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Abstract

We describe a convex relaxation for the Gilbert–Steiner problem both in Rd and
on manifolds, extending the framework proposed in [9], and we discuss its sharpness
by means of calibration type arguments. The minimization of the resulting problem
is then tackled numerically and we present results for an extensive set of examples.
In particular we are able to address the Steiner tree problem on surfaces.

1 Introduction

In the Steiner tree problem, at least in its classical Euclidean version, we are given
N distinct points P1, . . . , PN in Rd and we have to find the shortest connected graph
containing the points Pi. From an abstract point of view this amounts to find a graph
solving the variational problem

(STP) inf{H1(L), L connected, L ⊃ {P1, . . . , PN}},

where H1 denotes the one dimensional Hausdorff measure in Rd. An optimal (not nec-
essarily unique) graph L always exists and, by minimality, L is indeed a tree. Every
optimal tree can be described as a union of segments connecting the endpoints and pos-
sibly meeting at 120◦ in at most N − 2 further branch points, called Steiner points.

On the other hand, the (single sink) Gilbert–Steiner problem [20] consists in finding
a network L along which to flow unit masses located at the sources P1, . . . , PN−1 to the
unique target point PN . Such a network L can be viewed as L = ∪N−1

i=1 λi, with λi a path
connecting Pi to PN , corresponding to the trajectory of the particle located at Pi. To
favour branching, one is led to optimize a cost which is a sublinear (concave) function of
the mass density θ(x) =

∑N−1
i=1 1λi(x): i.e., for 0 ≤ α ≤ 1, find

(Iα) inf

{
Eα(L) =

∫
L
|θ(x)|αdH1(x)

}
.

Problem (Iα) can be seen as a particular instance of an α-irrigation problem [8, 32]
involving the irrigation of the atomic measures

∑N−1
i=1 δPi and (N − 1)δPN , and we notice

∗Dipartimento di Matematica, Università di Trento, Italy, e-mail: mauro.bonafini@unitn.it
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that (I1) corresponds to the Monge optimal transport problem, while (I0) corresponds to
(STP) (the energy to be optimized reduces to the length of L). As for (STP) a solution
to (Iα) is known to exist and any optimal network L turns out to be a tree [8].

The Steiner tree problem is known to be computationally hard (even NP complete in
certain cases [21]), nonetheless in R2 and R3 we have efficient algorithms which allow us
to obtain explicit solutions (see for instance [31, 19]), while a comprehensive survey on
PTAS algorithms for (STP) can be found in [4, 5]. However, the general applicability of
these schemes restricts somehow to the Steiner tree case. For this reason we stick here
with a more abstract variational point of view, which allows us to treat in a unified way
the Steiner and Gilbert–Steiner problems.

Many different variational approximations for (STP) and/or (Iα) have been proposed,
starting form the simple situation where the points Pi lie on the boundary of a convex
set: in this case (STP) is known to be an instance of an optimal partition problem
[2, 3]. More recently several authors treated these problems in the spirit of Γ-convergence
using approximating functionals modelled on Modica–Mortola or Ambrosio–Tortorelli
type energies, initially focusing mainly on the two dimensional case [26, 11, 15], lately
extending the same ideas also to higher dimensions [16, 10].

Within this sole we introduce in [9] a Γ-convergence type result in the planar case
and at the same time we propose a convex framework for the Steiner and Gilbert–Steiner
problem. The approach moves from the work of Marchese and Massaccesi [23] and con-
siders ideas from [14] in order to obtain a convex relaxation of the energy we are dealing
with. The aim of this paper is then to provide an extensive numerical investigation of the
relaxation proposed in [9], adapting it to the treatment of more general Gilbert–Steiner
problems (with multiple sources/sinks) and addressing its validity and applicability to
problems defined on manifolds. In contrast to classical Γ-convergence type approaches,
which may numerically end up in local minima (unless carefully taking initial guesses),
this convex formulation is able to identify (in many cases) convex combinations of op-
timal networks, allowing us to have an idea of their structure. Furthermore, up to our
knowledge, this is the very first formulation leading to a numerical approximation of the
Steiner tree problem on manifolds.

The paper is organized as follows. In Section 2 we review the convex framework
presented in [9] for the α-irrigation problem (Iα) and extend it to the treatment of more
general situations with multiple sources/sinks, both in Rd and on manifolds. In Section
3 we see how the formulation simplifies for a network (STP) on graphs, with the relevant
energy reducing to the norm introduced in [23]. We then proceed in Section 4 to describe
our algorithmic scheme for the minimization of the proposed energy functional in the
Euclidean setting and we present in Section 6 various results for (STP) and α-irrigation
problems in two and three dimensions. In Section 7 we eventually detail our algorithmic
approach on surfaces and present some results obtained on spheres, tori and other surfaces
with boundaries.
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2 Convex relaxation for irrigation type problems

In this section we first review the convex framework introduced in [9] for the α-irrigation
problem (Iα) and then discuss how this same formulation can be extended to address more
general Gilbert–Steiner problems with multiple sources/sinks in Rd or even on manifolds.

2.1 The Euclidean Gilbert–Steiner problem

Fix a set of N distinct points A = {P1, . . . , PN} ⊂ Rd, d ≥ 2. A candidate minimizer
for (Iα) is given as a family of simple rectifiable curves (γi)

N−1
i=1 , each one connecting Pi

to PN . For optimality reasons we can choose these curves so that the resulting network
L = ∪iλi contains no cycles (see Lemma 2.1 in [23]), restricting this way the set of possible
minimizers to the set of (connected) acyclic graphs L that can be described as

L =
N−1⋃
i=1

λi, s.t.

· λi is a simple rectifiable curve connecting Pi to PN ,

· each λi is oriented by an H1-measurable unit vector field τi,

· τi(x) = τj(x) for H1-a.e. x ∈ λi ∩ λj ,

where the last condition requires the N − 1 pieces composing L to share the same ori-
entation on intersections. Let us call G(A) the set of acyclic graphs L having such a
representation. Hence, we can reduce ourself to consider

inf

{∫
L
|θ(x)|αdH1, L ∈ G(A), θ(x) =

N−1∑
i=1

1λi(x)

}
.

To each L ∈ G(A) we now associate a measure taking values in Rd×(N−1) as follows:
identify the curves λi with the vector measures Λi = τi ·H1 λi, and consider the rank one
tensor valued measure Λ = (Λ1, . . . ,ΛN−1), which can be written as Λ = τ ⊗ g · H1 L,
with

• τ : Rd → Rd a unit vector field providing a global orientation for L, satisfying
spt τ = L and τ = τi H1-a.e. on λi,

• g : Rd → RN−1 a multiplicity function whose entries satisfy gi · H1 L = H1 λi.

