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Abstract

We exploit the so called atomic condition, recently defined by De Philippis, De Rosa,
and Ghiraldin in [DPDRG18, Comm. Pure Appl. Math.] and proved to be necessary
and sufficient for the validity of the anisotropic counterpart of the Allard rectifiability
theorem. In particular, we address an open question of this seminal work, showing that
the atomic condition implies the strict Almgren geometric ellipticity condition.

1 Introduction

Since the pioneering works of Almgren [Alm68, Alm76|, a deep effort has been devoted to the
understanding of ellptic integrands in geometric variational problems. In particular, Almgren
introduced the class of elliptic geometric integrands ([Alm76, IV.1(7)] or [Alm68, 1.6(2)]),
further denoted AUE, which allowed him to prove regularity for minimisers in [Alm68|.

Very recently, an ongoing interest on the anisotropic Plateau problem has lead to a series
of reformulations and results in this direction, see [HP17, DPDRG16, DLDRG17, DPDRG17,
DR18, FK18|. In particular, in [DPDRG18| (see also Definition 4.7) a new ellipticity condition,
called the atomic condition, further denoted AC, has been introduced and proved to be nec-
essary and sufficient to get an Allard type rectifiability result for varifolds whose anisotropic
first variation is a Radon measure. The authors can prove that, in co-dimension one and in
dimension one, AC is equivalent to the strict convexity of the integrand.

For general co-dimension there is no understanding of AC in the literature and this is stated
as an open problem in [DPDRG18, Page 2|:

“Since the atomic condition AC is essentially necessary to the validity of the rectifi-
ability theorem, it is relevant to relate it to the previous known notions of ellipticity
(or convexity) of F with respect to the “plane” variable. This task seems to be
quite hard in the general case.”

The aim of this paper is to address this open question, comparing condition AC with the
classical notion of geometric ellipticity introduced by Almgren. We present for the moment
an informal version of our main result, see 8.8:

Theorem A. If a €' integrand satisfies the atomic condition at some point x € R", then it
also satisfies the strict Almgren ellipticity condition at x; see 8.8.



In particular, if the co-dimension equals one, then strict convexity of the integrand implies
the strict Almgren ellipticity.

It is worth to remark that there is no hope of improving Theorem A showing that the atomic
condition implies the uniform Almgren ellipticity condition, see Remark 9.25. Indeed, if this
was the case, in co-dimension one the strict convexity of the integrand (which is equivalent to
the atomic condition) would imply the uniform Almgren ellipticity, which in turn implies the
uniform convexity, leading to a contradiction.

In order to prove Theorem A, we need to get several auxiliary results of independent in-
terest. In particular, in Section 4 we introduce another ellipticity condition for integrands,
named BC, and in Section 7 we prove that it is equivalent to AC; see Definition 4.8 and
Lemma 7.1. BC has the advantage of being more geometric than the algebraic condition AC,
thus providing a useful tool not only for the proof of Theorem A, but also for future further un-
derstanding of the atomic condition. In Section 5 we show that the original Almgren ellipticity
condition [Alm76, IV.1(7)] is the same as the condition used in [FK18, 3.16] which involves
unrectifiable surfaces; see Corollary 5.13. To this end we provide a deformation theorem 5.8
which preserves unrectifiability of the unrectifiable part of a given set; see Theorem 5.8. More-
over, in Section 6, Theorem 6.7, we provide an independent proof of the existence of minimisers
of anisotropic energies which satisfies a weaker version of BC, improving the recent solutions to
the set theoretical approach to the anisotropic Plateau problem [DPDRG17, FK18|. Gathering
these results, we provide in Section 8 the proof of Theorem A, see Theorem 8.8.

The last crucial point is that the proof of Theorem A in Section 8 requires the validity of
a seemingly harmless property: the class of compact sets X used by Almgren to test the strict
ellipticity considition (see [Alm76, IV.1(7)] or [Alm68, 1.6(2)]) is closed under gluing together
many rescaled copies of X; see 8.5. In 9.23 we show indeed that this property is true, but
our proof is quite complicated and employs some sophisticated tools of algebraic topology;
see also the introduction to Section 9. Giving it some thought, Almgren’s condition that X
cannot be retracted onto its boundary sphere is topological in nature, so it is reasonable that
topological arguments are indispensable. Moreover, the existence of the Adams’ surface, which
is retractible onto its boundary and is obtained by gluing together two surfaces that cannot
be retracted onto their respective boundaries, supports the claim that the proof of Almgren’s
class being closed under the gluing operation is highly non-trivial; see 8.6. This question is
fully addressed in Section 9.

2 Notation

For the whole article we fix two integers d and n satisfying 2 < d < n.

In principle we shall follow the notation of Federer; see [Fed69, pp. 669—671]. In particular,
given two sets A, B, we denote with A ~ B their set-theoretic difference and, for every a € R™
and s € R we define the functions 7,(z) = a + =z and p (z) = sz; see [Fed69, 2.7.16, 4.2.8|.
Concerning varifolds, we shall follow Allard [All72].

Following [Alm68| and [AlmO00], if S € G(n,d) is a d dimensional linear subspace of R",
then S; € Hom(R",R") shall denote the orthogonal projection onto S. In particular, if
p € O*(n,d) is such that imp* = S, then Sy = p* o p.

We divert in notation from [Fed69] in the following ways. To denote the image of a set
A C X under some map f : X — Y (more generally, under a relation f C X x Y) we
always use square brackets: f[A]. We employ the symbol idx to denote the identity map



X — X and 14 to denote the characteristic function X — {0,1} of A C X. We also use
abbreviations for intervals, e.g., (a,b] = {t : a <t < b}. Moreover, we denote with N the set of
non-negative integers, i.e., N = 2 U{0}. If (X, p) is a metric space, A C X, and = € X, then
we define dist(z, A) = inf p[A x {z}]. We sometimes write X — Y, X - Y, or X = Y to
emphasis that a map is injective, surjective, or bijective respectively. We denote with JA the
topological boundary of a set A. Whenever A, B are subsets of a vector space we write A+ B
to denote the algebraic sum of A and B, ie., A+ B={a+b:a € A, b€ B}; in particular, if

€ (0,00), then A+ B(0,¢) is the e-thickening of A. If R is a ring and A, B are R-modules,
then A @ B denotes their direct sum; cf. [ES52, Chap. V, Def. 5.6]. For a,b € & the symbol
ged(a, b) denotes the greatest common divisor of a and b and a mod b means the remainder of
the division of a by b.

In Sections 8 and 9 we shall need to use tools of algebraic topology. We shall work in the
category of all pairs of topological spaces A as defined in [ES52, Chap. I, §1, p. 5]. We write
H,. (X, A;G) and H¥(X, A; G) for the k™ singular homology and cohomology groups of the
pair (X, A) with coefficients in G; see [ES52, Chap. VII, Definition 2.9]. If G = Z, then we
omit G in the notation. Similarly, if A = &, we omit A. Given two maps f,g : X — Y
between topological spaces we write f =~ g to express that f and g are homotopic, i.e., there
exists a continuous map h : [0,1] x X — Y such that h(0,) = f and h(1,) = g. If X
and Y are topological spaces which are homotopy equivalent we write X ~ Y and if they are
homeomorphic we write X ~ Y.

2.1 Definition (cf. [ES52, Chap. XI, Def. 4.1]). Let B C R"™ be homeomorphic to the
standard k-dimensional sphere and f : B — B be continuous. Suppose o is the generator of
the &' homology group Hy(B) of B and f, : Hy(B) — Hj(B) is the map induced by f. The
topological degree deg(f) € Z of f is the unique integer such that f.(c) = deg(f) - o.

3 Basic definitions

3.1 Definition (cf. [Alm68, 1.2]). A function F : R" x G(n,d) — (0,00) of class €* for some
non-negative integer k is called a €% integrand.
If infim F// supim F' € (0, 00), then we say that F' is bounded.

3.2 Definition (cf. [AIm68, 3.1]). If ¢ € €}(R™, R") and F is an integrand, then the pull-back
integrand gp#F is given by

F(p(x), Do(@)[T]) I \gDp(x) o T|| - if dim Dep()[T] =

d
#F(2,T) =

orh (. T) {0 if dimDy(z)[T] < d.

If ¢ is a diffeomorphism, then the push-forward integrand is given by puF = (0™H#F.

3.3 Definition (cf. [Alm68, 1.2]). If F is a €* integrand and 2 € R"™, then we define the
frozen €* integrand F* by the formula

F*(y,S) = F(z,S) forevery y e R" and S € G(n,d).

3.4 Remark. Since F': R" x G(n,d) — (0,00) and G(n,d) is compact, it follows that for any
x € R™ the frozen integrand F'* is bounded.



3.5 Definition. We say that S C R" is a d-set if S is #? measurable and #%(SN K) < oo
for any compact set K C R".

3.6 Definition. Assume S C R" is a d-set. We define
R(S)={z e S:0%xS,z) =1} and U(S)=S~R(S).

3.7 Remark. Observe that @4(#?LS, ") is a Borel function, so R(S) is ¢ measurable.
Employing [Mat75] and [Fed69, 2.9.11], we observe that R(S) is countably (#?, d) rectifiable
and U(S) is purely (2%, d) unrectifiable.

3.8 Remark. Recall that ~,, ; denotes the canonical probability measure on G(n,d) invariant
under the action of the orthogonal group O(n), also called Haar measure; see [Fed69, 2.7.16(6)].

3.9 Definition (cf. [All72, 3.5]). Assume S C R" is a d-set. We define v4(S) € V4(R") by
setting for every oo € ' (R™ x G(n,d))

V, o) = alx and d i d$ alx dx .
() () /R(S) (r, Tan® (AL R(S), 2)) A >+/M(S)/ (2, T) dryy o(T) A% ()

3.10 Definition. If I is a €* integrand, we define the functional ®r : V4(R"™) — [0, oc] by
the formula

Bp(V) = / F(z,8)dV(z, S).

3.11 Remark. If spt||V|| is compact we have ®p(V) = V(vF), whenever v € Z(R",R) is
such that spt ||[V]| € v~ 1{1}.
3.12 Definition. If S C R” is a d-set, then we define

®p(S) = ®r(va(5)),

Up(S)=dp(S)+ / (supim F* — [F(x,T)d~, 4(T)) d%(z).
u(s)
For any other subset S of R", we define U (S) = ®r(S5) = oo.
8.13 Remark. Assume V € V4(R"), o : R® — R" is of class €', and F is a € integrand.
Then
P up(V) = PrpxV).

If S C R" is a d-set, then

puva(S) = va(plS])

in the case ¢ is injective and S is countably (%, d) rectifiable, or in the case ¢ = u, for
some r € (0,00), or in the case ¢ = 7, for some a € R".

3.14 Remark. If S is a d-set, F is a € integrand and = € R", then
Upe(S) = ®pe(R(S)) + AU(S)) supim F*.

3.15 Definition. For any set X and an element z € X we denote by Dirac(z) the measure
over X with a single atom at z, i.e.,

) 1 ifxeAd,
Dirac(z)(A) = 0 ifrgA for AC X.
if x ,

The choice of X shall always be clear from the context.



