
ON THE CONTINUITY OF THE TRACE OPERATOR IN GSBV (Ω) AND

GSBD(Ω)

EMANUELE TASSO
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1. Introduction

The space SBV (Ω) of special functions of bounded variation has been introduced to study
the so called free discontinuity problems (see De Giorgi [7] and De Giorgi, Ambrosio [8] for the
definition of such problems). It is composed of functions in BV (Ω) such that the singular part
of their distributional gradient is concentrated on an n − 1 dimensional set, called the jump set
Ju. The prototype of the free discontinuity problems is the Mumford-Shah functional, whose
definition for u ∈ SBV (Ω) is:

F (u) = ∫
Ω
∣∇u∣2dx +Hn−1

(Ju) + ∫
Ω
∣u − g∣2 dx, (1.1)

where Ω ⊂ Rn, ∇u denotes the density of the absolutely continuous part of the distributional
gradient with respect to the n-dimensional Lebesgue measure Ln, Hn−1 indicates the (n − 1)-
dimensional Hausdorff measure, and g is some square integrable function. The study of some
minimum problems for F , leads us to introduce the following subspace of SBV (Ω):

SBV 2
2 (Ω) ∶= {u ∈ SBV (Ω) ∣ u ∈ L2

(Ω),∇u ∈ L2
(Ω)}.

When the function g appearing in (1.1) is bounded, a useful notion of convergence is the following:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

supk (∥uk∥∞ + ∥∇uk∥2 +H
n−1(Juk)) ≤ C

uk → u, in L1(Ω)

∇uk ⇀ ∇u, weakly in L1(Ω,Rn)
(1.2)

Indeed some compactness theorems (see for example [2, Theorem 4.8]) can be applied to obtain
the convergence (in the sense of (1.2)) of suitable minimizing sequences in the Mumford-Shah
minimization problems.

If we would like to consider some minimum problems of the Mumford-Shah with prescribed
Dirichlet boundary condition, we have to study the behavior of the trace operator in the SBV
context. When Ω is regular enough, the trace operator Tr∶BV (Ω) → L1(∂Ω,Hn−1) is well
defined, and continuous with respect to the strong topology in BV (Ω). Unfortunately, if we
consider the space SBV 2

2 (Ω) ⊂ BV (Ω) then:

Tr∶SBV 2
2 (Ω) → L1

(∂Ω,Hn−1
),

is not continuous with respect to the convergence requirements in (1.2). This lack of continuity
is due to the fact that a sequence in SBV (Ω) may have jump sets getting infinitesimally close to
the boundary of Ω. Having this in mind, one can easily produce counterexamples to continuity
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which lead to a free discontinuity problem with no solution. For example, if one consider the
Mumford-Shah functional in one dimension with Dirichlet boundary condition:

min
u∈SBV 2

2 ((0,1))
u(0)=λ

∫

1

0
∣u′∣2 dx +H0

(Ju) + ∫
1

0
∣u∣2 dx, (1.3)

it is easy to see that for sufficiently large value of λ, any admissible function pays strictly more
then 1 in (1.3), while there exists a minimizing sequence for which the functional (1.3) converges
to 1 in the limit.

To bypass this problem, it seems convenient to fix an (n− 1)-dimensional set Γ, and to study
the trace properties of functions whose jump sets are contained in Γ. So we introduce:

SBV (Ω; Γ) ∶= {u ∈ SBV (Ω) ∣ Ju ⊆ Γ},

and

SBV pp (Ω; Γ) ∶= {u ∈ SBV (Ω; Γ) ∣ u ∈ Lp(Ω),∇u ∈ Lp(Ω)}, (p ≥ 1).

More in generally in this paper we study the properties of the trace operator when u ∈

GSBV (Ω). These are all the Ln-measurable functions such that at any level of truncation, the
truncated functions belong to SBVloc(Ω). This space has been introduced to guarantee existence
of a solution to minimum problems which implies no bounds on the L∞-norms of the minimizing
sequences; for example when the function g appearing in (1.1) is only in L2(Ω).

We can define the following spaces:

GSBV pp (Ω) ∶= {u ∈ GSBV (Ω) ∣ u ∈ Lp(Ω),∇u ∈ Lp(Ω)}, (p ≥ 1),

endowed with the following notion of convergence:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

supk (∥uk∥p + ∥∇uk∥p +H
n−1(Juk)) ≤ C

uk → u, in L1(Ω)

∇uk ⇀ ∇u, weakly in L1(Ω).

(1.4)

Note that the bound in the first line of (1.4), when p > 1, ensures compactness with respect
to this notion of convergence. As it is shown for example in [2, Definition 4.30], in GSBV (Ω)

there is still a notion of trace and of jump set Ju, that can be defined through the notion of
approximate limit. As before, since we have no control on the distance of Juk from the boundary
∂Ω, there are still no continuity results for the trace in GSBV pq (Ω) under conditions (1.4).

Then also in this case it seems convenient to study the properties of the trace in the space of
functions that jumps on a prescribed (n − 1)-dimensional set:

GSBV pp (Ω; Γ) ∶= {u ∈ GSBV pp (Ω) ∣ Ju ⊆ Γ}, (p ≥ 1).

The main results of the paper is that there exists a function Θ such that:

Tr∶GSBV pp (Ω; Γ) → Lq(∂Ω,ΘHn−1
), (p > 1), (1.5)

is continuous for every 1 ≤ q < p when we consider the strong topology on Lq(∂Ω,ΘHn−1), and
also for q = p when we consider the weak topology on Lq(∂Ω,ΘHn−1). Θ is a weight function
that depends only on the geometry of Γ and is Hn−1-a.e. strictly positive (see theorem 5.1 and
remark 5.2). We have also showed that q = p cannot be reached in (1.5) when one considers the
strong topology, by exhibiting a counterexample.

When Γ is a compact subset of Ω then GSBV pp (Ω; Γ) is equivalent to the Sobolev space

W 1,p(Ω ∖ Γ). Moreover, if Γ is regular enough, the Sobolev embedding holds and in particular

u ∈ Lp
∗
(Ω). If Γ is not regular, we cannot deduce that u ∈ GSBV pp (Ω; Γ) implies u ∈ Lp

∗
(Ω), but

if we assume u ∈ Lp
∗
(Ω), then we can improve our summability results on q appearing in (1.5),

and say that the trace operator is continuous:

Tr∶GSBV pp (Ω; Γ) ∩Lp∗(Ω) → Lq(∂Ω,ΘHn−1
) (p > 1),

for every 1 ≤ q < p(n − 1)/(n − p) when we consider the strong topology on Lq(∂Ω,ΘHn−1), and
also for q = p(n−1)/(n−p) when we consider the weak topology on Lq(∂Ω,ΘHn−1). Notice that
p(n − 1)/(n − p) is the usual critical exponent for the trace of Sobolev functions in W 1,p(Ω).

Looking at the definition of Θ, it is easy to see that when Γ ⊂⊂ Ω then Θ ≥ dist(Γ, ∂Ω) > 0. In
the paper we give a finer property for Γ, that is an adaptation of the classical cone condition, in
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such a way to guarantee that ess inf∂Ω Θ > 0, and to deduce the classical continuity properties
of the trace without the use of weights (see Proposition 3.15 and Remark 3.16).

An alternative way to obtain a trace estimate without weight on ∂Ω is to consider a suitable
weight Ψ defined on Ω. More precisely we have proved that there exists Ψ such that, if in
addition to the convergence conditions in (1.4) we add the uniform bound on the Lp(Ω, ψLn)
norm, we have the continuity:

Tr∶GSBV pp (Ω; Γ) ∩Lp(Ω,ΨLn) → Lq(∂Ω,Hn−1
) (p > 1), (1.6)

for 1 ≤ q < p if we consider the strong topology on Lq(∂Ω,Hn−1), and also for q = p if we consider
the weak topology on Lq(∂Ω,Hn−1); here Ψ is a weight function defined on Ω, locally integrable,
and that depends only on the geometry of Γ (see Theorem 5.1 and Remark 5.2). A refined
version of this result allows us to prove the following inclusions (see Theorem 3.17 and Remark
3.19):

GSBV pp (Ω; Γ) ∩Lp(Ω,ΨLn) ⊂ SBV pp (Ω; Γ), (p > 1), (1.7)

which can be considered as an improvement of the obvious inclusions GSBV pp (Ω; Γ) ∩L∞(Ω) ⊂

SBV pp (Ω; Γ).
All the results mentioned above are true in the context of vector fields having bounded de-

formation BD(Ω), and moreover, not only for the trace of u on the boundary of Ω, but also
for both traces u± on Γ. Since the proofs in this context present more technical difficulties, we
decide to prove our theorems with all the details in this case. Actually we deal with GSBD(Ω),
the space of generalized special vector fields having bounded deformation. This space has been
introduced in Dal Maso [4] to solve some variational problems coming from the theory of linearly
elastic fracture mechanics, and is a generalization of SBD(Ω), the space of special vector fields
of bounded deformation. At this point we would like to mention only that SBD(Ω) are the
integrable vector fields such that the singular part of their symmetric distributional gradients
Eu, as measure, are concentrated on an n − 1 rectifiable set Ju:

Eu = EuLn + ([u] ⊙ ν)Hn−1 ¬
Ju,

where Eu is the density of the absolutely continuous part of Eu with respect to the n-dimensional
lebesgue measure Ln, and [u] ⊙ ν denotes the symmetric tensor product between the jump
[u] = u+ − u− of u and the orientation ν. For BD(Ω) we refer to Temam [14] for its functional
properties and to Ambrosio, Coscia, Dal Maso [1] for the fine properties of BD functions.
The reason why we studied the trace operator in these spaces (more precisely in GSBDp

p(Ω; Γ)),
comes from the theory of elasticity with cracks, when we consider a traction applied to some
part of the boundary ∂NΩ ⊆ ∂Ω. This leads to a linear term of the form:

∫
∂NΩ

F ⋅ u dHn−1,

in the weak formulation of the problem, where F represents the traction force acting on the Neu-
mann part of the boundary. Hence asking about the continuity of this linear form is equivalent
to ask about the continuity of the trace operator acting on all the admissible u ∈ GSBD2

2(Ω; Γ).
In the last section of this paper we propose a way to solve this problem: the idea is to re-
strict our attention among all the traction forces F , living in the dual of the Hilbert space
L2(∂NΩ,ΘHn−1).

In the literature, the problem of the integrability of the trace in BV (Ω) has been studied
for example by Maz’ja in [12, Chapter 6], where the trace was defined for open set Ω of finite
perimeter. The main results were obtained under the assumption of connectedness of Ω and that
normals in the sense of Federer exist almost everywhere on the boundary.Then generalized to
the class of open and connected sets Ω with the only hypothesis that its topological boundary
is an n − 1 rectifiable set, by Burago, Kosovski in [3]. Both works rely on the fact that for
u the Coarea Formula holds true, and so the distributional gradient of u, as measure, can be
reconstructed by averaging the perimeter of each level sets of u. In this case, under some more
regularity conditions on the boundary, one can control the L1 norm of the trace of u with the
full norm in BV times a constant that depends only on Ω (see [12, Section 6.6.4.]).

In Temam [15] some continuity properties of the trace operator are studied in the space
BD(Ω), with Ω ⊂ Rn open set with smooth boundary. Here BD(Ω) is endowed with the
norm given by the total variation of the symmetric distributional derivative. In this case, he
introduces a notion of convergence, where morally our hypothesis of fixing the jump sets of some
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sequences (uk)k ⊂ GSBD(Ω), is substituted by asking that the total variation of the symmetric
distributional gradient ∥Euk∥(Ω) converges to the total variation ∥Eu∥(Ω) of the limit u. Under
this notion of convergence, it is possible to show the continuity of the trace in L1(∂Ω,Hn−1).

To make a parallel with the papers mentioned above, we have to notice that our results hold
true in particular in the SBD and SBV cases. We work with notion of convergence that do not
take care of the jump part of the total variation measure ∣u+−u−∣ ⋅Hn−1 ¬

Ju, while we fix a jump
set Γ. On one side this leads us to introduce proper weights in order to have continuity results
of the trace, but on the other side we do not make any regularity assumptions on Γ neither on
Ω (except to be respectively n− 1-rectifiable with finite Hn−1-measure, and to be an open set of
finite perimeter). Moreover, we can develop a theory in the SBD (even GSBD) context, where
any kind of Coarea formula seems not to be true.

2. Notation and results in GBD(Ω)

For the space GBD(Ω) we always refer to the seminal paper [4]. For convenience of the reader
we will recall some useful notations and results.

For every ξ ∈ Sn−1 = {ξ ∈ Rn ∣ ∣ξ∣ = 1} let Πξ ∶= {y ∈ Rn ∣ y ⋅ ξ = 0} to be the hyperplane
orthogonal to ξ passing through the origin, and let πξ ∶Rn → Πξ be the orthogonal projection.
For every set B ⊂ Rn and for every y ∈ Πξ we define

Bξy ∶= {t ∈ R ∣ y + tξ ∈ B}.

Moreover, for every function u ∶ B → Rn we define the function ûξy ∶ B
ξ
y → R by

ûξy ∶= u(y + tξ) ⋅ ξ.

If u ∶ B → Rn is Ln-measurable, for Hn−1-a.e. y ∈ Πξ the jump set of ûξy is denoted by Jûξy .

