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Abstract. We establish the interior and exterior Gauss-Green formulas for divergence-measure
fields in Lp over general open sets, motivated by the rigorous mathematical formulation of the
physical principle of balance law via the Cauchy flux in the axiomatic foundation, for continuum
mechanics allowing discontinuities and singularities. The method, based on a distance function,
allows to give a representation of the interior (resp. exterior) normal trace of the field on the
boundary of any given open set as the limit of classical normal traces over the boundaries of
interior (resp. exterior) smooth approximations of the open set. In the particular case of open
sets with continuous boundary, the approximating smooth sets can explicitly be characterized
by using a regularized distance. We also show that any open set with Lipschitz boundary has a
regular Lipschitz deformable boundary from the interior. In addition, some new product rules
for divergence-measure fields and suitable scalar functions are presented, and the connection
between these product rules and the representation of the normal trace of the field as a Radon
measure is explored. With these formulas at hand, we introduce the notion of Cauchy fluxes as
functionals defined on the boundaries of general bounded open sets for the rigorous mathematical
formulation of the physical principle of balance law, and show that the Cauchy fluxes can be
represented by corresponding divergence-measure fields.

1. Introduction

We are concerned with the interior and exterior Gauss-Green formula for unbounded divergence-
measure fields over general open sets, motivated by the rigorous mathematical formulation of the
physical principle of balance law via the Cauchy flux in the axiomatic foundation, for continuum
mechanics allowing discontinuities and singularities. The divergence-measure fields are vector
fields F ∈ Lp for 1 ≤ p ≤ ∞, whose distributional divergence is a Radon measure. These vector
fields form a Banach space that is denoted by DMp. Even though the definitions of normal
traces for unbounded divergence-measure fields have been given in Chen-Frid [12] and Šilhavý
[57] (see also [32]), the objective of this paper is to give a representation of the interior (resp.
exterior) normal trace on the boundary of any given open set and to prove that these normal
traces can be computed as the limit of classical normal traces over the boundaries of interior
(resp. exterior) smooth approximations of the open set. In particular, this implies analogous
results on general domains (i.e. open connected sets).

The approximation of domains is a fundamental problem that has many applications in several
fields of analysis. The answer to this question depends on both the regularity of the domain and
the type of approximation that is needed. Our interest in this problem is motivated from the field
of hyperbolic conservation laws. It is important to approximate the surface of a discontinuity
wave (such as a shock wave, vortex sheet, and entropy wave) with smooth surfaces from one
side of the surface so that the interior and exterior traces of the solutions can be defined on
such a discontinuity wave as the limit of classical traces on the smooth approximating surfaces.
Furthermore, the physically meaningful notion of Cauchy fluxes as functionals defined on the
boundaries of general bounded open sets requires the understanding of the flow behavior in both
the interior and exterior neighborhoods of each boundary.
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In this paper, we consider arbitrary open sets, which especially include domains with finite
perimeter. The sets of finite perimeter are relevant in the field of hyperbolic conservation laws,
since the reduced boundaries of sets of finite perimeter are rectifiable sets, while the shock
surfaces are often rectifiable, at least for multidimensional scalar conservation laws (cf. De
Lellis-Otto-Westickenberg [24]). Moreover, one advantage for the sets of finite perimeter is that
the normal to these sets can be well defined almost everywhere on the boundaries.

A first natural approach to produce a smooth approximation of a domain is via the convolution
with some mollifiers ηε. Indeed, it is a classical result in geometric measure theory (see the
classical monographs of Ambrosio-Fusco-Pallara [2, Theorem 3.42] and Maggi [43, Theorem
13.8]) that any set of finite perimeter E can be approximated with a suitable family of smooth
sets Ek such that

Ln(Ek∆E)→ 0, H n−1(∂∗Ek)→H n−1(∂∗E) as k →∞, (1.1)

where Ln is the Lebesgue measure in Rn, ∂∗E is the reduced boundary of E, and ∆ denotes the
symmetric difference of sets (i.e., A∆B := (A \B) ∪ (B \A)).

The approximating smooth sets Ek are the superlevel sets Ak;t := {uk > t}, for a.e. t ∈ (0, 1),
of the convolutions uk := χE ∗ ηεk , for some suitable subsequence εk → 0 as k →∞. The main

difficulty with the convolution approach is that the approximating surfaces u−1
k (t) do not provide

an interior approximation in general, since portions of u−1
k (t) might intersect the exterior of the

set. This problem was solved by Chen-Torres-Ziemer [14] and Comi-Torres [17] by improving the
classical result and proving an almost one-sided approximation that distinguishes the superlevel
sets for a.e. t ∈

(
1
2 , 1
)

from the ones corresponding to a.e. t ∈
(
0, 1

2

)
, thus providing an interior

and an exterior approximation of the set with

H n−1(u−1
k (t) ∩ E0)→ 0 for a.e. t ∈

(
1
2 , 1
)
,

H n−1(u−1
k (t) ∩ E1)→ 0 for a.e. t ∈

(
0, 1

2

)
,

where E0 and E1 are the measure-theoretic exterior and interior of the set, respectively. More-
over, for any measure |µ| �H n−1, the classical result (1.1) was improved to

|µ|(Ak;t∆E
1)→ 0, H n−1(∂Ak;t)→H n−1(∂∗E) for a.e. t ∈

(
1

2
, 1

)
;

|µ|(Ak;t∆(E1 ∪ ∂∗E))→ 0, H n−1(∂Ak;t)→H n−1(∂∗E) for a.e. t ∈
(

0,
1

2

)
.

This new one-sided approximation for sets of finite perimeter is sufficient to obtain the Gauss-
Green formula for vector fields F ∈ DM∞loc. Indeed, we have

|divF | �H n−1,

as first observed by Chen-Frid [11] (also see [14, 56]), which implies

divF (Ak;t)→ divF (E1) for a.e. t ∈
(

1
2 , 1
)
,

divF (Ak;t)→ divF (E1 ∪ ∂∗E) for a.e. t ∈
(
0, 1

2

)
.

This allows us to obtain the interior and exterior Gauss-Green formulas over sets of finite perime-
ters (see [14, Theorem 5.2]).

Our focus in this paper is on the Gauss-Green formulas for DMp fields, i.e., unbounded
weakly differentiable vector fields in Lp whose distributional divergence is a Radon measure. It
has been shown that, for F ∈ DMp with 1 ≤ p < ∞, the Radon measure divF is no longer
absolutely continuous with respect to H n−1 in general. Indeed, it is absolutely continuous with
respect to the Sobolev and relative p′–capacities if p ≥ n

n−1 , and can be even a Dirac measure

if 1 ≤ p < n
n−1 (see [56, Theorem 3.2, Example 3.3], [14, Lemma 2.25], and [48, Theorem 2.8]).

Thus, a new way of approximating the integration domains entirely from the interior and the
exterior separately is required, since we cannot rely anymore on the approximation described
above, as in [14].
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A second approach to approximate a domain U is to employ the standard distance function
and define

U ε := {x ∈ U : dist(x, ∂U) > ε};
see [57, Theorem 2.4]. In this case, since dist(x, ∂U) is only Lipschitz continuous for the domains
with less than the C2–regularity, the coarea formula implies that {x ∈ U : dist(x, ∂U) = ε} is
just a set of finite perimeter, for almost every ε > 0; see §5. In §7, we also use a regularized
distance ρ, which is C∞, introduced by Lieberman [41] for the Lipschitz domains and developed
further to the C0–domains by Ball-Zarnescu [7]. For these domains, smooth approximations
are obtained, since ρ−1(ε) is smooth for any ε > 0. Thus, the use of the distance functions
provides an interior smooth approximation satisfying divF (U ε)→ divF (U) even for unbounded
divergence-measure fields.

As for the exterior approximation, we consider the sets:

Uε := {x ∈ Rn : dist(x, U) < ε},
which clearly satisfy similar properties as U ε. Indeed, we will unify the exposition by defining
the signed distance d from ∂U and its regularized version analogously in §5.

Another motivation of this paper is from a result of Schuricht [53, Theorem 5.20], where it is
proved that, for any F ∈ DM1

loc(Ω) and any compact set K b Ω, the normal trace functional
can be represented as an average on the one-sided tubular neighborhoods of ∂K in the sense
that

divF (K) = lim
ε→0

1

ε

∫
Kε\K

F · νdK dx, (1.2)

where Kε = {x ∈ Ω : dist(x,K) ≤ ε}, and νdK(x) = ∇xdist(x,K) is a unit vector for L n–a.e.

x ∈ Ω such that dist(x,K) > 0. This last property says that νdK is a sort of generalization of
the exterior normal. It is clear that Kε ⊂ Kε′ if ε < ε′ and that

⋂
ε>0Kε = K, which implies

that divF (Kε) → divF (K). Therefore, this approach is similar to the one of the exterior
approximation Uε of a bounded open set U . In §5, we use this approach as a starting point by
differentiating under the integral sign before passing to the limit in ε, so that we can obtain a
boundary integral on the right-hand side.