3.16 Definition (cf. [All72, 4.9]). Assume U C R" is open, V € V4(U), F is a ¢! integrand.
We define the first variation of V' with respect to F' to be the linear map dpV : 2 (U) - R

given by the formula

d

0rVig) = = i Dr((pr)#V)

where g € Z°(U) is a smooth compactly supported vectorfield in U and ¢¢(x) = z + tg(z) for
x € U and t in some neighbourhood of 0 in R.

3.17 Remark. Note that if T' € G(n,d) and
Gna={P: PeG(n,d)} C HmR",R"),
then
A€ Tan(Grg, Ty) <= A*=A, T,0AoT,=0, and T} oAoT;" =0.
For x € R" and T € G(n,d) define
Fr:R"—=R and F,:G,q— R bysetting Fr(z)=F(z,T) = F,(T}).
In [DPDRG18]| the authors computed

eV(g) = [ (9(a).DFr(x)) + Bl T) # Dyla) AV (2. T)
where Bp(z,T) € Hom(R", R") is characterised by
Bp(x,T)e L =F(z,T)Tye L+ (T;- o Lo T, + (T}~ o Lo T})*, DF,(T})) ,

whenever L € Hom(R",R").

4 Notions of ellipticity

In this section we recall the notions of ellipticity we will work with.

4.1 Definition. We say that (.5, D) is a test pair if there exists T' € G(n, d) such that

D=TnB(0,1), B=TnNdB(0,1), SCR"iscompact, #%S)< o0,
fIS] # B for all f:R"™ — R" satisfying Lip f < oo and f(x) = x for every = € B.

We say that (S, D) is a rectifiable test pair if, in addition, S is (s#?, d) rectifiable.

4.2 Remark. Using a standard extension procedure for Lipschitz functions (e.g. [EG92, 3.1.1,
Theorem 1]), one sees that the last condition in Definition 4.1 means exactly that B is not
a Lipschitz retract of S.

4.8 Example. Letn =3,d =2, T = R®x{0}, D = TNB(0, 1), and S be a smoothly embedded
Mobius strip with boundary B = T'N9B(0, 1). Observe, that S itself has the homotopy type
of a 1-dimensional circle because a Mobius strip can easily be retracted onto the “middle
circle”. However, the inclusion j : B — S has topological degree 2, so given any continuous
map f :S — B we have jo f = f|p : B — B and we see that deg(f|g) = deg(j) deg(f) is
an even integer which means that f|p cannot equal the identity on B. Therefore, (S, D) is
a rectifiable test pair.



4.4 Lemma. Let (S, D) be a pair of compact sets in R™ with #%(S) < oo and {(S;, D;) i €
N} be a sequence of test pairs such that

lim d»(S;,5) =0 and lim du(D;,D)=0.

1—00 1—>00
Then (S, D) is a test pair.

Proof. For every i € N, let T; € G(n,d) be such that D; = T; N B(0,1) and set B; =
T; N 0B(0,1). First note that since {D; : i € N} is a Cauchy sequence with respect to the
Hausdorff metric on compact sets, we obtain that {7} : i € N} is a Cauchy sequence in G(n, d)
and there exists T' € G(n,d) such that D =T NB(0,1). Set B =T N0B(0,1).

Assume, by contradiction, that there exists f : R®™ — R™ such that Lip f < oo, f(z) ==
for every x € B, and f[S] = B. Set § = (Lip f)~! € (0,1]. Then

f1S +B(0,r)] € B+ B(0,r/6) forr e (0,00).
Choose ¢ € N such that
S; €S+ B(0,27°6%) and BC B; +B(0,27%).

Then,
f18i] € B+B(0,27°5) C Bi +B(0,27%9).

Define g : S; — B; by
9(y) = f(y) fory e S;~(B;i+B(0,279)),
gly) =267 dist(y, Bi)(f(y) —y) +y fory € S;n (B; +B(0,27"9)).
For any y € S; with dist(y, B;) < 27*§ we can find x € B; and z € B such that |z —y| < 274
and |z — z| < 27°8; hence, |y — 2| < 2736 and
dist(9(y), Bi) < lg(y) — | < 26" dist(y, B))|f (y) =yl + |y — |
=1f@) —f@) +z—yl+ly—a| <5y -2 +|z—yl+ly—a| <27

This shows that g[S;] € B; + B(0,271). Composing g with a Lipschitz map retracting B; +
B(0,27!) onto B; yields a Lipschitz retraction of S; onto B; and a contradiction. a

4.5 Definition. Let x € R™ and P be a set of pairs of compact d-sets in R".

(a) Almgren uniform ellipticity with respect to P: The class AUE,(P) is defined to contain
all € integrands F for which there exists ¢ > 0 such that for all (S, D) € P there holds

Ups(S) — Upe (D) > c(#4S) — #4D)).

(b) Almgren strict ellipticity with respect to P: The class AE;(P) is defined to contain all
%" integrands F' such that for all (S, D) € P satisfying 2#¢(S) > #¢(D) there holds

Ve (S) — Upe (D) > 0.

4.6 Remark. (a) If all elements of P are pairs of (7%, d) rectifiable sets, then one can replace
all occurrences of Vp» with ®ps.



(b) If P = @, then AE,(P) = AUE,(P) is the set of all ¢ integrands.

(c) If P is the set of rectifiable test pairs, then F' € AUE,(P) if and only if F is elliptic at
in the sense of [Alm76, IV.1(7)].

(d) If P is the set of all test pairs, then F' € AUE,(P) if and only if F is elliptic at 2 in the
sense of [FK18, 3.16].

4.7 Definition (cf. [DPDRG18, Definition 1.1]). Let € R™. The class AC, is defined to
contain all €' integrands F satisfying the atomic condition at z, i.e., for any Radon probability
measure u over G(n, d), setting

Ap(p) = /BF(:L‘jT) du(T) € Hom(R"™,R"),

there holds
(a) dimker A,(u) <n—d;
(b) if dimker A, (u) = n — d, then u = Dirac(Ty) for some Ty € G(n,d).

To conclude, we introduce the following new notion of ellipticity, named BC. This will
turn out to be equivalent to AC, see Lemma 7.1. Rephrasing AC as BC will be very useful
for the proof of Theorem A and for a further understanding of AC. Indeed, Definition 4.8 is
more geometric than the algebraic Definition 4.7, providing a better tool to relate AC with
the other notions of ellipticity.

4.8 Definition. Let z € R"”. We define BC,, to be the class of all €' integrands F such that
for any W € V4(R") of the form

W= (A#"T)x p,
where p is a Radon probability measure over G(n,d), k € N, and T' € G(n, k), there holds
(a) if 0p=W =0, then k > d,
(b) if k =d and 0p=W = 0, then p = Dirac(T).

The class wBC,, is defined by omitting condition (a).

5 Rectifiability of test pairs

Let x € R™, P; be the set of all test pairs, and Py be the set of rectifiable test pairs. Here we
prove (see Corollary 5.13) that AE,(P;) = AE,(P2) and AUE,(P;) = AUE,(P,), i.e., that
the original Almgren’s definition of ellipticity [Alm76, IV.1(7)] coincides with the definition
used in [FK18, 3.16]. To this end we need to show an improved version of the deformation
theorem, see 5.8. In contrast to similar theorems of Federer and Fleming [Fed69, 4.2.6-9],
David and Semmes [DS00, Theorem 3.1|, or Fang and Kolasinski [FK18, 7.13|, this one has
the special feature of preserving the unrectifiability of the purely unrectifiable part of the
deformed set.

First, we introduce some notation (modelled on [Alm86]|) needed to deal with cubes and
cubical complexes.



5.1 Definition. Let & € {0,1,...,n} and Q = [0,1]¥ C R*. We say that R C R" is a cube
if there exist p € O*(n,k), o € R" and [ € (0,00) such that R = 7, o p* o p;[Q]. We call
o(R) = o the corner of R and 1(R) = [ the side-length of R. We also set

e dim(R) = k — the dimension of R,

e ¢(R) =o(R) + $1(R)(1,1,...,1) — the centre of R,
® O.R = Tq(g) 0P © ) [0Q] — the boundary of R,
e Int.(R) = R~ J.R — the interior of R.

5.2 Definition. Let k € {0,1,...,n}, N€ Z, Q =[0,1]* C R*, e, ..., e, be the standard
basis of R™, and fi, ..., fi be the standard basis of R*.
We define K7(N) to be the set of all cubes R C R™ of the form R = 7, 0 p* o py-~[Q)],
where v € py-~[Z"] and p € O*(n, k) is such that p*(f;) € {e1,...,ex} fori =1,2,... k.
We also set

P=U{KIN):NeZ}, K'=K", K'=U{K}:ke{0,1,...,n}}.

5.3 Definition. Let k € {0,1,...,n}, N € Z, and K € K}(N). We say that L € K7 is
a face of K if and only if L C K and L € K?(N) for some j € {0,1,...,k}.

5.4 Definition (cf. [Alm86, 1.5]). A family of top-dimensional cubes F C K" is said to be
admissible if

(a) K,L € F and K # L implies Int.(K) N Int.(L) = @,

(b) K,L € Fand KNL # @ implies 5 <I(L)/I(K) <2,

1
2
(c) K € F implies 0. K C|J{L € F: L # K}.

5.5 Definition (cf. [Alm86, 1.8]). Let F C K" be admissible. We define the cubical complex
CX(F) of F to consist of all those cubes K € K for which

e K is a face of some cube in F,

e if dim(K') > 0, then 1(K) <1(L) whenever L is a face of some cube in F with dim(K) =
dim(L) and Int.(K) NInt.(L) # @.

5.6 Definition. Let £ € N, Q € R” be closed convex with non-empty interior, and a €
Int Q. We define the central projection from a onto 0@ to be the locally Lipschitz map
70.a : R¥ ~{a} — R¥ characterised by

1Q.a(z) —a r—a
7Q.a(z) € 0Q and : = for € Int Q ~{a},
¢ TQalr) —al ~ Jo—adl

1ga(r) =z forz e RF~IntQ.

The following lemma is a counterpart of [Fed69, 4.2.7].



5.7 Lemma. Assume

E,ENeN, d<k<n, QCR"isacube, peO*(nk), imp"=Tan(Q,c(Q)),
W1, ..., N are Radon measures over R, Z:QﬂUi]\ilsptui, HUE) < 00.

There exist T' =T'(d, k, N) and a € Q such that
ist(a,3) >0, dist(0.0:Q) > 1(Q). [ [D(rgu o) dhs < Ths(@) ¥i€ (L., N}
Q

Moreover, if A C % is purely (5%, d) unrectifiable, then p* o mg.q o p[A] is purely (%, d) un-
rectifiable.

Proof. Without loss of generality we shall assume n = k. Recall Definition 3.6 and Remark 3.7
and let £ = U(X). Employing [Feu09, Lemma 6] with 0, F, d, k replaced by Q, FE, d, k, we
see that ##%(B) = 0, where

B={a€Q:mgy[E] is not purely (s, d) unrectifiable} .

