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Abstract. In this paper we propose a variational model for the irreversible quasi
static growth in brittle fractures for a linearly elastic homogeneous isotropic plate,
subject to a time dependent vertical displacement on a part of its lateral surface. The
model is based on the Griffith’s criterion for crack growth and is inspired by the model
proposed in [11] by G.A. Francfort and J.-J. Marigo in the case of 3-D elasticity. We
give a precise mathematical formulation of the model and in this framework we prove
an existence result.
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1. Introduction

Mathematical problems arising from the variational model of cracks propagation have been
proposed by Francfort and Marigo in [11] . This theory is inspired to the classical Griffith’s
criterion for cracks growth, and its main characteristic is that it doesn’t prescribe the path
of the cracks but determines it through a competition between bulk and surface energies.
In this model, the continuum growth of the cracks during the loading process is obtained as
a limit of a discrete in time growth, determined by a step by step unilateral minimization
problem.
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The precise mathematical formulation of this model has been studied by G. Dal Maso and
R. Toader [5] in the special case of linearized elasticity for anti-plane shear and with an a
priori bound on the number of connected components of the cracks. This analysis has been
extended to the case of plane elasticity by Chambolle in [3].

A weak formulation for the variational model of fracture growth in the framework of SBV
spaces (that is the space of special functions with bounded variation, see [1]), has been
proposed by G.A. Francfort and C.J. Larsen in [10] for anti-plane shear in higher dimensions.
This approach is more natural since it is performed in any dimension and with no restrictions
on the admissible cracks. However, the strong formulation in [5] based on the Hausdorff
convergence of compact sets, is more elementary in dimension two and leads to the convergence
in the Hausdorff metric of the cracks obtained in the discrete growth.

Recently, G. Dal Maso, G.A. Francfort and R. Toader in [4] have proved the existence of
a quasi static growth in the framework of generalized SBV spaces for n-dimensional finite
elasticity, with a quasiconvex bulk energy and with prescribed boundary deformations and
applied loads.

In this paper we consider the case of a linearly elastic homogeneous isotropic plate, subject
to a time dependent vertical displacement on a part of its lateral boundary. We provide a
model of crack propagation which, according to Griffith’s criterion, takes into account the
competition between bulk and surface energies in the process of cracking, while it does not
allow the appearing of kinks. We stress that (as far as we know) it is not completely decided
in the literature whether the investigated model adequately portrays brittle fracture evolution
in a plate submitted to bending.

The reference configuration is a bounded open set Ω of R
2, which represents the middle

surface of the plate, with Lipschitz continuous boundary ∂Ω. Let m > 0 be a fixed integer.
The set of admissible cracks is (as in [5]) the set Km(Ω) of all closed subsets K of Ω whose
elements have at most m connected components. Let ∂DΩ be open and with a finite number
of connected components. Given a crack K ∈ Km(Ω), the boundary datum is prescribed in
the set ∂DΩ \K, and is given by (the trace of) a function g ∈ W 2,2(Ω); we can not prescribe
a boundary condition on ∂DΩ ∩ K because it is not transmitted through the crack. The
remaining part of the boundary ∂NΩ := ∂Ω \ ∂DΩ and the cracks K are traction free. The
displacement u relative to the crack K and subject to the boundary condition g is a function
which may jump across K (we will introduce rigorously the space of admissible displacements
in Section 3), which verifies the boundary condition and minimize the quadratic form

(1.1) B(v, v) :=
2E

3(1 − k2)

∫

Ω
|vxx|

2 + |vyy|
2 + (2 − 2k)|vxy |

2 dxdy,

(see [6]), where the Poisson’s coefficient 0 < k ≤ 1/2 and the Young’s modulus E measure the

rigidity of the constituting material. We will consider for simplicity of notations E = 3(1−k2)
2 ,

so that the leading coefficient in (1.1) is equal to 1. Finally, for every admissible crack
K ∈ Km(Ω) and for every boundary datum g, let us introduce the bulk energy Eb and the
total energy E defined by

(1.2) Eb(g,K) := B(u, u), E(g,K) := B(u, u) + H1(K),

where u is the displacement relative to K and g, and H1(K) is the one dimensional Hausdorff
measure of K.
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We now describe our model of irreversible quasi static crack growth under the action of a
time dependent boundary datum. Let g(t) ∈ AC

(

[0, 1];W 2,2(Ω)
)

(i.e. the function t → g(t)

is absolutely continuous) and let K0 ∈ Km(Ω) be a preexisting crack. In our model, the
irreversible quasi static crack growth relative to the boundary datum g and to the preexisting
crack K0, is a function Γ : (0, 1) → Km(Ω) which verifies the following three properties:

(1) Irreversibility of the process:

K0 ⊆ Γ(0) ⊆ Γ(t1) ⊆ Γ(t2) ∀0 ≤ t1 ≤ t2 ≤ 1;

(2) Static equilibrium:

E(g(0),Γ(0)) ≤ E(g(0),H) ∀H ∈ Km(Ω) : K0 ⊆ H and

E(g(t),Γ(t)) ≤ E(g(t),H) ∀t ∈ (0, 1],∀H ∈ Km(Ω) : ∪s<tΓ(s) ⊆ H;

(3) Nondissipativity:

the function t → E(g(t),Γ(t)) is absolutely continuous and

d
dtE(g(t),Γ(t)) = 2B(u(t), ġ(t)),

where u(t) is the displacement relative to Γ(t) and to g(t).
The main result of this paper is Theorem 6.1, which establishes the existence of a quasi

static evolution that verifies properties (1), (2) and (3) above. This quasi static growth is
obtained as limit of a discrete in time growth Γδ(t). The construction of the step function
Γδ(t) is inspired by the Griffith’s criterion; more precisely, supposing to have constructed Γδ

in the interval [(i−1)δ, iδ), we define Γδ in [iδ, (i+1)δ) as a solution of the minimum problem

(1.3) min
K

{

E(g(iδ),K), K ∈ Km(Ω) : Γδ
i−1 ⊆ K

}

.

The main tool of this paper is the stability of these kind of unilateral free-discontinuity
problems as δ → 0, that leads to the static equilibrium property of Γ; this is the subject
of Section 5. The stability result is obtained through Theorem 5.1, that we will prove in
Section 8. It is a new version in the framework of Sobolev spaces of the transfer of jumps
Theorem given in [10], which enables to treat energies with derivatives of order greater than
one. In fact the proof of the transfer of jumps Theorem given in [10] is based on a geometrical
construction which uses the coarea formula, and therefore it needs an a priori bound on
‖∇u‖Lp(Ω), given by the fact that u minimizes the bulk energy. In our case the bulk energy
involves only second derivatives and the domain (by the presence of cracks) is not regular,
and hence Poincaré type inequalities does not hold in general. Therefore it is not clear how
to provide a weak formulation which guarantees such a priori bound on the gradient of u in
order to perform the same construction of [10]. These considerations motivated us to choose
a strong formulation in the setting of Deny-Lions spaces

L2,2(U) := {u ∈ L2
loc(U) : D2u ∈ L2(u;M2×2)}.

We remark that also in the case of a uniform bound in L∞(Ω) for the boundary datum, by
the presence of cracks the displacement is in general not well defined in the usual Sobolev
space W 2,2(Ω). In our proof of the transfer of jumps we need also the technical assumption
that the number of connected components of Γ is uniformly bounded, in order to perform a
geometrical construction which does not use coarea formula. Finally we remark that stability
results for energies involving derivatives of order one are been obtained in [7] still under the
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assumptions of a uniform bound on the connected components of the crack, but without using
the tool of the transfer of jumps Theorem.

In Section 7 we consider the particular case where Γ is rectilinear. In this case in [6] is
given a formula for the derivative of bulk energy with respect to the growth of the crack
through a 3D−2D dimension reduction, under very strong regularity assumptions. Moreover
in [16] is proved that this asymptotic quantity coincides with the derivative of the bulk energy
B(uK , uK) with respect to the growth of the crack (here uK is the displacement relative to
the crack K).