The classical Gauss-Green formula for Lipschitz vector fields F over sets of finite perimeter
was proved first by De Giorgi [22, 23] and Federer [29, 30], and by Burago-Maz’ya [8, 44] and
Vol’pert [62, 63] for F in the class of functions of bounded variation (BV ). The Gauss-Green
formula for vector fields F ∈ L∞ with divF ∈ M was first investigated by Anzellotti in [4,
Theorem 1.9] and [5] on bounded Lipschitz domains, and his methods were then exploited
by Ambrosio-Crippa-Maniglia [1], Kawohl-Schuricht [38], Leondardi-Saracco [40], and Scheven-
Schmidt [52, 50, 51]. Independently, motivated by the problems arising from the theory of
hyperbolic conservation laws, Chen-Frid [11] first introduced the approach of defining the interior
normal traces on the boundary of a Lipschitz deformable set as the limits of the classical normal
traces over the boundaries of the interior approximations of the set, in which the Gauss-Green
formulas hold. One of the main objectives of this paper is to develop this approach further
for unbounded vector fields to understand the interior normal traces of divergence-measure
fields on the boundary of general open sets, and to show the existence of regular Lipschitz
deformations introduced in [11]. Even though, locally, we always have the natural regular
Lipschitz deformation: Ψ(ŷ, t) = (ŷ, γ(ŷ)+ t) for γ as in Definition 2.7 and ŷ = (y1, · · · , yn−1), it
may not be possible to extend this deformation globally to ∂U in such a way to satisfy Definition
2.7 in general.

Later, the Gauss-Green formulas over sets of finite perimeter for DM∞–fields were proved in
Chen-Torres [13], Šilhavý [56], and Chen-Torres-Ziemer [14]. Subsequent generalizations of these
formulas were given by Comi-Payne [16], Comi-Magnani [15], and Crasta-De Cicco [18, 19]. We
refer [16, 20] for a more detailed exposition of the history of Gauss-Green formulas.

The case of divergence-measure vector fields in Lp, p 6= ∞, has been studied in Chen-Frid
[12] over Lipschitz deformable boundaries and in Šilhavý [57] for open sets. The main focus
of this paper is to obtain the Gauss-Green formulas by using the limit of the classical traces
over appropriate approximations of the domain, instead of representing it as the averaging over
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neighborhoods of the boundaries of the domain as in Chen-Frid [12] and Šilhavý [57]. Even
though a representation of the normal trace similar to the one in this paper can also be found
in Frid [31], it is required in [31] that the boundary of the domain is Lipschitz deformable. In
§8, we show that this last condition can actually be removed.

Degiovanni-Marzocchi-Musesti in [25] and later Schuricht in [53] sought to prove the existence
of normal traces under weak regularity hypotheses in order to achieve a representation formula
for Cauchy fluxes, contact interactions, and forces in the context of the foundation of continuum
physics. The Gauss-Green formulas obtained in [25, 53] are valid for F ∈ DMp(Ω) for any
p ≥ 1, but are applicable only to sets U ⊂ Ω which lie in a suitable subalgebra of sets of finite
perimeter related to the particular representative of F . One of our objectives in this paper is
to use the representation of the normal traces as the limits of classical normal traces on smooth
boundaries to obtain an analogous representation for the contact interactions and the Cauchy
fluxes on the boundaries of any general open set.

This paper is organized in the following way. In §2, some basic notions and facts on the BV
theory and DMp–fields are recalled. In §3, we establish some product rules between DMp–fields
and suitable scalar functions, including continuous bounded scalar functions with gradient in
Lp
′

for any 1 ≤ p ≤ ∞, which has not been stated explicitly in the literature to the best of
our knowledge. In §4, we investigate the distributional definition of the normal trace functional
and its relation with the product rule between DMp–fields and characteristic functions of Borel
measurable sets. We also provide some necessary and sufficient conditions under which the
normal trace of a DMp–field can be represented by a Radon measure. In §5, we describe the
properties of the level sets of the signed distance function from a closed set and their applications
in the proof of the Gauss-Green formulas for general open sets. As a byproduct, we obtain
generalized Green’s identities and other sufficient conditions under which the normal trace of a
divergence-measure field can be represented by a Radon measure on the boundary of an open
set in §5–6. In §7, we show the existence of interior and exterior smooth approximations for
U and U respectively, where U is a general open set, together with their corresponding Gauss-
Green formulas. In the case of C0 domains U , we employ the results of Ball-Zarnescu [7] to find
smooth interior and exterior approximations of U and U in an explicit way. Indeed, we are able
to write the interior and exterior normal traces as the limits of the classical normal traces on the
superlevel sets of a regularized distance introduced in [7, 41]. In §8, we employ Ball-Zarnescu’s
theorem [7, Theorem 5.1] to show that any Lipschitz domain U is actually Lipschitz deformable
in the sense of Chen-Frid (cf. Definition 2.7). In addition, we recall the previous approximation
theory for open sets with Lipschitz boundary developed by Nečas [45, 46] and Verchota [60, 61]
to give a more explicit representation of a particular bi-Lipschitz deformation Ψ(x, t), which is
also regular in the sense that

lim
τ→0+

J∂UΨτ = 1 in L1(∂U ; H n−1),

where Ψτ (x) = Ψ(x, τ), and J∂U denotes the tangential Jacobian. Finally, in §9, based on the
theory of normal traces for DMp–fields obtained as the limit of classical normal traces on smooth
approximations or deformations, we introduce the notion of Cauchy fluxes as functionals defined
on the boundaries of general bounded open sets for the rigorous mathematical formulation of
the physical principle of balance law involving discontinuities and singularities, and show that
the Cauchy fluxes can be represented by corresponding divergence-measure fields.

2. Basic Notations and Divergence-Measure Fields

In this section, for self-containedness, we first present some basic notations and known facts
in geometric measure theory and elementary properties of divergence-measure fields.

In what follows, Ω is an open set in Rn, which is called a domain if it is also connected, and
M(Ω) is the space of all Radon measures in Ω. Unless otherwise stated, ⊂ and ⊆ are equivalent.

We denote by E b Ω a set E whose closure E is a compact set inside Ω, by E̊ the topological
interior of E, and by ∂E its topological boundary.
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To establish the interior and exterior normal traces in §5 later, we need to use the following
classical coarea formula (cf. [27, §3.4, Theorem 1 and Proposition 3]):

Theorem 2.1. Let u : Rn → R be Lipschitz. Then∫
A
|∇u|dx =

∫
R

H n−1(A ∩ u−1(t)) dt for any Ln–measurable set A. (2.1)

In addition, if essinf|∇u| > 0, and g : Rn → R is L n–summable, then g|u−1(t) is H n−1–

summable for L 1–a.e. t ∈ R and∫
{u>t}

g dx =

∫ ∞
t

∫
{u=s}

g

|∇u|
dH n−1 ds for any t ∈ R.

In particular, for any t ∈ R and h ≥ 0 such that set {u = t+ h} is negligible with respect to the
measure g dx, ∫

{t<u<t+h}
g dx =

∫ t+h

t

∫
{u=s}

g

|∇u|
dH n−1 ds. (2.2)

In the case that g : Rn → Rn is L n–summable, the same results follow for each component gi,
i = 1, . . . , n.

The notions of functions of bounded variation (BV ) and sets of finite perimeter will also be
used.

Definition 2.2. A function u ∈ L1(Ω) is a function of bounded variation in Ω, written as
u ∈ BV (Ω), if its distributional gradient Du is a finite Rn–vector valued Radon measure on Ω.
We say that u is of locally bounded variation in Ω, written as u ∈ BVloc(Ω), if the restriction
of u to every open set U b Ω is in BV (U). A measurable set E ⊂ Ω is said to be a set of finite
perimeter in Ω if χE ∈ BV (Ω) and said to be of locally finite perimeter in Ω if χE ∈ BVloc(Ω).

It is well known that the topological boundary of a set of finite perimeter E can be very
irregular, since it may even have positive Lebesgue measure. On the other hand, De Giorgi [23]
discovered a suitable subset of ∂E of finite H n−1–measure on which |DχE | is concentrated.

Definition 2.3. Let E be a set of locally finite perimeter in Ω. The reduced boundary of E,
denoted by ∂∗E, is defined as the set of all x ∈ supp(|DχE |) ∩ Ω such that the limit:

νE(x) := lim
r→0

DχE(B(x, r))

|DχE |(B(x, r))

exists in Rn and satisfies

|νE(x)| = 1.

The function νE : ∂∗E → Sn−1 is called the measure-theoretic unit interior normal to E.

