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ABSTRACT. Many physical, chemical and biological systems have an inherent discrete spatial
structure that strongly influences their dynamical behaviour. Similar remarks apply to internal
or external noise, as well as to nonlocal coupling. In this paper we study the combined effect of
nonlocal spatial discretization and stochastic perturbations on travelling waves in the Nagumo
equation. We prove that under suitable parameter conditions, various discrete-stochastic variants
of the Nagumo equation have solutions, which stay close on long time scales to the classical
monotone Nagumo front with high probability if the noise level and spatial discretization are
sufficiently small.
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1. INTRODUCTION
The Nagumo [33] partial differential equation (PDE) for V =V (¢t,2) € R is given by
(NagR) oV =vdiv + f(V), (t,x) € [0,00) x R,

where f(V) = f(V;a) = V(1-V)(V—a), where a € (0,1/2) and v > 0 are parameters. The Nagumo
equation is bistable in the sense that V = 0 and V' = 1 are locally asymptotically steady states,
while V' = a is unstable. For any a € (0,1/2) the PDE (NagR) admits travelling front solutions
Vt,z) = VIW(z — ct) = VTW(() connecting the two locally stable states, i.e., VITW(—o0) = 0
and V™W(00) = 1. The front is monotonic (VTW)'(¢) > 0, left-moving with a unique wave speed
satisfying ¢ = ¢(a) < 0, unique up to translation, and (locally) nonlinearly stable. Extensions to
the standing wave for a = 1/2, and to right-moving waves for a € (1/2,1) are easily obtained from
symmetry arguments.

The Nagumo equation plays an important role in neuroscience [13] as the simplest toy model of
signal propagation through axons. It is very actively studied also outside neuroscience applications
as an amplitude equation [10], in population dynamics modelling [6], and in materials science [2].
When modelling signal propagation in neurons, several effects are not taken into account in (NagR):

(I) The electric signals travelling through a myelinated nerve fiber do not move continuously.
The signal jumps from one gap in the myeline coating of the nerve fiber to the next [26].
This suggests the use of a spatially discrete setting.

(IT) The propagation of the electric signal along the axon is influenced by many internal and/or
external biophysical processes. Since modelling every process microscopically is usually
impossible, this leads naturally to a stochastic version of the Nagumo equation.

(IIT) The precise coupling distance of diffusion between myeline coating gaps is not easy to
measure. This implies we should also allow nonlocal coupling terms.

(IV) The axon does not have infinite length. Hence, one should consider bounded domains
instead. Furthermore, propagation takes place on a finite time scale.

(V) The propagation of fronts is an idealization of the eletrical signal as usually we would expect
localized pulses. This requires systems of reaction-diffusion equations.

Here we shall not cover the case (V), which is usually modelled using the Hodgkin-Huxley [19]
or FitzHugh-Nagumo [14] PDEs. However, all the arguments we present can be carried over, in
principle, to these cases. Instead, we focus on a model to cover the combined effects (I)-(IV). In
fact, each of the individual aspects (I)-(IV) have received some attention recently. We briefly review
some background and introduce the relevant PDEs.
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The space-discrete setting will be modeled via a lattice differential equation (LDE), whose so-
lution at node 4, called V; = V;(t), represents the potential at the i-th myeline gap. The discrete
Nagumo equation with nonlocal diffusive coupling, reads at each node ¢ for some fixed coupling
range R € N as follows

(1.1) Wi= =5 | S IOV Vi) | + fV)). Qe

where h is a parameter controlling the discretization and J(j) € R are weights. The classical case
of local diffusive coupling is given by

(1.2) V= o5 (Vimr —2Vi+ Vi) + f(Vi),  i€Z,

h

The equation (1.2) is the nearest-neighbor discretization of (NagR). The Nagumo LDE can be
interpreted as being posed on an infinite lattice Z with lattice spacing h so that V; corresponds to
V(ih). We write

(13) Vh = (~~~aV727V717‘/0aV1,V27"‘)

to emphasize that V" solves the discrete Nagumo equation. The LDE (1.2) also admits travelling
wave solutions for sufficiently strong diffusion strength v, i.e., for sufficiently large coupling; for small
coupling, propagation failure may occur [26, 20, 32]. More generally, the type of the discrete model
may have substantial impact on the existence and uniqueness of travelling waves of the Nagumo and
FitzHugh-Nagumo PDEs [11, 12, 22] as well as on the numerical analysis of discretization schemes
for travelling waves [16].

Notice that in (1.1) the general difference stencil involves 2R nodes, and R may diverge with
N, so it can be viewed as nonlocal. In fact, nonlocal variants of the Nagumo equation have been
studied in the LDE/PDE setting in several analytical and numerical works; see e.g. [1, 3, 4, 8, 11]
and references therein. A similar difference stencil as used here was studied in [3, 21], where
existence of travelling wave solutions was proven for unbalanced nonlinearities and under certain
conditions on the weights.

Another important variation of the Nagumo equation is the stochastic PDE (SPDE) version for
U =U(t,z) given by

(SNagR) U = vd?U + f(U) + g(U)E, (t,z) € [0,00) x R

where £ = £(t, x) is a space-time dependent stochastic process and g arises as a suitable mapping
from modelling considerations. Although there is a detailed existence theory for many SPDEs [35,
9, 29] going back to at least the late 1970s, and good physical understanding of many noisy pattern
phenomena going back at least to the 1990s [15], the rigorous mathematical study of noisy (Nagumo)
waves has just started to develop recently; see e.g. [18, 23, 28, 38]. These studies have been driven
by numerical observations [31, 37, 39] revealing that travelling wave solutions may persist under
stochastic forcing, but their speed and form may change with varying noise strength. Of course,
these results are also connected to recent advances in the numerical analysis of classical numerical
schemes for the Nagumo SPDE [36]; see also e.g. [17, 24, 30].