We prove that this quantity depends only on the singular part of the displacement u, and
its explicit computation leads to

9π(1 + k)2
(

b2
1

(7 + k)2
+

b2
2

(5 + 3k)2

)

,

where b1 and b2 are coefficients which appear in the singular part of u around the tip (see
[6]), and play a role analogous of the so called mode III stress intensity factor in elasticity.
Moreover, we prove that during the load process

(1.4) 9π(1 + k)2
(

b1(t)
2

(7 + k)2
+

b2(t)
2

(5 + 3k)2

)

≤ 1,

and that the tip moves if and only if (1.4) is satisfied with the equality. This is the Griffith’s
criterion for crack propagation in our model.

2. Notation and Preliminaries

In this section we introduce the main notations and the preliminary results employed in the
rest of the paper. From now on Ω is an open bounded subset of R

2 with Lipschitz continuous
boundary. For every x ∈ Ω, we denote the open ball of radius r an centered at x by Br(x) .
Let Km(Ω) be the class of all closed subsets K of Ω whose elements have at most m connected
components.

Hausdorff metric. The Hausdorff distance between two closed subsets K1 and K2 of Ω is
defined by

dH(K1,K2) := max

{

sup
x∈K1

dist (x,K2) , sup
x∈K2

dist (x,K1)

}

,

with the conventions dist (x, ∅) = diam (Ω) and sup ∅ = 0, so that

dH(∅ ,K) =

{

0 if K = ∅,

diam (Ω) if K 6= ∅.

Let (Kh) be a sequence of compact subsets of Ω. We say that Kh converges to K in the Haus-
dorff metric if dH(Kh ,K) converges to 0. It is well-known (see e.g., [8, Blaschke’s Selection
Theorem]) that Km(Ω) is compact with respect to the Hausdorff convergence. Moreover the
following semicontinuity result holds (for the proof see [5]).

Lemma 2.1. Let (Kn) ⊂ Km(Ω) be such that H1(Kn) is uniformly bounded. Then there
exists K ⊂ Km(Ω) such that Kn converges to K in the Hausdorff metric, and

H1(K) ≤ lim inf
n

H1(Kn).
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Let S be a subset of R
2 and let x ∈ S. For every positive λ ∈ R

+ we set

Dλ(x)(S) :=
{

x + λ(ξ − x), ξ ∈ S
}

.

It is known that if K is connected and H1(K) is finite, then H1-a.e. x ∈ K admits an
approximate normal vector in the sense of measure (see for instance [8]). Moreover the
following lemma, proved in [12], holds.

Lemma 2.2. Let K ∈ Km(Ω) with H1(K) < ∞. Then for H1-a.e. x ∈ K there exists a
vector ν(x) with |ν(x)| = 1 such that

(2.1) Dλ(x)(K ∩ B1/λ(x)) → {x + ν(x)⊥} ∩ B1(x)

in the Hausdorff metric as λ → ∞, where ν(x)⊥ is the space spanned by a vector orthogonal
to ν(x).

The vector ν(x) is the so called approximate normal to K at x. We will need the following
Lemma which easily follows by Lemma 2.2.

Lemma 2.3. Let K, H ∈ Km(Ω) be such that K ⊂ H and H1(H) ≤ ∞. Then, for H1-a.e.
x ∈ K there exists a vector ν(x) with |ν(x)| = 1 such that

(2.2) Dλ(x)(K ∩ B1/λ(x)) → {x + ν(x)⊥} ∩ B1(x),

and

(2.3) Dλ(x)(H ∩ B1/λ(x)) → {x + ν(x)⊥} ∩ B1(x),

in the Hausdorff metric as λ → ∞.

Deny-Lions spaces. Given an open subset U of R
2 the Deny-Lions space L2,2(U) is defined by

L2,2(U) := {u ∈ L2
loc(U) : D2u ∈ L2(u;M2×2)},

where M2×2 are the 2× 2 real matrices. The spaces L2,2(u) are endowed with the seminorm

‖u‖L2,2(U) := ‖D2u‖L2(U ;M2×2) ∀u ∈ L2,2(U).

Deny-Lions spaces are usually involved in minimization problems in non smooth domains
where Poincaré inequalities do not hold in general. It is well known that L2,2(U) coincides
with the Sobolev space W 2,2(U) whenever U is bounded and has a Lipschitz continuous
boundary, and that the set {D2u : u ∈ L2,2(U)} is a closed subspace of L2(U ;M2×2).

It is also known (see [14]) that if A is an open subset of R
2 with Lipschitz boundary, there

exists a continuous extension operator E : L2,2(A) → L2,2(R2). For every open set A ⊂ R
2

and every ε > 0, let us now set

Aε := {εξ, ξ ∈ A}.

From the existence of a continuous extension operator for a fixed domain, we deduce the
following Lemma.

Lemma 2.4. Let A be an open bounded subset of R
2 with Lipschitz boundary. Then for every

ε > 0 there exists a continuous extension operator Eε : L2,2(Aε) → L2,2(R2), such that

(2.4) ‖Eε(u)‖2
L2,2(R2) ≤ C ‖u‖2

L2,2(Aε)

where C is a constant independent on ε.
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Proof. Let E1 be the extension operator relative to the set A. For every function u ∈ L2,2(Aε),
we define the function ũ ∈ L2,2(A) as follows: ũ(x) := u(εx). We consider the extension
operator Eε given by

Eε(u)(x) := E1(ũ)(
x

ε
).

Then, by change of variable we get
∫

R2

|D2Eε(u)(x)|2 dx =
1

ε2

∫

R2

|D2E1(ũ)(y)|2 dy ≤

≤
1

ε2
C

∫

A
|D2ũ(y)|2 dy =

1

ε2
ε2C

∫

Aε

|D2u(x)|2 dx,

where C is the constant in (2.4) relative to the extension operator E1, and this concludes the
proof.

For further properties of the spaces L2,2 we refer the reader to [14].

3. Formulation of the problem

Static equilibrium for a clamped plate with cracks. We recall here the variational
formulation for the static equilibrium of a homogeneous isotropic plate with crack K ∈ Km(Ω),
subject to vertical displacement on a part of its boundary.

Let Ω be a bounded open subset of R
2 with Lipschitz continuous boundary ∂Ω. We fix a

subset ∂DΩ of ∂Ω on which we prescribe a boundary condition; we assume that ∂DΩ is non-
empty, relatively open in ∂Ω and composed of a finite number of connected components, and
we set ∂NΩ := ∂Ω \ ∂DΩ. For every function g ∈ W 2,2(Ω) and for every crack K ∈ Km(Ω),
we set

L2,2
g,∂DΩ(Ω \ K) := {u ∈ L2,2(Ω \ K) : u − g = 0,

∂

∂ν
(u − g) = 0 a.e. on ∂DΩ \ K}.

Here the equality u − g = 0 and ∂
∂ν (u − g) = 0 a.e. on ∂DΩ \ K are intended in the sense of

traces as in [5].
Let us fix the so called Poisson coefficient 0 < k ≤ 1/2. However for most of materials (see

[6]) k is strictly less than 1/2, the case k = 1/2 corresponding to incompressible materials.
Let us consider the bilinear form B : L2,2(Ω \ K) × L2,2(Ω \ K) → R defined by

B(u, v) :=

∫

Ω\K
uxxvxx + uyyvyy + (2 − 2k)uxyvxy dxdy for every u, v ∈ L2,2(Ω \ K).

Note that by definition

(3.1) ‖D2v‖2 ≤ B(v, v) ≤ 2‖D2v‖2,

where ‖·‖ denotes the L2 norm. The displacement u corresponding to the boundary condition
g is a solution of the following minimization problem:

(3.2) min
v∈L2,2

g,∂DΩ
(Ω\K)

B(v, v).

Using that the set {D2u : u ∈ L2,2
g,∂DΩ(Ω)} is closed (see [15] ) and (3.1), from the direct

method of calculus of variations it follows that the minimum problem (3.2) admits a solution

u ∈ L2,2
g,∂NΩ(Ω \ K); moreover the functional D2u → B(u, u) is strictly convex, so that D2u

is uniquely determined. We remark also that u and ∇u are uniquely determined in every
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connected component A of Ω such that H1(∂A∩∂DΩ) > 0, and that problem (3.2) is equivalent

to finding u ∈ L2,2
g,∂DΩ(Ω) such that

(3.3) B(u, v) = 0 ∀v ∈ L2,2
0,∂DΩ(Ω).

