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Abstract

We exploit the so called atomic condition, recently defined by De Philippis, De Rosa,
and Ghiraldin in [DPDRG18, Comm. Pure Appl. Math.] and proved to be necessary
and sufficient for the validity of the anisotropic counterpart of the Allard rectifiability
theorem. In particular, we address an open question of this seminal work, showing that
the atomic condition implies the strict Almgren geometric ellipticity condition.

1 Introduction

Since the pioneering works of Almgren [Alm68, Alm76], a deep effort has been devoted to the
understanding of ellptic integrands in geometric variational problems. In particular, Almgren
introduced the class of elliptic geometric integrands ([Alm76, IV.1(7)] or [Alm68, 1.6(2)]),
further denoted AUE, which allowed him to prove regularity for minimisers in [Alm68].

Very recently, an ongoing interest on the anisotropic Plateau problem has lead to a series
of reformulations and results in this direction, see [HP17, DPDRG16, DLDRG17, DPDRG17,
DR18, FK18]. In particular, in [DPDRG18] (see also Definition 4.7) a new ellipticity condition,
called the atomic condition, further denoted AC, has been introduced and proved to be nec-
essary and sufficient to get an Allard type rectifiability result for varifolds whose anisotropic
first variation is a Radon measure. The authors can prove that, in co-dimension one and in
dimension one, AC is equivalent to the strict convexity of the integrand.

For general co-dimension there is no understanding of AC in the literature and this is stated
as an open problem in [DPDRG18, Page 2]:

“Since the atomic condition AC is essentially necessary to the validity of the rectifi-
ability theorem, it is relevant to relate it to the previous known notions of ellipticity
(or convexity) of F with respect to the “plane” variable. This task seems to be
quite hard in the general case.”

The aim of this paper is to address this open question, comparing condition AC with the
classical notion of geometric ellipticity introduced by Almgren. We present for the moment
an informal version of our main result, see 8.8:

Theorem A. If a C 1 integrand satisfies the atomic condition at some point x ∈ Rn, then it
also satisfies the strict Almgren ellipticity condition at x; see 8.8.
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In particular, if the co-dimension equals one, then strict convexity of the integrand implies
the strict Almgren ellipticity.

It is worth to remark that there is no hope of improving Theorem A showing that the atomic
condition implies the uniform Almgren ellipticity condition, see Remark 9.25. Indeed, if this
was the case, in co-dimension one the strict convexity of the integrand (which is equivalent to
the atomic condition) would imply the uniform Almgren ellipticity, which in turn implies the
uniform convexity, leading to a contradiction.

In order to prove Theorem A, we need to get several auxiliary results of independent in-
terest. In particular, in Section 4 we introduce another ellipticity condition for integrands,
named BC, and in Section 7 we prove that it is equivalent to AC; see Definition 4.8 and
Lemma 7.1. BC has the advantage of being more geometric than the algebraic condition AC,
thus providing a useful tool not only for the proof of Theorem A, but also for future further un-
derstanding of the atomic condition. In Section 5 we show that the original Almgren ellipticity
condition [Alm76, IV.1(7)] is the same as the condition used in [FK18, 3.16] which involves
unrectifiable surfaces; see Corollary 5.13. To this end we provide a deformation theorem 5.8
which preserves unrectifiability of the unrectifiable part of a given set; see Theorem 5.8. More-
over, in Section 6, Theorem 6.7, we provide an independent proof of the existence of minimisers
of anisotropic energies which satisfies a weaker version of BC, improving the recent solutions to
the set theoretical approach to the anisotropic Plateau problem [DPDRG17, FK18]. Gathering
these results, we provide in Section 8 the proof of Theorem A, see Theorem 8.8.

The last crucial point is that the proof of Theorem A in Section 8 requires the validity of
a seemingly harmless property: the class of compact sets X used by Almgren to test the strict
ellipticity considition (see [Alm76, IV.1(7)] or [Alm68, 1.6(2)]) is closed under gluing together
many rescaled copies of X; see 8.5. In 9.23 we show indeed that this property is true, but
our proof is quite complicated and employs some sophisticated tools of algebraic topology;
see also the introduction to Section 9. Giving it some thought, Almgren’s condition that X
cannot be retracted onto its boundary sphere is topological in nature, so it is reasonable that
topological arguments are indispensable. Moreover, the existence of the Adams’ surface, which
is retractible onto its boundary and is obtained by gluing together two surfaces that cannot
be retracted onto their respective boundaries, supports the claim that the proof of Almgren’s
class being closed under the gluing operation is highly non-trivial; see 8.6. This question is
fully addressed in Section 9.

2 Notation

For the whole article we fix two integers d and n satisfying 2 ≤ d ≤ n.
In principle we shall follow the notation of Federer; see [Fed69, pp. 669–671]. In particular,

given two sets A,B, we denote with A∼B their set-theoretic difference and, for every a ∈ Rn

and s ∈ R we define the functions τ a(x) = a + x and µs(x) = sx; see [Fed69, 2.7.16, 4.2.8].
Concerning varifolds, we shall follow Allard [All72].

Following [Alm68] and [Alm00], if S ∈ G(n, d) is a d dimensional linear subspace of Rn,
then S\ ∈ Hom(Rn,Rn) shall denote the orthogonal projection onto S. In particular, if
p ∈ O∗(n, d) is such that im p∗ = S, then S\ = p∗ ◦ p.

We divert in notation from [Fed69] in the following ways. To denote the image of a set
A ⊆ X under some map f : X → Y (more generally, under a relation f ⊆ X × Y ) we
always use square brackets: f [A]. We employ the symbol idX to denote the identity map
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X → X and 1A to denote the characteristic function X → {0, 1} of A ⊆ X. We also use
abbreviations for intervals, e.g., (a, b] = {t : a < t ≤ b}. Moreover, we denote with N the set of
non-negative integers, i.e., N = P ∪ {0}. If (X, ρ) is a metric space, A ⊆ X, and x ∈ X, then
we define dist(x,A) = inf ρ[A × {x}]. We sometimes write X ↪→ Y , X � Y , or X '−→ Y to
emphasis that a map is injective, surjective, or bijective respectively. We denote with ∂A the
topological boundary of a set A. Whenever A, B are subsets of a vector space we write A+B
to denote the algebraic sum of A and B, i.e., A+B = {a+ b : a ∈ A , b ∈ B}; in particular, if
ε ∈ (0,∞), then A+ B(0, ε) is the ε-thickening of A. If R is a ring and A, B are R-modules,
then A⊕ B denotes their direct sum; cf. [ES52, Chap. V, Def. 5.6]. For a, b ∈P the symbol
gcd(a, b) denotes the greatest common divisor of a and b and amod b means the remainder of
the division of a by b.

In Sections 8 and 9 we shall need to use tools of algebraic topology. We shall work in the
category of all pairs of topological spaces a1 as defined in [ES52, Chap. I, §1, p. 5]. We write
Hk(X,A;G) and Hk(X,A;G) for the kth singular homology and cohomology groups of the
pair (X,A) with coefficients in G; see [ES52, Chap. VII, Definition 2.9]. If G = Z, then we
omit G in the notation. Similarly, if A = ∅, we omit A. Given two maps f, g : X → Y
between topological spaces we write f ≈ g to express that f and g are homotopic, i.e., there
exists a continuous map h : [0, 1] × X → Y such that h(0, ·) = f and h(1, ·) = g. If X
and Y are topological spaces which are homotopy equivalent we write X ≈ Y and if they are
homeomorphic we write X ' Y .

2.1 Definition (cf. [ES52, Chap. XI, Def. 4.1]). Let B ⊆ Rn be homeomorphic to the
standard k-dimensional sphere and f : B → B be continuous. Suppose σ is the generator of
the kth homology group Hk(B) of B and f∗ : Hk(B)→ Hk(B) is the map induced by f . The
topological degree deg(f) ∈ Z of f is the unique integer such that f∗(σ) = deg(f) · σ.

3 Basic definitions

3.1 Definition (cf. [Alm68, 1.2]). A function F : Rn×G(n, d)→ (0,∞) of class C k for some
non-negative integer k is called a C k integrand.

If inf imF/ sup imF ∈ (0,∞), then we say that F is bounded.

3.2 Definition (cf. [Alm68, 3.1]). If ϕ ∈ C 1(Rn,Rn) and F is an integrand, then the pull-back
integrand ϕ#F is given by

ϕ#F (x, T ) =

{
F
(
ϕ(x),Dϕ(x)[T ]

)
‖
∧
dDϕ(x) ◦ T\‖ if dim Dϕ(x)[T ] = d

0 if dim Dϕ(x)[T ] < d .

If ϕ is a diffeomorphism, then the push-forward integrand is given by ϕ#F = (ϕ−1)#F .

3.3 Definition (cf. [Alm68, 1.2]). If F is a C k integrand and x ∈ Rn, then we define the
frozen C k integrand F x by the formula

F x(y, S) = F (x, S) for every y ∈ Rn and S ∈ G(n, d) .

3.4 Remark. Since F : Rn ×G(n, d)→ (0,∞) and G(n, d) is compact, it follows that for any
x ∈ Rn the frozen integrand F x is bounded.
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3.5 Definition. We say that S ⊆ Rn is a d-set if S is H d measurable and H d(S ∩K) <∞
for any compact set K ⊆ Rn.

3.6 Definition. Assume S ⊆ Rn is a d-set. We define

R(S) = {x ∈ S : Θd(H d S, x) = 1} and U(S) = S∼R(S) .

3.7 Remark. Observe that Θd(H d S, ·) is a Borel function, so R(S) is H d measurable.
Employing [Mat75] and [Fed69, 2.9.11], we observe that R(S) is countably (H d, d) rectifiable
and U(S) is purely (H d, d) unrectifiable.
3.8 Remark. Recall that γn,d denotes the canonical probability measure on G(n, d) invariant
under the action of the orthogonal group O(n), also called Haar measure; see [Fed69, 2.7.16(6)].

3.9 Definition (cf. [All72, 3.5]). Assume S ⊆ Rn is a d-set. We define vd(S) ∈ Vd(R
n) by

setting for every α ∈ K (Rn ×G(n, d))

vd(S)(α) =

ˆ
R(S)

α(x,Tand(H d R(S), x)) dH d(x) +

ˆ
U(S)

ˆ
α(x, T ) dγn,d(T ) dH d(x) .

3.10 Definition. If F is a C k integrand, we define the functional ΦF : Vd(R
n)→ [0,∞] by

the formula
ΦF (V ) =

ˆ
F (x, S) dV (x, S) .

3.11 Remark. If spt ‖V ‖ is compact we have ΦF (V ) = V (γF ), whenever γ ∈ D(Rn,R) is
such that spt ‖V ‖ ⊆ γ−1{1}.

3.12 Definition. If S ⊆ Rn is a d-set, then we define

ΦF (S) = ΦF (vd(S)) ,

ΨF (S) = ΦF (S) +

ˆ
U(S)

(
sup imF x −

´
F (x, T ) dγn,d(T )

)
dH d(x) .

For any other subset S of Rn, we define ΨF (S) = ΦF (S) =∞.

3.13 Remark. Assume V ∈ Vd(R
n), ϕ : Rn → Rn is of class C 1, and F is a C 0 integrand.

Then
Φϕ#F (V ) = ΦF (ϕ#V ) .

If S ⊆ Rn is a d-set, then
ϕ#vd(S) = vd(ϕ[S])

in the case ϕ is injective and S is countably (H d, d) rectifiable, or in the case ϕ = µr for
some r ∈ (0,∞), or in the case ϕ = τ a for some a ∈ Rn.
3.14 Remark. If S is a d-set, F is a C 0 integrand and x ∈ Rn, then

ΨFx(S) = ΦFx(R(S)) + H d(U(S)) sup imF x .

3.15 Definition. For any set X and an element x ∈ X we denote by Dirac(x) the measure
over X with a single atom at x, i.e.,

Dirac(x)(A) =

{
1 if x ∈ A ,
0 if x /∈ A ,

for A ⊆ X .

The choice of X shall always be clear from the context.
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3.16 Definition (cf. [All72, 4.9]). Assume U ⊆ Rn is open, V ∈ Vd(U), F is a C 1 integrand.
We define the first variation of V with respect to F to be the linear map δFV : X (U) → R
given by the formula

δFV (g) =
d

dt

∣∣∣∣
t=0

ΦF

(
(ϕt)#V

)
,

where g ∈X (U) is a smooth compactly supported vectorfield in U and ϕt(x) = x+ tg(x) for
x ∈ U and t in some neighbourhood of 0 in R.

3.17 Remark. Note that if T ∈ G(n, d) and

Gn,d =
{
P\ : P ∈ G(n, d)

}
⊆ Hom(Rn,Rn) ,

then

A ∈ Tan(Gn,d, T\) ⇐⇒ A∗ = A , T\ ◦A ◦ T\ = 0 , and T⊥\ ◦A ◦ T⊥\ = 0 .

For x ∈ Rn and T ∈ G(n, d) define

FT : Rn → R and Fx : Gn,d → R by setting FT (x) = F (x, T ) = Fx(T\) .

In [DPDRG18] the authors computed

δFV (g) =

ˆ 〈
g(x),DFT (x)

〉
+BF (x, T ) •Dg(x) dV (x, T ) ,

where BF (x, T ) ∈ Hom(Rn,Rn) is characterised by

BF (x, T ) • L = F (x, T )T\ • L+
〈
T⊥\ ◦ L ◦ T\ + (T⊥\ ◦ L ◦ T\)∗,DFx(T\)

〉
,

whenever L ∈ Hom(Rn,Rn).