Moreover we set

J1
ûξy

∶= {t ∈ Jûξy ∣ ∣(ûξy)
+
(t) − (ûξy)

−
(t)∣ ≥ 1},

where (ûξy)
−(t) and (ûξy)

+(t) are the approximate right and left limits of ûξy at t.
If µ is a Borel measure on a Borel set E ⊂ Rn, its total variation is denoted by ∣µ∣. If A ⊂ E

is a Borel set, the Borel measure µ
¬
A is defined by (µ

¬
A)(B) ∶= µ(A ∩B) for every Borel set

B ⊂ E.
If U ⊂ Rn is an open set, M(U) is the space of all Radon measures on U , Mb(U) ∶= {µ ∈

M(U) ∣ ∣µ∣(U) < +∞} is the space of all bounded Radon measures on U , and M+
b (U) ∶= {µ ∈

Mb(U) ∣ µ(B) ≥ 0 for every Borel set B ⊂ U} is the space of all non negative bounded Radon
measures on U.

Definition 2.1. Let A be an Ln-measurable subset of Rn, let v ∶ A→ Rm be an Ln-measurable
function, let x ∈ Rn be such that

lim sup
ρ→0+

Ln(A ∩Bρ(x))

ρn
> 0,

and let a ∈ Rm. We say that a is the approximate limit of v as y → x, and write

ap lim
y→x

v(y) = a (2.1)

if

lim
ρ→0+

Ln({y ∈ A ∩Bρ(x) ∣ ∣v(y) − a∣ > ε})

ρn
= 0 (2.2)

for every ε > 0.

Remark 2.2. Let A,v, x and a be as in the previous definition, and let ψ be a homeomorphism
between Rm and a bounded open subset of Rm. It is easy to prove that (2.1) holds if and only if

lim
ρ→0+

1

ρn
∫
A∩Bρ(x)

∣ψ(v(y)) − ψ(a)∣dy = 0.

In particular if v is Ln-measurable , then Ln-a.e. v admits an approximate limit.
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Definition 2.3. Let U be an open set of Rn. For every Ln-measurable function v ∶ U → Rm
we define the approximate continuity set as the set of points x ∈ U for which there exists a ∈ Rm
such that

ap lim
y→x

v(y) = a.

The vector a is uniquely determined and is denoted by ṽ(x) . The approximate discontinuity set
Sv is defined as the complement in U of the approximate continuity set.

Definition 2.4. Let U be an open subset of Rn. For every Ln-measurable function v ∶ U → Rm
we define the approximate jump set Jv as the set of point x ∈ U for which there exist a, b ∈ Rm
with a ≠ b, and ν ∈ Sn−1 such that

ap lim
(y−x)⋅ν>0
y→x

v(y) = a and ap lim
(y−x)⋅ν<0
y→x

v(y) = b. (2.3)

The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of sign
of ν and is denoted by (v+(x), v−(x), νv(x)) . The jump of v is the function [v] ∶ Jv → Rm
defined by [v](x) ∶= v+(x) − v−(x) for every x ∈ Jv. Finally we define

J1
v ∶= {x ∣ ∣[v](x) ∣ ≥ 1}. (2.4)

Remark 2.5. By [4, Proposition 2.6] we have that Sv, Jv and J1
v are Borel sets and ṽ ∶ U/Sv → Rm,

defined as ṽ(x) = ap limy→x v(y), is a Borel function.
Moreover, for every x ∈ Jv, we can choose the sign of ν(x) in such a way that v+ ∶ Jv →

Rm, v− ∶ Jv → Rm, and νv ∶ Jv → Sn−1 are Borel functions.

Definition 2.6. We define T as the space of all functions τ of class C1, defined on the real line

R, such that -
1

2
< τ <

1

2
and with bounded derivative ∣τ ′∣ < 1.

Following [4, Definition 4.1], we are now in position to define the space GBD(Ω). In what
follows Ω is an open set of Rn.

Definition 2.7. The space GBD(Ω) of generalised functions of bounded deformation is the space
of all Ln-measurable functions u ∶ Ω → Rn with the following property: there exists λ ∈ M+

b (Ω)

such that the following equivalent (see [4, Theorem 3.5]) conditions hold for every ξ ∈ Sn−1:

(a) for every τ ∈ T the partial derivative Dξ(τ(u ⋅ ξ)) belongs to Mb(Ω) and its total variation
satisfies

∣Dξ(τ(u ⋅ ξ))∣(B) ≤ λ(B) (2.5)

for every Borel set B ⊂ Ω;
(b) for Hn−1-a.e. y ∈ Πξ the function ûξy belongs to BVloc(Ω

ξ
y) and

∫
Πξ

(∣Dûξy ∣(B
ξ
y ∖ J

1
ûξy

) +H
0
(Bξy ∩ J

1
ûξy

))dHn−1
(y) ≤ λ(B) (2.6)

for every Borel set B ⊂ Ω.

Remark 2.8. Following [4, Definition 4.16] and [4, Proposition 4.17], for every u ∈ GBD(Ω),
there exists a measure µ̂u ∈ M

+
b that it is the smallest measure λ that satisfies (a) and (b) of the

previous definition.

Definition 2.9. The space GSBD(Ω) of generalised function of bounded deformation is the set
of functions u ∈ GBD(Ω) such that for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Πξ the function ûξy
belongs to SBVloc(Ω

ξ
y)

Remark 2.10. The spaces GBD(Ω) and GSBD(Ω) are actually vector spaces (see [4, Remark
4.6]).

Now we want to recall some results about the space GBD(Ω). Let us start with the trace on
regular submanifold.

Theorem 2.11. (Traces on regular submanifold) Let u ∈ GBD(Ω) and let M ⊂ Ω be a C1

submanifold of dimension n − 1 with unit normal ν. Then for Hn−1 -a.e. x ∈ M there exist
u+M(x) , u−M(x) ∈ Rn such that

ap lim
±(y−x)⋅ν(x)>0

y→x

u(y) = u±M(x). (2.7)
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Moreover for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Πξ we have

u±M(y + tξ) ⋅ ξ = ap lim
σξy(t)(s−t)>0

s→t

ûξy(s) for every t ∈Mξ
y , (2.8)

where σ ∶M → {−1,+1} is defined by σ(x) ∶= sign(ξ ⋅ν(x)). Finally, the functions u±M : M → Rn
are Hn−1-measurable.

Proof. See [4, Theorem 5.2] for a detailed proof. �

Definition 2.12. Let u ∈ GBD(Ω) and let M ⊂ Ω be a C1-manifold of dimension n−1 oriented
by ν. The Rn-valued Hn−1-measurable functions u+M and u−M , defined Hn−1-a.e. on M and
satisfying (2.7) , are called the traces of u on the two sides of M .

Just for convenience of the reader we recall the definition of rectifiable set.

Definition 2.13. We say that Γ ⊂ Rn is a countably (Hn−1, n − 1)-rectifiable set (according to
[10, Definition 3.54]) if Γ is Hn−1-measurable and

Γ ⊆
∞
⋃
i=1

Γi ∪ Γ0, (2.9)

where Hn−1(Γ0) = 0, and there exists a sequence of lipschitz functions (fi)
∞
i=1 such that Γi ⊆

fi(Rn) for each i ≥ 1.

The following proposition will be useful later on.

Proposition 2.14. Γ ⊂ Rn is countably (Hn−1, n − 1)-rectifiable set if and only if there exists a
sequence of bounded open sets of finite perimeter (Ui)

∞
i=1 such that

H
n−1

(Γ ∖
∞
⋃
i=1

FUi) = 0, (2.10)

where FUi denotes the reduced boundary of Ui (see [2, Definition 3.54]).

Proof. Using [10, Theorem 3.2.29] we know that Hn−1 almost all of Γ is contained in a countably
union of (n−1)-submanifold of Rn of class C1. So we can reduce ourselves to prove the statement
for a single (n−1)-submanifold M of class C1; moreover by basic fact about differential geometry
we have that M can be covered by countably many graphs of maps from Rn−1 to R of class C1.
So for our purpose it is enough to prove the proposition for a (n − 1)-submanifold of the form
M ⊆ graph(f) where f ∈ C1(Rn−1).

To prove this last assertion we can consider a countable measurable partition of Rn−1 made
for example by open cubes (Qi)

∞
i=0. For every i ∈ N, up to a translation on M , we may assume

that infQi f > 0. Finally we define:

Ui ∶= {(y, t) ∣ y ∈ Qi, 0 < t < f(y)}.

Clearly each Ui is an open set of finite perimeter such that:

graph(f
¬
Qi) ⊂ FUi,

and

H
n−1

(M ∖⋃
i

FUi) ≤ H
n−1(M ∖⋃

i

graph(f
¬
Qi)) = 0.

�

Definition 2.15. (Orientation) Let Γ ⊂ Rn be a countably (Hn−1, n − 1)-rectifiable set. We
call an orientation of Γ any map ν ∶ Γ → Sn−1 which is Hn−1-measurable and such that ν(x) is
orthogonal to the tangent space of Γ at x for Hn−1-a.e. x ∈ Γ.

Here we recall a fundamental theorem about the jump set of a GBD(Ω) function (see [4,
Theorem, 8.1]). In particular this result tells us that the jump set can be reconstructed by the
jump points of the one dimensional slices.

Theorem 2.16. (Slicing of the jump set). Let u ∈ GBD(Ω) , then Ju is a countably (Hn−1, n−1)-
rectifiable set. Moreover let ξ ∈ Sn−1 and let

Jξy ∶= {x ∈ Ju ∣ (u+(x) − u−(x)) ⋅ ξ ≠ 0}. (2.11)
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Then for Hn−1-a.e. y ∈ Πξ we have

(Jξu)
ξ
y = Jûξy , (2.12)

u±(y + tξ) ⋅ ξ = (ûξy)
±σξy(t)(t) for every t ∈ (Ju)

ξ
y, (2.13)

where σ ∶M → {−1,+1} is defined by σ(x) ∶= sign(ξ ⋅ νu(x)), and νûξy = 1.

Remark 2.17 (Integrable jump implies BD). The previous theorem says that the jump set Ju
can be reconstructed through the jump points of the one-dimensional restriction Jûξy for every

direction ξ in Sn−1. In particular if u ∈ GBD(Ω) has integrable jump, i.e. [u] ∈ L1(Ju,H
n−1),

then u is actually a function in BD(Ω). Indeed, by definition of BD(Ω) (see [1]), we need only
to check that for every ξ ∈ Sn−1:

∫
Πξ

∣Dûξy ∣(Ω
ξ
y) dH

n−1
(y) < ∞.

But relation (2.13) implies in particular that [u⋅ξ](y+tξ) = [ûξy](t) for every t ∈ Jûξy andHn−1-a.e.

y, so that we can write:

∫
Πξ

∣Dûξy ∣(Ω
ξ
y) dH

n−1
(y) ≤ ∫

Πξ
∣Dûξy ∣(Ω

ξ
y ∖ Jûξy) + ∑

t∈J
û
ξ
y

∣[u ⋅ ξ](y + tξ)∣ dHn−1
(y)

≤ λ(Ω ∖ Ju) + ∫
Ju

∣[u]∣ dHn−1,

and we are done.

Every u ∈ GBD(Ω) admits an approximate symmetric gradient Eu Ln-almost everywhere,
which is a map Eu ∶ Ω→Mn×n

sym such that

ap lim
y→x

(u(y) − u(x) − Eu(x)(y − x)) ⋅ (y − x)

∣y − x∣2
= 0. (2.14)

Formula (2.14) says that the approximate symmetric gradient is unique. The following theo-
rem proves that Eu is an L1-function.

Theorem 2.18. Let u ∈ GBD(Ω) . Then there exists a function Eu ∈ L1(Ω;Mn×n
sym) such that

(2.14) holds for Ln-a.e. x ∈ Ω. Moreover for every ξ ∈ Rn ∖ {0} and for Hn−1−a.e. y ∈ Πξ we
have (see [4, Theorem, 9.1])

(Eu)ξyξ ⋅ ξ = ∇û
ξ
y, (2.15)

L1-a.e. on Ωξy.

When Ω is an open set of finite perimeter and u ∈ GBD(Ω), it is possible to extend u to a
vector field defined on the whole of Rn which belongs to GBD(Rn). Before doing this, we need
the following proposition concerning an extension property of BV functions in one variable:

Proposition 2.19. Let E = ⋃
M
k=1 Ik where Ik = (ak, bk) ⊂ R are open intervals (possibly un-

bounded) and pairwise disjoints. If u ∈ BV (E) then the function defined by:

v(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

u(t) if t ∈ E,

0 otherwise.

belongs to BV (R). Moreover

Dv =
M

∑
k=0

(u−(bk)δbk − u
+
(ak)δak) +Du(E), (2.16)

where δ(⋅) denotes the Dirac’s delta, and

∣Dv∣ =
M

∑
k=0

(∣u−(bk)∣ + ∣u+(ak)∣) + ∣Du∣(E). (2.17)

Proof. It is a simple application of the theory of BV functions in one variable. �
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Proposition 2.20. (Extension of GBD functions) Let Ω ⊂ Rn be an open set of finite perimeter
(see [2, Definition 3.35]) and let u ∈ GBD(Ω). If we define:

u(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

u(x) if x ∈ Ω

0 otherwise,

then u ∈ GBD(Rn). Moreover if we denote the reduced boundary of Ω as FΩ, we have:

(a) Ju ⊂ Ju ∪FΩ;

(b) for every Borel set B ⊂ Rn and every ξ ∈ Sn−1 the following inequality holds true:

∫
Πξ

(∣Dûξy ∣(B
ξ
y ∖ J

1
ûξy

) +H
0
(Bξy ∩ J

1
ûξy

)) dHn−1
(y) ≤ µ̂u(B) +H

n−1
(FΩ ∩B) , (2.18)

where µ̂u is the smallest measure relative to u that satisfies conditions (2.5) and (2.6) (see
Remark 2.8);

(c) the approximate symmetric gradient of u is such that:

Eu(x) =

⎧⎪⎪
⎨
⎪⎪⎩

Eu(x) if x ∈ Ω,

0 otherwise.
(2.19)

(d) if u ∈ GSBD(Ω) then u ∈ GSBD(Rn).