Set Qo = {z € Q : dist(z,0.Q) > 11(Q)}. From [FK18, 6.4] we deduce that there exists
I'p =To(k) > 1 such that

ID7g.a(x)|| < Tolz —a|™ forall a € Qp and all 2 € R* ~{a}.
Since d < k, there exists A = A(d,k) € (0,00) such that for all a € Int @ there holds
fQ |z — a|~%ds*(a) < A. Using the Fubini theorem [Fed69, 2.6.2] and arguing as in [FK18,

7.10] or in [Fed69, 4.2.7], we find out that there exists I'y = I'(d, k, N) such that 2#%(A) > 0,
where

A—{QGQO:/Q]x—a]dd,ui(x)gflui(Q) foriG{l,Z,...,N}}.

We have s#%(¥) = 0 so s#¥(A~X) > 0. Hence, there exists a € A~(B UY) with all the
desired properties. O

5.8 Theorem. Assume

F C K" is admissible, A C F is finite, S CR" isad-set, I=10,1],
J=10,2], G=IntUA, #YJANClosS)<oo, R=R(S), U=U(S).
There exist I' = T'(n,d) € (1,00), a Lipschitz map f : J x R" — R", a finite set B C

CX(F)NKJ, and an open set V.C R"™ such that
ft,2) =z for (t,z) € ({0} x R") U (J x (R"~G)UUB) U (I x J(CX(F)NK})),
SCV, flUxQcQ forQeA, f{1}xV]nGcU(CX(F)NKy),
FH2} xVING=UBNG, flIx(VNG)]CUA,
AUf(1,)[RNG)) < R}fd(R NG), AYf1,)UNG) <T#AY(UNG),
AU FA,H[UING) = f(1,)[U] is purely (2, d) unrectifiable,
F2,)[f[J x V]] = f[{2} x V] and f[{2} x V] is a strong deformation retract of f[J x V].



Proof. For each Q € CX(F) we find pg € O*(n,dim @) such that Q@ C ¢(Q) + impf,. For
ke{0,1,2,...,n} set

A, ={Q e CX(F)NK: QNG # o} .

We shall perform a central projection inside the cubes of Ay for k =n,n—1,...,d+ 1. Note
that 0G N|J Ag # 0G for k < n. In fact, all the projections shall equal identity on 0G.
Let us set

pin = A(RNG), pon=LUNG), pzn=A"(SNG),
E=R"~G, o¢p(x)=9p(t,z) =2 for (t,z) eI xR", 611 =1, Z,11=R".

Fork e {n—1,n—2,...,d} and i € {1, 2,3} we shall define Lipschitz maps ¢y, : I x R" — R"
and ¢ : R" = R", Radon measures p; over R", sets Zp1 C |JAg41 U E, and numbers
0r+1 € (0,1) satisfying

spt ik = @r[spt pik1) C EUUJ AR, el X Zi1] = Zya s
(1) (5Pt i1+ U(0,0511)) "UAR1 € Ziyr s Url{1} X Zpa] C EUU A,
Yp(t,z) =z for (t,x) e I x (EUUJAk), @k =vUr(1,-) 0o ory1-

We proceed inductively. Assume that for some [ € {n —1,...,d+ 1} we have defined ¢, @y,
Ok+1, Zky1 and p for k € {n,n —1,...,1+ 1} and i € {1,2,3}. For each Q € A;y1 apply
Lemma 5.7 to find ag € @ satisfying

(2) dist(ag, spt uz +1) >0, dist(ag, 0.Q) > %l(Q),
/Q ID(7Q.a0 © P dptigr < Tszpiger(Q)  fori € {1,2,3},

if A C spt g4 is purely (2%, d) unrectifiable,
then pg) 0 7. © PolA] is also purely (7 4 d) unrectifiable .

Let 6741 € (0,1) be such that
(3) dist(aqg,spt us+1) > 2641 and  dist(ag, 0.Q) > 2841 forall Q € Ay .

Set

Ziy1=FEU (U Al+1 NU{B(GQ,5Z+1) N ONS .Al_|_1}) .
Define @51 I X Zyy1 — Zp4q by setting for (¢,z) € I X Zj41q

7 (t.2) (1 —t)x +1tpg 0 TQag 0 PQ(x) if € Inte(Q) for some Q € A1y,
,x) =< -
l it z) == ifzre FUUA.

Since for @Q € A;;1 the map p*Q 0 TQ.aq ©Pq i Lipschitz continuous on R" ~ U(ag, 1), equals
the identity on 0.Q, and @ is convex, we see that ¢; is well defined and Lipschitz continuous.
Extend v; to a Lipschitz map v : I x R" — R" using [Fed69, 2.10.43]. Next, for i € {1,2,3}
set

o1 =L, o and iy = (0)([Dor]|“pin) -

10



Note that [[Dyy||? is bounded and ¢; is proper, so u;; is a Radon measure. Also, because we
assumed spt 1341 € E'UJAj41, we readily verify that

spt s € ¢i[Clos S] C EUJA; .

Hence, ¢, ¢, pig for i € {1,2,3}, 841, and Zj4; verify (1). This concludes the inductive
construction.

Define
B:{QEAd:Qggod[S]}.

For Q € A4~ B we choose ag € Int.(Q) so that (2) holds and we define §4 € (0, 1) so that (3)
is satisfied with { +1 = d. Set

Ze=EU (UAa~U{B(ag,da) : Q € B}), ha_1:Zs— Za,
G (t.2) (1 =t)x +tpg 0 TQag o PQ(z) if ¥ € Intc(Q) for some Q € Ag~ B,
T Gt x) = @ ifec EUUBUUAg1.

Extend tq_; to a Lipschitz map ¢q_; : I x R" — R™. Set @41 = ¥4_1(1,-) 0 pa,
Vi1 =EU(UB+U(0,60))NZg, and Vi=11(1,)) 'Vi)] €2 VIe{dd+1,...,n}.

Note that V; is relatively open in Z; for [ € {n,n —1,...,d}; in particular, V,, is open in R"
and, setting V = V,,, we get

SCV, @ia[VING=UBNG.
We set for 1 € {1,2,...,n—d} and (t,z) € I x R" satisfying | — 1 < (n —d)t <
f(tv x) = wn—l((n - d)t - (l - 1)790n7l+1(x>)

and for (t,z) € [1,2] x R"
ft,z) =va_1(t — 1, pa(2)).

This defines a Lipschitz map f : JxR"™ — R"™. From the construction it follows that f[{1}x U]
is purely (%, d) unrectifiable and f(1,-)[U] NG C [J(CX(F) N K1), so

AUf(1,)[UING) = 0.
Now, we need to verify the required estimates. For brevity of the notation let us set
g=f(1,-) and mnr=1vx(l,:) forke{d,d+1...,n}.

Observe that if Q € F, then #°{R € F: RNQ # @}) < 4" Note also that for k €
{d,d+1,...,n—1} and i € {1,2,3} we have

(1) (1D | “pin L 03 TU AR = (@rr1) 2 (D@1 | ptin) L orra o [U Axl]
= pti g1 L U AR < e LU A

11



so we obtain

@ paUA) = [ Dl < [ D e |IDgs  di
Pk [UAk] Pr [UAk}
-/ Do < [ IDml i < 3 [ IDm e
—1
(U A1 QeAp1 "9

= >y /||D(TFQ,aQ op*dpipr1 <Tsz > igs1(Q) < 4"Ts 74t g1 (U Apsr) -
QeAL1’ @ Q€Ag+1

In particular, setting 31 = RN G, X9 = U N G and employing [FK18, 7.12] we obtain for
ie€{1,2}
AN g[S MU Ag) = 2 (palSi] NU Ag) < /1 IDpall® dptin = pia(UJ Ad)
Pd [UAd]
< (4"T57)" i (UA) = (4"T57)" (%)

Estimating as in (4), we also get

AU ~UA) = S~ U A < [ Dl
Gy ' [9G]
</ Dl s < [ 1Dl dpa
Pat1[GlNng M [0G] Adt1

<A Ts7pia01 (U Agsr) < (A" T57)" " d(x)) .
This gives the desired estimates. O
5.9 Remark. Observe that
f(1,9)[S]NG CU(CX(F)NK}Y) but f(1,)[SNG] CU(CX(F)NK}) UG,
5.10 Remark. Define
O=U{Re€F:RNQ#£2} YQeF, H=U{QeA:QCUA}, and W=VNG.

Assume that S is separated from £ = R" ~ G in the sense that S C H. Then W is an open
neighborhood of S in R™ with

fIIx S| C flIxW]CW
and f(2,-)[W] = J B is a strong deformation retract of S.
5.11 Lemma. Assume
(S, D) is a test pair, T = Tan(D,0), B=TnNoB(0,1), R=R(S), I=U(S).
For each € € (0,1) there exists a map f: R™ — R™ such that
Lipf<oco, f(z)=2 forzeB, #4flI])=0, #*((R~f[R)U(f[R]~R))<e.

In particular, f[S] is (A#%,d) rectifiable and (f[S], D) is a rectifiable test pair.
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Proof. Define
L= (2B + 1)) e

Since J#4(B) = 0 we can find &y € (0,271%) such that
(B +B(0,00))NS) <.

Set Ty = T, Fy = T N (B + B(0,8)) and define vy : Ty — Ty by vo(x) = 0 for x €
To. Employing [Fed69, 3.2.29, 3.1.19(5), 2.8.18, 2.2.5| we find Z C R"™ and for each i € N
a vectorspace T; € G(n,d), a compact set K; C T;, and a €' map v, : T} — TZ-J- such that

Fi={z+¢i(z) 2 € K;}, F,NF;=@ wheneveri#j,
R~Fy=ZUUZS | Fi, #%Z)=0, Lipy; <27,
Since ##%(R) < oo we can find N € N such that
F=UN,F and #YR~F)<2.

Set
§=2""inf{5o}U{|z —y|:4,j€{0,1,....,N},z € F;, y € Fj, i # j} .

Note that § > 0 because each Fj is compact. Let L € N be such that 2= < ¢n=1/2 < 2-L+1
so that diam @ < § whenever @) € KJ'(L). Define

F=KYL), Q=U{ReF:RNQ#o} forQeF,
A={QeF:QNI+#2, QN(F+B(0,20)) =2}, G=IntJA.

Observe that
{z eI:dist(z,F)>46} CG.

Apply Theorem 5.8 to obtain a Lipschitz continuous map f : R™ — R"” such that
f(z)=z forzeR"~G, f[I]is purely (2% d) unrectifiable,
HUFIRNG)]) <T5#YRNG) < T8 (R~F) < 2ls3g,
HUNNG) =0, AYFING]) <T84 (ING) < 0c0.

For each i € {0,1,..., N} employ the Besicovitch-Federer projection theorem [Fed69, 3.3.15]
to choose P; € G(n,d) such that

1Py — Tyl <27 and 2Py o f[1]) = 0.

Using the inverse function theorem [Fed69, 3.1.18] or [KSv15, Lamma 3.2] we argue that for
i € {0,1,...,N} we can find a ¢! function ¢; : P, — P;* such that {z + ¢;(z) : € T;} =

(2
{x + i(x) : € P;} and Lipg; < 27'2. Next, for i € {0,1,..., N} we define the projection
onto the graph of ¢; by the formula
7 R" = R", m(z) = Pyz+pi(Pyx) forxeR".
Note that Lipm; < 1+ Lipg; < 1+ 2712, Choose a smooth map 7 : R — R such that

1
Y() =0 fort>105, ~(t)=1 fort<55, —=<4(t)<0
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and define maps f, A\g, A1,-..,An : R™ = R™ by

Ai(z) = ~(dist(z, F;))mi(z) + (1 — v(dist(z, F;)))z  for i € {0,1,2,..., N},
Ff=XMo--o0ly.