4 Notions of ellipticity

In this section we recall the notions of ellipticity we will work with.

4.1 Definition. We say that (S,D) is a test pair if there exists T ∈ G(n, d) such that

D = T ∩B(0, 1) , B = T ∩ ∂B(0, 1) , S ⊆ Rn is compact , H d(S) <∞ ,

f [S] 6= B for all f : Rn → Rn satisfying Lip f <∞ and f(x) = x for every x ∈ B .

We say that (S,D) is a rectifiable test pair if, in addition, S is (H d, d) rectifiable.

4.2 Remark. Using a standard extension procedure for Lipschitz functions (e.g. [EG92, 3.1.1,
Theorem 1]), one sees that the last condition in Definition 4.1 means exactly that B is not
a Lipschitz retract of S.
4.3 Example. Let n = 3, d = 2, T = R2×{0}, D = T∩B(0, 1), and S be a smoothly embedded
Möbius strip with boundary B = T ∩ ∂B(0, 1). Observe, that S itself has the homotopy type
of a 1-dimensional circle because a Möbius strip can easily be retracted onto the “middle
circle”. However, the inclusion j : B ↪→ S has topological degree 2, so given any continuous
map f : S → B we have j ◦ f = f |B : B → B and we see that deg(f |B) = deg(j) deg(f) is
an even integer which means that f |B cannot equal the identity on B. Therefore, (S,D) is
a rectifiable test pair.
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4.4 Lemma. Let (S,D) be a pair of compact sets in Rn with H d(S) <∞ and {(Si, Di) : i ∈
N} be a sequence of test pairs such that

lim
i→∞

dH (Si, S) = 0 and lim
i→∞

dH (Di, D) = 0 .

Then (S,D) is a test pair.

Proof. For every i ∈ N, let Ti ∈ G(n, d) be such that Di = Ti ∩ B(0, 1) and set Bi =
Ti ∩ ∂B(0, 1). First note that since {Di : i ∈ N} is a Cauchy sequence with respect to the
Hausdorff metric on compact sets, we obtain that {Ti : i ∈ N} is a Cauchy sequence in G(n, d)
and there exists T ∈ G(n, d) such that D = T ∩B(0, 1). Set B = T ∩ ∂B(0, 1).

Assume, by contradiction, that there exists f : Rn → Rn such that Lip f <∞, f(x) = x
for every x ∈ B, and f [S] = B. Set δ = (Lip f)−1 ∈ (0, 1]. Then

f [S + B(0, r)] ⊆ B + B(0, r/δ) for r ∈ (0,∞) .

Choose i ∈ N such that

Si ⊆ S + B(0, 2−5δ2) and B ⊆ Bi + B(0, 2−5δ) .

Then,
f [Si] ⊆ B + B(0, 2−5δ) ⊆ Bi + B(0, 2−4δ) .

Define g : Si → Bi by

g(y) = f(y) for y ∈ Si∼
(
Bi + B(0, 2−4δ)

)
,

g(y) = 24δ−1 dist(y,Bi)(f(y)− y) + y for y ∈ Si ∩
(
Bi + B(0, 2−4δ)

)
.

For any y ∈ Si with dist(y,Bi) ≤ 2−4δ we can find x ∈ Bi and z ∈ B such that |x− y| ≤ 2−4δ
and |x− z| ≤ 2−5δ; hence, |y − z| ≤ 2−3δ and

dist(g(y), Bi) ≤ |g(y)− x| ≤ 24δ−1 dist(y,Bi)|f(y)− y|+ |y − x|
= |f(y)− f(z) + z − y|+ |y − x| ≤ δ−1|y − z|+ |z − y|+ |y − x| ≤ 2−1 .

This shows that g[Si] ⊆ Bi + B(0, 2−1). Composing g with a Lipschitz map retracting Bi +
B(0, 2−1) onto Bi yields a Lipschitz retraction of Si onto Bi and a contradiction.

4.5 Definition. Let x ∈ Rn and P be a set of pairs of compact d-sets in Rn.

(a) Almgren uniform ellipticity with respect to P: The class AUEx(P) is defined to contain
all C 0 integrands F for which there exists c > 0 such that for all (S,D) ∈ P there holds

ΨFx(S)−ΨFx(D) ≥ c
(
H d(S)−H d(D)

)
.

(b) Almgren strict ellipticity with respect to P: The class AEx(P) is defined to contain all
C 0 integrands F such that for all (S,D) ∈ P satisfying H d(S) > H d(D) there holds

ΨFx(S)−ΨFx(D) > 0 .

4.6 Remark. (a) If all elements of P are pairs of (H d, d) rectifiable sets, then one can replace
all occurrences of ΨFx with ΦFx .
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(b) If P = ∅, then AEx(P) = AUEx(P) is the set of all C 0 integrands.

(c) If P is the set of rectifiable test pairs, then F ∈ AUEx(P) if and only if F is elliptic at x
in the sense of [Alm76, IV.1(7)].

(d) If P is the set of all test pairs, then F ∈ AUEx(P) if and only if F is elliptic at x in the
sense of [FK18, 3.16].

4.7 Definition (cf. [DPDRG18, Definition 1.1]). Let x ∈ Rn. The class ACx is defined to
contain all C 1 integrands F satisfying the atomic condition at x, i.e., for any Radon probability
measure µ over G(n, d), setting

Ax(µ) =

ˆ
BF (x, T ) dµ(T ) ∈ Hom(Rn,Rn),

there holds

(a) dim kerAx(µ) ≤ n− d;

(b) if dim kerAx(µ) = n− d, then µ = Dirac(T0) for some T0 ∈ G(n, d).

To conclude, we introduce the following new notion of ellipticity, named BC. This will
turn out to be equivalent to AC, see Lemma 7.1. Rephrasing AC as BC will be very useful
for the proof of Theorem A and for a further understanding of AC. Indeed, Definition 4.8 is
more geometric than the algebraic Definition 4.7, providing a better tool to relate AC with
the other notions of ellipticity.

4.8 Definition. Let x ∈ Rn. We define BCx to be the class of all C 1 integrands F such that
for any W ∈ Vd(R

n) of the form

W = (H k T )× µ ,

where µ is a Radon probability measure over G(n, d), k ∈ N, and T ∈ G(n, k), there holds

(a) if δFxW = 0, then k ≥ d,

(b) if k = d and δFxW = 0, then µ = Dirac(T ).

The class wBCx is defined by omitting condition (a).

5 Rectifiability of test pairs

Let x ∈ Rn, P1 be the set of all test pairs, and P2 be the set of rectifiable test pairs. Here we
prove (see Corollary 5.13) that AEx(P1) = AEx(P2) and AUEx(P1) = AUEx(P2), i.e., that
the original Almgren’s definition of ellipticity [Alm76, IV.1(7)] coincides with the definition
used in [FK18, 3.16]. To this end we need to show an improved version of the deformation
theorem, see 5.8. In contrast to similar theorems of Federer and Fleming [Fed69, 4.2.6-9],
David and Semmes [DS00, Theorem 3.1], or Fang and Kolasiński [FK18, 7.13], this one has
the special feature of preserving the unrectifiability of the purely unrectifiable part of the
deformed set.

First, we introduce some notation (modelled on [Alm86]) needed to deal with cubes and
cubical complexes.
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5.1 Definition. Let k ∈ {0, 1, . . . , n} and Q = [0, 1]k ⊆ Rk. We say that R ⊆ Rn is a cube
if there exist p ∈ O∗(n, k), o ∈ Rn and l ∈ (0,∞) such that R = τ o ◦ p∗ ◦ µl[Q]. We call
o(R) = o the corner of R and l(R) = l the side-length of R. We also set

• dim(R) = k – the dimension of R,

• c(R) = o(R) + 1
2 l(R)(1, 1, . . . , 1) – the centre of R,

• ∂cR = τ o(R) ◦ p∗ ◦ µl(R)[∂Q] – the boundary of R,

• Intc(R) = R∼ ∂cR – the interior of R.

5.2 Definition. Let k ∈ {0, 1, . . . , n}, N ∈ Z, Q = [0, 1]k ⊆ Rk, e1, . . . , en be the standard
basis of Rn, and f1, . . . , fk be the standard basis of Rk.

We define Kn
k(N) to be the set of all cubes R ⊆ Rn of the form R = τ v ◦ p∗ ◦ µ2−N [Q],

where v ∈ µ2−N [Zn] and p ∈ O∗(n, k) is such that p∗(fi) ∈ {e1, . . . , en} for i = 1, 2, . . . , k.
We also set

Kn
k =

⋃{
Kn
k(N) : N ∈ Z

}
, Kn = Kn

n , Kn
∗ =

⋃{
Kn
k : k ∈ {0, 1, . . . , n}

}
.

5.3 Definition. Let k ∈ {0, 1, . . . , n}, N ∈ Z, and K ∈ Kn
k(N). We say that L ∈ Kn

∗ is
a face of K if and only if L ⊆ K and L ∈ Kn

j (N) for some j ∈ {0, 1, . . . , k}.

5.4 Definition (cf. [Alm86, 1.5]). A family of top-dimensional cubes F ⊆ Kn is said to be
admissible if

(a) K,L ∈ F and K 6= L implies Intc(K) ∩ Intc(L) = ∅,

(b) K,L ∈ F and K ∩ L 6= ∅ implies 1
2 ≤ l(L)/l(K) ≤ 2,

(c) K ∈ F implies ∂cK ⊆
⋃
{L ∈ F : L 6= K}.

5.5 Definition (cf. [Alm86, 1.8]). Let F ⊆ Kn be admissible. We define the cubical complex
CX(F) of F to consist of all those cubes K ∈ Kn

∗ for which

• K is a face of some cube in F ,

• if dim(K) > 0, then l(K) ≤ l(L) whenever L is a face of some cube in F with dim(K) =
dim(L) and Intc(K) ∩ Intc(L) 6= ∅.

5.6 Definition. Let k ∈ N, Q ⊆ Rk be closed convex with non-empty interior, and a ∈
IntQ. We define the central projection from a onto ∂Q to be the locally Lipschitz map
πQ,a : Rk∼{a} → Rk characterised by

πQ,a(x) ∈ ∂Q and
πQ,a(x)− a
|πQ,a(x)− a|

=
x− a
|x− a|

for x ∈ IntQ∼{a} ,

πQ,a(x) = x for x ∈ Rk∼ IntQ .

The following lemma is a counterpart of [Fed69, 4.2.7].
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5.7 Lemma. Assume

k,N ∈ N , d < k ≤ n , Q ⊆ Rn is a cube , p ∈ O∗(n, k) , im p∗ = Tan(Q, c(Q)) ,

µ1, . . . , µN are Radon measures over Rn , Σ = Q ∩
⋃N
i=1 sptµi , H d(Σ) <∞ .

There exist Γ = Γ(d, k,N) and a ∈ Q such that

dist(a,Σ) > 0 , dist(a, ∂cQ) > 1
4 l(Q) ,

ˆ
Q
‖D(πQ,a ◦ p)‖d dµi ≤ Γµi(Q) ∀i ∈ {1, . . . , N} .

Moreover, if A ⊆ Σ is purely (H d, d) unrectifiable, then p∗ ◦ πQ,a ◦ p[A] is purely (H d, d) un-
rectifiable.

Proof. Without loss of generality we shall assume n = k. Recall Definition 3.6 and Remark 3.7
and let E = U(Σ). Employing [Feu09, Lemma 6] with δ, E, d, k replaced by Q, E, d, k, we
see that H k(B) = 0, where

B =
{
a ∈ Q : πQ,a[E] is not purely (H d, d) unrectifiable

}
.

Set Q0 = {x ∈ Q : dist(x, ∂cQ) > 1
4 l(Q)}. From [FK18, 6.4] we deduce that there exists

Γ0 = Γ0(k) > 1 such that

‖DπQ,a(x)‖ ≤ Γ0|x− a|−1 for all a ∈ Q0 and all x ∈ Rk∼{a} .

Since d < k, there exists ∆ = ∆(d, k) ∈ (0,∞) such that for all a ∈ IntQ there holds´
Q |x− a|

−d dH k(a) < ∆. Using the Fubini theorem [Fed69, 2.6.2] and arguing as in [FK18,
7.10] or in [Fed69, 4.2.7], we find out that there exists Γ1 = Γ(d, k,N) such that H k(A) > 0,
where

A =

{
a ∈ Q0 :

ˆ
Q
|x− a|−d dµi(x) ≤ Γ1µi(Q) for i ∈ {1, 2, . . . , N}

}
.

We have H k(Σ) = 0 so H k(A∼Σ) > 0. Hence, there exists a ∈ A∼(B ∪ Σ) with all the
desired properties.

5.8 Theorem. Assume

F ⊆ Kn is admissible , A ⊆ F is finite , S ⊆ Rn is a d-set , I = [0, 1] ,

J = [0, 2] , G = Int
⋃
A , H d(

⋃
A ∩ ClosS) <∞ , R = R(S) , U = U(S) .