In this paper we are interested in the combined influence of (I)-(IV) on the finite-time evolution
of travelling fronts. In this context, the key object is the stochastic LDE (SLDE)

R
(dSNagN) dui = | 2 j:Z_RJ(j)(uj—ui) + flug) | dt + mig(ui(t)) dBy(t),

with i € {1,2,..., N}, u; = u;(t), independent Brownian Motions B;(t), constants v > 0, u; > 0,
a € (0,1/2), and R < N with R € N, where Neumann boundary conditions are used. In addition
to viewing the solution as a vector

(1.4) ul = (uy,ug, ... uN)
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we may interpret the solution u”, say via piecewise linear interpolation, as a function on the domain
D :=[—L, L] with u; and upy corresponding to the values at the left and right endpoints. Despite
its evident importance for applications, particularly in the context of neuroscience, there seems
to be no study available regarding the dynamics of (dSNagN) although some first study without
reference to dynamics is [5]. One potential reason could be that physical intuition would lead us
to believe that the effects coming from (I)-(IV) are somehow “small” so that we can neglect them.
To make this intuition mathematically precise is a key contribution of our study. For parameters
for which travelling waves to the deterministic PDE are known to exist, we prove in the stochastic
setting that for sufficiently small hA and sufficiently small noise that the solution to the Nagumo
SLDE (dSNagN) is close to a phase-adapted travelling front solution of the Nagumo PDE (NagR)
over finite time scales. Our main result can informally be stated as follows:

Theorem 1.1. Let VIW = VTW(¢ z) the travelling front solution to (NagR). Suppose & > 0 and
& > 0 are given. Then there exists € > 0 such that if u"(0) is deterministic with

(1.5) [u(0) = VEWV(0, ) |22z < e

and for sufficiently small noise and sufficiently small h, we have for the solution u" = u"(t)

of (dSNagN) the estimate

(1.6) P| sup [u(t) = VTV(t, ) 2@ > 6| < €
t€[0,ty]

for some t,. > 0.

The precise formulation of “sufficiently small noise” will be stated in Theorem 3.13, it mainly
deals with a sufficiently small covariance of the underlying Wiener process, and the growth of
g. The time t, will be made more precise in Lemma 3.12. In summary, Theorem 1.1 confirms
our intuition from biophysics/neuroscience, i.e., the wave propagation mechanism must be robust
against structural perturbations to make the Nagumo equation a good model.

Our proof relies on a discrete version of the monotone operator theory approach to SPDEs, as
presented in [34] and described in the monographs [9, 29]. We also make use results obtained in
the pathwise stability analysis for the continuous Nagumo SPDE from [38]. Our proof essentially
decomposes the different error terms [27], e.g., the dynamical stochastic approximation error is
treated separately from the discretization error in the stencil. Therefore, it is natural to consider
several intermediate evolution equations, e.g., the Nagumo PDE on a bounded domain

(NagD) O = Vazv + f(v)a (tv SC) € [Oﬂ OO) x D,
and the Nagumo SPDE on a bounded domain
(SNagD) Ou = vO?u + f(u) + g(u)é, (t,x) € [0,00) x D.

Hopefully, our notation conventions are by now already evident to the reader but let us stress again
that we use v,V for the deterministic PDE solutions whereas u, U are SPDE solutions, while small
letter solutions u, v are based on the bounded domain D and capital letter solutions U,V on the
unbounded domain R. Furthermore, discrete solutions will be treated as vectors u”, U",v", V" or
indicated by subindices.

2. NOTATION AND SETTING

We discretize the bounded domain D C R into N intervals of size h and enumerate the respective
grid points with the index i. The set of grid points is denoted by D".

We work with the Gelfand triple of Banach spaces Hi (D) = W,*(D) ¢ L*(D) ¢ H™ (D).

Note that functions in the Sobolev spaces such as L(D) or W, *(D) evaluated on the grid D are
N-dimensional vectors. Extending these functions in a piecewise linear manner, we can work with
them also in the original Sobolev spaces. We choose a orthonormal basis {e} C L?(D), consisting
of elements in I/VO1 (D), and span RN with the first N of these basis vectors. The projections of the
Sobolev spaces on their first N basis vectors can then be identified with RV, e.g. Py H}(D) = RY.
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To simplify notation, we denote both the scalar product on L?(D) and on RY = Py L%(D) by (-, )
and the norm by |- || and by (-,-) := (-, ") g-1(p), 1 (p) both the dual product and the scalar product
on R" = PyHE(D), the projection to RY spanned by the first N basis vectors of H}(D). Using
the representation

N
(2.1) w= Z(w, er)ek for all elements w € H~1(D"),

k=1

we can work with the same basis vectors also in the space Hj (D) and its dual.

2.1. Operations with discrete-in-space functions. For u”(.,t) a piecewise linear function on
the grid D", there are several ways to define a (discrete) gradient. Using only two nodal values,
we can identify V"u"(ih,t) either with the backward difference D~u;(t) = + (u;(t) — ui—1(t)) or
its adjoint, the forward difference D u;(t) = + (u;41(t) — u;(t)). This choice leads to the discrete
nearest-neighbour Laplacian as A"u; = DY D~ v, := h™2 (u;q1 — 2u; + ui_1)-

We would like to use more general discrete stencils, which involve up to R neighbours of u; in
each direction, in other words involving the nodal values u;_g ... u;4r. We introduce coefficients
J(j) € R to attribute a weight of the j-th right neighbouring nodal value u;;;. Such a general
second-order stencil then reads

(2.2) | R
= ﬁzj(k)( 2u; + Uitk + U; k)
k=1
11 & 1 ¢
=7 <h > Tk (wigr —ui) — 7 D (k) (us — uik)> :
=1 k=1

Note that J(j) are fixed numbers and do not change with time, therefore the central difference
operator A’]% it is deterministic and time-independent. It is therefore natural to define

R
1
(2.3) Viaui = (AR 2y, = EZ —ui_g)
k

as the long-range analogues of the difference operators D~. Using the adjoint operator to VF,
denoted by V5, we can write (2.2) as

(2.4) Al = VE(VRu).
We need to impose conditions on the coefficients J(j) to ensure that (2.2) approximates a Laplacian.
To this aim, notice first of all that by construction J(0) = — Zf:_R#O J(j), which is a special

case of diagonal dominance, from which we immediately follow (Abu" u") < 0.

Assumption 2.1. The weights J(j) € R satisfy
(1) J(.;%) = J(—=j)
2) Y= gJU)I*=1
(3) Yor_pJ ()i < oo oratleast K'Y J(j)jt ~ o(h?)

The symmetry condition assures that the operator A}}% is self-adjoint in ¢2, it is not strictly
necessary mathematically, but it simplifies computations and is moreover very natural considering
the real-world phenomena from which the model was derived. The moment conditions ensure that
we approximate a Laplacian, as can be seen immediately from the construction of finite difference
operators via Taylor approximation at nodal distance jh, which gives
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25) > G =) = B2 Y 2IG0)) s + %( > 5TG)dasravi + OM),
j=—R j=—R

j=—R

Note that, in contrast to [5], the assumptions on the moments imply a certain decay in the
coefficients J(j). This is because we allow for arbitrarily diverging stencil range R, especially also
for R = N, while in the semigroup approach used in [5], the range was limited to R ~ N/,

2.2. The probabilistic setting. Denote by (2, F, (F;):, P) a filtered probability space.

We denote by W : Q x [0,7] — L?(D) a Q-Wiener process with values in L?(D) and we assume
that W(¢) is adapted to the filtration F;. A function u : D x [0,T] x  — R, which is evaluated
on the grid D" will be denoted by u"(-,¢,w) and at each node identified with a stochastic process
X}(w), which takes values in R.