Note that ifi € {0,1,..., N}, x € R", y € F; satisty |z —y| = dist(x, F;) < 106, then m;(y) =y
and

|z — mi(z)] < |z —y| + |mi(y) — m(x)| + |y — mi(y)] < 105 + (1 + 2712)106 < 306 .

Therefore,
Lip f <Lipy-300 +1 < 31.

Observe also that
f(z)=z forzeF, f[B+B(0,0)]CT, % f[I])=0;
hence, (R~ f[R]) U (f[R]~R) = f[R~F]U (R~ F) and we get
A (R~ fIR) U (fIR]~R)) < (B! + )Y (R~F) <2(B1) + 1) <e. O

5.12 Remark. The difficulty in proving Lemma 5.11 stems from the situation when J#%(R N
ClosI) > 0; cf. [Fed69, 4.2.25]. In this case one cannot argue that lim, o 2#%((I + U(0,7)) N
R) = 0 so it is not possible to separate the unrectifiable part of S from the rectifiable part.
However, since R has a nice (rectifiable) structure and I can be easily squashed to a set of 77
measure zero by means of Besicovitch-Federer projection theorem [Fed69, 3.3.15|, we can find
nice Lipschitz deformations which produce “holes” in I and do not move most of R.

5.13 Corollary. Let x € R", Py be the set of all test pairs, and Py be the set of rectifiable
test pairs. Then

AE,(P1) = AE,(P3) and AUE.(P;) = AUE,(P2).

Proof. Since Py C P; we clearly have AE,(P1) C AE,(P2) and AUE,(P1) C AUE,(P3).
Hence, it suffices to prove the reverse inclusions. Take any test pair (S, D) € P; and set

T =Tan(D,0), B=TnNB(0,1), R=R(S), and I=U(S).
For each k € N apply Lemma 5.11 with e = 1/k to obtain a map f; : R” — R" satisfying

Lip fr < o0, fr(x)=2 forxze B,
AU =0, A (R~ FIR)U(RIR~R)) < L.

Then (S, D) = (fx[S], D) is a rectifiable test pair for each k € N, hence for any integrand F'
we have

Upa(Sg) — V(D) = Ppa(Sg) — Pp= (D).
Observe that

| lim 52%(Sg) — #(R)| = 0; hence, also | lim ®%.(Sy) — ®%.(R)| =0.
k—o0 k—o0
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Thus, if F € AUE,(Ps), then

Ups(S) = Wpe (D) = Upa(I) + lim @pa(Sg) = e (D) 2 W (1) + c(A#4R) — D))
> inf ({c} Uim F*) (#4(S) — #%(D)) .
Similarly, if F' € AE;(P2), then

—00

5.14 Remark. Recalling Remark 4.6, from Corollary 5.13 we deduce that definitions [Alm76,
IV.1(7)] and [FK18, 3.16] are equivalent.

6 Existence of a minimiser for an integrand in wBC

In this section we provide a solution to the set theoretical formulation of the anisotropic
Plateau problem under the weak assumption wBC on the integrand. Since wBC is a weak
version of BC and in turn BC will be proven to be equivalent to AC, see Lemma 7.1, this
section improves [DPDRG17, Theorem 1.8], where the entire condition AC is required.

6.1 Definition. Let U C R" be open. We say that f : R® — R" is a basic deformation in U
if f is of class €' and there exists a bounded convex open set V C U such that

f(z) =z foreveryz € R"~V and f[V]CV.

If f € €' (R", R") is a composition of a finite number of basic deformations, then we say that
f is an admissible deformation in U. The set of all such deformations shall be denoted D (U).

6.2 Definition (cf. [Fed69, 2.10.21]). Whenever K C R" is compact and A, B C R", we
define d» (A, B) by

dw Kk (A, B) = sup{|dist(z, A) — dist(z, B)| : z € K}
= max{sup{dist(z, A) : x € K N B}, sup{dist(z, B) : x € K N A}}.
6.3 Definition. Let U C R" be an open set. We say that C is a good class in U if
(a) C# @;
(b) each S € C is a closed subset of R";
(c) if SeC and f € D), then f[S] € C;

6.4 Remark. Definition 6.3 differs from [FK18, 3.4] by not assuming that the class is closed
under Hausdorff convergence.

Combining [FK18, 11.2, 11.3, 11.7, 11.8(a)| we obtain the following.

6.5 Theorem. Let U C R"™ be an open set, C be a good class in U, and F be a bounded
¢ integrand. Set = inf{®p(TNU):T €C}.
If uw e (0,00), then there exist V€ V4(U), S CR" closed, and {S; € C : i € N} such that

(a) SNU is (%, d) rectifiable. In particular #(SNU) < oo.
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(b) lim;_0o vg(S; NU) =V in V,, (U).

(¢) limj_0o Prp(S; NU) = Pp(V) = p.

(d) spt||[V] € SNU and #4(SNU~spt|V]) = 0.

(e) The measures ||V| and LS are mutually absolutely continuous.
(f) lim; o0 dyr k(S; NU,SNU) =0 for any compact set K CU.

(9) For any compact set K C U we have

lim sup{r e R: #"({z € S; N K : dist(z,spt|[V| UR"~U) >r}) >0} =0.
1—00

(h) If S; =U(S; NU), then

lim lim 74248, N B(z,7)) =0 for |V|-a.e. z and lim #%S;)=0.

rl0 i—o00 i—00

(i) @V ||,z) > 1 for |V| almost all x.
(j) For 7% almost all x € spt ||V | we have

Tan’(||[V |, ) = Tan(spt ||V, z) € G(n,d).

(k) If R" ~U is compact and there exists a ® p-minimising sequence in C consisting only of
compact sets (but not necessarily uniformly bounded), then

diam(spt [|[V]|) < oo and sup{diam(S;NU):i€ N} < co.

6.6 Lemma. Assume U C R™ is open, V € Vy4(U), C is a good class, F is a bounded
€0 integrand, p = inf{®p(P) : P € C}, ®p(V) = pu, and either V.= v4(SNU) for some
(4, d) rectifiable set S € C, or there exists a sequence {S; € C :i € N} such that

lim vg(S;iNU) =V and lim s£4U(S;NU)) =0.
i—00 J— 0
Then
SpV =0.

Proof. The proof can be found, with a slightly different notation, in [DR18, Section 5.1]. For
the sake of the exposition we report it below.

Assume there exists g € 2 (U) such that 6pV(g) # 0. Since sptg is compact, using
a partition of unity [Fed69, 3.1.13] one can decompose g into a finite sum g = > ;" | ¢;, where
gi € Z'(U) is supported in some ball contained in U for each i € {1,2,..., N}. Recalling that
0rV is linear we see that there exists an i € {1,2,..., N} such that 0pV(g;) # 0. Set h =g,
and ¢y(x) = x + th(z) for z € U and ¢ in some neighbourhood of 0 in R. Clearly ¢; € ®(U)
is an injective admissible map whenever |¢| is small enough. Replacing possibly h with —h we
shall assume that 0pV (k) < 0. Then there exists ¢y > 0 such that ®p((¢:)4V) < @p(V) =p
for t € (0,tp]. Set 1 = @y,.
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In case V = v4(S) for some (%, d) rectifiable set S € C, we have
p=2pV) > @p(YyV) = 2p(Y[S]),

which contradicts the definition of u.

In the other case, since ¢4 : Vg(U) — V4(U) is continuous and V' = lim;_,o vg(S;NU), we
have also 94V = lim;_, 1uva(S;NU). For j € Nweset S; = U(S;NU) and S; = R(S;NU)
to obtain

p> Jim @p(Yyva(S;N0)) = lim Op(yva(S)) = lim Op(va(@(S;])

= lim ®p([S; NU]) — Dp(y[S;]).

Jj—0o0

Since lim;j_,oo #74(S;) = 0, we see that u > lim;_,o ®#(¢0[S; N U]) which contradicts the
definition of u. [l

6.7 Theorem. Assume U, C, F, u, V, S, and {S; : i € N} are as in Theorem 6.5. Suppose
that F € wBC, for all x € U. Then

(a) T = Tan(|V||,z) for V almost all (z,T).
(b) OU||V||,z) =1 for |V| almost all x.
In particular, V = v4(S).

Proof. Proof of (a). Employing Lemma 6.6 together with [DPDRG18, 2.3, 2.4] and Theo-
rem 6.5(a)(b)(c)(e)(h) we see that for |V almost all x and all W € VarTan(V, z) there exists
a Radon probability measure o over G(n,d) such that

(5) Tan’(|[V||,z) = T € G(n,d), O©(||V],z) =¥ € [1,00),
(6) W=9(#IT)xo, and 6pW =0.
Since F € wBC, it follows that VarTan(V,z) = {@%(||V|,z)ve(Tan(||[V||,z))} for |[V||
almost all  which proves (a).
Proof of (b). Let T € G(n,d) and ¥ € [1,00) satisfy (5)(6), and = € U be such that

Theorem 6.5(h)(j) hold. Without loss of generality we shall assume z = 0. Assume, by
contradiction, that ¢ > 1. Define

dist(z, T
o = sup{ ist(z, T) sz espt||V]NU(x,2r) N{O}} for r € (0,00).

]

From Theorem 6.5(j), we see that 6, | 0 as r | 0. Set g, = 1262 For r € (0,1) let

fryhy € €°(R,[0,1]) be such that

frt)=1 Vt<1l—¢g, f(t)=0 Vt>1—1e,, and [f.(t)|<4/e, VEER,

t)
he(t)=1 Vt<26., h.(t)=0 Vt>35,, and |h.(t)]<2/5, VteR.
For r € (0,1) we define p, € €°(R",R™) by the formula

pr(x) = Ty(z) + (1= fr(| T (@) ) (1T5 (2)]) Ty (2)  for z € R™.
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Clearly p, € ®(U) for r € (0,1) small enough. Note also that

pr(x) =z  forz € RI~((TNB(0,1—¢,/2)) +B(0,35,)) C RI~TU(0,1),
pr(z) =Ty for z € (T'NB(0,1—¢,.)) +B(0,20,),

o
(7) Lippr§8+12;g8+5;/2g9 for 7 € (0,1).

T

Set A, = B(0,1)~U(0,1 — &;) and p = p, 0 pr 0 py . Let C € VarTan(V,0). By [All72,
3.4(2)] and (a) we get

(8) C= 1}&}(#1/0#‘/ = lim lim vg(py . [Si]) = 9va(T);

rl0 t—00
Hence, we have ||C||(0B(0,1)) = 0, which implies that

lim lim 4%, [A,]NS;) =0.

rl0 i—o00
In particular, employing (7),

9) lim lim 7~ 9®p(p,[A,]NS;) =0 and lim lim r~%®p(p, [, [A,] N S;]) = 0.

r}0 i—00 rl0 i—00
For r € (0,1) and i € N we have
(10) @p(p,[SiNU]) =Pp(S;NU) — Pp(S;NB(0, (1 —&)r))
+ (@ [SiN B0, (1 —&r)r)]) — @r(Si N p,[Ar]) + Pr(pr[Si 0 p, [Ar]])

Since lim; oo @ (S; NU) = u, taking into account (9), to reach a contradiction it suffices to
show that

(11) lim lim r~9®x(5,[S; N B(0, (1 — &,.)r)]) — 7 4@ p(S; N B(0, (1 —&,)r)) < 0.