Observe that gi ∈ {0, 1} a.e. for any 1 ≤ i ≤ N − 1 (in particular gi(x) = 1 if x ∈ λi),
and by construction the measures Λi verify

div Λi = δPi − δPN . (2.1)

Definition 2.1. Given any graph L ∈ G(A), we call the above constructed measure
Λ = τ ⊗ g · H1 L the canonical (rank one) tensor valued measure representation of the
acyclic graph L and denote the set of such measures as L(A).
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Let us define on the space of matrix valued Radon measures M(Rd;Rd×(N−1)) the
functional

Fα(Λ) =


∫
Rd
||g||1/α dH1 L if Λ = τ ⊗ g · H1 L ∈ L(A)

+∞ otherwise

where we assume 1/0 = ∞. When Λ = τ ⊗ g · H1 L ∈ L(A), since by construction
gi ∈ {0, 1} on L and gi(x) = 1 whenever x ∈ λi, one immediately gets

Fα(Λ) =

∫
L

(
N−1∑
i=1

gi(x)1/α

)α
dH1 =

∫
L

(
N−1∑
i=1

gi(x)

)α
dH1 =

∫
L

(
N−1∑
i=1

1λi(x)

)α
dH1,

which is exactly the cost Eα associated to L in (Iα). We recognize that minimizing Fα
among measures Λ ∈ L(A) corresponds to minimize Eα among graphs L ∈ G(A), and
thus solves (Iα) in Rd.

This reformulation of (Iα) involves the minimization of a convex energy, namely Fα,
but the problem is still non convex due to the non convexity of L(A) (the domain of
definition of Fα). In view of a convex formulation the optimal choice would be to consider
the convex envelope (Fα)∗∗ of the energy, but such an object (up to our knowledge) has
no explicit representation. Hence, following [14], we instead look for a “local” convex
envelope of the form

Rα(Λ) =

∫
Rd

Ψα(Λ) (2.2)

with Ψα : Rd×(N−1) → [0,+∞) a 1-homogeneous, convex, continuous function such that
Rα(Λ) = Fα(Λ) whenever Λ ∈ L(A). The integral in (2.2), as outlined in [12], can be
defined as∫

Rd
Ψα(Λ) =

∫
Rd

Ψα

(
dΛa
dLd

)
dx+

∫
Rd

Ψα

(
dΛs
d|Λs|

)
d|Λs|

= sup
ϕ∈C∞c (Rd;Rd×(N−1))

{
N−1∑
i=1

∫
Rd
ϕi dΛi −

∫
Rd

Ψ∗α(ϕ) dx, Ψ∗α(ϕ) ∈ L1(Rd)

} (2.3)

where Λ = Λa+Λs is the Lebesgue decomposition of Λ w.r.t. the d-dimensional Lebesgue
measure Ld, |Λs| is the total variation of Λs, ϕi are the columns of the function ϕ(x) =
(ϕ1(x), . . . , ϕN−1(x)) and Ψ∗α is the Legendre-Fenchel conjugate of Ψα on Rd×(N−1): for
p = (p1, . . . , pN−1) ∈ Rd×(N−1) and q = (q1, . . . , qN−1) ∈ Rd×(N−1) we have

Ψ∗α(q) = sup
p

[〈q, p〉 −Ψα(p)] = sup
p

[
N−1∑
i=1

qi · pi −Ψα(p)

]
.

We immediately see that the evaluation of Rα on any Λ ∈ L(A), i.e. Λ = τ ⊗ g · H1 L
with ||τ ||2 = 1 and gi ∈ {0, 1}, only involves the singular part of the decomposition, so
that

Rα(Λ) =

∫
Rd

Ψα(τ ⊗ g)dH1 L.
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Since we require Rα(Λ) = Fα(Λ) on these measures, we then look for a 1-homogeneous,
convex, continuous function Ψα such that

Ψα(p) = ||g||1/α whenever p ∈ Kα = {τ ⊗ g, ||τ ||2 = 1, gi ∈ {0, 1}}.

The maximal function satisfying this condition can be computed as the 1-homogeneous
convex envelope of the function

Φα(p) =

{
||g||1/α if p ∈ Kα

+∞ otherwise

and, as show in [9], it turns out to be Φ∗∗α (p) = supq∈Kα〈p, q〉, which is to say the support
function of the set

Kα =

p ∈ Rd×(N−1),

∥∥∥∥∥∥
∑
j∈J

pj

∥∥∥∥∥∥
2

≤ |J |α ∀ J ⊂ {1, ..., N − 1}

 ,

with |J | the cardinality of the set J . Thanks to (2.3), setting Ψα = Φ∗∗α , we can finally
define

Rα(Λ) = sup

{
N−1∑
i=1

∫
Rd
ϕi dΛi, ϕ ∈ C∞c (Rd;Kα)

}
,

and consider the relaxed problem

inf {Rα(Λ), div Λi = δPi − δPN for all i = 1, . . . , N − 1} . (2.4)

This formulation provides the convex framework we were looking for: the problem is now
defined on the whole space of matrix valued Radon measures and the energy is convex as
it is a supremum of linear functionals.

However the functional Rα is obtained only as a “local” convex envelope of Fα and
as such it is not expected to always coincide with the true convex envelope, as we will
see in Example 2.2. Thus, given a minimizer Λ̄ of (2.4) we can end up in three different
situations:

1. Λ̄ ∈ L(A), then Λ̄ is also a minimizer of Fα and we have solved our original problem;

2. Rα(Λ̄) = infΛFα(Λ), then Λ̄ is a convex combination of minimizers of Fα;

3. Rα(Λ̄) < infΛFα(Λ), which means that the relaxation is not tight and generally
speaking minima of Rα have no relation with minima of Fα.

For a given set of terminal points A = {P1, . . . , PN} we will then call the relaxation (2.4)
to be tight (or sharp) whenever one of its minimizers satisfies 1. or 2., i.e. whenever its
minimizers are related to the actual minimizers of Fα as it is the case with real convex
envelopes. Unfortunately, as the following counterexample shows, the relaxation is not
always sharp.
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Figure 1: Left: an optimal Steiner tree viewed as its corresponding measure Λ. Right: a
rank one tenor valued measure Σ = τ ⊗ g · H1 L, with L the graph itself, τ and g as
displayed.

Example 2.2. [Non sharpness for pentagon configurations] Consider as terminal points
the five vertices of a regular pentagon of side ` > 0 and let β = 3

10π. In this situation
(STP) has 5 minimizers which are the one in the left picture of figure 1 and its 4 rotations.
The energy R0 of a Steiner tree, which corresponds by construction to its length, is equal
to ` tanβ (1 + sinβ +

√
3 cosβ) ≈ 3.8911 · `. However none of the optimal Steiner trees is

a minimizer for (2.4). Indeed we can exhibit an admissible tensor valued measure Σ with
an energy strictly less than the energy of a Steiner tree: consider for example the rank
one tensor valued measure Σ constructed in the right picture of figure 1. Such a measure
satisfies the divergence constraints and its energy, which amounts to 1/2 the length of
its support, is equal to 5

4`(
√

3 + tanβ) ≈ 3.8855 · `. Hence we are in the third case of
the previous list: the relaxation is not tight and as we already said there is in general
no way of reconstructing an optimum for (STP) staring from a minimizer of R0 (in this
case our numerical results suggest Σ as the actual minimizer of R0). Another example of
non-sharpness can be obtained considering as terminal points the vertices of the pentagon
plus the center: also in this case Σ has less energy than any optimal Steiner tree.

