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Abstract. We consider nonlocal curvature functionals associated with pos-
itive interaction kernels, and we show that local anisotropic mean curvature
functionals can be retrieved in a blow-up limit from them. As a consequence,
we prove that the viscosity solutions to the rescaled nonlocal geometric flows
locally uniformly converge to the viscosity solution to the anisotropic mean
curvature motion. The result is achieved by combining a compactness argument
and a set-theoretic approach related to the theory of De Giorgi’s barriers for
evolution equations.
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1. Introduction

In this paper we prove convergence of a class of rescaled nonlocal curvature flows
to local anisotropic mean curvature evolutions.

We fix an interaction kernel K : Rd \ {0} → [0,+∞), possibly singular at 0,
modeling interactions between points in the space, and we define the nonlocal
curvature associated with K of a measurable set E ⊆ Rd at x ∈ ∂E as

HK(E, x) := − lim
r→0+

∫
B(x,r)c

K(y − x)χ̃E(y)dy. (1.1)

Here and in the sequel, B(x, r) is the open ball with center x and radius r, Ec = Rd\E
for any E ⊆ Rd, and χ̃E(x) is equal to 1 when x ∈ E and it is equal to −1 otherwise.

Note that if K ∈ L1(Rd), then the nonlocal curvature coincides with HK(E, x) =
−(K ∗ χ̃E)(x). More generally, we will impose conditions on K so that C1,1 sets
have bounded nonlocal curvature, see Section 2.

By using the nonlocal curvature operator, we define a nonlocal flow as follows:
for a family of evolving sets {E(t)}t≥0, we prescribe the geometric law

∂tx(t) · n̂ = −HK(E(t), x), (1.2)

where n̂ is the outer unit normal to ∂E(t) at the point x(t).
Geometric nonlocal evolutions as (1.2) emerged as models for dislocations dynam-

ics in the description of plastic behavior of metallic crystals. Dislocations are linear
misalignments in the microscopic crystalline lattice, and whose normal velocity is
determined by the so called Peach-Koehler force. In [3], Alvarez, Hoch, Le Bouar,
and Monneau proposed a mathematical description of dislocation dynamics in terms
of a nonlocal eikonal equation, where the Peach-Koelher force is encoded by a
convolution kernel c0. The explicit expression of the kernel might be complicated,
because it has to capture the physical features of the system, e.g. in general it can
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change sign. By then, their model has been simplified in a series of papers, in which
well-posedness of the geometric evolution law was obtained, see [2, 7, 30, 27, 24].

Another interesting aspect of the nonlocal curvature (1.1) is that it is the first
variation of the nonlocal perimeter functional

PerK(E) :=

∫
E

∫
Ec
K(y − x)dydx

(see e.g. [19]), and the geometric evolution law (1.2) is then understood as the L2

gradient flow of this kind of perimeter.
When K belongs to an appropriate class of fractional kernels, existence and

uniqueness of solutions in the viscosity sense to the geometric flow (1.2) were
investigated in [29]. More recently, Chambolle, Morini, and Ponsiglione have
proved in [19] well posedness of the level-set formulation of a wide class of local
and nonlocal translation-invariant geometric flows. They also have exploited the
minimizing movement scheme to construct solutions to flows driven by variational
curvatures.

The analysis of nonlocal curvature flows as (1.2) has lately been carried out
from various perspectives, especially in fractional case; for instance, conservation of
convexity, formation of neckpinch singularities, and fattening phenomena have been
considered, see [17, 23, 21].

As we anticipated, we are interested in the asymptotic behaviour of a family of
nonlocal curvature flows, obtained by rescaling the kernel K. Explicitly, for any
ε > 0 and x ∈ Rd, we put

Kε(x) :=
1

εd
K
(x
ε

)
(1.3)

and, for a measurable set E ⊂ Rd and x ∈ ∂E, we define

Hε(E, x) :=
1

ε
HKε(E, x). (1.4)

We remark that this scaling is mass preserving, in the sense that, at least formally,
‖K‖L1(Rd) = ‖Kε‖L1(Rd). At the same time, we expect a localization effect in the
limit.

Our main assumptions on the kernel K are listed in Section 2. In particular, we
will require that K is sufficiently regular and has at most a singularity in the origin,
that is K ∈W 1,1(Rd \B(0, r)) for all r > 0. In addition, we assume that there exist
m > 0 and s ∈ (0, 1) such that

0 ≤ K(x) ≤ m

|x|d+1+s
if x ∈ B(0, 1)c,

and that for all λ > 0 and all e ∈ Sd−1 := ∂B(0, 1) there holds

K, |x| |∇K(x)| ∈ L1

({
x ∈ Rd : |x · e| ≤ λ

2
|πe⊥(x)|2

})
,

where e⊥ is the hyperplane of vectors that are orthogonal to e, and πe⊥ is the
orthogonal projection operator on e⊥. Actually, in order to exploit these properties
in our proofs, we will need to make them quantitative. We refer the reader to
Section 2 for a detailed presentation of the assumptions.

We point out that in [24] a similar problem was studied, but there the assumptions
on the interaction kernel, and thus the choice of the rescaling, are different from
ours. Indeed, the authors of [24] assume the kernel K to be bounded near the origin
(hence nonsingular) and to decay as |x|−(d+1) at infinity. The rescaled curvature is
defined as

1

ε log ε
HKε(E, x),
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and the authors prove that, as ε→ 0, it converges to an anisotropic, local curvature
functional. They also show that the rescaled geometric motion approaches the flow
driven by the limiting curvature.

In the last years, other results related to the asymptotic behavior of rescaled
nonlocal functionals have appeared in the literature, mainly in the stationary setting.
For radial, nonsingular kernels, it is proved in [33] that the rescaled perimeters
ε−1 PerKε(E) converge pointwise to the local perimeter functional. In the same
paper, pointwise convergence of the rescaled curvature to the local mean curvature
is obtained as well. An improvement concerning the convergence of perimeters
has recently been obtained in [13, 34], where Γ-convergence of the functionals
ε−1 PerKε(E) to De Giorgi’s perimeter is established for a class of singular kernels.
Results in the same spirit addressing specifically the fractional case can be found
in [5, 14, 16], see also [35] for Γ-convergence of nonlocal phase transitions. Finally,
we recall the recent preprint [18], where stability results for nonlocal geometric
evolutions are studied by using viscosity solutions arguments. In the present paper,
we propose a different, more geometric, approach to the problem, as we will detail
in the following.

Our first main result is the uniform convergence of the rescaled curvature func-
tionals to a local, anisotropic mean curvature functional, when they are computed
for smooth, compact sets. We fix some notations needed to formulate the precise
statement.

As before, p⊥ is the hyperplane of the vectors that are orthogonal to p, and πp⊥ is
the orthogonal projection operator on p⊥. We denote by Sym(d) the space of d× d
real symmetric matrices and by Hd−1 the (d− 1)-dimensional Hausdorff measure.
For a C2 hypersurface in Rd Σ, we define the anisotropic mean curvature functional

H0(Σ, x) := − 1

|∇ϕ(x)|
tr
(
MK (n̂)πn̂⊥∇2ϕ(x)πn̂⊥

)
, (1.5)

where ϕ ∈ C2(Rd) is a function such that Σ ∩U = {y ∈ Rd : ϕ(y) = 0} ∩U in some
open neighbourhood U of x, ∇ϕ(x) 6= 0, n̂ is the outer unit normal to Σ at x, and
finally

MK : Sd−1 −→ Sym(d)

e 7−→
∫
e⊥
K(z)z ⊗ zdHd−1(z).

(1.6)

Then, we show the following:

Theorem 1.1. Let K satisfy all the assumptions in Section 2. Let E ⊂ Rd be a
set whose boundary Σ is compact and of class C2. Then,

lim
ε→0+

Hε(E, x) = H0(Σ, x) uniformly in x ∈ Σ.

