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Abstract

Given the pair of vector fields X = ∂x + |z|2my∂t and Y = ∂y − |z|2mx∂t, where
(x, y, t) = (z, t) ∈ R3 = C×R, we give a condition on a bounded domain Ω ⊂ R3

which ensures that Ω is an (ε, δ)-domain for the Carnot-Carathéodory metric. We
also analyze the Ahlfors regularity of the natural surface measure induced on ∂Ω by
the vector fields.

1. Introduction

In R3 = C×R we consider the vector fields

X = ∂x + |z|2my∂t and Y = ∂y − |z|2mx∂t, (1.1)

where (x, y, t) = (z, t) ∈ R3 = C×R and m ∈ [1,+∞[ is a real parameter. The vector
fields X and Y naturally arise as the real and imaginary part of the holomorphic vector
field tangent to the boundary of the generalized Siegel domain {(z1, z2) ∈ C2 : Im z2 >

1
2m+2 |z1|2m+2}.

We study the interaction of the Carnot-Carathéodory (CC) distance d induced by X
and Y with the geometry of a surface embedded in R3. Namely, we give conditions on
the boundary ∂Ω such that an open set Ω ⊂ R3 is a John domain, a uniform domain
and such that the natural surface measure induced on ∂Ω by X and Y is Ahlfors regular,
see Definition 1.3.

John domains are also known as domains with the twisted cone property, see Defi-
nition 5.1. When the distance is induced by Hörmander vector fields in Rn, several au-
thors proved that a bounded John domain supports a global Sobolev-Poincaré inequality,
see [Jer86, SC92, FLW96, GN96] and the discussion for a general metric space in [HK00].
The exterior twisted cone property is also relevant in classical potential theory because it
implies the subelliptic Wiener criterion (see [NS87]).

Uniform domains are also known as (ε, δ)-domains, see Definition 6.1. They form
a subset of John domains. In the global theory of Sobolev spaces for Hörmander vec-
tor fields, Garofalo and Nhieu proved in [GN98] that subelliptic Sobolev functions in a
uniform domain can be extended to the whole space. In [DGN06] it is also shown that
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the trace of a Sobolev function in a uniform domain with Ahlfors regular boundary be-
longs to a suitable Besov space of the boundary. Also for this reason, we shall study
the Ahlfors property very carefully. The trace problem was analyzed in [MM02] in the
non-characteristic case and in a two-dimensional model. In [GMM], we study by a di-
rect approach the trace problem at the boundary of the characteristic half plane t > 0 for
vector fields of Martinet type X = ∂x, Y = ∂y + |x|α∂t in R3.

In spite of the previous results, there are not many examples of John and uniform do-
mains in Carnot-Carathéodory spaces. In fact, the subRiemannian case is more delicate
than the Euclidean one because of the presence of characteristic points, i.e., points where
the Hörmander vector fields are all tangent to the boundary. Such points make the con-
struction of the inner cone more difficult. Sometimes the inner cone does not exist at all,
even for analytic boundaries, see e.g. [MM05b, Theorem 1.2].

The only known elementary fact is that small CC-balls are John domains. To the
authors’ knowledge, it is not even clear whether the more restricted class of uniform do-
mains is always nonempty, for any given family of Hörmander vector fields. In [MM05b]
it is proved that C2 domains in Carnot groups of step two are uniform. The case of cylin-
drically symmetric domains was already considered in [CG98] in the Heisenberg group,
that is the model (1.1) with m = 0. In [MM04] and [MM05a], the authors studied the case
of diagonal vector fields.

In this paper, we study uniform domains in R3 for the CC distance of the vector
fields (1.1). Our sufficient condition for a domain to be uniform requires the boundary to
be “flat” near characteristic points on the t-axis.

Let Ω ⊂ R3 be an open set with C∞ boundary. If both X and Y are tangent to ∂Ω at
the point p ∈ ∂Ω, then there is a neighborhood Up of p such that Up ∩ ∂Ω is a graph of
the form t = ϕ(z). So we start from the following definition.

Let A ⊂ R2 be an open set and ϕ ∈ C∞(A). We say that Σ = gr(ϕ) = {(z, ϕ(z)) ∈
R3 : z ∈ A} is an m-admissible graph if there exists a constant C > 0 such that for all z ∈ A

|D3ϕ(z)| ≤ C|z|2m−1, |D2ϕ(z)| ≤ C|z|2m and |Dϕ(z)| ≤ C|z|2m+1. (1.2)

When 0 /∈ A, the three conditions (1.2) are trivially satisfied in a compact subset of A.
The conditions are instead restrictive when 0 ∈ A.

Definition 1.1. Let m ∈ [1,+∞[. We say that a bounded domain Ω ⊂ R3 with smooth
boundary is m-admissible if for any characteristic point p ∈ ∂Ω there exists a neighbor-
hood Up of p in R3 such that ∂Ω ∩Up is an m-admissible graph.

Our main result is the following:

Theorem 1.2. Let m ∈ N. Any m-admissible domain Ω ⊂ R3 is uniform and, in particular, is
a John domain in (R3, d).

In fact, our proof shows that admissible domains are also non-tangentially accessible
(NTA). Concerning our requirements on the rate of growth (1.2) for the function ϕ, it is
easy to check that any open set which agrees in a neighborhood of the origin with the
epigraph {t > |z|α} with α < 2m + 2 is not a John domain.

On the other hand, let us consider the epigraph {t > −x2m+1y} of Example 3.1. All
the points (x, 0, 0) of the x-axis are characteristic points of the boundary. However, the
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“order of degeneration” of such points is 2 when x 6= 0, while it is 2m + 2 when x = 0.
The difficulty of our work in Section 5 is due to the fact that we need to construct a
family of inner cones of constant aperture contained in {t > −x2m+1y} and with vertex
at points arbitrarily close to the characteristic set. Furthermore, in order to prove the
(ε, δ)-property, in Section 6 we also need to show that cones with close vertices have
quantitatively close axes.

Theorem 1.2 is proved in Sections 5, 6 and 7. We first show that global (i.e., with
A = R2) admissible graphs have the global cone property and then that they satisfy the
(ε, δ)-condition. Finally, we deal with the case of bounded domains. The proofs rely on
a precise description of the distance d, which will be discussed in Section 2, and on some
preliminary results proved in Section 3.

The natural surface area on ∂Ω is the perimeter measure of Ω induced by the vector
fields (1.1). This is the measure

µ =
√
〈N, X〉2 + 〈N, Y〉2 H2 ∂Ω, (1.3)

where N is the unit Euclidean normal to ∂Ω, 〈·, ·〉 is the standard scalar product of R3,
and H2 ∂Ω is the standard surface measure, i.e., the restriction of the 2-dimensional
Hausdorff measure to ∂Ω. This is a special case of the variational definition of perimeter
measure in CC-spaces, see [GN98] and [MSC01]. For admissible domains, the measure µ
is codimension 1 Ahlfors regular in the following sense.

Theorem 1.3. Let m ∈ N and denote by B(p, r) the CC-balls. For any m-admissible domain
Ω ⊂ R3 there exist constants C > 0 and r0 > 0 such that for all p ∈ ∂Ω and 0 < r ≤ r0

C−1 |B(p, r)|
r

≤ µ(B(p, r)) ≤ C
|B(p, r)|

r
. (1.4)

Above, | · | denotes the Lebesgue measure in R3. This theorem is proved in Section 7
and relies on the delicate analysis of global admissible graphs tackled in Section 4. Our
analysis will require the study of several situations, depending on how CC-balls intersect
the graph near the characteristic set.

The ball-box theorem for the distance d is proved in the first part of the paper. For
any (z, t), (ζ, τ) ∈ R3, we define the function

δ((z, t), (ζ, τ)) = |z− ζ|+ min
{
|v| 1

2m+2 ,
|v|1/2

|z|m

}
, (1.5)

where v = τ − t + |z|2mω(z, ζ), and ω(z, ζ) = xη − yξ with z = (x, y) and ζ = (ξ, η).

Theorem 1.4. Let m ∈ [1,+∞[. There is a constant C > 1 such that for all p = (z, t), q =
(ζ, τ) ∈ R3

C−1δ(p, q) ≤ d(p, q) ≤ Cδ(p, q). (1.6)

This theorem is proved in Section 2. Our proof is completely self-contained and works
for any m ≥ 1, also noninteger. Note that when m ∈ [1,+∞[\N, the well known ball-box
theorem in [NSW85] cannot be applied, because the vector fields (1.1) are not smooth at
z = 0.
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2. Ball-box estimate

In this section, we prove Theorem 1.4 and, in Corollary 2.2 below, we rephrase it as a
ball-box estimate.

An absolutely continuous curve γ : [0, 1] → R3 is horizontal for the vector fields (1.1),
if it satisfies γ̇ = α(s)X(γ) + β(s)Y(γ) for a.e. s ∈ [0, 1]. The length of γ is defined as

length(γ) =
∫ 1

0
|(α(s), β(s))|ds.