Despite the previous example, the proposed relaxation can be proved to be sharp in
many situations. Indeed, thanks to the duality nature of Rα, we can prove minimality
of certain given measures by means of calibration type arguments. This implies that
whenever we are able to find a calibration for a given Λ̄ ∈ arg minΛFα(Λ) then the
relaxation is sharp because Λ̄ will also be a minimizer for Rα. A calibration, at least in
the simple case of R2, can be defined as follows

Definition 2.3. Fix a matrix valued Radon measure Λ = (Λ1, . . . ,ΛN−1) and ϕ ∈
C∞c (R2;Kα). We say that ϕ is a calibration for Λ if ∇×ϕi = 0 for all i = 1, . . . , N − 1,
and ϕ realizes the supremum in the definition of Rα, i.e.

N−1∑
i=1

∫
R2

ϕi dΛi = Rα(Λ).
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The only existence of such an object certifies the optimality of Λ in (2.4). Indeed, let
Σ = (Σ1, . . . ,ΣN−1) be another competitor, with Rα(Σ) <∞ and div Σi = δPi − δPN for
each i = 1, . . . , N − 1. Hence div(Λi − Σi) = 0 and we have1∫

R2

ϕi d(Λi − Σi) = 0, (2.5)

so that

Rα(Λ) =

N−1∑
i=1

∫
R2

ϕi dΛi =

N−1∑
i=1

(∫
R2

ϕi d(Λi − Σi) +

∫
R2

ϕi dΣi

)
≤ 0 +Rα(Σ) = Rα(Σ).

In Rd with d > 2, the definition of a calibration extends as it is, where now ∇ × ϕi
stands for the exterior derivative of the 1-form associated to the vector field ϕi. Also
(2.5) generalizes and the proof carries over directly.

For the case α = 0, which corresponds to (STP), we can take advantage of calibration
arguments of [23] to justify sharpness of (2.4) for some classical choices of {P1, . . . , PN}.
Indeed, as we will see in the next section, whenever Λ is a rank one tensor valued measure,
for instance whenever it concentrates on a graph and has real-valued weights,Rα coincides
with the norm introduced in [23] to study (STP) as a mass-minimization problem for 1-
dimensional currents with coefficients in a suitable normed group. Thus, every calibrated
example in that context turns out to be a calibrated configuration in our framework, i.e.
a situation where R0 is sharp (see [23, 24]).

2.2 Extensions: generic Gilbert–Steiner problems and manifolds

The same ideas developed in the previous paragraph can be extended beyond the (single
sink) Gilbert–Steiner problem (Iα) in order to address problems with possibly multiple
sources/sinks in an Euclidean setting or even problems formulated within manifolds.

Following the strategy introduced in [22] the energy Fα can also be used to address the
general (oriented version of) “who goes where” problem. In this context we do not have
to move all the mass to a single sink but instead we are given a family of source/sink
couples and we have to move a unit mass from each source to each given destination.
Thus, letting {S1, . . . , Sm} ⊂ Rd be the set of (unit) sources and {T1, . . . , Tm} ⊂ Rd
the corresponding set of (unit) sinks, we optimize the same energy Eα involved in the
definition of (Iα) but this time among oriented networks of the form L = ∪mi=1λi, with λi
a simple rectifiable curve connecting Si to Ti. The same derivation as above can then be
repeated, leading us to the relaxed formulation

inf{Rα(Λ), Λ = (Λ1, . . . ,Λm) ,div Λi = δSi − δTi for all i = 1, . . . ,m}. (2.6)

We remark that in the previous who goes where problem, differently to what happens in
[8], we do not allow two paths λi, λj to have opposite orientation on intersections, i.e.
particles have to go the same way when flowing in the same region.

1This generalizes the “smooth” case: thinking to Λi and Σi as “regular” vector fields we have that
Λi − Σi is a gradient, whence integrating by parts and using that ϕi is curl-free we get zero.

7



The previous approach to the “who goes where” problem can now be used within
the formulation of more general branched transportation problems, where we are just
required to move mass from a set of (unit) sources {S1, . . . , Sm} ⊂ Rd to a set of (unit)
sinks {T1, . . . , Tm} ⊂ Rd, without prescribing the final destination of each particle. In
this context the problem can be tackled as follows: for every possible coupling between
sources and sinks, i.e. among all permutations σ ∈ Sm, solve the corresponding “who
goes where” problem with pairs (Si, Tσ(i))

m
i=1, and then take the coupling realizing the

minimal energy. Each “who goes where” can be relaxed as done in (2.6), providing this
way a relaxed formulation also for the case of generic multiple sources/sinks.

We point out how the extension of the previous discussion to a manifold framework
is direct: the derivation that led us to the energy Rα, together with problems (2.4) and
(2.6), is still valid on surfaces embedded in the three dimensional space, with the only
difference that divergence constraints have to be intended as involving the tangential
divergence operator on the given surface.

3 A first simple approximation on graphs

In this section we first see how the previous formulation simplifies when we consider the
Steiner tree problem in the context of graphs, in which case the energy reduces to the
norm introduced in [23]. Then, once we are able to address (STP) on networks, we try
to approximate the Euclidean (STP) by means of a discretization of the domain through
an augmented graph.

3.1 The Steiner tree problem on graphs

Consider a connected graph G = (V,E) in Rd, where V = {v1, . . . , vn} ⊂ Rd and E =
{e1, . . . , em} is a set of m segments. Each ej = [v1

j , v
2
j ] connects two vertices v1

j , v
2
j , has

length `(ej) = ||v2
j − v1

j ||2 and is oriented by τej = (v2
j − v1

j )/|v2
j − v1

j |. Furthermore,
we can assume without loss of generality that edges intersect each other in at most 1
point. The Steiner Tree Problem within G can be formulated in the same fashion as its
Euclidean counterpart: given a set of terminal points A = {P1, . . . , PN} ⊂ V find the
shortest connected sub-graph spanning A. As in the Euclidean case a solution always
exists and optimal sub-graphs are indeed sub-trees (they contain no cycles).

Following what we did above in the Euclidean case, we can decompose any candidate
sub-graph L ⊂ G into the superposition of N − 1 paths λi within the graph, each one
connecting Pi to PN . Each path is identified as the support of a flow Vi : E → {−1, 0, 1}
flowing a unit mass from Pi to PN : we set Vi(e) = 1 if edge e is travelled in its own
direction within path λi, −1 if it is travelled in the opposite way and 0 otherwise. By
construction we satisfy the discrete version of (2.1), i.e. the classical Kirchhoff conditions:
for all “interior” vertices v ∈ V \ {Pi, PN} we have∑

e∈δ+(v)

Vi(e)−
∑

e∈δ−(v)

Vi(e) = 0, (3.1a)
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with δ±(v) the set of outgoing/incoming edges at vertex v, and (Pi, PN ) is the source/sink
couple, meaning∑

e∈δ+(Pi)

Vi(e)−
∑

e∈δ−(Pi)

Vi(e) = 1,
∑

e∈δ+(PN )

Vi(e)−
∑

e∈δ−(PN )

Vi(e) = −1. (3.1b)