The reason for which νE is seen as a generalized interior normal lies in the approximate
tangential properties of the reduced boundary (cf. [2, Theorem 3.59]). Indeed, E ∩ B(x, ε) is
asymptotically close to the half ball {y : (y − x) · νE(x) ≥ 0} ∩B(x, ε) as ε→ 0, and

|DχE | = H n−1 ∂∗E. (2.3)

It is a well-known result from the BV theory (cf. [2, Corollary 3.80]) that every function
of bounded variation u admits a representative that is the pointwise limit H n−1–a.e. of any
mollification of u and coincides H n−1–a.e. with the precise representative u∗:

u∗(x) :=

lim
r→0

1

|B(x, r)|

∫
B(x,r)

u(y) dy if this limit exists,

0 otherwise.

In particular, if u = χE for some set of finite perimeter E, then χ∗E = 1
2 on ∂∗E H n−1–a.e.

We state now the generalization of the coarea formula for functions of bounded variation,
which indeed shows an important connection between BV functions and sets of finite perimeter;
see [2, Theorem 3.40] for a more detailed statement and proof.
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Theorem 2.4. If u ∈ BV (Ω), then, for L 1–a.e. s ∈ R, set {u > s} is of finite perimeter in Ω
and

|Du|(Ω) =

∫ ∞
−∞
|Dχ{u>s}|(Ω)ds.

We recall now the definition of divergence-measure fields, the main object of study of this
paper.

Definition 2.5. A vector field F ∈ Lp(Ω;Rn) for some 1 ≤ p ≤ ∞ is called a divergence-
measure field, denoted as F ∈ DMp(Ω), if its distributional divergence divF is a real fi-
nite Radon measure on Ω. A vector field F is a locally divergence-measure field, denoted as
F ∈ DMp

loc(Ω), if the restriction of F to U is in DMp(U) for any U b Ω open.

These vector fields have been widely studied in the last two decades; for a general theory, we
refer mainly to [1, 11, 12, 13, 14, 16, 31, 32, 53, 56, 57] and the references cited therein.

We recall that Lipschitz functions with compact support can be used as test functions in the
definition of distributional divergence, since C∞c (Ω) functions are dense in Lipc(Ω), the space of
Lipschitz functions with compact support in Ω.

Finally, we introduce two definitions, which are required in §8, in order that the results on
the smooth approximation of domains of class C0 by Ball-Zarnescu [7] can be employed to show
that the boundary of any bounded Lipschitz domain is Lipschitz deformable in the sense of
Chen-Frid [11, 12].

Definition 2.6. Let Ω ⊂ Rn be a domain of class C0. For a point P ∈ Rn, define a good
direction at P , with respect to a ball B(P, δ) with δ > 0 and B(P, δ) ∩ ∂Ω 6= ∅, to be a vector
ν ∈ Sn−1 such that there is an orthonormal coordinate system Y = (y′, yn) = (y1, y2, ...yn−1, yn)
with origin at point P so that ν = en is the unit vector in the yn–direction which, together with
a continuous function f : Rn−1 → R (depending on P , ν, and δ), satisfies

Ω ∩B(P, δ) = {y ∈ Rn : yn > f(y′), |y| < δ}.
We say that ν is a good direction at P if it is a good direction with respect to some ball B(P, δ)
with B(P, δ) ∩ ∂Ω 6= 0. If P ∈ ∂Ω, then a good direction ν at P is called a pseudonormal at P .

Definition 2.7. Let Ω be an open subset in Rn. We say that ∂Ω is a deformable Lipschitz
boundary, provided that the following hold:

(i). For each x ∈ ∂Ω, there exist r > 0 and a Lipschitz mapping γ : Rn−1 → R such that,
upon rotating and relabeling the coordinate axis if necessary,

Ω ∩Q(x, r) = {y ∈ Rn : yn > γ(y1, ..., yn−1)} ∩Q(x, r),

where Q(x, r) = {y ∈ Rn : |yi − xi| ≤ r, i = 1, ..., n}.
(ii). There exists a map Ψ : ∂Ω × [0, 1] → Ω such that Ψ is a bi-Lipschitz homeomorphism

over its image and Ψ(·, 0) ≡ Id, where Id is the identity map over ∂Ω. Denote ∂Ωτ =
Ψ(∂Ω× {τ}) for τ ∈ (0, 1], and denote Ωτ the open subset of Ω whose boundary is ∂Ωτ .
We call Ψ a Lipschitz deformation of ∂Ω.

The Lipschitz deformation is regular if

lim
τ→0+

J∂ΩΨτ = 1 in L1(∂Ω; H n−1), (2.4)

where Ψτ (x) = Ψ(x, τ), and J∂Ω denotes the tangential Jacobian.

3. Product Rules between Divergence-Measure Fields and Suitable Scalar
Functions

In this section, we give some new product rules between DMp–fields and suitable scalar
functions. We start by proving a product rule for vector fields in DMp for any 1 ≤ p ≤ ∞,
which is the explicit formulation of a particular case of the product rule for DMp–fields stated
in [12, Theorem 3.2].

From now on, as customary, we always use a standard mollifier:

η ∈ C∞c (B(0, 1)) radially symmetric, with η ≥ 0 and
∫
B(0,1) η(x) dx = 1, (3.1)
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and

ηε(x) :=
1

εn
η
(x
ε

)
. (3.2)

Proposition 3.1. If F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and φ ∈ C0(Ω) ∩ L∞(Ω) with ∇φ ∈
Lp
′
(Ω;Rn) for p′ = p

p−1 , then

φF ∈ DMp(Ω),

and

div(φF ) = φ divF + F · ∇φ. (3.3)

Proof. It is clear that φF ∈ Lp(Ω;Rn).
We first consider the case 1 < p ≤ ∞. Take φε := φ ∗ ηε, where ηε is defined in (3.2). Then

φε → φ uniformly on compact subsets of Ω, and ∇φε → ∇φ in Lp
′

loc(Ω;Rn).
For any test function ψ ∈ C1

c (Ω), we have∫
Ω
φεF · ∇ψ dx =

∫
Ω
F · ∇(φεψ) dx−

∫
Ω
ψF · ∇φε dx (3.4)

= −
∫

Ω
ψφε ddivF −

∫
Ω
ψF · ∇φε dx.

We can now pass to the limit as ε→ 0 to obtain (3.3) in the sense of distributions. On the other
hand, it follows that∣∣∣∣∫

Ω
φF · ∇ψ dx

∣∣∣∣ ≤ (‖φ‖L∞(Ω)|divF |(Ω) + ‖F ‖Lp(Ω;Rn)‖∇φ‖Lp′ (Ω;Rn)

)
‖ψ‖L∞(Ω).

This shows that div(φF ) is a finite Radon measure on Ω, by the density of C1
c (Ω) in Cc(Ω) with

respect to the sup norm, and that (3.3) holds in the sense of Radon measures.

For the case p = 1, we mollify F instead, since φ ∈W 1,∞(Ω) ⊂ Liploc(Ω). For any ψ ∈ C1
c (Ω),

we obtain ∫
Ω
φF ε · ∇ψ dx =

∫
Ω
F ε · ∇(φψ) dx−

∫
Ω
ψF ε · ∇φ dx.

By passing to the limit as ε→ 0, the L1–convergence of F ε to F implies that∫
Ω
φF · ∇ψ dx =

∫
Ω
F · ∇(φψ) dx−

∫
Ω
ψF · ∇φ dx

= −
∫

Ω
ψφddivF −

∫
Ω
ψF · ∇φ dx.

This shows (3.3) in the sense of distributions for p = 1. Then we can conclude by arguing as
before. �

Remark 3.2. Notice that, if φ ∈ L∞(Ω) and ∇φ ∈ Lp′(Ω;Rn), then φ ∈ W 1,p′

loc (Ω). Thus, if
p′ > n (i.e. 1 ≤ p < n

n−1 ), we do not have to require that φ ∈ C0(Ω) in Proposition 3.1, since

this follows by Morrey’s inequality (see [27, Theorem 3, §4.5.3]).

Proposition 3.1 can be extended to the case p =∞, by taking g ∈ BV (Ω) ∩ L∞(Ω). Indeed,
a product rule between essentially bounded divergence-measure fields and scalar functions of
bounded variation was first proved by Chen-Frid [11, Theorem 3.1] (also see [31]).

