A DISTRIBUTIONAL APPROACH TO FRACTIONAL SOBOLEV
SPACES AND FRACTIONAL VARIATION: EXISTENCE OF BLOW-UP
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ABSTRACT. We introduce the new space BV*(R™) of functions with bounded fractional
variation in R™ of order « € (0,1) via a new distributional approach exploiting suitable
notions of fractional gradient and fractional divergence already existing in the literature.
In analogy with the classical BV theory, we give a new notion of set E of (locally)
finite fractional Caccioppoli a-perimeter and we define its fractional reduced bound-
ary .Z“E. We are able to show that W1 (R") C BV*(R") continuously and, similarly,
that sets with (locally) finite standard fractional a-perimeter have (locally) finite frac-
tional Caccioppoli a-perimeter, so that our theory provides a natural extension of the
known fractional framework. Our main result partially extends De Giorgi’s Blow-up
Theorem to sets of locally finite fractional Caccioppoli a-perimeter, proving existence of
blow-ups and giving a first characterisation of these (possibly non-unique) limit sets.
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1. INTRODUCTION

1.1. Fractional Sobolev spaces and the quest for a fractional gradient. In the
last decades, fractional Sobolev spaces have been given an increasing attention, see [7,
Section 1] for a detailed list of references in many directions. If p € [1,+00) and a € (0, 1),
the fractional Sobolev space W*P(R") is the space

W*P(R") := {u € LP(R") : [ulwarmn) = (/n/n I _y|n+p<1|p df"dﬁ/>; < +OO}

endowed with the natural norm
[ullwor@n) = lullLr@n) + [ulwer@n).

Differently from the standard Sobolev space W'?(R"), the space W*P(R") does not
have an evident distributional nature, in the sense that the seminorm [ - |yye.r@n) does not
seem to be the LP-norm of some kind of weakly-defined gradient of fractional order.

Recently, the search for a good notion of differential operator in this fractional setting
has led several authors to consider the following fractional gradient

Vo‘u(m) =l /Rn (y — $)(u<y> — u(x)) dy, (11)

|y _ x|n+a+1

where p,, is a multiplicative normalising constant controlling the behaviour of V¢ as
a — 17. For a detailed account on the existing literature on this operator, see ,
Section 1]. Here we only refer to [14-19] for the articles tightly connected to the present
work. According to , Section 1], it is interesting to notice that ﬂgﬂ seems to be the
earliest reference for the operator defined in .
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From its very definition, it is not difficult to see that the fractional gradient V¢ is well
defined in L'(R";R") for functions in W*!(R"), since we have the simple estimate

/R |Vl de < i [alwe . (1.2)

In analogy with the standard Sobolev space W'?(R™), this observation leads to consider
the space
i) = TR
where
[ullseor@ny = llullo@n) + [V ull Lo @rnien
for all w € C2°(R™). This is essentially the line followed in [17], where the space S5 (R™)

has been introduced (with a different, but equivalent, norm). By [17, Theorem 2.2], it is
known that

SoTP(R™) € WHP(R™) € S5 P(R™) (1.3)
with continuous embeddings for all o € (0,1), p € (1,+00) and 0 < ¢ < min{a, 1 — a}.
In the particular case p = 2, by [17, Theorem 2.2] we actually have that

So(R") = W*2(R") (1.4)
for all & € (0,1). In addition, as observed in [20, Chapter V, Section 5.3], we have
WP(R™) C SyP(R™) (1.5)

with continuous embedding for all & € (0,1) and p € (1,2]. For further properties of the
space Sy (R™), we refer to Section [3.9 below.

The inclusions and , and the identification may suggest that the spaces
SoP(R™) can be considered as an interesting distributional-type alternative of the usual
fractional Sobolev spaces W®P(R™) and thus as a natural setting for the development of a
general theory for solutions to PDEs involving the fractional gradient in , proceeding
similarly as in the classical Sobolev framework. This is the point of view pursued in |17}[18].

Another important aspect of the fractional gradient in ((1.1)) is that it satisfies three
natural ‘qualitative’ requirements as a fractional operator: invariance under translations
and rotations, homogeneity of order o under dilations and some continuity properties in an
appropriate functional space, e.g. Schwartz’s space .7 (R"™). A fundamental result of [19]
is that these three requirements actually characterise the fractional gradient in ([1.1]) (up
to multiplicative constants), see [19, Theorem 2.2]. This shows that the definition in
is well posed not only from a mathematical point of view, but also from a physical point
of view.

Besides, the same characterisation holds for the following fractional divergence

diVa(,D(fL') — Mn,a/ (y - .%’) ) ((,0(?/) - gD(iL’)) dy, (16)

R" |y — w[rratt

see [19, Theorem 2.4]. Moreover, as it is observed in |19} Section 6], the operators V* and
div® are dual, in the sense that

/ udivip dr = —/ - Vudx (1.7)
n Rn

for all w € CP(R") and ¢ € CX(R™;R"). The fractional integration by parts formula
in (1.7) can be thus taken as the starting point for the development of a general theory
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of fractional differential operators on the space of Schwartz’s distributions. This is the
direction of research pursued in [19].

1.2. De Giorgi’s distributional approach to perimeter. In the classical framework,
the Sobolev space W11(R") is naturally continuously embedded in BV (R"), the space of
functions with bounded variation, i.e.

BV(R") := {u € L'(R") : | Du|(R") < +o0},
endowed with the norm
lull Bv@ny = llullpr@n) + [Du|(R"),

where
| Du|(R") = Sup{/Rn wdivpds : g € CP(R%RY), [lpllpe@nzn < 1}

is the total variation of the function v € BV (R"). Thanks to Riesz’s Representation
Theorem, one can see that a function u € L'(R") belongs to BV (R") if and only if there
exists a finite vector valued Radon measure Du € .# (R™;R") such that

/udivgpda::—/ @ -dDu
n RTL

for all ¢ € C°(R™;R").

Functions of bounded variation have revealed to be the perfect tool for the development
of a deep geometric analysis of sets with finite perimeter, starting directly from the seminal
and profound works of R. Caccioppoli and E. De Giorgi. For a modern exposition of this
vast subject and a detailed list of references, see [2,8,/11].

A measurable set F C R" has finite Caccioppoli perimeter if

P(E) :=|Dxg|(R") < 4. (1.8)

The perimeter functional in ((1.8) coincides with the classical surface measure when F has
a sufficiently smooth (topological) boundary and, precisely, one can prove that

P(E) = "1(0F) (1.9)

for all sets E with Lipschitz boundary, where .7#”° denotes the s-dimensional Hausdorff
measure for all s > 0.

One of the finest De Giorgi’s intuitions is that, for a finite perimeter set £ with non-
smooth boundary, the right ‘boundary object’ to keep the validity of is a special
subset of the topological boundary, the so-called reduced boundary % E. With this notion
in hand, a measurable set £ C R" has finite Caccioppoli perimeter if (and only if)
H"YFFE) < +oo, in which case we have

P(E) =" ZE). (1.10)

Besides the validity of (1.10]), an essential feature of De Giorgi’s reduced boundary is
the following blow-up property: if x € F E, then

X@ - XHVE(IE) in Llloc(Rn) (111)

as r — 0, where

HVE(I) = {y e R": Y- I/E(le) > O}7 VE(x) = lim DXE<BT<x))

- 70 [Dyp|(By(2))’
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The function vg: FE — S* ! denotes the so-called measure theoretic inner unit normal
of E and coincides with the usual inner unit normal of £ when the boundary of E is
sufficiently smooth. In other words, the blow-up property in shows that, in a
neighbourhood of a point z € .Z# FE, the finite perimeter set F is infinitesimally close to
v+ Hyp@) ={y €R": (y —2) -vp(x) > 0}.

1.3. Fractional variation and perimeter: a new distributional approach. In the
fractional framework, an analogue of the space BV (R™) is completely missing, since no
distributional definition of the space W!(R™) is available.

Nevertheless, a theory for sets with finite fractional perimeter has been developed in re-
cent years, with a strong interest on minimal fractional surfaces. We refer to [5), Section 7]
for a detailed exposition of the most recent results in this direction.

A measurable set £ C R"™ has finite fractional perimeter if

1
P(E) = a,ln:2/ /7dd< . 1.12
(E) = [xplwar@n) s o o — g zdy < 400 (1.12)

The fractional perimeter functional in has a strong non-local nature in the sense
that its value depends also on points which are very far from the boundary of the set E.
For this reason, it is not clear if such a perimeter measure may be linked with some kind
of fractional analogue of De Giorgi’s reduced boundary (which, a posteriori, cannot be
expected to be a special subset of the topological boundary of E).

In this paper, we want to combine the functional approach of [17,/18] with the dis-
tributional point of view of [19] to develop a satisfactory theory extending De Giorgi’s
approach to variation and perimeter in the fractional setting.

The natural starting point is the duality relation , which motivates the definition
of the space

BVO(R") := {u € L'(R") : |Du|(R") < +oo}, (1.13)

where
|Du|(R") = sup{/Rn udivipds o € CR™RY), ||z @nzn < 1} (1.14)

stands for the fractional variation of the function u € BV*(R™). Note that the fractional
variation in is well defined, since one can show that div®p € L*(R") for all ¢ €
C(R™;R™) (see Corollary [2.3).

A different approach to fractional variation was developed in [21]. We do not know
if the fractional variation defined in is linked to the one introduced in [21] and it
would be very interesting to establish a connection between the two.

With definition , we are able to show that

We(R") C BV*R")

with continuous embedding, in perfect analogy with the classical framework.

Thus, emulating the classical definition in , it is very natural to define the fractional
analogue of the Caccioppoli perimeter using the total variation in . Note that this
definition is well posed, since div®p € L'(R") for all o € W*1(R";R") arguing similarly
as in . With this notion, we are able to show that

DX E|(R") < fin,aPal(E) (1.15)



6

G. E. COMI AND G. STEFANI

for all measurable sets E with finite fractional perimeter, so that our approach naturally
incorporates the current notion of fractional perimeter.

Following the classical framework, the main results concerning the space BV *(R") we
are able to prove are the following:

BV*(R"™) is a Banach space and its norm is lower semicontinuous with respect to
L'-convergence;
the inclusion W*!(R") C BV%(R") is continuous and strict;

e the sets C°(R™) N BV*(R") and C°(R") are dense in BV*(R"™) with respect to

the distance

d(u,v) = [lu=vl|lLr@n + [[D*u|(R") — [D[(R")];
a fractional analogue of Gagliardo—Nirenberg—Sobolev inequality holds, i.e. for all
n > 2 the embedding

BV(R") C L#a(R")

is continuous;
the natural analogue of the coarea formula does not hold in BV*(R™), since there
are functions u € BV*(R") such that [ [D*Xuss|(R™) dt = 4-00;
any uniformly bounded sequence in BV*(R") admits limit points in L'(R") with
respect the L -convergence.

Concerning sets with finite fractional Caccioppoli a-perimeter, the main results we are
able to prove are the following:

fractional Caccioppoli a-perimeter is lower semicontinuous with respect to L -
convergence;
a fractional isoperimetric inequality holds, i.e.

|E e < Cn,oa|DaXE|(Rn)§

any sequence of sets with uniformly bounded fractional Caccioppoli a-perimeter
confined in a fixed ball admits limit points with respect to L!-convergence;

a natural analogue of De Giorgi’s reduced boundary, that we call fractional reduced
boundary F“FE, is well posed for any set E with finite fractional Caccioppoli a-
perimeter;

if E has finite fractional Caccioppoli a-perimeter, then its fractional Caccioppoli
a-perimeter measure satisfies | D%y g| < "L FF;

if £ has finite fractional Caccioppoli a-perimeter and x € #*E, then the family
(£=2),-0 admits limit points in the L{ -topology and any such limit point satisfies

-
a rigidity condition.

Some of the results listed above are proved similarly as in the classical framework. Since
we believe that our approach might be interesting also to researchers that may be not
familiar with the theory of functions of bounded variation, we tried to keep the exposition
the most self-contained as possible.

1.4. Future developments. Thanks to this new approach, a large variety of classical
results might be extended to the context of functions with bounded fractional variation.
Here we just list some of the most intriguing open problems:

investigate the case of equality in (1.15);
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e achieve a better characterisation of the blow-ups (possibly, their uniqueness);

e prove a Structure Theorem for .#*FE in the spirit of De Giorgi’s Theorem;

e study the fractional isoperimetric inequality and its stability, possibly also for its
relative version;

e develop a calibration theory for sets of finite fractional Caccioppoli a-perimeter as
a useful tool for the study of fractional minimal surfaces;

e consider the asymptotics as &« — 17 and investigate the ['-convergence to the
classical perimeter;

e extend the Gauss—Green and integration by parts formulas to sets of finite frac-
tional Caccioppoli a-perimeter;

e give a good definition of BV“ functions on a general open set.