We recall that analog results to ours for nonsingular kernels are found in [33] and
in [24], respectively for the isotropic and the anisotropic case.

Our second main result deals with the convergence of the rescaled nonlocal
geometric flows

∂tx(t) · n̂ = −Hε(E(t), x(t)) (1.7)
to the anisotropic mean curvature flow

∂tx(t) · n̂ = −H0(Σ(t), x(t)), (1.8)

where Σ(t) := ∂E(t). We develop our analysis in the framework of the level-set
method. This amounts to defining the evolving set E(t) and its boundary Σ(t) as
the 0 superlevel set and 0 level set of some function ϕ(t, · ), which turns out to be a
viscosity solution of the nonlocal parabolic partial differential equation

∂tϕ(t, x) + |∇ϕ(t, x)|Hε({y : ϕ(t, y) ≥ ϕ(t, x)}, x) = 0 (1.9)
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if E(t) solves the rescaled nonlocal geometric flow (1.7), or of the local parabolic
partial differential equation

∂tϕ(t, x) + |∇ϕ(t, x)|H0({y : ϕ(t, y) = ϕ(t, x)}, x) = 0 (1.10)

if Σ(t) solve the anisotropic mean curvature flow (1.8). We can state our second
major result.

Theorem 1.2. Let K satisfy all the assumptions in Section 2. Let u0 : Rd → R
be a Lipschitz continuous function that is constant outside a compact set. Let
uε, u : [0,+∞)× Rd → R be respectively the unique continuous viscosity solution to
(1.9) and (1.10), with initial datum u0. Then

lim
ε→0

uε(t, x) = u(t, x) locally uniformly in [0,+∞)× Rd.

The proof of Theorem 1.2 is based on the convergence of curvatures obtained
in Theorem 1.1. We propose a proof based on the concept of geometric barrier,
introduced by De Giorgi in [25] as a weak solution to a wide range of evolution
problems. The study of barriers in relation to geometric parabolic PDEs, such as
(1.10), was developed by Bellettini, Novaga, and Paolini in the late 90’s [11, 8, 10, 9].
It turns out that, for the class of problems under consideration, viscosity theory
and barriers can be compared, and this is the key point that we will exploit in our
analysis.

We remark that isotropic fractional kernels such as K(y − x) = |y − x|−d−s for
s ∈ (0, 1) are not directly included in the class of kernels we are considering, see
Example 2.2. Nevertheless the same kind of result as Theorem 1.1 for the fractional
mean curvature as s → 1 was obtained in [1, 16, 18], whereas the convergence of
the level set flow has been proved in [18] by using viscosity solution methods.

Finally, we recall that there is a large literature concerning approximation results
for mean curvature motions, either with local or nonlocal operators. One of the
most renowned algoritheorems is the threshold dynamics type one introduced in
[12] by Bence, Merriman, and Osher. This approach was rigorously settled in [6]
and [26]; then, the analysis was extended to more general diffusion operators in
[31], [32], and [20] (for anisotropic and crystalline evolutions). In [15] Caffarelli and
Souganidis established the convergence of an analogous threshold dynamics scheme
to the (isotropic) motion by fractional mean curvature, and this result was adapted
to the anisotropic case, also in presence of a driving force, in [21].

Structure of the paper. In Section 2 we describe the class of interaction kernels
that we consider in this work. In Section 3 and 4 we discuss some basic properties
of the curvatures functionals, and we recall the level-set formulation for geometric
flows, the notion of geometric barriers, and the main results about them. Section
5 is devoted to the proof of Theorem 1.1. In Section 6, we provide a compactness
result for the family of solutions to the rescaled nonlocal problems. Eventually,
Section 7 contains the proof of Theorem 1.2.

Acknowledgement. The authors warmly thank Matteo Novaga for inspiring dis-
cussions on this problem.

2. Standing assumptions on the kernel

Throughout this work, K : Rd \ {0} → [0,+∞) is a measurable function such
that

K(y) = K(−y) for all y ∈ Rd \ {0} (2.1)
and

K ∈W 1,1(B(0, r)c) for all r > 0. (2.2)
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Note that (2.2) allows both K and ∇K to be singular around the origin, and it
implies convergence of their integrals at infinity; however, we need to make these
information quantitative.

Firstly, we require that

lim
r→0+

r

∫
B(0,r)c

K(y)dy = 0. (2.3)

Then, for any e ∈ Sd−1 and λ > 0, we set

Qλ(e) :=

{
y ∈ Rd : |y · e| ≤ λ

2
|πe⊥(y)|2

}
,

and we assume that

y 7→ K(y), y 7→ |y| |∇K(y)| ∈ L1(Qλ(e)) for all e ∈ Sd−1 and λ > 0. (2.4)

This will imply that sets with C1,1 compact boundary have finite curvature, see
Proposition 3.1. We stress that we make no isotropy hypothesis on K; still, we have
to suppose some control on the mass of K in Qλ(e), uniformly in e. We therefore
suppose that for all λ > 0 there exists aλ > 0 such that for all e ∈ Sd−1∫

Qλ(e)

K(y)dy ≤ aλ. (2.5)

In addition, we require that there exist a0, b0 > 0 such that for all e ∈ Sd−1

lim sup
λ→0+

1

λ

∫
Qλ(e)

K(y)dy ≤ a0, (2.6)

lim sup
λ→0+

1

λ

∫
Qλ(e)

|∇K(y)| |y|dy ≤ b0. (2.7)

We assume as well that for all e ∈ Sd−1

lim
λ→+∞

1

λ

∫
Qλ(e)

K(y)dy = 0. (2.8)

Finally, we suppose that, far from the origin, K is bounded above by a fractional
kernel; that is, there exist m > 0 and s ∈ (0, 1) such that

K(y) ≤ m

|y|d+1+s
if y ∈ B(0, 1)c. (2.9)

Remark 2.1. Inequality (2.9) entails that for all α < s

lim
r→+∞

r1+α

∫
B(0,r)c

K(y)dy = 0. (2.10)

Actually, most of the results in the paper are not affected if the weaker assumption
(2.10) replaces (2.9). However, for the sake of simplicity, we decided not to pursue
this direction.

As a concluding comment about our assumptions on K, we describe a class of
singular kernels that fits in our analysis.

Example 2.2 (Fractional kernels). Let us suppose that K : Rd \ {0} → [0,+∞)
satisfies (2.1) and that there exist constants m,µ > 0 and s, σ ∈ (0, 1) such that

K(y), |y| |∇K(y)| ≤ µ

|y|d+σ
for all y ∈ B(0, 1)

and
K(y), |y| |∇K(y)| ≤ m

|y|d+1+s
for all y ∈ B(0, 1)c.

Then, all the assumptions above are satisfied.
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Also fractional kernels with exponential decay at infinity fit in our framework;
namely, these are the kernels K : Rd \{0} → [0,+∞) that satisfy (2.1) and for which
there exist constants m,µ > 0 and s ∈ (0, 1) such that

K(y), |y| |∇K(y)| ≤ µe−m|y|

|y|d+s
, ∀y ∈ Rd.

3. Preliminaries about curvature functionals

In this section we discuss some basic results about the local and nonlocal curvature
functionals H0 and HK defined in (1.5) and (1.1).

First of all, we show that the nonlocal curvature is finite on sets with C1,1

boundaries. Similar results are already available in [29] and [19]. Nonetheless, we
detail the argument for the sake of completeness, and to recover estimate (3.2),
which will come in handy later. We will use the following notation: for e ∈ Sd−1,
x ∈ Rd and δ > 0, we denote the cylinder of center x and axis e as

Ce(x, δ) := {y ∈ Rd : y = x+ z + te, with z ∈ e⊥ ∩B(0, δ), t ∈ (−δ, δ)}. (3.1)

Proposition 3.1. Let E ⊂ Rd be an open set such that ∂E is a C1,1-hypersurface.
Then, for all x ∈ ∂E there exist δ̄, λ > 0 such that

|HK(E, x)| ≤
∫
Qλ,δ̄(n̂)

K(y)dy +

∫
B(0,δ̄)c

K(y)dy, (3.2)

where Qλ,δ̄(n̂) := {y ∈ Qλ(n̂) : |πn̂⊥(y)| < δ̄}. In particular, HK(E, x) is finite.