There exist Γ = Γ(n, d) ∈ (1,∞), a Lipschitz map f : J × Rn → Rn, a finite set B ⊆
CX(F) ∩Kn

d , and an open set V ⊆ Rn such that

f(t, x) = x for (t, x) ∈
(
{0} ×Rn

)
∪
(
J × (Rn∼G) ∪

⋃
B
)
∪
(
I ×

⋃
(CX(F) ∩Kn

d )
)
,

S ⊆ V , f [J ×Q] ⊆ Q for Q ∈ A , f [{1} × V ] ∩G ⊆
⋃(

CX(F) ∩Kn
d

)
,

f [{2} × V ] ∩G =
⋃
B ∩G , f [I × (V ∩G)] ⊆

⋃
A ,

H d(f(1, ·)[R ∩G]) ≤ ΓH d(R ∩G) , H d(f(1, ·)[U ∩G]) ≤ ΓH d(U ∩G) ,

H d(f(1, ·)[U ] ∩G) = 0 , f(1, ·)[U ] is purely (H d, d) unrectifiable ,
f(2, ·)[f [J × V ]] = f [{2} × V ] and f [{2} × V ] is a strong deformation retract of f [J × V ] .
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Proof. For each Q ∈ CX(F) we find pQ ∈ O∗(n, dimQ) such that Q ⊆ c(Q) + im p∗Q. For
k ∈ {0, 1, 2, . . . , n} set

Ak =
{
Q ∈ CX(F) ∩Kn

k : Q ∩G 6= ∅
}
.

We shall perform a central projection inside the cubes of Ak for k = n, n− 1, . . . , d+ 1. Note
that ∂G ∩

⋃
Ak 6= ∂G for k < n. In fact, all the projections shall equal identity on ∂G.

Let us set

µ1,n = H d (R ∩G) , µ2,n = H d (U ∩G) , µ3,n = H d (S ∩G) ,

E = Rn∼G , ϕn(x) = ψn(t, x) = x for (t, x) ∈ I ×Rn , δn+1 = 1 , Zn+1 = Rn .

For k ∈ {n−1, n−2, . . . , d} and i ∈ {1, 2, 3} we shall define Lipschitz maps ψk : I×Rn → Rn

and ϕk : Rn → Rn, Radon measures µi,k over Rn, sets Zk+1 ⊆
⋃
Ak+1 ∪ E, and numbers

δk+1 ∈ (0, 1) satisfying

(1)


sptµi,k = ϕk[sptµi,k+1] ⊆ E ∪

⋃
Ak , ψk[I × Zk+1] = Zk+1 ,(

sptµi,k+1 + U(0, δk+1)
)
∩
⋃
Ak+1 ⊆ Zk+1 , ψk[{1} × Zk+1] ⊆ E ∪

⋃
Ak ,

ψk(t, x) = x for (t, x) ∈ I × (E ∪
⋃
Ak) , ϕk = ψk(1, ·) ◦ ϕk+1 .

We proceed inductively. Assume that for some l ∈ {n− 1, . . . , d+ 1} we have defined ψk, ϕk,
δk+1, Zk+1 and µi,k for k ∈ {n, n − 1, . . . , l + 1} and i ∈ {1, 2, 3}. For each Q ∈ Al+1 apply
Lemma 5.7 to find aQ ∈ Q satisfying

dist(aQ, sptµ3,l+1) > 0 , dist(aQ, ∂cQ) > 1
4 l(Q) ,(2) ˆ

Q
‖D(πQ,aQ ◦ pQ)‖d dµi,l+1 ≤ Γ5.7µi,l+1(Q) for i ∈ {1, 2, 3} ,

if A ⊆ sptµ3,l+1 is purely (H d, d) unrectifiable,

then p∗Q ◦ πQ,aQ ◦ pQ[A] is also purely (H d, d) unrectifiable .

Let δl+1 ∈ (0, 1) be such that

(3) dist(aQ, sptµ3,l+1) > 2δl+1 and dist(aQ, ∂cQ) > 2δl+1 for all Q ∈ Al+1 .

Set

Zl+1 = E ∪
(⋃
Al+1∼

⋃{
B(aQ, δl+1) : Q ∈ Al+1

})
.

Define ψ̃l : I × Zl+1 → Zl+1 by setting for (t, x) ∈ I × Zl+1

ψ̃l(t, x) =

{
(1− t)x+ tp∗Q ◦ πQ,aQ ◦ pQ(x) if x ∈ Intc(Q) for some Q ∈ Al+1 ,

ψ̃l(t, x) = x if x ∈ E ∪
⋃
Al .

Since for Q ∈ Al+1 the map p∗Q ◦ πQ,aQ ◦ pQ is Lipschitz continuous on Rn∼U(aQ, δl), equals
the identity on ∂cQ, and Q is convex, we see that ψ̃l is well defined and Lipschitz continuous.
Extend ψ̃l to a Lipschitz map ψl : I ×Rn → Rn using [Fed69, 2.10.43]. Next, for i ∈ {1, 2, 3}
set

ϕl = ψl(1, ·) ◦ ϕl+1 and µi,l = (ϕl)#(‖Dϕl‖dµi,n) .
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Note that ‖Dϕl‖d is bounded and ϕl is proper, so µi,l is a Radon measure. Also, because we
assumed sptµ3,l+1 ⊆ E ∪

⋃
Al+1, we readily verify that

sptµ3,l ⊆ ϕl[ClosS] ⊆ E ∪
⋃
Al .

Hence, ψl, ϕl, µi,l for i ∈ {1, 2, 3}, δl+1, and Zl+1 verify (1). This concludes the inductive
construction.

Define
B =

{
Q ∈ Ad : Q ⊆ ϕd[S]

}
.

For Q ∈ Ad∼B we choose aQ ∈ Intc(Q) so that (2) holds and we define δd ∈ (0, 1) so that (3)
is satisfied with l + 1 = d. Set

Zd = E ∪
(⋃
Ad∼

⋃{
B(aQ, δd) : Q ∈ B

})
, ψ̃d−1 : Zd → Zd ,

ψ̃d−1(t, x) =

{
(1− t)x+ tp∗Q ◦ πQ,aQ ◦ pQ(x) if x ∈ Intc(Q) for some Q ∈ Ad∼B ,
ψ̃l(t, x) = x if x ∈ E ∪

⋃
B ∪

⋃
Ad−1 .

Extend ψ̃d−1 to a Lipschitz map ψd−1 : I ×Rn → Rn. Set ϕd−1 = ψd−1(1, ·) ◦ ϕd,

Vd−1 = E∪
(⋃
B+U(0, δd)

)
∩Zd , and Vl = ψ̃l−1(1, ·)−1[Vl−1] ⊆ Zl ∀l ∈ {d, d+1, . . . , n} .

Note that Vl is relatively open in Zl for l ∈ {n, n− 1, . . . , d}; in particular, Vn is open in Rn

and, setting V = Vn, we get

S ⊆ V , ϕd−1[V ] ∩G =
⋃
B ∩G .

We set for l ∈ {1, 2, . . . , n− d} and (t, x) ∈ I ×Rn satisfying l − 1 ≤ (n− d)t < l

f(t, x) = ψn−l
(
(n− d)t− (l − 1), ϕn−l+1(x)

)
and for (t, x) ∈ [1, 2]×Rn

f(t, x) = ψd−1

(
t− 1, ϕd(x)

)
.

This defines a Lipschitz map f : J×Rn → Rn. From the construction it follows that f [{1}×U ]
is purely (H d, d) unrectifiable and f(1, ·)[U ] ∩G ⊆

⋃
(CX(F) ∩Kn

d ), so

H d(f(1, ·)[U ] ∩G) = 0 .

Now, we need to verify the required estimates. For brevity of the notation let us set

g = f(1, ·) and ηk = ψk(1, ·) for k ∈ {d, d+ 1 . . . , n} .

Observe that if Q ∈ F , then H 0({R ∈ F : R ∩ Q 6= ∅}) ≤ 4n. Note also that for k ∈
{d, d+ 1, . . . , n− 1} and i ∈ {1, 2, 3} we have

(ϕk+1)#

(
‖Dϕk+1‖dµi,n ϕ−1

k [
⋃
Ak]
)

= (ϕk+1)#

(
‖Dϕk+1‖dµi,n

)
ϕk+1[ϕ−1

k [
⋃
Ak]]

= µi,k+1 η−1
k [
⋃
Ak] ≤ µi,k+1

⋃
Ak+1 ,
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so we obtain

(4) µi,k(
⋃
Ak) =

ˆ
ϕ−1
k

[⋃
Ak

] ‖Dϕk‖d dµi,n ≤
ˆ
ϕ−1
k

[⋃
Ak

] ‖Dηk ◦ ϕk+1‖d‖Dϕk+1‖d dµi,n

=

ˆ
η−1
k

[⋃
Ak

] ‖Dηk‖d dµi,k+1 ≤
ˆ⋃
Ak+1

‖Dηk‖d dµi,k+1 ≤
∑

Q∈Ak+1

ˆ
Q
‖Dηk‖d dµi,k+1

=
∑

Q∈Ak+1

ˆ
Q
‖D(πQ,aQ ◦ pQ)‖d dµi,k+1 ≤ Γ5.7

∑
Q∈Ak+1

µi,k+1(Q) ≤ 4nΓ5.7µi,k+1(
⋃
Ak+1) .

In particular, setting Σ1 = R ∩ G, Σ2 = U ∩ G and employing [FK18, 7.12] we obtain for
i ∈ {1, 2}

H d(g[Σi] ∩
⋃
Ad) = H d(ϕd[Σi] ∩

⋃
Ad) ≤

ˆ
ϕ−1
d

[⋃
Ad

] ‖Dϕd‖d dµi,n = µi,d(
⋃
Ad)

≤
(
4nΓ5.7

)n−d
µi,n(

⋃
An) =

(
4nΓ5.7

)n−d
H d(Σi) .

Estimating as in (4), we also get

H d(g[Σi]∼
⋃
Ad) = H d(ϕd[Σi]∼

⋃
Ad) ≤

ˆ
G∩ϕ−1

d [∂G]
‖Dϕd‖d dµi,n

≤
ˆ
ϕd+1[G]∩η−1

d [∂G]
‖Dηd‖d dµi,d+1 ≤

ˆ⋃
Ad+1

‖Dηd‖d dµi,d+1

≤ 4nΓ5.7µi,d+1(
⋃
Ad+1) ≤ (4nΓ5.7)n−dH d(Σi) .

This gives the desired estimates.

5.9 Remark. Observe that

f(1, ·)[S] ∩G ⊆
⋃(

CX(F) ∩Kn
d

)
but f(1, ·)[S ∩G] ⊆

⋃(
CX(F) ∩Kn

d

)
∪ ∂G .

5.10 Remark. Define

Q̃ =
⋃
{R ∈ F : R ∩Q 6= ∅} ∀Q ∈ F , H =

⋃
{Q ∈ A : Q̃ ⊆

⋃
A} , and W = V ∩G .

Assume that S is separated from E = Rn∼G in the sense that S ⊆ H. Then W is an open
neighborhood of S in Rn with

f [J × S] ⊆ f [J ×W ] ⊆W

and f(2, ·)[W ] =
⋃
B is a strong deformation retract of S.

5.11 Lemma. Assume

(S,D) is a test pair , T = Tan(D, 0) , B = T ∩ ∂B(0, 1) , R = R(S) , I = U(S) .

For each ε ∈ (0, 1) there exists a map f : Rn → Rn such that

Lip f <∞ , f(x) = x for x ∈ B , H d(f [I]) = 0 , H d
(
(R∼ f [R]) ∪ (f [R]∼R)

)
≤ ε .

In particular, f [S] is (H d, d) rectifiable and (f [S], D) is a rectifiable test pair.
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Proof. Define
ι =

(
2((31)d + 1)

)−1
ε .

Since H d(B) = 0 we can find δ0 ∈ (0, 2−144) such that

H d
(
(B + B(0, δ0)) ∩ S

)
≤ ι .

Set T0 = T , F0 = T ∩ (B + B(0, δ0)) and define ψ0 : T0 → T⊥0 by ψ0(x) = 0 for x ∈
T0. Employing [Fed69, 3.2.29, 3.1.19(5), 2.8.18, 2.2.5] we find Z ⊆ Rn and for each i ∈ N
a vectorspace Ti ∈ G(n, d), a compact set Ki ⊆ Ti, and a C 1 map ψi : Ti → T⊥i such that

Fi = {x+ ψi(x) : x ∈ Ki} , Fi ∩ Fj = ∅ whenever i 6= j ,

R∼F0 = Z ∪
⋃∞
i=1 Fi , H d(Z) = 0 , Lipψi ≤ 2−44 .

Since H d(R) <∞ we can find N ∈ N such that

F =
⋃N
i=0 Fi and H d(R∼F ) ≤ 2ι .

Set
δ = 2−144 inf{δ0} ∪

{
|x− y| : i, j ∈ {0, 1, . . . , N}, x ∈ Fi, y ∈ Fj , i 6= j

}
.

Note that δ > 0 because each Fi is compact. Let L ∈ N be such that 2−L < δn−1/2 ≤ 2−L+1

so that diamQ < δ whenever Q ∈ Kn
n(L). Define

F = Kn
n(L) , Q̃ =

⋃
{R ∈ F : R ∩Q 6= ∅} for Q ∈ F ,

A =
{
Q ∈ F : Q̃ ∩ I 6= ∅, Q ∩ (F + B(0, 2δ)) = ∅

}
, G = Int

⋃
A .

Observe that {
x ∈ I : dist(x, F ) ≥ 4δ

}
⊆ G .

Apply Theorem 5.8 to obtain a Lipschitz continuous map f : Rn → Rn such that

f(x) = x for x ∈ Rn∼G , f [I] is purely (H d, d) unrectifiable ,

H d(f [R ∩G]) ≤ Γ5.8H
d(R ∩G) ≤ Γ5.8H

d(R∼F ) ≤ 2ιΓ5.8 ,

H d(f [I] ∩G) = 0 , H d(f [I ∩G]) ≤ Γ5.8H
d(I ∩G) <∞ .