Given points (z, t), (ζ, τ) ∈ R3, the CC distance d((z, t), (ζ, τ)) is defined as the infimum
(the minimum, in fact) of the length of all absolutely continuous curves γ : [0, 1] → R3

connecting them.
We will use the following invariance properties of d. For all (z, t), (ζ, τ) ∈ C × R,

s, θ ∈ R, and r > 0 we have:

d((z, t), (ζ, τ)) = d(eiθz, t), (eiθζ, τ)); (2.1)
d((z, t), (ζ, τ)) = d((z, t + s), (ζ, τ + s)); (2.2)

d
(
(rz, r2m+2t), (rζ, r2m+2τ)) = rd((z, t), (ζ, τ)). (2.3)

We will also use the following elementary estimate, holding for any x, y ∈ R and m ≥ 1:

C−1
m (|x|m−1 + |y|m−1)

∣∣|x| − |y|∣∣ ≤ ∣∣|x|m − |y|m∣∣ ≤ Cm(|x|m−1 + |y|m−1)|y− x|. (2.4)

Proof of Theorem 1.4 . Step 1. We claim that there exists a constant C > 0, depending on m,
such that δ((z0, t0), (ζ, τ)) ≤ Cd((z0, t0), (ζ, τ)) for all points (z0, t0), (ζ, τ) ∈ R3.

By (2.1)-(2.2), we can assume that z0 = (x0, 0) with x0 ≥ 0 and t0 = 0. In this case,
we have ω(z0, ζ) = x0η, with ζ = (ξ, η), and the definition in (1.5) for δ reads, with
v = τ + x2m+1

0 η,

δ((z0, 0), (ζ, τ)) = |z0 − ζ|+ min
{ |v|1/2

xm
0

, |v| 1
2m+2

}
.

Let γ = (z, t) : [0, T]→ R3, T > 0, be a unit-speed horizontal curve connecting (z0, 0)
and (ζ, τ). We let z = z(s) = (x(s), y(s)) = (x, y). From the unit-speed condition |ż| ≤ 1,
we deduce that

|z0 − ζ| =
∣∣∣ ∫ T

0
ż ds
∣∣∣ ≤ T. (2.5)

We estimate the quantity

v = τ + x2m+1
0 η =

∫ T

0

{
|z|2myẋ + (x2m+1

0 − |z|2mx)ẏ
}

ds.

We claim that there exists a constant C > 0 such that for all s ∈ [0, T] we have

|z|2m|y|+ |x2m+1
0 − |z|2mx| ≤ C(x2m

0 s + s2m+1). (2.6)
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The left-hand side is evaluated at s ∈ [0, T]. From |z| ≤ x0 + s and |y| ≤ s we deduce that
|z|2m|y| ≤ C(x2m

0 s + s2m+1). By the triangle inequality and (2.4), we have∣∣x2m+1
0 − |z|2mx

∣∣ ≤ ∣∣|z|2m − x2m
0
∣∣|x|+ x2m

0 |x− x0|
≤ Cm(|z|2m−1 + x2m−1

0 )
∣∣|z| − x0

∣∣|x|+ x2m
0 |x− x0|.

Using |x| ≤ |z| ≤ x0 + s,
∣∣|z| − x0

∣∣ ≤ s and |x − x0| ≤ s we obtain
∣∣x2m+1

0 − |z|2mx
∣∣ ≤

C(x2m
0 s + s2m+1). This finishes the proof of (2.6).
Now, (2.6) implies that |τ + x2m+1

0 η| ≤ C(x2m
0 T2 + T2m+2), which is equivalent to

T ≥ C−1 min
{ |τ + x2m+1

0 η|1/2

xm
0

, |τ + x2m+1
0 η| 1

2m+2

}
. (2.7)

The inequalities (2.7) and (2.5) imply δ((z0, 0), (ζ, τ)) ≤ CT and minimizing on T we get
the claim made in the Step 1.

Step 2. We claim that there exists a constant C > 0 such that d((z, t), (z, τ)) ≤ Cδ((z, t), (z, τ))
for all z ∈ C and t, τ ∈ R, i.e.,

d((z, t), (z, τ)) ≤ C min
{
|τ − t| 1

2m+2 ,
|τ − t|1/2

|z|m
}

. (2.8)

By (2.1)–(2.2), we can without loss of generality assume that z = (x, 0) with x ≥ 0, t = 0
and τ ≥ 0.

For each u ≥ 0 consider the unit-speed path [0, 4u] 3 s 7→ ζ(s) ∈ R2 that linearly
connects the points in the plane (x, 0), (x, u), (x + u, u), (x + u, 0) and (x, 0). Let Ru be
the square enclosed by ζ. The path ζ has length 4u and its unique absolutely continuous
horizontal lift s 7→ γ(s) = (ζ(s), τ(s)) satisfying τ(0) = 0 has final point

τ(4u) =
∫

ζ
|ζ|2m(ηdξ − ξdη) = 2(m + 1)

∫
Ru

|ζ|2mdξdη ≥ C−1
0 u2(x2m + u2m). (2.9)

We used Stokes’ theorem with the counterclockwise orientation of ζ. The function u 7→∫
Ru
|ζ|2mdξdη is a strictly increasing bijection of [0,+∞[ onto itself.
Let u be the unique number such that τ(4u) = τ. By the definition of the distance d

and by (2.9), we have

d((x, 0, 0), (x, 0, τ)) ≤ 4u = min
{

4u > 0 : τ(4u) ≥ τ
}

≤ min
{

4u > 0 : τ ≤ C−1
0 u2(x2m + u2m)

}
≤ C min

{τ1/2

xm , τ
1

2m+2

}
.

This concludes the proof of the Step 2.

Step 3. We claim that the inequality d((z, t), (ζ, τ)) ≤ Cδ((z, t), (ζ, τ)) holds for all points
(z, t), (ζ, τ) ∈ C×R.

We preliminarily observe that, given (u, v) = w ∈ C, for any point (z, t) = (x, y, t) we
have

euX+vY(z, t) =
(

z + w, t + ω(w, z)
∫ 1

0
|z + sw|2mds

)
,
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where ω(w, z) = uy− vx and euX+vY(z, t) denotes the value at time 1 of the integral curve
of uX + vY starting from (z, t) at time 0.

By the triangle inequality, it follows that

d((z, t), (ζ, τ)) ≤ d
(
(z, t), e(ξ−x)X+(η−y)Y(z, t)

)
+ d
(
e(ξ−x)X+(η−y)Y(z, t), (ζ, τ)

)
.

In the last distance, the points are one above each other and so, by (2.8), we get

d((z, t), (ζ, τ)) ≤ C
(
|z− ζ|+ min

{
|t− τ + λ| 1

2m+2 , |t− τ + λ| 12 /|ζ|m
})

, (2.10)

where

λ = ω(ζ, z)
∫ 1

0
|z + s(ζ − z)|2mds.

We used ω(ζ − z, z) = ω(ζ, z).
In order to prove the claim in the Step 3, we have to show that the right-hand side in

(2.10) is less than Cδ((z, t), (ζ, τ)). By (2.1)–(2.2), it is enough to prove this estimate in the
case z = (x, 0) with x ≥ 0 and t = 0. In this case, the distance δ is

δ((z, 0), (ζ, τ)) = |z− ζ|+ min
{
|v| 1

2m+2 ,
|v|1/2

xm

}
, v = τ + x2m+1η.

We distinguish two cases:

Case G1: |v| 1
2m+2 ≤ |v| 12 /xm, i.e., x ≤ |v| 1

2m+2 ;

Case G2: |v| 1
2m+2 ≥ |v| 12 /xm, i.e., x ≥ |v| 1

2m+2 .

Case G1. When z = (x, 0) and t = 0 we have ω(ζ, z) = −xη and, see (2.10),

|t− τ + λ| =
∣∣∣τ + xη

∫ 1

0
|z + s(ζ − z)|2mds

∣∣∣.
We claim that in the Case G1 we have∣∣∣τ + xη

∫ 1

0
|z + s(ζ − z)|2mds

∣∣∣ 1
2m+2 ≤ C

(
|ζ − z|+ |v| 1

2m+2

)
. (2.11)

This and (2.10) finish the proof of the the Step 3 in the Case G1, because the right-hand
side in (2.11) is Cδ((z, 0), (ζ, τ)).

We prove (2.11). By the triangle inequality, we have∣∣∣τ+xη
∫ 1

0
|z + s(ζ − z)|2mds

∣∣∣ ≤ |v|+ x|η|
∣∣∣− x2m +

∫ 1

0
|z + s(ζ − z)|2mds

∣∣∣
= |v|+ x |η|

∣∣∣ ∫ 1

0

∫ s

0

d
d$
|z + $(ζ − z)|2md$ ds

∣∣∣
= |v|+ 2mx |η|

∣∣∣ ∫ 1

0

∫ s

0
|z + $(ζ − z)|2m−2{〈z, ζ − z〉+ $|ζ − z|2

}
d$ ds

∣∣∣
≤ C(|v|+ Θ),

(2.12)
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where we let
Θ = x|η|(x + |ζ − z|)2m−2(x|ξ − x|+ |ζ − z|2). (2.13)

By the Hölder inequality and by the Case G1 we have

Θ ≤ Cx|ζ − z|(x + |ζ − z|)2m ≤ C(x + |ζ − z|)2m+2 ≤ C(|v|+ |ζ − z|2m+2).

This and (2.12) finish the proof of (2.11).

Case G2. In this case we have x ≥ |v| 1
2m+2 , and thus

δ((z, 0), (ζ, τ)) = |z− ζ|+ |v|
1/2

xm , v = τ + x2m+1η.