For more details on the subject see for instance [6], [9],[16].
Finally let us introduce the bulk energy Eb : W 2,2(Ω) × Km(Ω) → R and the total energy

E : W 2,2(Ω) ×Km(Ω) → R defined by

(3.4) Eb(g,K) := B(u, u), E(g,K) := B(u, u) + H1(K),

where u is a solution of problem (3.2).
Irreversible quasi static growth. We consider now the case of time-dependent bound-
ary conditions and we introduce the notion of irreversible quasi static growth. Let g ∈
AC([0, 1];W 2,2(Ω)), where AC([0, 1];W 2,2(Ω)) is the space of all absolutely continuous func-
tions defined in [0, 1] with values in W 2,2(Ω) (for details on the spaces of absolutely continuous
functions see [2]). It is well-known that for a.e. x ∈ [0, 1] there exists the time derivative of
g, denoted by ġ, and that ġ is a Bochner integrable function with values in W 2,2(Ω).

Let us fix a positive integer m > 0. Given a pre-existing crack K0 ∈ Km(Ω) with finite
length, an irreversible quasi static growth relative to the initial crack K0 and to the boundary
datum g(t), is a function

Γ : [0, 1] → Km(Ω)

such that the following three properties hold.

(1) Irreversibility of the process:

K0 ⊆ Γ(0) ⊆ Γ(t1) ⊆ Γ(t2) ∀ 0 ≤ t1 ≤ t2 ≤ 1;

(2) Static equilibrium:

E(g(0),Γ(0)) ≤ E(g(0),H) ∀H ∈ Km(Ω) : K0 ⊆ H and

E(g(t),Γ(t)) ≤ E(g(t),H) ∀t ∈ (0, 1],∀H ∈ Km(Ω) : ∪s<tΓ(s) ⊆ H;

(3) Nondissipativity:

the function t → E(g(t),Γ(t)) is absolutely continuous and

d
dtE(g(t),Γ(t)) = 2B

(

u(t), ġ(t)
)

,

where u(t) is the solution of the minimum problem in (3.2) with K replaced by Γ(t) and g
replaced by g(t).

4. Discrete growth of the cracks

In this section we construct a discrete in time approximation of the quasi static growth
described previously.

Let Ω, ∂DΩ and ∂NΩ be as defined in the previous section. Let m be a fixed positive
integer, let K0 ∈ Km(Ω) with H1(K0) ≤ ∞, and let g ∈ AC([0, 1];W 2,2(Ω)). For any δ > 0,
let Nδ be the largest integer such that δ(Nδ − 1) ≤ 1; for 0 ≤ i ≤ Nδ − 1 we set tδi := iδ, and
tδNδ

= 1. We discretize the boundary data setting gδ
i := g(tδi ), and we construct the discrete

growth as follows: we set Γδ
−1 = K0 and, supposing to have constructed Γδ

i−1, we proceed
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recursively setting Γδ
i ∈ Km(Ω) as a solution of

(4.1) min
K

{

E(gδ
i ,K), K ∈ Km(Ω) : Γδ

i−1 ⊆ K
}

,

and setting uδ
i as a solution of the minimum problem 3.2 in Ω \ Γδ

i with boundary datum gδ
i .

Lemma 4.1. Problem (4.1) admits a solution.

Proof. Let (Kn) be a minimizing sequence for problem (4.1) and let un be a solution of
problem (3.2) in Ω \ Kn. By the fact that gδ

i is an admissible function in (3.2) and by (3.1),
we can assume that there exists a positive constant C such that

(4.2)

∫

Ω\Kn

|D2un|
2 ≤ C, H1(Kn) ≤ C.

By Lemma 2.1 there exists K ∈ Km(Ω) such that, up to a subsequence, Kn → K in the
Hausdorff metric and

(4.3) H1(K) ≤ lim inf H1(Kn).

Moreover, by the fact that Γδ
i−1 ⊂ Kn for every n and Kn → K, we have that Γδ

i−1 ⊂ K. Now,

let A ⊂ A ⊂ Ω \ K be open; by the Hausdorff convergence of Kn to K and since K ∩ A = ∅,
it follows that for n big enough Kn ∩ A = ∅. By (4.2) we have that

∫

A
|D2un|

2 dx ≤ C,

so that there exists u ∈ L2,2(A) such that, up to a subsequence, D2un converges to D2u
weakly in L2,2(A,M2×2). Since A is arbitrary, u can actually be defined in L2,2(Ω \ K).

Moreover it is easy to see that u ∈ L2,2

gδ
i ,∂DΩ

(Ω \ K). By lower semicontinuity

(4.4) B(u, u) ≤ lim inf B(un, un).

From (4.3) and (4.4) it follows that the pair (u,K) minimizes B(v, v) + H1(H) among all

H ∈ Km(Ω) with Γδ
i−1 ⊂ H, and all v ∈ L2,2

gδ
i ,∂DΩ

(Ω \ H), so that the proof is concluded.

Note that by construction we have that

K0 ⊆ Γδ
i ⊆ Γδ

j ∀ 0 ≤ i ≤ j ≤ Nδ.

Moreover, the minimality property (4.1) is equivalent to

(4.5) B(uδ
i , u

δ
i ) + H1(Γδ

i ) ≤ B(v, v) + H1(H),

for every H ∈ Km(Ω) which contains Γδ
i and for every v ∈ L2,2

gδ
i ,∂DΩ

(Ω \ H). From (4.5),

comparing uδ
i with gδ

i and by (3.1), we have that for every i

(4.6)

∫

Ω
|D2uδ

i |
2 dx ≤ C ∀ 0 ≤ i ≤ Nδ,

where C is a constant independent on i, δ.

Now we define the step functions

(4.7) gδ := gδ
i , uδ := uδ

i , Γδ := Γδ
i ,
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for tδi ≤ t < tδi+1. By construction and by (4.6), we have that

K0 ⊆ Γδ(t1) ⊆ Γδ(t2) ∀0 ≤ t1 ≤ t2 ≤ 1,

and
∫

Ω
|D2uδ(t)|2 dx ≤ C ∀ 0 ≤ t ≤ 1.

Next lemma gives an estimate from above for the discrete energy E(gδ
i ,Γ

δ
i ).

Lemma 4.2. For every 1 ≤ i ≤ Nδ we have

(4.8) E(gδ
i ,Γ

δ
i ) ≤ E(gδ

0 ,Γ
δ
0) + 2

∫ tδi

0
B(uδ(t), ġ(t)) dt + o(δ),

where o(δ) → 0 as δ → 0.

Proof. By (4.5), comparing uδ
j+1 with uδ

j − gδ
j + gδ

j+1, we have that for every 0 ≤ j ≤ Nδ − 1

B
(

uδ
j+1, u

δ
j+1

)

+ H1
(

Γδ
j+1

)

≤ B
(

uδ
j + gδ

j+1 − gδ
j , u

δ
j + gδ

j+1 − gδ
j

)

+ H1
(

Γδ
i

)

≤(4.9)

≤ B
(

uδ
j , u

δ
j

)

+ H1
(

Γδ
j

)

+ 2B
(

uδ
j ,

∫ tδj+1

tδj

ġ(t) dt
)

+ 2‖D2gδ
j+1 − D2gδ

j‖
2 ≤

≤ B
(

uδ
j , u

δ
j

)

+ H1
(

Γδ
j

)

+ 2

∫ tδj+1

tδj

B
(

uδ
j , ġ(t)

)

dt + S(δ)

∫ tδj+1

tδj

‖D2ġ(t)‖ dt,

where

S(δ) := 2 max
0≤l≤Nδ−1

∫ tδ
l+1

tδ
l

‖D2ġ(t)‖ dt.