Proof. Let Σ := ∂E and n̂ be the outer unit normal to Σ at x. By the regularity of
Σ, there exist δ̄ := δ̄(x) and a function f : n̂⊥ ∩B(0, δ̄)→ (−δ̄, δ̄) of class C1,1 such
that

Σ ∩ Cn̂(x, δ̄) = {y = x+ z − f(z)n̂ : z ∈ n̂⊥ ∩B(0, δ̄)}, (3.3)

E ∩ Cn̂(x, δ̄) = {y = x+ z − tn̂ : z ∈ n̂⊥ ∩B(0, δ̄), t ∈ (f(z), δ̄)}, (3.4)

|f(z)| ≤ λ

2
|z|2 for some λ > 0. (3.5)

It is not restrictive to assume r < δ̄; hence, we can split the integral in (1.1) into
the sum ∫

C

K(y − x)χ̃E(y)χB(x,r)c(y)dy +

∫
Cc
K(y − x)χ̃E(y)dy,

where we set C := Cn̂(x, δ̄). The second term above is finite as a consequence of
(2.2); indeed, since B(x, δ̄) ⊂ C, we have that∣∣∣∣∫

Cc
K(y − x)χ̃E(y)dy

∣∣∣∣ ≤ ∫
B(0,δ̄)c

K(y)dy. (3.6)

So, we are left to show that the integral

Ir :=

∫
C

K(y − x)χ̃E(y)χB(x,r)c(y)dy

is bounded by a constant that does not depend on r. Taking into account (3.4) and
recalling that K belongs to L1(B(0, r)c) for any r > 0, we can write

Ir =

∫
n̂⊥∩B(0,δ̄)

[∫ δ̄

f(z)

K(z − tn̂)br(z, t)dt−
∫ f(z)

−δ̄
K(z − tn̂)br(z, t)dt

]
dHd−1(z),

where, for (z, t) ∈ [n̂⊥ ∩B(0, δ̄)]× (−δ̄, δ̄),

br(z, t) :=

{
0 if |z| < r and |t| <

√
r2 − |z|2

1 otherwise
. (3.7)
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Since K is even, we get

Ir =

∫
n̂⊥∩B(0,δ̄)

[∫ δ̄

f(z)

K(z − tn̂)br(z, t)dt−
∫ δ̄

−f(−z)
K(z − tn̂)br(z, t)dt

]
dHd−1(z)

=−
∫
n̂⊥∩B(0,δ̄)

∫ f(z)

−f(−z)
K(z − tn̂)br(z, t)dtdHd−1(z)

In view of (3.5) we infer

|Ir| ≤
∫
n̂⊥∩B(0,δ̄)

∫ λ
2 |z|

2

−λ2 |z|
2

K(z − tn̂)br(z, t)dtdHd−1(z)

=

∫
Qλ,δ̄(n̂)

K(y)χB(0,r)c(y)dy.

Assumption (2.4) allows to take the limit in the last inequality, and we conclude
that (3.2) holds. �

Remark 3.2. We point out that (3.2) has been obtained just exploiting the facts
that K is even, K ∈ L1(B(0, r)c) for all r > 0, and that K ∈ L1(Qλ(e)) for all
e ∈ Sd−1 and λ > 0.

We next observe that in (3.2) the second integral takes into account the “tails” of
the kernel K, while the first one is related to the second fundamental form of Σ. We
will prove in the sequel that, under our standing assumptions, the second term is
negligible in the large scale limit.

The next lemma collects two fundamental properties of HK . We omit the proofs,
which can derived easily from the definition of HK .

Lemma 3.3. Let E ⊂ Rd be an open set such that HK(E, x) is finite for some
x ∈ ∂E.
(i) For any h ∈ Rd and any orthogonal matrix R, if T (y) := Ry + h, then

HK(E, x) = HK̃(T (E), T (x)), (3.8)

where K̃ := K ◦Rt. In particular, HK is invariant under translation.
(ii) If F ⊂ E and x ∈ ∂E ∩ ∂F , then HK(E, x) ≤ HK(F, x).

We focus now on the functional H0 defined in (1.5), which is a local anisotropic
mean curvature functional, the anisotropy being encoded by MK . As a first step,
we establish the well-posedness of MK and to this aim we recall the characterization
of Sobolev functions in terms of absolute continuity on lines, whose definition we
include here:

Definition 3.4. Let Ω ⊂ Rd be an open set. A function u : Ω → R is absolutely
continuous on lines if u is Borel measurable in Ω and locally absolutely continuous
on almost all lines parallel to coordinate axes, that is, if {e1, . . . , ed} is the canonical
basis, for all i = 1, . . . , d there exists Ni ⊂ e⊥i such that Hd−1(Ni) = 0 and for all
z ∈ e⊥i ∩N c

i the function I 3 t 7→ u(z+ tei) is absolutely continuous on any compact
interval I such that z + tei ∈ Ω when t ∈ I.

Since absolutely continuous functions are differentiable a.e., we highlight that
if u is absolutely continuous on lines, then it admits partial derivatives a.e. and
hence the vector ∇u is a.e. defined. On the other hand, if a function has Sobolev
regularity, then it has a representative which is absolutely continuous on lines. That
is the content of the following result, whose proof can be found in [28, Theorem 2.3].
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Theorem 3.5. Let Ω ⊂ Rd be an open set. For any p ∈ [1,+∞), u : Ω→ R belongs
to the Sobolev space W 1,p(Ω) if and only it coincides a.e. with a function ũ ∈ Lp(Ω)
that is absolutely continuous on lines and whose gradient ∇ũ belongs to Lp(Ω;Rd).

Thanks to (2.2) and to the theorem above, we may without loss of generality
suppose that the kernel K is absolutely continuous on lines in B(0, r)c for all r > 0.
We exploit this fact to prove boundedness and continuity of MK .

Lemma 3.6. Let a0 be the constant in (2.6). Then, for all e ∈ Sd−1,∫
e⊥
K(z) |z|2 dHd−1(z) ≤ a0, (3.9)

and MK is continuous on Sd−1.
Moreover, for any e ∈ Sd−1, there holds

lim
r→+∞

rβ
∫
e⊥∩B(0,r)c

K(z) |z|2 dHd−1(z) = 0 for all β < s. (3.10)

Proof. By (a slight adaptation of) Theorem 3.5, for any e ∈ Sd−1 and any j ∈ N,
there exists a Hd−1-negligible Nj ⊂ {z ∈ e⊥ : j |z| ≥ 1} such that, for all z ∈ e⊥∩N c

j

with j |z| ≥ 1, the function t 7→ K(z + te) is absolutely continuous when t belongs
to closed, bounded intervals. By the arbitrariness of j ∈ N, we conclude that for
Hd−1-a.e. z ∈ e⊥, [a, b] 3 t 7→ K(z + te) is absolutely continuous for any a, b ∈ R.

Hence, by the Mean Value Theorem, for Hd−1-almost every z ∈ e⊥ we find

lim
λ→0+

1

λ

∫ λ
2 |z|

2

−λ2 |z|
2

K(z + te)dt = K(z) |z|2 . (3.11)

Now, for any λ > 0, (2.4) guarantees that

aλ(e) :=

∫
Qλ(e)

K(y)dy ∈ (0,+∞).

Moreover, we have

1

λ

∫
e⊥

∫ λ
2 |z|

2

−λ2 |z|
2

K(z + te)dtdHd−1(z) =
aλ(e)

λ
.

In view of (3.11) and (2.6), we can take the limit λ→ 0+ on both sides of the last
equality and this yields (3.9), as desired.