Theorem 3.3 (Chen-Frid [11]). Let g ∈ BV (Ω) ∩ L∞(Ω) and F ∈ DM∞(Ω). Then gF ∈
DM∞(Ω) and

div(gF ) = g∗divF + F ·Dg (3.5)

in the sense of Radon measures on Ω, where g∗ is the precise representative of g, and F ·Dg is
a Radon measure, which is the weak-star limit of F · ∇gε for the mollification gε := g ∗ ηε, and
is absolutely continuous with respect to |Dg|. In addition,

|F ·Dg| ≤ ‖F ‖L∞(Ω;Rn)|Dg|.
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One could ask whether it would be possible to obtain a similar result also for F ∈ DMp(Ω),
1 ≤ p <∞, by imposing some other assumptions on F weaker than the essential boundedness.
It is obvious that gF ∈ Lp(Ω) and that div(gF ) is a distribution of order 1, by definition; hence
one should look for conditions under which it can be extended to a linear continuous functional
on Cc(Ω).

Our investigation is motivated by the following example, where g is the characteristic function
of a set of finite perimeter E, and F is a vector field in DMp

loc, 1 ≤ p < 2, which is unbounded
on ∂∗E.

Example 3.4. Let n = 2, g = χ(0,1)2, and

F (x1, x2) =
1

2π

(x1, x2)

x2
1 + x2

2

,

which implies that divF = δ(0,0). Then gF ∈ DMp
loc(R

2) for any 1 ≤ p < 2 with

div(gF ) =
1

4
δ(0,0) + (F , Dg), (3.6)

where

(F , Dg)(φ) := − 1

2π

(∫ 1

0

φ(x1, 1)

1 + x2
1

dx1 +

∫ 1

0

φ(1, x2)

1 + x2
2

dx2

)
for any φ ∈ Cc(R2). (3.7)

This pairing functional can also be regarded as a principal value in the sense that

(F , Dg)(φ) = lim
ε→0

∫
∂(0,1)2\B(0,ε)

φF · ν(0,1)2 dH 1,

so that |(F , Dg)| � |Dg| = H 1 ∂∗(0, 1)2. Moreover, the term 1
4δ(0,0) comes from the fact that

g∗(0) = 1
4 (i.e. the value of the precise representative of g at the origin).

In order to prove these claims, we take φ ∈ C1
c (R2) to see∫

R2

gF · ∇φ dx = lim
ε→0

∫
(0,1)2\B(0,ε)

F · ∇φ dx

= lim
ε→0

(
−
∫
∂(0,1)2\B(0,ε)

φF · ν(0,1)2 dH 1

−
∫
∂B(0,ε)∩{x1>0,x2>0}

φ(x1, x2)
1

2π

(x1, x2)

x2
1 + x2

2

· (x1, x2)√
x2

1 + x2
2

dH 1

)
= − 1

2π
lim
ε→0

(∫ 1

ε
φ(x1, 0)

(x1, 0)

x2
1

· (0, 1) dx1 +

∫ 1

ε
φ(0, x2)

(0, x2)

x2
2

· (1, 0) dx2

+

∫ 1

0
φ(1, x2)

(1, x2)

1 + x2
2

· (−1, 0) dx2 +

∫ 1

0
φ(x1, 1)

(x1, 1)

x2
1 + 1

· (0,−1) dx1

+

∫ π
2

0
φ(ε cos θ, ε sin θ) dθ

)
=

1

2π

(∫ 1

0

φ(x1, 1)

1 + x2
1

dx1 +

∫ 1

0

φ(1, x2)

1 + x2
2

dx2

)
− 1

4
φ(0, 0).

This shows that div(gF ) is a distribution of order 0, so that it is a measure, since it can be
uniquely extended to a functional on Cc(R2) by density.

In addition, for any φ ∈ C0([0, 1]2) with ∇φ ∈ Lp′((0, 1)2) for some p ∈ [1, 2), the following
integration by parts formula holds:∫

(0,1)2

(x1, x2)

x2
1 + x2

2

· ∇φ(x1, x2) dx1 dx2 +
π

2
φ(0, 0) =

∫ 1

0

φ(x1, 1)

1 + x2
1

dx1 +

∫ 1

0

φ(1, x2)

1 + x2
2

dx2. (3.8)

Indeed, since χ(0,1)2F ∈ DMp(R2) for any p ∈ [1, 2), then (3.3) yields

div(φχ(0,1)2F ) = φ div(χ(0,1)2F ) + χ(0,1)2F · ∇φ,
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which, by (3.6), implies

div(φχ(0,1)2F ) =
1

4
φ(0, 0)δ(0,0) + φ(F , Dχ(0,1)2) + χ(0,1)2F · ∇φ. (3.9)

Finally, (3.8) follows by evaluating (3.9) over R2, using the fact that φχ(0,1)2F has compact

support to obtain div(φχ(0,1)2F )(R2) = 0 by [16, Lemma 3.1], and employing (3.7).

In this example, the cancellations between F and ν(0,1)2 play a crucial role in order to ensure
the existence of a measure given by the pairing of F and Dg.

Indeed, we can impose the existence of such a measure in order to achieve a more general
product rule.

Theorem 3.5. Let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and let g ∈ L∞(Ω) ∩ BV (Ω). Assume that
there exists a measure (F , Dg) ∈ M(Ω) such that F ε ·Dg ⇀ (F , Dg), for any mollification F ε

of F . Then

gF ∈ DMp(Ω),

and

div(gF ) = g̃ divF + (F , Dg), (3.10)

where g̃ ∈ L∞(Ω, |divF |) is the weak∗–limit of a suitable subsequence of mollified functions gε of
g, which satisfies g̃(x) = g∗(x) whenever g∗ is well defined. In addition,

|(F , Dg)| �H n−1 if p =∞,

and, if p ∈
[

n
n−1 ,∞

)
,

|(F , Dg)|(B) = 0 for any Borel set B with σ–finite H n−p′ measure.

Proof. It is clear that gF ∈ Lp(Ω;Rn). We now divide the remaining proof into two steps.

1. In order to show (3.10), we take any mollification gε = g ∗ηε with ηε defined in (3.2). Then
we select φ ∈ Lipc(Ω) to obtain∫

Ω
gεF · ∇φ dx = −

∫
Ω
φgε ddivF −

∫
Ω
φF · ∇gε dx. (3.11)

Since gε → g in Lp
′

loc(Ω), we have∫
Ω
gεF · ∇φ dx→

∫
Ω
gF · ∇φ dx as ε→ 0. (3.12)

Notice that |gε(x)| ≤ ‖g‖L∞(Ω) for any x ∈ Ω. Then there exists a weak∗–limit g̃ ∈ L∞(Ω, |divF |)
for a suitable subsequence {gεk} so that g̃ coincides with the precise representative g∗ whenever
this is well defined. Therefore, we obtain∫

Ω
φgε ddivF →

∫
Ω
φg̃ ddivF (3.13)

up to a subsequence. As for the last term, we have∫
Ω
φ(x)F (x) · ∇gε(x) dx =

∫
Ω

(φF )ε(y) · dDg(y). (3.14)

By the uniform continuity of φ, for any δ > 0 and x ∈ Ω, there exists ε0 > 0 such that
|φ(y)− φ(x)| < η for any y ∈ B(x, ε) and ε ∈ (0, ε0). Since φ has compact support in Ω, we can
also assume that B(x, ε) ⊂ Ω without loss of generality. This implies∣∣(φF )ε(x)− φ(x)F ε(x)

∣∣ =

∣∣∣∣∫
Ω

(
φ(y)− φ(x)

)
F (y)ηε(x− y) dy

∣∣∣∣
≤ δ

∫
B(0,1)

|F (x+ εz)|η(z) dz

≤ δ‖η‖Lp′ (B(0,1))‖F ‖Lp(Ω;Rn).
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Hence, it follows that∫
Ω

(φF )ε(y) · dDg(y) =

∫
Ω
φ(y)F ε(y) · dDg(y) + oε(1). (3.15)

Now we use our assumption on sequence F ε to obtain∫
Ω
φ(y)F ε(y) · dDg(y) →

∫
Ω
φ(y) d(F , Dg)(y). (3.16)

Combining (3.11)–(3.16), we conclude that g̃ is actually unique and that (3.10) holds. In par-
ticular, we see that div(gF ) ∈M(Ω), which implies that gF ∈ DMp(Ω).

2. As for the absolute continuity property of (F , Dg), we notice that

(F , Dg) = div(gF )− g̃ divF
and F , gF ∈ DMp(Ω). We recall now that |divF | + |div(gF )| � H n−1 if p = ∞ (see [11,
Proposition 3.1] and [56, Theorem 3.2]) and that, if p ∈ [ n

n−1 ,∞), |divF |(B) = |div(gF )|(B) = 0

for any Borel set B with σ–finite H n−p′ measure, by [56, Theorem 3.2]. This concludes the
proof. �

It seems to be delicate to characterize the cases in which measure (F , Dg) does exist and
the absolute continuity, i.e. |(F , Dg)| � |Dg| holds as in Example 3.4. We give here a partial
result.