Setting V = (V1, . . . , VN−1) and L = suppV = ∪{e ∈ E : V (e) 6= 0}, we have

H1(L) =
∑
e∈E

`(e) · ||V (e)||∞ =: F(V ),

and as before a solution to the network (STP) can be found minimizing F among vector
valued flows V : E → {−1, 0, 1}N−1 satisfying the above flux conditions (3.1). Let us
identify each family V with a tensor valued measure Λ = (Λ1, . . . ,ΛN−1) defined on the
whole Rd by setting

Λi =
∑
e∈E

Vi(e) τe · H1 e, i.e. Λ =
∑
e∈E

τe ⊗ V (e) · H1 e. (3.2)

The idea is now to drop the integer constraint {−1, 0, 1} on each Vi and optimize the
previously defined energy R0 among tensor valued measures of the form (3.2), obtaining
the relaxed energy

R(V ) = R0(Λ) = sup
ϕ∈C∞c (Rd;K0)

N−1∑
i=1

∫
Rd
ϕi dΛi = sup

ϕ∈C∞c (Rd;K0)

N−1∑
i=1

∑
e∈E

(
Vi(e)

∫
e
ϕi ds

)
.

Since edges intersect in at most 1 point it is possible to interpret the last supremum
as a supremum over test functions entirely supported on the graph and of the form
ϕ =

∑
e τe ⊗W (e) with W : E → RN−1. By assumption, for almost every point x on

the graph (except at intersections) there exists only one edge e containing x; hence, the
pointwise constraint ϕ(x) ∈ K0 translates into ϕ e ∈ K0 for all edges e ∈ E, i.e.∥∥∥∥∥∥

∑
j∈J

Wj(e)τe

∥∥∥∥∥∥
2

=

∣∣∣∣∣∣
∑
j∈J

Wj(e)

∣∣∣∣∣∣ ≤ 1 ∀ J ⊂ {1, ..., N − 1}.

These new constraints involve only vectors W (e) and are equivalent to the unique con-
straint

||W (e)||∗ =

N−1∑
j=1

(Wj(e) ∨ 0)

 ∨
−N−1∑

j=1

(Wj(e) ∧ 0)

 ≤ 1,

which amounts to require that the maximum between the `1 norm of the positive part
and the `1 norm of the negative part of W (e) has to be less or equal to 1. The energy
can be finally rewritten as

R(V ) = sup

{∑
e∈E

`(e)V (e) ·W (e), ||W (e)||∗ ≤ 1 ∀e ∈ E

}

=
∑
e∈E

`(e)

(
sup
i

[Vi(e) ∨ 0]− inf
i

[Vi(e) ∧ 0]

)
=
∑
e∈E

`(e)||V (e)||.
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Figure 2: Approximations of (STP) for 3, 4 and 13 terminal points (red) using the
augmented graph idea, K = 1681, M = 30. Edges carrying a non-zero flux are displayed.

The norm || · || is exactly the norm used in [23] to study (STP) using currents with
coefficients in normed groups and hence we can take advantage of calibration arguments
of [23] to justify the sharpness of the relaxation for calibrated configurations of terminal
points. Of course the counterexample 2.2 still applies to this discrete version of the
problem using as graph G the union of the two graphs of picture 1: the minimizer
concentrates on the star and not on the Steiner structure.

Optimization of R under the (linear) flux constraints (3.1) can then be performed
solving a linear program: in order to linearize the objective we introduce two sets of
variables {se}e∈E , {ie}e∈E , and for each e ∈ E we require ie ≤ 0, se ≥ 0 and

ie ≤ Vi(e) ≤ se for all i = 1, . . . , N − 1,

so that the objective reduces to
∑

e `(e)(se− ie). Whenever the size of the resulting linear
program is too big to be treated by standard interior point solvers we can alternatively
apply the cheaper first order scheme proposed in [27] (see Section 4 for details).

3.2 Graphs and the Euclidean (STP)

Once we have a method to approximate (STP) on networks we can try to address the
Euclidean (STP) through the use of an augmented graph. The core idea is the following:
let {x1, . . . , xK}, K ∈ N, be a set of scattered points that uniformly covers an open convex
domain Ω such that {P1, . . . , PN} ⊂ Ω and let V = {x1, . . . , xK}∪{P1, . . . , PN}. Fix M ∈
N and construct the graph G = (V,E) where each v ∈ V is connected through segments
to its M closest neighbours. For M sufficiently large the network G is connected and
solving (STP) within G provides an approximation of the underlying Euclidean Steiner
tree.

We see in figure 2 two examples with K = 1681 and M = 30. In both cases results are
very close to the optimal Steiner tree and for obtaining them we simply solve a medium
scale linear program. However the use of a fixed underlying graph has some drawbacks.
For example we cannot expect edges meeting at triple points to satisfy the 120◦ condi-
tion and what should be a straight piece in the optimal tree is only approximated by a
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sequence of (non-aligned) edges. A possible remedy for obtaining “straighter” solutions
is to increase M , allowing this way longer edges, but this would increase the size of the
problem. Furthermore obtaining convex combinations of minimizers is almost impossible
because the underlying graph is not regular and having two sub-graphs with the exact
same energy is very rare. On the other hand taking regularly distributed points generates
many equivalent solutions even when there should be only one.

We also observe that this simplified framework is specific to the Euclidean Steiner tree
case: the corresponding graph framework for (Iα) does not end up in a linear program
and no direct extension to the manifold case is possible. This lack of generality, together
with the intrinsic low precision of the approach as a consequence of working on a graph,
leads us to switch our focus on the direct minimization of Rα on the whole of R2/R3.

4 Generic Euclidean setting, the algorithmic approach

Motivated by the shortcomings of the previous simplified framework, we present in this
section our approach for solving (2.4) in R2 (the same ideas extends to the three dimen-
sional setting). Our resolution is based on a staggered grid for the discretization of the
unknowns coupled with a conic solver (or a primal-dual scheme) for the optimization of
the resulting finite dimensional problem.

4.1 Spatial discretization

Assume without loss of generality that P1, . . . , PN are contained in the interior of Ω =
[0, 1] × [0, 1], which will be our computational domain. From a discrete standpoint we
view the unknown vector measures (Λ1, . . . ,ΛN−1) in (2.4) as a family V = (V1, . . . , VN−1)
of vector fields in Ω and, due to the divergence constraints that we need to satisfy, we
discretize these unknown fields on a staggered grid (this way our degrees of freedom are
directly related to the flux of each vector field through the given grid interface). Fix then
a regular Cartesian grid of size M ×M over Ω and let h = 1/M . The first component
Vi,1 of each vector field is placed on the midpoints of the vertical cells interfaces whereas
the second components Vi,2 on the horizontal ones, so that to have on each element (k, `)

Vi|(k,`) =

(
(V k+1,`
i,1 − V k,`

i,1 )(x− (k − 1)h)/h+ V k,`
i,1

(V k,`+1
i,2 − V k,`

i,2 )(y − (`− 1)h)/h+ V k,`
i,2

)
.

The component Vi,1 is described by (M + 1)×M unknowns whereas Vi,2 is described by
M × (M + 1) parameters. Regarding the test functions ϕ = (ϕ1, . . . , ϕN−1) we define
them to be piecewise constant on each element of the grid, i.e. for any cell (k, `) we have

ϕk,`i = (ϕk,`i,1 , ϕ
k,`
i,2 ) ∈ R2.