Some of these open problems will be the subject of a forthcoming paper, see [4].

1.5. Organisation of the paper. The paper is organised as follows. In Section [2| we
introduce and study the fractional gradient and divergence, proving generalised Leibniz’s
rules and representation formulas. In Section [3] we define the space BV*(R") and we
study approximation by smooth functions, embeddings and compactness exploiting a
fractional version of the Fundamental Theorem of Calculus. In Section |4 we define sets
of (locally) finite fractional Caccioppoli a-perimeter, we prove some compactness results
and we introduce the notion of fractional reduced boundary. Finally, in Section [5 we
prove existence of blow-ups of sets with locally finite fractional Caccioppoli a-perimeter.

2. SILHAVY’S FRACTIONAL CALCULUS

2.1. General notation. We start with a brief description of the main notation used in
this paper.

Given an open set ), we say that a set F is compactly contained in €2, and we write
E € Q, if the E is compact and contained in . We denote by #" and #° the Lebesgue
measure and the a-dimensional Hausdorff measure on R” respectively, with ae > 0. Unless
otherwise stated, a measurable set is a .Z"-measurable set. We also use the notation
|E| = Z"(F). All functions we consider in this paper are Lebesgue measurable, unless
otherwise stated. We denote by B,(x) the standard open Euclidean ball with center
r € R" and radius r > 0. We let B, = B,(0). Recall that w, := By = 7% /T (?) and
A" OBy) = nw,, where T is Euler’s Gamma function, see |3].

For k € Ny U {4+o00} and m € N we denote by C¥(;R™) and, respectively, by
Lip,(€;R™), the space of C*-regular, respectively, Lipschitz regular, m-vector valued
functions defined on R"™ with compact support in §2.

For any exponent p € [1,+00], we denote by

LP(Q;R™) := {u: Q= R"™ || oo, rm) < +oo}
the space of m-vector valued Lebesgue p-integrable functions on 2. We denote by
WP (Q:R™) = {u € LP(Q R™) : [ulwipq,rm) = || VUl Loy rremy < —i—oo}

the space of m-vector valued Sobolev functions on €, see for instance |10, Chapter 10] for
its precise definition and main properties. We also let

w' (L R™) = {u € L (U R™) : [ulwis(amm) < +00}.
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We denote by
BV (R™) := {u € L' R™) : [ul pvaam = |Dul(Q) < +o0}

the space of m-vector valued functions of bounded variation on €2, see for instance [2,
Chapter 3] or |8, Chapter 5] for its precise definition and main properties. We also let

bu(Q;R™) = {u € Li (G R™) : [ulpvarm) < +oo}.
For a € (0,1) and p € [1,4+00), we denote by
1
|u(z) —u(y)” v
ap(). M\ .__ PIO. DM . e
W (Q,R ) .— {U e L (Q,R ) . [U]Wa,p(Q;Rm) -.— </Q 0 |w — y|n+p0¢ dx dy < +OO

the space of m-vector valued fractional Sobolev functions on €2, see [7] for its precise
definition and main properties. We also let

w*P(Q;R™) = {u € LL (G R™) : [ulwew(ormy < +oo}.
For a € (0,1) and p = 400, we simply let
W (Q; R™) = {u € L>®(;R™) . sup —|u(a:) — u((xy)\ < —i—oo},
ryeQaty T =Yl
so that We®(Q;R™) = CP*(Q;R™), the space of m-vector valued bounded a-Hélder

continuous functions on 2.

2.2. Definition of V* and div®. We now recall and study the non-local operators V*
and div® introduced by Silhavy in [19)].
Let a € (0,1) and set

nF n+a+1
[no = 2%—2(1_2&). (2.1)
r('5%)
We let i )
zf(x + 2z
VO f(x) = o li / SZACIEN 2.2
f(@) = ina limy {ef>e) [efrrart @ (22)
be the a-gradient of f € C*(R") at z € R™. We also let
. : z-p(r+ 2)
Aiveo(z) = ol / G AR 2.3
WEp() 1= o Ly R P 23)

be the a-divergence of p € C2°(R";R"™) at z € R". The non-local operators V* and div®
are well defined in the sense that the involved integrals converge and the limits exist,
see |19, Section 7].

Since

/{ _f _gp=0, Ve>0, (2.4)

|2]>e} |z[nHetd

it is immediate to check that V¢ = 0 for all ¢ € R. Moreover, the cancellation in ([2.4])
yields

Vaf(z) = pine lim / Mf (y) dy (2.5a)

e=0 Jly—al>e} |y — x|nTot!
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(y —2)(f(y) — f(=)) dy

= [n,q liM 2.5b

o 11T (a—y|>} ly — x[nta+l ( )
(v —=)(f(y) — f(z)) n

o [ WG ZIED 4y ecm s

for all f € C°(R™). Indeed, (2.5a]) follows by a simple change of variables and (2.5b)
is a consequence of (2.4). To prove (2.5¢) it is enough to apply Lebesgue’s Dominated
Convergence Theorem. Indeed, we can estimate

=)W = S@)| o
/{|ym|§1} ly — x[nra+t ‘dy < Llp(f)/O redr (2.6)
and
(v = D)) — @) .
/{y—:v|>1} |y — x|rtatl ’dy = 2”fHL°°(R")/1 dr. (2.7)

As a consequence, the operator V f defined by (2.5¢) is well defined for all f € Lip.(R")

and satisfies (2.2)), (2.5a]) and ([2.5b)).

By [19, Theorem 4.3], V¢ is invariant by translations and rotations and is a-homoge-
neous. Moreover, for all f € C°(R") and A € R, we have

(VEFA)) (@) = [A[*sgn (N (V) (Az), = eR™ (2.8)
Arguing similarly as above, we can write
: (y—)-p(y)
div® .o liM / ="y, 2.9a
p(2) = fin.o lim tomvie g —z[ret @ (2.92)
: (y— ) (e(y) — ()

= [l lim dy, 2.9b
Fn.oc 1 {lz—y|>e} ly — x|rtotl Y ( )

_ (y — ) - ((y) — p(z)) n
= tna /R gt dy, VreR, (2.9¢)

for all ¢ € Lip.(R™; R").
Exploiting (2.5c|) and (2.9¢|), we can extend the operators V* and div® to functions

with w®!-regularity.

Lemma 2.1 (Extension of V* and div® to w*?!). Let o € (0,1). If f € w*'(R") and

¢ € w*' (R R"), then the functions V*f(x) and div® f(z) given by ([2.5d) and (2.9d)
respectively are well defined for £"-a.e. x € R". As a consequence, V*f(x) and div® f(z)

satisfy (2.2), (2.54), (2.5b) and (2.3), (2.92), (2.9b) respectively for £"-a.c. x € R™.

Proof. Let f € w™'(R"). Then

Lo

and thus the function vef ( ) given by (2.5¢) is well defined for Z"-a.e. z € R" and
satisfies and (2.5b)) by (2.4) and by Lebesgue’s Dominated Convergence

Theorem. A s1m11ar argument proves the result for any ¢ € w®!(R™; R"). O

fly) = f(x))

!y —36!”*"‘“

dy dx < [f]wa,l(Rn)




10 G. E. COMI AND G. STEFANI

2.3. Equivalent definition of V* and div® via Riesz potential. We let

I (=2
]af(f)' (2>

= it () /R W 4 sern, (2.10)
2

n e =yl

be the Riesz potential of order o € (0,n) of a function f € C°(R";R™).
Let a € (0,1). Note that I_,f € C®(R™; R™). Recalling (2.1)), one easily sees that

e {y(ff_yf
and
VLo f(z) = —tne Vol @4Y) p__ Hna Vyf(wviy) |
n+a—1Jrn |y[rte-t n+a—1Jrn |y/rte-t
so that

vjl—ozf = Il—avf
for all f € C°(R"). A similar argument proves that
divli_op = I _,divp

for all ¢ € C°(R™;R™).

Thus, accordingly to the approach developed in [9}[14H18], we can consider the operators

Vo = VI_,: C®(R") — C=(R™;R")
and -
div® :=divl_o: C°(R™; R") — C(R").

We can prove that these two operators coincide with the operators defined in ([2.2)
and (2.3)). See also |17, Theorem 1.2].
Proposition 2.2 (Equivalence). Let a € (0,1). We have V® = V* on Lip,(R") and
div® = div® on Lip . (R™; R™).
Proof. Let f € Lip,(R™) and fix x € R™. Integrating by parts, we can compute

P / Vyf(x+y)
{lyl>er  |y[rtet

Vof(z) =

Cn+4a—1e0

. yf(y + )

= nahm/ = dy =V* x),

Hno 230 Sty Jylnrert @Y f@)
since we can estimate

flx+y) Yy n—1 ‘ _
/{|y|:a} ly[r et Jyl A" W)

/ (f(z +y) —f(x))gd%m_l(y)
{lyl=¢} |y|r ot Y|

< 1|V f || oo eniemy
The proof of d?vlo‘go = div®yp for all ¢ € Lip,.(R™;R") follows similarly. O

A useful consequence of the equivalence proved in Proposition above is the following
result.
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Corollary 2.3 (Representation formula for div® and V*). Let « € (0,1). If ¢ €
Lip.(R™; R") then div¥p € LY(R™) N L= (R"™) with

JT dive(y)

div® = 2.11
V() n+a—1Jre |y — zrtel (2.11)
for all x € R™,
|divel| L1 @n) < pin,al@lwe @nrn) (2.12)
and
| diveo|| Loe mn) < Choa,v||dive]| Lo (mr) (2.13)
for any bounded open set U C R™ such that supp(p) C U, where
n+a—1
Tn o . 1-« nwn, N 1o
o = @ (e Y )
AU M=) n+a—1) (W iam ()™ + n+aoa—1 Ul ) (2.14)
Analogously, if f € Lip.(R™), then V*f € LY(R™;R") N L>®(R"™;R") with
P Vi)
ve = : d 2.15
for all x € R™,
IV fllzr@nmny < pinal flwen ey (2.16)
and
IV fllzoe @niny < Crav [V f oo @rnimn) (2.17)

for any bounded open set U C R"™ such that supp(f) C U, where Cy, ov is as in (2.14]).

Proof. The representation formula (2.11)) follows directly from Proposition The esti-
mate in (2.12) is a consequence of Lemma Finally, if U C R" is a bounded open set
such that supp(y) C U, then

Lo MTL,OC —n—o :
[divip(e)] < —Fme [y — a1 fdive(y)] dy

n—+aoa—
)/ ’y_xyl—n—ady
U

< Nn7a||div90||L°°(R”
and (2.13) follows by Lemma 2.4 below. The proof of (2.15)), (2.16) and (2.17)) is similar

n+aoa-—1
and is left to the reader. O

Lemma 2.4. Let a € (0,1) and let U C R™ be a bounded open set. For all x € R™, we

have
n+a—1

<wndiam(U)1°‘+(nwn> " ]U|1na>. (2.18)

l-n—« n
— dy < ————
/U’y g y_l n+aoa—1

Proof. For 6 > 0, set U° := {x € R" : dist(z,U) < §}. Since clearly
VS Ué - B(diam(U)Jr(S)(:U) 2 U7

for all x € U? we can estimate

/ ly — [ dy S/ ly — [ dy
U B(diam(v)+4) (@)

diam(U)+48
= NW, / r~%dr
0
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= " (Qiam (U) + 6)"

l—«

On the other hand, it is plain that

v ¢ U yelU = |y—a| >4,
so that for all z ¢ U° we can estimate

[ ly=al' ey < e
Thus, for all 6 > 0 and x € R", we can estimate

/U |y - x|1—n—o¢ dy S % (dlam (U) + 6)1_0‘ + 51—n—a|U|

nWn, . - -« l-n—«
§1_a(d1am(U) +6 )+5 U]
since the function s — s~ is subadditive for all s > 0. Thus (2.18]) follows minimising
in 0 > 0 the right-hand side. O

2.4. Duality and Leibniz’s rules. We now study the properties of the operators V¢
and div®. We begin with the following duality relation, see |19, Section 6].

Lemma 2.5 (Duality). Let « € (0,1). For all f € Lip,(R") and ¢ € Lip,(R";R") it
holds

/ fdiviodr = —/ p-Vfdx. (2.19)
R R7
Proof. Recalling Lemma and exploiting (2.5a)) and (2.9a)), we can write

/R" fdiviedr = ,un,a/ f(x)lim ly =) oly) dy dx

e=0 J{|z—y|>e} ]y—x!"*o‘“
B y— ) o(y)
= fna lﬂ%/n/x —ti W"ydl’
50 Jan Jomyise ¥ |z — I”+‘)‘+1

:—/ ) VO f(y) dy

by the Lebesgue’s Dominated Convergence Theorem and Fubini’s Theorem. 0

We now prove two Leibniz-type rules for the operators V* and div®, which in particular
show the strong non-local nature of these two operators.