Considering the sum for j = 0 to i − 1 in (4.9), we obtain

B
(

uδ
i , u

δ
i

)

+ H1(Γδ
i ) ≤ B

(

uδ
0, u

δ
0

)

+ H1(Γδ
0) +

+2

∫ tδi

0
B
(

uδ(t), ġ(t)
)

dt + S(δ)

∫ tδi

0
‖D2ġ‖ dt,

that implies (4.8) by choosing o(δ) := S(δ)
∫ 1
0 ‖D2ġ(t)‖ dt.

5. Stability of the unilateral free-discontinuity problem

In the minimum problem (4.1), the unknown set Γδ
i minimizes the energy E(g,H) among

all H ∈ Km(Ω) such that Γδ
i−1 ⊆ H. In particular Γδ

i minimizes the energy among all H

larger then Γδ
i . This is a so called unilateral free-discontinuity problem.

More precisely let g ∈ W 2,2(Ω), let K ∈ Km(Ω) with H1(K) ≤ ∞ and let u be a solution
of the minimum problem (3.2). We say that the pair (u,K) is an unilateral minimum relative
to the boundary condition g if

(5.1) E(g,K) ≤ E(g,H) for all H ∈ Km(Ω) such that K ⊂ H.

The aim of this section is to study the stability of the unilateral minimality property (5.1)
among a sequence of closed sets (Kh) (Theorem 5.2), and this result will be a key point for
the proof of the equilibrium condition for the crack Γ(t). We need the following version of
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the transfer of jumps Theorem, proved in the setting of BV functions in [10]. The proof is
postponed to Section 8.

Theorem 5.1 (transfer of jumps Theorem). Let (Kh) ⊂ Km(Ω) be a sequence which converges
to a compact set K in the Hausdorff metric and such that H1(Kh) ≤ C for some fixed positive
constant C. Let (gh) be a sequence in W 2,2(Ω) which converges to g strongly in W 2,2(Ω) and
let H in Km(Ω) with K ⊆ H and H1(H) ≤ C. Then there exists a sequence (Hh) ⊆ Km(Ω)
converging to H in the Hausdorff metric, with Kh ⊆ Hh for every h, and such that the
following properties hold.

i) H1(Hh \ Kh) → H1(H \ K).

ii) For every v ∈ L2,2
g,∂DΩ(Ω \ H) there exists vh ∈ L2,2

gh,∂DΩ(Ω \ Hh) such that

D2vh → D2v strongly in L2(Ω,M2×2).

We are now in position to prove the main result of this section.

Theorem 5.2. Let (gh) be a sequence in W 2,2(Ω) which converges to some g strongly in
W 2,2(Ω). Let (Kh) ⊂ Km(Ω) with H1(Kh) ≤ C, and let uh ∈ L2,2(Ω \ Kh) be such that the
pair (uh,Kh) is an unilateral minimum relative to the boundary condition gh. Finally let us
assume that

D2uh ⇀ D2u weakly in L2(Ω,M2×2), Kh → K in the Hausdorff metric.

Then the pair (u,K) is an unilateral minimum relative to the boundary condition g. Moreover
D2uh converges to D2u strongly in L2(Ω,M2×2).

Proof. Let us prove that the pair (u,K) is an unilateral minimum relative to the boundary
condition g. To this aim, let H ∈ Km(Ω) with K ⊂ H and let v ∈ L2,2(Ω \ K). Let us
consider the sequences (Hh) and (vh) given by Theorem 5.1. By the fact that Kh ⊂ Hh, we
have that H1(Hh \ Kh) = H1(Hh) −H1(Kh). Hence by the unilateral minimality of the pair
(uh,Kh), we get

(5.2) B(uh, uh) ≤ B(vh, vh) + H1(Hh \ Kh).

Passing to the limit for h → ∞ and using Theorem 5.1, we get

B(u, u) ≤ lim inf
h

B(uh, uh) ≤ lim sup
h

B(vh, vh) + lim supH1(Hh \ Kh) =(5.3)

B(v, v) + H1(H \ K),

which, by the fact that K ⊂ H, is equivalent to the unilateral minimality condition. Choosing
now H = K and v = u in (5.3), we obtain

B(u, u) ≤ lim inf
h

B(uh, uh) ≤ lim supB(uh, uh) ≤

lim sup
h

B(vh, vh) + lim supH1(Hh \ Kh) = B(v, v) + H1(H \ K) = B(u, u).

We deduce that B(uh, uh) → B(u, u), which (together with D2uh ⇀ D2u) implies that D2uh

converges to D2u strongly in L2(Ω,M2×2), and this concludes the proof.

Remark. In Theorem 5.2 the assumption that the minima uh are unilateral can not be
removed in order to get the stability. In fact let us consider Ω := (−1, 1)2, and

Kh := [−1,−1/h] ∪ [1/h, 1] × 0,



QUASI STATIC GROWTH OF BRITTLE CRACKS IN A PLATE 11

which converges to K := [−1, 1] × 0 in the Hausdorff metric. Let moreover

∂DΩ := [−1, 1] × {−1} ∪ [−1, 1] × {1},

and let gh ≡ g be a fixed function with normal derivative equal to 0 on ∂DΩ and with

g = −1 on [−1, 1] × {−1} and g = 1 on [−1, 1] × {1}.

Let Q− := Ω ∩ {x2 < 0} and Q+ := Ω ∩ {x2 > 0}. The solution u of (3.2) in Ω \ K is clearly
the function with zero energy defined by

u(x) :=

{

1 if x ∈ Q+;

−1 if x ∈ Q−.

If uh are the solutions of (3.2) in Ω\Kh, it is easy to see that D2uh does not converge to D2u
weakly in L2(Ω,M2×2); otherwise we will have that uh converges to −1 uniformly in Q− and
to +1 uniformly in Q+. On the other hand by symmetry we have that uh(0, 0) ≡ 0, and this
gives a contradiction.

6. Irreversible quasi static growth of the cracks

In this Section we prove the main result of the paper, that is the existence of an irreversible
quasi static growth of brittle cracks as formulated in Section 2.

Theorem 6.1. Let m be a positive integer, let K0 ∈ Km(Ω) with finite length and let g ∈
AC([0, 1];W 2,2(Ω)). Then there exists an irreversible quasi static growth Γ : [0, 1] → Km(Ω)
relative to the initial crack K0 and to the boundary datum g.

Proof. Let Γδ be the step function defined in (4.7). As proved in [5, Theorem 6.3.], there
exists a sequence δn → 0 and an increasing function Γ : [0, 1] → Km(Ω), such that for every
t ∈ [0, 1]

(6.1) Γδn
(t) → Γ(t) in the Hausdorff metric.

We claim that Γ is a quasi static growth. For every t ∈ [0, 1], we set u(t) as a solution of (3.2)
in Ω \ Γ(t) relative to the boundary condition g(t). We have that

(6.2) E
(

g(0),Γ(0)
)

≤ E
(

g(t),H
)

∀H ∈ Km(Ω) : K0 ⊆ H.

In fact Γδ(0) does not depend on δ, that is Γδ(0) ≡ Γ(0) for every δ. Then (6.2) follows
directly by (4.5) with i = 0. Now we prove that

(6.3) E(g(t),Γ(t)) ≤ E(g(t),H) ∀t ∈ (0, 1], ∀H ∈ Km(Ω) : ∪s≤tΓ(s) ⊆ H.