We distinguish the following three subcases:

|ξ − x| ≤ 1
2

x; (G2a)

max{|ξ|, |η|} ≤ 1
2

x; (G2b)

max{|ξ|, |η|} ≥ 1
2

x and |ξ − x| ≥ 1
2

x. (G2c)

In the Case G2a, the quantity Θ in (2.13) can be estimated as follows

Θ ≤ Cx|η|(x + |η|)2m−2(x|x− ξ|+ η2)

and from x ≤ x + |η| ≤ C|ζ| we deduce that

1
|ζ|2m (|v|+ Θ) ≤ C

( |v|
x2m +

x|η|
(x + |η|)2 (x|x− ξ|+ η2)

)
≤ C

( |v|
x2m + |ζ − z|2

)
.

This along with (2.12) and (2.10) finish the proof of the Step 3 in the Case G2a.
In the Case G2b, the quantities x, x + |ξ|, x + |η|, |ξ − x| are mutually comparable

with absolute constants and therefore, also using the Hölder inequality, the quantity Θ in
(2.13) can be estimated as follows

Θ ≤ Cx2m+1|η| ≤ C|ζ − z|2m+2.

On the other hand, we have

|v| 1
2m+2 ≤ C

(
x +
|v|1/2

xm

)
≤ C

(
|ζ − z|+ |v|

1/2

xm

)
.

These two inequalities imply, via (2.12), that the claim (2.11) holds also in the Case G2b.
In the Case G2c, we have x ≤ C|ζ| and from (2.13) we estimate

Θ ≤ C|ζ||η|(|ζ|+ |ζ − z|)2m−2(|ζ||ζ − z|+ |ζ − z|2) ≤ C|ζ|2m|ζ − z|2,

and we conclude that

1
|ζ|m (Θ + |v|)1/2 ≤ C

(
|ζ − z|+ |v|

1/2

xm

)
.

The proof is concluded also in this case.
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Remark 2.1. The argument of the proof of Theorem 1.4 shows in fact the global equiva-
lence

|(u, v)| ≤ d((z, t), euX+vY(z, t)) ≤ C0|(u, v)|, u, v, t ∈ R, z ∈ R2. (2.14)

Next we describe the d-balls as suitable boxes. For any β > 0 we define the weighted
norm of u = (u1, u2, u3) ∈ R3

‖u‖1,1,β = max{|u1|, |u2|, |u3|1/β},

and for any p = (z, t) = (x, y, t) ∈ R3 and r > 0 we define the boxes

BoxI(p, r) =
{(

x + u1, y + u2, t + |z|2m(u3 + yu1 − xu2)
)

: ‖u‖1,1,2 < r
}

,

BoxJ(p, r) =
{(

x + u1, y + u2, t + u3 + |z|2m(yu1 − xu2)
)

: ‖u‖1,1,2m+2 < r
}

.

Corollary 2.2. Let m ∈ [1,+∞[. For any α > 0 there exist constants b1, b2, δ0 > 0 such that for
all p = (z, t) ∈ R3 and r > 0 we have:

(i) if |z| ≥ αr, then

BoxI(p, δ0r) ⊂ B(p, r) ⊂ BoxI(p, b1r); (2.15)

(ii) if r ≥ α|z|, then

BoxJ(p, δ0r) ⊂ B(p, r) ⊂ BoxJ(p, b2r). (2.16)

Proof. Step 1. We claim that for a suitable δ0 > 0 we have

BoxI(p, δ0r) ∪ BoxJ(p, δ0r) ⊂ B(p, r) ⊂ BoxI(p, r/δ0) ∪ BoxJ(p, r/δ0).

To prove these inclusions, we observe that, letting v = τ − t + |z|2m(xη − yξ),

(ζ, τ) ∈ BoxI(p, r) ⇔ max
{
|ξ − x|, |η − y|, |v|

1/2

|z|m

}
< r, (2.17)

(ζ, τ) ∈ BoxJ(p, r) ⇔ max
{
|ξ − x|, |η − y|, |v| 1

2m+2

}
< r. (2.18)

Thus the point (ζ, τ) belongs to the union of the boxes if and only if |ξ− x| < r, |η− y| < r
and

min
{
|v| 1

2m+2 ,
|v| 12
|z|m

}
< r.

Now the claim follows from Theorem 1.4. We also proved both the inclusions in the
left-hand side of (2.15) and (2.16).

Step 2. We prove the inclusion in the right-hand side of (2.15). Let |z| ≥ αr and let
(ζ, τ) ∈ B(p, r). By the Step 1 we know that (ζ, τ) ∈ (BI ∪ BJ)(p, r/δ0). Then, we are left
to show that

|z| ≥ αr and min
{
|v| 1

2m+2 ,
|v|1/2

|z|m
}
< r/δ0 ⇒ |v|1/2

|z|m < b1r.
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If the minimum is |v|1/2/|z|m, there is nothing to prove. Otherwise we have |v|1/(2m+2) <
r/δ0, i.e., |v|1/2 < (r/δ0)m+1. This and |z| ≥ αr imply

|v|1/2

|z|m ≤ |v|
1/2

(αr)m ≤
(r/δ0)m+1

(αr)m =
1

αmδm+1
0

r.

Step 3. We prove the inclusion (2.16). Arguing as in the Step 2, it suffices to prove that

r ≥ α|z| and min
{
|v| 1

2m+2 ,
|v|1/2

|z|m
}
<

r
δ0

⇒ |v| 1
2m+2 ≤ b2r.

If the minimum is |v| 1
2m+2 , there is nothing to prove. Otherwise we have

r
δ0
≥ |v|

1/2

|z|m ≥ |v|1/2
(α

r

)m
,

that is equivalent to |v|1/2 ≤ rm+1/δ0αm. This is the claim.

3. Geometry of admissible graphs

Let ϕ ∈ C∞(R2) be a smooth function satisfying the flatness conditions (1.2) at any point
z ∈ R2. A defining function for the graph of ϕ is the function F ∈ C∞(R3) given by
F(z, t) = ϕ(z)− t. The derivatives

XF(z, t) = XF(z) = ϕx(z)− |z|2my,

YF(z, t) = YF(z) = ϕy(z) + |z|2mx

do not depend on t and we let ZF(z) = (XF(z), YF(z)). A point (z, ϕ(z)) ∈ Σ = gr(ϕ) is
characteristic if and only if ZF(z) = 0. By (1.2), the function ZF satisfies

|ZF(z)| ≤ C|z|2m+1, z ∈ R2. (3.1)

Example 3.1. Let m ∈N. The graph of the function ϕ(z) = −x2m+1y is m-admissible and
each point of the x-axis is characteristic.

The next proposition describes the restriction of the distance d to an admissible graph.

Lemma 3.2. Let ϕ ∈ C∞(R2) satisfy the conditions (1.2). Then there exist a constant C0 > 0
such that for all p = (z, ϕ(z)), q = (ζ, ϕ(ζ)) ∈ Σ

C−1
0 d(p, q) ≤ |ζ − z|+

∣∣∣ ϕ(ζ)− ϕ(z)
µ2m

z,ζ
+ ω(z, ζ)

∣∣∣ 1
2 ≤ C0d(p, q), (3.2)

where µz,ζ = max{|z|, |ζ|} and ω(z, ζ) = xη − yξ.

Proof. Without loss of generality, we prove the lemma in the case |z| ≥ |ζ|. We claim that,
letting v = ϕ(ζ)− ϕ(z) + |z|2mω(z, ζ), we have

|v|1/2

|z|m ≤ C(|ζ − z|+ |v| 1
m+2 ) (3.3)

9
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Taking (3.3) for granted and starting from Theorem 1.4, by (3.3) it follows that

d(p, q) ' |ζ − z|+ min
{
|v| 1

m+2 +
|v|1/2

|z|m
}
' |ζ − z|+ |v|

1/2

|z|m ,

and this is (3.2).
We prove (3.3). From the elementary inequality a1/2b1/2 ≤ C(a

2m+1
2m+2 b

1
2m+2 + b) for a, b ≥

0, we obtain

|v|1/2

|z|m = |z|1/2
∣∣∣ ϕ(ζ)− ϕ(z)
|z|2m+1 +

ω(z, ζ)

|z|

∣∣∣1/2

≤ C
{
|z| 2m+1

2m+2

∣∣∣ ϕ(ζ)− ϕ(z)
|z|2m+1 +

ω(z, ζ)

|z|

∣∣∣ 1
2m+2

+
∣∣∣ ϕ(ζ)− ϕ(z)
|z|2m+1 +

ω(z, ζ)

|z|

∣∣∣}
≤ C

{
|v| 1

2m+2 +
|ϕ(ζ)− ϕ(z)|
|z|2m+1 +

|ω(z, ζ)|
|z|

}
≤ C

{
|v| 1

2m+2 + |z− ζ|
}

,

because by (1.2) and |ζ| ≤ |z| we have

|ϕ(ζ)− ϕ(z)| ≤ C(|z|2m+1 + |ζ|2m+1)|ζ − z| ≤ C|z|2m+1|ζ − z|,

and, moreover, |ω(z, ζ)| = |ω(z, ζ − z)| ≤ |z||ζ − z|.

In the next propositions, we discuss other consequences of the conditions (1.2).

Proposition 3.3. Let ϕ ∈ C∞(R2) satisfy (1.2). For all z, ζ ∈ R2 we have

ϕ(ζ)− ϕ(z) + µ2m
ζ,z ω(z, ζ) = 〈ZF(z), ζ − z〉+ µ2m

z,ζ O(|ζ − z|2), (3.4)

where µz,ζ = max{|z|, |ζ|} and the remainder satisfies |O(|ζ − z|2)| ≤ C|z− ζ|2 for a constant
C > 0.