Within this setting the optimization of the energy Rα translates into

min
(V k,`i,d )

sup
(ϕk,`i,d )∈Kα

∑
k,`

N−1∑
i=1

h2

[
V k,`
i,1 + V k+1,`

i,1

2
ϕk,`i,1 +

V k,`
i,2 + V k,`+1

i,2

2
ϕk,`i,2

]
(4.1)
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under the condition div Vi = δPi − δPN for all i = 1, . . . , N − 1. Since the flux of each Vi
over the generic cell (k, `) is given by

F k,`i = h(V k+1,`
i,1 − V k,`

i,1 ) + h(V k,`+1
i,2 − V k,`

i,2 ),

the divergence constraints translate, at a discrete level, into
F k,`i = 0 whenever cell (k, `) does not contain Pi or PN ,

F k,`i = 1 if cell (k, `) contains Pi,

F k,`i = −1 if cell (k, `) contains PN ,

(4.2)

complemented with a “zero flux” condition at the boundary, i.e. we set V k,`
i,d = 0 whenever

it refers to a boundary interface. We finally observe that, by construction, ϕ ∈ Kα if for
each cell (k, `) in the grid the matrix ϕk,` = (ϕk,`1 , . . . , ϕk,`N−1) satisfies∥∥∥∥∥∥

∑
j∈J

ϕk,`j

∥∥∥∥∥∥
2

≤ |J |α for all J ⊂ {1, . . . , N − 1}.

For the resolution of this finite dimensional optimization problem we then propose two
different and somehow complementary approaches.

4.2 Optimization via conic duality

The inf-sup problem (4.1) can be written, thanks to conic duality (see e.g. Lecture 2

of [7]), as a pure minimization problem involving the degrees of freedom (V k,`
i,d ) and a

set of dual variables (ψk,`J,d) indexed over subsets J ⊂ {1, . . . , N − 1}. Indeed, for fixed
1 ≤ k, ` ≤M and J ⊂ {1, . . . , N − 1}, one has

inf
ψk,`J ∈R2

|J |α||ψk,`J ||2 − 〈ψk,`J ,
∑
j∈J

ϕk,`j 〉

 =


0 if

∥∥∥∥∥∥
∑
j∈J

ϕk,`j

∥∥∥∥∥∥
2

≤ |J |α

−∞ otherwise,

so that, if we denote Ṽ k,`
i = ((V k,`

i,1 +V k+1,`
i,1 )/2, (V k,`

i,2 +V k,`+1
i,2 )/2) ∈ R2, (4.1) is equivalent

to

min
(V k,`i,d )

sup
(ϕk,`i,d )

∑
k,`

N−1∑
i=1

h2〈Ṽ k,`
i , ϕk,`i 〉+ inf

(ψk,`J,d)

∑
k,`

∑
J

h2

|J |α||ψk,`J ||2 − 〈ψk,`J ,
∑
j∈J

ϕk,`j 〉

 .
Switching the sup over (ϕk,`i,d ) and the inf over (ψk,`J,d) we obtain

min
(V k,`i,d )

inf
(ψk,`J,d)

∑
k,`

∑
J

h2|J |α||ψk,`J ||2 + h2 sup
(ϕk,`i,d )

∑
k,`

N−1∑
i=1

〈Ṽ k,`
i , ϕk,`i 〉 − 〈ψ

k,`
J ,
∑
j∈J

ϕk,`j 〉

 .
12



Since the inner sup is either 0 if Ṽ k,`
i =

∑
J3i ψ

k,`
J for all 1 ≤ k, ` ≤M and 1 ≤ i ≤ N − 1

or +∞ otherwise, the previous problem eventually leads to

min
(V k,`i,d ),(ψk,`J,d)

∑
k,`

∑
J

h2|J |α ‖ψk,`J ‖2 (4.3)

where each Vi satisfies the same flux constraints (4.2) and for all cells (k, `) and all
i = 1, . . . , N − 1 we must satisfy

V k,`
i,1 + V k+1,`

i,1

2
=
∑
J3i

ψk,`J,1 and
V k,`
i,2 + V k,`+1

i,2

2
=
∑
J3i

ψk,`J,2. (4.4)

Problem (4.3) under the set of linear constraints (4.2) and (4.4) can now be solved invoking
the conic solver of the library MOSEK [25] within the framework provided by [17].

4.3 Optimization via primal-dual schemes

Collect all the (V k,`
i,d ) into a vector v ∈ Rnv , nv = (N − 1)(2M2 + 2M), and all the (ϕk,`i,d )

into ϕ ∈ Rnϕ , nϕ = (N − 1)2M2. Moving the constraints on ϕ into the objective via the
convex indicator function, the discrete energy (4.1) can be written down as

min
v

max
ϕ
〈ϕ , Bv〉 − χKα(ϕ)

for a suitable (sparse) matrix B of size nϕ × nv, while the divergence constraints reduce
to Av = b for a suitable (sparse) matrix A of size nλ × nv and a vector b ∈ Rnλ . To the
set of liner constraints Av− b = 0 we can now associate a dual variable λ ∈ Rnλ so that
they can be incorporated into the objective as

min
v

max
ϕ,λ
〈ϕ , Bv〉 − χKα(ϕ) + 〈λ , Av − b〉.

The problem, written this way, turns into an instance of a general inf-sup problem of
the form

min
x∈Rn

max
y∈Rm

〈y ,Kx〉+G(x)− F ∗(y) (4.5)

with K an m×n matrix and G : Rn → R∪{∞}, F ∗ : Rm → R∪{∞} convex lsc functions.
Among the possible numerical schemes which have been developed in the literature for
the resolution of (4.5) we choose here the preconditioned primal-dual scheme presented
in [27]. The scheme can be summarized as follows: let γ ∈ [0, 2], T = diag(τ1, . . . , τn) and
Σ = diag(σ1, . . . , σm), with

τj =
1∑m

i=1 |Kij |2−γ
and σi =

1∑n
j=1 |Kij |γ

,

fix x0 ∈ Rn, y0 ∈ Rm, and iterate for any k > 0{
xk+1 = (I + T∂G)−1(xk − TKT yk)

yk+1 = (I + Σ∂F ∗)−1(yk + ΣK(2xk+1 − xk))
(4.6)
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In this context the proximal mappings are defined as

(I + T∂G)−1(x̂) = arg min
x

[
G(x) +

1

2
〈T−1(x− x̂), x− x̂〉

]
and represent the extension of the classical definition with constant step size to this
situation with “variable dependent” step sizes.