Lemma 2.6 (Leibniz’s rule for V). Let o € (0,1). For all f, g € Lip,.(R"™) it holds
V(fg) = fVig+gVif+ VLS. 9),

where

VL (f,9)(®) = tne /R (y —2)(f(y) — f(2))(9(y) — g(x)) dy. Vi eR"

|y _ x|n+a+1

with o as in (2.1). Moreover, it holds
||V%L<f7 g)”Ll(R";R") < ILLn7Oé|:f:|W%’p(Rn) [g]w%’q(w)
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with p,q € (1,00) such that % + % =1 and similarly
IVRLUS, Dl ot @iy < 24t 0l f | oo @ny [glwon @y

Proof. Given f, g € Lip.(R"), by Lemma and by we have
Vo (fg)(x) = ’“’/R (v —2)(fwgly) — f(z)g(x)) ay

|y _ x|n+a+1

- /R (y —2)(f(W)gly) — f()g(z) + f(y)g(z) — f(x)g(x)) "

|y _ :L,|n+oc+1

dy + g(z)V* f ()
e /R (v —=)(f(y) — [(#))(9(y) — g(z))

|y — a|rrot!

_ :un,a/R (v —2)f(y)(9(y) — g(x))

|y _ $|n+a+1

dy + f(z)Vg(z) + g(x)V* f(z).
We also have that

V80, sy < e [ [ L= LN =9 g g,
u—m w—ﬂq

</n/n|f|$— iy d) ([, [, s, d>;

for any p,q € (1, 00) such that % + 5 = 1. The case p = oo, ¢ = 1 follows similarly. O

Lemma 2.7 (Leibniz’s rule for div®). Let o € (0,1). For all f € Lip.(R") and ¢ €
Lip.(R™;R™) it holds

div®(fe) = fdivie + - V[ 4+ divi(f, ¢),
where

Aivi (£, )(@) = pina [
with .o as in (2.1). Moreover, it holds

(y— ) (oly) — e())(f(y) — f())

|y _ x|n+a+1

dy, Yz eR™ (2.20)

||diV%L(f7 Qp)HLl(R") < ,un,a[.ﬂw%ﬁp(Rn)[SO]W%ﬂI(Rn;Rn)
with p,q € (1,00) such that % + % =1 and similarly
[divRe (f, @)l 1 ®n)y < 2ptnall Sl Lo @) [p]wen @egn),
[divRe (fs @)l 2r@ny < 20,0 l@ll Loe n ) [ flwer o).
Proof. Given f € Lip.(R") and ¢ € Lip,(R™;R"), by Lemma and by (2.5¢) we have

lea(fQO)(l') = fina /Rn (y - l’) i (lj?;(g)il(g—aazlf(x)so(x» dy

_ / (y —2) - (fFWely) = FW)e(2) + fy)e(z) - fx)p(e)) |
Hn.a -

|y _ x|n+o¢+1

Y

_ HW/R (y —z) - (p(y) — () f(y) dy + o) - VO f(x)

’y _ x’nJraJrl



14 G. E. COMI AND G. STEFANI

. /R (y — ) - (e(y) — () (f(y) — f(x))

|y _ m|n+a+1

dy + f(x)dive(z)+

+¢(x) - VO f(x).
We also have that

ldivy (. o) o <“na/n/n | |n£a>W’|< y) - |sf£a)|d .
r—1y|l > y—x q

<'u"a</n/n |f |n+a dydac) <//n [P (v) ’nfaﬂ dydz)é

for any p,q € (1, 00) such that 117 - E = 1. The case p = oo, ¢ = 1 follows similarly. O

Remark 2.8 (Extension of V{; and divy; to fractional Sobolev spaces). Thanks to the
estimates in Lemma [2.6] for all a € (0,1) the bilinear operator

VL Lip.(R™) x Lip,(R™) — L*(R™;R"™)
can be continuously extended to a bilinear operator
Ve wrP(R™) x wal(R") — L'(R™; R")
for any p, ¢ € [1, o0] such that ;1)+$ = 1, for which we retain the same notation (we tacitly

adopt the convention w=> = L*). Analogously, because of the estimates in Lemma ,
the bilinear operator

divy; : Lip,(R™) x Lip (R™;R") — L'(R™)
can be continuously extended to a bilinear operator
divg, : wrP(R") x wa (R R™) — L'(R")

for any p,q € [1, 00| such that % + % = 1, for which we retain the same notation.

3. FrRACTIONAL BV FUNCTIONS

In this section we introduce and study the fractional BV space naturally induced by the
operators V¢ and div® defined in Section [2| following De Giorgi’s distributional approach.
In the presentation of the results, we will frequently refer to [8, Chapter 5].

3.1. Definition of BV*(R") and Structure Theorem. In analogy with the classical
case (see [8, Definition 5.1] for instance), we start with the following definition.

Definition 3.1 (BV*(R") space). Let « € (0,1). A function f € L'(R") belongs to the
space BV*(R") if

Sup{/R fdiVO‘QO dx - p e C?(R”7Rn>7 HSDHLOO(Rn?Rn) < 1} < 400.

We can now state the following fundamental result relating non-local distributional
gradients of BV“ functions to vector valued Radon measures.
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Theorem 3.2 (Structure Theorem for BV® functions). Let o € (0,1) and f € L'(R").
Then, f € BV*(R") if and only if there exists a finite vector valued Radon measure
D*f € 4 (R";R™) such that
fdivipds = —/ o-dDf (3.1)
Rn Rn

for all p € C°(R™;R™). In addition, for any open set U C R™ it holds
D) =supd [ Faivp drs o€ CXURY, Ngllpmpan <1} (32

Proof. If f € L'Y(R™) and if there exists a finite vector valued Radon measure D*f €
A (R™;R™) such that holds, then f € BV*(R™) by Definition

If f € BV*(R"), then the proof is identical to the one of [8, Theorem 5.1], with minor
modifications. Define the linear functional L: C°(R"; R") — R setting

L(p) == —/Rn Fdivipde Ve € CX(R™RY),
Note that L is well defined thanks to Corollary [2.3] Since f € BV*(R"™), we have
C(U) = sup{L(p) : ¢ € CZ(U;R"), ||l pe(uimn) < 1} < +o00
for each open set U C R", so that
L) < CU)[ellrewrny Vo € C(U;R).

Thus, by the density of C°(R";R") in C,.(R";R"), the functional L can be uniquely
extended to a continuous linear functional L: C.(R";R") — R and the conclusion follows
by Riesz’s Representation Theorem. O

3.2. Lower semicontinuity of fractional variation. Similarly to the classical case,
the fractional variation measure given by Theorem in (3.2) is lower semicontinuous
with respect to L!-convergence.

Proposition 3.3 (Lower semicontinuity of fractional variation measure). Let o € (0,1).
If (fe)ren € BVE(R™) and fr — f in LY(R™) as k — +o0, then f € BV*(R") with

|DYfI(U) < liminf | D f|(U)
k—+4o0
for any open set U C R™.

Proof. Let ¢ € C*(R™R") with ||| pe@rrey < 1. Then div®p € L*(R") by Corol-
lary 2.3 and so we can estimate
/ fdivip dr = lim fedivie dr = — lim @ dD* fi, < liminf | D® f|(R™).
Rn k—+oo JRn k—+4o0 JR7 k——+oo
This shows that
| D f|(R") < lim inf [D* fi.|(R"),
k—+o00

thanks to Theorem Finally, if U is an open set in R", it is enough to take ¢ €
C>(U;R™) and to argue as above, applying (3.2)). O

From Proposition [3.3| we immediately deduce the following result, whose standard proof
is left to the reader.
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Corollary 3.4 (BV® is a Banach space). Let o € (0,1). The linear space BV*(R™)
equipped with the norm

IfllBve@) == [Ifller@n + [DfIR),  f e BVR"),
where D*f is given by Theorem is a Banach space.

3.3. Approximation by smooth functions. Here and in the following, we let o €
C2°(R™) be a function such that

supp 0 C By, 0>0, / o(x) de =1, (3.3)
see [8, Section 4.2.1] for an example. We thus let (o.).~0 C C°(R™) be defined as
1 x
()= —p|— v R™. 3.4
0.(0) = o (%) Wie (3.4)

We call (g:)e>0 a family of standard mollifiers. We have the following result.
Lemma 3.5 (Convolution with standard mollifiers). Let o € (0,1) and let (0:)eso as

in (3.4). If ¢ € Lip (R";R"), then

div® (0. * ) = 0. * div¥p (3.5)
for any e > 0. Thus, if f € BV*(R™), then
D%(¢e * [) = (e + D" f) ™" (3.6)
for any € > 0, and
D%(gex f) = D°f (3.7)

in M (R";R") as e — 0.
Proof. Let ¢ € Lip (R";R") and = € R™. Recalling (2.11]), we can write
div¥e = K, o * dive,

where
Hn,o

nta—1
Since g, * ¢ € Lip.(R™;R™), we can compute

div®(0: * ) = K o % div(o: * ¢)
= Ko * (0: x divy)
= 0. * (K0 * divy)

K o(z) = z)' 7 2z e R\ {0}

= 0. xdiv¥p

and (3.5)) follows. Now let f € BV*(R") and ¢ € C°(R™;R"). By (3.1) and (3.5), for all
e > 0 we can compute

—/ (0c % f)diviedr = —/ f (0- % div¥p) dx
R Rn
—/ fdiv¥(o. x ) dx
R”l
— [ (o ¢)dDey
R’i’l

= Rn@'(@a*Daf)dx
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proving (3.6). The convergence in (3.7) thus follows from standard properties of the
mollification of Radon measures, see [2, Theorem 2.2] for instance. O

As an immediate application of Lemma [3.5] we can prove that a function in BV *(R")
can be tested against the fractional divergence of any Lip_-regular vector field.

Proposition 3.6 (Lip -regular test). Let a € (0,1). If f € BV*(R"), then (3.1)) holds
for all ¢ € Lip . (R™; R™).

Proof. Fix ¢ € Lip.(R™;R") and let (g:)eso € C°(R™) be as in (3.4). Then o. * ¢ €
C*(R™;R™) and so, by Lemma and (3.1]), we have

[ oox divipde = [ fdiv*(o. 5 g)dv = [ (0.59)-dDf.  (33)
Rn Rn Rn

Since . * ¢ — ¢ uniformly and g. * f — f in L'(R") as ¢ — 0, and div® ¢ € L®(R") by
Corollary we can pass to the limit as e — 0 in (3.8]) getting

/ Fdivipds = —/ o dD" f

Rn Rn

for any ¢ € Lip (R"; R"). O
As in the classical case, we can prove the density of C*°(R™) N BV*(R") in BV*(R").

Theorem 3.7 (Approximation by C*°NBV* functions). Let o € (0,1). If f € BV*(R"),
then there ezists (fx)reny C BVY(R™) N C>®(R™) such that

(i) fu — f in LY(R");
(i) |D® fi|(R™) — | D f|(R").

Proof. Let (0:)e>0 C C°(R™) be as in (3.4). Fix f € BV*(R™) and consider f. := f x o,
for all € > 0. Since f. — f in L'(R"), by Proposition we get that

D FI(RY) < liminf |D* .| (R").
By Lemma [3.5 we also have that
DR = [ oo D*f|do < [D"f|(R")
and the proof is complete. O
Let (nr)r>0 C C2°(R™) be such that

0<nr<l, nr = 1 on Bp, supp(nr) C Bry1, Lip(ng) < 2. (3.9)

We call ng a cut-off function. As in the classical case, we can prove the density of C2°(R")
in BV*(R").