710 i—00
For i € N and r € (0,1) we define
Spi =1 [S]NB(0,1), F,=pfF, and S.;=mR(S).
Observe that, using (9) and Theorem 6.5(h), claim (11) will follow from

(12) lim lim @, (T,[S,]) — ®p.(S.4) < 0.

rl0 i—o00

In order to prove (12), we observe that (8) implies

lim lim |1P, — Ty|| dva(Sy.i)(z, P) = 0.
rl0 i—00 B(0,1)

Since F' is continuous, we obtain also

(13) lim lim |F(2,P) — F(2,T)|dva(S,;)(z, P) =0 for any z € R".
T‘J,O 1— 00 B(O,l)
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We then estimate
O, (Ty[Sr]) — P (Sri) = /T[ ]F( T)d#%(y) /F (z, P) dvg(S,;)(z, P)
b[Sri
di,y vai($.
< /Tb[gm] F,(0,T)d(y) /FT(O,T)d a(Srs)
" / BT - B0
+ [IF0.7) = F(0.P)] + B0, P) = Fila. P)| dva(S,:)a. P).

Using continuity of F' and (13), we see that the last two terms converge to zero when we first
take the limit with ¢ — oo and then with r | 0. Therefore,

lim lim ®p (TU[S i) — @Fr(gr,i)

rl0 t—00

= lim lim F.(0,T)ds#%(y) — / F.(0,T) dvg(S,:)(x, P)
rl0 i—00 Tb[é 4l

— 17}&)11111})10}7 (0, T) (AUTY[Sys]) — #USrs)) < a(d)Fp(0,T)(1 —0) = —k < 0.

Thus, we have proved (12), which in turn implies (11). Hence, recalling (10), we can choose
r € (0,1) so that for all big enough i € N

Or(p[SiNU]) —Pp(S;NU) < —%IQTd.

Up to choosing a bigger i € N, we get ®p(p,[S; N U]) < p, which contradicts the definition
of . 0

7 Equivalence of BC and AC

In this section we prove that the new condition BC can be used in place of AC.
7.1 Lemma. Let x € R". We have AC, = BC,

Proof. Step 1 We first prove that AC, C BC,. Let F € AC,, k € {1,2,...,n}, u be a Radon
probability measure over G(n,d), and T' € G(n, k). We define the varifold

= (HFLT) x e V4(R").
Assume that 0p=TW = 0. We will show that k¥ > d and if k = d, then p = Dirac(T), i.e., that

F € BC,. By the very definition of anisotropic first variation, we deduce that for every test
vector field g € Z°(R")

(14) 0=106pW(g) = /BF(rc,S)'Dg(y) dW (y, S)

_ / / Br(z,S) e Dg(y) d(A*LT)(y / Au(1) @ Dg(y) dAFLT)(y).
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Let e1,...,e, & be an orthonormal basis of 7+. For any ¢ € 2(T,R), i,j € {1,2,...,n—k},
we can find g € Z'(R") such that

9(y) = o(Tyy)(y e e;)e; whenever y € (T'+ B(0,1));

hence, equation (14) yields
/(p(y)Aw(u)ei ec; d(A*LT)(y) =0 forall p € 2(T,R) and i,j € {1,2,...,n —k},

which shows that
T+ C ker Ay (p) .

Since dim T+ = n — k, we deduce that dimker A, (i) > n — k. By Definition 4.7(a) we obtain
n—k <dimker A, () <n—d, so k> d and we get Definition 4.8(a).
If £ = d, then it follows from Definition 4.7(b) that ;1 = Dirac(S) for some S € G(n,d).
Then
A1) = Br(, S).

Directly from the definition of Bp(x,S) it follows that S+ C ker Bg(z,S). Therefore, since
dimker Bp(z,S) = n — d and T+ C ker Bp(z,S) = ker A,(u), we see that S = T, which
settles Definition 4.8(b).

Step 2 We prove now that BC, C AC,. Assume F' € BC,. Given a Radon probability
measure p over G(n,d), we define

T =im(A,(0)"), k=dimT, V= (*LT)xpe VyR").

Note that T+ = [im(A,(u)*)]* = ker A, (). Thus, by equation (14), we get that for every
g€ 2 (R")

S5V (9) = Au(i)» [ D(go T)w) A 1))+ [ A1) s (Daly) 0 T,) A(A LT ) = 0.
By Definition 4.8, we obtain k > d and conclude that
dimker A, (u) =n—dimT <n-—d,

which is Definition 4.7(a). Moreover, if dimker A;(1) = n — d, then dim7 = d and we
can apply Definition 4.8 to the varifold V' and deduce that p = Dirac(T'), which is precisely
Definition 4.7(b). O

8 The inclusion wBC C AE(P)

In this section we work with cubical test pairs (S, @), where @ is now a d-dimensional cube; see
Definition 8.1. Cubical test pairs give rise to the same classes of Almgren elliptic integrands
as the test pairs defined in Definition 4.1; see Remark 8.2.

The main result is Theorem 8.8, which shows that wBC, C AE,(P) given P is closed
under Lipschitz deformations leaving the boundary fixed and under gluing together several
rescaled copies of an element of P; see Definition 8.5.

The second closedness property for P is needed to be able to perform a “blow-down -
homogenization” argument. More precisely, given a minimiser P of ®p= in {R: (R,Q) € P}
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we construct the varifold W, occurring in Definition 4.8, so that WLQ x G(n,d) is a limit of
a sequence of varifolds Wy = vi(Py), where Py is constructed, for N € N, by gluing together
2NVd rescaled copies of P. A crucial observation is that Py has the same ®p« energy as P
which, in turn, is a minimiser of ®p= in P. This allows us to deduce that dp= Wy = 0 using
Lemma 6.6, provided Py is a competitor (or a limit of competitors), i.e., if (Py,Q) € P for
an appropriate choice of the cube Q.

It is not at all obvious that 8.8 is valid with P being the set of all cubical test pairs; see
Remark 8.6. The proof that such family P has the necessary closedness property requires
some subtle topological arguments and is postponed to Section 9; see 9.23.

8.1 Definition. Let Qo = [—1,1]¢ C R%. We say that (S, Q) is a cubical test pair if there
exists p € O*(n, d) such that

Q=p*[Qo], B=p[0Qv], S CR"iscompact and (2%, d) rectifiable,
f[S] # B for all f:R" — R" satisfying Lip f < oo and f(z) = x for x € B.

8.2 Remark. In the rest of the paper we will work for simplicity on cubical test pairs, but it’s
worth to remark that the two notions are perfectly equivalent for our purposes. Indeed, if we
denote with P; the set of rectifiable test pairs and with Py the set of cubical test pairs, then we
easily verify that for every F being a 4 integrand and x € R", it holds AE,(P;) = AE,(P»)
and AUE,(P;) = AUE,(P,). To show this, we denote p = v/d and Qg = [~1,1]%

Given (5, Q) € Pa, we find p € O*(n,d) such that Q = p*[Qo] and construct (R, D) € P;
by setting

T=imp*, D=TnNB(0,1), D=p,[D], R=SU(D~Q), R=p,lR].
Then
p(®pe(R) — ®pe (D)) = ®pe(R) — Ope (D) = Pra(S) — Ppe(Q)

Given (R, D) € P; we choose p € O*(n,d) such that D C im p* and construct (S, Q) € Py by
setting

Q = p*[Qo], Q:l"l’p[@]’ S=RU(Q@~D), S:ll’l/p[s]
Then
pH(@pe (S) — Ppa(Q)) = pe(5) — Ppe(Q) = Ppa(R) — Ppa (D).
Therefore, AE,(P1) = AE,(P2) and AUE,(P;) = AUE,(P2).

8.3 Definition. Let ) be a d-dimensional cube in R™ (see Definition 5.1), and X C R".
We say that (Y, Q) is a multiplication of (X, Q) if there exist k € & and a finite set A of
d-dimensional cubes in R" of side-length 1(Q)/k such that

Q=UA, It (K)NInte(L)=2@VK#LecA, Y= U{TC(K)Ol‘Ll/kOch(Q)[X] tK e A},

8.4 Remark. Observe that a multiplication (Y,Q) of (X, Q) is uniquely determined by the
parameter k occurring in Definition 8.3. Thus, we may define the k-multiplication of (X, Q)
to be exactly (Y, Q).

8.5 Definition. We say that a set Q of pairs of subsets of R” is a good family if

(a) all elements of Q are cubical test pairs;
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(b) if (X,Q) € @, N € N, and (Y, Q) is the 2¥-multiplication of (X, Q), then (Y, Q) € Q;
(c) if (X,Q) € Q, f: R™ — R™is Lipschitz, and f(x) = z for z € 9.Q, then (f[X],Q) € Q.

8.6 Remark. 1t is plausible that the set of all cubical test pairs is a good family and, indeed,
in Section 9 we prove it is. However, this is not at all obvious.

Consider the Adams’ surface; see [Rei60, Example 8 on p. 81]. The Mobius strip M and
the triple Mobius strip 7" are both homotopy equivalent to the 1-dimensional sphere and both
can be continuously embedded in some R"™ so that (M,Q) and (7, Q) become cubical test
pairs, where Q = [0,1]? x {0}"~2. However, if one puts M and T side by side touching only
along one 1-dimensional face of (), then one obtains the Adams’ surface A, which retracts onto
its boundary. This, as explained in [Rei60, Example 8 on p. 81], is a consequence of the fact
that the inclusion of the boundary of M into M has degree 2, the inclusion of the boundary
of T into T has degree 3, these numbers are relatively prime, and A is homotopy equivalent
to the wedge sum (a.k.a. “bouquet”; see 9.6) of two circles so, defining f : A — S' to be of
degree —1 on M and of degree 1 on T, we get a map such that f o j is of degree one, where
j : S' = A is a parameterization of the boundary of A. One can then construct a Lipschitz
retraction of A onto its boundary; see 9.5. Luckily for us, the situation is different if one puts
together many copies of the same set X. We prove in 9.16 that if (X, Q) is a cubical test
pair, then one cannot have two maps f,g : X — 0.Q such that deg(f|s.q) and deg(gla.q) are
relatively prime.

Before stating and proving the main theorem of this section, we need the following lemma,
which, roughly speaking, will be used as an almost uniqueness result for minimizers of the
area functional in the class of cubical test pairs:

8.7 Lemma. Given a cubical test pair (R, Q) as in Definition 8.1 and x € R™. If

(15) Ppa(R) < Pp=(Q),
then
(16) HUR) > #Q).

Proof. Assume by contradiction that (16) does not hold. Thus in particular
(17) AURN(QxR"™) < AUR) < 2Q).
Denoting with 1" the d-plane containing (), we observe that

(18) HAURN(Q xR ) > #UT(RN(Q xR™™))) 2 2#7(Q),
otherwise there would exist a d-dimensional open ball B C () such that

(19) (BXxR"HNR=90.