To this aim, note that for every fixed t ∈ [0, 1] the pair (uδn
(t),Γδn

(t)) is an unilateral
minimum relative to the boundary condition gδn

(t). For every t we have by construction that
Γδn(t) → Γ(t) in the Hausdorff metric. Moreover, up to a subsequence D2uδn(t) ⇀ D2ũ for
some ũ ∈ L2,2(Ω \ Γ(t)). Recalling that gδn

(t) converges to g(t) strongly in W 2,2(Ω), we are
in position to apply Theorem 5.2, so that the pair (ũ,Γ(t)) is an unilateral minimum relative
to the boundary condition g(t). By the fact that both ũ and u are minimizers of (3.2), we
deduce that D2ũ = D2u(t), and hence for every t the pair (u(t),Γ(t)) is an unilateral minimum
relative to the boundary condition g(t), that is (6.3) holds. Moreover, as a consequence of
Theorem 5.2 we also get

(6.4) D2uδn(t) → D2u(t) strongly in L2(Ω,M2×2) for every t ∈ [0, 1].
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Now we prove that all properties defining the quasi static growth are satisfied.
1) Irreversibility of the process. This property holds by construction.
3) Nondissipativity. Using (6.4) and (4.8), we easily get

B(u(t), u(t)) + H1(Γ(t)) ≤ lim inf
(

B(uδn(t), uδn(t)) + H1(Γδn(t)
)

≤

≤ E(gδn

0 ,Γδn

0 ) + lim inf 2

∫ t

0
B(uδn(τ), ġ(τ)) dτ = E(g(0),Γ(0)) + 2

∫ t

0
B(u(τ), ġ(τ))dτ.

To prove the inverse inequality, given t ∈ [0, 1] and given a positive integer k, let us set
sk
i := i

k t for all i = 0, . . . , k. By (6.3), comparing u(sk
i ) with u(sk

i+1)− g(sk
i+1) + g(sk

i ), we get

B(u(sk
i ), u(sk

i )) + H1(Γ((sk
i )) ≤(6.5)

B
(

(

u(sk
i+1) − g(sk

i+1) + g(sk
i )
)

,
(

u(sk
i+1) − g(sk

i+1) + g(sk
i )
)

)

+ H1(Γ(sk
i+1)) =

B
(

u(sk
i+1), u(sk

i+1)
)

+ H1(Γ(sk
i+1)) + B

(

(

g(sk
i+1) − g(sk

i )
)

,
(

g(sk
i+1) − g(sk

i )
)

)

−2

∫ sk
i+1

sk
i

B
(

u(sk
i+1), ġ(τ)

)

dτ.

Summing for i = 0 to k in (6.5), and setting uk(t) = u(sk
i+1) for sk

i ≤ t < sk
i+1, we get

(6.6) B(u(0), u(0)) + H1(Γ(0)) + 2

∫ t

0
B(uk(τ), ġ(τ)) dτ ≤ B(u(t), u(t)) + H1(Γ(t)) + ok,

where ok → 0 as k → ∞. Let us set now Γk(t) = Γ(sk
i+1) for sk

i ≤ t < sk
i+1. By construction

we have that (uk(t),Γk(t)) is an unilateral minimum for every t. If t is a continuity point for
the function l → H1(Γ(l)) it is easy to check that Γk(t) converges to Γ(t) in the Hausdorff
metric. Arguing as in the proof of (6.4) we have that D2uk(t) converges to D2u(t) strongly in
L2(Ω,M2×2) so that B(uk(τ, ġ(τ)) converges to B(uk(τ, ġ(τ)) for a.e. τ . Therefore passing
to the limit for k → ∞ in (6.6) we obtain

(6.7) E(g(t),Γ(t)) ≥ E(g(0),Γ(0)) + 2

∫ t

0
B(u(τ), ġ(τ))dτ.

2) Static equilibrium. Let us fix t ∈ (0, 1) and let (sh) be an increasing sequence converging
to t. By (6.3) we get

B(u(sh), u(sh)) + H1(Γ(sh)) ≤ B(v − g(t) + g(sh), v − g(t) + g(sh)) + H1(H)

for every H ∈ Km(Ω) : ∪s<tΓ(s) ⊆ H and for every v ∈ L2,2
g(t),∂DΩ(Ω \H). Letting h → ∞ and

using that the function t → E(g(t),Γ(t)) is continuous by the nondissipativity condition, we
deduce

B(u(t), u(t)) + H1(Γ(t)) ≤ B(v, v) + H1(H),

for every H ∈ Km(Ω) : ∪s<tΓ(s) ⊆ H and for every v ∈ L2,2
g(t),∂DΩ(Ω \ H), so that also static

equilibrium property holds.
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7. Griffith’s criterion for crack growth

In this section we shall see that, in the model case where the crack Γ(t) is rectilinear, it
satisfies Griffith’s criterion for crack growth. More precisely let Ω be open and connected,
and let ∂DΩ be a (non empty) open subset of ∂Ω composed of a finite number of connected
components. We consider a quasi static growth Γ(t), relative to a boundary datum g ∈
AC([0, 1];W 2,2(Ω)), of the following type (see Fig. 1):

(7.1) Γ(t) := [0, x1(t)] × {x2},

where x1 : [0, 1] → [l1, l2] is an increasing function and [0, l1] × {x2} is a preexisting crack
which touches the boundary of Ω at the point (0, x2). For every x1 ∈ [l1, l2] we set

K(x1) := [0, x1] × x2.

Fig. 1

tΓ( )

1l l 2x 1(t)

x 2

We want to compute the derivative of the bulk energy Eb(g(t),K(x1)) defined in (3.4) with
respect to the growth of the crack (that is with respect to x1) at the point x1(t). For every
function v ∈ L2,2(Ω \ Γ(t)), we set

M11[v] := vx1x1
+ k vx2x2

;

M22[v] := vx2x2
+ k vx1x1

;

M12[v] = M21[v] := (1 − k) vx1x2
.

Let now C be a smooth closed path around the point (x1(t), x2) and let u(t) be a solution of
(3.2) in Ω \ Γ(t). In [16], [6], is proved that the functional x1 → Eb(g(t)),K(x1)) is C1, and
that the following formula holds.

d

dx1
Eb(g(t)),K(x1)) |x1=x1(t) =

∑

i,j∈{1,2}

(

−
1

2

∫

C
Mij[u(t)]uxixj

(t)ν1

+

∫

C
Mij [u(t)]ux1xj

(t)νi −

∫

C

∂

∂xj
Mij [u(t)]

∂

∂x1
u(t)νi(t)

)

(7.2)

+
(

M12[u(t)]
∂

∂x1
u(x+)(t)

)

−
(

M12[u(t)]
∂

∂x1
u(x−)(t)

)

,

where ν = (ν1, ν2) is the inner normal to C and x+ and x− are as in Fig. 2.
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Fig. 2

x
x

C

ν
r

+
− 

θ

It is well known that the solution u(t) has the following behavior in a neighborhood of the
tip (x1(t), x2) (see [6], [13]).

u(t)(r, θ) = r3/2
(

b1(t)
(

sin(
3θ

2
) +

3(1 − k)

7 + k
sin(

θ

2
)
)

+(7.3)

b2(t)
(

cos(
3θ

2
) +

3(1 − k)

5 + 3k
cos(

θ

2
)
)

)

+ uR(r, θ),

where (r, θ) are the polar coordinates as in Figure 2, and uR ∈ W 3,2(Ω).
For every b1, b2 ∈ R we set

(7.4) uS(b1, b2)(r, θ) := r3/2
(

b1

(

sin(
3θ

2
)+

3(1 − k)

7 + k
sin(

θ

2
)
)

+b2

(

cos(
3θ

2
)+

3(1 − k)

5 + 3k
cos(

θ

2
)
)

)

,

so that u(t) = uS(b1(t), b2(t)) + uR(t). Now let us fix a radius ε > 0. For every v, w ∈
L2,2(Ω \ Γ(t)), we consider the bilinear form bε : L2,2(Ω \ Γ(t)) × L2,2(Ω \ Γ(t)) → R defined
by

bε(v,w) :=
∑

i,j∈{1,2}

(

−
1

2

∫

Bε((x1(t),x2))
Mij [v]wxixj

ν1 +

∫

Bε((x1(t),x2))
Mij [v]wx1xj

νi(7.5)

−

∫

Bε((x1(t),x2))

∂

∂xj
Mij [v]

∂

∂x1
wνi(t)

)

+
(

M12[u(t)]
∂

∂x1
w(x+)(t)

)

−
(

M12[u(t)]
∂

∂x1
w(x−)(t)

)

,

Finally, for every b1, b2 ∈ R we define the quadratic form q : R
2 → R as follows:

(7.6) q(b1, b2) := −bε(uS(b1, b2), u
S(b1, b2)).

From (7.4) and (7.5) it easily follows that q does not depend on ε. The explicit computation
of the right hand-side of (7.6), leads to the following expression

q(b1, b2) = 9π(1 + k)2
(

b2
1

(7 + k)2
+

b2
2

(5 + 3k)2

)

.