Corollary 3.6. Let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and let g ∈ L∞(Ω) ∩ BV (Ω). Assume that

there exists F̃ ∈ L∞loc(Ω, |Dg|;Rn) such that F ε
∗
⇀ F̃ in L∞loc(Ω, |Dg|;Rn), where F ε = F ∗ ηε is

the mollification of F . Then gF ∈ DMp
loc(Ω) and

div(gF ) = g̃ divF + F̃ ·Dg,
where g̃ ∈ L∞(Ω; |divF |) is the weak∗–limit of a subsequence of gε so that g̃(x) = g∗(x), whenever
g∗ is well defined. In addition, for any open set U b Ω,

|F̃ ·Dg| U ≤ inf
UbU ′bΩ
U ′ open

‖F ‖L∞(U ′;Rn) |Dg| U. (3.17)

Proof. The first part of the result follows directly from Theorem 3.5, since the assumptions

imply that F ε ·Dg ⇀ (F , Dg) = F̃ ·Dg. Moreover, since F̃ ∈ L∞loc(Ω, |Dg|;Rn), we have

|F̃ ·Dg| ≤ ‖F̃ ‖L∞(U,|Dg|;Rn)|Dg| on any open set U b Ω.

Finally, since |F ε(x)| ≤ ‖F ‖L∞(U+B(0,ε);Rn) for any x ∈ U , then, for any open set U ′ satisfying
U b U ′ b Ω, the lower semicontinuity of the L∞–norm with respect to the weak∗–convergence
implies

‖F̃ ‖L∞(U,|Dg|;Rn) ≤ lim inf
ε→0

sup
x∈U
|F ε(x)| ≤ ‖F ‖L∞(U ′;Rn).

By taking the infimum over U ′, we obtain (3.17). �

Remark 3.7. The assumptions on F are satisfied in the case F ∈ C0(Ω;Rn), for which F̃ = F .
If F ∈ L∞loc(Ω;Rn), then, for any open set Ω′ b Ω,

|F ε(x)| ≤ ‖F ‖L∞(Ω′+B(0,ε);Rn) for any x ∈ Ω′.

Thus, by weak∗–compactness, there exists F̃ ∈ L∞loc(Ω, |Dg|;Rn) such that F ε
∗
⇀ F̃ in L∞loc(Ω, |Dg|;Rn),

up to a subsequence. This implies the result of Corollary 3.6 again. Moreover, since |divF | �
H n−1, by [56, Theorem 3.2], we can conclude

g̃ = g∗ |divF |–a.e.

since the precise representative of a BV function g exists H n−1–a.e. In addition, by the product
rule established in Theorem 3.3, we obtain the identity:

F̃ ·Dg = F ·Dg.
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Thus, if νg is the Borel vector field such that Dg = νg|Dg|, then

F ·Dg = (F̃ · νg)|Dg|.

That is, F̃ · νg is the density of measure F ·Dg with respect to |Dg|.
Finally, the assumption that F ∈ L∞loc(Ω;Rn) can be relaxed to F ∈ L∞loc(U ;Rn), for some

open set U ⊃ supp(|Dg|). Indeed, this implies that F ε is uniformly bounded in L∞(U ′, |Dg|;Rn),
for any open set U ′ b U and ε small enough, which ensures the existence of a weak∗–limit

F̃ ∈ L∞loc(U, |Dg|;Rn), up to a subsequence.

On the other hand, we have seen that there are some examples of unbounded and discontinuous
DMp–fields which admit a product rule of this type, as in Example 3.4. Moreover, there exists
an unbounded DMp–field G and a set of finite perimeter E for which a product rule holds,
but |(G, DχE)| is not absolutely continuous with respect to |DχE |, as shown in the following
example.

Example 3.8. Let n = 2, E = (0, 1)2, and F as in Example 3.4. We have shown that χEF ∈
DMp

loc(R
2) for any p ∈ [1, 2) and that

div(χEF ) =
1

4
δ(0,0) + (F , DχE), (3.18)

by (3.6). Let now G := χEF . It is clear that χEG = G so that div(χEG) ∈ M(R2). Let ηε(x)
be the mollifiers defined in (3.1)–(3.2), and let φ ∈ C1

c (R2). A simple calculation shows that∫
R2

(ηε ∗ χE)G · ∇φ dx = −
∫
R2

φ(ηε ∗ χE) ddivG−
∫
R2

φG · ∇(ηε ∗ χE) dx.

By Lebesgue’s dominated convergence theorem, we have∫
R2

(ηε ∗ χE)G · ∇φ dx→
∫
R2

χEG · ∇φ dx = −
∫
R2

φ ddiv(χEG),

and ∫
R2

φ(ηε ∗ χE) ddivG =

∫
R2

φ(ηε ∗ χE) d

(
1

4
δ(0,0) + (F , DχE)

)
→ 1

16
φ(0, 0) +

∫
∂∗E

1

2
φ d(F , DχE),

since |(F , DχE)| � |DχE | and χ∗E(0, 0) = 1
4 . This and the density of C1

c (R2) in C0
c (R2) show

that G · ∇(ηε ∗ χE) is weakly converging to some measure (G, DχE) that satisfies

div(χEG) =
1

16
δ(0,0) +

1

2
(F , DχE) + (G, DχE). (3.19)

However, it is clear that div(χEG) = divG = div(χEF ). Therefore, (3.18)–(3.19) imply

(G, DχE) =
3

16
δ(0,0) +

1

2
(F , DχE). (3.20)

Therefore, |(G, DχE)| � |DχE | = H 1 ∂∗E does not hold, since there is a concentration at
the point (0, 0).

4. Regularity of Normal Traces of Divergence-Measure Fields

In this section, we investigate the connection between these product rules and the represen-
tation of the normal trace of the DMp–field as a Radon measure.

We first introduce the notion of generalized normal traces of a DMp–field F on the boundary
of a Borel set E, which has indeed a close relation with the product rule between F and χE .

Definition 4.1. Given F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and a bounded Borel set E ⊂ Ω, define
the normal trace of F on ∂E as

〈F · ν, φ〉∂E :=

∫
E
φ ddivF +

∫
E
F · ∇φ dx for any φ ∈ Lipc(Rn). (4.1)



12 GUI-QIANG G. CHEN, GIOVANNI E. COMI, AND MONICA TORRES

Remark 4.2. Since divF is a Radon measure, any Borel set E is |divF |–measurable. Moreover,
for any |divF |–measurable set E, there exists a Borel set B ⊃ E such that |divF |(B \ E) = 0,
so that there exists a |divF |–negligible set NE with NE = B \ E. Therefore, if NE is Lebesgue
measurable, then E is admissible for the definition of normal traces.

Furthermore, by the definition, the normal trace of F ∈ DMp(Ω) on the boundary of a bounded
Borel set E ⊂ Ω is a distribution of order 1 on Rn, since

| 〈F · ν, φ〉∂E | ≤ ‖φ‖L∞(Rn)|divF |(E) + ‖∇φ‖L∞(Rn;Rn)|E|
1− 1

p ‖F ‖Lp(E;Rn)

for any φ ∈ C1
c (Rn). Moreover, the normal trace is not stable a priori under the modifications

of E by Lebesgue negligible sets. Indeed, if Ẽ is any Borel set such that |E∆Ẽ| = 0, then, unless

|divF | � L n, we may obtain that |divF |(E∆Ẽ) 6= 0, even though the second terms in (4.1) are
equal.

Therefore, the normal trace depends on the particular Borel representative of set E, not even
only on ∂E. Indeed, if U ⊂ Ω is an open set with smooth boundary, then ∂U = ∂U ; however,
when |divF |(∂U) 6= 0, the normal traces of F on the boundary of U and U are different in
general.

Remark 4.3. By the definition of normal traces, we have

〈F · ν, φ〉∂E = div(φF )(E).

Therefore, Theorem 3.1 implies that, if F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, the functional 〈F · ν, ·〉∂E
can be extended to the space of test functions φ ∈ C0(Ω) ∩ L∞(Ω) such that ∇φ ∈ Lp′(Ω;Rn).
Under such conditions, we can also take any Borel set E ⊂ Ω, since

| 〈F · ν, φ〉∂E | ≤ ‖φ‖L∞(Ω)|divF |(E) + ‖∇φ‖Lp′ (Ω;Rn)‖F ‖Lp(E;Rn).

Therefore, if F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and E is a Borel set in Ω, then the normal trace
〈F · ν, ·〉∂E can be extended to a functional in the dual of

{φ ∈ C0(Ω) ∩ L∞(Ω) : ∇φ ∈ Lp′(Ω;Rn)}.

Proposition 4.4. Let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞. Then the normal trace of F on the
boundary of a bounded Borel set E ⊂ Ω is a distribution of order 1 supported on ∂E.

Proof. Let V b Ω \ ∂E and φ ∈ C1
c (V ). We need to show that 〈F · ν, φ〉∂E = 0.