Proof. Expanding ϕ at the second order at a point z ∈ R2, we obtain for any ζ ∈ R2

ϕ(ζ)− ϕ(z) + |z|2mω(z, ζ) = 〈ZF(z), ζ − z〉+ µ2m
z,ζ O(|ζ − z|2). (3.5)

By (1.2), the remainder satisfies the uniform estimate |O(|ζ − z|2)| ≤ C|ζ − z|2 for all
z, ζ ∈ C. If µz,ζ = |z|, this is our claim (3.4).

If |z| ≤ |ζ|, starting from (3.5) it suffices to use the estimates |ω(z, ζ)| ≤ |ζ||ζ − z| and

||ζ|2m − |z|2m| ≤ Cµ2m−1
ζ,z |ζ − z| ≤ C|ζ|2m−1|ζ − z|.

and the proof is concluded.

Next we get a Taylor expansion of ZF(ζ) with a remainder O(|ζ − z|2). This is the
only point where we use the assumption |D3ϕ(z)| ≤ C|z|2m−1.

Let z, ζ ∈ R2 be points with |ζ| ≤ 2|z|. There exist points z′ = z′(z, ζ) and z′′ =
z′′(z, ζ) in the line segment [z, ζ] such that:

ϕx(ζ) = ϕx(z) + 〈Dϕx(z′), ζ − z〉+ |z|2m−1O(|ζ − z|2),
ϕy(ζ) = ϕy(z) + 〈Dϕy(z′′), ζ − z〉+ |z|2m−1O(|ζ − z|2).

(3.6)

10
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On the other hand, we have

|ζ|2mη = |z|2my + |z|2m−2〈(2mxy, |z|2 + 2my2), ζ − z
〉
+ |z|2m−1O(|ζ − z|2),

|ζ|2mξ = |z|2mx + |z|2m−2〈(|z|2 + 2mx2, 2mxy), ζ − z〉+ |z|2m−1O(|ζ − z|2).

With these estimates, we have proved the following:

Proposition 3.4. Let ϕ ∈ C∞(R2) satisfy (1.2). For any z, ζ ∈ R2 with |ζ| ≤ 2|z| we have

ZF(ζ) = ZF(z) + M(z, ζ)(ζ − z) + |z|2m−1O(|ζ − z|2)

where ZF =

[
XF
YF

]
, ζ − z =

[
ξ − x
η − y

]
and M = M(z, ζ) is the 2× 2 matrix

M =

[
ϕxx(z′)− 2m|z|2m−2xy ϕxy(z′)− |z|2m−2(|z|2 + 2my2)

ϕxy(z′′) + |z|2m−2(|z|2 + 2mx2) ϕyy(z′′) + 2m|z|2m−2xy

]
. (3.7)

If ϕ = 0, then det M = (1 + 2m)|z|4m. In this case, the matrix M is nonsingular for all
z 6= 0. Example 3.1 shows that, for some admissible functions, nonsingularity may fail
also at points z 6= 0. However, we are able to show that the matrix M(z, ζ) has always
rank at least one and that it satisfies the following quantitative nondegeneration property.
This property is needed to get a Ahlfors lower bound in the noncharacteristic case, the
Case 1c in next section.

Proposition 3.5. Let ϕ ∈ C∞(R2) satisfy (1.2). There exist constants C2 > 1, ε0, ε2 ∈ ]0, 1[
such that for all z 6= 0 there is a unit vector u ∈ S1 ⊂ R2 such that for all r ∈ ]0, ε0|z|[ we have

|M(z, ζ)(ζ − z)| ≥ C−1
2 |z|

2mr (3.8)

for all ζ ∈ BEuc
(
z + r

2 u, ε2r
)
⊂ BEuc(z, r) ⊂ R2.

Proof. Denote by e1, e2 the coordinate versors of R2. Then, letting M = M(z, ζ), we have

|Me1|+ |Me2| ≥
∣∣∣ϕxy(z′′) + |z|2m−2(|z|2 + 2mx2)

∣∣∣+ ∣∣∣ϕxy(z′)− |z|2m−2(|z|2 + 2my2)
∣∣∣

≥ (2m + 2)|z|2m − |ϕxy(z′)− ϕxy(z′′)|.

From (1.2) and |z′− z′′| ≤ |ζ− z| ≤ ε0|z|, we deduce that, if ε0 is conveniently small, then
we have the inequality |ϕxy(z′) − ϕxy(z′′)| ≤ |z|2m. This implies that |Me1| + |Me2| ≥
2m|z|2m. Thus, given z 6= 0, at least one of the choices u = e1 or u = e2 ensures that
|M(z, ζ)u| ≥ |z|2m for all ζ such that |ζ − z| < ε0|z|. Therefore, for any v with |v| ≤ 1 and
ε2 > 0 we have

|M(z, ζ)(u + ε2v)| ≥ |z|2m − ε2|M(z, ζ)| ≥ |z|2m − ε2C|z|2m

where |M(z, ζ)| denotes the operatorial norm, which under our assumptions satisfies
|M(z, ζ)| ≤ C|z|2m. Thus, taking ε2 small enough we get a lower estimate with 1

2 |z|2m.
The claim (3.8) follows by multiplying the last inequality by r/2.

11
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4. Ahlfors property for entire admissible graphs

In this section we prove Theorem 1.3 in the case when the boundary of the domain is an
entire admissible graph. The case of a bounded domain is in Section 7. A discussion of
the problem in a translation invariant setting of step two is contained in [CG06].

Let π : R3 → R2 be the projection π(z, t) = z and denote by Σ the graph of a function
ϕ ∈ C∞(R2) satisfying (1.2). By the area formula, the measure µ defined in (1.3) satisfies,
for any p ∈ Σ and r > 0,

µ(B(p, r) ∩ Σ) =
∫

π(B(p,r)∩Σ)
|ZF(ζ)|dξdη. (4.1)

The integration domain can be estimated using Lemma 3.2. For any z ∈ R2 and r > 0 we
define the “disks”

D(z, r) =
{

ζ ∈ R2 : |ζ − z| ≤ r, |ϕ(ζ)− ϕ(z) + µ2m
ζ,z ω(z, ζ)| ≤ µ2m

ζ,zr2}, (4.2)

where µζ,z = max{|z|, |ζ|}. By Lemma 3.2, there exists a constant C0 > 0 such that

D(z, r/C0) ⊂ π(B(p, r) ∩ Σ) ⊂ D(z, C0r), for all z ∈ C and r ∈ ]0,+∞[. (4.3)

The Lebesgue measure of the ball B(p, r), p = (z, t) ∈ R3, can be computed using
Corollary 2.2. Let ε0 ∈ ]0, 1[ be the constant given by Proposition 3.5. From (2.15)–(2.17)
and (2.16)–(2.18), using Fubini-Tonelli Theorem we obtain

|B(p, r)| ' |z|2mr4, if r ≤ ε0|z|,
|B(p, r)| ' r2m+4, if r ≥ ε0|z|.

The equivalence constants depend on the parameter ε0.

4.1. Proof in the Case 1: r ≤ ε0|z|.

We claim that for any point p = (z, ϕ(z)) ∈ Σ and r > 0 such that r ≤ ε0|z| we have:

µ(B(p, r) ∩ Σ) ' |z|2mr3. (4.4)

Observe that in Case 1 we have the obvious equivalence 1
2 |z| ≤ |ζ| ≤

3
2 |z|. Let β > 0 be a

parameter that will be fixed after (4.10). We distinguish two subcases:
Case 1c: |z|2mr ≥ β|ZF(z)|. This is the characteristic case.
Case 1nc: |z|2mr ≤ β|ZF(z)|. This is the non-characteristic case.

In the Case 1c, points are in a quantitative way near the characteristic set of Σ, where
|ZF(z)| = 0.

Case 1c – upper bound. We start from the elementary inclusion π(B(p, r) ∩ Σ) ⊂ {ζ ∈
R2 : |ζ − z| ≤ r}. Thus, using the expansion (3.4) and the trivial estimate |M(ζ − z)| ≤
C|z|2m|ζ − z| we obtain∫

|ζ−z|≤r
|ZF(ζ)|dξdη =

∫
|ζ−z|≤r

∣∣∣ZF(z) + M(ζ − z) + |z|2m−1O(|ζ − z|2)
∣∣∣dξdη

≤ C
∫
|ζ−z|≤r

( 1
β
|z|2mr + C|z|2m|ζ − z|+ C|z|2m−1|ζ − z|2

)
dξdη

≤ C
( 1

β
+ C

)
|z|2mr3.

12
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We also used r ≤ ε0|z| to estimate the third term.