In order to prove that q(b1(t), b2(t)) is the only contribution that does not vanish in (7.2) as
ε tends to zero, we will need the following Lemma.

Lemma 7.1. Let Bh(z) be an open ball in R
2 and let f ∈ Lp(Bh(z)). Then there exists a

subset I ⊂ [0, h] such that

lim
l→0

|I ∩ [0, l]|

l
= 1,
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and such that for every sequence {εn} ⊂ I with {εn} → 0, we have that f is defined for
H1-a.e. x ∈ ∂Bεn(z), and

lim
n→∞

ε
2−p

p
n

∫

∂Bεn (z)
|f(x)| dx → 0.

Proof. We have
∫

Bh(z)
|f |p =

∫ h

0

∫

∂Br(z)
|f |p =

∫ h

0
2πr

( 1

2πr

∫

∂Br(z)
|f |p

)

.

By the fact that f ∈ Lp(Bh(z)), using Jensen inequality, there exists a positive constant C
such that

∫ h

0
r1−p

(

∫

∂Br(z)
|f |

)p

≤ C.

Now suppose by contradiction that there exist δ1, δ2 > 0 such that, setting

U := {r : r(2−p)/p

∫

∂Br(z)
|f | ≥ δ1},

there exist arbitrary small intervals [0, J ] with

|U ∩ [0, J ]|

J
≥ δ2.

We deduce that
∫

[0,J ]
r1−p

(

∫

∂Br(z)
|f |

)p

=

∫

[0,J ]

1

r

(

r(2−p)/pξ

∫

∂Br(z)
|f |

)p

≥

∫

[0,J ]∩U

1

r
δp
1 ≥

1

J
δp
1 |[0, J ] ∩ U | ≥ δp

1 δ2,

and this, by the arbitrariness of J , is in contradiction with the equi-integrability of the L1

function r1−p
( ∫

∂Br(z) |f |
)p

.

Next theorem gives a more explicit formula then (7.2) for the derivative of the bulk energy
with respect to the growth of the crack. We will see that this derivative actually depends
only on the coefficients in (7.3) of the singular part of u.

Theorem 7.2. Let Γ(·) be a quasi static growth of the type (7.1), and let b1(·), b2(·) be the
coefficients in (7.3). Then for every t ∈ (0, 1)

d

dx1
Eb(g(t)),K(x1)) |x1=x1(t) = −q(b1(t), b2(t)).

Proof. By (7.2), we have that there exists h > 0 such that for every ε ≤ h

d

dx1
Eb(g(t)),K(x1)) |x1=x1(t) = bε

(

uS(b1(t), b2(t)) + uR(t), uS(b1(t), b2(t)) + uR(t)
)

=

−q
(

b1(t), b2(t)
)

+ bε
(

uS(b1(t), b2(t)), u
R(t)

)

+ bε
(

uR(t), uS(b1(t), b2(t))
)

+(7.7)

bε
(

uR(t), uR(t)
)

.

We claim that there exists subsets I, L,M ⊂ (0, h) with the property

(7.8) lim
l→0

I ∩ [0, l]

l
= 1, lim

l→0

L ∩ [0, l]

l
= 1, lim

l→0

M ∩ [0, l]

l
= 1,
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such that the following hold:

1) limn→∞ bεn(uS(b1(t), b2(t)), u
R(t)) = 0 ∀{εn} ⊂ I, εn → 0;

2) limn→∞ bεn(uR(t), uS(b1(t), b2(t))) = 0 ∀{εn} ⊂ L, εn → 0;

3) limn→∞ bεn(uR(t), uR(t)) = 0 ∀{εn} ⊂ M, εn → 0.

Therefore, it is sufficient to consider a sequence (εn) in I ∩ L ∩ M (which exists in view of
(7.8)): along this sequence, the right hand side of (7.7) tends to −q(b1(t), b2(t)), and this
concludes the proof. So let us prove 1), the proof of 2) and 3) being similar.

To this aim, note that we can always assume that ∇uR(t)(x1(t), x2) = 0. In fact, for every
fixed ξ ∈ R

n and for every s ∈ (0, 1), we have that the function

uS(b1(s), b2(s)) + (uR(s) + ξ · x)

is a solution of (3.2) relative to the boundary condition g(s) + ξ · x, and

Eb

(

(g(s)),K(x1(s))
)

= Eb

(

(g(s) + ξ · x(s)),K(x1(s))
)

.

We have

bε
(

uS(b1(t), b2(t)), u
R(t)

)

≤ C

∫

∂Bε((x1(t),x2))
ε−1/2|f(x)| +(7.9)

+
∑

i,j∈{1,2}

∫

∂Bε((x1(t),x2))
ε−3/2|

∂

∂x1
uR(t)| +

(

M12[u
S(b1(t), b2(t))]

∂

∂x1
uR(x+)(t)

)

−
(

M12[u
S(b1(t), b2(t))]

∂

∂x1
uR(x−)(t)

)

,

where C is a positive constant and f ∈ H1(Ω). By Lemma 7.1, noting that by the Sobolev
embedding Theorem f ∈ Lp

(

Bε(x1(t))
)

for every p ≥ 1, there exists a subset I ⊂ (0, h) that
verifies (7.8) and such that

lim
n→∞

C

∫

∂Bεn (x1(t)
ε−1/2
n f(x) = 0 ∀{εn} ⊂ I, εn → 0.

Concerning the second term, note that the function ∂
∂x1

uR(t) is in H2(Ω), so that it is holder

continuous with coefficient greater than 1/2 (it is for instance in C0,2/3(Ω)), and hence,
recalling that ∇uR(t)(x1(t), x2) = 0, we have that for every i, j and for ε small enough

∫

∂Bε(x1(t))
ε−3/2|

∂

∂x1
uR(t)| ≤ C

∫

∂Bε(x1(t))
ε−3/2ε2/3 = C

∫

∂Bε(x1(t))
ε−5/6

which tends to zero as ε → 0. Finally last term is equal to zero for every ε because

∂

∂x1
uR(x+)(t) =

∂

∂x1
uR(x−)(t), M12[u

S(b1(t), b2(t))](x
+) = M12[u

S(b1(t), b2(t))](x
−).

By Theorem 7.2, we deduce the following formula for the derivative of the total energy
with respect to the growth of the crack.

(7.10)
d

dx1
E(g(t)),K(x1)) |x1=x1(t) = 1 − q(b1(t), b2(t)).
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Moreover, arguing as in [5], it is possible to prove that for every t ∈ (0, 1)

d

ds
E(g(t),Γ(s)) |s=t = 0.

We are now in position to state the main result of this section.

Theorem 7.3. Let Γ(t) be a quasi static growth of the type (7.1). Then

ẋ1(t) ≥ 0 for a.e. t ∈ (0, 1),(7.11)

1 − q(b1(t), b2(t)) ≥ 0 for every t ∈ (0, 1),(7.12)
(

1 − q(b1(t), b2(t))
)

ẋ1(t) = 0 for a.e. t ∈ (0, 1).(7.13)

Proof. The first condition comes directly from the irreversibility of the process. The second
condition comes directly from (7.10) and from the static equilibrium condition.

So, let us pass to the prove of the third condition, that actually is the Griffith’s criterion
for crack growth in our model. let t ∈ [0, 1] be a point of differentiability for x1(t). We have

0 =
d

ds
E(g(t),Γ(s)) |s=t =

d

dx1
E(g(t),K(x1)) |x1=x1(t) ẋ1(t) =

(

1 − q(b1(t), b2(t))
)

ẋ1(t).

and this concludes the proof.

8. Proof of the transfer of jumps Theorem

In this section we prove the transfer of jumps Theorem (Theorem 5.1). In the proof we
will need the following lemma, which is a particular case of [5][Lemma 3.6].

Lemma 8.1. Let U be an open bounded subset of R
2 with Lipschitz continuous boundary, let

p ≥ m ≥ 0 and let (Kh) be a sequence in Kp(U ) converging to some K ∈ Km(U) and uniformly

bounded in length. Then there exists (Jh) ⊂ Km(U ) converging to K, with Kh ⊂ Jh, and such
that

lim
h

H1(Jh \ Kh) → 0.