We assume that the covariance operator (@ is linear, bounded, self-adjoint, positive semidefinite.
Moreover, it is convenient to assume that ) has a common set of eigenfunctions with A. We fix
notation as

(26) Qek = UK€k.

We assume that @ is of trace class, i.e. M := Tr@Q < +oo, which implies that the sum of the
eigenvalues of @ is bounded Y.~y < co. It is well known that a Q-Wiener process in L?(D) can
be approximated in L?(92, C([0, ], L*(D))) by a sequence of i.i.d. Brownian motions {B;},_y as

(2.7) W(x,t) =Y v/uker(x) Bi(t).
k=1

By means of an exponential inequality and Borel-Cantelli Lemma, the convergence can be obtained
uniformly with probability one. Thus, the sample paths of W (¢) belong to C([0,T], L*(D)) almost
surely, and we may therefore choose a continuous version.

2.3. The stochastic Nagumo equation. The stochastic Nagumo equation we are using in this
work is a perturbation of the (deterministic) Nagumo equation (NagR). As stochastic perturbation,
we choose a @Q-Wiener Process W (t) on L?(D) with covariance operator @) being positive semi-
definite, symmetric and of trace class. Moreover, we take a multiplicative noise term called g(u) :
L?(D) — H, where we denote by #H the space of Hilbert-Schmidt operators, and assume it is
Lipschitz continuous and satifies linear growth conditions.

More precisely, we assume

(2.8) lg()lF < e+ [ul?)  a e (fw) € Qx[0,T]
and
(2.9) lg(u) = g()[3 < e(llu—o]?) a. e. (t,w) € Qx 0,7

for all u,v € L*(D).
The stochastic Nagumo equation then reads

(2.10) du(t) = [vd2 u(t) + bf (u(t))]dt + g(u(t))dW (t) on D x [0,T].

The existence of mild solutions to (2.10) for Lipschitz nonlinearities is classical, see e.g.
[35]. Using a localization and truncation argument, see e.g. [7, 5], the results can be car-
ried over to the polynomial nonlinearity f with one-sided lipschitz condition such as in (2.10).
Via monotone operator theory, we see furthermore [34] that (2.10) admits a variational so-
lution in L2(Q,C([0,T],L?)) N L*(Q x [0,T],H}). In particular, we have that almost surely
u € L>=([0,T); H) N L3([0,T]; V).

Due to It6’s formula, the stochastic Nagumo equation satisfies an energy equation of the form
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E [[u(t)|Z:] = [lu(0)]Z2 + 2vE t(AU(SM(S))dS
(2.11) [/0 }

- BE [/Ct<f<u<s)>,u<s>>ds} +E [}£t9<u<s>>2ds].

The stochastic LDE. we consider in this work is the discrete-in-space evolution
R

Z J(G)(uj — wi)dt +bf (ui(t))dt + g(u;(t))dW;(t) i=1...N,
=R

14

(212)  dult) = 55

where we introduced a general difference stencil with coefficients J(j) € R satisfying Assumption
2.1 and denoted by W;(t) = /miBi(t). The discrete multiplicative noise operator is defined by
projection of the continuous Hilbert-Schmidt operator g (without changing the notation). It then
obviously satisfies (2.9) and (2.8).

We may sometimes call (2.12) the ”generalized Nagumo LDE” and will often use the conve-

nient abbreviation Afu; = 5z Zf:_R J(j)(uj — u;) to indicate its property as a (generalized)
discretization of the Laplace operator, a fact which will be justified below.

2.4. Monotone operators. The following paragraph recalls that, thanks to the properties of f,
the sum vA+bf(u) defines a monotone operator. In the continuous context, this is well-understood:
a concise treatment of the theory of monotone operators can be found for example, in [40], or,
including local monotonicity, in [29]. We will briefly state those precise properties which will be
used in the proofs.

First, we note that the nonlinear term f(u) is Lipschitz continuous w.r.t « on bounded subsets
of H} (D) with lipschitz constant independent of t.More precisely, we have the following Lemma:

Lemma 2.2. For any M > 0, there exists a constant Kpr > 0 such that the local Lipschitz
continuity condition holds:

(2.13) 1f (1) = fo2)|* < Kullr —velfypy  a e (tw) €10,7] x Q

for any vi,v2 € HE (D) with ||1)1||%Ié(p) < M and HUQH%(}(D) <M

Proof. We have

(214) ([} = v3]* = [I(vf + v1vz2 +v3) (01 = v2) | < 8 (|[vf(vr —v)[* + [[v3(vr —v2)[?)

By Sobolev embedding, we can get for some constants C1, C2 > 0 the estimates [[v1 [ zs < Cil|v1]| gy
and [[vivs]|32 < Collvr |31 [|v2|3;: - Hence, there exists a constant Cs > 0 such that
0 0

(2.15) lof = o312 < Cs (lorlllyy + lloalldyy ) lon = vall3y
which satisfies (2.13). O

The following estimates, derived similar to 2.2, give us linear growth estimates in the dual norm
of the sum A :=vA +b:

(2.16) 1 @ll-0) < exllolmymy (1+ 103 )

(2.17) 1f(v1) = f(v2)l-1(p) < €2 (1 vl () + ||vz||§15(p)) [v1 = va2|L2(p)

Moreover, the combined operator A := vA + bf is obviously hemicontinuous in H}(D), in the
sense that for all vy, vq,v3 € H}(D) and t € [0, T] the mapping

(2.18) 0 (A(vy + 0vs), v3)

is continuous from R into R.
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Thanks to (2.9) and (2.8), we know [34, 9, 29, 38] that the sum of operators satisfies for all
v € H}(D), t € [0,T] the coercivity condition

(2.19) (vAv +bf(v),0) +lg(v)lln < = vlollfpy + (bea +v)l0]Z2(p)
with the quantity cq = sup,cp f'(€) = 3 (a? + a + 1) holds.

Finally, the sum of operators satisfies for all v;,ve € HJ(D) the monotonicity condition
(2.20) (VA +bf(v1) — vAvy — bf(v2),v1 — va) + [lg(v1) — g(v2)||3; < ca - bl|v1 — v2?
on [0,7] x Q.

We will now verify that analogues properties hold in the discrete setting of our LDE (2.12). The
proof is elementary, yet we will write it in detail to make our strategy transparent to the reader.