Case 1c – lower bound. We claim that there exist constants ε1 > 0 and β > 0 such that

{ζ ∈ R2 : |ζ − z| ≤ ε1r/C0} ⊂ π(B(p, r) ∩ Σ). (4.5)

The constant C0 is the one given by Lemma 3.2.
In view of the expansion (3.4), the set D(z, r/C0) introduced in (4.2) satisfies

D(z, r/C0) =
{

ζ ∈ R2 : |ζ − z| ≤ r/C0, |〈ZF(z), ζ − z〉+ µ2m
z,ζ O(|ζ − z|2)| ≤ C−2

0 µ2m
z,ζ r2},

where, for some absolute constant C1, we have |O(|ζ − z|2)| ≤ C1|ζ − z|2 ≤ C1C−2
0 ε2

1r2,
provided that |ζ − z| ≤ ε1r/C0. If ε1 satisfies

C1ε2
1 ≤

1
2

, (4.6)

then we have the inclusion{
ζ ∈ R2 : |ζ − z| ≤ ε1r/C0, |〈ZF(z), ζ − z〉| ≤ 1

2
C−2

0 µ2m
z,ζ r2} ⊂ D(z, r/C0). (4.7)

By the Case 1c, we have

|〈ZF(z), ζ − z〉| ≤ 1
β
|z|2mr|ζ − z| ≤ 1

β
ε1C−1

0 µ2m
z,ζ r2.

Thus, if ε1 and β are such that
ε1C−1

0
β
≤

C−2
0
2

, (4.8)

the inclusion (4.5) holds, as we claimed.
Next we use Proposition 3.5 to estimate |ZF(ζ)| from below at all points ζ ∈ BEuc

(
z +

$u/2, ε2$
)
, where $ = ε1C−1

0 r and u ∈ S1 is such that (3.8) holds. Namely, we have

|M(ζ − z)| ≥ C−1
2 |z|

2mε1C−1
0 r,

where M = M(z, ζ) is the matrix (3.7). For such a point ζ we have

|ZF(ζ)| = |ZF(z) + M(ζ − z) + |z|2m−1O(|ζ − z|2)|
≥ C−1

2 |z|
2mε1C−1

0 r− |ZF(z)| − |z|2m−1O(|ζ − z|2)

≥ C−1
2 |z|

2mε1C−1
0 r− 1

β
|z|2mr− C1|z|2m−1ε2

1r2

≥ C−1
2 |z|

2mε1C−1
0 r− 1

β
|z|2mr− C1|z|2mε2

1r ≥ 1
2

C−1
2 |z|

2mε1C−1
0 r,

(4.9)

provided that
1
β
≤ 1

4
C−1

2 ε1C−1
0 and C1ε2

1 ≤
1
4

C−1
2 ε1C−1

0 . (4.10)

We may choose ε1 > 0 such that the inequalities in the right-hand side of (4.10) and in
(4.6) both hold. Then we fix β > 0 such that the inequalities in the left-hand side of (4.10)
and in (4.8) both hold.

13
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By (4.5) and (4.9), we finally obtain∫
π(B(p,r)∩Σ)

|ZF(ζ)|dξdη ≥ C−1
3 |z|

2mr3,

where, after fixing ε1 and β, the constant C3 is absolute.

Case 1nc – upper bound. In order to evaluate from above the integral in (4.1), we start from
the estimates |M(ζ − z)| ≤ C|z|2m|ζ − z| ≤ C|z|2mr ≤ Cβ|ZF(z)|, where C is an absolute
constant. Here we used the fact that |ζ − z| < r for all points ζ in the integration set.
Therefore, the weight in the integral (4.1) satisfies

|ZF(ζ)| =
∣∣ZF(z) + M(ζ − z) + |z|2m−1O(|ζ − z|2)

∣∣ ≤ C(1 + β)|ZF(z)|. (4.11)

In order to get the required estimate, the obvious inclusion π(B(p, r) ∩ Σ) ⊂ BEucl(x, r)
does not suffice. We need the stronger condition (3.2), which tells that for some abso-
lute constant C0 > 0 we have π(B(p, r) ∩ Σ) ⊂ D(z, C0r). Using the definition (4.2)
of D(z, C0r), the expansion (3.4) and also using |z| ' |ζ|, that follows from Case 1, we
discover that ∣∣∣〈 ZF(z)

|ZF(z)| , ζ − z
〉∣∣∣ ≤ C

|z|2m

|ZF(z)| r
2, for all ζ ∈ D(z, C0r).

This tells that the projection of the set D(z, C0r) along the unit direction ZF(z)
|ZF(z) has size

|z|2m

|ZF(z)| r
2. Therefore the Lebesgue measure of π(B(p, r) ∩ Σ) satisfies the inequalities

|π(B(p, r) ∩ Σ)| ≤ |D(z, C0r)| ≤ C
|z|2m

|ZF(z)| r
3, (4.12)

for an absolute constant C > 0. Ultimately, from (4.11) and (4.12), we obtain the upper-
bound:

µ(B(p, r) ∩ Σ) =
∫

π(B(p,r)∩Σ)
|ZF(ζ)|dξdη ≤ C(1 + β)|z|2mr3.

Case 1nc – lower bound. Observe first that (4.7) holds also in this case. Then, under our
choice of ε1 and β, we have{

ζ ∈ R2 : |ζ − z| ≤ ε1C−1
0 r and |〈ZF(z), ζ − z〉| ≤ 1

2
µ2m

z,ζ C−2
0 r2

}
⊂ π(B(p, r) ∩ Σ).

Let ε3 ≤ ε1 be a small positive constant to be fixed below. Then we have{
ζ ∈ R2 : |ζ − z| ≤ ε3C−1

0 r and |〈ZF(z), ζ − z〉| ≤ |z|2mC−1r2
}
⊂ π(B(p, r) ∩ Σ),

The set in the left-hand side has size |z|2m

|ZF(z)| r
2 along the unit direction ZF(z)/|ZF(z)|.

Then we have the estimate from below for the Lebesgue measure of the integration set.

|π(B(p, r) ∩ Σ)| ≥ C
|z|2mr3

|ZF(z)| . (4.13)
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To conclude the proof, we get a lower estimate for the function in the integral.

|ZF(ζ)| =
∣∣ZF(z) + M(ζ − z) + |z|2m−1O(|ζ − z|2)

∣∣ ≥ |ZF(z)| − C4|z|2m|ζ − z|
≥ |ZF(z)| − C4|z|2mε3C−1

0 r

≥ |ZF(z)| − C4ε3C−1
0 β|ZF(z)| ≥ 1

2
|ZF(z)|,

(4.14)

provided that ε3 is so small that C4βε3C−1
0 ≤ 1

2 . The lower bound follows from (4.13)
and (4.14). This ends the proof of (4.4).

4.2. Proof in the Case 2: r ≥ ε0|z|.

We claim that for any point p = (z, ϕ(z)) ∈ Σ and r > 0 such that r ≥ ε0|z| we have:

µ(B(p, r) ∩ Σ) ' r2m+3. (4.15)

We can without loss of generality assume that ϕ(0) = 0. By Lemma 3.2 and |ϕ(z)| ≤
C|z|2m+2, there exists a constant C5 > 1 such that

C−1
5 |z| ≤ d((0, 0), (z, ϕ(z)) ≤ C5|z|. (4.16)

Case 2 – upper bound. For z ∈ R2 and r ≥ ε0|z|, we have the inclusions

B((z, ϕ(z)), r) ⊂ B((0, 0), C5|z|+ r) ⊂ B
(
(0, 0), (ε−1

0 + C5)r
)
.

Thus, we obtain∫
π(B(p,r)∩Σ)

|ZF(ζ)|dξdη ≤
∫
|ζ|≤Cr

C|ζ|2m+1dξdη ≤ Cr2m+3.

To check the lower bound, we distinguish two cases.

Case 2a: ε0|z| ≤ r ≤ 2C5|z|. It suffices to start from inclusion B((z, ϕ(z)), r) ⊃ B((z, ϕ(z)), ε0|z|).
Then the perimeter measure of the smaller ball can be estimated as in Case 1. To conclude
observe that |z| ' r.

Case 2b: 2C5|z| ≤ r < ∞. In such case we have

B
(
0, r/(2C2

5)
)
∩ Σ ⊂ B(p, r) ∩ Σ. (4.17)

Indeed, for any q = (ζ, ϕ(ζ)) ∈ B(0, r/(2C2
5)) we have |ζ| ≤ r/(2C5) and

d(p, q) ≤ d(0, p) + d(0, q) ≤ C5|z|+ C5|ζ| ≤ r,

as claimed.
By (4.17), it is enough to prove the lower-bound estimate in the case z = 0. For $ > 0,

we calculate by Stokes’ theorem the following integral on the curve γ$(s) = $e−is, with
s ∈ [0, 2π],∫

γ$

(XFdξ + YFdη) =
∫
|ζ|<$

(
− ∂η(∂ξ ϕ(ζ)− |ζ|2mη) + ∂ξ(∂η ϕ(ζ) + |ζ|2mξ)

)
dξdη

= (2 + 2m)
∫
|ζ|<$
|ζ|2mdξdη = C−1$2m+2,
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that implies
∫
|ζ|=$ |ZF(ζ)|dH1(ζ) ≥ C−1$2m+2. Thus we get the estimate

∫
|ζ|<r
|ZF(ζ)|dξdη =

∫ r

0

∫
|ζ|=$
|ZF(ζ)|dH1(ζ)d$ ≥ C−1r2m+3.

This inequality ends the proof of (4.15) and thus of Theorem 1.3 in the case of entire
admissible graphs.

5. Cone property for admissible entire epigraphs

We recall the definition of a John domain, specialized to the metric space (R3, d).

Definition 5.1. A bounded open set Ω ⊂ R3 is a λ-John domain, with λ > 0, if there
exists a point p0 ∈ Ω such that for all p ∈ Ω there is a continuous curve γ : [0, 1] → Ω
such that γ(0) = p, γ(1) = p0, and

B
(
γ(t), λ diam(γ|[0,t])

)
⊂ Ω for all t ∈ ]0, 1[. (5.1)

A curve γ satisfying (5.1) is called a John curve in Ω with parameter λ > 0.

