

Observe that in this argument it was essential the non-dependance of ¢ on the
vertical variable 7: as we have seen in Section 5.4.1, in general it is not true that an
entire solution of (5.47) parametrizes a minimizer.

The Bernstein problem for intrinsic graphs in H", as far as we know, is still open
for n = 2, 3, 4; observe that any possible negative answer must effectively depend on
the variable 7, or the previous argument leading to the classic Bernstein equation
could apply, contradicting Theorem 5.1.
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