Proof. First we show that (2.5) holds true. Fix ξ ∈ Sn−1 and τ ∈ T . By [2, Theorem 3.103] we
have

∣Dξτ(u ⋅ ξ)∣(B) = ∫
Πξ

∣D(τ(u ⋅ ξ)ξy)∣(B
ξ
y)dy, (2.20)

for any Borel set B ⊂ Rn, and

∫
Πξ

∣D1Ωξy
∣(R) dy = ∣Dξ1Ω∣(Rn) ≤ Hn−1

(FΩ) < ∞. (2.21)

It follows that for Hn−1-a.e. y ∈ Πξ, Ωξy has finite perimeter. By the characterization of sets

of finite perimeter in R, we know that for those y ∈ Πξ, Ωξy is equivalent to a finite union of open
pairwise disjoint intervals. Notice that

τ(u ⋅ ξ) = τ(u ⋅ ξ)1Ω + τ(0)1Ωc . (2.22)

Now for each y ∈ Πξ such that ∣D1Ωξy
∣ < ∞, we can apply Proposition 2.19 to the one dimen-

sional sections t ↦ τ(ûξy)1Ωξy
+ τ(0)1(Ωc)ξy , and by using also (2.20) and the Coarea formula we

have that:

∣Dξτ(u ⋅ ξ)∣(B) = ∫
Πξ

∣D(τ(ûξy)1Ωξy
+ τ(0)1(Ωc)ξy)∣(B

ξ
y) dy

≤ ∫
Πξ

(∣Dτ(ûξy)∣(Ω
ξ
y ∩B

ξ
y) + ∑

t∈FΩξy∩Bξy

∣τ(ûξy(t))
σξy(t) − τ(0)∣) dy

≤ ∣Dξτ(u ⋅ ξ)∣(B ∩Ω) +H
n−1

(FΩ ∩B)

≤ µ̂u(B ∩Ω) +H
n−1

(FΩ ∩B),

(2.23)

for every Borel set B ⊆ Rn, where σ(x) = sign(νFΩ(x) ⋅ξ) and νFΩ denotes the measure theoretic
inner unit normal. Let η ∶= µ̂u +H

n−1 ¬
FΩ then

∣Dξτ(1Ωu ⋅ ξ)∣(B) ≤ η(B), (2.24)

for every τ ∈ T and for every ξ ∈ Sn−1. This is exactly (2.5), and we deduce that u ∈ GBD(Rn).
Point (a) can be deduced simply by Theorem 2.16.
To show estimate (2.18) it is enough to notice that the two definitions of GBD(Ω) are equiv-

alent (see Definition 2.7).
Point (c) follows from the characterization of the symmetric approximate gradient given by

the formula (2.14).
Finally (d) follows from Proposition 2.19 using the same argument as above. �

Remark 2.21. Under the assumptions of Proposition 2.20 let FΩ be oriented by its measure
theoretic inner unit normal. Then the extended function u of the previous proposition, is such
that u− = 0 for Hn−1-a.e. x ∈ FΩ. Roughly speaking, u has almost everywhere zero trace from
the complement of Ω. Indeed we can consider a finite measurable partition of FΩ, say (Σi)

N
i=1.
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To each Σi there exists an orthonormal basis of Rn {ξ1, . . . , ξn} such that ν(x) ⋅ ξi ≠ 0 for every
x ∈ Σi and for every i = 1, . . . , n (see Remark 3.6). If we call σ(x) = sign(νFΩ(x) ⋅ ξ), it is easy
to see that for any i = 1, . . . , n, it holds

(ûξiy )
−σξy(t)(t) = 0, for every t ∈ J

û
ξi
y
, and for Hn−1-a.e. y ∈ Πξi . (2.25)

Since FΩ can be covered by countably many submanifold of dimension (n − 1) and class C1,
using Theorem 2.11 and ν(x) ⋅ ξi ≠ 0, we can conclude

u−FΩ(x) = 0 for Hn−1-a.e. x ∈ Σi. (2.26)

Because of the fact that (Σi)
N
i=1 is a measurable partition of FΩ we have

u−FΩ(x) = 0 for Hn−1-a.e. x ∈ FΩ, (2.27)

which is the desired result.

3. Integrability of the trace in GBD(Ω)

Given Γ ⊂ Ω countably (Hn−1, n−1)-rectifiable with finite measure (Hn−1(Γ) < ∞) , we want
to introduce a family of functions (θξ)ξ∈Sn−1 , θξ ∶ Rn → R+, called one sectional distance, which
will play a fundamental role in the integrability of the trace of a GBD function. Before doing
this, let us recall a property of rectifiable sets with finite measure.

Remark 3.1. Let Γ ⊂ Rn be a countably (Hn−1, n−1)-rectifiable set with finite measure. Choose
any ξ ∈ Sn−1 then

H
0
(Γξy) < ∞ for a.e. y ∈ Πξ. (3.1)

This fact is a simply consequence of the Coarea formula applied to the projection map πξ from
Rn onto Πξ restricted on Γ.

Definition 3.2. (One sectional distance) Let Γ ⊂ Rn be a countably (Hn−1, n−1)-rectifiable set
with finite Hn−1 measure, and let ξ ∈ Sn−1. Writing x ∈ Rn as x = y + tξ (for (y, t) ∈ Πξ ×R), we
define θξ ∶Rn → R+ in such a way that:

θξ(y + tξ) =

⎧⎪⎪
⎨
⎪⎪⎩

∣ti+1 − ti∣ ∧ 1 if 1 < H0(Γξy) < ∞ and t ∈ (ti, ti+1)

1 otherwise,
(3.2)

where (ti)
H0(Γξy)
i=1 are the elements of the set Γξy ordered so that t1 < . . . < ti < . . . < tH0(Γξy).

Proposition 3.3. Let Γ ⊂ Rn be a countably (Hn−1, n − 1)-rectifiable set with finite measure,
and choose ξ ∈ Sn−1. Then the function θξ of Definition 3.2 is Ln-measurable.

Proof. By [10, Theorem 3.2.29] Γ is contained in a countably union of C1 submanifolds of
Rn say (Mk)k∈N up to a Hn−1-negligible set. If we define Γξ ∶= {x ∈ Γ ∣ νΓ(x) ⋅ ξ ≠ 0} and

Mξ
k ∶= {x ∈Mk ∣ νMk

(x) ⋅ ξ ≠ 0}, where νΓ(⋅) and νMk
(⋅) are respectively an orientation of Γ and

of Mk in the sense of Definition 2.15, then

H
n−1

(Γξ ∖⋃
k

Mξ
k) = 0.

For each k, Mξ
k can be covered by countably many n − 1 dimensional submanifolds of class

C1, say (Σk,i)i∈N, which are the graph of C1 functions, say (fk,i)i∈N, defined on some open

subset of Πξ (using Lindëlof property and the Implicit Function Theorem). Hence, possibly
re-enumerating the (Σk,i)(k,i)∈N2 as (Σi)i∈N (and respectively the (fk,i)(k,i)∈N2 as (fi)i∈N), we
have

H
n−1

(Γξ ∖⋃
i

Σi) = 0. (3.3)

For any couple of indices (i1, i2) ∈ N2, define θξi1,i2 to be the one sectional distance relative to the

rectifiable set Σi1 ∪Σi2 . Suppose for a moment that we already know that θξi1,i2 is Ln-measurable

for any (i1, i2) . In this case we can define

θ̃ξi1,i2(y + tξ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

θξi1,i2(y + tξ) if y ∈ πξ(Γ ∩Σi1) ∩ π
ξ(Γ ∩Σi2)

1 otherwise
(3.4)
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Clearly θ̃ξi1,i2 is Ln-measurable because the set πξ(Γ∩Σi1)∩π
ξ(Γ∩Σi2) is Hn−1-measurable and

we use Fubini’s theorem on the product space Πξ × R (see [9, Section 1.4]) to deduce that the
set (πξ(Γ ∩Σi1) ∩ π

ξ(Γ ∩Σi2)) ×R is Ln-measurable. With (3.4) it is easy to see that

θξ(x) = inf
(i1,i2)∈N2

θ̃ξi1,i2(x), (3.5)

for any x = y + tξ such that (Γξ)ξy ⊂ ⋃
∞
i=0(Σi)

ξ
y. Thanks to (3.3), the previous inclusion holds for

Hn−1-a.e. y ∈ Πξ, hence (3.5) holds for Ln-a.e. x ∈ Rn. This gives that θξ is Ln-measurable.

Finally it remains to prove the measurability of θξi1,i2 . It is enough to notice that on the set
of point where fi1 < fi2 :

θξi1,i2(y + tξ) =

⎧⎪⎪
⎨
⎪⎪⎩

∣fi2(y) − fi1(y)∣ ∧ 1 if y ∈ πξ(Σi1) ∩ π
ξ(Σi2) , fi1(y) < t < fi2(y)

1 otherwise,
(3.6)

while on the set of points where fi1 > fi2 :

θξi1,i2(y + tξ) =

⎧⎪⎪
⎨
⎪⎪⎩

∣fi2(y) − fi1(y)∣ ∧ 1 if y ∈ πξ(Σi1) ∩ π
ξ(Σi2) , fi2(y) < t < fi1(y)

1 otherwise,
(3.7)

�

Remark 3.4. The one sectional distance θξ of a rectifiable set Γ with finite Hn−1 measure, has
finite total variation in the direction ξ. In fact it can be easily proved that:

∣Dξθ
ξ
∣(Rn) ≤ ∫

Γ
∣ν(x) ⋅ ξ∣dHn−1

(x) ≤ Hn−1
(Γ). (3.8)

So given any countably (Hn−1, n − 1)-rectifiable set Γ ⊂ Rn with finite measure, by [4, Theorem
5.1], we can talk about the trace of θξ on the set {x ∈ E ∣ νE(x) ⋅ ξ ≠ 0}.

Definition 3.5. Let ξ ∈ Sn−1 and let 0 < L < 1.
We define the cone with axis ξ and opening L as

C(ξ,L) ∶= {x ∈ Rn ∖ {0} ∣ ∣ξ ⋅ x∣ > L∣x∣}.

We define the upper half cone with axis ξ and opening L as:

C+
(ξ,L) ∶= {x ∈ Rn ∖ {0} ∣ ξ ⋅ x > L∣x∣},

and analogously the lower half cone cone with axis ξ and opening L as:

C−
(ξ,L) ∶= {x ∈ Rn ∖ {0} ∣ ξ ⋅ x < −L∣x∣}.

Remark 3.6. Consider Ξ ∶= {ξ1, . . . , ξn} an orthonormal basis of Rn and let δ be a real number
such that 0 < δ < 1/

√
n. Define:

C(Ξ, δ) ∶=
n

⋂
i=1

C(ξi, 1/
√
n − δ) ∩ Sn−1. (3.9)

Notice that C(Ξ, δ) is open in the relative topology of Sn−1 and contains for example the vector

∑
n
i=1 ξi/

√
n. This means that the family Λ ∶={ C(Ξ, δ) ∣ Ξ orthonormal basis} is an open covering

of Sn−1, and so by compactness we can always extract a finite subcovering from Λ.
We denote by N(δ) the minimum number of elements of Λ that needs to cover Sn−1. N(δ) is

a constant that depends only on the dimension n and on δ.

Let us introduce the space of vector fields that jump on a prescribed set:

Definition 3.7. Let Γ ⊂ Ω be a countably (Hn−1, n − 1)-rectifiable set with finite measure and
let p ≥ 1. We define the following spaces:

GSBDp
p(Ω) ∶= {u ∈ GSBD(Ω) ∣ u ∈ Lp(Ω),Eu ∈ Lp(Ω)}, (3.10)

GBD(Ω; Γ) ∶= {u ∈ GBD(Ω) ∣ Ju ⊆ Γ}, (3.11)

GSBDp
p(Ω; Γ) ∶= {u ∈ GSBDp

p(Ω) ∣ Ju ⊆ Γ}. (3.12)

Remark 3.8. Actually one can show that GSBDp
p(Ω; Γ) is a vector space, and that can be

endowed with the norm ∥u∥p+∥Eu∥p. Thanks to [4, Theorem 11.3], GSBDp
p with this norm ∥ ⋅∥p

is a Banach space.
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Now we want to extend the notion of trace operator for an arbitrary open set of Rn having
finite perimeter:

Definition 3.9. (Trace operator in GBD(Ω)). Let Ω ⊂ Rn be an open set of finite perimeter,
and let u ∈ GBD(Ω; Γ). We define the trace operator as:

Tr(u)(x) ∶= u+FΩ(x), for Hn−1-a.e. x ∈ FΩ, (3.13)

where u is the function extended to 0 outside of Ω given in proposition 2.20, and the trace
from above u+ is considered with respect to the inner measure theoretic unit normal νFΩ of the
reduced boundary FΩ.

Moreover in order to simplify the notation, when there is no misunderstanding, we simply
write:

u+(x) =

⎧⎪⎪
⎨
⎪⎪⎩

u+Γ(x) if x ∈ Γ,

T r(u)(x) if x ∈ FΩ,
(3.14)

and:

u−(x) =

⎧⎪⎪
⎨
⎪⎪⎩

u−Γ(x) if x ∈ Γ,

0 if x ∈ FΩ.
(3.15)

Remark 3.10 (Coincidence of Trace). When Ω is a lipschitz regular domain, our definition of
trace coincides with the usual one in the space BD(Ω).