In our definition, the curve γ is not required to be rectifiable. By the results of [MS79],
Definition 5.1 is equivalent to the more standard one with rectifiable curves and with
diameters replaced by lengths. John domains are also known as domains with the twisted
interior cone property.

In this section, we consider an unbounded domain of the epigraph type Ω = epi(ϕ) =
{(z, t) ∈ R3 : t > ϕ(z)}, where ϕ ∈ C∞(R2) is an m-admissible function, and we con-
struct a nontrivial John curve starting from any point p = (z, t) ∈ Ω. The case of a
bounded domain is discussed in Section 7.

For any point z ∈ R2 with |ZF(z)| 6= 0 there exists a unit vector (u, v) ∈ S1 ⊂ R2 such
that

−(uX + vY)F(z) >
1
2
|ZF(z)|, (5.2)

where F(z, t) = ϕ(z) − t. Our John curve starting from (z, t) ∈ epi(ϕ) is the integral
curve of −(uX + vY) for times s ∈ [0, s̄], where the time s̄ = s̄(z) is

s̄ = ε0
|ZF(z)|
|z|2m , (5.3)

and ε0 > 0 is a suitable constant. For s ≥ s̄, the John curve is an integral curve of ∂/∂t.
This piece of curve is nonrectifiable. When (z, ϕ(z)) ∈ gr(ϕ) is a characteristic point of
gr(ϕ), i.e. |ZF(z)| = 0, we have s̄ = 0 and the first piece of the curve disappears.

By the rotational invariance (2.1) of the metric d, in (5.2) we can assume that u = 1
and v = 0.

Theorem 5.2. Let ϕ ∈ C∞(R2) be a function satisfying (1.2). There exist constants ε0 > 0 and
λ > 0 such that for any z ∈ R2 with

−XF(z) >
1
2
|ZF(z)|, (5.4)
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the curve γ : [0, ∞)→ R3

γ(s) =

{
esX(z, t), if 0 ≤ s ≤ s̄ = ε0

|ZF(z)|
|z|2m

γ(s̄) + (0, s− s̄), if s̄ ≤ s < ∞

is a John curve in epi(ϕ) with parameter λ starting from (z, t) ∈ epi(ϕ).

Let λ > 0 be the parameter of our John curves. In the proof of the theorem and in the
following sections, we denote by σλ any constant of the form Cλβ, where C is an absolute
constant and β > 0 is a positive power.

Proof. Without loss of generality, we prove the claim for t = ϕ(z), i.e., we construct a
John curve in the epigraph of ϕ starting from a boundary point. In the following we let
zs = z + se1. When s ∈ [0, s̄], an explicit formula for γ(s) is

γ(s) = esX(z, ϕ(z)) =
(

zs, ϕ(z) + y
∫ s

0
|z$|2md$

)
.

The definition in (5.3) for s̄ implies that s̄ ≤ ε0C|z|, where C > 0 is the constant appearing
in (3.1). We can choose ε0 > 0 such that ε0C < 1

2 . Then, for any s ∈ [0, s̄] we have

|z|
2
≤ |zs| ≤

3
2
|z|. (5.5)

Further conditions on ε0 will be required below.

Step 1. We claim that for any sufficiently small λ > 0 we have B(γ(s), λs) ⊂ epi(ϕ) for
all 0 < s ≤ s̄.

From s ≤ s̄ ≤ 1
2 |z| and Corollary 2.2, we have the inclusion B(γ(s), λs) ⊂ BoxI(γ(s), σλs)

for any 0 < λ ≤ 1, where σλ = b1λ and b1 is the constant given by Corollary 2.2. So our
claim is implied by BoxI(γ(s), σλs) ⊂ epi(ϕ). We have p ∈ BoxI(γ(s), σλs) if and only if

p =
(

zs + v, ϕ(z) + y
∫ s

0
|z$|2md$ + |zs|2m(u3 + ω(v, zs)

))
,

with ‖u‖1,1,2 ≤ σλs and u = (u1, u2, u3) = (v, u3). Then the claim in Step 1 is implied by
the inequality

ϕ(zs + v)− ϕ(z) < y
∫ s

0
|z$|2md$ + |zs|2m(u3 + ω(v, zs)

)
=: H, (5.6)

for ‖u‖1,1,2 < σλs and s ≤ s̄. The left-hand side of (5.6) can be expanded using (3.5):

ϕ(zs + v)− ϕ(z) = 〈ZF(z), vs〉+ |z|2mω(vs, z) + µ2m
z,zs

O(|vs|2).

By (5.4), |zs| ≤ C|z|, and u1 + s ≥ 0 we get

ϕ(zs + v)− ϕ(z) ≤ |ZF(z)|
(
− 1

2
(u1 + s) + |u2|

)
+ |z|2mω(vs, z) + C|z|2m|vs|2.

Since |u2| ≤ σλs and |u1| ≤ σλs, we have |vs| ≤ Cs and for small λ > 0, we get

ϕ(zs + v)− ϕ(z) ≤ − s
4
|ZF(z)|+ |z|2m(ω(v, z) + sy + C0s2). (5.7)
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Now we estimate the quantity H in the right-hand side of (5.6). Since $ ≤ s ≤ s̄ ≤
1
2 |z|, and u3 ≥ −σλs2 we have the elementary inequalities∣∣|z$|2m − |z|2m∣∣ ≤ C|z|2m−1$,

|zs|2mu3 ≥ −C|z|2mσλs2, and

|zs|2mω(v, zs) ≥ |z|2mω(v, zs)− C|z|2ms2.

(5.8)

Thus, we obtain
H ≥ |z|2m(ω(v, z) + ys− C1s2) (5.9)

for a suitable absolute constant C1.
By (5.7) and (5.9), the claim (5.6) is then implied by the inequality

(C0 + C1)|z|2ms <
1
4
|ZF(z)|,

that holds for all s ≤ s̄ = ε0
|ZF(z)|
|z|2m as soon as ε0 ≤ 1

4(C0+C1)
.

Step 2. For s ≥ s̄, the curve γ is defined by the formula

γ(s) =
(

zs̄, ϕ(z) + y
∫ s̄

0
|z$|2md$ + s− s̄

)
.

In the following we let s− s̄ = τ2m+2. As a function of τ, the diameter of γ restricted to
[0, s] satisfies

∆τ = diam(γ|[0,s̄+τ2m+2]) ≤ C
(

s̄ + min
{

τ,
τm+1

|z|m
})

=: s̄ + mτ.

The proof of Theorem 1.4 shows in fact that the inequality above is a global equivalence
for s, τ ∈ [0,+∞[.

We claim that for any sufficiently small λ > 0 we have B(γ(s), λ∆τ) ⊂ epi(ϕ) for all
τ ≥ 0. By Corollary 2.2, this claim is equivalent to

BoxI(γ(s), σλ∆τ) ⊂ epi(ϕ) and BoxJ(γ(s), σλ∆τ) ⊂ epi(ϕ). (5.10)

We prove the inclusion in the left-hand side of (5.10). We have p ∈ BoxI(γ(s), σλ∆τ)
if and only if

p =
(

zs̄ + v, ϕ(z) + y
∫ s̄

0
|z$|2md$ + |zs̄|2m(u3 + ω(v, zs̄)

)
+ τ2m+2

)
, (5.11)

with ‖u‖1,1,2 ≤ σλ∆τ and u = (u1, u2, u3) = (v, u3). The point p belongs to epi(ϕ) if

L := ϕ(zs̄ + v)− ϕ(z) < y
∫ s̄

0
|z$|2md$ + |zs̄|2m(u3 + ω(v, zs̄)

)
+ τ2m+2 =: R.

First we get an upper bound for L. Observe first that assumption (5.4) and the in-
equalities s̄ ≤ 1

2 |z| and |v| ≤ σλ(s̄ + mτ) give

〈ZF(z), vs̄〉 ≤ |ZF(z)|
(
− 1

4
s̄ + σλmτ

)
.
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Thus, using formula (3.5) we obtain

L = ϕ(z + vs̄)− ϕ(z) = 〈ZF(z), vs̄〉+ |z|2mω(vs̄, z) + max
{
|z|2m, |vs̄|2m}O

(
|vs̄|2

)
≤ |ZF(z)|

(
− 1

4
s̄ + σλmτ

)
+ |z|2mω(vs̄, z) + C

(
|z|2m + σλm2m

τ

)
(s̄2 + σ2

λm2
τ)

≤ |ZF(z)|
(
− 1

4
s̄ + σλmτ

)
+ |z|2m

(
ω(v, z) + s̄y + C0s̄2 + σλm2

τ

)
+ σλm2m+2

τ .

(5.12)

We compute a lower bound for the right-hand side R. Using (5.8) we get

R = y
∫ s̄

0
|z$|2md$ + |zs̄|2m(u3 + ω(v, zs̄)

)
+ τ2m+2

≥ y|z|2m s̄− C|z|2m s̄2 + τ2m+2 − σλ|z|2mm2
τ + |z|2m(ω(v, z)− u2s̄)

≥ τ2m+2 + |z|2m
(

ω(v, z) + s̄y− C1s̄2 − σλm̄2
τ

)
.