For each i ∈ {0, 1, . . . , N} employ the Besicovitch-Federer projection theorem [Fed69, 3.3.15]
to choose Pi ∈ G(n, d) such that

‖Pi\ − Ti\‖ ≤ 2−144 and H d(Pi\ ◦ f [I]) = 0 .

Using the inverse function theorem [Fed69, 3.1.18] or [KSv15, Lamma 3.2] we argue that for
i ∈ {0, 1, . . . , N} we can find a C 1 function ϕi : Pi → P⊥i such that {x + ψi(x) : x ∈ Ti} =
{x + ϕi(x) : x ∈ Pi} and Lipϕi ≤ 2−12. Next, for i ∈ {0, 1, . . . , N} we define the projection
onto the graph of ϕi by the formula

πi : Rn → Rn , πi(x) = Pi\x+ ϕi(Pi\x) for x ∈ Rn .

Note that Lipπi ≤ 1 + Lipϕi ≤ 1 + 2−12. Choose a smooth map γ : R→ R such that

γ(t) = 0 for t > 10δ , γ(t) = 1 for t < 5δ , −1

δ
≤ γ′(t) ≤ 0
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and define maps f, λ0, λ1, . . . , λN : Rn → Rn by

λi(x) = γ(dist(x, Fi))πi(x) + (1− γ(dist(x, Fi)))x for i ∈ {0, 1, 2, . . . , N} ,
f = λ1 ◦ · · · ◦ λN .

Note that if i ∈ {0, 1, . . . , N}, x ∈ Rn, y ∈ Fi satisfy |x−y| = dist(x, Fi) ≤ 10δ, then πi(y) = y
and

|x− πi(x)| ≤ |x− y|+ |πi(y)− πi(x)|+ |y − πi(y)| ≤ 10δ + (1 + 2−12)10δ ≤ 30δ .

Therefore,
Lip f ≤ Lip γ · 30δ + 1 ≤ 31 .

Observe also that

f(x) = x for x ∈ F , f [B + B(0, δ)] ⊆ T , H d(f [I]) = 0 ;

hence, (R∼ f [R]) ∪ (f [R]∼R) = f [R∼F ] ∪ (R∼F ) and we get

H d
(
(R∼ f [R]) ∪ (f [R]∼R)

)
≤ ((31)d + 1)H d(R∼F ) ≤ 2((31)d + 1)ι ≤ ε .

5.12 Remark. The difficulty in proving Lemma 5.11 stems from the situation when H d(R ∩
Clos I) > 0; cf. [Fed69, 4.2.25]. In this case one cannot argue that limr↓0 H d((I + U(0, r)) ∩
R) = 0 so it is not possible to separate the unrectifiable part of S from the rectifiable part.
However, since R has a nice (rectifiable) structure and I can be easily squashed to a set of H d

measure zero by means of Besicovitch-Federer projection theorem [Fed69, 3.3.15], we can find
nice Lipschitz deformations which produce “holes” in I and do not move most of R.

5.13 Corollary. Let x ∈ Rn, P1 be the set of all test pairs, and P2 be the set of rectifiable
test pairs. Then

AEx(P1) = AEx(P2) and AUEx(P1) = AUEx(P2) .

Proof. Since P2 ⊆ P1 we clearly have AEx(P1) ⊆ AEx(P2) and AUEx(P1) ⊆ AUEx(P2).
Hence, it suffices to prove the reverse inclusions. Take any test pair (S,D) ∈ P1 and set

T = Tan(D, 0) , B = T ∩B(0, 1) , R = R(S) , and I = U(S) .

For each k ∈ N apply Lemma 5.11 with ε = 1/k to obtain a map fk : Rn → Rn satisfying

Lip fk <∞ , fk(x) = x for x ∈ B ,
H d(f [I]) = 0 , H d

(
(R∼ fk[R]) ∪ (fk[R]∼R)

)
≤ 1

k .

Then (Sk, D) = (fk[S], D) is a rectifiable test pair for each k ∈ N, hence for any integrand F
we have

ΨFx(Sk)−ΨFx(D) = ΦFx(Sk)− ΦFx(D) .

Observe that∣∣ lim
k→∞

H d(Sk)−H d(R)
∣∣ = 0 ; hence, also

∣∣ lim
k→∞

Φd
Fx(Sk)− Φd

Fx(R)
∣∣ = 0 .
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Thus, if F ∈ AUEx(P2), then

ΨFx(S)−ΨFx(D) = ΨFx(I) + lim
k→∞

ΦFx(Sk)− ΦFx(D) ≥ ΨFx(I) + c
(
H d(R)−H d(D)

)
≥ inf

(
{c} ∪ imF x

)(
H d(S)−H d(D)

)
.

Similarly, if F ∈ AEx(P2), then

ΨFx(S)−ΨFx(D) = ΨFx(I) + lim
k→∞

ΦFx(Sk)− ΦFx(D) > ΨFx(I) ≥ 0 .

5.14 Remark. Recalling Remark 4.6, from Corollary 5.13 we deduce that definitions [Alm76,
IV.1(7)] and [FK18, 3.16] are equivalent.

6 Existence of a minimiser for an integrand in wBC

In this section we provide a solution to the set theoretical formulation of the anisotropic
Plateau problem under the weak assumption wBC on the integrand. Since wBC is a weak
version of BC and in turn BC will be proven to be equivalent to AC, see Lemma 7.1, this
section improves [DPDRG17, Theorem 1.8], where the entire condition AC is required.

6.1 Definition. Let U ⊆ Rn be open. We say that f : Rn → Rn is a basic deformation in U
if f is of class C 1 and there exists a bounded convex open set V ⊆ U such that

f(x) = x for every x ∈ Rn∼V and f [V ] ⊆ V .

If f ∈ C 1(Rn,Rn) is a composition of a finite number of basic deformations, then we say that
f is an admissible deformation in U . The set of all such deformations shall be denoted D(U).

6.2 Definition (cf. [Fed69, 2.10.21]). Whenever K ⊆ Rn is compact and A,B ⊆ Rn, we
define dH ,K(A,B) by

dH ,K(A,B) = sup
{
| dist(x,A)− dist(x,B)| : x ∈ K

}
= max

{
sup{dist(x,A) : x ∈ K ∩B} , sup{dist(x,B) : x ∈ K ∩A}

}
.

6.3 Definition. Let U ⊆ Rn be an open set. We say that C is a good class in U if

(a) C 6= ∅;

(b) each S ∈ C is a closed subset of Rn;

(c) if S ∈ C and f ∈ D(U), then f [S] ∈ C;

6.4 Remark. Definition 6.3 differs from [FK18, 3.4] by not assuming that the class is closed
under Hausdorff convergence.

Combining [FK18, 11.2, 11.3, 11.7, 11.8(a)] we obtain the following.

6.5 Theorem. Let U ⊂ Rn be an open set, C be a good class in U , and F be a bounded
C 0 integrand. Set µ = inf

{
ΦF (T ∩ U) : T ∈ C

}
.

If µ ∈ (0,∞), then there exist V ∈ Vd(U), S ⊆ Rn closed, and {Si ∈ C : i ∈ N} such that

(a) S ∩ U is (H d, d) rectifiable. In particular H d(S ∩ U) <∞.
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(b) limi→∞ vd(Si ∩ U) = V in Vm(U).

(c) limi→∞ΦF (Si ∩ U) = ΦF (V ) = µ.

(d) spt ‖V ‖ ⊆ S ∩ U and H d(S ∩ U ∼ spt ‖V ‖) = 0.

(e) The measures ‖V ‖ and H d S are mutually absolutely continuous.

(f) limi→∞ dH ,K(Si ∩ U, S ∩ U) = 0 for any compact set K ⊆ U .

(g) For any compact set K ⊆ U we have

lim
i→∞

sup
{
r ∈ R : H m({x ∈ Si ∩K : dist(x, spt ‖V ‖ ∪Rn∼U) ≥ r}) > 0

}
= 0 .

(h) If S̄i = U(Si ∩ U), then

lim
r↓0

lim
i→∞

r−dH d(S̄i ∩B(x, r)) = 0 for ‖V ‖-a.e. x and lim
i→∞

H d(S̄i) = 0 .

(i) Θd(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x.

(j) For H d almost all x ∈ spt ‖V ‖ we have

Tand(‖V ‖, x) = Tan(spt ‖V ‖, x) ∈ G(n, d) .

(k) If Rn∼U is compact and there exists a ΦF -minimising sequence in C consisting only of
compact sets (but not necessarily uniformly bounded), then

diam(spt ‖V ‖) <∞ and sup
{

diam(Si ∩ U) : i ∈ N
}
<∞ .

6.6 Lemma. Assume U ⊆ Rn is open, V ∈ Vd(U), C is a good class, F is a bounded
C 0 integrand, µ = inf{ΦF (P ) : P ∈ C}, ΦF (V ) = µ, and either V = vd(S ∩ U) for some
(H d, d) rectifiable set S ∈ C, or there exists a sequence {Si ∈ C : i ∈ N} such that

lim
i→∞

vd(Si ∩ U) = V and lim
j→∞

H d(U(Sj ∩ U)) = 0 .

Then
δFV = 0 .

Proof. The proof can be found, with a slightly different notation, in [DR18, Section 5.1]. For
the sake of the exposition we report it below.

Assume there exists g ∈ X (U) such that δFV (g) 6= 0. Since spt g is compact, using
a partition of unity [Fed69, 3.1.13] one can decompose g into a finite sum g =

∑N
i=1 gi, where

gi ∈X (U) is supported in some ball contained in U for each i ∈ {1, 2, . . . , N}. Recalling that
δFV is linear we see that there exists an i ∈ {1, 2, . . . , N} such that δFV (gi) 6= 0. Set h = gi
and ϕt(x) = x+ th(x) for x ∈ U and t in some neighbourhood of 0 in R. Clearly ϕt ∈ D(U)
is an injective admissible map whenever |t| is small enough. Replacing possibly h with −h we
shall assume that δFV (h) < 0. Then there exists t0 > 0 such that ΦF ((ϕt)#V ) < ΦF (V ) = µ
for t ∈ (0, t0]. Set ψ = ϕt0 .
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In case V = vd(S) for some (H d, d) rectifiable set S ∈ C, we have

µ = ΦF (V ) > ΦF (ψ#V ) = ΦF (ψ[S]),

which contradicts the definition of µ.
In the other case, since ψ# : Vd(U)→ Vd(U) is continuous and V = limj→∞ vd(Sj∩U), we

have also ψ#V = limj→∞ ψ#vd(Sj∩U). For j ∈ N we set S̄j = U(Sj∩U) and Ŝj = R(Sj∩U)
to obtain

µ > lim
j→∞

ΦF (ψ#vd(Sj ∩ U)) ≥ lim
j→∞

ΦF (ψ#vd(Ŝj)) = lim
j→∞

ΦF (vd(ψ[Ŝj ]))

= lim
j→∞

ΦF (ψ[Sj ∩ U ])− ΦF (ψ[S̄j ]) .

Since limj→∞H d(S̄j) = 0, we see that µ > limj→∞ΦF (ψ[Sj ∩ U ]) which contradicts the
definition of µ.

6.7 Theorem. Assume U , C, F , µ, V , S, and {Si : i ∈ N} are as in Theorem 6.5. Suppose
that F ∈ wBCx for all x ∈ U . Then

(a) T = Tand(‖V ‖, x) for V almost all (x, T ).

(b) Θd(‖V ‖, x) = 1 for ‖V ‖ almost all x.

In particular, V = vd(S).

Proof. Proof of (a). Employing Lemma 6.6 together with [DPDRG18, 2.3, 2.4] and Theo-
rem 6.5(a)(b)(c)(e)(h) we see that for ‖V ‖ almost all x and all W ∈ VarTan(V, x) there exists
a Radon probability measure σ over G(n, d) such that

Tand(‖V ‖, x) = T ∈ G(n, d) , Θd(‖V ‖, x) = ϑ ∈ [1,∞) ,(5)

W = ϑ(H d T )× σ , and δFxW = 0 .(6)

Since F ∈ wBCx it follows that VarTan(V, x) = {Θd(‖V ‖, x)vd(Tand(‖V ‖, x))} for ‖V ‖
almost all x which proves (a).

Proof of (b). Let T ∈ G(n, d) and ϑ ∈ [1,∞) satisfy (5)(6), and x ∈ U be such that
Theorem 6.5(h)(j) hold. Without loss of generality we shall assume x = 0. Assume, by
contradiction, that ϑ > 1. Define

δr = sup

{
dist(x, T )

|x|
: x ∈ spt ‖V ‖ ∩U(x, 2r)∼{0}

}
for r ∈ (0,∞) .

From Theorem 6.5(j), we see that δr ↓ 0 as r ↓ 0. Set εr = 12δ
1/2
r . For r ∈ (0, 1) let

fr, hr ∈ C∞(R, [0, 1]) be such that

fr(t) = 1 ∀t ≤ 1− εr , fr(t) = 0 ∀t ≥ 1− 1
2εr , and |f ′r(t)| ≤ 4/εr ∀t ∈ R ,

hr(t) = 1 ∀t ≤ 2δr , hr(t) = 0 ∀t ≥ 3δr , and |h′r(t)| ≤ 2/δr ∀t ∈ R .