First of all in this case, the reduced boundary FΩ coincides with the topological one. Moreover
on the space of regular functions up to the boundary, our definition coincides with the restriction
operator on ∂Ω. Then using a density argument together with identities (5.3) and (5.5) in [4],
we deduce the coincidence of our notion of trace with the usual one in BD(Ω).

Now we are in position to prove our main results about the integrability of the trace in
GBD(Ω; Γ) and GSBDp

p(Ω; Γ). As mentioned in the introduction, we will consider the trace on
FΩ and both traces u± on Γ. We decide to split our results into two theorems, the first concerns
the case GBD:

Theorem 3.11. (Trace inequality in GBD(Ω)). Let Ω ⊂ Rn be an open set of finite perimeter,
and let Γ ⊂ Ω be a countably (Hn−1, n − 1)-rectifiable set, with Hn−1(Γ) < ∞ and oriented by
ν. Then there exist two Hn−1-measurable functions Θ± ∶ Γ ∪ FΩ → R+ depending only on the
geometry of Γ, its orientation ν, and on Ω, such that denoting with u± the traces of u according
to Definition 3.9 , we have

(a) Hn−1({Θ± = 0}) = 0 and Θ± ∈ L∞(Γ ∪FΩ, Hn−1) (in particular ∥Θ±∥∞ ≤ 1);

(b) For every u ∈ GBD(Ω; Γ) ∩L1(Ω,Rn) we have:

∫
Γ∪FΩ

∣u±(x)∣Θ±
(x)dHn−1

(x) ≤ C(n)(µ̂u(Ω ∖ Ju) + ∫
Ω
∣u(x)∣dx). (3.16)

Proof. Let u ∈ GBD(Rn; Γ ∪ FΩ) be the function extended to 0 outside of Ω as in proposition
2.20. In order to simplify the notation, we write Γ to denote Γ ∪ FΩ, and ν to denote the
orientation that coincides with the given orientation ν on Γ, and with νFΩ on FΩ. By our
definition of u± (Definition 3.9) and by Proposition 2.20 (in particular point (b) tells us that
µ̂u ≤ µ̂u +H

n−1 ¬
FΩ), (3.16) can be rewritten as:

∫
Γ
∣u±∣Θ± dHn−1

≤ C(n)(µ̂u(Rn ∖ Ju) + ∫
Rn

∣u(x)∣dx). (3.17)

So let us prove (3.17) for any function in the space GBD(Rn; Γ ∪FΩ).

Consider Λ the covering of Sn−1 of Remark 3.6 and by compactness define (C(Ξi, δ))
N(δ)
i=1

to

be a subcovering of Λ. If we define for any i = 1, . . . ,N , Γi ∶= ν
−1(C(Ξi, δ)) then (Γi)

N
i=1 is a

finite measurable covering of Γ. By definition of Λ, for any ξ ∈ Ξi and for every x ∈ Γi, we have
∣ξ ⋅ ν(x)∣ > 1/

√
n − δ.

Now we fix i and ξ ∈ Ξi. We write the generic point x ∈ Rn as (y, t) ∈ Πξ ×R, and from now on

we will work on the set of points y ∈ πξ(Γi) such that ûξy ∈ BVloc(R) and H0(Γξy) < ∞; from the

Definition 2.7 of GBD and Remark 3.1 we already know that Hn−1 almost all of y have these
properties.

We call (tk)
H0(Γξy)
k=1 the point of the slicing Γξy ordered such that tk < tk+1 for any k.
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Let θξ ∶ E → R+ be the one sectional distance introduced in Definition 3.2. Thanks to Remark
3.4, for x ∈ Γ we can consider θξ

±
(x) the trace respectively from above and from below on Γi.

By Theorem 2.16:

u+(y + tξ) ⋅ ξ = (ûξy)
+
(t) if t ∈ (Γi)

ξ
y and ν(x) ⋅ ξ > 0, (3.18)

and
u+(y + tξ) ⋅ ξ = (ûξy)

−
(t) if t ∈ (Γi)

ξ
y and ν(x) ⋅ ξ < 0. (3.19)

Since ξ has been fixed, in order to simplify the notation, we omit the dependence on ξ and write
Γ+i ∶= Γi ∩ {ν ⋅ ξ > 0} and Γ−i ∶= Γi ∩ {ν ⋅ ξ < 0}. Let’s focus for example on the set Γ+i :

ûξy(t) − (ûξy)
+
(tk) = ∫

t

tk
dDûξy, for tk ∈ (Γ+i )

ξ
y and tk < t < tk+1. (3.20)

Now at fixed y ∈ πξ(Γ+i ) we can integrate again on t ∈ (tk, tk+1) to get

(tk+1 − tk)∣(û
ξ
y)

+
(tk)∣ ≤ (tk+1 − tk)∫

tk+1

tk
d∣Dûξy ∣ + ∫

tk+1

tk
∣ûξy(t)∣dt,

for tk ∈ (Γ+i )
ξ
y, and tk+1 − tk ≤ 1,

(3.21)

and

∣(ûξy)
+
(tk)∣ ≤ ∫

1+tk

tk
d∣Dûξy ∣ + ∫

1+tk

tk
∣ûξy(t)∣ dt,

for tk ∈ (Γ+i )
ξ
y, and tk+1 − tk > 1.

(3.22)

Using the fact that θξ
+

is equal to tk+1 − tk or 1 on the set {y + tξ ∣ tk < t < tk+1}, we sum on
tk ∈ (Γ+i )

ξ
y to get

∑
tk

∣(ûξy)
+
(tk)∣θ

ξ+
(y + tkξ) ≤ ∑

tk

(∫

tk+θξ
+
(y+tkξ)

tk
d∣Dûξy ∣ + ∫

tk+θξ
+
(y+tkξ)

tk
∣ûξy(t)∣ dt)

≤ ∣Dûξy ∣(R ∖ Jûξy) +∑
tk
∫

tk+θξ
+
(y+tkξ)

tk
∣ûξy(t)∣ dt.

(3.23)

The first term in the left hand side of (3.23) is a measurable function of y. In fact thanks to

theorem 2.16, (ûξy)
+(tk) is the trace on Γ+i of u ⋅ ξ hence Hn−1-measurable, and θξ

+
is Hn−1-

measurable as well because trace of a measurable function. Then approximating ∣u+ ⋅ ξ∣θξ
+

by
simple functions (sm)∞m=0 and applying the Coarea formula with the projection map πξ on Γ+i ,
we have in particular that the maps:

y ↦ ∑

tk∈(Γ+i )
ξ
y

(sm)
ξ
y(tk),

are Hn−1-measurable for every m ∈ N, hence we deduce directly that the term in the left hand-
side of (3.23) is Hn−1-measurable.

The term ∣Dûξy ∣(R∖Jûξy) is a measurable function of y just by definition of GBD, while the last

term in the right hand-side of (3.23) is a measurable function of y once we show that the set:

Λξ
+
i ∶= {(y, t) ∈ πξ(Γ+i ) ×R ∣ tk < t < tk + θ

ξ+
(y + tkξ), tk ∈ (Γ+i )

ξ
y},

is Ln-measurable. To show this, we notice that since Γ+i ⊂ {x ∈ Γ ∣ ν(x) ⋅ ξ ≠ 0}, then using
the characterization of rectifiable set (as explained in proposition 3.3), Hn−1-almost all of Γ+i
can be covered by countably many submanifold of class C1 say (Σj)

∞
j=0, which are graphs of C1

functions (fj)
∞
j=0 defined on some open subset of Πξ. Clearly if we call Λξ

+
i,j the set of points

(y, t) ∈ Πξ ×R such that :

y ∈ πξ(Σj ∩ Γ+i ) and fj(y) < t < fj(y) + θ
ξ+

(y + fj(y)ξ),

then Λξ
+
i,j is Ln-measurable, simply because both maps appearing in the left hand side and in

the right hand side of the previous inequality are restriction of Hn−1-measurable functions on a
Hn−1-measurable set. Finally we notice that:

L
n
(Λξ

+
i ∆

∞
⋃
j=0

Λξ
+
i,j) = 0,
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and we are done.
So we can consider the integral on πξ(Γ+i ) on both sides of (3.23). By Theorem 2.16 Jûξy =

(Ju)
ξ
y for a.e. y, so after integration we have:

∫
πξ(Γ+i )

∑
tk

∣(ûξy)
+
(tk)∣θ

ξ+
(y + tkξ) dy ≤ ∫

πξ(Γ+i )
∣Dûξy ∣(R ∖ (Ju)

ξ
y) dy

+∫
πξ(Γ+i )

(∑
tk
∫

tk+θξ
+
(y+tkξ)

tk
∣u(y + tξ)∣ dt) dy.

(3.24)

Analogously we have the same inequality on the set where {ν ⋅ ξ < 0}:

∫
πξ(Γ−i )

∑
tk

∣(ûξy)
−
(tk)∣θ

ξ+
(y + tkξ) dy ≤ ∫

πξ(Γ−i )
∣Dûξy ∣(R ∖ (Ju)

ξ
y) dy

+ ∫
Rn

∣u(x)∣ dx.

(3.25)

Summing the two inequality (3.24) and (3.25), by the relations between the trace of the function
and the trace of its slicing (3.37) and (3.38), we have:

∫
πξ(Γi)

H0((Γi)ξy)

∑

tk∈(Γi)ξy

∣u+(y + tkξ) ⋅ ξ∣θ
ξ+

(y + tkξ) dy ≤ 2∫
πξ(Γi)

∣Dûξy ∣(R ∖ (Ju)
ξ
y) dy

+ 2∫
Rn

∣u(x)∣ dx.

(3.26)

Finally Coarea formula on the rectifiable set Γi applied to the projection πξ with the fact that
∣ν(x) ⋅ ξ∣ > 1/

√
n − δ, allows us to write:

1 −
√
nδ

√
n

∫
Γi

∣u+(x) ⋅ ξ∣θξ
+
(x) dHn−1

(x) ≤ ∫
Γi

∣u+(x) ⋅ ξ∣ ∣ν(x) ⋅ ξ∣θξ
+
(x) dHn−1

(x)

= ∫
πξ(Γi)

(

H0((Γi)ξy)

∑

tk∈(Γi)ξy

∣ûξy(tk)∣θ
ξ+

(y, tk)) dy

≤ 2∫
πξ(Γi)

∣Dûξy ∣(R ∖ (Ju)
ξ
y)dy + 2∫

Rn
∣u(x)∣dx

≤ 2µ̂u((π
ξ
(Γi) ×R) ∖ Ju) + 2∫

Rn
∣u(x)∣dx.

(3.27)

Repeating the same argument for every ξj ∈ Ξi we may write:

∫
Γi
∑
ξj∈Ξi

∣u+(x) ⋅ ξj ∣θ
ξ+j (x) dHn−1

(x) ≤
2
√
n

1 −
√
nδ

∑
ξj∈Ξi

µ̂u((π
ξj(Γi) ×R) ∖ Ju)

+
2n3/2

1 −
√
nδ
∫
Rn

∣u(x)∣ dx

≤
2n3/2

1 −
√
nδ

(µ̂u(Rn ∖ Ju) + ∫
Rn

∣u(x)∣ dx).

(3.28)

Now define Θ+∶Γi → R+ as:

Θ+
(x) ∶= min{θξ

+
j (x) ∣ ξj ∈ Ξi} for x ∈ Γi. (3.29)

By construction for each j = 1, . . . , n the functions θξ
+
j are strictly greater then zero Hn−1-a.e.

on Γi, hence Θ+(x) > 0 for Hn−1-a.e. x ∈ Γi and this gives (b). So by inequality (3.28) and the
definition of Θ+ we can write

∫
Γi

∣u+(x)∣Θ+
(x) dHn−1

(x) ≤
2n3/2

1 −
√
nδ

(µ̂u(Rn ∖ Ju) + ∫
Rn

∣u(x)∣ dx). (3.30)

Eventually redefining the (C(Ξi, δ))
N(δ)
i=1

, we may assume that (Γi)
N(δ)
i=1 are pairwise disjoint;

now summing the last inequality (3.30) for every i, together with the choice δ = 1/2
√
n, we get:

∫
Γ
∣u+(x)∣Θ+

(x) dHn−1
(x) ≤ 4n3/2N(1/2

√
n)(µ̂u(Rn ∖ Ju) + ∫

Rn
∣u(x)∣ dx), (3.31)
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which is (3.17) for u+. Defining Θ−∶Γi → R+ as

Θ−
(x) ∶= min{θξ

−
j (x) ∣ ξj ∈ Ξi} for x ∈ Γi, (3.32)

using the same argument we can prove (a) for Θ− and (3.16) for u−, and we conclude. �

The following is analogous of Theorem 3.11 in the case GSBDp
p:

Theorem 3.12. (Trace inequality in GSBDp
p(Ω)). Let Ω and Γ be as in Theorem 3.11. Then

there exist two Hn−1-measurable functions Θ± ∶ Γ ∪FΩ→ R+ depending only on the geometry of
Γ, its orientation ν, and on Ω, such that denoting with u± the traces of u according to Definition
3.9 , we have

(a) Hn−1({Θ± = 0}) = 0 and Θ± ∈ L∞(Γ ∪FΩ,Hn−1) (in particular ∥Θ±∥∞ ≤ 1);
(b) For every u ∈ GSBDp

p(Ω; Γ) (p ≥ 1) we have:

∫
Γ∪FΩ

∣u±∣pΘ± dHn−1
≤ C(n, p)(∫

Ω
∣Eu∣pdx + ∫

Ω
∣u∣p dx), (3.33)

where C(n, p) is a constant depending only on n and p;
(c) Let p∗ = np/(n − p) be the usual critical Sobolev exponent, then we have:

∫
Γ∪FΩ

∣u±∣
p(n−1)
n−p Θ± dHn−1

≤ C ′
(n, p)(∫

Ω
∣Eu∣p dx + ∫

Ω
∣u∣p

⋆
dx), (3.34)

for every u ∈ GSBDp
p(Ω; Γ) ∩Lp∗(Ω).