Now we prove thatMK is continuous. We fix e ∈ Sd−1 and we consider a sequence
of rotations Rn such that Rn → id. We have

|MK(Rne)−MK(e)| =
∣∣∣∣∫
e⊥
K(Rnz)Rnz ⊗RnzdHd−1 −

∫
e⊥
K(z)z ⊗ zdHd−1

∣∣∣∣
≤
∣∣∣∣∫
e⊥
K(Rnz) [Rnz ⊗Rnz − z ⊗ z]dHd−1

∣∣∣∣
+

∣∣∣∣∫
e⊥

[K(Rnz)−K(z)]z ⊗ zdHd−1

∣∣∣∣ .
Since K ∈ L1(B(0, r)c) for all r > 0, it holds

lim
n→+∞

‖K ◦Rn −K‖L1(B(0,r)c) = 0;

hence, we deduce that K(Rnz) → K(z) for Hd−1-a.e. z ∈ e⊥ and this, together
with (3.9), gets that the upper bound we have on |MK(Rne)−MK(e)| vanishes as
n→ +∞.

Estimate (3.10) is an easy consequence of assumption (2.9). �
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From the very definition ofMK , we notice that πn̂⊥MK (n̂)πn̂⊥ = MK (n̂). Using
this, we observe that if Σ, x, ϕ, and n̂ are the same as in (1.5), we have

H0(Σ, x) = − 1

|∇ϕ(x)|
tr
(
MK (n̂)∇2ϕ(x)

)
(3.12)

= − 1

|∇ϕ(x)|

∫
n̂⊥
K(z)∇2ϕ(x)z · zdHd−1(z).

Remark 3.7. Let us consider a smooth hypersurface Σ whose outer unit normal at
a given point x is n̂, and the map T (y) := Ry + h, where R is an orthogonal matrix
and h ∈ Rd. Then, it is easy to check by using (3.12) that it holds

H0(Σ, x) = H̃0(T (Σ), T (x)), (3.13)

where H̃0 is the anisotropic mean curvature functional associated with the kernel
K̃ := K ◦ Rt. To prove our claim, we observe that if Σ = {y ∈ Rd : ϕ(y) = 0}
for some smooth ϕ : Rd → R, then T (Σ) = {y ∈ Rd : ψ(y) = 0} with ψ(y) :=
ϕ(Rt(y − x)). We have

∇ψ(T (y)) = R∇ϕ(y) and ∇2ψ(T (y)) = R∇2ϕ(y)Rt,

and, therefore,

H̃0(T (Σ), T (x)) =− 1

|R∇ϕ(x)|

∫
R(n̂⊥)

K̃(z)
(
R∇2ϕ(x)Rt

)
z · zdHd−1(z)

=− 1

|∇ϕ(x)|

∫
n̂⊥
K(z)∇2ϕ(x)z · zdHd−1(z).

Remark 3.8 (Connection with standard mean curvature). When K is radial, that
is, K(x) = K0(|x|) for some K0 : (0,+∞) → [0,+∞), then H0 coincides with the
standard mean curvature, up to a multiplicative constant. Indeed, let Σ be a C2

hypersurface such that 0 ∈ Σ and Σ∩U = {y ∈ U : ϕ(y) = 0} for some neighbourhood
U of 0 and some smooth function ϕ : U → R. We suppose also that ∇ϕ(0) 6= 0 and
that the outer unit normal to Σ at 0 is ed. We recall the expression of the mean
curvature H of Σ at 0:

H(Σ, 0) = − 1

ωd−1 |∇ϕ(0)|

∫
Sd−2

∇2ϕ(0)e · edHd−2(e),

with ωd−1 := Hd−1(Sd−1).
If K(x) = K0(|x|), then formula (3.9) reads

cK :=

∫ +∞

0

rdK0(r)dr < +∞,

and, consequently, we have

H0(Σ, 0) = − 1

|∇ϕ(0)|

∫ +∞

0

rdK0(r)dr

∫
Sd−2

∇2ϕ(0)e · e dHd−2(e)

= ωd−1 cKH(Σ, 0).

4. Barriers and level-set flow for geometric evolutions

We devote this section to some basics about level-set formulations and barriers
for the geometric flows driven by the curvatures HK and H0. In particular, we recall
existence and uniqueness results for the level-set flow, and we revise its connections
with the notion of geometric barriers.

We consider the following geometric evolutions for the family of sets {E(t)}t≥0:

∂tx(t) · n̂ = −Hε(E(t), x), ∂tx(t) · n̂ = −H0(E(t), x), (4.1)
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where n̂ is the outer unit normal to ∂E(t) at the point x(t) and Hεε is the rescaled
version of HK defined in (1.4). In addition, we accompany these equations with an
initial datum E0, which we assume to be a bounded set.

Let us begin with the level-set formulations of the geometric flows (4.1). First of
all, we interpret the initial datum E0 as the superlevel set of a suitable function
u0 := Rd → R. Explicitly, we suppose that E0 = {x : u0(x) ≥ 0} and ∂E0 = {x :
u0(x) = 0}; moreover, throughout the paper we assume that

u0 : Rd → R is Lipschitz and constant outside a compact C. (4.2)

Then, we consider the nonlocal and local Cauchy problems:
∂tu(t, x) + |∇u(t, x)|Hε({y : u(t, y) ≥ u(t, x)}, x) = 0

(t, x) ∈ [0,+∞)× Rd

u(0, x) = u0(x) x ∈ Rd
, (4.3)

{
∂tu(t, x)− tr

(
MK

(
∇̂u(t, x)

)
∇2u(t, x)

)
= 0 (t, x) ∈ [0,∞)× Rd

u(0, x) = u0(x) x ∈ Rd
. (4.4)

Observe that

|∇u(x)|H0({y : u(y) = u(x)}, x) = −tr
(
MK

(
∇̂u(x)

)
∇2u(x)

)
(recall that p̂ := p/ |p| if p 6= 0).

We remind the definition of viscosity solution for nonlocal equations, which goes
back to the work [36], see also [29, 24, 19, 17].

Definition 4.1 (Solution to the rescaled problems). A locally bounded, upper
semicontinuous function (resp. lower semicontinuous) uε : [0,+∞)× Rd → R is a
viscosity subsolution (resp. supersolution) to the problem (4.3) if
(i) uε(0, x) ≤ u0(x) for all x ∈ Rd (resp. uε(0, x) ≥ u0(x));
(ii) for all (t, x) ∈ (0,+∞) × Rd and for all ϕ ∈ C2([0,+∞) × Rd) such that

uε − ϕ has a maximum at (t, x) (resp. has a minimum at (t, x)), it holds

∂tϕ(t, x) ≤ 0 (resp. ∂tϕ(t, x) ≥ 0) when ∇ϕ(t, x) = 0,

or

∂tϕ(t, x) + |ϕ(t, x)|Hε({y : ϕ(t, y) ≥ ϕ(t, x)}, x) ≤ 0

(resp. ∂tϕ(t, x) + |ϕ(t, x)|Hε({y : ϕ(t, y) > ϕ(t, x)}, x) ≥ 0) otherwise.

A continuous function uε : [0,+∞)×Rd → R is a viscosity solution to (4.3) if it
is both a viscosity sub- and supersolution.

Existence and uniqueness of a viscosity solution to (4.3) were proved in [19], in a
very general setting. A similar result can also be found in [29].

Theorem 4.2 (Comparison principle and existence of solutions to the nonlocal
problem). If the standing assumptions on the kernel and (4.2) hold, for all ε > 0, if
vε, wε : [0,+∞)× Rd → R are respectively a sub- and a supersolution to (4.3), then
vε(t, x) ≤ wε(t, x) for all (t, x) ∈ [0,+∞)× Rd.

Moreover, (4.3) admits a unique bounded, Lipschitz continuous viscosity solution
in [0,+∞)× Rd, which is constant in Rd \ C, for some compact set C ⊂ Rd.