Lemma 2.3. Let the conditions of Assumption 2.1 on the general stencil A% be satisfied. Then
the discrete operators appearing in (2.12) satisfy the following estimates:
(1) coercivity

N
(2.21) (vARui +bf (i) ui + [lg(ua)|* < = vIIVRu"|* + beg|lu”|*
i=1
(2) monotonicity
N

(2.22) Y (vARu; — vARv; + bf (ui) = bf(v)) (wi — ;) + [lg(ui) — g(0)|*> < cq - blu — 0|2,

i=1

Proof. First, note that

S S o (f ) = £(0) S
i) — 2
(2.23) Zf(ui) U = Z (f(ui) = f(0)) (u; — 0) = Z ('ZL—O) (u; —0)" < Cazzuz2
i=1 i=1 i=1 v i=1
where we used the mean-value theorem in the last inequality. Second, we look at the discrete
integration by parts formula, which reads in its standard form
N N N N
(224) Z Ahui U = Z D+(D_ul) s U; = — Z(D_ul) . D_’U,i = — Z(D_ui)Q.
i=1 i=1 i=1 i=1
and can be extended to the long-range case via the operators V5 and VJIQ. Using these two simple
tools, we can derive easily, in the special case of the nearest-neighbour stencil, the coercivity
N
(2.25) > (DD ) +0f (i) ui + llg(ua) > < —v|[D7u"|* + bea|[u”|?
i=1
where we used (2.8). Using (2.9), we get the monotonicity of the sum of operators
(2.26)
N

> (DT (D7w) =D (D7 w;) 4+ bf (i) = bf (vi)) (w5 — i) + lg(wi) = g(va)|* < cq - bllu — 0|2
i=1

For the general case, it was already noted (without proof) by Bates, Chen, Chmai [3], that
general stencils of the form (2.2) satisfy the monotonicity condition with ¢ = 0. Indeed, testing
with «" and using the summation by parts formula we obtain

N R
1 .
(Al Yy = — Z Z JE) (g —ui) | -w
i=1 \j=—R
(2.27) N
i=1

= —(Vpu", Viu") = —[|[Vz"|* < 0.
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Repeating the strategy of the nearest neighbour case, using again (2.23), (2.8), (2.9) and (2.27)
gives us immediately (2.21) and (2.22), which concludes the proof. O

3. EXISTENCE AND STABILITY OF TRAVELLING WAVE FRONTS

Our goal is show that the stochastic LDE (2.12) admits, for sufficiently small h, travelling front
solutions, in the sense that its solutions are very likely to be close to deterministic travelling fronts.

To this end, we use several ingredients: first, results on the existence and properties of solutions
to the LDE (2.12), second, the convergence of the solutions of the h approximations to the solution
of (2.10) and third, results on stability of traveling wave fronts for (2.10).

The rest of this paper is organized along these three ingredients: In section 3.1, we investigate
existence and properties of solutions to the LDE (2.12), which is followed by the convergence result
in section 3.2. In section 3.4, we finally obtain the main result, which can be summarized in an
informal way as follows:

Theorem 3.1 (Main Theorem, informal version). Let vV the deterministic travelling front solu-
tion to (NagR). Then, starting with initial data sufficiently close to the traveling wave, the solution
to the discrete generalized stochastic Nagumo equation (2.12) are very likely to be close to deter-
ministic travelling fronts.

3.1. A priori estimates. For the rest of the paper, we denote ||-|| := ||| z2(p). Rigorous results on
the existence and properties of solutions to equation (2.12) are obtained in the classical framework
of strong solutions of stochastic differential equations (SDE). We will not repeat the entire theory
here, but summarize the line of arguments in the first part of Lemma 3.3 below. The main part of
this section is the following a priori estimate:

Proposition 3.2. Let the initial data ug € C*(D) be deterministic. Then solution u” of (2.12)
satisfies for any h

T
(3.1) E l/ ||V§uh(t)||2dt + sup ||uh(t)2] < o0.
0 t<T

The proof of Proposition 3.2 is split into three parts, which are Lemmata 3.3, 3.4 and 3.5.

Lemma 3.3. For any h > 0, the solution u” of (2.12) exists and satisfies an energy equality
t
@172 = Ilu"(0)17: + 2V/0 (ARl (s),u"(s)) ds

(3.2) .
+ uP(s)),u"(s)) ds +
2b/0 (f( (s)), ())d 2/0

t

o(u(s)) (u"(s), AW (5)) + / o(u"(s))?ds
0

Proof. The stochastic LDE (2.12) is just a system of SDEs, which is rigorously stated in integral
form

(3.3)
t R t t
u; () = uo + ﬁ/o j;RJ(])(uj —u;)ds + b/o f(ui(s))ds—i—/o g(u;)dW;(s), i=1...N.

From (3.3) it is easily seen that for each single ¢, the stochastic LDE is in fact an It6 equation, for
which it is well known (see e.g. [25]) that there exists a solution, which is an adapted process.
Moreover, as u; are the coefficients of u” in the basis of RY = PyH}(D), (3.3) is a finite
dimensional It6 equation, which therefore has a solution as an adapted process. This adapted
process also has a continuous version, i.e., u" € C([0,T], V").
To derive the energy equation, for some fixed h = % we build a solution vector u" via the integral
form of the stochastic LDE (2.12), equation (3.3). We can write, using an orthonormal basis e; of

h
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V" = PyH}, in the following form

t

(u"(t),e:) = (uf,ei) + 2V/Ot (Al e;) ds + 2b/0 (f(u),e;)ds
+ /tg(uh)(ei,dWh(s)).

0

(3.4)

Next, in (3.4) we sum up from ¢ = 1... N and apply It6’s formula in finite dimensions to get

[u" @) = ") + 21// (ARl (s),u"(s)) ds
(3.5) , 0 . .
h h h h h Roa\\2
+ 2b/0 (f(u (s)),u (s)) ds + 2/0 g(u"(s)) (u (s),dW (s)) + /0 g(u"(s))"ds
which is exactly (3.2). O

With the way of writing (3.4) we already point to the fact that we consider the stochastic LDE
as a generalized Galerkin approximation of the stochastic Nagumo equation. Indeed, recalling that
(2.10) has a solution whose trajectory is in L?([0,T], H1(D)), Au(-) € L*([0,T], H (D)) and we
may write the stochastic Nagumo equation in weak form, using the scalar product (~, ) and

" 12(D)
the dual product <‘, >

W) ) = (ulhg) + v [ (Bu().g)ds +b [ (Flu(s)).e)ds
(3.6) ) J

+A@wmwmw

Recalling (2.7), we can interpret the stochastic integral term as

t

a0 [ (o) =3 [ (s e)mi = [ (pausnore)

and relate the notation of the stochastic integral term in (3.5) to the weak form (3.6).

Lemma 3.4. For initial data ug € C*(D) deterministic, the discrete solution u” of (2.12) is
uniformly bounded in L*(Q2 x [0,T], Hi(D)), i.e.