In our specific use case the scheme takes the following form: define T = diag(τ1, . . . , τnv),
Σ = diag(σ1, . . . , σnϕ) and Σ̃ = diag(σ̃1, . . . , σ̃nλ), with

τj =
1∑nϕ

i=1 |Bij |2−γ +
∑nλ

i=1 |Aij |2−γ
, σi =

1∑nv
j=1 |Bij |γ

, σ̃i =
1∑nv

j=1 |Aij |γ
,

given v0,ϕ0,λ0 iterate for k > 0
vk+1 = vk − T (BTϕk +ATλk)

ϕk+1 = proj(ϕk + ΣB(2vk+1 − vk) | Kα)

λk+1 = λk + Σ̃(A(2vk+1 − vk)− b)

(4.7)

The computational bottleneck for this simple iterative procedure resides in the projection
of a given vector ϕ̄ ∈ Rnϕ onto the convex set Kα. By definition this operation reduces
to the cell-wise projection on Kα of the matrices ϕk,`, and so we fix a d× (N − 1) matrix
q = (q1, . . . , qN−1) and split the discussion into two sub-steps.

Projection on individual sets: for each fixed subset J ⊂ {1, . . . , N − 1} we define
the convex set

Kα
J =

p ∈ Rd×(N−1),

∥∥∥∥∥∥
∑
j∈J

pj

∥∥∥∥∥∥
2

≤ |J |α
 .

The projection of q over Kα
J can be computed explicitly: define vJ =

∑
j∈J qj , then the

projection p = proj(q | Kα
J ) = (p1, . . . , pN−1) has columns defined as pj = qj if j /∈ J and

pj = qj − 1/|J | (‖v‖2 − |J |
α)+ v

‖v‖2
if j ∈ J .

Projection on the intersection: observe that Kα = ∩JKα
J , i.e. Kα is the inter-

section of a family of convex sets. In order to get an approximation of proj(q | Kα) we
can apply the Dykstra’s projection algorithm (see [18]). The scheme in our setting is the

following: let J1, . . . , J2N−1 be all the subsets of {1, . . . , N −1}, let {y0
j }2

N−1

j=1 be 2N−1 null

matrices of size d× (N − 1), p0 = q, then for any k ≥ 1 iterate

pk0 = pk−1

for j = 1, . . . , 2N−1

pkj = proj(pkj−1 + yk−1
j | Kα

Jj )

ykj = yk−1
j + pkj−1 − pkj

end for

pk = pk2N−1
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Figure 3: Energy concentration for the minimizer of R0 for P1 = (1/4, 1/3), P2 =
(3/4, 2/3). Left: solution obtained via a conic solver, final energy ≈ 0.606307. Right:
solution obtained after 200000 iterations of the primal-dual scheme, γ = 0.6, final energy
≈ 0.606765.

We then have pk → proj(q | Kα) as k → +∞.

Remark 4.1. Each step of the previous iterative projection procedure requires 2N−1 sub-
projections and thus the scheme is intrinsically time-consuming. Up to our knowledge
there seems to be no immediate simplifications to avoid some of the 2N−1 inner projec-
tions: for example the restriction of the inner loop over sets Kα

Jj
such that q /∈ Kα

Jj
is

not going to work in general. At the same time we observe that established convergence
rates for (4.6) do not apply in this case because our projection, which represents one of
the two proximal mappings, is only approximated and not exact, making us falling back
in a context like [30].

5 Numerical details

The two resolution paths presented above allow us to overcome some shortcomings of the
simplified framework of Section 3 but introduces at the same time an higher computational
cost, mainly depending on the combinatorial nature of the set Kα, which reflects in the
high number of variables involved in (4.3) and in the complicated projection in (4.7).

Generally speaking the primal-dual scheme is the cheapest of the two in terms of
computational resources: it can be implemented so that every operation is done in-place,
reducing to almost zero any further memory requirement apart from initialization, while
the interior point approach used by a conic solver is extremely demanding in terms of
memory due to the 2N−1 additional variables needed to define (4.3). However, since we
are looking for 1d structures, our solver also needs to be able to provide very localized
optima, and with this regards the primal-dual approach is not very satisfactory. As we
can see in figure 3, where we use the two schemes for the same regular 201 × 201 grid
over [0, 1]2, the solution provided by the primal-dual scheme is more diffused than the
one obtained using the conic approach. For this reason we would like to use for our
experiments the conic formulation (4.3) and to do so, in order to be able to treat medium
scale problems, we need to find a way to reduce a-priori the huge number of additional
variables that are introduced: this can be done both via a classical grid refinement and
via a variables “selection”.
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5.1 Grid refinement

The numerical solution is expected to concentrate on a 1-dimensional structure, and so
the grid needs to be fine only on a relatively small region of the domain. This suggests the
implementation of a refinement strategy able to localize in an automatic way the region
of interest. For doing so we use non-conformal quadtree type meshes (see e.g. [29, 6]),
which are a particular class of grids where the domain is partitioned using M square cells
as Ω = ∪mSm and each square cell Sm can be obtained by recursive subdivision of the box
[0, 1]2 (see figure 4 for examples of such grids). As in the case of uniform regular meshes
we employ for the discretization a staggered approach: we set the degrees of freedom
of vector fields on faces of each element, with the additional requirement that whenever
a face is also a subsegment of another face then the two associated degrees of freedom
are equal (this is to maintain continuity of the normal components of the discrete fields
across edges and guarantees that fluxes are globally well behaved). The matrix valued
function ϕ is again defined to be constant on each element of the grid so that the nature
of the discrete problem we need to solve remains the same.

Figure 4: Refinement example for 3 points. At each iterate we plot the grid and the two
fields V1, V2, which are then used to build the next grid.

A refinement procedure can then be described as follows: fix a coarse quadtree grid
T , for example a regular 8× 8 one, and then

• solve the problem on the given grid T ;

• identify elements of the grid where the solution concentrates the most and label
them as “used”, identify elements of the grid where the solution is almost zero and
label them as “unused”;

• refine the grid subdividing each “used” element into 4 equal sub-elements and try to
merge “unused” elements into bigger ones (the merging will occur if four elements
labelled as “unused” have the same father in the quadtree structure);

• repeat.

As we can see in figure 4 this procedure allows us to localize computations in a neigh-
bourhood of the optimal structure we are looking for. This way we can attain a good
level of fineness around the solution without being forced to employ a full grid which
would require the introduction of a lot of useless degrees of freedom.
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Figure 5: Expected behaviour of the variables {ψJ}J . We can see how each Vi can be
reconstructed as the union of the ψJ such that i ∈ J and that only a subset of the ψJ is
used.

5.2 Variables selection

Generally speaking, in an optimum for (4.3) most of the variables ψJ will turn out to be
identically 0 while the ones that are not 0 everywhere will be concentrated on small regions
of the domain. Indeed each ψJ can be seen as a possible building block of the final solution
because, due to formula (4.4), the vector field ψ{j1,...,jk}, {j1, . . . , jk} ⊂ {1, . . . , N − 1},
represents the portion of the graph where the fields Vj1 , . . . , Vjk coincide (see for example
figure 5 for a visual depiction in two cases). This means that we expect only a few ψJ to be
non zero on each element of the grid. With this in mind we can add the following selection
procedure to the previous refinement scheme: given an approximate solution on a grid T ,
we identify for each square element Sm which are the non zero variables ψJm1 , . . . , ψJmkm
on that element and then, at the next step, we introduce only these variables in that
particular region (in case the element Sm is one of those labelled as “used” this means
that in the next optimization we will use only ψJm1 , . . . , ψJmkm

within its 4 children).
The main advantage of this procedure is clear: once we are able to identify the regions

where each variable ψJ concentrates (if any) we can dramatically reduce the number of
unknowns we need to introduce, passing from 2N−1 vector fields to be defined on each
element to only a few of them. Thanks to these two refinement procedures we are now
in a position to efficiently tackle the optimization of Rα using accurate conic solvers.