Proof. Let u ∈ GBD(Rn; Γ ∪ FΩ) be the function extended to 0 outside of Ω as in Proposition
2.20. In order to simplify the notation, we write Γ to denote Γ ∪ FΩ, and ν to denote the
orientation that coincides with the given orientation ν on Γ, and with νFΩ on FΩ. By our
definition of u± (see Definition 3.9) and by proposition 2.20, (3.33) and (3.34), can be rewritten
as:

∫
Γ
∣u±∣pΘ± dHn−1

≤ C(n, p)(∫
Rn

∣Eu∣pdx + ∫
Rn

∣u∣p dx), (3.35)

and

∫
Γ
∣u±∣

p(n−1)
n−p Θ± dHn−1

≤ C ′
(n, p)(∫

Rn
∣Eu∣p dx + ∫

Rn
∣u∣p

⋆
dx). (3.36)

We argue similarly to the proof of Theorem 3.11: consider (Γi)
N
i=1 the partition of Γ given in

Theorem 3.11, and let Ξi be the orthonormal basis of Rn associated to Γi. Fix i and ξ ∈ Ξi.
From now on we will work on the points y ∈ πξ(Γi) such that ûξy ∈ SBVloc(R) andH0(Γξy) < ∞;

from the Definition 2.9 of GSBD and Remark 3.1 we already know that Hn−1-almost all of y
have these properties.

We call (tk)
H0(Γξy)
k=1 the points of the slicing Γξy ordered such that tk < tk+1 for any k. Let

θξ ∶E → R+ be the one sectional distance introduced in Definition 3.2. For x ∈ Γ let θξ
±
(x) to be

the trace of θξ according to ν.
Now we work on Γi. By Theorem 2.16

u+(y + tξ) ⋅ ξ = (ûξy)
+
(t) if t ∈ (Γi)

ξ
y and ν(x) ⋅ ξ > 0, (3.37)

and
u+(y + tξ) ⋅ ξ = (ûξy)

−
(t) if t ∈ (Γi)

ξ
y and ν(x) ⋅ ξ < 0. (3.38)

Since ξ has been fixed, in order to simplify the notation, we omit the dependence on ξ and write
Γ+i ∶= Γi ∩ {ν ⋅ ξ > 0} and Γ−i ∶= Γi ∩ {ν ⋅ ξ < 0}. Let’s focus for example on the set Γ+i :

ûξy(t) − (ûξy)
+
(tk) = ∫

t

tk
∇ûξy(r)dr, for ti ∈ (Γ+i )

ξ
y and tk < t < tk+1, (3.39)

passing to the modulus and elevating to the power p:

∣(ûξy)
+
(tk)∣

p
≤ 2p−1

(tk+1 − tk)
p−1
∫

tk+1

tk
∣∇ûξy(r)∣

p dr + 2p−1
∣ûξy(t)∣

p,

for tk ∈ (Γ+i )
ξ
y and tk < t < tk+1.

(3.40)

The same holds true for ∣(ûξy)
−∣ on the set Γ−i . Notice that by Theorem 2.18 ∇ûξy(t) = Eu(y+tξ)ξ ⋅ξ

forHn−1-a.e. y ∈ Πξ andH1-a.e. t ∈ Ωξy. So exactly as in Theorem 3.11, at fixed y we can integrate
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on t ∈ (tk, tk+1) so that we don’t touch points of the slicing (Γi)
ξ
y; then we integrate with respect

to y ∈ πξ(Γi) and we use Coarea formula with the fact that ∣ν ⋅ ξ∣ > 1/
√
n − δ:

1 −
√
nδ

√
n

∫
Γi

∣u+(x)∣pθξ
+
(x) dHn−1

≤

H0((Γi)ξy)

∑

tk∈(Γi)ξy
∫
πξ(Γi)

∣u+(y + tkξ) ⋅ ξ∣
pθξ

+
(y, tk) dy

≤ 2p ∫
πξ(Γi)

(∫
R
∣Eu(y + tξ)ξ ⋅ ξ∣p dt) dy

+ 2p ∫
Rn

∣u(x)∣p dx.

(3.41)

Summing (3.41) for every ξj ∈ Ξi we get:

∫
Γi
∑
ξj∈Ξi

∣u+ ⋅ ξj ∣
pθξ

+
j dHn−1

≤ C(n, p) ∑
ξj∈Ξi

∫
πξj (Γi)

(∫
R
∣Eu(y + tξ)ξj ⋅ ξj ∣

p dt) dy

+C(n, p)∫
Rn

∣u(x)∣p dx

≤ C(n, p)(∫
Rn

∣Eu(x)∣p dx + ∫
Rn

∣u(x)∣ dx).

(3.42)

Now define for every i = 1, . . . ,N (where N is the dimensional constant introduced in Remark
3.6), exactly as in (3.29):

Θ+
(x) ∶= min{θξ

+
j (x) ∣ ξj ∈ Ξi} for x ∈ Γi, (3.43)

so that (3.35) holds for u+. Now (a) follows exactly as in Theorem 3.11. Analogously by defining

Θ−
(x) ∶= min{θξ

−
j (x) ∣ ξj ∈ Ξi} for x ∈ Γi, (3.44)

we can prove (a) for Θ− and (3.35) for the trace from below u−.
To prove (3.36) fix i and ξ ∈ Ξi. Then we notice that for Hn−1-a.e. y ∈ Πξ we have all the

properties mentioned in the first lines of this proof and moreover that ûξy ∈ L
p∗(R), ∇ûξy ∈ L

p(R).

Then we elevate the one dimensional sections ûξy to the power p(n − 1)/(n − p) and we notice

that for Hn−1-a.e. y we have uξy ∈W
1,p((tk, tk+1)) so by means of the chain rule formula we get

(tk+1 − tk)∣(û
ξ
y)

+
(tk)∣

p(n−1)
n−p ≤ (tk+1 − tk)

p(n − 1)

n − p
∫

tk+1

tk
∣ûξy(r)∣

p(n−1)
n−p −1

∣∇ûξy(r)∣ dr

+ ∫

tk+1

tk
∣ûξy(t)∣

p(n−1)
n−p dt,

for tk ∈ (Γ+i )
ξ

y
, and tk+1 − tk ≤ 1,

(3.45)

and

∣(ûξy)
+
(tk)∣

p(n−1)
n−p ≤

p(n − 1)

n − p
∫

1+tk

tk
∣ûξy(r)∣

p(n−1)
n−p −1

∣∇ûξy(r)∣ dr

+ ∫

1+tk

tk
∣ûξy(t)∣

p(n−1)
n−p dt,

for tk ∈ (Γ+i )
ξ

y
, and tk+1 − tk > 1,

(3.46)

Hölder’s inequality with exponents p/(p − 1) and p, and then Young’s inequality with the same
exponents yelds to:

∫

tk+1

tk
∣ûξy(r)∣

p(n−1)
n−p −1

∣∇ûξy(r)∣ dr ≤ (∫

tk+1

tk
∣ûξy(r)∣

p∗ dr)

p
p−1

(∫

tk+1

tk
∣∇ûξy(r)∣

p dr)

1
p

≤
p

p − 1
∫

tk+1

tk
∣ûξy(r)∣

p∗ dr +
1

p
∫

tk+1

tk
∣∇ûξy(r)∣

p dr,

(3.47)

Now we first integrate on the interval (tk, tk+1) both inequalities (3.45) and (3.46) using also
(3.47), and then we integrate with respect to y ∈ Πξ. Finally we can conclude exactly as before,
getting (3.36) for u+. The same argument works for u− and we conclude. �
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Definition 3.13. Given Γ ⊂ Rn a countably (Hn−1, n − 1)- rectifiable set oriented by ν, we say
that Γ satisfies the cone condition, if there exist r > 0, 0 < L < 1, and two Hn−1-measurable maps
η±∶Γ→ Sn−1, such that for every x ∈ Γ we have

{x +C+
(η+(x), L)} ∩Br(x) ∩ Γ = ∅, (3.48)

and

{x +C−
(η−(x), L)} ∩Br(x) ∩ Γ = ∅. (3.49)

Remark 3.14. For example if Γ is the boundary of some lipschitz-regular domain Ω ⊂ Rn then it
satisfies the cone condition.

Proposition 3.15. (Trace inequality with no weights). Let Ω and Γ be as in Theorem 3.11.
Suppose that Γ∪FΩ satisfies the cone condition with parameters r and L (see Definition 3.13),
then we have:

(a) If u ∈ GBD(Ω; Γ) then u± ∈ L1(Γ ∪ FΩ,Hn−1), and moreover there exists a constant
C(n,L, r) > 0 such that:

∫
Γ∪FΩ

∣u±∣ dHn−1
≤ C(n,L, r)(µ̂u(Ω ∖ Ju) + ∫

Ω
∣u∣ dx) (3.50)

(b) If u ∈ GSBDp
p(Ω; Γ) (p ≥ 1) then u± ∈ Lp(Γ ∪ FΩ,Hn−1), and moreover there exists a

constant C(n,L, r, p) > 0 such that:

∫
Γ∪FΩ

∣u±∣p dHn−1
≤ C(n,L, r, p)(∫

Ω
∣Eu∣p dx + ∫

Ω
∣u∣p dx) (3.51)

Proof. We prove (a). The proof of (b) is similar.
Let u ∈ GBD(Rn; Γ ∪FΩ) be the function extended to 0 outside of Ω as in Proposition 2.20.

In order to simplify the notation, we write Γ to denote Γ ∪FΩ, and ν to denote the orientation
that coincides with the given orientation ν on Γ, and with νFΩ on FΩ. By our definition of u±

(see Definition 3.9) and by proposition 2.20, (3.50) and (3.51), can be rewritten as:

∫
Γ
∣u±∣ dHn−1

≤ C(n,L, r)(µ̂u(Rn ∖ Ju) + ∫
Rn

∣u∣ dx), (3.52)

and

∫
Γ
∣u±∣p dHn−1

≤ C ′
(n,L, r, p)(∫

Rn
∣Eu∣p dx + ∫

Rn
∣u∣p dx). (3.53)

We prove (3.52), the proof of (3.53) is similar. Let us focus on the trace from above u+: first
notice that if x ∈ Γ admits an approximate tangent space 1, say Tan(x,Γ), then it must lies
on the set of points y ∈ Rn ∖C+(η+(x), L): this is simply because by definition of approximate
tangent space 2:

H
n−1 ¬

(
Γ − x

λ
) ⇀ H

n−1 ¬
Tan(x,Γ) as λ→ 0+,

weakly in the sense of measure, i.e. tested against every continuous functions with compact
support in Rn; by our hypothesis for every λ > 0, Γ−x

λ
∩C+(η+(x), L)∩Br/λ(0) = ∅, and this means

that the limit measure Hn−1 ¬
Tan(x,Γ) has support disjoint from the open set C+(η+(x), L).

Thus we have the uniform bound on the scalar product:

ν(x) ⋅ η+(x) >
√

1 −L2, for every x ∈ Γ. (3.54)

Now consider ε > 0 small enough such that (L+1)/2−ε > L and ε <
√

1−L(
√

1+L−1)
2

. By compactness

we can find a finite covering of Sn−1, made of closed balls of radius ε/2, say (Bi)
N(ε)
i=1 . Define for

each i = 1, . . . ,N(ε) , Γi ∶= η
+−1(Bi), then Γ ⊂ ⋃i Γi. For every Γi ≠ ∅ (i = 1, . . . ,N(ε)) choose

xi ∈ Γi and define η+i ∶= η
+(xi). We claim that:

{x +C+
(η+i , (L + 1)/2)} ∩Br(x) ∩ Γ = ∅, for every x ∈ Γi. (3.55)

1By [11, Theorem 5.4.5] Hn−1-a.e. x ∈ Γ admits an approximate tangent space.
2See [11, Definition 5.4.4] for the definition of approximate tangent space.
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In order to show (3.55) it is enough to notice that if y ∈ x + C+(η+i , (L + 1)/2) then by using
(L + 1)/2 − ε > L, we have:

∣η+(x) ⋅ (y − x)∣ = ∣η+i ⋅ (y − x) + (η+(x)−η+i ) ⋅ (y − x)∣ ≥ ∣η+i ⋅ (y − x)∣ − ε∣y − x∣

≥ (
L + 1

2
− ε)∣y − x∣

> L∣y − x∣,

(3.56)

which implies y ∈ x +C+(η+(x), L) ∩Br(x) and proves the claim.
Now we work on Γi. Consider a basis of Rn, say Ξi ∶= {ξ1, . . . , ξn}, such that:

ξj ∈ C
+(η+i , (L + 1)/2)), for every j = 1, . . . , n. (3.57)

Notice that by the fact ε <
√

1−L(
√

1+L−1)
2

we have:

ν(x) ⋅ ξj = ν(x) ⋅ (ξj − η
+
i ) + ν(x) ⋅ (η

+
i − η

+
i (x)) + ν(x) ⋅ η

+
i (x)

≥ −

√

2(1 − ξj ⋅ η+i ) − ε +
√

1 −L2

≥ −
√

1 −L − ε +
√

1 −L2

≥

√
1 −L(

√
1 +L − 1)

2

Now proceeding exactly as in the proof of Theorem 3.11 we have for every ξj ∈ Ξi

∫
πξj (Γεi∩{ν⋅ξj>0})

∑
tk

∣(ûξjy )
+
(tk)∣θ

ξ+j (y + tkξj) dy ≤ ∫
πξj (Γεi∩{ν⋅ξj>0})

∣Dûξjy ∣(R ∖ (Ju)
ξj
y ) dy

+ ∫
Γi×R

∣u(x)∣ dx.