(5.13)

Then, the inequality L < R follows from

σλmτ|ZF(z)|+ |z|2m
(

C2s̄2 + σλm2
τ

)
+ σλm2m+2

τ <
1
4

s̄|ZF(z)|+ τ2m+2. (5.14)

To prove (5.14), we start from the second term. By the definition of s, we have

C2s̄2|z|2m = ε0C2|ZF(z)|s̄ ≤ 1
4
|ZF(z)|s̄,

as soon as ε0 satisfies ε0C2 < 1/4. This is the last time we modify the choice of ε0.
Next we look at the first term. Observe that

σλ|ZF(z)|mτ = σλ|ZF(z)|min
{

τ,
τm+1

|z|m
}
≤ σλ|ZF(z)|τ

m+1

|z|m ≤ σλ

( |ZF(z)|2
|z|2m + τ2m+2

)
.

Then, since 1
4 |ZF(z)|s̄ + τ2m+2 = ε0

4
|ZF(z)|2
|z|2m + τ2m+2, we can finish the estimate as soon as

σλ is small with respect to absolute constants (which include ε0, now).
The estimate of the third term is easy:

σλ|z|2mm2
τ = σλ|z|2m

(
min

{
τ,

τm+1

|z|m
})2
≤ σλτ2m+2,

which is correctly estimated, provided that σλ is small enough. Finally, we have

σλm2m+2
τ = σλ

(
min

{
τ,

τm+1

|z|m
})2m+2

≤ σλτ2m+2,

which again satisfies the required estimate.
To conclude the proof, we have to check the inclusion in the right-hand side of (5.10).

In this case the box BoxJ(γ(s), σλ(s̄ + mτ)) is made of points of the form(
zs̄ + v, ϕ(z) + y

∫ s̄

0
|z$|2md$ + τ2m+2 + u3 + |zs̄|2mω(v, zs̄)

)
.
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The unique difference with (5.11) is that the term u3 replaces the term |zs̄|2mu3, and now
|u3| ≤ σλ(s̄ + mτ)2m+2.

The estimate from above for L remains unchanged, because it does not involve u3. In
the estimate from below for R, we need the following evaluation for the term u3:

u3 ≥ −σλ(s̄ + mτ)
2m+2 ≥ −σλ|z|2m s̄2 − σλm2m+2

τ .

Therefore, the inequality (5.14) remains unchanged and the proof can be concluded argu-
ing as in the previous case.

6. Uniform property of entire admissible epigraphs

We recall the definition of a uniform domain, specialized to the metric space (R3, d).

Definition 6.1. An open set Ω ⊂ R3 is a uniform domain if there exist ε > 0 and δ > 0
with the following property. For any pair of points x, y ∈ Ω there is a continuous curve
γ : [0, 1]→ Ω such that γ(0) = x, γ(1) = y,

diam(γ) ≤ δ−1d(x, y), (6.1)

and, letting ∆t = min{diam(γ|[0,t]), diam(γ|[t,1])}, for any t ∈ [0, 1] we have

B(γ(t), ε∆t) ⊂ Ω. (6.2)

Uniform domains are also known as (ε, δ)-domains. As for John domains, the curves
in our definition are not required to be rectifiable. By the results of [MS79], this is equiv-
alent to the more standard definition which requires rectifiability.

We consider an unbounded domain of the epigraph type Ω = epi(ϕ) = {(z, t) ∈
R3 : t > ϕ(z)}, where ϕ ∈ C∞(R2) is an m-admissible function. For any pair of points
p, q ∈ Ω, we construct a curve connecting them and satisfying the conditions (6.1) and
(6.2) with uniform constants δ and ε. The case of a bounded domain is discussed in
Section 7.

Theorem 6.2. Let ϕ ∈ C∞(R2) be a function satisfying (1.2). Then, the epigraph Ω = epi(ϕ)
is a uniform domain.

Proof. Let p = (z, ϕ(z) + b) and q = (ζ, ϕ(ζ) + β), with b, β > 0, be points in the epigraph
of ϕ. We can without loss of generality assume that

|ZF(z)|
|z|2m = max

{ |ZF(z)|
|z|2m ,

|ZF(ζ)|
|ζ|2m

}
≥ 0. (6.3)

The maximum can be 0, even for arbitrarily close points. This happens for instance in
Example 3.1. By assumption (1.2) we can define continuously |ZF(z)

|z|2m = 0 for z = 0.
Let µ > 0 be a parameter that will be fixed along the proof. We distinguish two cases:

d(p, q) < µ max
{ |ZF(z)|
|z|2m ,

|ZF(ζ)|
|ζ|2m

}
(Case A);

d(p, q) ≥ µ max
{ |ZF(z)|
|z|2m ,

|ZF(ζ)|
|ζ|2m

}
(Case B).
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We can without loss of generality assume that (5.4) holds at the point z, i.e.: −XF(z) =
|XF(z)| > 1

2 ZF(z)|. Then, if we denote by ε0 and λ > 0 the parameters fixed in Section 5,
we know that the curve

γz(s) =


(

zs, ϕ(z) + b + y
∫ s

0
|z$|2md$

)
, if s ≤ s̄ = ε0

|ZF(z)|
|z|2m(

zs̄, ϕ(z) + b + y
∫ s̄

0
|z$|2md$ + s− s̄

)
, if s ≥ s̄,

is a John curve with parameter λ.

Analysis of Case A. We claim that there exists µ > 0 such that the curve

γζ(s) =


(

ζs, ϕ(ζ) + β + η
∫ s

0
|ζ$|2md$

)
, if s ≤ ¯̄s = ε0

|ZF(ζ)|
|ζ|2m(

ζ ¯̄s, ϕ(ζ) + β + η
∫ ¯̄s

0
|ζ$|2md$ + s− ¯̄s

)
, if s ≥ ¯̄s

is a John curve with parameter λ. To prove this claim, it suffices to show that −XF(ζ) >
1
4 |ZF(ζ)| if Case A holds and µ is small enough.

From (1.2) it follows that |∇ZF(z)| ≤ C|z|2m for all z ∈ R2 and thus the function
z 7→ |ZF(z)|/|z|2m is globally Lipschitz continuous on R2. Let L be the Lipschitz constant.
By (6.3) and by the Case A with sufficiently small µ, we have

−XF(ζ)
|ζ|2m ≥ −

XF(z)
|z|2m − L|ζ − z| ≥ 1

2
|ZF(z)|
|z|2m − Ld(p, q) ≥ 1

2
|ZF(z)|
|z|2m − Lµ

|ZF(z)|
|z|2m

≥ 1
4
|ZF(z)|
|z|2m ≥ 1

4
|ZF(ζ)|
|ζ|2m .

Also the mapping z 7→ s̄(z) in (5.3) is Lipschitz continuous. Then, for µ small enough, in
the Case A the times s̄ = s̄(z) and ¯̄s = s̄(ζ) satisfy

1
2

s̄ ≤ ¯̄s ≤ 3
2

s̄. (6.4)

Finally, we also have |ζ − z| ≤ d(p, q) ≤ µ |ZF(z)|
|z|2m ≤ Cµ|z| ≤ 1

2 |z|, for µ sufficiently small.
We are now ready to define the curve joining p and q and satisfying (6.1), (6.2). For a

suitable H > 0, let
ŝ = Hd(p, q). (6.5)

Then, the curve γ is the concatenation of γz
∣∣
[0,ŝ], a length-minimizing path γ̂ joining

γ̂(0) = γz(ŝ) and γ̂(1) = γζ(ŝ), and the opposite of γζ

∣∣
[0,ŝ].

We claim that there exist H > 0 and µ > 0 such that the curve γ satisfies (6.1) and (6.2).
We preliminarily show that:

(i) ŝ ≤ min{s̄, ¯̄s}, i.e., the points γz(ŝ) and γζ(ŝ) belong to the first piece of the curves
γz and γζ , respectively;

(ii) d(γζ(ŝ), γz(ŝ)) ≤ λ
2 ŝ, where λ is the John constant of γζ and γz;

(iii) diam(γ) ≤ Cd(p, q).
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Condition (6.1) is (iii). We show that (i)–(iii) imply (6.2). For s ≤ ŝ, by ∆s ≤ diam(γz|[0,s])
and by the cone property (5.1) we have

B(γ(s), λ∆s) ⊂ B(γz(s), λ diam(γz|[0,s])) ⊂ epi(ϕ).

Then (6.2) holds with ε = λ. The same happens for points γζ(s) with s ≤ ŝ. Finally, for a
point γ̂(s∗) in the intermediate part, by (ii) we have

dist(γ̂(s∗), gr(ϕ)) ≥ dist(γz(ŝ), gr(ϕ))− λ

2
ŝ

≥ λ diam(γz|[0,ŝ])−
λ

2
diam(γz|[0,ŝ]) =

λ

2
diam(γz|[0,ŝ]).

(6.6)

In order to get a lower bound for the last diameter, we use the length-minimizing prop-
erty of γ̂ and property (ii), which give

diam(γ̂[0,s∗]) ≤ d(γ̂(0), γ̂(1)) ≤ λ

2
ŝ ≤ λ

2
diam

(
γz|[0,ŝ]

)
.

Therefore, we have diam
(
γz|[0,ŝ] + γ̂|[0,s∗]

)
≤ 2 diam

(
γz|[0,ŝ]) and then it is easy to con-

clude that (6.2) holds with ε = λ
4 .