(3.8) supE
h

T
/0 ||V1_%uh(t)||2L2(D)dt] < oo.

Proof. We start with the energy equation (3.2). Taking the expectation, the stochastic integral is
zero and we arrive at
t
E (I O] - B[l O] = 28 | [ (3hato),0(0) ds|
0
(39) t t
L WE U (F@(5)), u(s) ds} +E U g(uh(s))st}
0 0

Abbreviate now the right hand side of (3.9) by RHS := 2vE {fé (ARu(s),ul(s)) ds} +

20 [fot (f(u"(s)),ul(s)) ds] +E [fotg(uh(s))zds]. We use the coercivity estimate (2.21) to get
that the right hand side of (3.9) satisfies

(3.10) RHS < — 2E Uot IV ()| ds] + 2(be + V)E M |uh(3)|2ds}
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which is, as the initial data is deterministic,

E [lu"(®)?] + 2vE tHV_uh(S)Ilzds < luol®
o et

+ 2(beq + V)E [/Ot ||uh(s)||2ds]

Now we apply Gronwall’s Lemma to E [[[u”(¢)[|?] to get

(3.12) E [l (0))F] < Xt fup|®.

Furthermore, as the RHS is independent of h for ¢ € [0,T] we get

(3.13) s B[ (0] < clh.0..7) o]

with a constant ¢ which is independent of h. Going back to (3.11), we see that the term E [[|u"(¢)[|?]

on the LHS is estimated against a constant by (3.13), so we remain with the second term and get
therefore its boundedness

T
(3.14) E l/ ||VRuh(t)||2dt] < ¢(b,ya,v, T, ug),
0

which is the desired estimate. O

Note that the constant in the Gronwall estimate grows exponentially with ¢, therefore (3.13)
diverges for T — co. Moreover, we did not directly estimate the discrete gradient ||V zu"(¢)]|?, but
we made use of the energy equation, which is a consequence of It6’s formula. Therefore, the exact
range R of the discrete stencil does not directly affect the a priori estimates.

Lemma 3.5. For initial data ug € C*(D) deterministic, the discrete solution u" of (2.12) is
L3(Q,C([0,T], L*(D))) independently of h, i.e.

E {Sup ||uh(t)%2(p)} < ¢(b,a,v, T, up)
t<T

Proof. We start with the energy equation (3.2) over which we take the supremum in ¢ and the
expectation

E [supnuh(t)ﬂ ) + 2E
t<T

T
/0 (A}fzuh(s), uh(s)) ds]

. 22 [sup [ o(a/(9) a5, 5)

t<T

/0 (F@uh(5)), uh(s)) ds

I g(uh<s>>2ds]

The noise term can be analyzed using the Burkholder-Davis-Gundy inequality

+E

/ g () (uh<s>,dwh<s>)H < ¢E ( /OT (y(uh<s>>,uh<s>>iz<md8>1/2

E [sup
t<T

¢E |sup [[ut (1)) ( / g(uh<s>>2ds>

t<T

1/2

IN

IN
|
&=

2 T
swplldt 0] + G l / g(uh<s>>2ds]
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and estimating the other terms by coercivity, we get

- h 2 g h 2
/0 IV (s)]? ds / ut(s)] ds]

Notice now that we can estimate, thanks to the last proposition, in particular (3.14),

/ Juh ()]s
0

and as ||ug|? < ¢ by assumption, so

1
—-E [sup||uh(t)||2] < lug|®* — 2vE + ¢(b,cq,V)E
2 l<r

(3.15) E <E

T
/ ||VRuh(s)||2ds] <c(b,a,v,T)
0

B sup " ()30 | < 0,027, 00
t<T

which means that u" is bounded in L2(Q, C([0, T], L?(D))) independently of h. O

Note that we used here again the estimate (3.13), which comes from Gronwall’s inequality, so
this result holds only for finite ¢, or better, the constant may diverge for T' — oc.

3.2. Convergence and identification of the limit. We begin with the proof of a simple lower
semicontinuity statement on E [||u(T)||3.], which we will use in the proof of the convergence theo-
rem, precisely in equation (3.25).

Lemma 3.6. Let u € L? (Q x [0, T); H} (D)) N L* (Q; L>([0,T], L*(D)). For u"(t) — u(t) weakly
in L*(Q), L?(D)) it holds that

(3.16) E [l — fuolls] < limint E [Jo (D)5 1 2]
Proof. First, as u"® — w in L?(D), the lower semicontinuity of the L?-norm gives |lu(t)| >
liminfy, o [|u”(t)| z2. As the mapping u(t) — E [[|u(t)||2.] is convex as a map from L?(1 ,LQ(D)

to R, and by the same argument, for any ¢ € [0, 7] also convex as a map from L?(Q x [0, T]; L?(D))
to R, we get furthermore,

(3.17) E [lu(T)|7-] < hzn_}i(r)le [lu"(D)[I3-] -

~—

By strong convergence of the initial condition in L?*(D), we have u”(0) = > 2 (ug,€;)e; — ug
and so
E [lu(D)lZ> = luollz] = E[lw(D))Z:] — E [lluolz:]
< Timi h 27 g B2
< liminf B [[[u"(T)[|72] — liminf [lug]7.
which finally leads to
(315) E [Ju(T) 3o — o] < liminf B [l (7))35 — 3]
finishing the proof. |

Theorem 3.7. Let the initial data ug € C*(D) be deterministic and let Assumption 2.1
and the conditions (2.8) and (2.9) be satisfied. Then the solution u" of (2.12) converges in
L2(; L2([0,T); HY(D))) to the solution u of (2.10) as h — 0.

Proof. Recall that we can write the discrete problem in integral form (3.3) in a suggestive way,
using an orthonormal bais {e;};—1.. . of Py H{}, as

(W(T),e:) = (uf,ei) + 21// (Ahul,e;) dt + 2b/ (f(u),e;)dt
(3.19) 0 0

+ /Tg(uh) (e;, dW(t)) i=1...N.
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The above priori estimates, Proposition 3.2, imply the boundedness of the sequence Af}auh in
L2(Q2 x [0,T); H-Y(D)) and the boundedness of the sequence g(u") in L%(Q x [0,7];H). Hence
there exists a subsequence, which we do not relabel, such that

u" —u in L*(Q; L2([0,T; Hy(D))) N L? (2 L>([0, T], L*(D))
Ay ~ ¢ in L2(Q x [0,T]; H- (D))
f@")y = ¢ in L2(Qx [0,T]; L*(D))
glw") =g in L*(Qx [0,T];H)

(3.20)

We pass to the weak limit in (3.19) and get that for all ¢ > 0

T
(U(T), ei) = (UO, ei) + 21// <<1 (t), €i> dt
(3.21) 0

+2b/0 (Cg(t),ei)dt—l—/o 90 (e, dW () i=1...N.

