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Abstract. We show that a solution to a variant of the Beckmann problem can be obtained
by studying the limit of some weighted p−Laplacian problems. More precisely, we find a
solution to the following minimization problem:

min

{∫
Ω

k d|w|+
∫
∂Ω

g− dν− −
∫
∂Ω

g+ dν+ : w ∈Md(Ω), ν ∈M(∂Ω), −∇ · w = f + ν

}
where f, k and g± are given. In addition, we connect this problem to a formulation with
Kantorovich potentials with Dirichlet boundary conditions.

1. Introduction

In this paper we consider a variant of the flow-minimization problem introduced by Beck-
mann in 1950 [2] as a particular case of a wider class of convex optimization problem, of the
form min{

∫
H(w) dx : −∇ · w = f+ − f−}, for convex H. The case H(z) = |z| is very

interesting because of its equivalence with the Monge problem which deals with the optimal
way of moving points from one mass distribution to another so that the total work done is
minimized. In his work, the cost of moving one unit of mass from x to y is measured with the
Euclidean distance |x− y|, even though many other cost functions have been studied later on.

Given two finite positive Borel measures f+ and f− on a compact convex domain Ω ⊂ Rd,
satisfying the mass balance condition f+(Ω) = f−(Ω), then, the classical Monge optimal
transportation problem [12] is the following:

(MP) inf

{∫
Ω
|x− T (x)| df+ : T#f

+ = f−
}

where T#f
+ = f− ⇔ f−(A) = f+(T−1(A)) for every Borel set A ⊂ Ω. The existence of

optimal maps was addressed by many authors [1], [5], [8], [14] and [17]. Although this problem
may have no solutions, its relaxed setting (which is the Kantorovich problem [13]) always has
one. The relaxed problem is the following

(KP) min

{∫
Ω×Ω
|x− y|dγ : γ ∈ Π(f+, f−)

}
where

Π(f+, f−) :=
{
γ ∈M+(Ω× Ω) : (Πx)#γ = f+ , (Πy)#γ = f−

}
and Πx, Πy are the two projections of Ω× Ω onto Ω. The authors of [15, 16] prove that the
dual of (KP) is the following:

(DP) max

{∫
Ω
ud(f+ − f−) : u ∈ Lip1(Ω)

}
.
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The equality of the two optimal values implies that optimal γ and u satisfy u(x)−u(y) = |x−y|
on the support of γ, which means that the potential u decreases at the rate one as we move
along the transport ray [x, y] (note that the gradient of u gives the direction of these transport
rays). It is well-known that there exists a non-negative Borel measure σ over Ω (which is called
transport density) such that (σ, u) solves a particular PDE system, called Monge-Kantorovich
system [15]:

(1.1)


−∇ · (σ∇u) = f := f+ − f− in Ω

σ∇u · n = 0 on ∂Ω

|∇u| ≤ 1 in Ω,

|∇u| = 1 σ − a.e.

This measure σ represents the amount of transport taking place in each region of Ω, i.e. for
a given Borel set A, σ(A) stands for “how much” the transport takes place in A, if particles
move from their origin x to their destination y on transport rays.

In addition, the flow w := σ∇u solves the Beckmann problem (see [15]), which is the fol-
lowing:

(BP) min

{∫
Ω

d|w| : w ∈Md(Ω), −∇ · w = f+ − f−
}

and, we have the following equalities:

min (BP) = sup (DP) = min (KP).

An interesting variant of (KP), which is already present in [6, 7, 11], is to transport the mass
f+ to another one f− (which do not have a priori the same total mass) with the possibility
of transporting some mass to/from the boundary, paying the transport cost that is assumed
to be given by the Euclidean distance |x − y| plus an extra cost g−(y) for each unit of mass
that comes out from a point y ∈ ∂Ω or −g+(x) for each unit of mass that enters at the point
x ∈ ∂Ω. Yet, it is raisonnable to consider a distance dk associated with a Riemannian metric k
(where k is supposed to be positive and continuous), instead of the Euclidean distance, when
we want to model a non-uniform cost for the movement (due to geographical obstacles or
configurations). Recall that this distance dk is defined as follows

dk(x, y) := inf

{∫ 1

0
k(ω(t))|ω′(t)| dt : ω ∈ Lip([0, 1],Ω), ω(0) = x, ω(1) = y

}
, ∀ x, y ∈ Ω.