For r ∈ (0, 1) we define pr ∈ C∞(Rn,Rn) by the formula

pr(x) = T\(x) +
(
1− fr(|T\(x)|)hr(|T⊥\ (x)|)

)
T⊥\ (x) for x ∈ Rn .
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Clearly pr ∈ D(U) for r ∈ (0, 1) small enough. Note also that

pr(x) = x for x ∈ Rd∼((T ∩B(0, 1− εr/2)) + B(0, 3δr)) ⊆ Rd∼U(0, 1) ,

pr(x) = T\x for x ∈ (T ∩B(0, 1− εr)) + B(0, 2δr) ,

Lip pr ≤ 8 + 12
δr
εr
≤ 8 + δ1/2

r ≤ 9 for r ∈ (0, 1) .(7)

Set Ar = B(0, 1)∼U(0, 1 − εr) and p̃r = µr ◦ pr ◦ µ1/r. Let C ∈ VarTan(V, 0). By [All72,
3.4(2)] and (a) we get

(8) C = lim
r↓0

(µ1/r)#V = lim
r↓0

lim
i→∞

vd(µ1/r[Si]) = ϑvd(T ) ;

Hence, we have ‖C‖(∂B(0, 1)) = 0, which implies that

lim
r↓0

lim
i→∞

r−dH d(µr[Ar] ∩ Si) = 0 .

In particular, employing (7),

(9) lim
r↓0

lim
i→∞

r−dΦF (µr[Ar] ∩ Si) = 0 and lim
r↓0

lim
i→∞

r−dΦF (p̃r[µr[Ar] ∩ Si]) = 0 .

For r ∈ (0, 1) and i ∈ N we have

(10) ΦF (p̃r[Si ∩ U ]) = ΦF (Si ∩ U)− ΦF (Si ∩B(0, (1− εr)r))
+ ΦF (p̃r[Si ∩B(0, (1− εr)r)])− ΦF (Si ∩ µr[Ar]) + ΦF (p̃r[Si ∩ µr[Ar]]) .

Since limi→∞ΦF (Si ∩ U) = µ, taking into account (9), to reach a contradiction it suffices to
show that

(11) lim
r↓0

lim
i→∞

r−dΦF (p̃r[Si ∩B(0, (1− εr)r)])− r−dΦF (Si ∩B(0, (1− εr)r)) < 0 .

For i ∈ N and r ∈ (0, 1) we define

Sr,i = µ1/r[Si] ∩B(0, 1) , Fr = µ#
r F , and Ŝr,i = R(Sr,i) .

Observe that, using (9) and Theorem 6.5(h), claim (11) will follow from

(12) lim
r↓0

lim
i→∞

ΦFr(T\[Ŝr,i])− ΦFr(Ŝr,i) < 0 .

In order to prove (12), we observe that (8) implies

lim
r↓0

lim
i→∞

ˆ
B(0,1)

‖P\ − T\‖dvd(Ŝr,i)(x, P ) = 0 .

Since F is continuous, we obtain also

(13) lim
r↓0

lim
i→∞

ˆ
B(0,1)

|F (z, P )− F (z, T )|dvd(Ŝr,i)(x, P ) = 0 for any z ∈ Rn .

18



We then estimate

ΦFr(T\[Ŝr,i])− ΦFr(Ŝr,i) =

ˆ
T\[Ŝr,i]

Fr(y, T ) dH d(y)−
ˆ
Fr(x, P ) dvd(Ŝr,i)(x, P )

≤
ˆ
T\[Ŝr,i]

Fr(0, T ) dH d(y)−
ˆ
Fr(0, T ) dvd(Ŝr,i)

+

ˆ
T\[Ŝr,i]

|Fr(y, T )− Fr(0, T )|dH d(y)

+

ˆ
|Fr(0, T )− Fr(0, P )|+ |Fr(0, P )− Fr(x, P )|dvd(Ŝr,i)(x, P ) .

Using continuity of F and (13), we see that the last two terms converge to zero when we first
take the limit with i→∞ and then with r ↓ 0. Therefore,

lim
r↓0

lim
i→∞

ΦFr(T\[Ŝr,i])− ΦFr(Ŝr,i)

= lim
r↓0

lim
i→∞

ˆ
T\[Ŝr,i]

Fr(0, T ) dH d(y)−
ˆ
Fr(0, T ) dvd(Ŝr,i)(x, P )

= lim
r↓0

lim
i→∞

Fr(0, T )
(
H d(T\[Ŝr,i])−H d(Sr,i)

)
≤ α(d)Fr(0, T )(1− ϑ) = −κ < 0 .

Thus, we have proved (12), which in turn implies (11). Hence, recalling (10), we can choose
r ∈ (0, 1) so that for all big enough i ∈ N

ΦF (p̃r[Si ∩ U ])− ΦF (Si ∩ U) < −1
2κr

d .

Up to choosing a bigger i ∈ N, we get ΦF (p̃r[Si ∩ U ]) < µ, which contradicts the definition
of µ.

7 Equivalence of BC and AC

In this section we prove that the new condition BC can be used in place of AC.

7.1 Lemma. Let x ∈ Rn. We have ACx = BCx .

Proof. Step 1 We first prove that ACx ⊆ BCx. Let F ∈ ACx, k ∈ {1, 2, . . . , n}, µ be a Radon
probability measure over G(n, d), and T ∈ G(n, k). We define the varifold

W = (H k T )× µ ∈ Vd(R
n) .

Assume that δFxW = 0. We will show that k ≥ d and if k = d, then µ = Dirac(T ), i.e., that
F ∈ BCx. By the very definition of anisotropic first variation, we deduce that for every test
vector field g ∈X (Rn)

(14) 0 = δFxW (g) =

ˆ
BF (x, S) •Dg(y) dW (y, S)

=

ˆ ˆ
BF (x, S) •Dg(y) d(H k T )(y) dµ(S) =

ˆ
Ax(µ) •Dg(y) d(H k T )(y) .
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Let e1, . . . , en−k be an orthonormal basis of T⊥. For any ϕ ∈ D(T,R), i, j ∈ {1, 2, . . . , n−k},
we can find g ∈X (Rn) such that

g(y) = ϕ(T\y)(y • ei)ej whenever y ∈ (T + B(0, 1)) ;

hence, equation (14) yields
ˆ
ϕ(y)Ax(µ)ei • ej d(H k T )(y) = 0 for all ϕ ∈ D(T,R) and i, j ∈ {1, 2, . . . , n− k} ,

which shows that
T⊥ ⊆ kerAx(µ) .

Since dimT⊥ = n− k, we deduce that dim kerAx(µ) ≥ n− k. By Definition 4.7(a) we obtain
n− k ≤ dim kerAx(µ) ≤ n− d, so k ≥ d and we get Definition 4.8(a).

If k = d, then it follows from Definition 4.7(b) that µ = Dirac(S) for some S ∈ G(n, d).
Then

Ax(µ) = BF (x, S) .

Directly from the definition of BF (x, S) it follows that S⊥ ⊆ kerBF (x, S). Therefore, since
dim kerBF (x, S) = n − d and T⊥ ⊆ kerBF (x, S) = kerAx(µ), we see that S = T , which
settles Definition 4.8(b).

Step 2 We prove now that BCx ⊆ ACx. Assume F ∈ BCx. Given a Radon probability
measure µ over G(n, d), we define

T = im(Ax(µ)∗) , k = dimT , V = (H k T )× µ ∈ Vd(R
n) .

Note that T⊥ = [im(Ax(µ)∗)]⊥ = kerAx(µ). Thus, by equation (14), we get that for every
g ∈X (Rn)

δFxV (g) = Ax(µ) •
ˆ

D(g ◦ T\)(y) d(H k T )(y) +

ˆ
Ax(µ) •

(
Dg(y) ◦ T⊥\

)
d(H k T )(y) = 0.

By Definition 4.8, we obtain k ≥ d and conclude that

dim kerAx(µ) = n− dimT ≤ n− d ,

which is Definition 4.7(a). Moreover, if dim kerAx(µ) = n − d, then dimT = d and we
can apply Definition 4.8 to the varifold V and deduce that µ = Dirac(T ), which is precisely
Definition 4.7(b).

8 The inclusion wBC ⊆ AE(P)
In this section we work with cubical test pairs (S,Q), where Q is now a d-dimensional cube; see
Definition 8.1. Cubical test pairs give rise to the same classes of Almgren elliptic integrands
as the test pairs defined in Definition 4.1; see Remark 8.2.

The main result is Theorem 8.8, which shows that wBCx ⊆ AEx(P) given P is closed
under Lipschitz deformations leaving the boundary fixed and under gluing together several
rescaled copies of an element of P; see Definition 8.5.

The second closedness property for P is needed to be able to perform a “blow-down -
homogenization” argument. More precisely, given a minimiser P of ΦFx in {R : (R,Q) ∈ P}
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we construct the varifold W , occurring in Definition 4.8, so that W Q×G(n, d) is a limit of
a sequence of varifolds W̃N = vd(PN ), where PN is constructed, for N ∈ N, by gluing together
2Nd rescaled copies of P . A crucial observation is that PN has the same ΦFx energy as P
which, in turn, is a minimiser of ΦFx in P. This allows us to deduce that δFxWN = 0 using
Lemma 6.6, provided PN is a competitor (or a limit of competitors), i.e., if (PN , Q) ∈ P for
an appropriate choice of the cube Q.

It is not at all obvious that 8.8 is valid with P being the set of all cubical test pairs; see
Remark 8.6. The proof that such family P has the necessary closedness property requires
some subtle topological arguments and is postponed to Section 9; see 9.23.

8.1 Definition. Let Q0 = [−1, 1]d ⊆ Rd. We say that (S,Q) is a cubical test pair if there
exists p ∈ O∗(n, d) such that

Q = p∗[Q0] , B = p∗[∂Q0] , S ⊆ Rn is compact and (H d, d) rectifiable ,
f [S] 6= B for all f : Rn → Rn satisfying Lip f <∞ and f(x) = x for x ∈ B .

8.2 Remark. In the rest of the paper we will work for simplicity on cubical test pairs, but it’s
worth to remark that the two notions are perfectly equivalent for our purposes. Indeed, if we
denote with P1 the set of rectifiable test pairs and with P2 the set of cubical test pairs, then we
easily verify that for every F being a C 0 integrand and x ∈ Rn, it holds AEx(P1) = AEx(P2)
and AUEx(P1) = AUEx(P2). To show this, we denote ρ =

√
d and Q0 = [−1, 1]d.

Given (S,Q) ∈ P2, we find p ∈ O∗(n, d) such that Q = p∗[Q0] and construct (R,D) ∈ P1

by setting

T = im p∗ , D = T ∩B(0, 1) , D̄ = µρ[D] , R̄ = S ∪ (D̄∼Q) , R = µ1/ρ[R̄] .

Then
ρd
(
ΦFx(R)− ΦFx(D)

)
= ΦFx(R̄)− ΦFx(D̄) = ΦFx(S)− ΦFx(Q) .

Given (R,D) ∈ P1 we choose p ∈ O∗(n, d) such that D ⊆ im p∗ and construct (S,Q) ∈ P2 by
setting

Q = p∗[Q0] , Q̄ = µρ[Q̄] , S̄ = R ∪ (Q̄∼D) , S = µ1/ρ[S̄] .

Then
ρd
(
ΦFx(S)− ΦFx(Q)

)
= ΦFx(S̄)− ΦFx(Q̄) = ΦFx(R)− ΦFx(D) .

Therefore, AEx(P1) = AEx(P2) and AUEx(P1) = AUEx(P2).

8.3 Definition. Let Q be a d-dimensional cube in Rn (see Definition 5.1), and X ⊆ Rn.
We say that (Y,Q) is a multiplication of (X,Q) if there exist k ∈ P and a finite set A of
d-dimensional cubes in Rn of side-length l(Q)/k such that

Q =
⋃
A , Intc(K)∩Intc(L) = ∅ ∀K 6= L ∈ A , Y =

⋃{
τ c(K)◦µ1/k◦τ−c(Q)[X] : K ∈ A

}
.

8.4 Remark. Observe that a multiplication (Y,Q) of (X,Q) is uniquely determined by the
parameter k occurring in Definition 8.3. Thus, we may define the k-multiplication of (X,Q)
to be exactly (Y,Q).

8.5 Definition. We say that a set Q of pairs of subsets of Rn is a good family if

(a) all elements of Q are cubical test pairs;
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(b) if (X,Q) ∈ Q, N ∈ N, and (Y,Q) is the 2N -multiplication of (X,Q), then (Y,Q) ∈ Q;

(c) if (X,Q) ∈ Q, f : Rn → Rn is Lipschitz, and f(x) = x for x ∈ ∂cQ, then (f [X], Q) ∈ Q.

8.6 Remark. It is plausible that the set of all cubical test pairs is a good family and, indeed,
in Section 9 we prove it is. However, this is not at all obvious.

Consider the Adams’ surface; see [Rei60, Example 8 on p. 81]. The Möbius strip M and
the triple Möbius strip T are both homotopy equivalent to the 1-dimensional sphere and both
can be continuously embedded in some Rn so that (M,Q) and (T,Q) become cubical test
pairs, where Q = [0, 1]2 × {0}n−2. However, if one puts M and T side by side touching only
along one 1-dimensional face of Q, then one obtains the Adams’ surface A, which retracts onto
its boundary. This, as explained in [Rei60, Example 8 on p. 81], is a consequence of the fact
that the inclusion of the boundary of M into M has degree 2, the inclusion of the boundary
of T into T has degree 3, these numbers are relatively prime, and A is homotopy equivalent
to the wedge sum (a.k.a. “bouquet”; see 9.6) of two circles so, defining f : A → S1 to be of
degree −1 on M and of degree 1 on T , we get a map such that f ◦ j is of degree one, where
j : S1 → A is a parameterization of the boundary of A. One can then construct a Lipschitz
retraction of A onto its boundary; see 9.5. Luckily for us, the situation is different if one puts
together many copies of the same set X. We prove in 9.16 that if (X,Q) is a cubical test
pair, then one cannot have two maps f, g : X → ∂cQ such that deg(f |∂cQ) and deg(g|∂cQ) are
relatively prime.