We recall also the definition of solution to the limit problem (4.4), see [24].

Definition 4.3 (Solution to the limit problem). A locally bounded, upper semicon-
tinuous function (resp. lower semicontinuous function) u : [0,∞) × Rd → R is a
viscosity subsolution (resp. supersolution) to the Cauchy’s problem (4.4) if
(i) u(0, x) ≤ u0(x) for all x ∈ Rd, (resp. u(0, x) ≥ u0(x));
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(ii) for all (t, x) ∈ (0,+∞)×Rd and for all ϕ ∈ C2([0,+∞)×Rd) such that u−ϕ
has a maximum at (t, x) (resp. a minimum at (t, x)) it holds

∂tϕ(t, x) ≤ 0 (resp. ∂tϕ(t, x) ≥ 0) when ∇ϕ(t, x) = 0 and ∇2ϕ(t, x) = 0

or

∂tϕ(t, x)− tr
(
MK

(
∇̂ϕ(t, x)

)
∇2ϕ(t, x)

)
≤ 0 (resp. ≥ 0) otherwise.

A continuous function u : [0,+∞)× Rd → R is a viscosity solution to (4.4) if it is
both a viscosity sub- and supersolution.

As for existence of solutions, we observe that the function

F0 : Rd \ {0} × Sym(d) −→ R
(p,X) 7−→ −tr (MK (p̂)X)

that defines the problem (4.4) has the three following properties:
(i) it is continuous;
(ii) it is geometric, that is, for all λ > 0, σ ∈ R, p ∈ Rd \ {0} and X ∈ Sym(d) it

holds F0(λp, λX + σp⊗ p) = λF0(p,X).
(iii) it is degenerate elliptic, that is, F0(p,X) ≥ F0(p, Y ) for all p ∈ Rd \ {0} and

X,Y ∈ Sym(d) such that X ≤ Y .
It is well known [9, 22] that these conditions grant existence and uniqueness of a
viscosity solution:

Theorem 4.4. Let us suppose that (4.2) holds. Then, the Cauchy’s problem (4.4)
admits a unique bounded, Lipschitz continuous viscosity solution in [0,+∞)× Rd,
which is constant in Rd \ C, for some compact set C ⊂ Rd.

Summing up, owing to Theorems 4.2 and 4.4, we get that, for every initial datum
u0 as in (4.2), there exist a unique viscosity solution uε to (4.4) and a unique
viscosity solution u to (4.4). We define the level-set flows associated with these
solutions. For every λ ∈ R, we set

E+
ε,λ(t) = {x ∈ Rd : uε(t, x) ≥ λ}, E−ε,λ(t) = {x ∈ Rd : uε(t, x) > λ},(4.5)

E+
λ (t) = {x ∈ Rd : u(t, x) ≥ λ}, E−λ (t) = {x ∈ Rd : u(t, x) > λ}. (4.6)

It is well known that, as long as they are smooth, these families are solutions to
the geometric flows (4.1) resp. with Hε and H0 and initial datum Eλ = {x ∈ Rd :
u0(x) ≥ λ}.

Geometric evolutions may be formulated as PDEs involving distance functions
from the moving front, see for instance the survey [4] by Ambrosio; in the following
definitions, we use them to express a regularity property both in time and space for
a class of evolving sets (see (ii) below) w.r.t. a generic geometric law.

Definition 4.5. Let 0 ≤ t0 < t1 < +∞. We say that the evolutions of sets
[t0, t1] 3 t 7→ D(t) is a geometric subsolution (resp. supersolution) to the flow
associated with the curvature functional H if
(i) D(t) is closed and ∂D(t) is compact for all t ∈ [t0, t1];
(ii) there exists an open set U ⊂ Rd such that the distance function (t, x) 7→

dD(t)(x) is of class C∞ in [t0, t1]× U and ∂D(t) ⊂ U for all t ∈ [t0, t1];
(iii) for all t ∈ (t0, t1) and x(t) ∈ ∂D(t), it holds

∂tx(t) · n̂ ≤ −H(D(t), x(t)) (resp. ∂tx(t) · n̂ ≥ −H(D(t), x(t)), (4.7)

where n̂ is the outer unit normal to D(t) at x.
When strict inequalities hold, D(t) is called strict geometric subsolution (resp.

strict geometric supersolution).
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Remark 4.6. We notice that, for any p ∈ Rd \ {0} and X ∈ Sym(d), by (3.9) we
get that

|tr(MK(p̂)X)| = 1

2

∣∣∣∣∫
p̂⊥
K(z)Xz · zdHd−1(z)

∣∣∣∣ ≤ a0

2
|X| ,

This ensures that geometric sub- and supersolution for the flow associated with H0

exist (see [9]).

Next, we remind the notion of geometric barriers w.r.t. these smooth evolutions:

Definition 4.7. Let T > 0 and F− and F+ be, respectively, the families of
strict geometric sub- and supersolution to the flow associated with some curvature
functional H, as introduced in Definition 4.5.

(i) We say that the evolution of sets [0, T ] 3 t 7→ E(t) is an outer barrier w.r.t.
F− (resp. F+) if whenever [t0, t1] ⊂ [0, T ] and [t0, t1] 3 t 7→ D(t) is a smooth
strict subsolution (resp. F (t) is a smooth strict supersolution) such that
D(t0) ⊂ E(t0), then we get D(t1) ⊂ E(t1) (resp. such that F (t0) ⊂ E(t0),
then we get F (t1) ⊂ E(t1)).

(ii) Analogously, [0, T ] 3 t 7→ E(t) is an inner barrier w.r.t. the family F−
(resp. F+) if whenever [t0, t1] ⊂ [0, T ] and [t0, t1] 3 t 7→ D(t) is a smooth
strict subsolution (resp. supersolution) such that E(t0) ⊂ int(D(t0)), then
E(t1) ⊂ int(D(t1)) (resp. E(t0) ⊂ int(F (t0)), then E(t1) ⊂ int(F (t1))).

We are interested in barriers for the anisotropic mean curvature motion (4.1)
because they are comparable with level-sets flows, as the next theorem shows. Its
proof can be found in [9, theorem 3.2]. For further reading about barriers for general
geometric, local evolution problems, we refer to that paper and to [10].

Theorem 4.8. Let u be the unique solution to (4.4) with initial datum u0 as in
(4.2). Let E±λ the sets defined in (4.6).

(i) The map [0, T ] 3 t 7→ E−λ (t) is the minimal outer barrier for the family of
strict geometric subsolutions associated with H0, that is E−λ (t) is an outer
barrier and E−λ (t) ⊂ E(t) for any other outer barrier E(t).

(ii) The map [0, T ] 3 t 7→ E+
λ (t) is the maximal inner barrier for the family of

geometric strict supersolutions associated with H0, that is E+
λ (t) is an inner

barrier and E(t) ⊂ E+
λ (t) for any other inner barrier E(t).

Lastly, we mention a comparison principle concerning the level-set flow and strict
geometric sub- and supersolutions for the nonlocal problems, see [17, Proposition
A.10].

Proposition 4.9. Let uε : [0,+∞) × Rd → R be the viscosity solution to (4.3)
with initial datum u0 as in (4.2). Let E±ε,λ(t) be as in (4.5). Then, the evolutions
t 7→ E−ε,λ(t) and t 7→ E+

ε,λ(t) are, respectively, an outer barrier w.r.t geometric strict
subsolutions to (4.3) and an inner barrier w.r.t geometric strict supersolutions to
(4.3).