First of all, we assume that g± ∈ C(∂Ω) with

(1.2) g+(x)− g−(y) ≤ dk(x, y), for all x, y ∈ ∂Ω.

Set

Πb(f+, f−) :=
{
γ ∈M+(Ω× Ω) : ((Πx)#γ)

|
◦
Ω

= f+, ((Πy)#γ)
|
◦
Ω

= f−
}
,

we minimize the quantity
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(KPb) min

{∫
Ω×Ω

dk(x, y) dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ : γ ∈ Πb(f+, f−)

}
.

In this paper, we will prove that the problem (KPb) has a dual formulation, which is the
following

sup

{∫
Ω
ϕd(f+ − f−) : |∇ϕ| ≤ k, g+ ≤ ϕ ≤ g− on ∂Ω

}
(DPb).

Note that, for this optimal transportation problem with boundary costs, the system (1.1)
becomes

(1.3)



−∇ · (σ∇u) = f in Ω,
∂u
∂n ≥ 0 on {u 6= g−},
∂u
∂n ≤ 0 on {u 6= g+},
g+ ≤ u ≤ g− on ∂Ω,

|∇u| ≤ k in Ω,

|∇u| = k σ − a.e.

and, the problem (BP) becomes (BPb):

min

{∫
Ω
k d|w|+

∫
∂Ω
g− dν− −

∫
∂Ω
g+ dν+ : (w, ν) ∈ Md(Ω)×M(∂Ω), −∇ · w = f + ν

}
.

In [8], the authors prove that a solution to (1.1) can be constructed by studying the
p−Laplacian equation

−∇ · (|∇up|p−2∇up) = f

in the limit as p → ∞. In this paper, we prove that a solution to (1.3) (or equivalently,
to (BPb)) can be constructed by studying the limit as p → ∞ of the following weighted
p−Laplacian problem:

(1.4)



−∇ · (k−p|∇up|p−2∇up) = f in Ω,
∂up
∂n = 0 on {g+ < up < g−},
∂up
∂n ≥ 0 on {up = g+},
∂up
∂n ≤ 0 on {up = g−},
g+ ≤ up ≤ g− on ∂Ω.

Using this approach, we get finally the following

min (BPb) = sup (DPb) = min (KPb).

This paper is organized as follows. In Section 2, we introduce a novel proof for the duality
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of (KPb). In Section 3, we introduce the weighted p−Laplacian problems that we use to
approximate a maximizer u∞ of (DPb). Then, we prove existence of a solution to (1.3), this
means that we want to find a non-negative Borel measure σ such that (σ, u∞) solves (1.3).
Finally, in Section 4, we prove that min(BPb)= sup(DPb) and we find a minimizer to (BPb).

2. Duality

The proof of the duality formula of (KPb), introduced in [11], concerns only the Euclidean
case and, it is based on the Fenchel-Rocafellar duality Theorem and it is decomposed into two
steps : firstly, the authors suppose that the inequality in (1.2) is strict and secondly, they use
an approximation argument to cover the other case. Here, we want to give an alternative proof
for this duality formula, based on a simple convex analysis trick. Before that, let us introduce
the following existence result.

Proposition 2.1. (KPb) reaches a minimum.

Proof. Set

K(γ) :=

∫
Ω̄×Ω̄

dk(x, y) dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ, ∀ γ ∈M(Ω̄× Ω̄).

Then, K is continuous with respect to the weak convergence of measures in Πb(f+, f−).
Indeed, if (γn)n is a sequence in Πb(f+, f−) such that γn⇀γ, then, for every n, there exists
χ±n ∈M+(∂Ω) such that

(Πx)#γn = f+ + χ+
n , (Πy)#γn = f− + χ−n

and

χ±n ⇀ χ±,

where (Πx)#γ = f+ + χ+ and (Πy)#γ = f− + χ−. As g± are continuous, then

K(γn)→ K(γ).

On the other hand, we observe that if γ ∈ Πb(f+, f−) and γ̃ := γ |(∂Ω×∂Ω)c , then γ̃ also

belongs to Πb(f+, f−). In addition, we have∫
Ω̄×Ω̄

dk(x, y) dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ

=

∫
∂Ω×∂Ω

(dk(x, y)+g−(y)−g+(x))dγ+

∫
(∂Ω×∂Ω)c

dk(x, y)dγ+

∫
Ω◦×∂Ω

g−(y)dγ−
∫
∂Ω×Ω◦

g+(x)dγ.