Before stating and proving the main theorem of this section, we need the following lemma,
which, roughly speaking, will be used as an almost uniqueness result for minimizers of the
area functional in the class of cubical test pairs:

8.7 Lemma. Given a cubical test pair (R,Q) as in Definition 8.1 and x ∈ Rn. If

(15) ΦFx(R) < ΦFx(Q) ,

then

(16) H d(R) > H d(Q) .

Proof. Assume by contradiction that (16) does not hold. Thus in particular

(17) H d(R ∩ (Q×Rn−d)) ≤H d(R) ≤H d(Q) .

Denoting with T the d-plane containing Q, we observe that

(18) H d(R ∩ (Q×Rn−d)) ≥H d(T\(R ∩ (Q×Rn−d))) ≥H d(Q) ,

otherwise there would exist a d-dimensional open ball B ⊂ Q such that

(19) (B ×Rn−d) ∩R = ∅ .

Since R is compact, then (19) would imply the existence of f : Rn → Rn satisfying Lip f <∞
and f(x) = x for x ∈ ∂cQ, such that f [R] = ∂cQ, which would contradict the property of
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(R,Q) being a cubical test pair. By (18) and the area formula (a.f.) [Fed69, 3.2.20], we
compute

H d(Q)
(18)
≤ H d(T\(R ∩ (Q×Rn−d))) ≤

ˆ
Q

H 0(T−1
\ (y) ∩R) dH d(y)

(a.f.)
=

ˆ
R∩(Q×Rn−d)

ap JdT\(y) dH d(y) ≤H d(R ∩ (Q×Rn−d))
(17)
≤ H d(Q) .

(20)

Then the inequalities in (20) are all equality, which implies that ap JdT\(y) = 1 for H d-a.e.
y ∈ R ∩ (Q×Rn−d). Hence,

(21) Tand(H d R, y) = T, for H d-a.e. y ∈ R ∩ (Q×Rn−d) .

We can then compute the following chain of inequalities, which provides a contradiction

ΦFx(Q) =

ˆ
Q
F x(T ) dH d(y)

(18)
≤
ˆ
R∩(Q×Rn−d)

F x(T ) dH d(y)

(21)
≤ ΦFx(R ∩ (Q×Rn−d)) ≤ ΦFx(R)

(15)
< ΦFx(Q) .

We can finally prove the following:

8.8 Theorem. Assume x ∈ Rn and P is a good family (cf. Definition 8.5). Then wBCx ⊆
AEx(P).

Proof. We proceed by contradiction. Assume F ∈ wBCx∼AEx(P). Then there exists
(S,Q) ∈ P such that

H d(S) > H d(Q) and ΦFx(S) ≤ ΦFx(Q) .

Define
B = ∂cQ and C =

{
S : (S,Q) ∈ P

}
.

Note that C is a good class in Rn∼B in the sense of Definition 6.3.
Next, we employ Theorem 6.7 with F x in place of F together with Theorem 6.5(c)(a)(k)

to find a compact (H d, d) rectifiable set R ⊆ Rn such that

ΦFx(R) = inf
{

ΦFx(P ) : P ∈ C
}
≤ ΦFx(S) ≤ ΦFx(Q) .

Proceeding as in Lemma 4.4 we see that (R,Q) is a cubical test pair (may be not in P).
In case ΦFx(R) < ΦFx(Q), by Lemma 8.7 we get H d(R) > H d(Q), and we set P = R.
Otherwise, we have ΦFx(R) = ΦFx(Q) = ΦFx(S) and we set P = S. In any case, setting
V = vd(P ) ∈ Vd(R

n) and using Lemma 6.6, we obtain

∞ > H d(P ) > H d(Q) and δFxV (g) = 0 for g ∈X (Rn∼B) .

Let p ∈ O∗(n, d) and T ∈ G(n, d) be such that p∗[Q0] = Q ⊆ T , where Q0 = [−1, 1]d. For
each N ∈ N we define PN and AN so that (PN , Q) is the 2N -multiplication of (P,Q) and AN
is the corresponding set of d-dimensional cubes covering Q as in Definition 8.3. We also set

WN =
∑
v∈Zd

vd(τ p∗(2v)[PN ]) ∈ Vd(R
n) and RK = τ c(K) ◦ µ2−N+1 [P ] for K ∈ AN .
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Observe that for N ∈ N and ρ ∈ (0,∞) there are at most α(d)
(
ρ+diamP

)d translated copies
of PN in spt ‖WN‖ ∩B(0, ρ); therefore,

‖WN‖B(0, ρ) ≤ α(d)
(
ρ+ diamP

)d
H d(PN ) = α(d)

(
ρ+ diamP

)d
H d(P ) for ρ ∈ (0,∞).

So WN is a Radon measure and there exists a subsequence {WNi : i ∈ N} which converges to
some varifold W in Vd(R

n). Moreover, we have

RK ⊆ T + B(0, 2−N diamP ) for K ∈ AN so spt ‖W‖ ⊆ T .

Directly from the construction and by density of base 2 rational numbers in R, it follows also
that W is translation invariant in T , i.e., (τ v)#W = W for all v ∈ T . Hence, there exists
ϑ ∈ (0,∞) and a Radon probability measure µ over G(n, d) such that

W = ϑ(H d T )× µ and ϑ =
H d(P )

H d(Q)
> 1 .

We define

W̃N = vd(PN ) ∈ Vd(R
n) for N ∈ N and W̃ = lim

i→∞
W̃Ni = ϑ(H d Q)× µ .

We also record that

H d(PN ) = H d(P ) and ΦFx(PN ) = ΦFx(P ) for N ∈ N ,

and since the supports of ‖W̃N‖ for N ∈ N all lie in a fixed compact set (cf. Remark 3.11) we
also have

(22) ΦFx(W̃ ) = lim
i→∞

ΦFx(W̃Ni) = lim
i→∞

ΦFx(PNi) = ΦFx(P ) .

We claim that

(23) δFxW = 0.

First we observe that this would immediately give a contradiction and conclude the proof.
Indeed, since F ∈ wBCx, we deduce from (23) and Definition 4.8 that µ = Dirac(T ). This, in
turn, yields the following contradiction

ΦFx(Q) < ϑΦFx(Q) = ΦFx(W̃ )
(22)
= ΦFx(P ) ≤ ΦFx(Q) .

We are just left to prove the claim (23). To this end, sinceW is invariant under translations
in T , it suffices to show that

δFxW̃N (g) = 0 for N ∈ N and g ∈X (Rn∼B) .

If P = S ∈ C, since C is a good family, then PN ∈ C and W̃N = vd(PN ) and ‖W̃N‖(Rn) =
H d(P ) = inf{ΦFx(K) : K ∈ C} for N ∈ N; hence, applying Lemma 6.6, we see that
δFxW̃N (g) = 0 for g ∈X (Rn∼B) and N ∈ N.

In case P = R, we use Theorem 6.5 to find a minimising sequence {Si ∈ C : i ∈ N}
such that vd(P ) = V = limi→∞ vd(Si ∩Rn∼B). Defining Si,N ∈ C so that (Si,N , Q) is the
2N -multiplication of (Si, Q) we get W̃N = limi→∞ vd(Si,N ). Recalling Theorem 6.5(b)(c)(h)
we may once again apply Lemma 6.6 to see that also in this case δFxW̃N (g) = 0 for g ∈
X (Rn∼B) and N ∈ N so the proof is done.
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9 Cubical test pairs form a good family

Here we prove that the family of all cubical test pairs is good in the sense of 8.5. To our surprise
the proof had to employ a few sophisticated (yet classical) tools of algebraic topology. Given
a cubical test pair (X,Q) and its 2N -multiplication (Y,Q) we need to show that S = ∂cQ is
not a Lipschitz retract of Y , which is the same as showing that there is no continuous map
f : Y → S with deg(f |S) = 1; cf. 9.5. This becomes a topological problem of independent
interest. We first sketch the idea of the proof, highlighting the main points of the argument.

Let (X,Q) be a cubical test pair. To be able to use tools of algebraic topology we need
to pass from an arbitrary compact set X satisfying 0 < H d(X) < ∞ to an open set U
containing X and having homotopy type of a d-dimensional CW-complex. We achieve this
by applying the deformation theorem 5.8 to X, obtaining an open set U ⊆ Rn with X ⊆ U
and a d-dimensional cubical complex E ⊆ U such that ∂cQ ⊆ E ⊆ U and E is a strong
deformation retract of U ; see 9.18. Moreover, we get that (U,E) is a Borsuk pair, i.e., has the
homotopy extension property HEP; see 9.2 and 9.3, which will be a useful tool to get suitable
homotopy equivalences.

The topological part of the argument works as follows. Consider a 2-multiplication (Ỹ , Q)
of (U,Q) and assume there exists a retraction r̃ : Ỹ → ∂cQ. Note that ∂cQ is a topological
(d− 1)-dimensional sphere and set S = ∂cQ. Different copies of µ1/2[U ∼S] may, in general,
intersect inside Ỹ . Thus, we define the lifted 2-multiplication (Y,Q) of (U,Q) in order to
prevent this intersection and we observe that r̃ gives rise to a retraction r : Y → S; cf. 9.20.
Next, we consider the pairwise orthogonal affine (d − 1)-planes, lying in the affine d-plane
spanned by Q, parallel to the sides of Q, and passing through the center of Q. We denote
with R the union of these planes intersected with Q. Since R is contractible, by the aforemen-
tioned HEP, we deduce that Y is homotopy equivalent to Y/R which, in turn, is homotopy
equivalent to the wedge sum Z of 2d copies of U ; see 9.6. Let Σ be the wedge sum of 2d copies
of S, πi : Σ→ S be projections onto particular components of Σ, τi : S ↪→ Σ be inclusions of
components, and j : Σ ↪→ Z be the inclusion map; cf. 9.7. The inclusion S ↪→ Y composed
with the homotopy equivalences yields a map α : S → Σ ⊂ Z such that deg(πi ◦ α) = 1

for all i ∈ {1, 2, . . . , 2d}. In particular, since Hd−1(Σ) '
⊕2d

i=1 Hd−1(S) = Z2d by [Hat02,
Corollary 2.25], we get

(24) α∗ =
∑2d

i=1 τi∗ : Hd−1(S)→ Hd−1(Σ) .

If ρ : Z → S is obtained by composing the retraction r with the homotopy equivalences, then
deg(ρ ◦ j ◦ α) = 1. The following homotopy commutative diagram presents the situation.

S
τi // Σ =

∨2d

i=1 S

j
��

πi // S

S //

α

44

Y
,,

≈

r

33Y/R
..

kk ≈ Z =
∨2d

i=1 U
ρ //ll S

Recalling (24) we see that the degree of ρ◦j◦α is a linear combination with integer coefficients
of the numbers mi = deg(ρ ◦ j ◦ τi). Hence, the Euclidean algorithm shows that the greatest
common divisor of m1, . . . , m2d equals one. Since Z is a wedge sum of copies of the same
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space U , we get 2d maps fi : U → S and integers ai ∈ Z such that deg(fi|S) = mi and∑2d

i=1 aimi = 1. The question now is whether there exists g : U → S which induces the map

2d∑
i=1

aifi∗ : Hd−1(U)→ Hd−1(S) = Z.

If so, then deg(g|S) = 1 and g yields a retraction U → S by 9.5.
This is the point where we need to employ algebra and algebraic topology. We prove

in 9.13 that if E is a d-dimensional CW-complex, then any homomorphism ζ : Hd−1(E)→ Z
is induced by some map g : E → S. The cellular homology of E (which coincides with
the singular homology) is computed from the chain complex (Ck, δk)

d
k=0, where the group

of k-dimensional chains Ck is the free abelian group generated by the k-dimensional cells (or
cubes) of E. Observe that if G is a torsion group (i.e. every element has finite order), then
there exists only one homomorphism G → Z, namely, the one sending all elements of G to
zero. Therefore, we do not lose any information by composing the homomorphism ζ with the
projection p : ker δd−1 � ker δd−1/ im δd = Hd−1(E), which yields a homomorphism ξ = ζ ◦ p
defined on cycles. Since Cd−1 and Cd−2 are free groups (in particular, projective Z-modules),
the group Cd−1 splits into a direct sum Cd−1 = ker(δd−1)⊕H and we can extend ξ to all chains
by setting ξ|H = 0; cf. 9.12. Hence we can define g on any (d − 1)-dimensional cell σ of E
as g|σ = hσ ◦ π, where π : σ � σ/∂cσ ' S and hσ : S → S is a map of degree ξ(σ).
The next step is to extend g to all the d-dimensional cells of E. To this end we employ the
obstruction theory, which is a sophisticated version of the Brouwer fixed-point theorem and its
consequence: the fact that a map S → S extends to a map Q→ S if and only if its topological
degree is zero. Given a d-dimensional cell ω of E, we need to ensure that g|∂cω has topological
degree zero. Recalling that ξ(δdω) = ζ ◦ p(δdω) = 0 whenever ω ∈ Cd, the required condition
on g follows.

To conclude the argument, we observe that the 2N -multiplication of (X,Q) is the same
as the 2-multiplication of (W,Q), where W is the 2N−1-multiplication of (X,Q); thus, we get
the result by induction.