Since φF ∈ DMp(Ω) and supp(φF ) ⊂ V , then supp(div(φF )) ⊂ V . From this, it follows
that

〈F · ν, φ〉∂E = div(φF )(E) = div(φF )(V ∩ E̊).

We may assume that E̊ 6= ∅ (otherwise, there is nothing to prove) and V ⊂ E̊, without loss of gen-
erality. Then [16, Lemma 3.1] implies that div(φF )(V ) = 0 so that 〈F · ν, φ〉∂E = div(φF )(V ) =
0. �

Remark 4.5. Given F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, then, for any Borel set E in Ω, the following
locality property for the normal trace functional holds:

〈F · ν, ·〉∂E = −〈F · ν, ·〉∂(Ω\E)

in the sense of distributions on Ω.
Indeed, given any φ ∈ C1

c (Ω), φF ∈ DMp(Ω) by Proposition 3.1, and∫
Ω
φ ddivF +

∫
Ω
F · ∇φ dx = div(φF )(Ω) = 0

by [16, Lemma 3.1], since supp(φF ) is compact in Ω. Then∫
E
φ ddivF +

∫
E
F · ∇φ dx = −

∫
Ω\E

φ ddivF −
∫

Ω\E
F · ∇φ dx.
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Theorem 4.6. Let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and let E ⊂ Ω be a bounded Borel set. Then

〈F · ν, ·〉∂E = χEdivF − div(χEF ) (4.2)

in the sense of distributions on Ω. Thus, 〈F · ν, ·〉∂E ∈M(∂E) if and only if div(χEF ) ∈M(Ω);
that is, χEF ∈ DMp(Ω). In addition, if 〈F · ν, ·〉∂E is a measure, then

(i) | 〈F · ν, ·〉∂E | �H n−1 ∂E, if p =∞;

(ii) | 〈F · ν, ·〉∂E |(B) = 0 for any Borel set B ⊂ ∂E with σ–finite H n−p′ measure, if n
n−1 ≤

p <∞.

Proof. By Proposition 4.4, the support of distribution 〈F · ν, ·〉∂E is ∂E. As for the equivalence,
we notice that

〈F · ν, φ〉∂E −
∫
E
φ ddivF =

∫
E
F · ∇φ dx =

∫
Ω
χEF · ∇φ dx for any φ ∈ Lipc(Ω).

This implies (4.2) in the sense of distributions. Since divF ∈M(Ω), it follows that 〈F · ν, ·〉∂E ∈
M(∂E) if and only if div(χEF ) ∈ M(Ω), by the density of Lipc(Ω) in Cc(Ω) with respect to
the supremum norm. Since χEF ∈ Lp(Ω;Rn), then div(χEF ) ∈ M(Ω) implies that χEF ∈
DMp(Ω). As for the absolute continuity properties of the normal trace measure, we argue as
those in the end of the proof of Theorem 3.5, by employing (4.2) and [56, Theorem 3.2]. �

We now employ (4.2) to show the relation between 〈F · ν, ·〉∂E and 〈F · ν, ·〉
∂Ẽ

for any another

Borel representative Ẽ, with respect to the Lebesgue measure, of a given bounded Borel set E.

Proposition 4.7. Let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and let E, Ẽ ⊂ Ω be bounded Borel sets

such that |E∆Ẽ| = 0. Then

〈F · ν, ·〉∂E − 〈F · ν, ·〉∂Ẽ = (χ
E\Ẽ − χẼ\E)divF , (4.3)

which means that 〈F · ν, ·〉∂E − 〈F · ν, ·〉∂Ẽ ∈M(Ω), and

| 〈F · ν, ·〉∂E − 〈F · ν, ·〉∂Ẽ | = χ
E∆Ẽ
|divF |. (4.4)

In particular, if U is an open bounded set in Ω with |∂U | = 0, then

〈F · ν, ·〉∂U − 〈F · ν, ·〉∂U = χ∂U divF . (4.5)

Proof. Since |E∆Ẽ| = 0, div(χEF ) = div(χ
Ẽ
F ) in the sense of distributions. Thus, by

subtracting (4.2) for Ẽ from the same identity with E, we obtain (4.3). Then we see that
〈F · ν, ·〉∂E − 〈F · ν, ·〉∂Ẽ ∈ M(Ω) and (4.4). Finally, if U is open bounded set with |∂U | = 0,

(4.5) follows from (4.3) with E = U and Ẽ = U . �

Remark 4.8. While div(χEF ) is not a Radon measure in general, we can employ (4.2) to
obtain some information on its restriction to some particular sets. Indeed, since 〈F · ν, ·〉∂E is

supported on ∂E, by Proposition 4.4, it suffices to restrict (4.2) to ∂E and E̊ to obtain

〈F · ν, ·〉∂E = χE∩∂EdivF − div(χEF ) ∂E, divF E̊ − div(χEF ) E̊ = 0.

In particular, this means that div(χEF ) E̊ = divF E̊, so that this restriction is a Radon
measure for any F ∈ DMp(Ω) and bounded Borel set E in Ω. In addition, if U is an open
bounded set in Ω, then

〈F · ν, ·〉∂U = −div(χUF ) ∂U.

We now state a particular result concerning the sets of finite perimeter and the case p =∞,
which gathers much of the known theory (see [14, 16]). It also provides a generalization of the
Gauss-Green formulas by allowing for scalar functions φ ∈ C0(Ω) with ∇φ ∈ L1

loc(Ω;Rn). Such
a result can be seen as a particular case of [18, Theorem 5.1], when Ω = Rn.

First, we need to recall the definitions of both measure-theoretic interior and measure-theoretic
boundary of a measurable set E:

E1 :=
{
x ∈ Rn : lim

r→0

|B(x, r) ∩ E|
|B(x, r)|

= 1
}
, ∂mE := Rn \ (E1 ∪ (Rn \ E)1).
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By Lebesgue’s differentiation theorem, it follows that |E∆E1| = 0 and |∂mE| = 0. By [27,
Lemma 5.9, §5.11], E1 and ∂mE are Borel measurable sets.

We notice that, if F ∈ DM∞loc(Ω), and E ⊂ Ω is a set of locally finite perimeter, then ∂∗E is
a |divF |–measurable set. Indeed, ∂∗E ⊂ ∂mE and H n−1(∂mE \ ∂∗E) = 0 by [27, Lemma 5.5,
§5.8]. This means that ∂mE = ∂∗E ∪ NE for some set NE satisfying H n−1(NE) = 0. Since
|divF | �H n−1 by [11, Proposition 3.1], ∂∗E is |divF |–measurable, because it is the difference
between the Borel set ∂mE and the |divF |–negligible setNE . This means that, if F ∈ DM∞loc(Ω),
and E ⊂ Ω is a set of locally finite perimeter, then 〈F · ν, ·〉∂E1 and 〈F · ν, ·〉∂(E1∪∂∗E) are well

defined.

Proposition 4.9. Let F ∈ DM∞loc(Ω), and let E b Ω be a set of finite perimeter. Then the

normal trace of F on the boundary of any Borel representative Ẽ of set E is a Radon measure

supported on ∂∗E ∪ (Ẽ∆E1) ⊂ ∂Ẽ. In particular, if Ẽ = E1 or Ẽ = E1 ∪ ∂∗E up to H n−1–
negligible sets, then

| 〈F · ν, ·〉
∂Ẽ
| �H n−1 ∂∗E

with density in L∞(∂∗E; H n−1). More precisely, for any set E of locally finite perimeter in Ω
and φ ∈ C0(Ω) such that ∇φ ∈ L1

loc(Ω;Rn) and χEφ has compact support in Ω, then∫
E1

φ ddivF +

∫
E
F · ∇φ dx = −

∫
∂∗E

φ (Fi · νE) dH n−1, (4.6)∫
E1∪∂∗E

φ ddivF +

∫
E
F · ∇φ dx = −

∫
∂∗E

φ (Fe · νE) dH n−1, (4.7)

where (Fi · νE), (Fe · νE) ∈ L∞loc(∂
∗E; H n−1) are the interior and exterior normal traces of F ,

respectively, as introduced in [14, Theorem 5.3].

Proof. Assume first that E b Ω. By [14, Theorem 5.3] and [16, Theorem 4.2], it follows that
the normal traces on the boundaries of E1 and E1 ∪ ∂∗E are Radon measures. They are
indeed absolutely continuous with respect to H n−1 ∂∗E and with densities given by essentially
bounded interior and exterior normal traces: For any φ ∈ Lipc(Ω),

〈F · ν, φ〉∂E1 = −
∫
∂∗E

φ (Fi · νE) dH n−1,

〈F · ν, φ〉∂(E1∪∂∗E) = −
∫
∂∗E

φ (Fe · νE) dH n−1.