Theorem 3.8 (Approximation by C2° functions). Let a € (0,1). If f € BV*(R"), then
there exists (fi)ren C C°(R™) such that

(i) fr = f in L'(R");
(i) |D® fi|(R™) — [ D f|(R™).
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Proof. Let (ng)r=0 C C=°(R") be as in (3.9). Thanks to Theorem 3.7 it is enough to
prove that fng — f in BV*(R") as R — o0 for all f € C>*(R™) N BV*(R"). Clearly,
fnr — fin LY(R™) as R — +o0. Thus, by Proposition [3.3, we just need to prove that

limsup [D*(fnr)|(R") < |D* f|(R™). (3.10)
R—+o00
Fix ¢ € C°(R™;R"). Then, by Lemma [2.7, we get
/R" fordiviedr = /]R" fdiv¥(nry) dx — /]R" fo-Vingdr — /Rn fdiviy (mg, ) dz.
Since f € BV*(R"™) and 0 < ng < 1, we have

[ 4 v () da| < ol | D SR,

Moreover, we have

| fe-Vonmde

and, similarly,

Yy) — X
[ £ vt 0) da| < 2nlellmee [, 1] [ PO 0y

elo) ~ mnle)|

R |y $|n+a

< tnall@llie oz [ 17@)

Combining these three estimates, we conclude that

[ omdivoda| < gl aoao DI (R)

nr(y) — nr(z)]
B Jy — 56|"+“ e

and (B.10)) follows by Theorem [3.2] Indeed, we have

. |77R ()]
RLHEOO R™ @ ’/ ]”Jra dydz =0

combining (2.6), (2.7) and (3.9) with Lebesgue s Dominated Convergence Theorem. [J

3.4. Gagliardo—Nirenberg—Sobolev inequality. Thanks to Theorem [3.8, we are able
to prove the analogous of the Gagliardo-Nirenberg—Sobolev inequality for the space
BV(R™).

Theorem 3.9 (Gagliardo—Nirenberg—Sobolev inequality). Let o € (0,1) and n > 2.
There exists a constant ¢, o > 0 such that

11l 2 gy < D I(R?) (3.11)

for any f € BV*(R"™). As a consequence, BV*(R"™) is continuously embedded in LI(R™)
for any q € [1, 2—].

' n—a

Proof. By |16, Theorem A’|, we know that (3.11)) holds for any f € C°(R"). So let
f € BV*(R") and let (fi)ren C C°(R™) be as in Theorem [3.8f By Fatou’s Lemma and
Proposition we thus obtain

11 gy < HOE | fil ) < na T [DP Fl(RY) = | D FI(RY)

and the proof is complete. 0
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Remark 3.10. We stress the fact that Theorem does not hold for n = 1, as will
be shown in Remark below. It is worth to notice that an analogous restriction
holds for [16, Theorem A], for which the authors provide a counterexample in the case
n = 1 (see |16, Counterexample 3.2]). The authors then derive |16, Theorem A’] as a
consequence of [16, Theorem A], without proving the necessity of the restriction to n > 2
in this second case, as we do in Remark [3.27]

3.5. Coarea inequality. In analogy with the classical case, we can prove a coarea in-
equality formula for functions in BV*(R™).

Theorem 3.11 (Coarea inequality). Let o € (0,1). If f € BV*(R") is such that

L 1D |®?) dt < +oo, (3.12)

then
Dof = /]R DX g5y dt (3.13)

and
D f] S/RID"X{f>t}|dt- (3.14)

Proof. Let ¢ € C*(R™;R"). By (3.12) and applying Fubini’s Theorem twice, we can
compute

/ p-dDf = — / fdivie(z) d

]Rn
= — le o(x ( A X (—o0,f (@) (1) = X(=00,0)(t) dt) dx
= - / / divip(z) (x(ssn (@) — X(—oo@)(t)) dx dt

= - dD* dt
/R RTL(P X{f>t}

Re (/ ’ t>
- N 2 d - D X{f>t} d
proving (13.13]). Thus

D1 = | [ D ] < [ IDx(psg ]t
and the proof is complete. O

3.6. A fractional version of the Fundamental Theorem of Calculus. Let o € (0,1)
and let p, o be given by (2.1)) (note that the expression in (2.1) makes sense for all
€ (—1,1)). We let

F(R") = {f € C*(R"): D*f € L'(R") N Cy(R") for all multi-indices a € Ny} (3.15)
and
T (R R") :={p € C°(R":R") : p; € T(R"), i =1,...,n}.
By [19, Section 5], the operator

. —a z-plx+z
div %o(z) 1= pin,—q /n ]2]”(“0‘) dz (3.16)
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is well defined for any ¢ € 7 (R";R™). Moreover, by [19, Theorem 5.3], we have the
following inversion formula

- div_ava = idy(Rn). (317)
Exploiting (3.16|) and (3.17) we can prove the following fractional version of the Funda-
mental Theorem of Calculus. See [17, Theorem 2.1] for a similar approach.

Theorem 3.12 (Fractional Fundamental Theorem of Calculus). Let o € (0,1). If f €
C(R™), then

z2—x z—y

10 = 1@ = [, (s~ ) V@ d Gy
for any x,y € R™.

Proof. Since clearly C°(R™) C 7 (R"™), we have V*f € 7 (R";R") by [19, Theorem 4.3].
Applying (3.17)), we have

fly) = f(z) = (=div= V2 f)(y) — (=div "V f)(x)
= fn,—a /Rn ’z’nila : (Vo‘f(:)s +2) = Vof(y+ z)) dz

for all z,y € R™. Then (3.18]) follows splitting the integral and changing variables. U

An easy consequence of Theorem [3.12] is that the distributional a-divergence of the
kernel appearing in (3.18)) is a difference of Dirac deltas.

Proposition 3.13. Let a € (0,1). If z,y € R, then

o R y B _
fn,—adiv <| i — P _:L.|n+l—a> =0y — 0y (3.19)
in the sense of Radon measures.
Proof. 1t follows immediately from (3.18]). U

3.7. Compactness. We start with the following Hélder estimate on the L'-norm of trans-
lations of functions in C2°(R™).

Proposition 3.14 (L'-estimate on translations). Let o € (0,1). If f € C>°(R"™), then

| 1f@+y) = £@)de < Gyl IVl o ey (3.20)
for all y € R™, where

Tn,a = N/n,—a/
Rn
Proof. By (3.18]), we have
L@+ = f@lde < oo [ ]

z z— e
|z[nH1—e B |z — ¢q|rti—e

dz. (3.21)

V4 Z—=Y
’Z‘n+1fa o ’Z _ y’nJrlfa

Vef(x + 2)|dzdx

¥4 zZ—=Y
’Z‘n—s—l—a - |Z _ y|n+1—a

dz.

= n.—o va n.pn /
pn-alV fllr @iy [
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Now we notice that the integral appearing in the last term is actually a radial function
of y. Indeed, let R € SO(n) be such that Ry = |y|v, for some v € S"~!. Making the
change of variable z = |y| "Rw, we obtain

t t
2 zZ—y i Rw R(w —v)
/Rn 2|ria [z — y[rti-a dz = [y /Rn fwrri—a "~ w — yfrri-a dw
w (w—v)
= |y|a /]R" |w|n+1—a B |w _ V|n+1—a dw.
Since v is arbitrary, we may choose v = e;. We now prove that
z zZ—ep
/Rn |Z|n+1—a B |Z _ el|n+l—a dz < 400,
To this purpose, we notice that
z zZ— e 1 1
— dz < / dz —d
/32 ‘Z’nJrlfa ‘Z_el‘nJrlfa Z > By ‘Z’n « + By ‘Z_el‘nfa <
o
<2 dz = 2nw,—
Bs |z|P a
On the other hand, for all z € R” \ B2 we have
— —t
Z—€ B . 61) dt
|Z _ el|n+1—0c |n+1 « Z _ te1|n+1 «
e1 (z — teq)
= — 1— — ) — g
/0 ’Z _ tel‘n+1fa + (n + Of)(Zl ) |Z - tel|n+3fa
so that
— Lz —t — 1
/ 2 z-e / / |z —ter] + (n—a+1)|z — |dtdz
R™\B, | |z|PH—> |z — e1|"+1—0‘ "\ By |z — teq|nt2«

1
<(n—a+2 // . drat
—<n « ) 0 "\ By |Z_telyn+1fa <

1 1

nwn

— 2
=n—a+ )1—a

We conclude that

z z—ep 3 (n—a+2)
— dz <nw, [2— 4+ ———=| < .
~/R” |z|n+1—oz |Z _ e1|n+1—a Z > nw < a + 1—a +0o0
Thus, the proof is complete. [l

Similarly to the classical case, as a consequence of the previous result we can prove the
following key estimate of the L'-distance of a function in BV*(R") and its convolution
with a mollifier.

Corollary 3.15 (L'-distance with convolution). Let a € (0,1). If f € BV*(R"™), then
o= f — fllor@n) < Y e[ DYfI(R™) (3.22)
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for all e > 0, where (0c)es0 C CX(R™) is as in (3.4) and v, as in Proposition[3.1])
Proof. By Theorem 3 . it is enough to prove | - for f € C*(R™). By (3.20 - we get

lo-# f = fllin < [ [ e)lf @ —2y) = f(@) dyda
= [ o) [ 1f(x—ey) = f(x) dody

R"

< Yna IV sz [ o)yl dy

1

< Yo €IV 1 (R

and the proof is complete. 0

We are now ready to prove following compactness result for the space BV*(R").

Theorem 3.16 (Compactness for BV*(R")). Let a € (0,1). If (fx)ren € BV(R™)
satisfies

sup || fl| Byemny < +00,
keN
then there exists a subsequence (fi,)jen C BV*(R") and a function f € L'(R") such that
fkj — f in Llloc(Rn>

as j — 400.

Proof. We follow the line of the proof of |2, Theorem 3.23]. Let (g:).=0 C C°(R") be as
n (3.4) and set fi. = o * fx. Clearly fi. € C*°(R"™) and

I frell ooy < loellzoe@m || frll ot mny, IV frellze@mny < |V el oo @nimm || frll L1 ey

for any open set U € R™. Thus (fi < )ren is locally equibounded and locally equicontinuous
for each € > 0 fixed. By a diagonal argument, we can find a sequence (k;);en such that
(fk;e)jen converges in C(U) for any open set U € R™ with ¢ = 1/p for all p € N. By
Corollary [3.15] we thus get

lim sup |fkh — fr;| dz = lim sup \fkh 1p = Jr;/p| do
h,j—400 h,j—40c0

+ lim sup |fkh Jenaspl + 1 fr; = frjaypl do

h,j—+o00

2 n,o o n
IO sup [ D f|(R")
p keN

IN

for all open set U € R™. Since p € N is arbitrary and L'(U) is a Banach space, this
shows that (fi,);jen converges in L'(U) for all open set U € R™. Up to extract a further
subsequence (which we do not relabel for simplicity), we also have that f; (x) — f(x) for
Z"-a.e. x € R". By Fatou’s Lemma, we can thus infer that

oy < lim i , o < R
£l @mny < l;ngfokjﬂLl(R ) < Sup | fell Bve®n)

Hence f € L'(R"™) and the proof is complete. O
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Remark 3.17 (Improvement of |17, Theorem 2.1]). The argument presented above can
be used to extend the validity of [17, Theorem 2.1] to all exponents p € [1, Z), since our
strategy does not rely on the boundedness of Riesz’s transform but only on the inversion
formula (3.17). We leave the details of the proof of this improvement of [17, Theorem 2.1]
to the interested reader.

3.8. The inclusion W*!(R") C BV*(R"). As in the classical case, fractional BV func-
tions naturally include fractional Sobolev functions.

Theorem 3.18 (W*'(R™) ¢ BV*(R")). Let a € (0,1). If f € W*YR"™) then f €
BVe(R™), with
|DfI(R") < Nn,a[f]WaJ(R") (3.23)
and
/ fdivtpdr = —/ p-Vfdx (3.24)
Rn Rn
for all € Lip (R™;R™), so that D*f =V f . £L".
Moreover, if f € BV(R"), then f € W*Y(R") for any « € (0,1), with
[fllwer@ny < caall fllBv@n) (3.25)
for some ¢, o > 0 and

Lin,a dD f(y)

n+oa—1/J/r |y —x|rte-!

Vef(z) = (3.26)

for L"-a.e. x € R™.

Proof. Let f € W*Y(R™). For any ¢ € Lip.(R";R"), by Lebesgue’s Dominated Conver-
gence Theorem, Fubini’s Theorem and Lemma E and recalling (2.4)), we can compute

: —z) - p(y)
divipdr = nahm / / —d dx
/Rnf i a n J{je— y|>s} gttt Y

hm/n/{;D y|>€} dedy

¥ 50 |y _ x|n+a+1

(y —2)(f(z) — f(y))
o lim /R" /{x y|>€} dx dy

¥ e50 |y — $|n+o¢+l
= - / ) V" fy) dy
This proves (3.24)), so that f € BV*(R"). Inequality (3.23) follows as in Lemma [2.1]
Now let f € BV(R"). We claim that f € W*!(R"). Indeed, take (fi)ren C C°(R")N
BV (R") such that fi, — f in L'(R") and ||V fi||p1®nzny = |Df|(R™) as k — 400 (for

instance, see [8, Theorem 5.3]). Since WHH(R™) € W*(R"™) (the proof of this inclusion
is similar to the one of 7, Proposition 2.2], for example), by Fatou’s Lemma we get that

1f llwer ey < T inf | feflwes g
< Cn,a ll}:gljgof ||fk||W1,1(Rn)
= cna Him (| fellr@n) + Dl (R™))

= Cn,aHfHBV(]R")-
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Since |Df|(R") < +o00, by Lemma the function in (3.26) is well defined in L{ .(R").
Fix ¢ € C*(R™; R™). By Corollary [2.3] we can write

o e dive(y)
/Rnf(x)dlv go(x)dx—n+a_1/n/n — dy dz.