Since R is compact, then (19) would imply the existence of f : R™ — R" satisfying Lip f < oo
and f(x) = x for z € 0.Q, such that f[R] = 0.Q, which would contradict the property of
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(R,Q) being a cubical test pair. By (18) and the area formula (a.f.) [Fed69, 3.2.20], we
compute

#1Q) ' AT @ xR < [ AN ) 0 R )

(20) (a7

@ < #NQ).

<

) / ap JTy(y) A (y) < RO (Q x R™))
RN(QxRn—4)

Then the inequalities in (20) are all equality, which implies that ap J;T,(y) = 1 for S#%-a.e.
y € RN (Q x R ). Hence,
(21) Tan(A#ILR,y) =T, for #-ae. ye RN(Q x R"9).

We can then compute the following chain of inequalities, which provides a contradiction

/ Fo(T) dr(y)
RN(QxRn—4)

(21) (15)
< Pp(RN(QxR"™) <@ (R) < Tpe(Q). m

re(Q) = /Q F*(T) dA(y) <

We can finally prove the following:

8.8 Theorem. Assume x € R"™ and P is a good family (cf. Definition 8.5). Then wBC, C
AE,(P).
Proof. We proceed by contradiction. Assume F' € wBC, ~AE,(P). Then there exists
(S,Q) € P such that
ANS) > AUQ) and Ppa(S) < P (Q).
Define
B=0.Q and C={S:(5,Q)€P}.

Note that C is a good class in R™ ~ B in the sense of Definition 6.3.
Next, we employ Theorem 6.7 with F** in place of F' together with Theorem 6.5(c)(a)(k)
to find a compact (¢, d) rectifiable set R C R™ such that

Ppe(R) = inf{®pz(P): P C} < Ppe(S) < Pp=(Q).

Proceeding as in Lemma 4.4 we see that (R, Q) is a cubical test pair (may be not in P).
In case ®pe(R) < ®pe(Q), by Lemma 8.7 we get #4(R) > #%Q), and we set P = R.
Otherwise, we have ®pz(R) = ®Pp2(Q) = Pp=(S) and we set P = S. In any case, setting
V =vy(P) € V4(R") and using Lemma 6.6, we obtain

00 > HUP) > AU Q) and dpV(g)=0 forge Z(R"~B).

Let p € O*(n,d) and T € G(n,d) be such that p*[Qo] = Q C T, where Qo = [—1,1]%. For
each N € N we define Py and Ay so that (Py, Q) is the 2V-multiplication of (P, Q) and Ay

is the corresponding set of d-dimensional cubes covering @) as in Definition 8.3. We also set

N = Va\Tp*(2v N d an K = Te(K) © Ho—N+1 or N -
W, (Tpe(20)[PN]) € Va(R™) and R ) [P] for K € A

vEZ4
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Observe that for N € N and p € (0,00) there are at most ar(d) (p+ diam P)d translated copies
of Py in spt |[Wx| N B(0, p); therefore,
W || B(0, p) < a(d)(p + diam P)d,%”d(PN) =a(d)(p+ diamP)d%”d(P) for p € (0, 00).

So Wy is a Radon measure and there exists a subsequence {Wy, : i € N} which converges to
some varifold W in V4(R™). Moreover, we have

Rk CT+B(0,27 V¥ diam P) for K € Ay sospt|W| CT.

Directly from the construction and by density of base 2 rational numbers in R, it follows also
that W is translation invariant in 7', i.e., (7,)xW = W for all v € T. Hence, there exists
¥ € (0,00) and a Radon probability measure p over G(n,d) such that

HUP)
AN Q)

W=9#"T)xp and 0= >1.

We define
Wy =v4(Py) € Vg(R") for NeN and W = lim Wy, = 9(LQ) x .

1— 00

We also record that
HYPy) = #YP) and ®p.(Py) = Pp(P) for N €N,

and since the supports of ||Wy/|| for N € N all lie in a fixed compact set (cf. Remark 3.11) we
also have

(22) e (W) = lim ®pe(Wy,) = lim ®pa(Py,) = Ops(P).

1—00 1—00

We claim that
(23) Op=W = 0.

First we observe that this would immediately give a contradiction and conclude the proof.
Indeed, since F' € wBC,, we deduce from (23) and Definition 4.8 that p = Dirac(7"). This, in
turn, yields the following contradiction

e (Q) < Ve (Q) = Dpe (W) B B (P) < B (Q).

We are just left to prove the claim (23). To this end, since W is invariant under translations
in T, it suffices to show that

SpaWn(g) =0 for NeNand g€ 2 (R"~B).

If P =S e, since C is a good family, then Py € C and Wy = v4(Py) and |[Wx | (R") =
HYP) = inf{®p:(K) : K € C} for N € N; hence, applying Lemma 6.6, we see that
Sp=Wy(g) =0 for g€ 2 (R"~B) and N € N.

In case P = R, we use Theorem 6.5 to find a minimising sequence {S; € C : i € N}
such that v4(P) =V = lim;_o v4(S; NR" ~ B). Defining S; y € C so that (S; n, Q) is the
2N-multiplication of (S;, Q) we get Wy = lim; oo va(Sin). Recalling Theorem 6.5(b)(c)(h)
we may once again apply Lemma 6.6 to see that also in this case 6prN(g) =0 for g €
Z (R"~ B) and N € N so the proof is done. O
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9 Cubical test pairs form a good family

Here we prove that the family of all cubical test pairs is good in the sense of 8.5. To our surprise
the proof had to employ a few sophisticated (yet classical) tools of algebraic topology. Given
a cubical test pair (X, Q) and its 2V-multiplication (Y, Q) we need to show that S = 9.Q is
not a Lipschitz retract of Y, which is the same as showing that there is no continuous map
f:Y — S with deg(f|s) = 1; cf. 9.5. This becomes a topological problem of independent
interest. We first sketch the idea of the proof, highlighting the main points of the argument.

Let (X, Q) be a cubical test pair. To be able to use tools of algebraic topology we need
to pass from an arbitrary compact set X satisfying 0 < #%(X) < oo to an open set U
containing X and having homotopy type of a d-dimensional CW-complex. We achieve this
by applying the deformation theorem 5.8 to X, obtaining an open set U C R" with X C U
and a d-dimensional cubical complex E C U such that 0.QQ € E C U and F is a strong
deformation retract of U; see 9.18. Moreover, we get that (U, F) is a Borsuk pair, i.e., has the
homotopy extension property HEP; see 9.2 and 9.3, which will be a useful tool to get suitable
homotopy equivalences.

The topological part of the argument works as follows. Consider a 2-multiplication (Y, Q)
of (U,Q) and assume there exists a retraction 7 : Y — 8.Q. Note that 9.Q is a topological
(d — 1)-dimensional sphere and set S = 9.Q. Different copies of py /5[U ~ 5] may, in general,
intersect inside Y. Thus, we define the lfted 2-multiplication (Y,Q) of (U,Q) in order to
prevent this intersection and we observe that 7 gives rise to a retraction r : Y — S; cf. 9.20.
Next, we consider the pairwise orthogonal affine (d — 1)-planes, lying in the affine d-plane
spanned by @, parallel to the sides of ), and passing through the center of (). We denote
with R the union of these planes intersected with Q). Since R is contractible, by the aforemen-
tioned HEP, we deduce that Y is homotopy equivalent to Y/R which, in turn, is homotopy
equivalent to the wedge sum Z of 2% copies of U; see 9.6. Let ¥ be the wedge sum of 2¢ copies
of S, m; : ¥ — S be projections onto particular components of 3, 7; : S < ¥ be inclusions of
components, and j : ¥ < Z be the inclusion map; cf. 9.7. The inclusion S < Y composed
with the homotopy equivalences yields a map o : S — ¥ C Z such that deg(m o) = 1
for all i € {1,2,...,2%}. In particular, since Hy_1(¥) =~ EB?L H; (5 = 72" by [Hat02,
Corollary 2.25], we get

d

(24) =32 i Hy 1 (S) = Hy 1 (D).

If p: Z — S is obtained by composing the retraction r with the homotopy equivalences, then
deg(p o joa) = 1. The following homotopy commutative diagram presents the situation.

SLE:V?LSLS

. ij

S—=Y__~ “YR— =~ _~z=\V2,U-">5s

r

Recalling (24) we see that the degree of pojoa is a linear combination with integer coefficients
of the numbers m; = deg(p o j o 7). Hence, the Euclidean algorithm shows that the greatest
common divisor of my, ..., mya equals one. Since Z is a wedge sum of copies of the same
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space U, we get 2¢ maps f; : U — S and integers a; € Z such that deg(f;|s) = m; and
Z?il a;m; = 1. The question now is whether there exists g : U — S which induces the map

2d
Zaifi* : del(U) — del(S) =7.
=1

If so, then deg(g|s) = 1 and g yields a retraction U — S by 9.5.

This is the point where we need to employ algebra and algebraic topology. We prove
in 9.13 that if F is a d-dimensional CW-complex, then any homomorphism ¢ : Hy_1(F) — Z
is induced by some map g : E — S. The cellular homology of E (which coincides with
the singular homology) is computed from the chain complex (C’k,ék)gzo, where the group
of k-dimensional chains Cj, is the free abelian group generated by the k-dimensional cells (or
cubes) of E. Observe that if G is a torsion group (i.e. every element has finite order), then
there exists only one homomorphism G — Z, namely, the one sending all elements of G to
zero. Therefore, we do not lose any information by composing the homomorphism ¢ with the
projection p : kerd4_1 — kerdy_1/imdg = Hy_1(F), which yields a homomorphism £ = (op
defined on cycles. Since Cy_1 and Cy_o are free groups (in particular, projective Z-modules),
the group Cy_1 splits into a direct sum Cy_q1 = ker(d4—1)@® H and we can extend & to all chains
by setting &|g = 0; cf. 9.12. Hence we can define g on any (d — 1)-dimensional cell o of E
as glo = hy om, where 7 : 0 — 0/0.0 ~ S and h, : S — S is a map of degree £(0).
The next step is to extend g to all the d-dimensional cells of E. To this end we employ the
obstruction theory, which is a sophisticated version of the Brouwer fixed-point theorem and its
consequence: the fact that a map S — S extends to a map @) — S if and only if its topological
degree is zero. Given a d-dimensional cell w of E, we need to ensure that g|s.., has topological
degree zero. Recalling that £(dqw) = ¢ o p(dqw) = 0 whenever w € Cy, the required condition
on g follows.

To conclude the argument, we observe that the 2V-multiplication of (X, Q) is the same
as the 2-multiplication of (W, Q), where W is the 2V~ !-multiplication of (X, Q); thus, we get
the result by induction.

9.1 Definition. For k € N we set S¥ = R¥1noB(0,1).

9.2 Definition (cf. [Hat02, Chap. 0, p. 14]). Let X be a topological space and A C X be a
subspace. Set I = [0,1] C R. We say that the pair (X, A) has the homotopy extension property
HEP if for every topological space Y every continuous function h: (X x {0}) U(AxI) =Y
extends to a continuous homotopy H : X x I — Y.