We are now in position to prove the transfer of jumps Theorem.

Proof. [Proof of Theorem 5.1] For every x ∈ K which satisfies (2.2), for every 0 < δ < 1 and
for every r > 0 let us set

Rr(x) := Br(x) ∩ {z ∈ R
2 : |(z − x) · ν(x)| < (δ/2)r};

B+
r (x) := Br(x) ∩ {z ∈ R

2 : (z − x) · ν(x) > δr};

B−
r (x) := Br(x) ∩ {z ∈ R

2 : (z − x) · ν(x) < −δr};

Lr(x) := ∂Br(x) ∩ ∂Rr(x).

The idea of the proof is the following. We would like to recover K with small balls Br(x)
such that (up to small errors in length) K cuts every Br(x) into two connected components.
Then, in order to have the same geometrical configuration for the sequence Kh, we have to
enlarge a bit them, obtaining a new sequence of closed sets which still cut every Br(x) into two
connected components which we denote now by D+

r (x) and D−
r (x), so that B+

r (x) ⊂ D+
r (x)

and B−
r (x) ⊂ D−

r (x). We add to this sequence of enlarged Kh the set H \ K, obtaining
a sequence which looks like the Hh of Theorem 5.1. Now we have to approximate v with
functions vh ∈ L2,2

gh,∂DΩ(Ω \ Hh). This procedure is called transfer of the jump’s set . We set
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vh = v far from K, while around K we consider the restriction of v on every B+
r (x) (respec-

tively on B−
r (x)) and we extend it on D+

r (x) (respectively on D−
r (x)), obtaining in this way

a function whose jumps are contained in Hh. With a further modification we also obtain the
right boundary datum. However the rigorous proof presents some additional difficulties; for
instance it will need some technical effort in order to ensure Hh to be in Km(Ω). In order to
keep rigorous this rough idea, let us claim as follows.

Claim. For every 0 < δ < 1 and for every ε > 0 there exists a finite family of disjoint balls

{Br1
(x1), . . . BrN

(xN )} (where N depends on ε), and there exists a sequence (Hδ,ε
h ) ⊂ Km(Ω)

of closed sets, such that for every i the following properties hold.

a) H ∩ Bri
(xi) ⊂ Rri

(xi);

b) Either B+
ri

(xi) ⊂ Ω or B+
ri

(xi) ⊂ R
2 \ Ω;

c) Either B−
ri

(xi) ⊂ Ω or B−
ri

(xi) ⊂ R
2 \ Ω;

d) For h large enough Hδ,ε
h ∩ (B+

ri
(xi) ∪ B−

ri
(xi)) = ∅. Moreover B+

ri
(xi) and B−

ri
(xi) are

in two different connected components of Bri
(xi) \ Hδ,ε

h ;

e) H1(K \ ∪N
i=1Bri

(xi)) ≤ ε;

f) ri ≤ ε;

g) Kh ∪ H \ K ⊆ Hδ,ε
h . Moreover

lim
h

H1(Hδ,ε
h \ Kh) = H1(H \ K) + o(δ), where o(δ) → 0 as δ → 0.

Using the claim, we construct a sequence vδ,ε
h ∈ L2,2(Ω \ Hδ,ε

h ) as follows. For every

1 ≤ i ≤ N , by property d) we can define (for h large enough) D+
i,h as the connected component

of Bri
(xi)\Hδ,ε

h containing B+
ri

(xi), and similarly D−
i,h as the connected component of Bri

(xi)\

Hδ,ε
h containing B−

ri
(xi). Let us define the function vδ,ε

h on every D+
i,h ∩ Ω (the case D−

i,h ∩ Ω

being similar). If B+
i,h is contained in R

2 \ Ω, we define vδ,ε
h = g on D+

i,h ∩ Ω. Otherwise, by

property b) we have that B+
i,h ⊂ Ω. Let v+

i be the restriction of v on B+
ri

(xi). By property a)

we have that v+
i ∈ L2,2(B+

ri
(xi)), so that we can consider its extension E(v+

i ) on R
2 given by

Lemma 2.4. We define vδ,ε
h = E(v+

i ) on D+
i,h. Finally we define vδ,ε

h = v on

Ω \
⋃

i

(

D+
i,h ∪ D−

i,h

)

.

Note that by construction vδ,ε
h ∈ L2,2

g,∂DΩ(Ω \ Hδ,ε
h ). Moreover by Lemma 2.4 there exists a

positive constant Cδ (independent on ε) such that

(8.1)

∫

Ω
|D2v − D2vδ,ε

h |2 dx ≤ Cδ

∑

i

∫

(D+
i
∪D−

i
)∩Ω

‖D2v‖2 dx.

Let us fix two sequences (δh) → 0 and (εh) → 0, and let us repeat the construction of the sets

Hδh,εh

h as described above. Using property f) and the equi-integrability of ‖D2v‖2, we can
assume without loss of generality that (δh) and (εh) are chosen such that right hand side of
(8.1) tends to zero as h tends to infinity. Moreover by a diagonal argument (i.e. by freezing

δh and εh) we can also assume that property d) holds for every h with Hδh,εh

h in place of Hδ,ε
h ,
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so that for every h we can construct the functions vδh,εh

h as described previously. We set

(8.2) Hh := Hδh,εh

h vh := vδh,εh

h − g + gh.

By property g) we have Kh ⊂ Hh, Hh → H in the Hausdorff metric, and

lim
h

H1(Hh \ Kh) = H1(H \ K).

On the other hand vh ∈ L2,2
gh,∂DΩ(Ω \ Hh), and by (8.1) and the choice of δh, εh we have that

D2vh → D2v strongly in L2(Ω;M2×2), so that using the claim the proof of the Theorem is
completed.

Let us pass to the proof of the claim. From now on 0 < δ < 1 and ε > 0 are keep fixed.
For almost every x ∈ K, if r is small enough (depending on x) the following properties hold.

i) H ∩ Br(x) ⊂ Rr(x);

ii) Either B+
r (x) ⊂ Ω or B+

r (x) ⊂ R
2 \ Ω;

iii) Either B−
r (x) ⊂ Ω or B−

r (x) ⊂ R
2 \ Ω;

iv) There exists a closed segment Sr(x) ⊂ Rr(x) with H1(Sr(x)) ≤ δr and such that
(K ∩ Br(x)) ∪ Lr(x) ∪ Sr(x) is connected.

In fact, by Lemma 2.2 we can assume that x ∈ K is a point satisfying (2.2) and (2.3).
Property i) follows by (2.3) for r small enough. Properties ii) and iii) are trivial if x ∈ Ω and
r < d(x, ∂Ω), while if x ∈ ∂Ω, it holds at every x which admits the approximate normal to
∂Ω with r small enough; the fact that ∂Ω is Lipschitz ensure that such x have full measure
in K ∩ ∂Ω. Let us pass to the proof of iv). Let m be the minimum of the diameter of the
connected components of K which are not single points (so that m > 0). We can always
assume that there are not isolated points in K ∩ Br(x) and that 2r < m. We deduce that
every connected component of K∩Br(x) intersect ∂Br(x), otherwise there will be a connected
component of K with diameter smaller than m. On the other hand by (2.2) for r small enough
K ∩ Br(x) ⊂ Rr(x), and hence every connected component of K ∩ Br(x) intersects Lr(x).
Let us denote by LL

r (x) and LR
r (x) the two connected components of Lr(x) and let KL

r (x)
(respectively KR

r (x)) be the union of all connected components of K ∩Br(x) which intersect
LL

r (x) (respectively LR
r (x)). By (2.2) we have that

dH(KL
r (x) ∪ LL

r (x),KR
r (x) ∪ LR

r (x))

r
→ 0 as r → 0.

We deduce that there are two points ar ∈ KL
r (x) ∪ LL

r (x) and br ∈ KR
r (x) ∪ LR

r (x) with

(8.3)
|ar − br|

r
→ 0 as r → 0.