As

dk(x, y) + g−(y)− g+(x) ≥ 0,

we get∫
Ω̄×Ω̄

dk(x, y) dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ

≥
∫

Ω̄×Ω̄
dk(x, y) dγ̃ +

∫
∂Ω
g− d(Πy)#γ̃ −

∫
∂Ω
g+ d(Πx)#γ̃.
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Now, let (γn)n ⊂ Πb(f+, f−) be a minimizing sequence. Then, we can suppose that

γn(∂Ω× ∂Ω) = 0.

In this case, we get

γn(Ω̄× Ω̄) ≤ γn(Ω0 × Ω̄) + γn(Ω̄× Ω0)

= f+(Ω̄) + f−(Ω̄).

Hence, there exist a subsequence (γnk
)nk

and a plan γ ∈ Πb(f+, f−) such that γnk
⇀γ. But,

the continuity of K implies that this γ is a minimizer for (KPb). �

Proposition 2.2. Let g± be in C(∂Ω). Then under the assumption (1.2), we have the fol-
lowing equality

min

{∫
Ω̄×Ω̄

dk(x, y) dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ : γ ∈ Πb(f+, f−)

}
(KPb)

= sup

{∫
Ω
ϕd(f+ − f−) : |∇ϕ| ≤ k, g+ ≤ ϕ ≤ g− on ∂Ω

}
(DPb).

Notice that if (1.2) is not satisfied, then both sides of this equality are −∞.

Proof. For every p± ∈ C(∂Ω), set

H(p+, p−) := − sup

{∫
Ω
ϕd(f+ − f−) : |∇ϕ| ≤ k, g+ + p+ ≤ ϕ ≤ g− − p− on ∂Ω

}
.

It is easy to see that H(p+, p−) ∈ R∪ {+∞}. Indeed, if (ϕn)n is a maximizing sequence, then
ϕn are equicontinuous since |∇ϕn| ≤ k and they are also equibounded thanks to the fact that
g+ + p+ ≤ ϕn ≤ g− − p− on ∂Ω and so, we can apply Ascoli-Arzelà’s Theorem. In addition,
we claim that H is convex and l.s.c.

For convexity : take t ∈ (0, 1) and (p+
0 , p

−
0 ), (p+

1 , p
−
1 ) ∈ C(∂Ω) × C(∂Ω) and let ϕ0, ϕ1 be

their optimal potentials. Set

p+
t := (1− t)p+

0 + tp+
1 , p

−
t := (1− t)p−0 + tp−1

and

ϕt := (1− t)ϕ0 + tϕ1.

As

g+ + p+
0 ≤ ϕ0 ≤ g− − p−0 and g+ + p+

1 ≤ ϕ1 ≤ g− − p−1 on ∂Ω,

then

g+ + p+
t ≤ ϕt ≤ g− − p

−
t on ∂Ω.

In addition, |∇ϕt| ≤ k. Consequently, ϕt is admissible in the max defining −H(p+
t , p

−
t ) and

then,

H(p+
t , p

−
t ) ≤ −

∫
Ω
ϕt d(f+ − f−) = (1− t)H(p+

0 , p
−
0 ) + tH(p+

1 , p
−
1 ).
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For semi-continuity : take p+
n → p+ and p−n → p− uniformly on ∂Ω. Let (p+

nk
, p−nk

)nk
be

a subsequence such that lim infnH(p+
n , p

−
n ) = limnk

H(p+
nk
, p−nk

) (for simplicity of notation,

we still denote this subsequence by (p+
n , p

−
n )n) and let (ϕn)n be their corresponding optimal

potentials. As |∇ϕn| ≤ k and (p+
n )n, (p−n )n are equibounded, then, by Ascoli-Arzelà’s Theo-

rem, there exist a function ϕ with |∇ϕ| ≤ k and a subsequence (ϕnk
)nk

such that ϕnk
→ ϕ

uniformly. As

g+ + p+
nk
≤ ϕnk

≤ g− − p−nk
on ∂Ω,

then

g+ + p+ ≤ ϕ ≤ g− − p− on ∂Ω.

Consequently, ϕ is admissible in the max defining −H(p+, p−) and one has

H(p+, p−) ≤ −
∫

Ω
ϕd(f+ − f−) = lim

nk

H(p+
nk
, p−nk

) = lim inf
n

H(p+
n , p

−
n ).