9.1 Definition. For k ∈ N we set Sk = Rk+1 ∩ ∂B(0, 1).

9.2 Definition (cf. [Hat02, Chap. 0, p. 14]). Let X be a topological space and A ⊆ X be a
subspace. Set I = [0, 1] ⊆ R. We say that the pair (X,A) has the homotopy extension property
HEP if for every topological space Y every continuous function h : (X × {0}) ∪ (A× I)→ Y
extends to a continuous homotopy H : X × I → Y .

9.3 Remark (cf. [Hat02, Chap. 0, Example 0.15, p. 15]). If k ∈ P, A ⊆ X ⊆ Rn, A is
compact of dimension k, and there exists an open set U ⊆ Rn such that A ⊆ U ⊆ X and U is
homeomorphic to A ×Rn−k (i.e. U is a trivial vector bundle over A with fiber Rn−k), then
(X,A) has the HEP. In particular, if A is a sum of a finite set of k-dimensional cubes and
A ⊆ IntX, then (X,A) has the HEP.

Note also that if X,Y ⊆ Rn, A = X ∩Y , and both (X,A) and (Y,A) have the HEP, than
(X ∪ Y,A) has the HEP.

9.4 Remark (cf. [Hat02, Chap. 0, Prop. 0.17, p. 15]). If (X,A) has the HEP and A is con-
tractible, then X and X/A are homotopy equivalent.
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9.5 Lemma. Assume S,X ⊆ Rn are compact, S ⊆ X, ε ∈ (0, 1), and there exists a Lipschitz
retraction π : S + B(0, ε)→ S. Let j : S → Rn be the inclusion map.

The following properties are equivalent:

(a) S is a Lipschitz retract of X;

(b) S is a retract of X;

(c) there exists δ ∈ (0, ε) such that S is a retract of X + B(0, δ);

(d) there exist a continuous map f : X → S such that deg(f ◦ j) = 1.

Proof. Clearly the implications (a)⇒ (b), (c)⇒ (b), (b)⇒ (d) hold.
Proof of (b)⇒ (a): Assume r : X → S is a retraction. Using the Tietze extension theorem

(see e.g. [Kel75, Chap. 7, Problem O, p. 242]), we extend r to a continuous function R̃ : Rn →
Rn. We mollify R̃ to obtain a smooth function R : Rn → Rn such that |R(x)− r(x)| ≤ 2−12ε
for x ∈ X; in particular, dist(R(x), S) ≤ 2−12ε for x ∈ X so π ◦ R : X → S is well defined.
Since r(x) = π(x) for x ∈ S, there exists δ ∈ (0, ε) such that |R(x) − π(x)| ≤ 2−8ε for
x ∈ S + B(0, δ). Finally, we define a Lipschitz retraction f : X → S by

f(x) =


π(x) if dist(x, S) ≤ 2−8δ ,

π(R(x)) if dist(x, S) ≥ 2−7δ ,

π
(
(1− t)π(x) + tπ(R(x))

)
if t = 28 dist(x, S)/δ − 1 ∈ (0, 1) .

Proof of (b) ⇒ (c): Assume r : X → S is a retraction. Once again we extend r to a
continuous function R : Rn → Rn. Note that R is uniformly continuous on every compact
subset of Rn; hence, there exists δ ∈ (0, 1) such that R[X + B(0, δ)] ⊆ S + B(0, ε). We get
that π ◦R|X+B(0,δ) is the desired retraction.

Proof of (d) ⇒ (b): Let f : X → S be continuous and such that deg(f ◦ j) = 1. Then
there exists a continuous homotopy h : S×I → S such that h(x, 0) = f(x) and h(x, 1) = x for
x ∈ S. We extend f to a continuous function F : Rn → Rn using the Tietze extension theorem
and we find δ ∈ (0, 1) such that F [X + B(0, δ)] ⊆ S + B(0, ε). Set Y = X + B(0, δ). Observe
that π ◦ F |Y : Y → S is well defined. Recalling 9.3, we see that the pair (Y, S) has the HEP.
Therefore, we may extend h to a homotopy H : Y × I → S such that H(x, 0) = π(F (x)) for
every x ∈ Y . The desired retraction r : X → S is then given by r(x) = H(x, 1) for x ∈ X.

9.6 Definition. Assume J is an index set and for each α ∈ J we are given a pointed topological
space (Xα, xα). We define the wedge sum to be the pointed topological space∨

α∈J(Xα, xα) =
(⋃{

Xα × {α} : α ∈ J
})
/
{

(xα, α) : α ∈ J
}

endowed with the quotient topology.
If J = {1, 2, . . . N} for some N ∈P, then we use the notation∨

α∈J(Xα, xα) =
∨N
i=1(Xi, xi) = (X1, x1) ∨ (X2, x2) ∨ · · · ∨ (XN , xN ) .

9.7 Remark. (a) Let Z =
∨
α∈J(Xα, xα) and α ∈ J . There exist continuous maps τα :

Xα ↪→ Z and πα : Z � Xα. The first one is simply the inclusion and the second comes
from the projection Z � Z/

∨
β∈J ∼{α}(Xβ, xβ).
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(b) For each α ∈ J assume (Xα, xα) and (Yα, yα) are pointed topological spaces and there
exist maps fα : (Xα, xα)→ (Yα, yα) and gα : (Yα, yα)→ (Xα, xα) such that fα◦gα ≈ idYα
and gα ◦ fα ≈ idXα . Then

∨
α∈J(Xα, xα) and

∨
α∈J(Yα, yα) are homotopy equivalent.

9.8 Definition (cf. [FFG86, §3]). A CW-complex is a topological space X such that for l ∈ N
there exist: an index set Jl, a family of l-dimensional balls {σli : i ∈ Jl}, and for each i ∈ Jl
there is a continuous characteristic map ϕli : σli → X such that

(a) setting X−1 = ∅ and Xk =
⋃k
l=0

⋃
i∈Jl imϕli for k ∈ N, we have X =

⋃∞
k=0X

k;

(b) ϕli restricted to Intσli is a homeomorphic embedding;

(c) the image of ∂σli under ϕ
l
i is contained in X l−1;

(d) the image of ϕli intersects only finitely many images of other characteristic maps;

(e) a set F ⊆ X is closed in X if and only if (ϕli)
−1[F ] is closed in σli for all l ∈ N and i ∈ Jl.

The image of any ϕli shall be called an l-dimensional cell of X and the set X l the l-skeleton
of X. If X = Xk for some k ∈ N, then we say that X is k-dimensional and if, in addition, all
the sets Jl for l ∈ {0, 1, . . . , k} are finite, then we say that X is a finite CW-complex.

9.9 Remark. A CW-complex X can also be seen as constructed inductively by attaching cells
σli to X

l−1 via maps ϕli|∂σli ; cf. [Hat02, Chap. 0, p. 5].

9.10 Remark. If A ⊆ Kn
∗ , then X =

⋃
A is a CW-complex with Xk =

⋃
{Q ∈ Kn

k : Q ⊆ X}
for k ∈ {0, 1, . . . , n}. If A is finite, then X is a finite CW-complex.

9.11 Remark. Assume X is a CW-complex. We shall use cellular homology of X; see [FFG86,
§12] or [Hat02, §2.2, p. 137]. Recall that for l ∈ N the chain group

Cl(X) = Hl(X
l, X l−1)

is the free abelian group with basis {σli : i ∈ Jl}. Next, define the differentials

d0 : C0 → {0} and dl : Cl(X)→ Cl−1(X)

by dl(σ
l
i) =

∑
j∈Jl−1

deg(ψli,j)σ
l−1
j for l ∈P ,(25)

where ψli,j is defined as the composition

∂σli

ϕli|∂σl
i−−−−→ X l � X l/(X l∼σl−1

j )
'−→ Sl−1 .

Clearly, by 9.8(d), the sum in (25) is finite. Moreover, (Cl(X), dl)
∞
l=0 defines a chain-complex

whose homology groups coincide with singular homology groups of X; see [Hat02, Theo-
rem 2.35] or [FFG86, §12, p. 94].

9.12 Remark. Let F be a free abelian group. The following observations shall become partic-
ularly useful:

(a) IfG is a subgroup of F , thenG is itself a free abelian group; cf. [Lan02, I,§7,Theorem 7.3].
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(b) If G is another free abelian group and d : F → G, then F splits into a direct sum
F = ker d⊕H for some subgroup H of F .

To prove the above claim (b), let A = im d ⊆ G. Then A is a subgroup of G; hence, A is
a free abelian group. Let {ai : i ∈ J} be a basis of A. In order to prove the existence of
a splitting, it suffices to define a homomorphism f : A→ F such that d ◦ f = idA. For
each i ∈ J we choose arbitrarily bi ∈ F such that d(bi) = ai and set f(ai) = bi. Then f
extends to a homomorphism A→ F simply because A is free.

Next, we prove that if X is a (k + 1)-dimensional CW-complex, then any homomorphism
from the kth homology group Hk(X) to the group of integers Z is induced by some map
X → Sk.

9.13 Lemma. Assume k ∈ N, X is a (k + 1)-dimensional CW-complex, and there is given a
homomorphism ζ : Hk(X)→ Z. Then there exists f : X → Sk such that f∗ = ζ.

Proof. For l ∈ {0, 1, 2, . . . , k + 1} let Jl be the set indexing l-dimensional cells of X and for
i ∈ Jl let {σli : i ∈ Jl}, ϕli : σli → X, dl, Cl(X), X l be defined as in 9.8 and 9.11.

By definition Ck(X) are free abelian groups. Set K = ker dk ⊆ Ck(X) and employ 9.12(b)
to find another subgroup L ⊆ Ck(X) such that Ck(X) = K ⊕ L. Let p : K � Hk(X) and
q : K ⊕ L� K be canonical projections. Define ξ : Ck(X)→ Z as the composition

Ck(X)
q−−→ K

p−−→ Hk(X)
ζ−−→ Z .

We record now some trivial observations

(26) ζ(x) = 0 whenever x ∈ Hk(X) has finite order , ζ ◦ p = ξ|K , ξ ◦ dk+1 = 0 .

We shall first construct γ : Xk → Sk such that γ∗ : Hk(X
k)→ Z equals ζ ◦ p and then extend

γ to f : Xk+1 → Sk using a bit of obstruction theory.
For each i ∈ Jk the space σki /∂σ

k
i is homeomorphic to Sk and we define

γi : σki /∂σ
k
i → Sk so that deg(γi) = ξ(σki ) .

Note that the space Xk/Xk−1 is homeomorphic to the wedge sum of topological spheres∨
i∈Jk(σki /∂σ

k
i , [∂σ

k
i ]). We construct the map

γ̃ : Xk/Xk−1 → Sk so that γ̃|σki /∂σki = γi for i ∈ Jk .

Let π : Xk � Xk/Xk−1 be the projection. Finally, set

γ = γ̃ ◦ π .

Note that Hk(X
k) = K. One readily verifies that γ∗ = ξ|K = ζ ◦ p.

Now we need to extend γ to the (k+1)-dimensional cells in X. Employing the obstruction
theory [FFG86, §17] this is possible if for each j ∈ Jk+1 the composition

∂σk+1
j

ϕk+1
j |

∂σk+1
j−−−−−−−→ Xk γ−−→ Sk

has topological degree zero. However, this degree equals exactly ξ(dk+1(σk+1
j )) which is zero

by (26). Therefore, there exists f : X → Sk such that f |Xk = γ; in particular, f∗ : Hk(X)→ Z
equals ζ.
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9.14 Remark. Employing some more sophisticated tools of algebraic topology, a shorter proof
of Lemma 9.13 can be given as follows. The universal coefficient theorem [Hat02, Theorem 3.2]
provides an epimorphism

h : Hk(X; Z) � Hom(Hk(X),Z) .

On the other hand, there exists an isomorphism (see [Hat02, Theorem 4.57])

T :
[
X,K(Z, k)

]
htp

'−−→ Hk(X; Z) ,

where [X,K(Z, k)]htp denotes the set of homotopy classes of maps X → K(Z, k) and K(Z, k)
is the Eilenberg-MacLane space; cf. [Hat02, §4.2, p. 365]. Therefore, any homomorphism
Hk(X) → Z is induced by some map X → K(Z, k). Observing, that K(Z, k) is a CW-
complex obtained from the sphere Sk by gluing in cells of dimension at least k + 2, we see,
since X is (k+ 1)-dimensional and the homotopy groups πl(Sk+2) = 0 for l ∈ {1, 2, . . . , k+ 1},
that any map X → K(Z, k) is homotopic to a map whose image lies in Sk.
9.15 Remark. The bound on the dimension of X plays a crucial role in 9.13. Indeed, if the
dimension of X is bigger than k+1, then an element of Hom(Hk(X),Z) might not be induced
by a map X → Sk as the following example shows. Let k = 2 and X be the complex projective
space of real dimension 4 (often denoted CP2). Then X is a CW-complex constructed by
attaching a 4-dimensional cell to S2 via the Hopf fibration S3 → S2. We have

H2(X) = H2(X) = H4(X) = Z .

Recall that H∗(X) is the graded ring Z[σ]/σ3, where σ is the generator of H2(X); cf. [Hat02,
Theorem 3.12]. Finally, since all the homology and cohomology groups of X are free, the
universal coefficient theorem provides a natural isomorphism

j : H2(X)
'−→ Hom(H2(X),Z) .