Recalling Lemma [2.4] applying Fubini’s Theorem twice and integrating by parts, we
obtain

dlvgo dlvygo T +y)

/n/n x‘nJra 1dydI /n/n |n+o¢ 1 d dx
lew(p T+ y)

_/n/n |y [rta-T dy dx

= [ i [ pa) dive(e +y) dady

=— [ W' [ ey +a)- dDf()dy

_ _/n / T _@;ﬂla_l dy - dDf(x)

B dDf(x)
== Lo o(y) - /R = gpat dy

Thus we conclude that

| f@yaivip(e)de = -2 [ o) [

n+a—1Jr
Recalling (3.24)), this proves (3.26)) and the proof is complete. O

3.9. The space S*?(R") and the inclusion S*!(R™) C BV*(R"). It is now tempting
to approach fractional Sobolev spaces from a distributional point of view. Recalling
Corollary we can give the following definition.

Definition 3.19 (Weak a-gradient). Let a € (0,1), p € [1,+0o0], f € LP(R"). We say
that g € Li,.(R";R") is a weak a-gradient of f, and we write g = V2 f, if

/fdivacpdm:—/ g-pdx
R" R"

iDf(@)

T — y‘n—o—a—l

for all ¢ € C°(R™;R").
For a« € (0,1) and p € [1,+00], we can thus introduce the distributional fractional
Sobolev space (S*P(R™), || - ||sermny) letting
SYP(R™) :={f e LP(R") : 3V, fe LP(R";R")} (3.27)
and
Hf“Sa,p(]Rn) = ||f||LP(]R“) + ||V?Uf||LP(]R";]Rn), \V/f € Sa’p(Rn>. (328)
We omit the standard proof of the following result.

Proposition 3.20 (S*? is a Banach space). Let a € (0,1) and p € [1,+00]|. The space
(S“P(R™), || - ||ser(mny) s a Banach space.

We leave the proof of the following interpolation result to the reader.
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Lemma 3.21 (Interpolation). Let o € (0,1) and py,ps € [1,+00], with p1 < pa. Then
SEPLR™) N S*P2(R™) € S*¥Y(R")
with continuous embedding for all q € [py, pa].

Taking advantage of the techniques developed in the study of the space BV*(R") above,
we are able to prove the following approximation result.

Theorem 3.22 (Approximation by C*°NS*? functions). Let a € (0,1) and p € [1,+00).
The set C>*°(R™) N S*P(R") is dense in S*P(R").

Proof. Let (0:)es0 C C°(R™) be as in (3.4). Fix f € S*P(R") and consider f. := f x o,
for all ¢ > 0. By Lemma it is easy to check that f. € C*(R") N S*P(R™) with
V& fe = 0. % VO f for all € > 0, so that the conclusion follows by standard properties of
the convolution. O

Given o € (0,1) and p € [1,400], it is easy to see that, if f € CX(R"™), then, by
Lemma , f € S*(R™) with V2 f = V*f. In the case p = 1, we can prove that
C°(R™) is also a dense subset of S*!(R™).

Theorem 3.23 (Approximation by C2° functions). Let o € (0,1). The set C°(R™) is
dense in S1(R™).

Proof. Let (nr)r=0 C C°(R") be as in (3.9). Thanks to Theorem [3.22] it is enough to
prove that fng — f in S®(R") as R — +oo for all f € C*(R") N S*!(R"). Clearly,
fnr — fin L'(R") as R — +o00. We now argue as in the proof of Theorem . Fix
¢ € C(R™;R"). Then, by Lemma [2.7, we get

| foedivigdr = [ fdiv*neg)de— [ fio-Vonpde— [ fdiviy(mm, ¢)dr.
Since f € S*!(R™), we have
LéndeQOmw)drz-A;an-Vifdw
Since fnr € C°(R™), we also have
&jwﬁwww=—A;wV%wﬁM?
Thus we can write
L (Vaf = Voef) - pdo = [ (L=na)e- Vi da
—:énfw-V“mwm—iénfdwﬁdnmqﬂdw
Moreover, we have
’ / fe-Vingde

and, similarly,

[ A, ) o] < 2l [ 17| [ R0 g g,

R ‘y :E‘n+a

|77R(y) - 77R(1‘)| du d
R |y —afrre

< tnallpllz= @z [ 1£()
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Combining these two estimates, we get that
[ (Vas =V af) - ode| < lellimmomey [ (L= n)|VES|da

|77R(y) - UR($)|
R Jy — [t

+3yinallpllim@oan [ 1F@) dy dz.
We thus conclude that

IV5f = VoDl sy < [ (L= na)|Vif | do

+ Bﬂn,a/ |f(37) |nR<y> B 77R(l')| dy dr.
R R |y _ x|n+o¢

Therefore V*(nrf) — V2 f in L'(R";R") as R — +o00. Indeed, we have
lim [ (1 —ng)|Vifldr=0

R—+00 JR"
combining ({3.9) with Lebesgue’s Dominated Convergence Theorem and

im [ [f(z) ne(y) =na(@)l 0

R—+o00 Rn Rn |y —_ m|n+a
combining ([2.6]), (2.7) and (3.9) with Lebesgue’s Dominated Convergence Theorem. [

We do not know if C2°(R") is a dense subset of S“P(R") for « € (0,1) and p € (1, +00).

In other words, defining
SEP(RY) o= O (R,
we do not know if the (continuous) inclusion Sg*(R™) C S*P(R") is strict.

The space (S5 (R™), ||-||ge»(rny) Was introduced in [17] (with a different, but equivalent,
norm). Thanks to [17, Theorem 1.7], for all & € (0,1) and p € (1, +00) we have S;*(R") =
L*P(R™), where L“P(R") is the Bessel potential space, see |17, Definition 2.1]. It is known
that LoteP(R") C W*P(R™) C L* =P(R"™) with continuous embeddings for all « € (0, 1),
p € (1,4+00) and 0 < € < min{a, 1 — a}, see [17, Theorem 2.2]. In the particular case
p = 2, it holds that L*?(R") = W*%(R") for all a € (0,1), see [17, Theorem 2.2]. In
addition, W*P(R"™) C L*P(R") with continuous embedding for all & € (0,1) and p € (1, 2],
see [20, Chapter V, Section 5.3].

Proposition 3.24 (Relation between W*? and S*P). The following properties hold.
(i) If « € (0,1) and p € [1,2], then W*P(R"™) C S*P(R™) with continuous embedding.
(i) If 0 < o < B < 1 and p € (2,+0cc], then WFP(R™) C S*P(R™) with continuous
embedding.
Proof. Property follows from the discussion above for the case p € (1,2] and from

Theorem for the case p = 1. Property follows from the discussion above for the
case p € (2,400), while for the case p = +00 it is enough to observe that

IVEFll oo gy < fino SUD ) = F@)l
y " zern JR™ ‘y_g;‘nqta

dy
§2,U/n,a f oo (R™ /
Il [ [y[nte

< Cnapll fllws@mn

dy
+ . flwene / _dy
WESED Jyi<ay Jy[rre—?
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for all f € WH>(R"). O
As in the classical case, we have S®!(R") C BV*(R") with continuous embedding.

Theorem 3.25 (S“!'(R™) ¢ BV*(R")). Let a € (0,1). If f € BV*(R"), then [ €
Sl (R™) if and only if |D*f] < £", in which case

Def=vVofL" in A R"R").
Proof. Let f € BV*(R™) and assume that |D*f| < £". Then D*f = g %™ for some
g € LY(R™;R"). But then, by Theorem , we must have

/fdiva@dx:—/ g-pdx
Rn R™

for all p € C>*(R™;R"), so that f € S*(R") with V2 f = g. Viceversa, if f € S*!(R")
then

/fdivacpdx:—/ v - Vo fdx
R" R™

for all p € C°(R™;R"), so that f € BV*(R") with D*f =V f.Z" in 4 (R";R"). O

3.10. The inclusion S*!(R") C BV*(R") is strict. It seems natural to ask whether
the inclusion S*!(R™) C BV*(R") is strict as in the classical case. We start to solve this
problem in the case n = 1.

Theorem 3.26 (BV*(R) \ S*'(R) # @). Let a € (0,1). The inclusion S**(R) C
BV(R) is strict, since for any a,b € R, with a # b, the function

fapalz) =z — b|a_1 sgn(z —b) — |z — a|a_1 sgn(z — a)

satisfies fopa € BVY(R) with

D% fy e = 200 (3.29)

1,—«

in the sense of finite Radon measures.

Proof. Let a,b € R be fixed with a # b. One can easily check that f,;. € L*(R). Since

n =1, we have V® = div®. Thus, (3.29) follows from (3.19)), proving that f € BV*(R).
But |[D*fopal L L, so that fopa & S*'(R) by Theorem O

Remark 3.27. Note that f,,, € BV*(R) \ Lﬁ(R), since

) lz —al™' asz —a,
|fa,b,a(x)|§ ~

lz — 07! asxz — 0.
Thus, Theorem [3.9) cannot hold for n = 1.

For the case n > 1, we need to recall the definition of the fractional Laplacian opera-
tor (—A)% and some of its properties.
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Following [19], for any f € C°(R™) we set
f(x+h)

2y W el if o€ (~1,0),
f(z) ifa=0,
(—A)% f(z) = (3.30)
f z+h) — f(z) :
Vn.a W"M dh if a € (0,1),
flx+h)— f(z) .
Vo li dh ifael,2),
@250 S ngsey ||t faclh2)
where
T nto
= 2% 32 ( 2 ) (331)

r(-3)
We stress the fact that this definition is consistent with the previous definitions of

fractional gradient and divergence in the sense that
atp

—div*V? = (—A) 2
for any o € (—=1,1) and 8 € (0,1) (see [19, Theorem 5.3]), so that, in particular,
—div*V® = (-A)”*
for any a € (0,1).
In the case o € (—1,0), we have
(—A)E =L, onCFR"),

where [, is as in ([2.10)).
In the case a € (0,1), notice that

1(=A)2 flla@n) < Vnalflwer @ (3.32)
for all f € C°(R™). Thus the linear operator
(=A)2: CX(R") — LY(R™)
can be continuously extended to a linear operator
(—A)%: W(R") — L'(R"),

for which we retain the same notation.
Given a € (0,1) and € > 0, for all f € W*!(R") we also set

(—A)?/Qf(x) = Upa /{h>5} fz+h) = f(z) dh.

|h|n+a

By Lebesgue’s Dominate Convergence Theorem, we have that
lim || (<)% — (=A) f[3am) = 0

for all f € W*Y(R"). Thus, arguing as in the proof of [12, Lemma 2.4] (see also [13,
Section 25.1]), for all f € W*!(R"™) we have

I(=A)2f=f in L*(R"™). (3.33)
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Taking advantage of the identity in (3.33)), we can prove the following result.

Lemma 3.28 (Relation between BV *(R"™) and bu(R"™)). Let a € (0,1). The following
properties hold.

(i) If f € BVY(R"), then u = I,_of € bu(R™) with Du = D*f in .4 (R";R").
(ii) If u € BV(R"), then f := (—A) 7 u € BV*(R") with
| flleieny < cnollullBv@ny and D*f = Du in .#R";R").
As a consequence, the operator (—A)™=" : BV (R") — BV*(R™) is continuous.

Proof. We prove the two properties separately.
Proof of (). Let f € BV*(R"). Since f € L'(R"), we have I_,f € L{(R"). By
Fubini’s Theorem, for any ¢ € C°(R™;R") we have

/ fdiviodr = / fI_odivodr = / udivep dz, (3.34)
Rn R® Rn

proving that u = I;_, f € bu(R") with Du = D*f in .# (R";R").
Proof of (il). Let u € BV(R"). By Theorem we know that u € W*H(R"),
l1—«a .
so that f := (=A)2 uw € L'(R") with || f||11 &) < cnallullBv@e) by (3.25) and (3.32).
Then, arguing as before, for any ¢ € C2°(R™;R") we get (3.34]), since we have I} _,f =u
in L'(R™) by (3.33)). The proof is complete. O

Remark 3.29 (Integrability issues). Note that the inclusion I, ,(BV*(R")) C Li..(R")
in Lemma above is sharp. Indeed, by Tonelli’s Theorem it is easily seen that I1_,xg ¢
L'(R™) whenever xp € W*!(R"). However, when n > 2, by Theorem (3.9 and by Hardy—
Littlewood—Sobolev inequality (see |20, Chapter V, Section 1.2] for instance), the map

I_o: BV* — LP(R") is continuous for each p € ( o n }

n—14+a’ n—1

As a consequence of Lemma|3.28 we can prove that the inclusion S*'(R") C BV*(R")
is strict for all @ € (0,1) and n > 1.