Hence, we get that H?? = H and in particular, H??(0, 0) = H(0, 0). But by the definition of
H, we have

H(0, 0) = − sup

{∫
Ω
ϕd(f+ − f−) : |∇ϕ| ≤ k, g+ ≤ ϕ ≤ g− on ∂Ω

}
.

On the other hand, let us compute H??(0, 0). Take χ± in M(∂Ω), then we have

H?(χ+, χ−) = sup
p± ∈C(∂Ω)

{∫
∂Ω
p+ dχ+ +

∫
∂Ω
p− dχ− −H(p+, p−)

}

= sup
p±∈C(∂Ω), |∇ϕ|≤k

{∫
p+ dχ++

∫
p− dχ−+

∫
ϕd(f+−f−) : g++p+ ≤ ϕ ≤ g−−p− on ∂Ω

}
.

If χ+ /∈ M+(∂Ω), i.e there exists p+
0 ∈ C(∂Ω) such that p+

0 ≥ 0 and
∫
∂Ω p

+
0 dχ+ < 0, we

may see that

H?(χ+, χ−) ≥ −n
∫
∂Ω
p+

0 dχ+ +

∫
∂Ω
g− dχ− −

∫
∂Ω
g+ dχ+ −→

n→+∞
+∞.

Similarly if χ− /∈ M+(∂Ω). Now, suppose that χ± ∈ M+(∂Ω). As g+ + p+ ≤ ϕ ≤
g− − p− on ∂Ω, we should choose the largest possible p±, i.e p+(x) = ϕ(x) − g+(x) and
p−(y) = g−(y)− ϕ(y) for all x, y ∈ ∂Ω. Hence, we have

H?(χ+, χ−) = sup

{∫
Ω̄
ϕd(f + χ) : |∇ϕ| ≤ k

}
+

∫
∂Ω
g− dχ− −

∫
∂Ω
g+ dχ+.

By [16, Theorem 1.14], we get

H?(χ+, χ−) = min

{∫
Ω̄×Ω̄

dk(x, y) dγ : γ ∈ Π(f+ + χ+, f− + χ−)

}
+

∫
∂Ω
g− dχ−−

∫
∂Ω
g+ dχ+
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= min

{∫
Ω̄×Ω̄

dk(x, y) dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ : γ ∈ Π(f+ + χ+, f− + χ−)

}
.

Finally, we have

H??(0, 0) = sup

{
−H?(χ+, χ−) : χ+, χ− ∈M+(∂Ω)

}
= −min

{∫
Ω̄×Ω̄

dk(x, y) dγ +

∫
∂Ω
g− d(Πy)#γ −

∫
∂Ω
g+ d(Πx)#γ : γ ∈ Πb(f+, f−)

}
. �

3. The limit of the weighted p−Laplacian problems

In this section, the aim is to obtain estimates, independent of p, on solution of (1.4), similar
to those in [8, 11]. First of all, we note that the unique (may be up to a constant) weak
solution up of (1.4) is found as the minimizer of the functional

Jp(u) :=
1

p

∫
Ω
k−p|∇u|p dx−

∫
Ω
uf dx

over all u ∈W 1,p(Ω), g+ ≤ u ≤ g− on ∂Ω. Under the assumption (1.2), we have the following

Proposition 3.1. Let up be the solution of (1.4). Then, up to a subsequence, up → u∞
uniformly as p→∞, where u∞ solves (DPb).

Proof. Set

v(x) := min
y∈∂Ω
{g−(y) + dk(x, y)}, for all x ∈ Ω.

Then, it is easy to see that v is Lip1 according to the distance dk and then, |∇v| ≤ k. In
addition, (1.2) gives that

g+ ≤ v ≤ g− on ∂Ω.

From the optimality of up, we have

Jp(up) ≤ Jp(v) ≤ |Ω|
p

+ C

where C is a constant independent of p. As

g+ ≤ up ≤ g− on ∂Ω,

then, it is easy to check that

||up||L∞(Ω) ≤ C(d,diam(Ω)) ||∇up||Lp(Ω,Rd) + ||g||L∞(∂Ω).

Hence, ∫
Ω
k−p|∇up|p dx ≤ p

∫
Ω
upf dx + Cp

≤ Cp

(∫
Ω
k−p|∇up|p dx

) 1
p

+ Cp.
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Yet, this implies that (∫
Ω
k−p|∇up|p dx

) 1
p

≤ (Cp)
1
p

and then, for m < p, (∫
Ω
k−m|∇up|m dx

) 1
m

≤ (Cp)
1
p |Ω|

1
m
− 1

p .