It remains to identify the weak limit objects in (3.21) with the objects in the stochastic Nagumo
equation. Set in the rest of the proof v,b =1 for convenience, as it does not change the argument.

We start with identifying § = g(u). For this, note first that, by using the monotonicity property
(2.20) with ¢ = 0, we infer that for any ¢ € L*(2 x [0,T]; H}(D)) holds

(3.22) 2E e|f ||g<uh>—g<so>||%dt] <0
0

T
/0 (A" + f(u") = A — f(p),u" — @) dt

We can split the first term into 4 terms and use the postivitiy of E [fOT lg(u) — g()I3, dt} to get

T
E / (ARu" + f(u") = Ae — f(p),u" — @) dt
0

T
/(J(A’z%<p+f(¢)7¢>dt1

T
- EU <A%<p+f(so>,u”>dt] < 0.
0

(3.23) =E +E

/T <A’}%uh—|—f(uh),uh>dt
0

T
- E VO (ARl + fu), o) dt

By weak convergence,

T T
/ (Ao + flo),@)dt — / (Ap + f(p), ) dt
0 0
T T
/0 (Al + fu), o) dt — / () + Galt), o) dt

(3.24) .,
/O (Abp+ fp),uydt —>/ (Ap+ f(p), u)dt

/OT(g(uh),g<p dt—>/ g& dt

so the last 3 terms in (3.23) pass to the limit and preserve the sign in (3.22).



TRAVELLING WAVES IN THE DISCRETE STOCHASTIC NAGUMO EQUATION 13

For the first term of (3.23), we employ that by semicontinuity of the norm, Lemma 3.6, we can
relate solutions u" to (2.12) with solutions u to (2.10) as

T T T
QE‘A(AMﬂ#@»ﬁ +2E A (F(u(®)), u(t) dt| +E A mwo)ﬁ]
T T
(3.25) SQIihmigfIEl/ (AR (8), ul (1)) dt +2111’311ng[/ (f(uh(t)),uh(t))dt]
- 0 - 0

+ hin_,%le l/o g(uh(t))th] .

Consequently also for the first term in (3.23) the sign is preserved in the limit. Passing to the limit
in (3.22), we get

T
(3.26) 2R /O G+ G —Ap—f(p),u—¢p) dt| +E

T
/O ||§g<u>%;dt] <o

Choosing u = ¢ in (3.26), we deduce g = g(u). It remains to identify the limit objects ¢; and (s
to prove that u := limj,_,o u" is indeed a solution to the stochastic Nagumo equation. To this aim,
notice first that (3.26) implies

(3.27) E

/0 (Cut) + Ga(t) = Ap(t) = f(t)), ult) — ©(t)) dt] < 0.

Now we take 8 > 0 and define another testfunction w via
(3.28) Ow(t) = u(t) — o(t)
with ¢(t) the testfunction used in (3.27). As w is an admissible test function in

L? (2 x [0,T); H} (D)), we can employ it in (3.27) instead of ¢. We obtain

(3.29) E

T
/O (C1(t) + G2(t) = A (u(t) — bw(t)) — f (u(t) — Ow(t)) , w(t)) dt} <0

As 0 — (A(u—0w),w) and 0 — (f(u—Ow),w) are continuous from R — R, it is admissible to pass
to the limit § — 0 and we reach
(3.30)

E l/o (CL(t) + Ca(t) — Au(t) — fu(t)),w(t))dt| <0 for any w € L* (Q x [0,T); Hy (D)) .

Since w is arbitrary, the left hand side must vanish, hence (1 + (o = Au+ f(u). Setting now w = u
we identify (s = f(u). Plugging this result into (3.27) gives ¢(; = Au. O

3.3. The cutt-off error. The next Proposition deals with an extension of Theorem 3.7, which
dealt with the error in the bounded domain D, to the whole of R.

Proposition 3.8. Let v™W the deterministic travelling front solution to (NagR). Let the initial
data ug be such a traveling wave, i.e. let ug satisfy ug = vV (0). Let u” solve (dSNagN) and U
solve (SNagR). Assume furthermore that g € L*(Q, L>([0,T] x R)). Then, for sufficiently small
noise (in the sense that |Q||% g <€ ) and t <T,

(3.31) E[lla"(t) — Ut) 32w < e

Proof. The error between the solution u" of the discrete Nagumo equation (dSNagN) and the
solution u of (SNagD), the stochastic Nagumo equation on a bounded domain D = [-L, L],
was controlled in the previous subsection, Theorem 3.7. It remains to control the cut-off error
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E [Hu(T) - U(T)||%2(R)}. We do this by splitting the cut-off error in several parts, making use of

the deterministic solutions v and V:

E " (t) = u()32m] < E [l () = u®)lz0)] +E [lu(t) = v(®) 3200

(3.32)
+ o(t) = VOlla +E[IVE) - U@l

The control of |lv(t) — V(t)[|2(r) is established in Lemma 3.9 below. Lemma 3.10 estimates
E [Hu(t) - /U(t)H%P(’D)} < e and Lemma 3.10 shows that E [HV(t) - U(t)||%2(D)} < €, which yields
the desired result, equation (3.31). O

Control of the truncation error in the deterministic equation.

Lemma 3.9. Let V solve the Nagumo PDE on the real line (NagR) and let v™™W be the deterministic
travelling front solution to (NagR). Let v be the solution to a finite-domain Nagumo PDE (NagD)
with Dirichlet boundary conditions

00 = V00 + bf (V) (t,z) e Ry x D

(3.33) v(=L,t) =0
v(L,t) =1
where the domain D = [—L,L] C R is a finite interval of length 2L. Let the initial data vy be a

traveling wave around zero. Then, for all t < Ty, where Ty depends on the size of the domain and
the speed of the wave, we have

(3.34) V() = v®)ll>m) <e

Proof. We focus on such v which are travelling front solutions, i.e. which satisfy the boundary
conditions vTW(—o0) = 0 and vTW(00) = 1.

For our analysis, we formally extend v to 00 according to the boundary conditions, so v(x,t) = 1
for all x € [L,00) and v(z,t) = 0 for all z € (—oo, —L]. See equation (3.35) for the choice of L.

Let us now start both equations with the same initial data vy, which forms a traveling wave
around zero.