Theorem 3.30 (BV*(R") \ S*Y(R") # &). Let o € (0,1). The inclusion S“'(R") C
BV*(R") is strict.

1

Proof. Let u € BV(R™) \ WHY(R"). By Lemma [3.28, we know that f := (=A) = u €
BV*R") with Du = D*f in . (R™;R"). But then |D®f]| is not absolutely continuous
with respect to .£", so that f ¢ S“!(R") by Theorem [3.25] O

3.11. The inclusion W*!(R") c S*!(R") is strict. By Theorem [3.30, we know that
the inclusion W*!(R") C BV*(R") is strict. In the following result we prove that also
the inclusion W*!(R") Cc S*!(R") is strict.

Theorem 3.31 (S*'(R") \ W*(R") # @). Let a € (0,1). The inclusion W*(R") C
SeLR™) s strict.

Proof. We argue by contradiction. If W*!(R") = S*!(R"), then the inclusion map
Wel(R") — S*1(R") is a linear and continuous bijection. Thus, by the Inverse Mapping
Theorem, there must exist a constant C' > 0 such that
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for all g € S*(R™). Now let f € BV*R")\ S*(R") be given by Theorem [3.30]
By Theorem there exists (fy)rey C C°(R") such that f — f in L'(R") and
| D fe|(R™) — |D*f|(R™) as k — +oo. Up to extract a subsequence (which we do

not relabel for simplicity), we can assume that fy(z) — f(z) as k — +oo for £"-a.e.
z € R™. By (3.35) and Fatou’s Lemma, we have that

< i i (e n

< Cl,gligofukas A(RR)
= Ckggloo kaHBVa(Rn)
=C ||f||BV°‘(R") < 400.

Therefore f € W*(R"™), in contradiction with Theorem We thus must have that
the inclusion map W*!(R") < S*!(R"™) cannot be surjective. O

3.12. The inclusion BV®(R") ¢ WALY(R") for B < a. Even though the inclusion
WeLR") C BV*(R™) is strict, it is interesting to notice that BV*(R") C W51 (R") for
all 0 < 8 < a < 1 with continuous embedding.

Theorem 3.32 (BV(R") ¢ WAL (R") for 8 < «). Let o, 3 € (0,1) with B < . Then
BV(R") ¢ WAL (RY), with

[flwsiwry < Crap |l fllBre@n, (3.36)
for all f € BV*(R™), where
a2 7 e

Bla=p) (3.37)

Cha,p 1= Nwy,

and Yn.o 95 as in (3.21)).
Proof. Let f € C®(R"™) and r > 0. By (3.20)), we get

|f(z+y) — f@)]
WBIR" /n/n |y|n+6 dl‘dy

< /Rn Tle (201 £ 112 @y Xz 8, (9) + Yoyl 1V Fll iy X, () dy

nwy _ Wn, o N
= 22170 fll 2 emy Yo PNV f L1 Rnimn)
s -
nw nw
< |27+ : ”Ynoﬂ"a6> fllBvem®n,
(270 18 ) v

so that both (3.36) and (3.37) are proved by minimising in » > 0 for all f € C*(R").
Now let f € BV*(R"). By Theorem [3.8] there exists (fi)ren C C°(R™) such that
| fell Bve@ny = || fllBvemny and fr — f a.e. as k — +oo. Thus, by Fatou’s Lemma, we
get that

[lws@ny < Hminf [filwsa@n) < Hm Coop | fillBve@n) = Cuap [fllBven

k——+o0

and the conclusion follows. O
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Note that the constant in (3.37)) satisfies
lim Cnya’/g = 400,

B—a~

accordingly to the strict inclusion W*!(R™) C BV*(R"). In particular, the function in
Theorem is such that f,p. € WH(R) for all 3 € (0, ).
As an immediate consequence of Theorem [3.32), we have the following result.

Corollary 3.33. Let 0 < B < a < 1. Then BV*([R") c BVA(R") and S*'(R") C
SALR™) with continuous embeddings.

4. FRACTIONAL CACCIOPPOLI SETS

4.1. Definition of fractional Caccioppoli sets and the Gauss—Green formula.
As in the classical case (see |2, Definition 3.3.5] for instance), we start with the following
definition.

Definition 4.1 (Fractional Caccioppoli set). Let a € (0,1) and let £ C R™ be a mea-
surable set. For any open set 2 C R", the fractional Caccioppoli a-perimeter in €2 is the
fractional variation of xg in €, i.e.

|DxE|(Q) = sup{/E diviedr : ¢ € CZ (L R™), [[@]lLe@mrny < 1}.

We say that F is a set with finite fractional Caccioppoli a-perimeter in Q if |[D%xg|(2) <
+00. We say that E is a set with locally finite fractional Caccioppoli a-perimeter in () if
|DYxE|(U) < 400 for any U € €.

We can now state the following fundamental result relating non-local distributional
gradients of characteristic functions of fractional Caccioppoli sets and vector valued Radon
measures.

Theorem 4.2 (Gauss—Green formula for fractional Caccioppoli sets). Let o € (0,1) and
let @ C R"™ be an open set. A measurable set E C R™ is a set with finite fractional
Caccioppoli a-perimeter in Q if and only if D*xg € #(2;R™) and

/div“gpdm - —/ - dDp (4.1)
E )
for all p € C(Q;R™). In addition, for any open set U C Q it holds

[ D*xp|(U) = Sup{/E divip dz : o € CX(UsR"), [lollzern) < 1}~ (4.2)

Proof. The proof is similar to the one of Theorem [3.2} If D%yp € .#(£;R") and
holds, then E has finite fractional Caccioppoli a-perimeter in 2 by Definition 4.1}

If Fis a set with finite fractional Caccioppoli a-perimeter in (2, then define the linear
functional L: C°(Q;R") — R setting

L(p) == — /E divipdr Vo€ CX(QR").

Note that L is well defined thanks to Corollary [2.3] Since E has finite fractional Cacciop-
poli a-perimeter in €2, we have

C(U) = sup{L(p) : ¢ € CZ(U;R"), [[¢|lp=wamn) < 1} < +00



32 G. E. COMI AND G. STEFANI

for each open set U C (2, so that
IL(p)| < CU)ell e wrn) Vo € C°(U;R™).

Thus, by the density of C2°(Q2; R") in C.(Q2; R"), the functional L can be uniquely extended
to a continuous linear functional L: C.(2;R™) — R and the conclusion follows by Riesz’s
Representation Theorem. O

4.2. Lower semicontinuity of fractional variation. As in the classical case, the varia-
tion measure of a set with finite fractional Caccioppoli a-perimeter is lower semicontinuous
with respect to the local convergence in measure. We also achieve a weak convergence
result.

Proposition 4.3 (Lower semicontinuity of fractional variation measure). Let o € (0,1)
and let  C R™ be an open set. If (Ex)ren S a sequence of sets with finite fractional
Caccioppoli a-perimeter in Q and xg, — xg in LL.(R"), then

loc
DaXEk — DaXE m %(Q, Rn), (43)

and
D*xel(©) < limin D5, (). (4.4

Proof. Up to extract a further subsequence, we can assume that xg, (z) — xg(z) as
k — 400 for Z"-a.e. x € R". Now let ¢ € C*(2;R") be such that ||¢| pe@mrny < 1.
Then div®p € L'(R") by Corollary and so, by Lebesgue’s Dominated Convergence
Theorem, we have

a _ o _ _ o < T o ‘
/Ele e dx kgrfoo . div®e dx kl_l}tf()o/ggp dD%xg, < liglﬁ?ole XE,|(€2)
By Theorem we get (4.4)). The convergence in (4.3)) easily follows. U

4.3. Fractional isoperimetric inequality. As a simple application of Theorem [3.9] we
can prove the following fractional isoperimetric inequality.

Theorem 4.4 (Fractional isoperimetric inequality). Let o € (0,1) and n > 2. There
exists a constant c, o > 0 such that

[BI"+ < cpal D*xEI(R") (4.5)
for any set E C R™ such that |E| < 400 and |D*xg|(R") < 400.
Proof. Since xg € BV*(R"), the result follows directly by Theorem 0

4.4. Compactness. As an application of Theorem [3.16] we can prove the following com-
pactness result for sets with finite fractional Caccioppoli a-perimeter in R" (see for in-
stance |11, Theorem 12.26] for the analogous result in the classical case).

Theorem 4.5 (Compactness for sets with finite fractional Caccioppoli a-perimeter). Let
a € (0,1) and R > 0. If (Ex)ren 1S a sequence of sets with finite fractional Caccioppoli
a-perimeter in R™ such that

sup | DX g, |(R") < +00 and E, C B Vk €N,
keN
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then there exist a subsequence (Ey;)jen and a set E C Bg with finite fractional Caccioppoli
a-perimeter in R™ such that

XE,, — XE 1N L'(R")
as j — 400.
Proof. Since Ey C Bpg for all k € N, we clearly have that (yg, )rerr C BV*(R"). By
Theorem , there exist a subsequence (Ej,) ey and a function f € L'(R™) such that
XE, = fin Lj, (R") as j — +oo. Since again Ej, C Bpg for all j € N, we have that
Xg, — f in LY(R™) as j — 4o00. Up to extract a further subsequence (which we do
not. relabel for simplicity), we can assume that X, () — f(x) for L"-ae. z € R as

j — +00, so that f = xg for some E C Bgr. By Proposition 4.3 we conclude that E has
finite fractional Caccioppoli a-perimeter in R". 0J

Theorem can be applied to prove the following compactness result for sets with
locally finite fractional Caccioppoli a-perimeter.

Corollary 4.6 (Compactness for locally finite fractional Caccioppoli a-perimeter sets).
Let o € (0,1). If (Ex)ren @s a sequence of sets with locally finite fractional Caccioppoli
a-perimeter in R™ such that

sup |Dxg,|(Br) < +00 VR >0, (4.6)
keN

then there exist a subsequence (Ey;)jen and a set E with locally finite fractional Caccioppoli
a-perimeter in R™ such that

XEkj — XE N L1100<Rn)
as j — 400.

Proof. We divide the proof into two steps, essentially following the strategy presented in
the proof of |11, Corollary 12.27].

Step 1. Let FF C R™ be a set with locally finite fractional Caccioppoli a-perimeter
in R”. We claim that

|DaXFmBR|<]Rn> < |DaXF|<BR) + S/in,apa(BR) VR > 0. (47)

Indeed, let R < R and, recalling Theorem [A.1] let (uy)ren C C°(R™) be such that
supp(ux) € Bgr and 0 < up < 1 for all £ € N and also ux — xp,, in Wel(R") as
k — +oo. If p € C*(R™; R") with ||¢|| eo@nrny < 1, then

/ uy divip de = / div® (ugy) do — / ¢ - V% dr — / divyy (uk, @) dx
F F F F

< /Fdiva(ukgp) dx + 3fin o [tr| e (mn)

< [DXr|(Brr) + 3pin,alur]war @
< |D*XF|(BR) 4 3o [tur]wer )
by Lemma [2.7, Passing to the limit as k — +o00, we conclude that

/ divep de < |Dxp|(Br) + 34inaPa(Br)
FQBR/
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and thus

|DaXFﬂBR/’(Rn) < ‘DQXF’(BR) + 3:un aPa (BR)
by Theorem |4 1nce XFABy — XFnBg il L'(R™) as R’ — R, the claim in . ) follows
by Proposmon mj

Step 2. By (4.6) and (4.7]), we can apply Theorem to (B N B;)ken for each fixed
j € N. By a standard diagonal argument, we find a subsequence (Ej, )neny and a sequence
(F})jen of sets with finite fractional Caccioppoli a-perimeter such that XEy,nB; — XF; N
LY(R™) as h — +oo for each j € N. Up to null sets, we have F; C Fj1, so that XE,, — XE
in Lj,(R") with E := Uj;ey F;. The conclusion thus follows by Proposition . O

loc

4.5. Fractional reduced boundary. Thanks to the scaling property of the fractional
divergence, we have

DQX)\E = )\n—a((sA)#DaXE on /\Q, (48)
where 0)(z) = Az for all z € R™ and A > 0. Indeed, we can compute

/'<hv“¢dx::A”/ﬁ@hvaw)oéxdx==kn‘“/"dh”(¢CH%)dw
AE E E

for all p € C°(Q;R™). In analogy with the classical case, we are thus led to the following
definition.