Hence, up to a subsequence, up ⇀ u∞ in W 1,m(Ω), for all m ∈ N?, and then, up → u∞
uniformly in Ω. In addition, we have(∫

Ω
k−m|∇u∞|m dx

) 1
m

≤ |Ω|
1
m , for all m ∈ N?

and then,
|∇u∞| ≤ k.

On the other hand, for any admissible function ϕ in (DPb), we have, from the optimality of
up, that

−
∫

Ω
upf dx ≤ Jp(up) ≤ Jp(ϕ) ≤ |Ω|

p
−
∫

Ω
ϕf dx.

When p→∞, we infer that u∞ solves (DPb). �

For all p > d, set
wp := k−p |∇up|p−2∇up,

where up is the solution of (1.4). So, the aim now is to study the limit as p→∞ of (wp)p. In
particular, we show that wp ⇀ w in the sense of measures and that (σ, u∞) solves (1.3) with
σ := k−1 |w|.

Lemma 3.2. For all p > d, there exists a measure νp, which is concentrated on the boundary
of Ω, such that∫

Ω
wp · ∇ϕdx =

∫
Ω
ϕf dx +

∫
∂Ω
ϕdνp , for every ϕ ∈W 1,p(Ω).

In addition, we have

spt ν±p ⊂ {up = g±}.

Proof. Take ϕ ∈ C∞(Ω) with

spt(ϕ) ∩ {up = g±} = ∅.

As up ∈ C(Ω), then there exists ε0 > 0 such that g+ ≤ up + εϕ ≤ g− on ∂Ω, for all |ε| < ε0.
Yet, from the optimality of up, we have

Jp(up) ≤ Jp(up + εϕ)
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and when ε→ 0, we get ∫
Ω
wp · ∇ϕdx =

∫
Ω
ϕf dx.

Let ϕ± ≥ 0 be in C∞(Ω) with

spt(ϕ+) ∩ {up = g−} = ∅ and spt(ϕ−) ∩ {up = g+} = ∅.

Working as above, we get∫
Ω
wp · ∇ϕ+ dx ≥

∫
Ω
ϕ+f dx and

∫
Ω
wp · ∇ϕ− dx ≤

∫
Ω
ϕ−f dx.

�

From now on, we assume that the inequality in (1.2) is strict, this means that

g+(x)− g−(y) < dk(x, y), ∀ x, y ∈ ∂Ω.

Then, we have the following

Proposition 3.3. wp ⇀ w and νp ⇀ ν in the sense of measures.

Proof. Set again

v(x) := min
y∈∂Ω
{g−(y) + dk(x, y)}, for all x ∈ Ω.

Then, it is clear that g+ < v ≤ g− on ∂Ω and |∇v| ≤ k. In addition, we have the following
equality ∫

Ω
wp · ∇(up − v) dx =

∫
Ω

(up − v)f dx +

∫
∂Ω

(up − v) dνp.

Hence, ∫
∂Ω

(v − up) dνp +

∫
Ω
k−p|∇up|p dx =

∫
Ω
wp · ∇v dx+

∫
Ω

(up − v)f dx

≤
∫

Ω
wp · ∇v dx + C

where C is a constant independent of p. As v − g+ ≥ c > 0 on ∂Ω, then, by Lemma 3.2, we
get

c

∫
∂Ω

dν+
p +

∫
Ω
k−p|∇up|p dx ≤

∫
Ω
k−(p−1)|∇up|p−2∇up · k−1∇v dx + C

≤ |Ω|
1
p

(∫
Ω
k−p|∇up|p dx

)1− 1
p

+ C

≤
(

1− 1

p

)∫
Ω
k−p|∇up|p dx + C.
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Finally, we infer that

c

∫
∂Ω

dν+
p +

1

p

∫
Ω
k−p|∇up|p dx ≤ C.

Therefore, ∫
∂Ω

dν±p ≤ C.

Yet, we have ∫
Ω
k−p|∇up|p dx =

∫
Ω
upf dx +

∫
∂Ω
up dνp.