Now we prove (i). By (6.4) this is implied by ŝ ≤ 1
2 s̄. By (6.5), Case A, (6.3), we have

ŝ ≤ Hµ |ZF(z)|
|z|2m = Hµ s̄

ε0
. Thus, we deduce that (i) holds provided that

Hµ ≤ 1
2

ε0. (6.7)

This is the first requirement on H and µ. This restriction is compatible with further con-
ditions made below.

Next we prove (ii). Theorem 1.4 gives

d(γz(ŝ), γζ(ŝ)) ≤ C0|ζ − z|+ C0 min
{ |Θ|1/2

|z|m , |Θ| 1
2m+2

}
(6.8)

where

Θ = ϕ(ζ)− ϕ(z) + β− b +
∫ ŝ

0
(η|ζ$|2m − y|z$|2m)d$ + |zŝ|2mω(zŝ, ζ ŝ).

Let Θ = Θ1 + Θ1 + Θ3, with

Θ1 = ϕ(ζ)− ϕ(z) + β− b + |z|2mω(z, ζ),

Θ2 = |zŝ|2mω(zŝ, ζ ŝ)− |z|2mω(z, ζ),

Θ3 =
∫ ŝ

0
(η|ζ$|2m − y|z$|2m)d$.

The first term in the right-hand side of (6.8) can be estimated as follows

C0|ζ − z| ≤ C0d(p, q) ≤ λ

8
Hd(p, q) =

λ

8
ŝ,
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as soon as H is large enough to ensure that

C0 ≤
λ

8
H, (6.9)

where C0 is the absolute constant in (6.8). We used definition (6.5) of ŝ.
Concerning the second term in the right-hand side of (6.8), we claim that for all j =

1, 2, 3 we have

C0 min
{
|Θj|

1
2m+2 ,

|Θj|1/2

|z|m
}
≤ λ

8
Hd(p, q). (6.10)

By Theorem 1.4, we have

C0 min{|Θ1|
1

2m+2 , |Θ1|1/2/|z|m} ≤ C0δ(p, q) ≤ CC0d(p, q) ≤ λ

8
Hd(p, q),

as soon as H is large enough so that

CC0 ≤
λ

8
H. (6.11)

To evaluate the term with Θ2, we apply the inequalities

|Θ2| =
∣∣∣(|zŝ|2m − |z|2m

)
ω(z, ζ) + |zŝ|2m ŝ(η − y)

∣∣∣ ≤ C|z|2m|ζ − z|ŝ

≤ C|z|2md(p, q)ŝ = C|z|2mHd(p, q)2.

Thus, we deduce that for some absolute constant C2 > 0 we have

|Θ2|1/2

|z|m ≤ C2d(p, q)
√

H ≤ C−1
0

λ

8
Hd(p, q)

as soon as
C2 ≤ C−1

0
λ

8

√
H. (6.12)

Finally, we estimate Θ3:

|Θ3| ≤ |y− η|
∫ ŝ

0
|z$|2md$ + |η|

∣∣∣ ∫ ŝ

0
(|z$|2m − |ζ$|2m)d$

∣∣∣
≤ Cŝ|z|2mδ(p, q) + Cŝ|η||z|2m−1|z− ζ|
≤ Cŝ|z|2md(p, q) = C|z|2md(p, q)2H,

and we end up with again with the requirement (6.12).
To conclude the proof, we choose H > 0 large enough so that (6.9), (6.11) and (6.12)

hold. This implies (ii). Then we choose µ > 0 such that (6.7) holds. This implies (i).
The diameter estimate in (iii) holds in terms of such constants and the proof of Case A is
concluded.

Analysis of Case B. Let us consider the second piece of the curve from (z, ϕ(z) + b),

γz(s) =
(

zs, t + b + y
∫ s

0
|z$|2md$ + s− s

)
for s ≥ s = ε0

|ZF(z)|
|z|2m .
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Let also (ζ, ϕ(ζ) + β) be such that Case B holds. Then, there is a unit vector w = (u, v) ∈
R2 such that the curve γζ is a λ-John curve in epi(ϕ) starting from (ζ, ϕ(ζ) + β). When
s ≥ ¯̄s = ε0|ZF(ζ)|/|ζ|2m, the curve is

γζ(s) =
(

ζ + ¯̄sw, ϕ(ζ) + β + ω(w, ζ)
∫ ¯̄s

0
|ζ + $w|2md$ + s− ¯̄s

)
.

Note that the numbers s̄ and ¯̄s could both vanish. Furthermore, we will assume without
loss of generality that diam

(
γz
∣∣
[0,ŝz]

)
≥ diam

(
γζ

∣∣
[0,ŝζ ]

)
.

For τ ≥ 0 consider the points γz(ŝz) and γζ(ŝζ), where

ŝz = s̄ + τ2m+2, ŝζ = ¯̄s + τ2m+2.

We claim that there exists M > 0 such that for all p = (z, ϕ(z) + b) and q = (ζ, ϕ(ζ) +
β) for which Case B holds, if τ ≥ 0 satisfies

diam
(

γz
∣∣
[0,ŝz]

)
= max

{
diam

(
γz
∣∣
[0,ŝz]

)
, diam

(
γζ

∣∣
[0,ŝζ ]

)}
= Md(p, q), (6.13)

then we have
d
(

γz(ŝz),γζ(ŝζ)
)
≤ λ

2
diam

(
γz

∣∣∣
[0,ŝz]

)
, (6.14)

where λ is the John constant of the curves.
Notice that for any M, p, q there is always a τ such that (6.13) holds because the left-

hand side of (6.13) is increasing in τ and tends to +∞, as τ → +∞.
We prove the claim. By the invariance of the distance with respect to vertical transla-

tions we have

d
(

γz(s̄ + τ2m+2),γζ( ¯̄s + τ2m+2)
)
= d

(
γz(s̄), γζ(s̄)

)
≤ d(γz(s̄), γz(0)) + d(γz(0), γζ(0)) + d(γζ( ¯̄s), γζ(0))

≤ ε0
|ZF(z)|
|z|2m + d(p, q) + ε0

|ZF(ζ)|
|ζ|2m

≤ 2ε0

µ
d(p, q) + d(p, q)

=
1
M

(2ε0

µ
+ 1
)

max{diam(γz|[0,ŝz]), diam(γζ |[0,ŝζ ])},

by (6.13). Thus (6.14) holds if M is large enough, and the claim is proved.
To conclude the proof, we show that the path γ, given by the concatenation of γζ

∣∣
[0,ŝζ ]

,

a length minimizing path γ̂ connecting γ̂(0) = γz(ŝz) and γ̂(1) = γζ(ŝζ) and the reverse
of γz

∣∣
[0,ŝz]

satisfies the (ε, δ)-condition. Since the diameter estimate (6.1) is contained in
the claim above, we are left with the proof of (6.2).

Let q be a point of γ. If q = γz(s) with s ≤ ŝz or q = γζ(s) with s ≤ ŝζ , then (6.2)
follows with ε = λ from the John property (5.1). If q = γ̂(s∗), then we argue as in (6.6).
precisely

dist(γ̂(s∗), gr ϕ) ≥ dist(γz(ŝz), gr ϕ)− d(γ̂(s∗), γz(ŝz))

≥ λ diam(γz|[0,ŝz])− diam(γ̂) ≥ λ

2
diam(γz|[0,ŝz]),

(6.15)
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by (6.14). Finally, to get a lower estimate of the latter diameter with diam(γz|[0,ŝz] +
γ̂|[0,s∗]), which will give the John property, it suffices to use the length minimizing prop-
erty of γ̂

diam(γ̂|[0,s∗]) ≤ d(γ̂(0), γ̂(1)) ≤ λ

2
diam

(
γz
∣∣
[0,ŝz]

)
.

Thus, as in Case A, we get the correct lower bound for the last line of (6.15) and the proof
is easily concluded.

7. Bounded admissible domains are uniform

In this section we prove Theorems 1.2 and 1.3 in the case of a bounded m-admissible do-
main. Now we assume that m ∈N is an integer.

Proof of Theorem 1.2. Let Ω ⊂ R3 be an m-admissible domain. By a standard localization
argument (see e.g. [MM05a, Proposition 2.5]), it suffices to show that for all p0 ∈ ∂Ω there
is a neighborhood Ap0 of p0 in R3 such that for all p, q ∈ Ap0 there is a continuous curve
γ : [0, 1]→ Ω ∩ Ap0 satisfying γ(0) = p and γ(1) = q and such that (6.1) and (6.2) hold.

There are two cases:

1. p0 is a noncharacteristic point, i.e., span{X(p0), Y(p0)} is not contained in Tp0 ∂Ω.
2. p0 is a characteristic point of ∂Ω.

In Case 1, the claim is proved in [MM05a, Theorem 1.1]. To use this result, we need a
C∞ boundary and smooth vector fields. For this reason we require m ∈N.

In the Case 2, in a neighborhood of p0 the boundary of Ω is a graph of the type
t = ϕ(z) for an m-admissible function ϕ ∈ C∞(D) for some open set D ⊂ R2. The claim
is proved in Sections 5 and 6.

Proof of Theorem 1.3. By compactness, we can cover ∂Ω with a finite union of m-admissible
graphs, together with a compact subset K ⊂ ∂Ω containing only noncharacteristic points.

At points p ∈ K, the Ahlfors estimates (1.4) is proved in [MM02, Corollary 1]. To use
this result, we need a smooth boundary and smooth vector fields (m ∈N).

On m-admissible graphs, the Ahlfors estimate is proved in Section 4.
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