5. Convergence of the rescaled nonlocal curvatures

This section is devoted to the proof of Theorem 1.1, the first main result of the
paper. The argument consists of two steps: firstly, we deal in Lemma 5.1 with the
pointwise convergence of the curvatures, providing a precise estimate on the error;
then, in Proposition 5.3, we show that it is possible to make the estimate uniform
when smooth, compact hypersurfaces are considered.
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We fix the notations that we are going to use in the current section. Let E ⊂ Rd
be a set of class C2. Then for all x ∈ Σ := ∂E, there exist an open neighborhood U
of x and ϕ ∈ C2(U) such that

Σ ∩ U = {y ∈ U : ϕ(y) = 0}, E ∩ U = {y ∈ U : ϕ(y) > 0},
and ∇ϕ(y) 6= 0 for all y ∈ Σ ∩ U . We write n̂ for the outer unit normal to Σ
at x. Lastly, by the Implicit Function Theorem, there exist δ̄ := δ̄(x) > 0 and
f : n̂⊥∩B(0, δ̄)→ (−δ̄, δ̄) such that (3.3) and (3.4) hold, and infy∈Cn̂(x,δ̄) |∇ϕ(y)| >
0.

Lemma 5.1. Let E ⊆ Rd be such that Σ := ∂E is of class C2. Let x ∈ Σ, δ̄, and
f be as above, and let s ∈ (0, 1) be the exponent in (2.9). Then, for all α, β ∈ (0, s),
there exist q > 1 and ε̄ ∈ (0, 1) such that qε̄ ≤ δ̄ and that, for all ε ∈ (0, ε̄) and all
δ ∈ (qε, δ̄), it holds

|Hε(E, x)−H0(Σ, x)| ≤ E(ε, δ),

where

E(ε, δ) :=
1

δ

(ε
δ

)α
+ (b0 + 1)

∥∥∇2f
∥∥2

L∞(D)
δ + a0 ωf (δ) +

∣∣∇2f(0)
∣∣ (ε
δ

)β
, (5.1)

with D := n̂⊥ ∩B(0, δ̄) and

ωf (δ) := sup
z∈B(0,δ)

∣∣∇2f(z)−∇2f(0)
∣∣ . (5.2)

Proof. We start by observing that, without loss of generality, we may assume that
x = 0 and n̂ = ed := (0, . . . , 0, 1).

The argument is similar to the one followed to prove estimate (3.2). There exists
f : D → (−δ̄, δ̄) of class C2 such that f(0) = 0, ∇f(0) = 0, and (3.3) and (3.4) hold.
Moreover,

∂if =
∂iϕ

∂dϕ
, (5.3)

∂2
i,jf =

1

∂dϕ

(
∂2
i.jϕ+ ∂if ∂

2
j,dϕ+ ∂jf ∂

2
i,dϕ+ ∂if ∂jf ∂

2
d,dϕ

)
(5.4)

for i, j = 1, . . . , d− 1. Let us introduce the function

fε(z) :=
f(εz)

ε
.

Since f is of class C2, for all z ∈ D there exists z′ such that fε(z) = (ε∇2f(εz′)z·z)/2.
When t ranges between −fε(−z) and fε(z), we thus see that

|t| ≤ ε

2

∥∥∇2f
∥∥
L∞(D)

|z|2 . (5.5)

Let us fix 0 < ε < δ < δ̄. We split Hε into two different contributions:

Hε(E, 0) = I0
ε + I1

ε := −1

ε

∫
C

Kε(y)χ̃E(y)dy − 1

ε

∫
Cc
Kε(y)χ̃E(y)dy,

where C := Ced(0, δ). The first integral takes into account the interactions with
points that are close to 0, and it approximates the anisotropic mean curvature at 0
when ε is small; the second term encodes the energy stored far away from the origin.
Observe that

I0
ε =

1

ε

∫
e⊥d ∩B(0, δε )

∫ fε(z)

−fε(−z)
K(z + ted)dtdHd−1(z).

Let us define

Jε :=
1

ε

∫
e⊥d ∩B(0, δε )

K(z) [fε(z) + fε(−z)] dHd−1(z),
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and recall that, in view of (3.12),

H0(Σ, 0) =

∫
e⊥d

K(z)∇2f(0)z · zdHd−1(z).

We consider the chain of inequalities

|Hε(E, 0)−H0(Σ, 0)| =
∣∣I0
ε + I1

ε −H0(Σ, 0)
∣∣ ≤ ∣∣I0

ε − Jε
∣∣+ |Jε −H0(Σ, 0)|+

∣∣I1
ε

∣∣ ,
and we estimate each term separately.

We start with I1
ε . We remark that, as a consequence of (2.10), for all α < s there

exists q1 > 1 such that∣∣I1
ε

∣∣ =
1

ε

∫
B(0, δε )

c
K(y)dy ≤ 1

δ

(ε
δ

)α
whenever q1ε < δ. (5.6)

We proceed with the other terms. We observe that∣∣I0
ε − Jε

∣∣ ≤ 1

ε

∫
e⊥d ∩B(0, δε )

∣∣∣∣∣
∫ fε(z)

−fε(−z)
[K(z + ted)−K(z)] dt

∣∣∣∣∣dHd−1(z). (5.7)

By Theorem 3.5, for Hd−1-a.e. z ∈ e⊥d , it holds

K(z + ted)−K(z) =

∫ t

0

∂dK(z + sed)ds,

and this, combined with (5.5), implies that

|K(z + ted)−K(z)| ≤
∫ ε

2‖∇2f‖
L∞(D)

|z|2

− ε2‖∇2f‖L∞(D)|z|
2

|∇K(z + sed)|ds.

We plug this inequality in (5.7) and we obtain∣∣I0
ε − Jε

∣∣
≤
∥∥∇2f

∥∥
L∞(D)

∫
e⊥d ∩B(0, δε )

|z|2
∫ ε

2‖∇2f‖
L∞(D)

|z|2

− ε2‖∇2f‖L∞(D)|z|
2

|∇K(z + sed)|dsdHd−1(z)

≤
∥∥∇2f

∥∥
L∞(D)

δ

ε

∫
Q(ε)

|y| |∇K(y)|dy,

where Q(ε) := Qε‖∇2f‖L∞(D)
(ed). By using (2.7) we get that there exists η ∈ (0, δ̄)

such that ∣∣I0
ε − Jε

∣∣ ≤ (b0 + 1)
∥∥∇2f

∥∥2

L∞(D)
δ whenever ε < η. (5.8)

Finally, we have

|Jε −H0(Σ, 0)| ≤ ωf (δ)

∫
e⊥d ∩B(0, δε )

K(z) |z|2 dHd−1(z)

+
∣∣∇2f(0)

∣∣ ∫
e⊥d ∩B(0, δε )

c
K(z) |z|2 dHd−1(z),

ωf being defined in (5.2). Thanks to (3.10), for all β < s, there exists q2 > 0 such
that, if q2ε < δ, then(

δ

ε

)β ∫
e⊥d ∩B(0, δε )

c
K(z) |z|2 dHd−1(z) ≤ 1.

Recalling (3.9), we thus find

|Jε −H0(Σ, 0)| ≤ a0 ωf (δ) +
∣∣∇2f(0)

∣∣ (ε
δ

)β
whenever q2ε < δ. (5.9)
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Now, if we set q := max{q1, q2} > 1 with q1 and q2 as above, both (5.6) and (5.9)
hold for all ε, δ > 0 such that qε < δ < δ̄. Besides, if we pick ε̄ := min

{
η, δ̄/q

}
,

(5.8) is satisfied as well whenever ε < ε̄. This yields the conclusion. �

Remark 5.2. In the proof of Lemma 5.1, we did not exploit assumptions (2.3) and
(2.8). These will be useful in the proof of Proposition 6.1.

By applying the estimate on the error term given in Lemma 5.1, we deduce the
desired uniform convergence.

Proposition 5.3. Under the same notation and assumptions of Lemma 5.1, there
exists a constant c := c(α, β, a0, b0) > 0 such that for all γ ∈

(
0, α

1+α

)
, it holds

|Hε(E, x)−H0(Σ, x)| ≤

c
(
εα−γ(1+α) +

∥∥∇2f
∥∥
L∞(D)

εγ + ωf (qεγ) +
∣∣∇2f(0)

∣∣ ε(1−γ)β
)
.