9.3 Remark (cf. [Hat02, Chap. 0, Example 0.15, p. 15]). If k €¢ &, A C X C R", A is
compact of dimension k, and there exists an open set U C R such that A C U C X and U is
homeomorphic to A x R"™* (i.e. U is a trivial vector bundle over A with fiber R"~¥), then
(X, A) has the HEP. In particular, if A is a sum of a finite set of k-dimensional cubes and
A ClInt X, then (X, A) has the HEP.

Note also that if X, Y CR", A= XNY, and both (X, A) and (Y, A) have the HEP, than
(X UY, A) has the HEP.

9.4 Remark (cf. [Hat02, Chap. 0, Prop. 0.17, p. 15]). If (X, A) has the HEP and A is con-
tractible, then X and X/A are homotopy equivalent.
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9.5 Lemma. Assume S, X C R" are compact, S C X, e € (0,1), and there exists a Lipschitz
retraction w: S+ B(0,e) = S. Let j: S — R" be the inclusion map.
The following properties are equivalent:

(a) S is a Lipschitz retract of X ;

(b) S is a retract of X;

(c) there exists § € (0,¢) such that S is a retract of X + B(0,0);

(d) there exist a continuous map f: X — S such that deg(f o j) = 1.

Proof. Clearly the implications (a) = (b), (¢) = (b), (b) = (d) hold.

Proof of (b) = (a): Assume r : X — S is a retraction. Using the Tietze extension theorem
(see e.g. [Kel75, Chap. 7, Problem O, p. 242]), we extend r to a continuous function R : R™ —
R”. We mollify R to obtain a smooth function R : R" — R" such that |R(z) — r(z)| < 2%
for z € X; in particular, dist(R(z),S) < 2 2c forx € X somo R: X — S is well defined.
Since 7(x) = 7w(x) for z € S, there exists § € (0,¢) such that |R(z) — 7(x)| < 278 for
x € S+ B(0,9). Finally, we define a Lipschitz retraction f: X — S by

m(z) if dist(x,S) <2785,
f(z) =< 7(R(z)) if dist(x,S) > 2775,
m((1 = t)m(z) + tr(R(x))) if t = 2% dist(2,5)/6 — 1 € (0,1).

Proof of (b) = (c¢): Assume r : X — S is a retraction. Once again we extend r to a
continuous function R : R™ — R™. Note that R is uniformly continuous on every compact
subset of R"™; hence, there exists § € (0,1) such that R[X + B(0,d)] C S + B(0,¢). We get
that ™o R|x,B(0,s) 15 the desired retraction.

Proof of (d) = (b): Let f : X — S be continuous and such that deg(f o j) = 1. Then
there exists a continuous homotopy h : S x I — S such that h(z,0) = f(x) and h(z,1) = z for
x € 5. We extend f to a continuous function F' : R — R’ using the Tietze extension theorem
and we find 0 € (0, 1) such that F[X +B(0,6)] €S+ B(0,¢). Set Y = X + B(0,0). Observe
that mo Fly : Y — S is well defined. Recalling 9.3, we see that the pair (Y,S) has the HEP.
Therefore, we may extend h to a homotopy H : Y x I — S such that H(x,0) = w(F(x)) for
every x € Y. The desired retraction r : X — S is then given by r(z) = H(x,1) forx € X. O

9.6 Definition. Assume J is an index set and for each o € J we are given a pointed topological
space (Xo,Zq). We define the wedge sum to be the pointed topological space

Vaecs(Xa, o) = (U{Xa x{a}:ac€ J})/{(wa,a) T € J}

endowed with the quotient topology.
If J={1,2,... N} for some N € &, then we use the notation

Vaes(Xa,2a) = Ve (Xi, i) = (X1,21) V (X2, 22) V- V (X, 2) -

9.7 Remark. (a) Let Z = \/ c;(Xa, 7o) and o € J. There exist continuous maps 7, :
Xo = Z and 7y 1 Z — X,. The first one is simply the inclusion and the second comes
from the projection Z — Z/ VﬂEJN{a} (X35,28).
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(b) For each o € J assume (X,,zq) and (Ya, yo) are pointed topological spaces and there
exist maps fo : (Xa, o) = (Yo, ¥a) and go : (Yo, ¥a) = (Xa, o) such that foog, ~ idy,
and g, 0 fo ~idx,. Then \/ ¢ ;(Xqo, 7o) and \/ ¢ ;(Ya, ya) are homotopy equivalent.

9.8 Definition (cf. [FFG86, §3]). A CW-complez is a topological space X such that for [ € N
there exist: an index set J;, a family of [-dimensional balls {af 4 € Ji}, and for each i € J;
there is a continuous characteristic map ¢ : o — X such that

(a) setting X' = @ and X* = JF_, Uie, im ¢! for k € N, we have X = [J;2, X*;
(b <pl restricted to Int O’ is a homeomorphic embedding;

)
(c) the image of do! under ¢! is contained in X'~1;

(d) the image of cpz intersects only finitely many images of other characteristic maps;

(e) aset F C X is closed in X if and only if (!)}[F] is closed in ¢! for all l € N and i € J;.

The image of any gpé shall be called an I-dimensional cell of X and the set X' the [-skeleton
of X. If X = X* for some k € N, then we say that X is k-dimensional and if, in addition, all
the sets J; for I € {0,1,...,k} are finite, then we say that X is a finite CW-complex.

9.9 Remark. A CW-complex X can also be seen as constructed inductively by attaching cells
ol to X'~ via maps ¢l|,,; cf. [Hat02, Chap. 0, p. 5].

9.10 Remark. If A C K7, then X = [J A is a CW-complex with X* = J{Q € K} : Q C X}
for k € {0,1,...,n}. If A is finite, then X is a finite CW-complex.

9.11 Remark. Assume X is a CW-complex. We shall use cellular homology of X; see [FFGS86,
§12] or [Hat02, §2.2, p. 137]. Recall that for I € N the chain group

Ci(X) = H (X', x'7)
is the free abelian group with basis {o! : i € J;}. Next, define the differentials

do:C()—){O} and dl'Cl( )_>Cl 1( )

(25) by di(o Z deg w”) o=l forle 2,
Je€Ji1

where ¢§ ; 1s defined as the composition

(pﬂaol. ~
doj — X' - X' /(X' ~olh) S8

Clearly, by 9.8(d), the sum in (25) is finite. Moreover, (Cj(X), d;);2, defines a chain-complex
whose homology groups coincide with singular homology groups of X; see [Hat02, Theo-
rem 2.35| or [FFG86, §12, p. 94].

9.12 Remark. Let F be a free abelian group. The following observations shall become partic-
ularly useful:

(a) If G is a subgroup of F', then G is itself a free abelian group; cf. [Lan02, 1,§7,Theorem 7.3|.
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(b) If G is another free abelian group and d : F' — G, then F splits into a direct sum
F =kerd & H for some subgroup H of F'.

To prove the above claim (b), let A =imd C G. Then A is a subgroup of G; hence, A is
a free abelian group. Let {a; : ¢ € J} be a basis of A. In order to prove the existence of
a splitting, it suffices to define a homomorphism f : A — F such that do f =id4. For
each i € J we choose arbitrarily b; € F' such that d(b;) = a; and set f(a;) = b;. Then f
extends to a homomorphism A — F simply because A is free.

Next, we prove that if X is a (k + 1)-dimensional CW-complex, then any homomorphism
from the ™ homology group Hj(X) to the group of integers Z is induced by some map
X — sk,

9.13 Lemma. Assume k € N, X is a (k+ 1)-dimensional CW-complez, and there is given a
homomorphism ¢ : Hy(X) — Z. Then there exists f : X — S* such that f. = C.

Proof. For | € {0,1,2,...,k+ 1} let J; be the set indexing [-dimensional cells of X and for
i€ Jylet {ol:ie g}, phiol = X, d, Ci(X), X! be defined as in 9.8 and 9.11.

By definition Cj(X) are free abelian groups. Set K = ker d;, C Cy(X) and employ 9.12(b)
to find another subgroup L C Cx(X) such that Cx(X) = K @ L. Let p: K — Hy(X) and
q: K @ L — K be canonical projections. Define £ : Ci(X) — Z as the composition

Cu(X) L K 25 Hy(X) > Z.
We record now some trivial observations
(26) ((x) =0 whenever x € Hy(X) has finite order, (op=¢|x, &odri1 =0.

We shall first construct v : X*¥ — S¥ such that v, : Hy(X*) — Z equals ¢ o p and then extend
v to f: X*t1 — S* using a bit of obstruction theory.
For each i € J; the space af / 8af is homeomorphic to S¥ and we define

vi:oF j0oF — S* so that  deg(y;) = &(oF).

2

Note that the space X*/X*~1 is homeomorphic to the wedge sum of topological spheres
\/Z-eJk(af/ﬁo'f, [05F]). We construct the map

5:XF/xk1 5 sk so that 7|a’?/aa’.€ =,; forie Ji.
Let 7 : X* — X¥/X*~1! be the projection. Finally, set
y=Fom.
Note that Hy(X*) = K. One readily verifies that v, = &|x = ¢ o p.
Now we need to extend « to the (k4 1)-dimensional cells in X. Employing the obstruction

theory [FFG86, §17] this is possible if for each j € Ji11 the composition
L
doitt ——2— xF Ly sF

J

has topological degree zero. However, this degree equals exactly & (dk+1(0k+1

7)) which is zero
by (26). Therefore, there exists f : X — S¥ such that f|y« = ~; in particular, f, : Hy(X) — Z

equals . O
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9.14 Remark. Employing some more sophisticated tools of algebraic topology, a shorter proof
of Lemma 9.13 can be given as follows. The universal coefficient theorem [Hat02, Theorem 3.2]
provides an epimorphism

h:H*(X;Z) - Hom(Hy(X),Z).
On the other hand, there exists an isomorphism (see [Hat02, Theorem 4.57])

T: X, K(Z,k)]htp —S HNX:Z),

where [X, K(Z, k)|utp denotes the set of homotopy classes of maps X — K(Z,k) and K(Z, k)
is the Eilenberg-MacLane space; cf. [Hat02, §4.2, p. 365]. Therefore, any homomorphism
H,(X) — Z is induced by some map X — K(Z,k). Observing, that K(Z,k) is a CW-
complex obtained from the sphere S* by gluing in cells of dimension at least k + 2, we see,
since X is (k + 1)-dimensional and the homotopy groups m(S¥*2) = 0 for I € {1,2,...,k+1},
that any map X — K(Z, k) is homotopic to a map whose image lies in S¥.

9.15 Remark. The bound on the dimension of X plays a crucial role in 9.13. Indeed, if the
dimension of X is bigger than k+1, then an element of Hom(Hy(X), Z) might not be induced
by a map X — SF as the following example shows. Let k = 2 and X be the complex projective
space of real dimension 4 (often denoted CP?). Then X is a CW-complex constructed by
attaching a 4-dimensional cell to S? via the Hopf fibration S? — S?. We have

Hy(X)=H*X)=H%X)=127.

Recall that H*(X) is the graded ring Z[o]/o?, where o is the generator of H?(X); cf. [Hat02,
Theorem 3.12|. Finally, since all the homology and cohomology groups of X are free, the
universal coefficient theorem provides a natural isomorphism

j:H}(X) = Hom(Hy(X),Z).