6 Results in flat cases

We present in this section different results obtained using the outlined scheme integrated
with the two refinement procedures described above.

In figure 6 we compute minimizers of the relaxed energy R0 for regular configurations
of terminal points placed on the vertices of a triangle, a square, a pentagon and an
hexagon. In all cases we start with a regular 32× 32 mesh and then apply the previous
refinement procedures 5 times, ending up with a grid size of 1/1024 around the optimal
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Figure 6: Optima of R0 in R2 for 3, 4, 5, 6 terminal points on the vertices of regular
polygons.

structure. In the first example we are able to retrieve the unique minimizer while in the
second example we obtain a convex combination of the two possible minimizers for (STP).
In the latter case this behaviour is expected because for this particular configuration of
points the relaxation is sharp due to the calibration argument presented in [23]. In the
third experiment we recover the star-shaped counterexample of figure 1 which seems to
be the actual minimizer of the relaxed problem and in the last picture we get a convex
combination of the six possible minimizers. We remark that the hexagon case is not a
calibrated example in the work of Marchese–Massaccesi but our numerical result suggests
the existence of a calibration because the relaxation seems to be sharp.

Figure 7: Optima of R0 in R2 for 7, 9 and 13 terminal points.

In figure 7 we first compute a minimizer for a 7 points configuration (6 vertices of the
hexagon plus the center) and observe how we are able to obtain a convex combination
of the two Steiner trees (again this was expected due to a calibration argument). We
observe that in this example the points do not lie on the boundary of a convex set,
meaning that the problem cannot be simplified into an optimal partition problem as it is
done for example in [14]. We then move to some non symmetric distributions of terminal
points: in the second picture we see the result for 9 randomly selected points while in
the third one we increase the number of terminals up to 13. In this last case an ad-hoc
approach is necessary. Due to the high number of variables introduced in (4.1) a direct
minimization using a conic solver is unfeasible even for very coarse grids (the amount of
memory required to just set up the interior point solver is too much). To circumvent this
problem we first compute a rough solution either optimizing R0 on a coarse grid using
the primal-dual minimization scheme or applying the augmented graph idea presented in
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section 3 (see picture 2), and then we use this approximation for deducing which are the
variables ψJ active at a given point: for every cell (k, `) of a uniform grid we introduce
ψ{j1,...,jk} on that cell only if in the approximate solution every field Vj1 , . . . , Vjk is not
identically zero in a suitable neighbourhood of the cell. This way we rule out a huge
amount of the ψJ obtaining a problem which is now tractable through interior point
schemes.

Figure 8: Irrigation networks minimizing Rα and moving 4 masses to a unique sink,
α = 0.6, 0.8, 0.95, 1.

In figure 8 we test the relaxation Rα for a simple irrigation problem where we approx-
imate the shape of the optimal network moving 4 unit masses located at S1 = (0.4, 0.9),
S2 = (0.3, 0.65), S3 = (0.2, 0.4), S4 = (0.1, 0.15), to the unique sink T = (0.9, 0.27).
We can see how for small α the optimal shape is close to the optimal Steiner tree while
for higher values of α the network approaches more and more the configuration for an
optimal Monge–Kantorovitch transport attaining it for α = 1 as expected.

Figure 9: Optima of Rα for moving 4 masses from left to right, α = 0.65, 0.7, 0.75. The
pairings realizing the first infimum and the third one are different.

We turn next in figure 9 to an example where 4 unit masses located at 4 sources on
the left (S1 = (0.1, 0.55), S2 = (0.1, 0.4), S3 = (0.1, 0.25), S4 = (0.1, 0.1)) has to be moved
to 2 sinks of magnitude 2 on the right (T1 = (0.9, 0.2), T2 = (0.9, 0.45)). Since for each
mass we have two possible destinations we need to loop over all feasible combinations of
source/sink couples, solve the corresponding “who goes where” problem and then choose
the one giving the optimizer with less energy. In the examples the optimal couplings are
{(S1, T1), (S2, T1), (S3, T2), (S4, T2)} for α = 0.65 and {(S1, T2), (S2, T2), (S3, T1), (S4, T1)}
for α = 0.75. In the case α = 0.7 we are at the switching point between a connected and
a disconnected optimal structure and our relaxed optimum concentrates on both.

The numerical scheme we have described for the two dimensional case can be extended
directly to the three dimensional context for addressing the optimization of Rα in R3.

19



Figure 10: Optima of R0 for 4, 5 and 7 points in R3.

Non-conformal quadtree type grids are replaced by non-conformal octree type grids (see
[29]) and a staggered approach is employed placing the degrees of freedom on faces of each
cubic element composing the grid. The underlying structure of the discrete optimization
we end up with remains the same and the two refinement procedures can be extended as
they are, without any major change. We see in figure 10 the results for 4, 5 and 7 points
configurations. All the examples are purely 3-dimensional and in the first two cases we
have a maximum number of Steiner points (respectively 2 and 3), while in the last case
the optimal structure consists of two “disjoint” optimal sub-trees connected through a
central terminal point.

7 Extension to surfaces

As already observed in Section 2 the proposed relaxation can also be used to address
(STP) and α-irrigation problems on surfaces. Up to our knowledge, even in the Steiner
tree case, this is the first numerical approximation of these problems covering the manifold
framework. Theoretically speaking what we need to do is to solve problem (2.4) on a
manifold S embedded in R3, where now a candidate minimizer Λ is a matrix valued
measure defined on the manifold and divergence constraints translate accordingly. From
a numerical point of view our unknowns are again vector fields (V1, . . . , VN−1) living on
the surface and the domain will be approximated by means of a triangulated surface Th.
We first discuss the direct extension of the staggered grid idea to Th and then present a
more accurate discretization, eventually used in our experiments.

7.1 Raviart–Thomas approach

The staggered approach presented for quadrilateral grids can be extended to triangular
meshes considering a discretization based on the so-called Raviart–Thomas basis func-
tions, which are vector valued functions whose degrees of freedom are related to the flux
of the given basis function across edges (see [13]).