We set Sr as the closed segment with end points ar and br. By construction we have that
(K ∩Br(x))∪Lr(x)∪Sr is connected, and by (8.3) for r small enough H1(Sr) ≤ δr, and this
concludes the proof of property iv).

By properties i)-iv) above, applying Vitali-Besicovitch covering Theorem (see for instance
[1]), we can consider a finite family of disjoint balls, {Br1

(x1), . . . BrN
(xN )} (where N depends

on ε), such that for every 1 ≤ i ≤ N the following properties hold:

1) H ∩ Bri
(xi) ⊂ Rri

(xi);

2) Either B+
ri

(xi) ⊂ Ω or B+
ri

(xi) ⊂ R
2 \ Ω;



20 F. ACANFORA AND M. PONSIGLIONE

3) Either B−
ri

(xi) ⊂ Ω or B−
ri

(xi) ⊂ R
2 \ Ω;

4) There exists a closed segment Sri
(xi) ⊂ Rri

(xi) with H1(Sri
(xi)) ≤ δri and such that

(K ∩ Bri
(xi)) ∪ Lri

(xi) ∪ Sri
(xi) is connected;

5) H1(K \ ∪N
i=1Bri

(xi)) ≤ ε;

6) ri ≤ ε.

Properties 1), 2), 3), 5) and 6) are exactly properties a), b), c) e) and f) of the Claim. In
order to prove properties d) and g) let us fix 1 ≤ i ≤ N and let us set

K̃ := K ∪ Sri
(xi) ∪ Lri

(xi), K̃h := Kh ∪ Sri
(xi) ∪ Lri

(xi).

Note that K̃ and K̃h have at most m + 3 connected components. By property 4) K̃ ∩Bri
(xi)

is connected, and hence there exists a connected component K̃i of K̃ which contains K̃ ∩
Bri

(xi). Let C1
h, . . . , C l

h be the connected components of K̃h converging to the sets C1, . . . , C l

composing K̃i, i.e. such that ∪l
j=1C

j = K̃i. We have l ≤ m+3 and we can thus apply Lemma

8.1 to the sequence ∪l
j=1C

j
h, obtaining that there exists a sequence of connected sets J i

h in

Ω which still converges to K̃i in the Hausdorff metric and such that limh H
1(J i

h \ K̃h) = 0.
Therefore we have

(8.4) lim sup
h

H1(J i
h \ Kh) ≤ H1(Lri

(xi) ∪ Sri
(xi)).

Let us enlarge Lri
(xi); more precisely let us set

L̃ri
(xi) := {x ∈ ∂Bri

(xi) : d(x,Lri
(xi)) ≤ a},

where a is a positive constant chosen such that L̃ri
(xi) does not intersect neither B+

ri
(xi) nor

B−
ri

(xi). The sequence J i
h ∩Bri

(xi) converges to K̃i ∩Bri
(xi) = K̃ ∩Bri

(xi) in the Hausdorff

metric, which is contained in Rri
(xi). We deduce that for h large enough every connected

component of J i
h∩Bri

(xi) can intersect Bri
(xi) only on L̃ri

(xi). Therefore, recalling that J i
h is

connected, we have that (J i
h ∪ L̃ri

(xi))∩Bri
(xi) has at most three connected components and

it converges to the connected set (K̃ ∪ L̃ri
(xi)) ∩ Bri

(xi) in the Hausdorff metric. Applying

again Lemma 8.1 to the sequence (J i
h∪L̃ri

(xi))∩Bri
(xi) we deduce that there exists a sequence

of connected sets Ii
h in Bri

(xi) converging to (K̃ ∪ L̃ri
(xi)) ∩ Bri

(xi) and such that

(8.5) lim
h

H1
(

Ii
h \
(

(J i
h ∪ L̃ri

(xi)) ∩ Bri
(xi)

)

)

= 0.

Note that by the fact that Ii
h is connected, contains L̃ri

(xi), and for h large enough does not
intersect neither B+

ri
(xi) nor B−

ri
(xi), it follows that

(8.6) B+
ri

(xi) and B−
ri

(xi) are in two different connected components of Bri
(xi) \ Ii

h.

By (8.4) we have

(8.7) lim sup
h

H1
(

(J i
h ∪ L̃ri

(xi)) ∩ Bri
(xi) \ Kh

)

≤ H1(L̃ri
(xi) ∪ Sri

(xi)).

By (8.5) and (8.7) we obtain

(8.8) lim sup
h

H1(Ii
h \ Kh) ≤ H1(L̃ri

(xi) ∪ Sri
(xi)).
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Let us repeat the construction above for every 1 ≤ i ≤ N , and let us set

(8.9) Iδ,ε
h :=

N
⋃

i=1

Ii
h ∪ Kh ∪ H \ K.

For every i we have

(8.10) H1(L̃ri
(xi) ∪ Sri

(xi)) ≤ Cδri,

for a positive constant C (independent on δ and ε). Moreover by property 4) it follows that

H1(K ∩ Bri
(xi)) ≥ (1 − δ)ri,

and hence

(8.11) | ∪N
i=1

(

L̃ri
(xi) ∪ Sri

(xi)
)

| ≤ C
δ

1 − δ
H1(K).

By (8.8), (8.9) and (8.11) we obtain

(8.12) lim
h

H1(Iδ,ε
h \ Kh) = H1(H \ K) + o(δ),

where o(δ) → 0 as δ → 0.
By the fact that K ⊂ H, K ∈ Km(Ω), H ∈ Km(Ω), and that every Ii

h is connected, we

deduce that the number of connected components of Iδ,ε
h is uniformly bounded with respect

to h. Moreover Iδ,ε
h converges to H ∪N

i=1

(

L̃ri
(xi) ∪ Sri

(xi)
)

, which by construction and by
property 4) has at most m connected components. By Lemma 8.1 there exists a sequence

Ĩδ,ε
h ∈ Km(Ω) which contain Iδ,ε

h , which still converge to H ∪N
i=1

(

L̃ri
(xi) ∪ Sri

(xi)
)

in the
Hausdorff metric and with

(8.13) lim
h

H1(Ĩδ,ε
h \ Kh) = H1(H \ K) + o(δ).

The construction of Ĩδ,ε
h does not ensure that Ĩδ,ε

h are contained in Ω. Therefore we have to

project every Ĩδ,ε
h ∩(R2\Ω) on ∂Ω as follows. For every connected component C of Ĩδ,ε

h ∩(R2\Ω)
we set ∂CΩ as the connected subset of ∂Ω with minimal length which contains C ∩ ∂Ω. By
the fact that ∂Ω is Lipschitz, we deduce that there exists a positive constant L such that

(8.14) H1(∂CΩ) ≤ LH1(C).

Therefore, substituting every connected component C of Ĩδ,ε
h ∩ (R2 \Ω) with the correspond-

ing ∂CΩ we obtain a sequence Hδ,ε
h which by construction is in Km(Ω), by (8.9) contains

Kh ∪ H \ K, so that by (8.13) and (8.14) satisfies property g) of the Claim. Moreover by
construction and by (8.6) we deduce that also property d) holds. This concludes the proof of
the Claim and therefore of the Theorem.

9. Conclusions and remarks

In Theorem 6.1 we proved the existence of an irreversible quasi static growth of cracks for
a plate clamped on a part of its boundary. More general boundary conditions can be treated
with these methods. We mention for instance the case of the so called hinged plate, where no
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conditions are imposed on the normal derivative of the displacement u on ∂DΩ. In this case,
it is sufficient to set the minimum problem (3.2) in the space

{u ∈ L2,2(Ω \ K) : u − g = 0 on ∂DΩ in the sense of traces}.

The main tool used is Theorem 5.1, which leads to the stability of unilateral minimality
problems like (4.1). Note that the proof of Theorem 5.1 is based on a geometrical construction,
and can be extended in the framework of Lk,p spaces (i.e. the space of functions in Lp

loc with
derivatives of order k in Lp (see [14]). Therefore the stability of unilateral minimum problems
like (4.1) holds for more general energies E : Lk,p(Ω) → R depending on the k-order derivatives
of u and with standard p-growth hypothesis. It is also possible to treat energies depending
on the point x of the reference configuration Ω, as in the case of shells.
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