Due to the boundary conditions at infinity, we know that V(—o0,t) = 0 and V(co,t) = 1.
By classical theory, 0 and 1 are hyperbolic steady states of (NagR). Therefore, the decay of the
traveling waves is exponential as it approaches the steady states, in other words, there exists €
such that e** - V(x,t) — 0 for x — —o0, and analogously for x — +o00. Therefore, as long as the
transition part of the traveling wave is far away from the boundary of D,

(335) E'LO €eR VL > LO : HV(ZE,t) - 1||L2((L,<x>)) <e , ||V(:E,t) - 0HL2((—<X>,—L)) <e
Consequently, by the boundary conditions of the finite-domain Nagumo PDE (3.33), we conclude

that up to a time T when the transition part of the traveling waves has not yet reached the
boundary of the domain D,

(3.36) |V (z,t) — U(ajat)HL?(R\[—L—é,LJré]) < 2e.

Second, we investigate the error at the boundary of D. First look at the positive boundary point
of D, i.e. the point L € R. In a neighborhood Bs(L) we have f(1—0)=(1—-d—a)(1—6)0 <46
and V(xz,t) is almost constant so by spatial regularity, we have max, 0.,V (x,t) <€ and as V =1



TRAVELLING WAVES IN THE DISCRETE STOCHASTIC NAGUMO EQUATION 15

in [L, L+ 4],
(3.37)

L+96 9
1V (@, t) = (e, )220 = / (V02 V (@, 1) + b (V(2,1)) — 0)° da

L
+ /L_6 (V0rx V (z,t) + bf(V(2,t)) — vOpav(z,t) — bf(v(x,t)))2 dx

L+5 2
< OpaV(x,t) + b V(z,t))—0) d
< /L (V :ce?Ll,aLXM] eV () + er[ILli}é,L]f( (z,1)) > €L

2
+ 4- (y xefﬁ}éu (02 V (2, t) — Opzv(z, 1)) + bxe{ILlEi}(;L](f(V) — f(v)))

2
<OV + 530 + 361/2< I[Iga)gL](ﬁxxV(x,t)&mv(x,t))) + 3b%52
xe|L—o,

<e€

where we employed the continuity in space of solutions to (NagR) and (3.33) again to infer that
max,e(r—s,](OzaV (2,t) — Orzv(z,t)) < ¢ is a finite quantity. Analoguous reasoning holds for the
é-neighbourhood around —L. Therefore

(338) ||V($,t) — /U(m7t)HL2(B5(L)) S € HV(CE,t) — ’U(.’E,t)”LZ(Bé(_L)) é €.

Third, we look at the difference between the two solutions in the interior of the domain D,
|V (x,t) = v(x,t)||L2(—L+s,—s])- Note first of all that this difference is zero at time ¢ = 0, as we
started with the same wave as initial condition. Moreover, as

(3.39)
L—§

01V ,8) = Bro(e s ss sy = | | W0V ) 0] (V (2 1) = () = b (o(a 1)) da

L—§
<30 /_ L Oea (V) o)

L—5
s [ W) - S 0) d
—L+45
so [|0¢(V(z,t) — v(w,t))||L2((—L+5,0—s)) = O for times ¢ < Tp, i.e. t small enough that the boundary
conditions are not propagated in the interior of the domain. As we have already controlled the
error at the boundary by €, by continuity of the solutions V' and v, we can conclude ||0:(V (z,t) —

v(@, )| L2~ L4s,L—5) < €
We summarize, using (3.36), (3.38) and (3.39),
(3.40)
IV (t,2) — ot @) 2@y = [V (E,2) = v(t, 2) | 2= L+s,-6)) + IVt 2) = v(E, 2) | 2R\ [~ L-5,L+4))
+ V(¢ 2) — vt @) 2By ) + V(5 2) — vt @) L2(B5(- 1))
< 4de.

O

Control of the error caused by noise. To complete the proof of Proposition 3.8, it remains to estimate
the remaining two terms in (3.32), E [[Ju(t) — v(t)||2(p)] and E [||V (£) = U(t)||L2(r)], which both
deal with the error between deterministic and stochastic solution. First we look at the difference
between the deterministic solution on a bounded domain (NagD) and the stochastic solution on a
bounded domain (SNagD).

Lemma 3.10. Let v be a solution to (NagD) and u a solution to (SNagD). Assume furthermore
that g € L?(Q, L2([0,T] x D)). Then, for sufficiently small noise (in the sense that |Q||%¢ < € ),

(3.41) E[l[o(®) = u(®)l32m)] <€
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Proof. Notice first that both equations satisfy the same boundary conditions, namely v(—L,t) = 0
and v(L, t) = 1, and we assume that they start with the same deterministic initial data ug. We write
the error between the deterministic and the stochastic solution via the mild solution expression as

u(t) —v(t) = S(t)(uo — uo) + b/ St —s) (f(u(s)) = f(v(s))) ds
(3.42)

/ St — $)§(u(s))dW (s).
with W a cylindrical Wiener Process on L?(D) and

(3.43) ()¢ = g(u(s))/Q¢

where /@ is the positive definite square root of the the covariance operator ) of the Wiener
Process. We use the boundedness of the heat semigroup, the local lipschitz continuity of f from
Lemma 2.2, It6’s Isometry and Gronwall’s equality to get

(3.44) |
/, (/ S - 5) (u(s) ~ F(u(5)) s dx]

E [Iult) ~ o030, | = bE
/D (/0 S(t = s)g(u(s ))dW(5)>2dx]

< b2 K|St — )| E V (f 1uts) o |ds) 4

cu|f ] - $Pg(uls)Podsds
ga~exp(/ beo KIS0~ 5)lds ) B | [ / (t = 5 glus)dsds]
—ocE [/D/O St — S)Qg(u(s))2dsdx}

where we used the notation o := ||Q||3,. and ¢ = ¢ (Lb, cas 1ull g2 oy 10)| 0y 1S (8 — s)||oo>
Under the assumption g(u(s)) € L(Q, L2([0,T] x D)), we can conclude that for finite times t < T,

(345) B [Ju() = v®)l32m)] < 1QUE - ¢ (T2, can lullimg oy, [0l oy, 12 = )]l )

The choice of [|Q||3, < £ with the ¢ from (3.45) finally gives E [Hu(T) — v(T)||%2(D)} < ¢, finishing
the proof. O

+E

Lemma 3.11. Let vV the deterministic travelling front solution to (NagR). Let V be a solution
to (NagR) and U a solution to (SNagR). Assume furthermore that g € L?(Q2, L?([0, T] xR)). Then,
for sufficiently small noise (in the sense that ||Q|%s <€ ),

(3.46) E[IV(0) - U3 <«

Proof. Recall that the noise acts only on the wave part of the solution and in particular g(0) =
g(1) = 0. Therefore, as the initial data is a traveling wave, g(vT")¢ =0 in R \ D, and

As we initialized both equations with the same travelling wave v7", we conclude that for finite
times t < T
(3.48) H(V-U)=0 in R\ D

and we are back in the situation of Lemma 3.10. O
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3.4. Proof of the main theorem. The last step is to make a statement on the stability of the
traveling wave solution. For this we prove morally that it is very likely that the solution stays close
to a deterministic traveling wave if we start with an initial data close to the traveling wave and if
the covariance of the noise is small.