(3.58)

Using (3.55) we have that θξ
+
j (x) ≥ r for every ξj ∈ Ξi and every x ∈ Γi. So by means of Coarea

Formula applied to πξj on the set Γi, we can write:

r

√
1 −L(

√
1 +L − 1)

2
∫

Γi
∣u+(x) ⋅ ξj ∣ dH

n−1
(x) ≤

∫
πξj (Γi∩{ν⋅ξj>0})

∣Dûξjy ∣(R ∖ (Ju)
ξj
y ) dy + ∫

Γi×R
∣u(x)∣ dx.

(3.59)

Summing the inequalities (3.59) for every ξj ∈ Ξi we get

∫
Γi
∑
ξj∈Ξi

∣u+(x) ⋅ ξj ∣ dH
n−1

(x) ≤ C ′
(n,L, r)(µ̂u(Rn ∖ Ju) + ∫

Γi×R
∣u(x)∣dx). (3.60)

Now call Ai ∈ Mn×n(Rn), the matrix whose j-th columns is composed by the vector ξj ∈ Ξi.
Then we have:

∑
ξj∈Ξi

∣u+(x) ⋅ ξj ∣ ≥ ( ∑
ξj∈Ξi

∣u+(x) ⋅ ξj ∣
2
)

1
2

≥
∣u+(x)∣

∥A−T
i ∥Mn×n

. (3.61)

So finally we can write:

∫
Γi

∣u+(x)∣ dHn−1
(x) ≤ C ′′

(n,L, r)(µ̂u((Γi ×R) ∖ Ju) + ∫
Rn

∣u(x)∣ dx), (3.62)

where C ′′(n,L, r) is a constant which depends only on n,L, r. Analogously we have the same
inequality for ∣u−∣, so that by summing on i = 1, . . . ,N(n) we obtain:

∫
Γ
∣u±(x)∣ dHn−1

(x) ≤ C(n,L, r)(µ̂u(Rn ∖ Ju) + ∫
Rn

∣u(x)∣dx), (3.63)

which concludes the proof. �

Remark 3.16. A particular case of Theorem 3.12 and of point (b) of Proposition 3.15 is when u ∈
GSBV pp (Ω; Γ)n (p ≥ 1). By definition every u ∈ GSBV pp (Ω)n is a vector field in Lp(Ω,Rn) whose
approximate gradient ∇u belongs to ∈ Lp(Ω,Mn×n). Therefore GSBV pp (Ω; Γ)n ⊂ GSBDp

p(Ω; Γ).
In particular Theorem 3.12 and point (b) of Corollary 3.15 apply to GSBV pp (Ω; Γ)n with Eu
replaced by ∇u.
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An alternative way to obtain a trace estimate without weight on FΩ ∪ Γ is to consider a
suitable weight Ψ defined on Ω as explained in the next theorem:

Theorem 3.17. Let Ω and Γ be as in Theorem 3.11. Then there exists an Ln−1-measurable
function Ψ ∶ Ω→ R+ depending only on the geometry of Γ, its orientation ν, and on Ω, such that
denoting with u± the traces of u according to Definition 3.9 ,we have:

(a) The function Ψ ∈ L1
loc(Ω). In particular:

∫
B

Ψ dx ≤ C(n)(Hn−1
(Γ ∩B) +H

n−1
(∂B) + L

n
(B)), (3.64)

for every ball B ⊂ Ω.
(b) The following inclusions hold true:

(i) GBD(Ω; Γ) ∩L1(Ω,ΨLn) ⊂ BD(Ω; Γ) and

∫
Γ∪FΩ

∣u±∣ dHn−1
≤ C(n)(µ̂u(Ω ∖ Ju) + ∫

Ω
∣u∣Ψdx); (3.65)

(ii) GSBDp
p(Ω; Γ) ∩Lp(Ω,ΨLn) ⊂ SBDp

p(Ω; Γ) (p ≥ 1) and

∫
Γ∪FΩ

∣u±∣p dHn−1
≤ C(n, p)(∫

Ω
∣Eu∣p dx + ∫

Ω
∣u∣pΨdx). (3.66)

(c) Given p < n let p∗ = np/(n − p) be the usual critical Sobolev exponent, and consider u ∈

GSBDp
p(Ω; Γ) ∩Lp

∗
(Ω) ∩L

p(n−1)
n−p (Ω,ΨLn). Then:

∫
Γ∪FΩ

∣u±∣
p(n−1)
n−p dHn−1

≤ C(n, p)(∫
Ω
∣Eu∣p dx + ∫

Ω
∣u∣

p(n−1)
n−p Ψdx + ∫

Ω
∣u∣p

⋆
dx). (3.67)

(d) If Γ ∪ FΩ satisfies the cone condition (see Definition 3.13) , then Ψ can be chosen in such
a way that:

ess sup
x∈Ω

Ψ < ∞. (3.68)

(e) If Γ is such that:

∫
Ω

Ψγdx < ∞, for some γ > 1, (3.69)

then we have GSBD(Ω; Γ) ∩L
γ
γ−1 (Ω) ⊂ SBD(Ω; Γ).

Remark 3.18. If Ω ⊂ Rn is a lipschitz-regular bounded domain, and Γ = ∅, then clearly FΩ(= ∂Ω)

satisfies the cone condition. Thanks to point (d) of the previous theorem, ess supx∈Ω Ψ < ∞,
therefore (3.67) becomes:

∫
∂Ω

∣Tr(u)∣
p(n−1)
n−p dHn−1

≤ C(n, p,Γ,Ω)(∫
Ω
∣Eu∣p dx + ∫

Ω
∣u∣p

∗
dx). (3.70)

Moreover one can prove that on the open set Ω holds true a Sobolev-like inequality of the form:

∥u∥p∗ ≤ C(n, p,Γ,Ω)(∥Eu∥p + ∥u∥p). (3.71)

This last inequality, together with (3.70), proves the L
p(n−1)
n−p (∂Ω,Hn−1)- integrability of the trace

of u, which is the usual critical exponent for the trace of Sobolev functions in W 1,p(Ω).

Proof. (Theorem 3.12) Let u ∈ GBD(Rn; Γ∪FΩ) be the function extended to 0 outside of Ω as
in proposition 2.20. In order to simplify the notation, we write Γ to denote Γ ∪ FΩ, and ν to
denote the orientation that coincides with the given orientation ν on Γ, and with νFΩ on FΩ.

By following the proofs of Theorem 3.11 and 3.12, thanks to our definitions of u± and by
Proposition 2.20, we can prove the analogous of inequalities (3.65), (3.66), and (3.67) for the
function u.

We first prove (a) and (b): consider Λ the covering of Sn−1 as in Remark 3.6 and by compact-
ness we consider a subcovering (C(Ξi, δ))

N
i=1. If we define for any i = 1, . . . ,N , Γi ∶= ν

−1(C(Ξi, δ))

then (Γi)
N
i=1 is a finite measurable cover of Γ. Note that by definition of the covering Λ, for any

ξ ∈ Ξi we have ∣ξ ⋅ ν(x)∣ > 1/
√
n − δ for every x ∈ Γi.

Now we fix i and ξ ∈ Ξi. We write the generic point x ∈ Rn as y + tξ where (y, t) ∈ Πξ × R,

and from now on we will work on the set of points y ∈ πξ(Γi) such that ûξy ∈ BVloc(R) and
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H0(Γξy) < ∞; from the Definition 2.7 of GBD and Remark 3.1 we already know that Hn−1

almost all of y have these properties.

We call (tk)
H0(Γξy)
k=1 the point of the slicing Γξy ordered such that tk < tk+1 for any k.

Since ξ has been fixed, in order to simplify the notation, we omit the dependence on ξ and
write Γ+i ∶= Γi ∩ {ν ⋅ ξ > 0} and Γ−i ∶= Γi ∩ {ν ⋅ ξ < 0}. Let’s focus for example on the set Γ+i .
Proceeding exactly as in Theorem 3.11, we have for Hn−1-a.e. y ∈ πξ(Γ+i )

(tk+1 − tk)∣(û
ξ
y)

+
(tk)∣ ≤ (tk+1 − tk)∫

tk+1

tk
d∣Dûξy ∣ + ∫

tk+1

tk
∣ûξy(t)∣ dt,

for tk ∈ (Γ+i )
ξ

y
, and tk+1 − tk ≤ 1,

(3.72)

and

∣(ûξy)
+
(tk)∣ ≤ ∫

1+tk

tk
d∣Dûξy ∣ + ∫

1+tk

tk
∣ûξy(t)∣ dt,

for tk ∈ (Γ+i )
ξ
y, and tk+1 − tk > 1.

(3.73)

Since θξ coincides with tk+1 − tk or 1 on the set {y + tξ ∣ tk < t < tk+1}, we can divide both sides

of the previous inequality by θξ and then we sum on tk ∈ (Γ+i )
ξ

y
to get

∑
tk

∣(ûξy)
+
(tk)∣ ≤ ∑

tk

(∫

tk+θξ
+
(y+tkξ)

tk
d∣Dûξy ∣ + ∫

tk+θξ
+
(y+tkξ)

tk

∣ûξy(t)∣

θξ(y + tξ)
dt)

≤ ∣Dûξy ∣(R ∖ Jûξy)+∑
tk
∫

tk+θξ
+
(y+tkξ)

tk

∣ûξy(t)∣

θξ(y + tξ)
dt.

(3.74)

The term in the left hand-side, and the last two addends on the right hand-side of (3.74)
are measurable functions of y (as explained in the proof of Theorem 3.11). By Theorem 2.16
Jûξy = (Ju)

ξ
y for a.e. y, so by integrating over πξ(Γ+i ):

∫
πξ(Γ+i )

∑
tk

∣(ûξy)
+
(tk)∣ dy ≤ ∫

πξ(Γ+i )
∣Dûξy ∣(R ∖ (Ju)

ξ
y) dy

+∫
πξ(Γ+i )

( ∑

tk∈(Γ+i )
ξ
y

∫

tk+θξ
+
(y+tkξ)

tk

∣u(y + tξ)∣

θξ(y + tξ)
dt) dy.

(3.75)

Again by arguing as in the proof of Theorem 3.11, we find the same inequality on the set Γ−i ,
then by means of the Coarea formula on the rectifiable set Γi applied to the projection πξ, and
by summing on every directions in Ξi, we get:

∫
Γi

∣u+(x)∣ dHn−1
(x) ≤ C(n)(µ̂u(Rn ∖ Ju) + ∫

Rn
∑
ξj∈Ξi

∣u(x)∣

θξj
(x) dx). (3.76)

Now define Ψi,Ψ ∶ Rn → R+ as:

Ψi
(x) ∶= ∑

ξj∈Ξi

1

θξj(x)
and Ψ(x) ∶=

N(n)

∑
i=1

Ψi
(x). (3.77)

To prove (a) it is enough to notice that for each ξ ∈ Sn−1 and for each ball B ⊂ Rn we have:

∫
B

1

θξ
dx = ∫

πξ(B)
(∫

Bξy

1

θξ(y + tξ)
dt) dy

= ∫
πξ(B)

( ∑

tk∈((Γ∩B)∪∂B)ξy

tk+1 − tk
θξ(y + tξ)

) dy

≤ ∫
πξ(B)

(H
0
((Γ ∩B)

ξ
y) + 1 +H1

(Bξy)) dy

≤ H
n−1

(Γ ∩B) +H
n−1

(∂B) + L
n
(B),

(3.78)

Hence Ψ ∈ L1
loc(Ω). By summing on i = 1, . . . ,N(n) inequality (3.76) becomes:

∫
Γ
∣u+(x)∣ dHn−1

(x) ≤ C ′
(n)(µ̂u(Rn ∖ Ju) + ∫

Rn
∣u(x)∣Ψ(x)dx). (3.79)
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Analogously we can prove the same inequality for the trace from below:

∫
Γ
∣u−(x)∣ dHn−1

(x) ≤ C ′
(n)(µ̂u(Rn ∖ Ju) + ∫

Rn
∣u(x)∣Ψ(x)dx). (3.80)

Thanks to Proposition 2.20, (3.79) and (3.80) are exactly (3.65). In particular this means that
the jump function [u](x) = u+(x) − u−(x) belongs to L1(Ju,H

n−1), and as a consequence that
u ∈ BD(Ω) (see Remark 2.17).

In order to pass to the Lp-norm in (3.66), we can proceed as in the proof of Theorem 3.12.
Then by arguing as in the previous proof of inequality (3.65), we get also (ii) of point (b).