In particular, if Σ is compact, the conclusion of Theorem 1.1 holds.

Proof. We start by proving that pointwise convergence holds. We choose γ ∈
(0, α/(1 + α)) and we observe that, for any ε < ε̄ < 1, we have qε < qεγ . We may
therefore pick δ = qεγ in (5.1) and check that E(ε, qεγ) → 0 when ε → 0+. The
pointwise convergence follows.

Now, we turn to the case when Σ is compact and of class C2. We denote by n̂x
the outer unit normal to Σ at x and by n̂⊥x the tangent plane at the same point.
Let us also define

VΣ(δ) := {y ∈ Rd : inf
z∈Σ
|y − z| < δ},

and
δ̄ := sup{δ > 0 : the boundary of VΣ(δ) is of class C2} > 0.

This ensures that, for any x ∈ Σ, the implicit function f defined on n̂⊥x ranges in
(−δ̄, δ̄). Let us denote this function by fx to stress that it depends on x. There
exists ε̄ < 1 such that for all ε ∈ (0, ε̄), for all γ ∈ (0, α/(1 + α)), and for all x ∈ Σ
it holds

|Hε(E, x)−H0(Σ, x)|

≤ c
(
εα−γ(1+α) +

∥∥∇2fx
∥∥
L∞(n̂⊥x ∩B(0,δ̄))

εγ + ωfx(qεγ) +
∣∣∇2fx(0)

∣∣ ε(1−γ)β
)
.

Since Σ is compact,
∣∣∇2fx(0)

∣∣ and ∥∥∇2fx
∥∥
L∞(n̂⊥x ∩B(0,δ̄))

are bounded above by the
L∞(Σ)-norm of the second fundamental form of Σ; also, there exists a function ωΣ

that vanishes in 0, that is decreasing and that satisfies ωfx(δ) ≤ ωΣ(δ) whenever δ
is sufficiently small. In conclusion, we obtain an estimate on |Hε(E, x)−H0(Σ, x)|
that is uniform in x, and the thesis holds. �

6. A priori estimates for the rescaled problems

In this section we establish a compactness property for the family of solutions to
the Cauchy’s problems (4.3). Even though the result is known, we sketch its proof,
because it is not explicitly stated in the literature for our setting.

Proposition 6.1. Assume that u0 : Rd → R is as in (4.2), and let uε be the unique
continuous viscosity solution to (4.3). Then,

|uε(t, x)− uε(t, y)| ≤ ‖∇u0‖L∞(Rd) |x− y| for all t ∈ [0, T ] and x, y ∈ Rd, (6.1)

and there exists a constant c > 0 independent of ε such that

|uε(t, x)− uε(s, x)| ≤ ‖∇u0‖L∞(Rd)

√
c |t− s| for all t, s ∈ [0, T ] and x ∈ Rd.

(6.2)
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Proof. The equi-Lipschitz property (6.1) is a consequence of the Lipschitz continuity
of the datum and of the comparison principle. We skip the proof, since it is
completely standard and can be found, for instance, in [17, 24].

For the proof of equi-Hölder continuity, we follow the strategy of Section 5 in
[24]. We point out that, however, the case that we treat differs from the one in the
reference, mainly because of the possible singularity of our interaction kernel.

We fix η > 0 and x ∈ Rd and we consider

ϕ(t, y) = Lt+A

√
|y − x|2 + η2 + u0(x), (6.3)

where A :=:= ‖∇u0‖L∞(Rd). We claim that, for L > 0 sufficiently large, ϕ is a
supersolution to (4.3) for any ε ∈ (0, 1).

To prove the claim, we remark first of all that ϕ(0, y) ≥ u0(y) as a consequence
of the Lipschitz continuity of u0. Also, we observe that, for any y ∈ Rd,

{z ∈ Rd : ϕ(t, z) ≥ ϕ(t, y)} = B(x, |y − x|)c.

Hence, to show that ϕ is a supersolution, it is sufficent to choose L so large that

L

A
≥ |y − x|√

|y − x|2 + η2

Hε(B(x, |y − x|), y) for all y ∈ Rd and ε ∈ (0, 1).

Recalling that the nonlocal curvature is invariant under translations, if we set
e := ŷ − x and r := |y − x|, we have that the last inequality holds if and only if

L

A
≥ r√

r2 + η2
Hε(B(−re, r), 0) for all r > 0, e ∈ Sd−1 and ε ∈ (0, 1). (6.4)

So, we are left to prove that there exists L0 := L0(η) > 0 such that

sup
r>0, e∈Sd−1

sup
ε∈(0,1)

r√
r2 + η2

Hε(B(−re, r), 0) ≤ L0; (6.5)

this clearly yields (6.4) for L = AL0.
To recover estimate (6.5), we use inequality (3.2). We get

0 ≤ Hε(B(−re, r), 0) ≤
∫
Q ε
r

(e)

K(y)dy +

∫
B(0, r2ε )

c
K(y)dy,

and hence

r√
r2 + η2

Hε(B(−re, r), 0) ≤ r

εη

[∫
Q ε
r

(e)

K(y)dy +

∫
B(0, r2ε )

c
K(y)dy

]
.

By assumptions (2.3), (2.8), (2.6), and (2.10), there exist λ,Λ > 0 with the following
properties:
(i) λ < Λ;
(ii) if r < λε, then

r

ε

∫
Q ε
r

(e)

K(y)dy ≤ 1

2
and

r

ε

∫
B(0, r2ε )

c
K(y)dy ≤ 1

2

and, consequently,
r√

r2 + η2
Hε(B(−re, r), 0) ≤ 1

η
; (6.6)

(iii) if r > Λε, then
r

ε

∫
Q ε
r

(e)

K(y)dy ≤ a0 +
1

2
and

r

ε

∫
B(0, r2ε )

c
K(y)dy ≤ 1

2
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and, consequently,

r√
r2 + η2

Hε(B(−re, r), 0) ≤ a0 + 1

η
. (6.7)

Now, only the case λε ≤ r ≤ Λε is left to discuss. In this intermediate regime,
recalling (2.5), we easily obtain

r√
r2 + η2

Hε(B(−re, r), 0) ≤ Λ

η

(
c+

∫
B(0,λ2 )

c
K(y)dy

)
, (6.8)

with c > 0 depending only on λ.
In view of (6.6), (6.7), and (6.8), there exists a constant c := c(a0, λ,Λ) > 0 such

that
sup

r>0, e∈Sd−1

sup
ε∈(0,1)

r√
r2 + η2

Hε(B(−re, r), 0) ≤ c

η
,

and (6.4) thus holds for the choice L = Ac/η.
Summing up, we proved that, for any fixed x ∈ Rd, the function

ϕ(t, y) = A

(
c

η
t+

√
|y − x|2 + η2

)
+ u0(x)

is a supersolution to (4.3) for any ε > 0.
By means of an analogous argument we can prove that, for all x ∈ Rd, the

function

ψ(y) := −A
(
c

η
t+

√
|y − x|2 + η2

)
+ u0(x),

is a subsolution to (4.3) for any ε > 0 and some c = c(a0, λ,Λ).
All in all, thanks to the comparison principle in Theorem 4.2, we infer that for

all (t, x) ∈ [0, T ]× Rd and all η > 0,

|uε(t, x)− u0(x)| ≤ ‖∇u0‖L∞(Rd)

(
c

η
t+ η

)
.

The previous estimates holds for every η, and hence, by choosing η =
√
ct, we get

|uε(t, x)− u0(x)| ≤ 2 ‖∇u0‖L∞(Rd)

√
ct. (6.9)

Eventually, we deduce (6.2) from (6.9) by combining the facts that the problem
(4.3) is invariant w.r.t. translations in time, that it admits a unique solution, and
that ‖∇uε(t, · )‖L∞(Rd) ≤ ‖∇u0‖L∞(Rd) for all t ∈ [0, T ]. �

7. Convergence to the solution of the limit problem

This section is devoted to the proof of the second main result of the paper,
Theorem 1.2. Theorem 1.1 establishes an asymptotic link between the rescaled
nonlocal curvatures and the anisotropic mean curvature. In what follows, we take
advantage of this relationship to deduce locally uniform convergence of the viscosity
solutions uε of (4.3) to the viscosity solution u of (4.4).