Definition 4.7 (Fractional reduced boundary). Let a € (0,1) and let Q C R™ be an open
set. If £ C R"™ is a set with finite fractional Caccioppoli a-perimeter in €2, then we say
that a point z € € belongs to the fractional reduced boundary of E (inside ), and we
write x € F*F, if

DX r (B, (x))

x € supp(D%xE) and Jlim e s
( P Do sl (B ()
We thus let
D“ B,
Ve QN FOE — S" vi(x) = X (Br(x) reQNFE,

im ,
=0 [ Dexp|(B(x))
be the (measure theoretic) inner unit fractional normal to E (inside Q).

As a consequence of Definition [£.7] and arguing similarly as in the proof of Proposi-
tion (3.6, if £ C R"™ is a set with finite fractional Caccioppoli a-perimeter in €2, then the
following Gauss—Green formula

/ divipdr = —/ - vy dDxE|, (4.9)
E onFeE
holds for any ¢ € Lip,(€2; R™).

4.6. Sets of finite fractional perimeter are fractional Caccioppoli sets. In analogy
with the classical case and with the inclusion W*!(R™) C BV*(R"), we can show that sets
with finite fractional a-perimeter have finite fractional Caccioppoli a-perimeter. Recall
that the fractional a-perimeter of a set £ C R in an open set {2 C R” is defined as

Ixe(z) — xe(z) — XxB ()]
&Eﬁ::/ W i dy 2// dz dy,
( ) oo |r—y |’“L i R\Q |x— |"+a

see [b| for an account on this subject.
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Proposition 4.8 (Sets of finite fractional perimeter are fractional Caccioppoli sets). Let
a € (0,1) and let Q@ C R™ be an open set. If E C R™ satisfies P,(F;€)) < +oo, then E is
a set with finite fractional Caccioppoli a-perimeter in € with
1D*xB|(Q2) < pinoFa(E; Q) (4.10)

and

/ divipdr = —/ ¢ Vipdx (4.11)

E Q

for all ¢ € Lip.(2;R™), so that D*xg = V% |DYxg| = V¥ ZL". Moreover, if E is such
that |E| < +o00 and P(E) < +o0, then xg € W*(R") for any o € (0,1), and

Hn.o VE(y)
v = : d|D 4.12
(o) = e [ Dy () (412

for £"-a.e. x € R™.
Proof. Note that Voyg € L'(Q;R"), because

[ 19 xelde < o [ [ PED XL, g

ly — x[nte
e [ [ DX ) xet0)
oo |y — x|nte TlaJrma |y — zrte

< pinaPa(E;€2).

Now let ¢ € Lip.(£2;R™) be fixed. By Lebesgue’s Dominated Convergence Theorem,
by (2.4) and by Fubini’s Theorem (applied for each fixed € > 0), we can compute

o (y—2)-»y)

lim / / ) W=oxe) o
“e=0Jo Sy y\>e} ly — x|ntotl

(y z)(xe(y) — xe(7))
hm/ /{x y|>6} dzx dy

50 |y _ I|"+O‘+1
= —/Qso-V”‘xEdy-
Thus (4.10) and (4.11]) follow by Theorem [4.2] and Definition [£.7 Finally, (£.12)) follows
from (3.26)), since xg € BV (R™). O

At the present moment, we do not know if | D*xg|(£2) < 400 implies that P, (E; Q) < 4o0.

Remark 4.9 ((#“FE is not £"-negligible in general). It is important to notice that, by
Proposition we have

P,(E;Q) <400 = Z"(QNFE) >0

including even the case xg € BV(R™). This shows a substantial difference between
the standard local De Giorgi’s perimeter measure |Dxg| and the non-local fractional
De Giorgi’s perimeter measure |D“xg|: the former is supported on a Z"-negligible set
contained in the topological boundary of E, while the latter, in general, can be supported
on a set of positive Lebesgue measure and, for this reason, cannot be expected to be
contained in the topological boundary of F.



36 G. E. COMI AND G. STEFANI

Remark 4.10 (Fractional reduced boundary and precise representative). We let

. 1
1m
wt(z) == 4 0 1 Br(@)] B

u(y) dy if the limit exists and is finite,

0 otherwise,

be the precise representative of a function u € Li.(R™; R™). Note that u* is well defined at
any Lebesgue point of u. By Proposition 1.8 if P,(E;Q) < 400 then D% p = Vo p. 2"
with Voxg € L'(2; R"). Therefore the set

HGE = {z € Q:[(Vixp) ()] = [V*xp[" () # 0}
is such that

RSE C QN FOE (4.13)
and
o (Vexe)(z) o
I/E(Z‘) = m for all x € %QE

The following simple example shows that the inclusion in (4.13)) and the inequality in
([#.10)) can be strict.

Example 4.11. Let n = 1, @ € (0,1) and a,b € R, with a < b. It is easy to see that
X(ap) € W*(R). By ([(£.12), for any x # a,b we have that

a Hi,a 1
V() = 58 [ 6= 8 ()

e F(1+§‘)< 1 1 )

a7 I‘(%) lz—al* |z —ble
We claim that
a+b
Fa,b) =R\ 5 (4.14)
while
b
s%@@:@\%ﬂ;,g, (4.15)
so that inclusion (4.13)) is strict. Finally, we also claim that
||vaX(a,b)”L1(R) < ul,aPa((a, b)) (416)

Indeed, notice that
V*(ap)(x) >0
if and only if x < “T“’, so that
a+b

Vixen@dy b <
lim =£=L =

r—0 [THT a
/x ) V@) (y)| dy 1 ifr> a;Lb.

T+
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If x = “T“’, then
u+b+r

anb()dy:() Vr > 0,

atb
2

and claim (4.14]) follows. In partlcular, we have

b
1 i p< 2P
N 2
V(ap) (z) =
-1 if > j
2
On the other hand, it is clear that
. 1 a+r o
lim o= | ViXay(y) dy = +o0
and
N s
imo | "y X(ap)(y) dy = —00,
so that claim (4.15)) follows. To prove (4.16)), note that
4
P.((a,b)) = ———(b—a)™™ 4.17
((0.8) = Sy =) (.17

since P,((a,b)) = (b —a)'"*P,((0,1)) by the scaling property of the fractional perimeter
and

1
P,((0,1)) =2 / — dydx
(0, 1) R0 Jo Jy — 2]+ Y
2 —y ]
_2 sgn(z —y) "
R\0,1) | |y — x|
2 _
_ 2 sgn(z —1) sgn(m) s
aJr\on |1-— x|" |x|a
2 (oo 1 1
== d
/ (x—1) :L‘O‘ SR / (1 —x) v
= dy —
/ (1+ m) * a(l —a)’
On the other hand, we have
21+0‘,u1
VY amllim) = ———= (b — a)l™. 4.18
H X( 7b)HL (R) OK(]. _ Oé>( a’) ( )
Indeed, [[V*X(pllri@) = (b —a)"*Vx01)llzr @ by (£8) and
« 1 1
— | VY LRy = / — dx
T VX0l @ |x|a >
1
_/ = dx
(x — 1) C(1—x)e

1
+/wh—@a‘a—xw
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o0 1 1 1 1 1
= — —dz + — —dx
1 (z—1) a° L (l—ax)> a°
31 1 o 1 1
- d / - d
) =2 ™ e Cor G ™
oo ] 1 3 1 1
:2/ S A Y S, [
o 2% (l4x)~ oz (1—ux)
2 21+a
= 14207 4207 - 1) = :
1—oz< + + ) 11—«

Combining (4.17) and (4.18)), we get (4.16]).

Thanks to Example above, we know that inequality (.15 is strict for £ = (a,b)
with a,b € R, a < b. We conclude this section proving that this fact holds for all sets
E C R such that yp € W*!(R).

Proposition 4.12. Let a € (0,1). If xp € W*Y(R), then |D*xg|(R) < u1.oPa(E).

Proof. We argue by contradiction. Assume ygz € W*!(R) is such that |D%yg|(R) =
p1,0Pa(E). Then

/R/R’fE(x’y)‘ dy dv = /R’/ng(x, y)sgn(y — x) dy| dz (4.19)

where

Xe(y) — xB(z
fe(z,y) = E‘;Zx‘lftf) Vo, y €R, z #y.

From (4.19) we deduce that

/R!fE(x,y)\dy = ‘/RfE(fE,y) sgn(y — ) dy’

for a.e. z € R. If x € E, then fg(z,y) <0 for all y € R, y # x, and thus

[ sty [ sty = | [ Vst o)l dy = [ 17l dy

for a.e. z € E. Squaring both sides and simplifying, we get that

(/;OO |fe(z,y)] dy) (/ﬂ; |fe(z,v)| dy> =0,

so that either |[E°N (z,+00)| =0 or |[E°N (=00, z)| =0 for a.e. x € E, contradicting the
fact that |F| < +oo. O

5. EXISTENCE OF BLOW-UPS FOR FRACTIONAL CACCIOPPOLI SETS

In this section we prove existence of blow-ups for sets with locally finite fractional
Caccioppoli a-perimeter. We follow the approach presented in [8, Section 5.7].
We start with the following technical preliminary result.



A DISTRIBUTIONAL APPROACH TO FRACTIONAL SOBOLEV SPACES AND VARIATION 39
Lemma 5.1. Let a € (0,1). For all e, > 0 and v € R™ we define

r+e—|y—zx
hs,r,w(?J) = |y |

if r<ly—z| <r+e,

€
0 if ly—z|>r+e.
Then V°h.,, € L'(R™;R™) with
Hon,a r—=z 1—n—
Ve (Y :—’/ z—yl "%z 5.1
=) e(n+a—1) /B (@\Ba) |T — Z|| | (5:1)
for L"-a.e. y € R™.
Proof. Clearly h.,, € Lip,(R") and
ly—=
Vha T = - x x .
ra(y) = =2 [y — ] (BN ) (Y)
Therefore by (3.26) we get
1 pna 1 z—x

Veh T = - ye(z T d
e,r, (y) en+a— 1 Jrn ’Z _ y’nJra,l ‘Z —_ .I"XBH_E( N\Br( )(Z) z

for Z"-a.e. y € R". By Theorem [3.18, we get V*h,,, € L*(R";R"). O

We now proceed with the following formula for integration by parts on balls, see [8,
Lemma 5.2] for the analogous result in the classical setting.

Theorem 5.2 (Integration by parts on balls). Let o € (0,1). If E C R™ is a set with
locally finite fractional Caccioppoli a-perimeter in R™, then

/ div®p dy+ / © VB, @ dy+ / divyy, (XB, (), @) dy = — / ©-dD%p (5.2)
ENB,(z) E E Br(z)

r

for all ¢ € Lip (R";R"), x € Z*E and for £'-a.e. r > 0.

Proof. Fix e,r > 0, € #°FE and ¢ € Lip,(R";R") and let h.,, be as in Lemma [5.1]
On the one hand, by (4.9) we have

/ dive(p heyy) dy = — / (Berw @) - AD%X. (5.3)
E FoR

Since he . (y) = Xg7(y) as € — 0 for any y € R" and [D*xg|(0B,(x)) = 0 for Llae.
r > 0, we can compute

lim (hepwp) - dD\ g = / v- dD%xE.
(

e—=0JzoR r(z

On the other hand, by Lemma [2.1) and Lemma we have
div* (@ herz) = herp divip + @ - VO, o + divyy (he oz, @)- (5.4)
We deal with each term of the right-hand side of (5.4]) separately. For the first term,
since 0 < heyy < XBoyi(2) for all € € (0,1) and he,p — XB,(z) in L'(R") as € — 0, by
Corollary [2.3] and Lebesgue’s Dominated Convergence Theorem we can compute
lim [ he,,diviedy :/ div®e dy. (5.5)
ENBr(x)

e—=0JE
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For the second term, by (5.1)) we have
a Hon,ox r—=z 1-n—a
V% (y) dy = / . / — dz dy.
/E () rely) dy eln+a—1)Je () Byie(z)\Br(z) |T — 2| 2=l Y

By Fubini’s Theorem, we can compute

/90 / L ey dzdy
Byie(@)\B,(z) |T — 2|
r—z

= [ ez =yl dy

Brie(@)\By(z) |T — 2|

= e Lol —y e dy e () de

| = 2|

By Lebesgue’s Differentiation Theorem, we have

1 r—z
lim — . / 2 —yl' " dzd
lim = Eso(y) BM N 7 — 2] |z =y y

r—z
— li / / / _ l—n—ad d%n—l d
lim = o) 7 — 2] o)z =yl y (2) do
r—z

= / p(y) |z =yl dy dA (=)

0B, (z) |x — Z|

Z/EsO(y)-/ ey T A (2) dy

|w\

= /Ew(y)-/w |2 =y dDxp,w)(2) dy
for #1-a.e. r > 0. Therefore, by (3.26]), we get that

lim / 0 Ve dy

e=0JE

lu”ﬂ l1-n—«a
= — . — dD »(2)d i
—rne [ ) [ -y ¥, (2) dy (5.6)

N /E - VXB. (@) dy
for #1-a.e. r > 0. Finally, for the third term, note that
(z—y) - (0(2) = 0(H)) (hera(2) = hepra(y))

|Z _ y|n+a+1

for all y € R", so that
lim divgy (e ) (4) = diviig (x5, - ©)(0)

for Z"-a.e. y € R" by Lebesgue’s Dominated Convergence Theorem. Since

diviy (e @) ()] < 2 [ 1PE =W G o p1 gy,

e [z —y[rre

again by Lebesgue’s Dominated Convergence Theorem we can compute
hm/ divyy, (Pe e, ) dy —/ divyy, (X B, (2), @) dy- (5.7)

Combining , -, -, and , we obtain (| . 0
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We can now deduce the following decay estimates for the fractional De Giorgi’s perime-
ter measure, see [8, Lemma 5.3] for the analogous result in the classical setting.