Let Th be a regular triangulation of S, with n vertices and m edges, and consider the
lowest order Raviart–Thomas basis functions over Th: for each edge e in the triangulation
we call K− the “left” triangle adjacent to e and K+ the “right” triangle adjacent to e
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(according to a given fixed orientation) and define the vector function

Φe(x) =



`e

2A+
e

(x− p+) if x ∈ K+

− `e

2A−e
(x− p−) if x ∈ K−

(0, 0, 0) otherwise

where `e is the length of the edge, A±e = |K±| are the areas of the triangles and p+, p−
are the opposite corners (with the obvious modification for boundary edges). We then
approximate each Vi, i = 1, . . . , N − 1, as

Vi(x) =
m∑
e=1

V e
i Φe(x)

and as before matrix valued variables ϕ = (ϕ1, . . . , ϕN−1) are considered to be piecewise
constant over each element of the triangulation, i.e. ϕi|K = ϕKi = (ϕKi,1, ϕ

K
i,2, ϕ

K
i,3) ∈ R3

for all K ∈ Th, i = 1, . . . , N − 1. The unknowns are then the family of parameters (V e
i )

and (ϕKi,d). Looking at Rα the integral we need to compute becomes

∑
K∈Th

N−1∑
i=1

∫
K

(
m∑
e=1

V e
i Φe(x)

)
· ϕKi dx, (7.1)

and can be made explicit as follows: let eKj be the edge of triangle K opposite to point

PKj (j-th point of triangle K) and sK,e
K
j = ±1 the position of that triangle with respect

to the edge eKj , then (7.1) yields

1

6

∑
K∈Th

N−1∑
i=1

[
sK,e

K
1 `eK1

V
eK1
i (PK2 + PK3 − 2PK1 )ϕKi,1 + sK,e

K
2 `eK2

V
eK2
i (PK1 + PK3 − 2PK2 )ϕKi,2

+ sK,e
K
3 `eK3

V
eK3
i (PK1 + PK2 − 2PK3 )ϕKi,3

]
.

The structure of the discrete energy is the same as the one obtained in the Euclidean set-
ting (the conditions on ϕ translates again in the element-wise constraint ϕK ∈ Kα for all
K ∈ Th). Furthermore within this Raviart–Thomas framework we have two advantages:
fields Vi are by construction surface vector fields (i.e. they live in the tangent space to
the surface) and divergence constraints translate into simple flux conditions of the form

sK,e
K
1 `eK1

V
eK1
i + sK,e

K
2 `eK2

V
eK2
i + sK,e

K
3 `eK3

V
eK3
i = 0 or ± 1

depending on K containing Pi, PN or none of them, and V e
i = 0 whenever e is a boundary

edge. The price to pay for such simplicity resides in the fact that this Raviart–Thomas
approximation is a low-order scheme. The objects we would like to approximate are
singular vector fields concentrated on 1-dimensional structures but with this approach we
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generally obtain solutions that are quite diffused and can only give us an approximate
idea of the underlying optimal set. At the same time this diffusivity prevents a good
refinement because the refined region turns out to be too large. For this reason a better
approximation space is needed, even if we will end up with a more complex discrete
problem.

7.2 P2-based approach

Let Th be a regular triangulation of S. We consider the standard discrete space

X2
h = {vh ∈ C0(Th) : vh|K ∈ P2(K), for all K ∈ Th}

and take vector fields Vi ∈ (X2
h)3 for all i = 1, . . . , N − 1. As in the staggered case

matrix valued variables ϕ = (ϕ1, . . . , ϕN−1) are defined to be piecewise constant over
each element of the triangulation, i.e. ϕi|K = ϕKi = (ϕKi,1, ϕ

K
i,2, ϕ

K
i,3) for all K ∈ Th,

i = 1, . . . , N − 1. The energy Rα is then

sup

∑
K∈Th

N−1∑
i=1

∫
K
Vi · ϕKi dx, ϕK ∈ Kα for all K ∈ Th


and the integral over each triangle K can be computed explicitly in terms of the degrees of
freedom associated to Vi and ϕi, i = 1, . . . , N − 1 (the integrand reduces to a polynomial
of degree 2). We are left with the specification of how we impose divergence and tangency
constraints on each Vi, i = 1, . . . , N − 1.

Divergence constraints: for each vector field Vi we have to impose div Vi = δPi −
δPN , where this time the divergence has to be interpreted as the tangential divergence
operator on surfaces (see for instance [28]). We observe that div Vi is piecewise linear
over each element of the triangulation and thus, for K ∈ Th not containing Pi or PN
we impose (div Vi)|K = 0 requiring it to be 0 at the three vertices of K. On the other
hand, if K ∈ Th contains Pi (or PN ) we require the flux of Vi over ∂K to be +1 (or
−1). Eventually, for each boundary edge eb of the triangulation we request the flux of Vi
through eb to be 0.

Tangency constraints: while for the Raviart–Thomas approach the approximate
fields are surface vector fields by construction, for this P2 approach we need to impose
this constraint as an additional condition. For doing so we require tangency of Vi at each
node of the triangulation and at the mid-point of each edge. Normals at these points are
approximated as a weighted average of normals of surrounding elements.

The above constraints, as it happens in the staggered case, translate into linear con-
straints over the degrees of freedom of V1, . . . , VN−1, and the discrete problem we end
up with can be solved using the same strategies presented in Section 4. Eventually we
observe that we can extend the refinement procedures of Section 5 also on triangulated
surfaces taking advantage of the re-meshing functionalities of the Mmg Platform [1]: at
each step we identify the region where the solution concentrates the most and then remesh
the surface requiring the new mesh to be finer in that region and coarser elsewhere.
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7.3 Results

Figure 11: Optima of R0 for 3, 4, 5 points on a sphere, single view for 3 terminals and
different view angles for 4, 5 terminals.

In figure 11 we see the results obtained through the P2-based approach for 3 instances
of (STP) on the sphere. In the first case (upper-left) we approximate the Steiner tree
associated to the terminal points (1, 0, 0), (0, 1, 0), (0, 0, 1), and observe how we get a
classical triple junction. In the second example (upper-middle and upper-right) we add
a fourth point, (0,−1, 0), and obtain a convex combination of minimizers: in this case a
possible minimizer can be constructed using the structure of the first picture completed
with an geodesic arc connecting (0, 0, 1) to (0,−1, 0). We also observe that due to the
refinement steps energy concentrates only on two of the possible four minimizers, the two
around which the mesh gets refined. In the third example (second row) we add a fifth
point, (−1, 0, 0), and obtain a convex combination of the two minimizers.

As we change the topological nature of the surface results become more interesting.
We approximate in figure 12 minimizers of R0 for some points configurations on the
torus. In the first example (upper-left) we fix two terminal points opposite to each
other on the largest equator and observe an energy concentration on four different paths
(each one a geodesic connecting the two points). For certain 3 points configurations
we obtain a unique structure with a triple junction (upper-right), while for 3 points in a
symmetric disposition on the largest equator we observe as solution a convex combination
of the 6 possible minimizers (bottom-left). In the last example (bottom-right) we increase
the number of holes of our torus and obtain for a symmetrical 3 points configuration a
minimizer which cannot be seen as a convex combination of Steiner trees (i.e. another
non sharpness example).

Finally, in figure 13, we test our relaxation on some surfaces with boundary. In the
first example we connect three given points on the graph of a function while in the last
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Figure 12: Optima of R0 for 2, 3 points on different tori (front/back views).

Figure 13: Optima of R0 for 3 points on the graph of a function and on some punctured
domains in R2.

two we use flat surfaces with holes, which can be seen as the flat version of the previous
tori. In this case solutions can adhere to the interior boundary of the domain as long as
this is energetically favourable. Observe that, similarly to counter example of figure 1,
we obtain a profile which is not a convex combination of optimal trees. As in figure 1,
we suspect this solution to illustrate the fact that our convexification may be not sharp
in specific situations.
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