To achieve the result, we compare any limit point v of {uε} (which Proposition
6.1 proves to be a relatively compact family) with the viscosity solution u to (4.4).
More precisely, we focus on the respective superlevel sets, and, by using the theory
of geometric barriers and their relations with the level-set flows, we establish the
inclusions (7.2) and (7.3). In turn, these are sufficient to conclude that v = u,
thanks to the next lemma.
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Lemma 7.1. Let f, g : Rd → R be two continuous functions such that for all λ ∈ R
there hold

{x ∈ Rd : f(x) > λ} ⊆ {x ∈ Rd : g(x) ≥ λ}
and

{x ∈ Rd : g(x) > λ} ⊆ {x ∈ Rd : f(x) ≥ λ}.
Then, f(x) = g(x) for all x ∈ Rd.

Proof. Let x̄ ∈ Rd and assume that g(x̄) = λ. Then, for all µ > 0, we get
x̄ ∈ {x : g(x) > λ− µ} ⊆ {x : f(x) ≥ λ− µ}, which in particular implies f(x̄) ≥ λ.
If f(x̄) > λ, then for some µ0 > 0, we would get x̄ ∈ {x : f(x) > λ + µ0} ⊆ {x :
g(x) ≥ λ+ µ0 > λ}, in contradiction with the fact that g(x̄) = λ. So f(x̄) = λ. By
reversing the role of f and g, we get the conclusion. �

Let λ ∈ R and E±ε,λ(t) be the level-set flows associated with the solutions uε to
(4.3) defined in (4.5). We introduce the families Ẽ±λ (t), which are the set-theoretic
upper limits of E±ε,λ(t):

Ẽ−λ (t) :=
⋂
ε<1

⋃
η<ε

E−η,λ(t) and Ẽ+
λ (t) :=

⋂
ε<1

⋃
η<ε

E+
η,λ(t). (7.1)

Remark 7.2. It is an immediate consequence of the definition that, for any ε̄ < 1,

Ẽ−λ (t) =
⋂
ε<ε̄

⋃
η<ε

E−η,λ(t) and Ẽ+
λ (t) =

⋂
ε<ε̄

⋃
η<ε

E+
η,λ(t).

We are ready to discuss the proof of our convergence result:

Proof of Theorem 1.2. We divide the proof in three steps, starting with a preliminary
observation. By Proposition 6.1, we know that the family uε is relatively compact
in C([0, T ]×Rd) and, consequently, there exist a subsequence {uεn} and a function
v ∈ C([0, T ]× Rd) such that uεn → v locally uniformly as ε→ 0+. We remark that
the conclusion is achieved if we show that v = u. Indeed, since the argument applies
to any converging subsequence of {uε}, it follows that the whole family {uε} locally
uniformly converges to u, as desired.

From now on we reason on a subsequence that we still denote {uε} and that we
suppose to be locally uniformly converging to v.
Step 1: we claim that for every λ ∈ R,

{x ∈ Rd : v(t, x) > λ} ⊆ Ẽ−λ (t) ⊆ Ẽ+
λ (t) ⊆ {x ∈ Rd : v(t, x) ≥ λ} (7.2)

with Ẽ±λ (t) as in (7.1).
In this part of the proof we exploit only the pointwise convergence of {uε}.

Without loss of generality, we discuss just the case λ = 0.
Let us fix x̄ ∈ Rd such that v(t, x̄) > 0, that is, v(t, x̄) = µ for some µ > 0. Since

v is the limit of {uε}, there exists ε̄ > 0 such that

uε(t, x̄) ≥ µ

2
> 0 for all ε < ε̄,

and hence x̄ ∈ Ẽ−0 (t). This shows that {x ∈ Rd : v(t, x) > 0} ⊆ Ẽ−0 (t).
Let us now turn to the inclusion Ẽ+

0 (t) ⊆ {x ∈ Rd : v(t, x) ≥ 0}. By definition, if
x̄ ∈ Ẽ+

0 (t), then for all ε < 1 there exists ηε < ε such that uηε(t, x̄) ≥ 0. Taking the
limit ε→ 0, we get

v(t, x̄) = lim
ε→0

uηε(t, x̄) ≥ 0.

Step 2: we claim that, for all λ ∈ R,
{x ∈ Rd : u(t, x) > λ} ⊆ Ẽ−λ (t) ⊆ Ẽ+

λ (t) ⊆ {x ∈ Rd : u(t, x) ≥ λ} (7.3)

where u is the viscosity solution to (4.4).
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We will firstly show that Ẽ−λ (t) and Ẽ+
λ (t) are, respectively, an outer barrier for

the family of strict geometric subsolutions and an inner barrier associated with the
flow of H0. If these assertions hold true, then Theorem 4.8 immediately entails the
conclusion, because it states that {x ∈ Rd : u(t, x) > λ} is the minimal outer barrier
for the family of strict geometric subsolutions, and that {x ∈ Rd : u(t, x) ≥ λ} is
the maximal inner barrier for the family of strict geometric supersolutions.

We prove just that Ẽ−0 (t) is an outer barrier for the family of strict geometric
subsolutions, since the arguments for λ 6= 0 and Ẽ+

0 (t) are the same.
Let us consider, for some 0 ≤ t0 < t1 ≤ T , a family of evolving sets t 7→ D(t)

which is a strict geometric subsolution to the anisotropic mean curvature motion
when t ∈ [t0, t1]. Explicitly, we suppose that there exists ` > 0 such that

∂tx(t) · n̂D(t, x(t)) ≤ −H0(∂D(t), x(t))− ` for all t ∈ (t0, t1] and x(t) ∈ ∂D(t),
(7.4)

where n̂D is the outer unit normal to D(t); we assume as well that

D(t0) ⊂ Ẽ−0 (t0). (7.5)

We want to show that D(t1) ⊂ Ẽ−0 (t1).
Recalling definition (7.1), we get from (7.5) that for all ε < 1 there exists ηε ≤ ε

such that
D(t0) ⊆ E−ηε,0(t0). (7.6)

Since for t ∈ [t0, t1] the second fundamental forms of ∂D(t) are uniformly bounded,
we can apply Theorem 1.1 and we deduce that

lim
ε→0

Hε(D(t), x) = H0(D(t), x) uniformly in t ∈ [t0, t1] and x ∈ ∂D(t).

Consequently, there exists ε̄ := ε̄(`) such that, for all ε < ε̄,

∂tx(t) · n̂D(t, x(t)) ≤ −Hε(D(t), x(t))− `

2
for all t ∈ (t0, t1] and x(t) ∈ ∂D(t),

or, in other words, t 7→ D(t) is a strict geometric subsolution to all the rescaled
problems of parameter ε ∈ (0, ε̄). By (7.6) and Proposition 4.9, we obtain that for
all ε < ε̄ there exists ηε ≤ ε such that

D(t) ⊂ E−ηε,0(t) for all t ∈ [t0, t1].

We take advantage of Remark 7.2 to deduce from the previous inclusion that

D(t) ⊆ Ẽ−0 (t) for all t ∈ [t0, t1].

In particular, we conclude that D(t1) ⊆ Ẽ−0 (t1), as desired.
Step 3: we conclude v = u.

By (7.2) and (7.3), we deduce that, for every λ ∈ R and t ∈ [0, T ],

{x ∈ Rd : v(t, x) > λ} ⊆ {x ∈ Rd : u(t, x) ≥ λ},

{x ∈ Rd : u(t, x) > λ} ⊆ {x ∈ Rd : v(t, x) ≥ λ}.
The proof is thus accomplished by applying Lemma 7.1. �
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