Such formulas hold also for any Ẽ with H n−1(Ẽ∆E1) = 0 or H n−1(Ẽ∆(E1 ∪ ∂∗E)) = 0,
respectively, since |divF | �H n−1 if F ∈ DM∞(Ω), by [56, Theorem 3.2].

Let Ẽ be any Borel representative of E with respect to the Lebesgue measure so that |E∆Ẽ| =
0, which implies that Ẽ1 = E1. By (4.3), we have

〈F · ν, φ〉
∂Ẽ

= 〈F · ν, φ〉∂E1 +

∫
Ω
φ
(
χ
Ẽ\E1 − χE1\Ẽ

)
ddivF for any φ ∈ Lipc(Ω).

This shows that 〈F · ν, ·〉
∂Ẽ

is a Radon measure on ∂∗E ∪ (Ẽ∆E1), while this set is contained

in ∂Ẽ, since
˚̃
E ⊂ E1 ⊂ Ẽ, coherently with Proposition 4.4.

Finally, let E be a set of locally finite perimeter in Ω, and let φ ∈ C0(Ω) such that ∇φ ∈
L1

loc(Ω;Rn) and supp(χEφ) b Ω. Then (4.6)–(4.7) follow from [16, Theorem 4.2]. Indeed, such
equations hold for φ ∈ Liploc(Ω) such that supp(χEφ) ⊂ V b Ω for some open set V . Thus, we
can take any mollification φε of φ, with ε > 0 small enough, such that supp(χEφε) ⊂ V . Then
we pass to the limit as ε→ 0 by employing the fact that φε → φ uniformly on V and ∇φε → ∇φ
in L1(V ;Rn). This completes the proof. �

Remark 4.10. Given F ∈ DM∞loc(Ω) and a set of locally finite perimeter E ⊂ Ω, (4.6)–
(4.7) hold for any φ ∈ Lipc(Ω). This shows that the normal traces of F on the portion of the
boundaries ∂E1∩Ω and ∂(E1∪∂∗E)∩Ω are locally represented by measures (Fi ·νE) H n−1 ∂∗E
and (Fe · νE) H n−1 ∂∗E, respectively.
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Remark 4.11. Proposition 4.9 can be seen as a special case of Theorem 4.6, because of Theorem
3.3. In addition, it shows that the normal trace measures of F ∈ DM∞(Ω) on ∂E1 and ∂(E1 ∪
∂∗E) are actually concentrated on ∂∗E = ∂∗E1 = ∂∗(E1 ∪ ∂∗E), for any set of finite perimeter
E b Ω.

Moreover, if F ∈ DMp(Ω) for 1 ≤ p < ∞, the normal trace on ∂E is not a measure
that is absolutely continuous with respect to H n−1 in general, as shown in [16, Example 6.1].
However, as we will see in §7, the normal trace on the boundary of open and closed sets can still
be represented as the limit of the classical normal traces on an approximating family of smooth
sets.

Remark 4.12. Theorem 4.6 shows that, in the case of Example 3.4, the normal trace is a Radon
measure on ∂E, since a product rule holds between

F (x1, x2) =
1

2π

(x1, x2)

x2
1 + x2

2

and χE for E = (0, 1)2.

Indeed, we have

div(χEF ) =
1

4
δ0 + (F , DχE),

with

(F , DχE)(φ) := − 1

2π

(∫ 1

0

φ(x1, 1)

1 + x2
1

dx1 +

∫ 1

0

φ(1, x2)

1 + x2
2

dx2

)
.

Using (4.2) and (0, 0) /∈ E, it follows that, for any φ ∈ Lipc(R2),

〈F · ν, φ〉∂E =

∫
R2

φχE ddivF −
∫
R2

φ ddiv(χEF ) = −
∫
R2

φ ddiv(χEF )

= −1

4
φ(0, 0)− (F , DχE)(φ).

Therefore, 〈F · ν, ·〉∂E is a Radon measure on ∂E.
In this example, E is also a set of finite perimeter with E = E1, but the normal trace is

supported on ∂E, not only on ∂∗E, since (0, 0) /∈ ∂∗E.

Remark 4.13. Theorem 4.6 implies that, if F ∈ DMp(Ω) does not admit a normal trace on
∂E representable by a Radon measure, then χEF /∈ DMp(Ω), even for a set of locally finite
perimeter E.

An example of such a vector field was provided by [57, Example 2.5] and [32, Remark 2.2] as
follows:

F (x1, x2) :=
(−x2, x1)

x2
1 + x2

2

.

Then F ∈ DMp
loc(R

2) for any 1 ≤ p < 2, divF = 0 on E = (−1, 1) × (−1, 0). For any
φ ∈ Lipc((−1, 1)2), we have∫

(−1,1)2
χEF · ∇φ dx1 dx2

=

∫ 1

−1

∫ 0

−1

1

x2
1 + x2

2

(
−x2

∂φ

∂x1
+ x1

∂φ

∂x2

)
dx2 dx1

= lim
ε→0

(∫ −ε
−1

+

∫ 1

ε

)∫ 0

−1

1

x2
1 + x2

2

(
−x2

∂φ

∂x1
+ x1

∂φ

∂x2

)
dx2 dx1

= lim
ε→0

{∫ 0

−1

x2

ε2 + x2
2

(
− φ(−ε, x2) + φ(ε, x2)

)
dx2 +

(∫ −ε
−1

+

∫ 1

ε

)
φ(x1, 0)

x1
dx1

}
= P.V.

∫ 1

−1

φ(x1, 0)

x1
dx1,
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since the two area integrals are simplified and∣∣∣∣limε→0

∫ 0

−1

x2

ε2 + x2
2

(
− φ(−ε, x2) + φ(ε, x2)

)
dx2

∣∣∣∣
≤ 2L lim

ε→0

∫ 1

0

εx2

ε2 + x2
2

dx2 = L lim
ε→0

ε log(1 +
1

ε2
) = 0,

where L is the Lipschitz constant of φ. This shows

div(χEF ) = P.V.

(
1

x1

)
(−1, 1)⊗ δ0,

so that div(χEF ) /∈M((−1, 1)2), which means that χEF /∈ DMp((−1, 1)2) for any 1 ≤ p < 2.
The argument can be generalized to

F (x1, x2) =
(−x2, x1)

(x2
1 + x2

2)
α
2

for 2 ≤ α < 3

to obtain

div(χEF ) =
(
P.V. sgn(x1) |x1|1−α

)
(−1, 1)⊗ δ0.

Remark 4.14. By Theorem 4.6, F ∈ DMp(Ω) admits a normal trace on the boundary of
a Borel set E b Ω representable by a Radon measure if and only if χEF ∈ DMp(Ω). This
condition is generally weaker than the requirement of E to be a set of locally finite perimeter in
Ω. Indeed, there exist a set E ⊂ R2 with χE /∈ BVloc(R2) and a field F ∈ DMp(R2) for any
p ∈ [1,∞] with 〈F · ν, ·〉∂E ∈ M(∂E). The key observation in the construction of such a set E
is that, given a constant vector field F ≡ v ∈ Rn, (4.2) implies that the normal trace is given by

〈v · ν, ·〉∂E = −div(χEv) = −
n∑
j=1

vjDxjχE .

Clearly, the requirement that
∑n

j=1 vjDxjχE ∈M(Ω) is weaker than the requirement that χE ∈
BV (Ω), since there may be some cancellations.

We choose E as the open bounded set whose boundary is given by

∂E =
(
{0} × [0, 1]

)
∪
(
[0, 1]× {0}

)
∪
(
[0, 1 + log 2]× {1}

)
∪ S,

as shown in Figure 4.14, where

S =
(
{1} ×

[
0,

1

2

])⋃(
[1, 2]×

{
1

2

})⋃⋃
n≥1

{
1 +

n∑
k=1

(−1)k−1

k

}
×
[
1− 1

2n
, 1− 1

2n+1

]
⋃⋃

n≥1

[
1 +

2n∑
k=1

(−1)k−1

k
, 1 +

2n+1∑
k=1

(−1)k−1

k

]
×
{

1− 1

22n+1

}
⋃⋃

n≥1

[
1 +

2n∑
k=1

(−1)k−1

k
, 1 +

2n−1∑
k=1

(−1)k−1

k

]
×
{

1− 1

22n

} .

Then χE /∈ BVloc(R2), since H 1(S) =∞. However, we can show that Dx1χE ∈M(R2).