Assume there exists a map f : X — S? such that f, : Ho(X) — Ha(S?) is an isomorphism.
In consequence, f* : H?(S?) — H?(X) is also an isomorphism. However, the map f* is
a homomorphism of graded rings and this gives a contradiction because the square of the
generator of H?(S?) is zero while the square of the generator of H2(X) is the generator
of H4(X).

9.16 Corollary. Let k € N, X be a (k + 1)-dimensional CW-complex, and j : S* — X be
continuous. Define
D= {|deg(foj)|:f: X — sk continuous} ~{0} .
If D # @ and A = min D, then
D={mA:me Z}.

Proof. If D = @ there is nothing to prove, so we assume D # @. Let fi, f : X — S¥ be two
continuous maps such that d; = |deg(fioj)| € & fori € {1,2}. Set d = ged(d1,d2) € &. By
the Euclidean algorithm, there exist integers ¢y, ¢ such that d = c¢1dy + cada. We employ 9.13
to find a map f : X — S* such that f. = ¢, fis + c2fo.. Then |deg(f o j)| =d € D.

We have shown that whenever di,dy € D C 2, then ged(di,d2) € D. Moreover, if
f:X =S¥ |deg(foj)|=A€ D,and m € &, then mA € D because one can post-compose
f with a map S* — S¥ of degree m. O
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9.17 Corollary. Let k,N € N, X be (k + 1)-dimensional CW-complex, vo € X, Z =
\/f\il(X, x0) and j : S¥ — Z be continuous. Forl € {1,2,... N} definem;: Z — X as in 9.7.
Assume there exists o : S¥ — X such that for 1 € {1,2,...,N} the map mj o035 :S¥ — X is
homotopic either to ¢ or to the constant map and 7w 0 j ~ ¢. Set

D= {|deg(foj)|:f:Z— S* continuous}
E={|deg(gop):9: X — S* continuous} .

Then D = E.

Proof. For | € {1,2,...,N} let 7, : X — Z be the injection as in 9.7. If g : X — S¥ is
continuous, then f = gom : Z — S¥ is homotopic to g o ¢ so deg(g o ¢) = deg(f o j) and we
get E C D. On the other hand if f : Z — S*, then we consider the maps f; = for : X — S*
for 1 € {1,2,..., N} to see that

D5 |deg(f o) = |/, deg(fiomoj)| € E by 9.16;
thus, D C E. O
9.18 Lemma. Let J =[0,2], € € (0,00) and assume
QeK?, S=0.Q, X CR"iscompact, SCX, #UX)<oo.

Then there exist: a Lipschitz map f : I x R* — R", a compact set E C R", an open
set U CR", and a finite set B C K} such that

SCE=UB=f[{2}xU], XCUCX+B(0,e), flJxUCV,
ft,x)=x for (t,z) e I x E, E isa strong deformation retract of U .

Proof. For R € K" denote by R the n-dimensional cube with the same center as R and side-
length three times bigger than R. Let N € & be such that 2=¥*4,/n < min{e,1(Q)} and
define

A={ReK!N):RNX #02}.

Apply 5.8 with K7, A, X in place of F, A, S to obtain a Lipschitz map f : J x R® - R",
an open set V' C R", and a finite set B C K}(N). Set E = JB and U = V NInt|J.A and
recall 5.10. Since S C |JK_{(N) we get S C E. O

For convenience and brevity of the notation we introduce the following definition.

9.19 Definition. We define R* to be the direct sum of countably many copies of R and for
i € P we let e; € R™® be the standard basis vector of the i*® copy of R. Thus, R is the set
of all finite linear combinations of the vectors {e; : i € Z}.

We want to compare, up to homotopy, a multiplication (Y, Q) of some cubical test pair
(X, Q) with the wedge sum of certain number of copies of X. However, it might happen that
two copies of X placed side by side intersect outside 0.Q). To prevent this, we define a lifted
multiplication so that different copies of X intersect only along 0.Q).
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9.20 Definition. Let X, @, k, A = {Kj,...,Ka} be as in 8.3. Let ¢; for i € & be as
in 9.19. Define j : R® - R" x R*®, p: R" x R*® — R" and 7; : R® — R"” x R* for
i€{1,2,...,k% by

J(@) = (z,0), plx,y) =2, ni(x)=70Tex,;) °Hik°T c@)(®)+dist(z,dQ)e; .
We say that (Y, j[Q)]) is the lifted k-multiplication of (X, Q) if
V=U{n[X]:ie{l,2,....k"}} CR" x R™®.
9.21 Lemma. Assume

UCR" isopen, Q=1[0,1]x{0}"?ecK30), S=0.Q, Nec2,
B C K is finite, SCE=|BCU, FE isa strong deformation retract of U,
j and p are as in 9.20, (Y,j[Q)) is the lifted 2V -multiplication of (U,Q),
(Z,7]Q)) is the lifted 2N~ -multiplication of (U, Q).

If j[S] is a Lipschitz retract of Y, then j[S] is a Lipschitz retract of Z.

Proof. Suppose there exists a Lipschitz retraction r : Y — j[S]. Due to 9.5 it suffices to
show that there exists a continuous map h : Z — S such that deg(h o j|g) = 1. Set J =
{1,2,...,29). Let (X,j[Q]) be the lifted 2V~ '-multiplication of (F, Q) and (F, j[Q]) be the
lifted 2V -multiplication of (E, Q). Observe that Y contains 27 copies of p, /2lZ]; let us denote
these copies Z1, Za, ..., Zya and the corresponding cubes @1, @2, ..., Qoa so that

Y=U{Z:ieJ} and j[Q=U{Qi:ic J}.
We also define
S; =0.Q; and X;=FNZ; forieJ.

Let T = R? x {0}~ € G(n,d). Then Q C o(Q) + T. Let (vi,va,...,v,) be the standard
basis of R™ and define

T; = span{v;}* NT € G(n,d —1) forie{1,2,...,d},
R=jU{(c(@+T)NnQ:ie{1,2,....d}}] CY.

Note that R and RN Z; for ¢ € J are contractible. Since U is open, we have S C Int U so
the pairs (Y, R) and (Z;, RN Z;) for i € {1,2,...,d} all have the HEP by 9.3. Therefore,
R and Y/R are homotopy equivalent by 9.4. Similarly, Z; and Z;/(R N Z;) are homotopy
equivalent for i € J. Let go = j(c(Q)). We shall write [go] for the equivalence class of gg in
a given quotient space. Denoting homotopy equivalence by “~” and homeomorphism by “~”
we obtain

Y ~Y/R~ VL (Z/(Zi N R), (o)) ~ Vi (Zisao)
Set
W =VL(Zigw), M=Vi(Xow), ¥=Vi(Shaw),
and note that X C M C W. Let ¢ : Y — W and v : W — Y be such that ¢ o ¢ ~ idy and
Yopridy. Fori e Jlet m; : ¥ — S; be the projection defined in 9.7. Observe that

pojlS]=% and deg(mopojlg)=1 forieJ.
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Recall that F is a strong deformation retract of U; hence, if £ : M — W is the inclusion map,
there exists a continuous maps ¢ : W — M such that £ o ( =~ idy and ( o & = idys. Moreover,
€l = |y = idy. Since E = |JB we see that E and M are d-dimensional CW-complexes
by 9.10. Hence, we may apply 9.17 to deduce that

{|deg(foCopojl|s): f: M — S continuous} = {|deg(g|s)|: g : X — S continuous} .
However, if we take f = poroyoé&: M — S, then
foCopojls=porovogoCopojlsaporejls=ids.

Therefore, there exists g : X — S such that deg(goj|s) =1. Leta: X1 - X and f: Z — 7
be homeomorphisms composed of homotheties and translations. Then, recalling |y = idy,
the composition

s,z 0,0 S0 x o x 25
equals g o j|g and has degree one. Employing 9.5 we obtain a Lipschitz retraction Z — S. O

9.22 Corollary. If S and U are as in 9.21, then S is a Lipschitz retract of U.

Proof. We assume j[S] is a Lipschitz retract of Y, where Y is the lifted 2"-multiplication of
(U, Q). We proceed by induction with respect to N € N. If N = 0, we have j[U] =Y so
S is a Lipschitz retract of U by assumption. The inductive step is now a direct application
of 9.21. O

9.23 Theorem. Assume N € 2, (X, Q) is a cubical test pair, and (Y, Q) is the 2V -multipli-
cation of (X,Q). Then (Y,Q) is a cubical test pair.

Proof. Using homotheties and rotations we may and shall assume that Q = [0,1]% x {0}"~% ¢
K;(0). We only need to show that S = 0.Q is not a Lipschitz retract of Y. Let p and j
be as in 9.20. Assume, by contradiction, that there is a Lipschitz retraction of Y onto S.
Employing 9.5 we find 6 € (0, 1) such that S is a retract of Y + B(0,27V4). Apply 9.18 with
X, @, ¢ in place of X, @, € to obtain a finite set B C K} and an open set U C X + B(0,0)
such that £ = |JB is a strong deformation retract of U and X C U. Let (Z,j[Q]) be the
lifted 2~-multiplication of (U, Q). Clearly p[Z] =Y and po j|s = idg, so j[S] is a Lipschitz
retract of Z. Applying 9.21 to U, Q, N, B and then 9.22, we conclude that S is a Lipschitz
retract of U which contains X, so S is also a Lipschitz retract of X and this contradicts the
assumption that (X, Q) is a cubical test pair. O]

9.2} Remark. To conclude we gather all our results in one place. Let x € R", C be the set of
all cubical test pairs, P be the set of all test pairs, R be the set of all rectifiable test pairs.
Then

(a) if U CR™is open, F' € wBC,, for all z € U, F is bounded, and G is a good class in the
sense of [FK18, 3.4|, then there exists S € G such that ®r(S) = inf{®r(R) : R € G};

(b) AEL(P) = AE,(C) = AE,(R) and AUE,(P) = AUE,(C) = AUE,(R);

(¢) AC, = BC, C wBC, C AE,(C).
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Moreover, if n = d+ 1, then by [DPDRG18, Theorem 1.3] we know that F' € AC, if and only
if the function

(27) G(x,v) = |v|F(x,span{v}’) for every z,v € R"
is strictly convex in all but the radial directions, namely

G(z,v) > (D,G(x,v),v) for every z € R, 7,v € S" ! and v # +7.
Hence, given n =d + 1,

(d) if F is a €' integrand such that the corresponding function G, as in (27), is strictly
convex, then F' € AE,(P).

9.25 Remark. In [Alm76, IV.1(7), p. 88] Almgren observes that uniformly convex functions
give rise to anisotropic lagrangians satisfying AUE,(P) in co-dimension 1 and vice-versa,
where P is the class of test pairs. Our result shows that functions that are just strictly
convex give rise to anisotropic lagrangians satisfying AE,;(P) in co-dimension 1, for every
good family P. In particular we deduce that there is no hope of improving Theorem 8.8
showing that wBC, C AUE,(P) (and neither BC, C AUE,(P)). Indeed, if this was the case,
in co-dimension one the strict convexity of the integrand would give rise to an anisotropic
lagrangian satisfying BC, and consequently also AUE,(P), which in turn would imply the
uniform convexity of the integrand.
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