To prove (c) fix i and ξ ∈ Ξi. Notice that for Hn−1-a.e. y ∈ πξ(Γi) we have all the properties

mentioned in the first lines of this proof and moreover ûξy ∈ L
p∗(R), ∇ûξy ∈ L

p(R). So we elevate

the one dimensional sections ûξy to the power p(n − 1)/(n − p) and we notice that for Hn−1-a.e.

y we have ûξy ∈W
1,p((tk, tk+1)). Thus by means of the chain rule formula we get:

(tk+1 − tk)∣(û
ξ
y)

+
(tk)∣

p(n−1)
n−p ≤ (tk+1 − tk)

p(n − 1)

n − p
∫

tk+1

tk
∣ûξy(r)∣

p(n−1)
n−p −1

∣∇ûξy(r)∣ dr

+ ∫

tk+1

tk
∣ûξy(t)∣

p(n−1)
n−p dt,

for tk ∈ (Γ+i )
ξ

y
, and tk+1 − tk ≤ 1,

(3.81)

and:

∣(ûξy)
+
(tk)∣

p(n−1)
n−p ≤

p(n − 1)

n − p
∫

1+tk

tk
∣ûξy(r)∣

p(n−1)
n−p −1

∣∇ûξy(r)∣ dr

+ ∫

1+tk

tk
∣ûξy(t)∣

p(n−1)
n−p dt,

for tk ∈ (Γ+i )
ξ

y
, and tk+1 − tk > 1,

(3.82)

Hölder’s inequality with exponents p/(p − 1) and p, and then Young’s inequality with the same
exponents yelds to:

∫

tk+1

tk
∣ûξy(r)∣

p(n−1)
n−p −1

∣∇ûξy(r)∣ dr ≤ (∫

tk+1

tk
∣ûξy(r)∣

p∗ dr)

p
p−1

(∫

tk+1

tk
∣∇ûξy(r)∣

p dr)

1
p

≤
p

p − 1
∫

tk+1

tk
∣ûξy(r)∣

p∗ dr +
1

p
∫

tk+1

tk
∣∇ûξy(r)∣

p dr,

(3.83)

First we can use inequality (3.83) to estimate the first term in the right hand side of (3.81) and
of (3.82), then we can argue in the same way as in the proof of (b) in order to get (c).

The proof of (d) is similar to the one of Theorem 3.15 always starting from inequalities (3.72)
and (3.73).

Finally we prove (e). It is enough to apply Hölder inequality with the two conjugate exponents
γ and γ/(γ − 1) to the integral on the right hand side of (3.65):

∫
Ω
∣u(x)∣Ψ(x) dx ≤ (∫

Ω
Ψ(x)γ dx)

1
γ

(∫
Ω
∣u(x)∣

γ
γ−1 dx)

γ−1
γ

. (3.84)

�

Remark 3.19. Under hypothesis of Theorem (3.17) inequalities (3.66), (3.67), statements (d) and
(e), hold true in GSBV pp (Ω; Γ)n with the full approximate gradient instead of the symmetric
one as specified in Remark 3.16.

4. Convergence of trace in measure

This section is devoted to prove a fundamental result about the continuity of the trace oper-
ator. We will show that the trace operator acting on the space GSBDp

p(Ω; Γ), is continuous in
measure with respect to the notion of convergence (4.15). This result, together with our previous
trace inequalities, allow us to deduce the continuity properties of the trace cited so far in the
introduction.

For convenience of the reader, we remind the notion of convergence in measure:
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Definition 4.1. (Convergence in measure). Let µ ∈ M+
b (Rn) a bounded positive Radon mea-

sure. Consider (vi)i∈N vi∶Rn → R a sequence of µ-measurable functions and let v∶Rn → R be a
µ-measurable function. Then the vi converge to v in µ-measure, if for any ε > 0 and δ > 0 there
exists an index i ∈ N such that:

µ({x ∈ Rn ∣ ∣vi(x) − v(x)∣ > ε}) ≤ δ, ∀i ≥ i. (4.1)

Remark 4.2. If vi converge to v in measure, then there exists a subsequence vij that converges to
v pointwise µ-a.e. Moreover if µ ∈ M+

b (Rn) is concentrated on A, and (Aj)j∈N is a µ-measurable
covering of A, in order to check the convergence in measure, it is enough to check the convergence
in measure of the vi

¬
Aj to v

¬
Aj , for each j = 1,2, . . . .

Now we introduce the notation for the truncation functions:

Definition 4.3. (Truncated function). Let a, b be two real numbers. Define σa, σb∶R→ R to be
the truncation function from below at level a, respectively at level b, as:

σa(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

a if t < a

t if t ≥ a,
σb(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

t if t < b

b if t ≥ b.
(4.2)

Define σba∶R → R to be the truncation function from below and above at level a and b (a < b),
as:

σba(t) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a if t < a

t if a ≤ t < b,

b if t ≥ b.

(4.3)

Proposition 4.4. Let µ ∈ M+
b (Rn) be a bounded positive Radon measure. Let (vj)j∈N, vj ∶Rn →

R, be a sequence of µ-measurable functions and let v∶Rn → R be a µ-measurable function. Suppose
that for any a < b holds:

σba(vj) ⇀ σba(v) for j →∞, weakly* in L∞(Rn, µ). (4.4)

Then the vj converge to v in measure.

Proof. First of all fix two positive parameters ε and δ as in Definition 4.1. Then find M > 0 big
enough such that µ(Rn ∖ {−M ≤ v <M}) ≤ δ/2 (this is possible because µ is a finite measure).
To simplify the notation we write VM ∶= {−M ≤ v <M} .

Let γ ∶= min{ cεδ
2
, ε

2
}, where c = 1

4µ(Rn) , and consider a partition of [−M,M) made of interval

of the form [ti, ti+1), such that ti+1 − ti = γ, for any i = 1, . . . ,2M/γ (we may suppose that
M = γ ⋅N where N is a sufficiently large natural number).

Define for any i the set Ai ∶= v
−1([ti, ti+1)) and ti ∶= (ti+1 + ti)/2 the middle point between ti

and ti+1. Notice that by triangular inequality and by recalling that γ ≤ ε:

{∣vj − v∣ > ε} ∩Ai ⊆ {∣vj − ti∣ >
ε

2
} ∩Ai for i = 1, . . . ,

2M

γ
, and j ∈ N. (4.5)

This means that:

µ({∣vj − v∣ > ε} ∩ VM) ≤

2M/γ

∑
i=1

µ({∣vj − ti∣ >
ε

2
} ∩Ai)

=

2M/γ

∑
i=1

[µ({vj − ti >
ε

2
} ∩Ai) + µ({vj − ti < −

ε

2
} ∩Ai)].

(4.6)

For every i, let us introduce the function:

2[σ
ti+ε/2
ti

(vj) − ti]

ε
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if vj − ti < 0

1 if vj − ti ≥
ε
2

2
ε
(vj − ti) if 0 ≤ vj − ti <

ε
2
.

(4.7)

For every i and j we have:

1{vj−ti>ε/2}(x) ≤
2[σ

ti+ε/2
ti

(vj(x)) − ti]

ε
, ∀x ∈ Rn. (4.8)
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We claim that for every i = 1, . . . ,2M/γ, there exists a j(i) ∈ N (depending on i) such that for
any j > j(i):

∫
Ai

2[σ
ti+ε/2
ti

(vj(x)) − ti]

ε
dµ(x) ≤ cδµ(Ai), (4.9)

where c = 1
4µ(A) . In fact using the hypothesis of weak convergence at any level of truncation we

can write:

lim sup
j→∞

∫
Ai

2[σ
ti+ε/2
ti

(vj(x)) − ti]

ε
dµ(x) =

= lim sup
j→∞

(∫
Ai

2[σ
ti+ε/2
ti

(vj(x)) − σ
ti+ε/2
ti

(v(x))]

ε
dµ(x)

+∫
Ai

2[σ
ti+ε/2
ti

(v(x)) − ti]

ε
dµ(x))

≤ ∫
Ai

2[σ
ti+ε/2
ti

(v(x)) − ti]

ε
dµ(x) ≤

2γ

ε
µ(Ai) < cδµ(Ai).

(4.10)

Now define:

j̃ ∶= max{j(i) ∣ i = 1, . . . ,2M/γ}, (4.11)

hence the following estimate holds true:

2M/γ

∑
i=1

µ({vj − ti >
ε

2
} ∩Ai) <

2M/γ

∑
i=1

cδµ(Ai) ≤ cδµ(Rn) =
δ

4
, ∀j ≥ j̃. (4.12)

Analogously we repeat the same argument for the other addends of (4.6). So finally we have:

µ({∣vj − v∣ > ε} ∩ VM) ≤ δ/2. (4.13)

By using (4.13) and by the definition of M , for any j > j̃ we get:

µ({∣vj − v∣ > ε}) = µ({∣vj − v∣ > ε} ∩ VM) + µ({∣vj − v∣ > ε} ∖ VM)

≤
δ

2
+ µ(Rn ∖ VM)

≤
δ

2
+
δ

2
= δ,

(4.14)

obtaining the desired estimate. �

In the case of vector fields having bounded deformation there is a notion of convergence
analogous to the one given in the introduction in the SBV context 3. As we mentioned so far,
this notion of convergence is useful in order to ensure the compactness for suitable minimizing
sequences in several minimization problems that come out in the framework of variational models
for fracture mechanics.

When we will speak about continuity of the traces, we will always refer to the following notion
of convergence:

Definition 4.5. Let (ui)i∈N be a sequence in GSBDp
p(Ω), and let u ∈ GSBDp

p(Ω). We say
that the sequance (ui)i converges to u if and only if there exists a constant C > 0 such that the
following three conditions hold true:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

supi (∥ui∥p + ∥Eui∥p +H
n−1(Jui)) ≤ C

ui → u in L1(Ω), as i→∞

Eui ⇀ Eu weakly in L1(Ω), as i→∞.

(4.15)

Definition 4.6. If Γ is a countably (Hn−1, n − 1)-rectifiable set with orientation ν, for every
ξ ∈ Sn−1 we define the set Γξ ∶= {x ∈ Γ ∣ ν(x) ⋅ ξ ≠ 0}.

We are now in position to prove our result about the convergence of traces in measure.

3See the introduction.
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Theorem 4.7. (Convergence in measure). Let Ω ⊂ Rn be an open set of finite perimeter, and
let Γ ⊂ Ω be a countably (Hn−1, n−1)-rectifiable set with finite measure oriented by ν. Let (ui)i∈N
be a sequence converging to u ∈ GSBDp

p(Ω; Γ) (p ≥ 1) with respect to the convergence (4.15),

then (ui)
±
Γ∪FΩ converge in measure (with respect to Hn−1 ¬

Γ ∪FΩ) to u±Γ∪FΩ.

Remark 4.8. Just to simplify the notation we prefer to give the proof of the previous theorem
when Ω is the entire space Rn. Using the extension argument given by proposition 2.20 the same
argument works for the general case.

Proof. Thanks to Proposition 2.14 there exists a countable family of bounded open sets of finite
perimeter, say {Uj}

∞
j=1, such that

Γ ⊂
∞
⋃
j=1

FUj (4.16)

up to a Hn−1-negligible set. Hence, by Remark 4.2, in order to prove our statement we can
reduce ourselves to prove that for every j ∈ N, (ui)

±
Γ converges in Hn−1 ¬

(Γ ∩ FUj)-measure to
u±Γ. Because of the fact that:

(ui)
+
Γ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

(ui)
+
FUj(x) if νΓ(x) = νFUj(x)

(ui)
−
FUj(x) if νΓ(x) = −νFUj(x),

up to a measurable change of sign of νΓ, it is equivalent to prove that (ui)
±
FUj converges to u±FUj

in Hn−1 ¬
FUj-measure.

Now we fix j ∈ N and we prove that for any ξ ∈ Sn−1, (ui)
+
FUj ⋅ ξ converges to u+FUj ⋅ ξ in

Hn−1 ¬
FUξj -measure, and to simplify the notation, we denote u+i ∶= (ui)

+
FUj and u+ ∶= u+FUj .

By Proposition 4.4 it is enough to show that given any pair a, b ∈ R with a < b we have:

σba(u
+
i ⋅ ξ) ⇀ σba(u

+
⋅ ξ), weakly* in L∞(FUξj ,H

n−1
). (4.17)

For each i ∈ N let ui and u be the functions extended to zero outside of Uj (see Proposition 2.20).
We know that u+i = u+i and u+ = u+ on FUj , so we can prove our assertion for the sequence
(ui)i∈N.

By hypothesis we have that ui → u strongly in L1(Rn,Rn). As a consequence also σba(ui ⋅ξ) →
σba(u ⋅ ξ) strongly in L1(Rn) and in particular this means that:

Dξσ
b
a(ui ⋅ ξ) ⇀Dξσ

b
a(u ⋅ ξ) in D′(Rn), (4.18)

in the sense of distributions. Moreover we have the bound on the total variations along the
direction ξ:

sup
i∈N

∣Dξσ
b
a(ui ⋅ ξ)∣(R

n
) ≤ sup

i∈N
∫
Rn

∣(E(ui)ξ, ξ)∣ dx + ∣b − a∣Hn−1((Γξ ∩Uj) ∪ FU
ξ
j )

= ∫
Uj

∣(E(ui)ξ, ξ)∣ dx + ∣b − a∣Hn−1((Γξ ∩Uj) ∪ FU
ξ
j )

≤ sup
i∈N
L
n
(Uj)

1− 1
p (∫

Uj
∣Eui∣

p dx)

1
p

+ ∣b − a∣Hn−1((Γξ ∩Uj) ∪ FU
ξ
j )

< +∞.