Hence, the sequence (wp)p (resp. (νp)p) is bounded in Md(Ω) (resp. M(∂Ω)) and so, there
exists a vector measure w (resp. a measure ν supported on ∂Ω) such that wp ⇀ w (resp.
νp ⇀ ν) in the sense of measures. �

We conclude this section by proving existence of a solution to (1.3).

Proposition 3.4. There exists a non-negative Borel measure σ over Ω such that (σ, u∞),
where u∞ is a maximizer for (DPb), is a solution to (1.3).

Proof. By Proposition 3.3, as wp ⇀ w and νp ⇀ ν, we get, using Lemma 3.2, that for all
ϕ ∈ C1(Ω), ∫

Ω
∇ϕ · dw =

∫
Ω
ϕf dx+

∫
∂Ω
ϕdν.(3.1)

Set

σ := k−1|w|.

Now, consider a sequence (ϕn)n ⊂ C∞(Ω) such that ϕn → u∞ uniformly and ∇ϕn → ∇σu∞
in L2

σ(Ω,Rd), where ∇σ is the tangential gradient operator with respect to σ defined in [4].
By (3.1), we get∫

Ω
∇σu∞ · dw =

∫
Ω
u∞f dx +

∫
∂Ω
u∞ dν

=

∫
Ω
u∞f dx +

∫
∂Ω
g+ dν+ −

∫
∂Ω
g− dν−.

Yet, ∫
Ω
k d|w| ≤ lim inf

p

∫
Ω
k |wp| dx

= lim inf
p

∫
Ω
k−(p−1)|∇up|p−1 dx

≤ lim inf
p
|Ω|

1
p

(∫
Ω
k−p|∇up|p dx

)1− 1
p

.
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In addition, we have

∫
Ω
k−p|∇up|p dx =

∫
Ω
upf dx+

∫
∂Ω
up dνp

=

∫
Ω
upf dx+

∫
∂Ω
g+ dν+

p −
∫
∂Ω
g− dν−p

→
∫

Ω
u∞f dx +

∫
∂Ω
g+ dν+ −

∫
∂Ω
g− dν− =

∫
Ω
∇σu∞ · dw.

Finally, we get ∫
Ω
k d|w| ≤

∫
Ω
∇σu∞ · dw.

Since |∇u∞| ≤ k, hence ∫
Ω
∇σu∞ · dw =

∫
Ω
k d|w|

and

w = σ∇σu∞ , |∇σu∞| = k σ − a.e.

�

4. Producing a solution to a variant of the Beckmann Problem

Now, we are ready to find a solution to (BPb). Let w (resp. ν) be the limit of (wp)p (resp.
(νp)p) as in the proposition 3.3. Then, we have the following

Proposition 4.1. (w, ν) solves the problem (BPb). Moreover, the minimal value of (BPb)
equals the maximal value of (DPb).

Proof. We start from min(BPb) ≥ sup(DPb). In order to do so, take an arbitrary func-
tion ϕ ∈ C1(Ω) with |∇ϕ| ≤ k and g+ ≤ ϕ ≤ g− on ∂Ω. Consider that for any (v, χ) ∈
Md(Ω)×M(∂Ω) with −∇ · v = f + χ, we have∫

Ω
k d|v| ≥

∫
Ω
∇ϕ · dv =

∫
Ω
ϕd(f + χ) ≥

∫
Ω
ϕf dx+

∫
∂Ω
g+ dχ+ −

∫
∂Ω
g− dχ−.

By an approximation argument, we can infer that∫
Ω
k d|v|+

∫
∂Ω
g− dχ− −

∫
∂Ω
g+ dχ+ ≥ sup (DPb) = min (KPb)

for any admissible (v, χ), i.e., min(BPb) ≥ sup(DPb). Yet, by Proposition 3.4, we have∫
Ω
k d|w|+

∫
∂Ω
g− dν− −

∫
∂Ω
g+ dν+ =

∫
Ω
u∞f dx.

Hence, (w, ν) solves (BPb) and, recalling Proposition 2.2, we get min(BPb) = sup(DPb)
= min(KPb). �
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Remark 4.1. Note that, from [10], we have σ ∈ L1 as soon as f ∈ L1 and k ∈ C1,1, and
then, the following problem

min

{∫
Ω
k|w|dx +

∫
∂Ω
g− dν− −

∫
∂Ω
g+ dν+ : w ∈ L1(Ω,Rd), ν ∈M(∂Ω), −∇ · w = f + ν

}
reaches a minimum.
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