Theorem 5.3 (Decay estimates). Let o € (0,1). There ezist A, o, Bno > 0 with the
following property. Let E C R™ be a set with locally finite fractional Caccioppoli -
perimeter in R™. For any v € #*FE, there exists r, > 0 such that

|D*Xe|(Br(2)) < Apar™™® (5.8)
and
| DX EnB, @)|(R") < Bpor"™® (5.9)
for all r € (0,7,).

Proof. We divide the proof in two steps, dealing with the two estimates separately.

Step 1: proof of (5.8). Fix x € #“E and choose ¢ € Lip,(R™;R"™) such that ¢ = v%(x)
in By(x) and ||g0||Loo ®~re) < 1. On the one hand, by Deﬁmtlonu 4.7, there exists r, € (0, 1)

such that
[, ¢ dD"xe = 5Dl (B (@) (5.10)
for all r € (0,7,). On the other hand, by (5.2)) we have

[, e e < | aiviedy +|[ o dDxs
() ENB(z) E

’/ divyy ( XB:(z )dy‘

for #'-a.e.r € (0,7,). We now estimate the three terms in the right-hand side separately.
For the first one, since p(y) = v%(z) in B,(x), we can estimate

/ div®e(y) dy
ENB,(z)

(5.11)

< o @) = oWl . g,

ENB; x)/" |Z— |n+o¢

/ lp(2) — +( )|dzdy
BNB,(z) JRM\B,(z) |z — y|*t

1
< 2,un7a/ / ———dzdy
w(x) JRM\B,(2) |2 — y|mte
= 2ftnoPa(Br(2))

= Hn,a

so that
< 2 0P (By) 1", (5.12)

div®o(y) d
/E o Y o(y) dy

For the second term, by Proposition 1.8 we can estimate

'/E - dD"Xp. @)
Finally, by Lemma [2.7], we can estimate

< |DaXBr(x)|(Rn) < /‘n,aPa(BT(w)) = MmozPa(Bl) e (5.13)

| / i (oo 0) b < 15 (08,07, 1

< 2/~Ln,o< [XBT-(I)]Wa’l(R")
= 2ﬂn,apa(BT(x))
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so that
[ v (o 9 | < 2 PalB) 17 (514)
Combining (5.10), (5.11)), (5.12), (5.13) and (5.14), we conclude that
| DXEl(Br(x)) < 10n,0Fo(Br) 7" (5.15)

for Z'-a.e. r € (0,7,). Hence (5.8) follows with A, o = 10p,,.4Pa(By) for all r € (0,r,)
by a simple continuity argument.

Step 2: proof of (5.9). Fix x € F*FE and ¢ € Lip,(R™;R") with ||¢||feo@mnrny < 1.
Again by (5.2)) we can estimate

[ i dy| < D"l (B (w) + DN (R) + [ v (oo 9]
ENB;(x) FE

for #'-a.e. r € (0,7,). Using (5.13), (5.14) and (5.15)), we conclude that
|DaXEﬂBT(x)|(Rn) S ]-Slun,aPa(Bl) e
for Z'-a.e. r € (0,r,). Hence (5.9) follows with By, , = 13,0 Ps(B1) for all r € (0,r;)

by a simple continuity argument. This concludes the proof. 0

As an easy consequence of Theorem [5.3] we can prove that
|DaXE| L HA"TULFE
for any set E with locally finite fractional Caccioppoli a-perimeter in R™.

Corollary 5.4 (|D*xg| < A" *LF*E). Let a € (0,1). If E is a set with locally finite
fractional Caccioppoli a-perimeter in R™, then

Ana —
|Dxp| < 20O e FOR, (5.16)

where A, is as in (5.8)).
Proof. By (j5.8)), we have that

r—0 Whp—aT"™  Wn—a

for any x € F*E. Therefore, ((5.16)) is a simple application of [2, Theorem 2.56]. O

For any set F of locally finite fractional Caccioppoli a-perimeter, Corollary [5.4] enables
us to obtain a lower bound on the Hausdorff dimension of F*FE.

Proposition 5.5. Let o € (0,1). If E is a set with locally finite fractional Caccioppoli
a-perimeter in R™, then

dim (F*E) >n —a. (5.17)
Proof. Since |D*xg|(:#“E) > 0 by Definition by Corollary we conclude that
A FOE) > 0, proving (5.17)). O

As another interesting consequence of Corollary we are able to prove that assump-

tion (3.12) in Theorem cannot be dropped.
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Corollary 5.6 (No coarea formula in BV*(R)). Let o € (0,1). There exist f € BV*(R")
such that

/R DX (o [(R™) dt = +o00. (5.18)

Proof. Let E C R™ be such that yg € BV(R") and consider f := (—A)FTQXE. By
Lemma we know that f € BV*(R") with |D*f| = |Dxg|=#""1_ZE. If

/]R DX (rony |(R) dt < +00

then
|D*f| < /R | DX {s>e3| dt

by Theorem [3.11} Thus |D*f| < 5"~ by Corollary 5.4 so that #"~(Z E) = 0, which
is clearly absurd. 0

Remark 5.7. If f € W*!(R"), then

A|DQX{f>t}|(Rn) dt < ,un,a\/RPa({f > t}) dt = ,Un,oz[f]WO‘*l(R”) < +00

by Proposition and Tonelli’s Theorem, so that (5.18) does not hold for all f €
BV*(R™). We do not know if (3.14)) is an equality for some functions f € BV*(R").

We can now prove the existence of blow-ups for sets with locally finite fractional Cac-
cioppoli a-perimeter in R”, see 8, Theorem 5.13| for the analogous result in the classical
setting. Here and in the following, given a set E with locally finite fractional Caccioppoli
a-perimeter and x € .F*E, we let Tan(E, z) be the set of all tangent sets of E at x, i.e.

@:r>0}asr—>0.

r

the set of all limit points in Li (R")-topology of the family {

Theorem 5.8 (Existence of blow-up). Let a € (0,1). Let E be a set with locally finite
fractional Caccioppoli c-perimeter in R™. For any x € F*E we have Tan(E, x) # .

Proof. Fix x € Z*E. Up to a translation, we can assume x = 0. We set E, == E/r =
{y € R": ry € £} for all r > 0. We divide the proof in two steps.

Step 1. For each p € N, we define D? := E, N B,. By the a-homogeneity of div®, we
have

/ diviody = 7‘_”/ (div®p)(rt2)dz = TO‘_”/ div*(o(r1)) dz
D? ENBrp E

NBrp
for all ¢ € C(R™;R™). By , we thus get
|D*Xpr|(R") = r*7"|D*XEnp,,|(R") < Byap™*
for all » > 0 such that rp < rq. Hence, for each fixed p € N, we have
sup |Dxpp|(R") < By ap" ™"

r<ro/p

Step 2. Let (r)ren be such that rp, — 0 as k — +o00 and let By := E,, and D} := Dy,
for simplicity. By Step 1, for each p € N we know that

sup |D%xpr|(R") < B, op"* and Dy C B, VkeN.

re<ro/p
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Thanks to Theorem by a standard diagonal argument we find a subsequence (Dﬁj) jEN
and a sequence (F,),en of sets with finite fractional Caccioppoli a-perimeter such that
Xpr — XF, in L*R™) as j — +oo for each p € N. Up to null sets, we have F, C
J
Fyi1, so that xg, — xp in Li,.(R"), where F := Upey F,. We thus conclude that
F € Tan(FE, ). O
We now give a characterisation of the blow-ups of sets with locally finite fractional

Caccioppoli a-perimeter in R"”, see Claim #1 in the proof of 8, Theorem 5.13] for the
result in the classical setting.

Proposition 5.9 (Characterisation of blow-ups). Let o € (0,1). Let E be a set with
locally finite fractional Caccioppoli c-perimeter in R and let x € F*E. If F € Tan(FE, x),
then F' is a set of locally finite fractional Caccioppoli a-perimeter such that vi(y) = ve(x)
for |D*xp|-a.e. y € FF.

Proof. As in the proof of Theorem 5.8 we assume x = 0 and we set E, = E/r. By
Theorem , there exists (ry)gen such that r, — 0 as & — +oo and XE, — XrF in

Ll .(R™). By Proposition [3.3] it is clear that F has locally finite fractional Caccioppoli
a-perimeter in R"”. By (4.3)), we get
DaXErk - DaXF in '%loc(Rn; Rn)
as k — +o0. Thus, for Z'-a.e. L > 0, we have
D%xg,, (Br) = D*xp(Br) as k — +oo. (5.19)
Since
D%, =r“"(61)4 DXk Vr >0,
we have that
| DX, [(BL) = i~ "|DxE|(Br,)
and
DXg,, (BL) =y "D xe(Br,L)-
Since 0 € .Z*FE, we thus get
. D°g, (Br) . D% g(B,,1)
lim ——*——— = lim — "~
k—+oo |Doxp, |(Br) — k—+oo |[DXp|(Br,L)

Therefore, by Proposition (5.19) and (5.20]), we obtain that
« < : : «
[D*xr|(Br) < liminf | D%, |(BL)

= 12(0). (5.20)

= kl_lffoo B, vg(0) - dD XE,,

= [ vz(0)-dDxp
By,

— [ v(0)-vp dDxs]
By,
< |D*xrl(By)

for £1-a.e. L > 0. We thus get that v%(y) = v%(0) for |D%pl-a.e. y € By N F*F and
Ll-a.e. L >0, so that the conclusion follows. 0
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APPENDIX A. C°(R") IS DENSE IN W*!(R")

The density of C°(R™) in W*P(R") for all « € (0,1) and 1 < p < 400 is stated
without proof in |7, Theorem 2.4]. For the proof of this result, the authors in [7] refer
to [1, Theorem 7.38], where unfortunately the case p = 1 is not explicitly proved. This
result is also stated in [6, Proposition 4.27], but the proof is given for the case n = 1.

For the sake of clarity, we spend some words on the proof of the density of C2°(R") in
Wel(R") for all a € (0,1).

Theorem A.1 (C*(R") is dense in W*!(R")). Let a € (0,1). If f € W*YR"), then
there exists (fi)ren C C°(R") such that fy — f in WL(R") as k — +o0.

Proof. The proof of the density of C*°(R™) N W*!(R™) in W*!(R") via a standard con-
volution argument is given in full details in |10, Proposition 14.5] (actually, in the more
general setting of Besov spaces, see [10, Section 14.8] for the relation with fractional
Sobolev spaces). Thus, to conclude, we just need to show the density of C°(R™) in
C>(R™) N W*HR"™). To this aim, let f € C*°(R™) N W*(R") be fixed. For all R > 0,
consider a cut-off function ng € C°(R") defined as in (3.9). Then fnr € CX(R™) and
the conclusion clearly follows if we show that

G [F(1=7r)]we gny = 0. (A1)
Indeed, we have

[f(1 = nr)lwar@n < /n /n x\nm)‘ (1 = nr(y)) dy dx

R" Iy xl"*“

For the first term in the right-hand side we easily get that
. 1f(y) = f(=@)] _
i [ I 0 an)dy e =0

by Lebesgue’s Dominated Convergence Theorem, since [ f]ya1(mny < +00. For the second
term in the right-hand side, as in (2.6)) and we can estimate

/n nr(y) — nr()] dy < Lip(nR)/ dr+2/ (14a)

ly — x|te

for all x € R™, so that

| (z)| nr(y) — nr(2)] dydz =0

lim

R—400 Rn |y — g;|"+0‘
again by Lebesgue’s Dominated Convergence Theorem, since f € L'(R™). Thus (A.1]
follows and the proof is complete. O
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