Assume there exists a map f : X → S2 such that f∗ : H2(X)→ H2(S2) is an isomorphism.
In consequence, f∗ : H2(S2) → H2(X) is also an isomorphism. However, the map f∗ is
a homomorphism of graded rings and this gives a contradiction because the square of the
generator of H2(S2) is zero while the square of the generator of H2(X) is the generator
of H4(X).

9.16 Corollary. Let k ∈ N, X be a (k + 1)-dimensional CW-complex, and j : Sk → X be
continuous. Define

D =
{
| deg(f ◦ j)| : f : X → Sk continuous

}
∼{0} .

If D 6= ∅ and A = minD, then

D = {mA : m ∈P} .

Proof. If D = ∅ there is nothing to prove, so we assume D 6= ∅. Let f1, f2 : X → Sk be two
continuous maps such that di = | deg(fi ◦ j)| ∈P for i ∈ {1, 2}. Set d = gcd(d1, d2) ∈P. By
the Euclidean algorithm, there exist integers c1, c2 such that d = c1d1 + c2d2. We employ 9.13
to find a map f : X → Sk such that f∗ = c1f1∗ + c2f2∗. Then | deg(f ◦ j)| = d ∈ D.

We have shown that whenever d1, d2 ∈ D ⊆ P, then gcd(d1, d2) ∈ D. Moreover, if
f : X → Sk, |deg(f ◦ j)| = A ∈ D, and m ∈P, then mA ∈ D because one can post-compose
f with a map Sk → Sk of degree m.
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9.17 Corollary. Let k,N ∈ N, X be (k + 1)-dimensional CW-complex, x0 ∈ X, Z =∨N
i=1(X,x0) and j : Sk → Z be continuous. For l ∈ {1, 2, . . . , N} define πl : Z → X as in 9.7.

Assume there exists ϕ : Sk → X such that for l ∈ {1, 2, . . . , N} the map πl ◦ j : Sk → X is
homotopic either to ϕ or to the constant map and π1 ◦ j ≈ ϕ. Set

D =
{
| deg(f ◦ j)| : f : Z → Sk continuous

}
,

E =
{
| deg(g ◦ ϕ)| : g : X → Sk continuous

}
.

Then D = E.

Proof. For l ∈ {1, 2, . . . , N} let τl : X → Z be the injection as in 9.7. If g : X → Sk is
continuous, then f = g ◦ π1 : Z → Sk is homotopic to g ◦ ϕ so deg(g ◦ ϕ) = deg(f ◦ j) and we
get E ⊆ D. On the other hand if f : Z → Sk, then we consider the maps fl = f ◦ τl : X → Sk
for l ∈ {1, 2, . . . , N} to see that

D 3 |deg(f ◦ j)| =
∣∣∑N

l=1 deg(fl ◦ πl ◦ j)
∣∣ ∈ E by 9.16 ;

thus, D ⊆ E.

9.18 Lemma. Let J = [0, 2], ε ∈ (0,∞) and assume

Q ∈ Kn
d , S = ∂cQ , X ⊆ Rn is compact , S ⊆ X , H d(X) <∞ .

Then there exist: a Lipschitz map f : I × Rn → Rn, a compact set E ⊆ Rn, an open
set U ⊆ Rn, and a finite set B ⊆ Kn

d such that

S ⊆ E =
⋃
B = f [{2} × U ] , X ⊆ U ⊆ X + B(0, ε) , f [J × U ] ⊆ V ,

f(t, x) = x for (t, x) ∈ I × E , E is a strong deformation retract of U .

Proof. For R ∈ Kn denote by R̃ the n-dimensional cube with the same center as R and side-
length three times bigger than R. Let N ∈ P be such that 2−N+4√n < min{ε, l(Q)} and
define

A =
{
R ∈ Kn

n(N) : R̃ ∩X 6= ∅
}
.

Apply 5.8 with Kn
n, A, X in place of F , A, S to obtain a Lipschitz map f : J ×Rn → Rn,

an open set V ⊆ Rn, and a finite set B ⊆ Kn
d (N). Set E =

⋃
B and U = V ∩ Int

⋃
A and

recall 5.10. Since S ⊆
⋃

Kn
d−1(N) we get S ⊆ E.

For convenience and brevity of the notation we introduce the following definition.

9.19 Definition. We define R∞ to be the direct sum of countably many copies of R and for
i ∈P we let ei ∈ R∞ be the standard basis vector of the ith copy of R. Thus, R∞ is the set
of all finite linear combinations of the vectors {ei : i ∈P}.

We want to compare, up to homotopy, a multiplication (Y,Q) of some cubical test pair
(X,Q) with the wedge sum of certain number of copies of X. However, it might happen that
two copies of X placed side by side intersect outside ∂cQ. To prevent this, we define a lifted
multiplication so that different copies of X intersect only along ∂cQ.
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9.20 Definition. Let X, Q, k, A = {K1, . . . ,Kkd} be as in 8.3. Let ei for i ∈ P be as
in 9.19. Define j : Rn → Rn × R∞, p : Rn × R∞ → Rn, and ηi : Rn → Rn × R∞ for
i ∈ {1, 2, . . . , kd} by

j(x) = (x, 0) , p(x, y) = x , ηi(x) = j ◦ τ c(Ki) ◦ µ1/k ◦ τ−c(Q)(x) + dist(x, ∂cQ)ei .

We say that (Y, j[Q]) is the lifted k-multiplication of (X,Q) if

Y =
⋃{

ηi[X] : i ∈ {1, 2, . . . , kd}
}
⊆ Rn ×R∞ .

9.21 Lemma. Assume

U ⊆ Rn is open , Q = [0, 1]d × {0}n−d ∈ Kn
d (0) , S = ∂cQ , N ∈P ,

B ⊆ Kn
d is finite , S ⊆ E =

⋃
B ⊆ U , E is a strong deformation retract of U ,

j and p are as in 9.20 , (Y, j[Q]) is the lifted 2N -multiplication of (U,Q) ,

(Z, j[Q]) is the lifted 2N−1-multiplication of (U,Q) .

If j[S] is a Lipschitz retract of Y , then j[S] is a Lipschitz retract of Z.

Proof. Suppose there exists a Lipschitz retraction r : Y → j[S]. Due to 9.5 it suffices to
show that there exists a continuous map h : Z → S such that deg(h ◦ j|S) = 1. Set J =
{1, 2, . . . , 2d}. Let (X, j[Q]) be the lifted 2N−1-multiplication of (E,Q) and (F, j[Q]) be the
lifted 2N -multiplication of (E,Q). Observe that Y contains 2d copies of µ1/2[Z]; let us denote
these copies Z1, Z2, . . . , Z2d and the corresponding cubes Q1, Q2, . . . , Q2d so that

Y =
⋃
{Zi : i ∈ J} and j[Q] =

⋃
{Qi : i ∈ J} .

We also define
Si = ∂cQi and Xi = F ∩ Zi for i ∈ J .

Let T = Rd × {0}n−d ∈ G(n, d). Then Q ⊆ o(Q) + T . Let (v1, v2, . . . , vn) be the standard
basis of Rn and define

Ti = span{vi}⊥ ∩ T ∈ G(n, d− 1) for i ∈ {1, 2, . . . , d} ,
R = j

[⋃{
(c(Q) + Ti) ∩Q : i ∈ {1, 2, . . . , d}

}]
⊆ Y .

Note that R and R ∩ Zi for i ∈ J are contractible. Since U is open, we have S ⊆ IntU so
the pairs (Y,R) and (Zi, R ∩ Zi) for i ∈ {1, 2, . . . , d} all have the HEP by 9.3. Therefore,
R and Y/R are homotopy equivalent by 9.4. Similarly, Zi and Zi/(R ∩ Zi) are homotopy
equivalent for i ∈ J . Let q0 = j(c(Q)). We shall write [q0] for the equivalence class of q0 in
a given quotient space. Denoting homotopy equivalence by “≈” and homeomorphism by “'”
we obtain

Y ≈ Y/R '
∨2d

i=1(Zi/(Zi ∩R), [q0]) ≈
∨2d

i=1(Zi, q0) .

Set
W =

∨2d

i=1(Zi, q0) , M =
∨2d

i=1(Xi, q0) , Σ =
∨2d

i=1(Si, q0) ,

and note that Σ ⊆ M ⊆ W . Let ϕ : Y → W and ψ : W → Y be such that ϕ ◦ ψ ≈ idW and
ψ ◦ ϕ ≈ idY . For i ∈ J let πi : Σ→ Si be the projection defined in 9.7. Observe that

ϕ ◦ j[S] = Σ and deg(πi ◦ ϕ ◦ j|S) = 1 for i ∈ J .
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Recall that E is a strong deformation retract of U ; hence, if ξ : M ↪→W is the inclusion map,
there exists a continuous maps ζ : W →M such that ξ ◦ ζ ≈ idW and ζ ◦ ξ ≈ idM . Moreover,
ξ|Σ = ζ|Σ = idΣ. Since E =

⋃
B we see that E and M are d-dimensional CW-complexes

by 9.10. Hence, we may apply 9.17 to deduce that{
| deg(f ◦ ζ ◦ ϕ ◦ j|S)| : f : M → S continuous

}
=
{
|deg(g|S)| : g : X → S continuous

}
.

However, if we take f = p ◦ r ◦ ψ ◦ ξ : M → S, then

f ◦ ζ ◦ ϕ ◦ j|S = p ◦ r ◦ ψ ◦ ξ ◦ ζ ◦ ϕ ◦ j|S ≈ p ◦ r ◦ j|S = idS .

Therefore, there exists g : X → S such that deg(g ◦ j|S) = 1. Let α : X1 → X and β : Z → Z1

be homeomorphisms composed of homotheties and translations. Then, recalling ζ|Σ = idΣ,
the composition

S
j|S−−−→ Z

β−−→ Z1

ζ|Z1−−−−→ X1
α−−→ X

g−−→ S

equals g ◦ j|S and has degree one. Employing 9.5 we obtain a Lipschitz retraction Z → S.

9.22 Corollary. If S and U are as in 9.21, then S is a Lipschitz retract of U .

Proof. We assume j[S] is a Lipschitz retract of Y , where Y is the lifted 2N -multiplication of
(U,Q). We proceed by induction with respect to N ∈ N. If N = 0, we have j[U ] = Y so
S is a Lipschitz retract of U by assumption. The inductive step is now a direct application
of 9.21.

9.23 Theorem. Assume N ∈P, (X,Q) is a cubical test pair, and (Y,Q) is the 2N -multipli-
cation of (X,Q). Then (Y,Q) is a cubical test pair.

Proof. Using homotheties and rotations we may and shall assume that Q = [0, 1]d×{0}n−d ∈
Kn
d (0). We only need to show that S = ∂cQ is not a Lipschitz retract of Y . Let p and j

be as in 9.20. Assume, by contradiction, that there is a Lipschitz retraction of Y onto S.
Employing 9.5 we find δ ∈ (0, 1) such that S is a retract of Y + B(0, 2−Nδ). Apply 9.18 with
X, Q, δ in place of X, Q, ε to obtain a finite set B ⊆ Kn

d and an open set U ⊆ X + B(0, δ)
such that E =

⋃
B is a strong deformation retract of U and X ⊆ U . Let (Z, j[Q]) be the

lifted 2N -multiplication of (U,Q). Clearly p[Z] = Y and p ◦ j|S = idS , so j[S] is a Lipschitz
retract of Z. Applying 9.21 to U , Q, N , B and then 9.22, we conclude that S is a Lipschitz
retract of U which contains X, so S is also a Lipschitz retract of X and this contradicts the
assumption that (X,Q) is a cubical test pair.

9.24 Remark. To conclude we gather all our results in one place. Let x ∈ Rn, C be the set of
all cubical test pairs, P be the set of all test pairs, R be the set of all rectifiable test pairs.
Then

(a) if U ⊆ Rn is open, F ∈ wBCx for all x ∈ U , F is bounded, and G is a good class in the
sense of [FK18, 3.4], then there exists S ∈ G such that ΦF (S) = inf{ΦF (R) : R ∈ G};

(b) AEx(P) = AEx(C) = AEx(R) and AUEx(P) = AUEx(C) = AUEx(R);

(c) ACx = BCx ⊆ wBCx ⊆ AEx(C).
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Moreover, if n = d+ 1, then by [DPDRG18, Theorem 1.3] we know that F ∈ ACx if and only
if the function

(27) G(x, ν) = |ν|F (x, span{ν}⊥) for every x, ν ∈ Rn

is strictly convex in all but the radial directions, namely

G(x, ν) > 〈DνG(x, ν̄), ν〉 for every x ∈ Rn, ν̄, ν ∈ Sn−1 and ν 6= ±ν̄ .

Hence, given n = d+ 1,

(d) if F is a C 1 integrand such that the corresponding function G, as in (27), is strictly
convex, then F ∈ AEx(P).

9.25 Remark. In [Alm76, IV.1(7), p. 88] Almgren observes that uniformly convex functions
give rise to anisotropic lagrangians satisfying AUEx(P) in co-dimension 1 and vice-versa,
where P is the class of test pairs. Our result shows that functions that are just strictly
convex give rise to anisotropic lagrangians satisfying AEx(P) in co-dimension 1, for every
good family P. In particular we deduce that there is no hope of improving Theorem 8.8
showing that wBCx ⊆ AUEx(P) (and neither BCx ⊆ AUEx(P)). Indeed, if this was the case,
in co-dimension one the strict convexity of the integrand would give rise to an anisotropic
lagrangian satisfying BCx and consequently also AUEx(P), which in turn would imply the
uniform convexity of the integrand.
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