(4.19)

Hence the convergence in (4.18) still holds true in the weak sense of bounded Radon measure.
Since by hypothesis E(ui) ⇀ E(u) weakly in L1(Rn;Mn×n

sym) , we can write:

Dξσ
b
a(ui ⋅ ξ) − E(ui)ξ ⋅ ξL

n
⇀Dξσ

b
a(u ⋅ ξ) − E(u)ξ ⋅ ξL

n weakly in Mb(Rn), (4.20)

and it follows:

[σba(ui ⋅ ξ)]ξ ⋅ νH
n−1
⇀ [σba(u ⋅ ξ)]ξ ⋅ νH

n−1 weakly in Mb(Rn). (4.21)

On the other hand, thanks to the truncation between a and b, the sequence ([σba(ui ⋅ ξ)])i∈N is
relatively sequentially compact in the weak* topology of L∞, and call for example α one of its
limits. Given any φ ∈ L1(Rn,Hn−1 ¬

[(Γ ∩ Uj) ∪ FUj]) we can use φξ ⋅ ν as test function in the
weak* convergence:

lim
ik→∞

∫
(Γ∩Uj)∪FUj

[σba(uik ⋅ ξ)]φξ ⋅ ν dH
n−1

(x) = ∫
(Γ∩Uj)∪FUj

αφξ ⋅ ν dHn−1
(x), (4.22)
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this together with (4.21) means that every weak* limits α is equal to [σba(u ⋅ ξ)] on the set

(Γξ ∩Uj) ∪ FU
ξ
j .

Recall that by Remark 2.21 u−i = 0 a.e. on FUj , and by Proposition 2.20 u+i = u
+
i a.e. on FUj ,

hence for every i ∈ N:

[σba(ui ⋅ ξ)] = σ
b
a(u

+
i ⋅ ξ), H

n−1-a.e. on FUj ,

and also:

[σba(u ⋅ ξ)] = σ
b
a(u

+
⋅ ξ), Hn−1-a.e. on FUj .

Therefore:

σba(u
+
i ⋅ ξ) ⇀ σba(u

+
⋅ ξ) weakly* in L∞(FUξj ,H

n−1
). (4.23)

Using Rn ∖Uj instead of Uj we can prove in the very same way that:

σba(u
−
i ⋅ ξ) ⇀ σba(u

−
⋅ ξ) weakly-* in L∞(FUξj ,H

n−1
).

Thanks to the arbitrariness of ξ ∈ Sn−1, we can use the argument of Remark 3.6 to deduce:

σba(u
±
i ) ⇀ σba(u

±
) weakly-* in L∞(FUj ,H

n−1
),

and thanks to the arbitrariness of a, b ∈ R, by Proposition 4.4 we have:

u±i → u± in Hn−1 ¬
FUj-measure ,

which is our desired result. �

Remark 4.9. Let Ω and Γ be as in Theorem 4.7. As explained in Remark 3.16 we have the
following inclusion GSBV pp (Ω; Γ)n ⊂ GSBDp

p(Ω; Γ), hence thanks to Theorem 4.7, if (ui)i∈N ⊂

GSBV pp (Ω; Γ) converges to u ∈ GSBV pp (Ω; Γ) with respect to the following notion of convergence:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

supi (∥ui∥p + ∥∇ui∥p +H
n−1(Jui)) ≤ C

ui → u, in L1(Ω)

∇ui ⇀ ∇u, weakly in L1(Ω),

(4.24)

then (ui)
±
Γ∪FΩ converges in Hn−1 ¬

(Γ ∪FΩ)-measure with respect to u±Γ∪FΩ.

5. Continuity of the trace and an application

Now we summarize our previous results, Theorems 3.12, 3.17, and 4.7, into the following
theorem:

Theorem 5.1. Let Ω ⊂ Rn be an open set of finite perimeter, and let Γ ⊂ Ω be a count-
ably (Hn−1, n − 1)-rectifiable set, with Hn−1(Γ) < ∞ and oriented by ν. Consider the space
GSBDp

p(Ω; Γ) (p > 1) endowed with the notion of convergence (4.15), the functions Θ± defined
in Theorem 3.12 and Ψ given in Theorem 4.7. Then:

(a) the trace operators from above and from below:

(⋅)
±
Γ∪FΩ∶GSBD

p
p(Ω; Γ) → Lq(Γ ∪FΩ,Θ±

H
n−1

) (p > 1), (5.1)

are strongly continuous for every q ∈ [1, p) and weakly continuous for every q ∈ [1, p] if p > 1.
(b) if we add the uniform bound on the ∥ ⋅ ∥Lp(Ω,ΨLn)-norm along the sequence in the notion of

convergence (4.15), the trace operators from above and from below:

(⋅)
±
Γ∪FΩ∶GSBD

p
(Ω; Γ) ∩Lp(Ω,ΨLn) → Lq(Γ ∪FΩ,Hn−1

) (p > 1), (5.2)

are strongly continuous for every q ∈ [1, p) and weakly continuous for every q ∈ [1, p].

Remark 5.2. By Remarks 3.16, 3.19 and 4.9, the previous theorem applies also to the space
GSBV pp (Ω; Γ). Moreover the continuity properties of the trace operators mentioned so far
in the introduction, are simply a consequence of this previous theorem, when we restrict our
attention on ∂Ω. In fact when Ω is lipschitz regular the reduced boundary FΩ coincides with
the topological boundary ∂Ω, and our notion of trace operator coincides with the usual one.

Proof of Theorem 5.1. It is a consequence of the convergence in measure of the traces given in
Theorem 4.7 plus estimate (3.33) to prove (a), and estimate (3.66) to prove (b). �

Now we give a counterexample to the strong continuity of the trace operator in (5.1) when
q = p:
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Example 5.3. Consider in R2 the set

E ∶=
∞
⋃
n=1

([ −
1

2n2
,

1

2n2
]

2

+ (n,0)),

made of infinitely many square En of length 1/n2 and centered at (n,0) ∈ R2. Clearly E is a set
of finite perimeter so we can choose as Γ its reduced boundary FE oriented with respect to its
inner theoretical unit normal νE. Define the sequence of functions (un)

∞
n=1 ⊂ GSBD

2
2(Ω; Γ) as

un(x) ∶=
1

√
L2(En)

1En(x) for every n,

and notice that ∥un∥2 = 1 for any n.
Clearly the trace functions u+n converges pointwise (Θ+H1 ¬

Γ)-a.e. to 0 for any choice of Θ+ i.e.
for any choice of an orthogonal basis {ξ1, ξ2} of R2 as in (3.43). This means that any strong
L2(Γ,Θ+H1) limit of u+n must be the zero function. But we claim that for each choice of Θ+ as
in (3.43) we have that

∫
Γ
∣u+n∣

2Θ+ dH1
≥ C(Θ+

)∥un∥
2
2 > 0,

where C(Θ+) is a strictly positive constant which depends only on Θ+, which is a contradiction.
Remember that in order to construct Θ+, we divide Γ in finitely many parts (Γi)

N
i=1, and we

associate to each Γi an orthonormal basis {ξi1, ξ
i
2} such that ∣ξi1 ⋅ νE(x)∣, ∣ξi2 ⋅ νE(x)∣ > 1√

2
for

x ∈ Γi. This means that for each n there exists i(n) ∈ {1, . . . ,N}, such that:

H
1
(FEn ∩ Γi(n)) ≥

H1(FEn)

N
. (5.3)

Eventually passing through a sub-sequence we may suppose for example that for every n:

H
1({x ∈ FEn ∩ Γi(n) ∣ θξ

i(n)
1 ≤ θξ

i(n)
2 }) ≥

1

2
H

1
(FEn ∩ Γi(n)). (5.4)

To simplify the notation we omit the dependence on n and we write Γi, ξ
i
1, ξi2 to denote respec-

tively Γi(n), ξ
i(n)
1 , ξ

i(n)
2 ; so we have:

∫
Γ
∣u+n∣

2Θ+ dH1
≥ ∫

FEn∩Γi
∣u+n(x)∣

2Θ+
(x) dH1

(x)

≥
1

L2(En)
∫
FEn∩Γi∩{θξ

i
1≤θξ

i
2}
θξ
i
1(x) dH1

(x)

≥
1

L2(En)
∫
πξ
i
1(E

ξi
1
n )

1
√

2
H

1((En)
ξi1
y ) dL1

(y)

=
L2(E

ξi1
n )

L2(En)
,

where for each n, E
ξi1
n = {(y, t) ∈ En ∣ y ∈ πξ

i
1(FEn ∩ Γi ∩ {θξ

i
1 ≤ θξ

i
2})}. Finally from (5.3),

(5.4), and ∣ξi1 ⋅ νE(x)∣ > 1√
2

(for every i), it is a geometric fact that for every n the quotient

L2(Eξ
i
1
n )

L2(En) is greater then a strictly positive real number which depends only on the H1-measure of

the projection πξ1(E
ξi1
n ) and on the scalar product ∣ξi1 ⋅ νE ∣. Hence we have showed the claim.

Finally, we show an application of our results in the theory of elasticity with cracks:

Example 5.4. Let Ω ⊂ Rn be a regular domain which represents the reference configuration of
an elastic body, and let Γ ⊂ Rn be a crack described by a countably (Hn−1, n − 1)-rectifiable set
with finite Hn−1-measure; we consider two disjoint measurable subsets of ∂Ω, respectively ∂DΩ
and ∂NΩ which are respectively the Dirichlet part and the Neumann part of the boundary. On
the set ∂Ω ∖ (∂DΩ ∪ ∂NΩ) and on the crack we impose the homogeneous Neumann condition.

We consider the following minimization problem:

min
u∈GSBD2

2(Ω;Γ)
u=w on ∂DΩ

E(u) ∶= ∫
Ω
∣Eu∣2 dx + ∫

Ω
∣u − g∣2 dx − ∫

∂NΩ
F ⋅ Tr(u) dHn−1, (5.5)

where w is some function in GSBD2
2(Ω; Γ), F is a vector field representing the traction force,

and g is some square integrable vector field. Usually, in the variational model for quasistatic
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growth of brittle fracture, for example in [6], the functional takes into account also the Hn−1-
measure of the jump sets of all possible displacements u; in fact, in this case the jump sets are
free to move inside an open set ΩB ⊂ Ω such that ΩB ∩ ∂DΩ = ∅ and ΩB ∩ ∂NΩ = ∅. In our
case the finitness of the jump sets is ensured by requiring the stronger condition Ju ⊂ Γ, but
on the other hand Ju might have possible interaction with both Dirichlet and Neumann part.
Minimization problems like (5.5), arise for example in the minimizing movements technique, for
example in [5] or in [13], in order to solve respectively the wave equation or the equations of
elastodynamics, in a prescribed arbitrary growing cracks domain.

In order to prove the existence of a minimum, we need to specify the space of all admissible
Neumann terms: let Θ+ be the weight function given in Theorem 5.1, then we consider all the

measurable vector fields F such that ∫∂NΩ
F 2

Θ+ dHn−1 < ∞, or equivalently such that F = G
√

Θ+

for some vector field G ∈ L2(Ω).
Roughly speaking the function Θ+ measures, somehow, how much Γ is close to the boundary.

From a physical point of view, this might be interpreted as the fact that, when the elastic material
between the Neumann boundary and the crack is infinitesimally small, then the elastic reaction to
the traction force will be infinitesimally too; hence, in order to reach the equilibrium, the traction
forces need to decrease their intensity (proportionally to Θ+).

First of all we show the coercivity of E(⋅). By Theorem (5.1) we can bound the Neumann
term from above as:

∫
∂NΩ

F ⋅ Tr(u) dHn−1
≤ (∫

∂NΩ
∣G∣

2 dHn−1
)

1/2

(∫
∂NΩ

∣Tr(u)∣2Θ+ dHn−1
)

1/2

≤ C(∥Eu∥2 + ∥u∥2),

where C > 0 is a constant which depends only on the dimension n and on F . As a consequence
we immediately deduce the coercivity:

E(u) ≥ ∥Eu∥2
2 + 2∥u∥2

2 − 2∥g∥2
2 −C(∥Eu∥2 + ∥u∥2).

Hence every minimizing sequence satisfies the uniform bound

sup
k

(∥Euk∥2 + ∥uk∥2 +H
n−1

(Juk)) < ∞,

and we are in position to use the compactness result in [4, Theorem 11.3] to deduce that there
exists u ∈ GSBD2

2(Ω; Γ) such that (up to subsequences):

⎧⎪⎪
⎨
⎪⎪⎩

uk → u, in L1(Ω)

Euk ⇀ Eu, weakly in L1(Ω).
(5.6)

This means that uk converges to u with respect to the notion of convergence (4.15), and by
Theorem 4.7 u still satisfies Tr(u) = Tr(w) on ∂DΩ.

The first two terms of E(⋅) are clearly lower semi-continuous with respect to the convergence
(4.15), while the Neumann term is even continuous: this is a simple consequence of the fact that
by Theorem 5.1 the trace operator is weakly continuous in L2(Ω,Θ+Hn−1), thus we can write:

lim
k
∫
∂NΩ

F ⋅ Tr(uk) dH
n−1

= lim
k
∫
∂NΩ

G
√

Θ+
⋅ Tr(uk) Θ+dHn−1

= ∫
∂NΩ

G
√

Θ+
⋅ Tr(u) Θ+dHn−1

= ∫
∂NΩ

F ⋅ Tr(u) dHn−1.

Hence our functional is coercive and lower semi-continuous, so we are in position to apply the
standard direct method in the calculus of variation to deduce the existence of a minimum.

Acknowledgments. The author wish to thank Prof. Gianni Dal Maso for many helpful dis-
cussions on the topic.
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