For this last step we use the following result presented in [38], where a global bound on the
error between the solution u of the stochastic Nagumo equation and the dynamically phase-shifted
deterministic travelling wave 9TV := vTW (. 4+ C(t) + ct) of the deterministic Nagumo equation was
proven.

Lemma 3.12 ([38], Theorem 3.1.). Let u be the unique solution of the stochastic Nagumo
equation on the real line (SNagR) and v™W the traveling wave front solution of (NagR) and
0TW = vTW (. + C(t) + ct). Let g be a Hilbert-Schmidt operator satisfying global Lipschitz and
linear growth conditions in L?. Then, for allt <t,

(3.49)

E (llu(t) = 5™ (@) Bagmy) < o — o™ (0) sy + lb,@) - MgpLig? o™ A (1= ™) 2age,

with M sz := sup, i km(z,y)Qdy, where k 5(x,y) is the representing integral kernel of the (posi-
tive semidefinite square root of the) covariance operator. In particular,

1 .
(3.50) P(t. < o0) < Z (||u0 — UTW(O)HQLQ(R) + c(v,b,a) - M gLip? |[v™ A (1 - UTW)HQLQ(R))

for some ¢(v,b,a) finite as long as v,b € (0,00) and a € (0,1)

Summary of the proof of Lemma 8.12. Equation (3.49) is part of Theorem 3.1. of [38]. Its proof
goes along the following lines:

The solution to the stochastic Nagumo equation is dynamically phase-shifted in order to match
the position of the traveling wave. This procedure produces an extra term in the equation, but
the author showed that an energy equality still holds and linear growth estimates on the multi-
plicative noise term can be established. By linearization of f(u) around zero additional estimates
are obtained, which, together with Itd’s formula, lead to (3.49). This reasoning uses in a crucial
way a “local dissipativity” estimate, which holds only for a € (0,1). The constant from this local
dissipativity estimate also appears in (3.49) and blows up for a = 0 and a = 1.

In the second part of the statement of our Lemma, we summarized relevant findings from [38]
concerning the long-time behaviour of the error between the solution of the stochastic Nagumo
equation and the phase-shifted travelling wave. This is the final part of Theorem 3.1. of [38],
which continues with an application of Markov’s inequality and a stopping time argument to get a
precise estimate on the probability that the L?-norm of the phase-shifted solution exceeds a certain
threshold value. ]

In particular, the result of [38] tells that the probability that ¢, is infinite depends on the initial
error [[ug — vTW(0)|| and on the covariance operator of the noise term. The smaller the covariance,
the smaller the probability for . being finite.

Remark 3.1 (On covariance-related quantities). A technicality is that different quantities related
to the representing integral kernel of the covariance operator appear in our proofs: Lemma 3.12
used the quantity M 5 := sup, fk\/@(x,y)Qdy, where the supremum over x is unavoidable as in
the proof this quantity needed to be taken out of a spatial integral. In Lemma 3.10, however, and
L? argument (It6 Isometry) involved the quantity

3.51 = 2:002: k(z, y)dydz.
(3.51) 7= Qs = X8 /D/D (2, y)dydz

Though we assume enough regularity of k(x,y) to ensure the finiteness of each quantity, they might
become small at a different rate. We prefer a more clumsy statement of the main theorem in order
to keep this transparent.

With Theorem 3.7 and Lemma 3.12 at hand, we can now finally prove that the solution of the
stochastic LDE (dSNagNV) is likely to be close to the traveling wave.
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Theorem 3.13. Let v™W the deterministic travelling front solution to (NagR). Assume g €
L2(Q,L%([0,T] x D)). Let ug be deterministic and satisfy ||ug — UTW(O)||2L2(R) < €. Then, for
sufficiently small noise in the sense that M ;5 < 6, and ||Q||};¢ < € there exists a solution u” to
(3.3) for which holds

(3.52) P| sup [lu”(t)— ’UTW(t)HLz(R) > 0| < & for sufficiently small h
t€[0,T]

for T < t, with t, as in Lemma 3.12.

Proof. As we have outlined in the beginning of this section, there exists a solution to equation (2.12),
which is an adapted process with a continuous version. The question is whether this (discrete-in-
space) solution is likely to be a travelling wave. We will show that this is indeed true by comparing
u” to solutions to intermediary problems to which traveling waves solutions exist.

To set up notation, let us now denote by u'(¢) be the piecewise linear extension of the solution
to the stochastic LDE (2.12) to the whole domain D. Moreover we extend the solution as u"(t) = 1
and u"(t) = 0 from the two boundary points of D to +o0o. We the adapted stochastic process

er == |lu"(t) — v™W(¢t)||2(p). By the properties of u”, e; defines a martingale whose trajectories
are continuous almost surely. We can then estimate by Doob’s inequality
(3.53)

1
P | sup Ju(t) = o™V (0| L2 > 5] < 5E [Huh(T) - UTW(T)H%Q(R)}
t€[0,T

< %E [Huh(T) - u(T)Hig(R)} +E [Hu(T) — ™) 22 m

where we split the error between the stochastic LDE and the travelling wave front into two parts,
using the linearity of the expectation. By Proposition 3.8, the first term goes to zero as h — 0,
so in particular there exists h, such that E [|[u"(T) — u(T)| 12®)] < € for all h < h,. For the
second term, E [||u(T) — vTW(T)||2r)], we use the estimate (3.49) of [38]. Combining these two
estimates, we get

1
P | sup [[u"(t) — o™ ()] L2m) > 51 < 57(6 + Jluo — o™ (0172 (x)
(3.54) |07

+ c(v,b,a) - M gLip, [v™ A (1 - vTW)H%z(R))

As [[vTWA (1 —oTW) ||2L2(R) < ¢, employing the assumption on the initial data and the observation
that for sufficiently small 0, such that M vo < 04 the second term is also small, in formula

(3.55) M g - c(v,b,a)Lip} 0™ A (1= 0™) |72 < €
and therefore (3.54) becomes
1
(3.56) P| sup [Ju(t) —v™WV ()| p2m) > 6| < — (2e+¢€)
t€[0,T] 4

with € = €(v,b,a, M /5).

To summarize, for h < h, and M\/@ < 4, the choice of & := 23;* gives
(3.57) P l sup [Ju"(t) — o™ ()| L2m) > 5] <é
t€[0,T)
which concludes the proof. O

Note that zero covariance does not imply that the noise strength is zero, but just that it is
constant, and so it affects the solution only by a shift of ¢ - ¢, which does not destroy the traveling
wave property.
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