CAUCHY FLUXES AND GAUSS-GREEN FORMULAS FOR DMp–FIELDS OVER OPEN SETS 17

Figure 4.1. The open bounded set E

Indeed, given any φ ∈ C1
c (R2), we have∫

E

∂φ

∂x1
dx1 dx2

=

∫ 1
2

0

∫ 1

0

∂φ

∂x1
dx1 dx2 +

∞∑
n=1

∫ 1− 1
2n+1

1− 1
2n

∫ 1+
∑n
k=1

(−1)k−1

k

0

∂φ

∂x1
dx1 dx2

=

∫ 1
2

0

(
φ(1, x2)− φ(0, x2)

)
dx2 +

∞∑
n=1

∫ 1− 1
2n+1

1− 1
2n

(
φ

(
1 +

n∑
k=1

(−1)k−1

k
, x2

)
− φ(0, x2)

)
dx2

= −
∫ 1

0
φ(0, x2) dx2 +

∫ 1
2

0
φ(1, x2) dx2 +

∞∑
n=1

∫ 1− 1
2n+1

1− 1
2n

φ

(
1 +

n∑
k=1

(−1)k−1

k
, x2

)
dx2.

This implies

Dx1χE = H 1
(
{0} × (0, 1)

)
−H 1

({1} × (0,
1

2

))⋃⋃
n≥1

{
1 +

n∑
k=1

(−1)k−1

k

}
×
(

1− 1

2n
, 1− 1

2n+1

) ,

which is clearly a finite Radon measure on R2.
Now we observe that, if F (x1, x2) = f(x2)g(x1)(1, 0) for some f ∈ Lp(R) and g ∈ C1

c (R),
then F ∈ DMp(R2),

divF = f(x2)g′(x1)L 2,

and
div(χEF ) = f(x2)g(x1)Dx1χE + χE(x1, x2)f(x2)g′(x1)L 2. (4.8)

Indeed, for any φ ∈ C1
c (R2), we have∫

R2

χEF · ∇φ dx1dx2 =

∫
R2

χE(x1, x2)f(x2)g(x1)
∂φ(x1, x2)

∂x1
dx1dx2

=

∫
R2

χE(x1, x2)f(x2)
∂(g(x1)φ(x1, x2))

∂x1
dx1dx2

−
∫
R2

χE(x1, x2)f(x2)φ(x1, x2)g′(x1) dx1dx2

= −
∫
R2

f(x2)g(x1)φ(x1, x2) dDx1χE

−
∫
R2

χE(x1, x2)f(x2)φ(x1, x2)g′(x1) dx1dx2.
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Thus, by (4.8), div(χEF ) ∈M(R2) so that 〈F · ν, ·〉∂E ∈M(∂E), by Theorem 4.6, even if E is
not a set of locally finite perimeter in R2. In addition, by (4.2), we have

〈F · ν, ·〉∂E = χEdivF − div(χEF ) = −f(x2)g(x1)Dx1χE ,

from which the following is deduced:

| 〈F · ν, ·〉∂E | �H 1
(
{0} × (0, 1)

)⋃(
{1} ×

(
0,

1

2

))
⋃⋃

n≥1

{
1 +

n∑
k=1

(−1)k−1

k

}
×
(

1− 1

2n
, 1− 1

2n+1

) .

On the other hand, as we will show, whether 〈F · ν, ·〉∂E is a Radon measure on ∂E or not
does not play any role in the representation of the normal trace of F on the boundary of an
open or closed set as the limit of classical normal traces on the boundaries of a sequence of
approximating smooth sets.

We provide now a necessary condition for the normal trace to be a Radon measure.

Proposition 4.15. Let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and let E ⊂ Ω be a Borel set such that
there exists σ ∈M(∂E) satisfying

〈F · ν, φ〉∂E =

∫
∂E
φ dσ

for any φ ∈ Lipc(Rn). Then, if 1 ≤ p < n
n−1 , for any x ∈ ∂E and r > 0, there exists a constant

C > 0 such that |σ|(∂E) + |divF |(E) ≥ C and∣∣∣ ∫
B(x,r)∩E

F (y) · (y − x)

|y − x|
dy
∣∣∣ ≤ Cr. (4.9)

If p ≥ n
n−1 , for any x ∈ ∂E and r > 0,∣∣∣ ∫

B(x,r)∩E
F (y) · (y − x)

|y − x|
dy
∣∣∣ = o(r). (4.10)

Moreover, given any α ∈ (0, n], for H α–a.e. x ∈ ∂E and r > 0, there exists a constant
C = CE,F ,x > 0 such that ∣∣∣ ∫

B(x,r)∩E
F (y) · (y − x)

|y − x|
dy
∣∣∣ ≤ Crα+1. (4.11)

Proof. We just need to choose φ(y) := (r − |y − x|)χB(x,r)(y) so that, by (4.1),∫
B(x,r)∩∂E

(r − |y − x|) dσ(y) =

∫
B(x,r)∩E

(r − |y − x|) ddivF −
∫
B(x,r)∩E

F (y) · (y − x)

|y − x|
dy.

Then we obtain∣∣∣∣∣
∫
B(x,r)∩E

F (y) · (y − x)

|y − x|
dy

∣∣∣∣∣ ≤ r(|σ|(B(x, r) ∩ ∂E) + |divF |(B(x, r) ∩ E)
)
. (4.12)

Now, if 1 ≤ p < n
n−1 , then divF and σ = χEdivF − div(χEF ) do not enjoy any absolute

continuity property in general, by [56, Example 3.3, Proposition 6.1], so that (4.9) holds from
(4.12).

If p ≥ n
n−1 , then |divF |({x}) = |σ|({x}) = 0, by [56, Theorem 3.2] and Theorem 4.6. There-

fore, (4.12) implies (4.10). Finally, a consequence of [2, Theorem 2.56] is that, given a positive
Radon measure µ on Ω, its α–dimensional upper density Θ∗α(µ, x) satisfies the property:

Θ∗α(µ, x) <∞ for H α–a.e. x ∈ Ω.

This means that, for H α–a.e. x ∈ Ω, there exists a constant C = Cµ,x such that

µ(B(x, r)) ≤ Crα.
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Therefore, this argument holds for both measures |divF | E and |σ| ∂E. Then, from (4.12),
we achieve (4.11). �

Remark 4.16. The result of Proposition 4.15 does not seem to be very restrictive, since the
example in Remark 4.13 satisfies all the three conditions at any point on (−1, 1)× {0}.

Indeed, consider points (t, 0) for some t ∈ (−1, 1), and r > 0 small enough so that B((t, 0), r)∩
{x2 < 0} ⊂ E = (−1, 1)× (−1, 0). Since (−x2, x1) · (x1 − t, x2) = x2t, we have∫

B((t,0),r)∩E
F (x1, x2) · (x1 − t, x2)

|(x1 − t, x2)|
dx1 dx2

=

∫
B((t,0),r)∩{x2<0}

x2t

(x2
1 + x2

2)
√

(x1 − t)2 + x2
2

dx1 dx2

=

∫
B((0,0),1)∩{u<0}

tu

((t+ rv)2 + r2u2)
√
v2 + u2

r2 dv du.

Therefore, for t 6= 0, we have∣∣∣∣ ∫
B((t,0),r)∩E

F (x1, x2) · (x1 − t, x2)

|(x1 − t, x2)|
dx1 dx2

∣∣∣∣ =

∫ 1

0

∫ π
2

−π
2

ρ|t| cos θ

r2ρ2 + t2 + 2trρ sin θ
r2 dθ dρ

=

∫ 1

0
r sgn(t) log

∣∣∣∣rρ+ t

rρ− t

∣∣∣∣dρ =
r2

|t|
+ o(r2)

for any sufficiently small r; while, if t = 0, we just have∫
B((0,0),r)∩E

F (x1, x2) · (x1, x2)

|(x1, x2)|
dx1 dx2 = 0 for any r > 0.

These calculations also show that this F satisfies (4.11) for any α ∈ (0, 1], which is sufficient,
since the Hausdorff dimension of ∂E is 1.

Moreover, for any F ∈ Lp(Ω;Rn),∣∣∣ ∫
B(x,r)∩E

F (y) · (y − x)

|y − x|
dy
∣∣∣ ≤ (∫

B(x,r)
|F |p dy

) 1
p
(ωnr

n)
1− 1

p .

Then condition (4.10) is satisfied for any r ∈ (0, 1] if n− n

p
> 1, that is, p > n

n−1 .

On the other hand, we obtain a better decay estimate for H α–a.e. x ∈ ∂E, for any α ∈ (0, n].
Indeed, F ∈ L1

loc(Ω;Rn) so that measure µ = |F |L n satisfies µ(B(x, r)) ≤ Crα for H α–a.e.
x ∈ Ω. This implies∣∣∣ ∫

B(x,r)∩E
F (y) · (y − x)

|y − x|
dy
∣∣∣ ≤ Crα for H α–a.e. x ∈ ∂E,

while we obtain the higher exponent α+ 1 in (4.11).

5. The Gauss-Green Formula on General Open Sets

We now consider a general open set U ⊂ Rn and provide a way to construct its interior
and exterior approximations via the signed distance function, suitable for the derivation of the
Gauss-Green formula for F ∈ DMp for 1 ≤ p ≤ ∞.

For the given open set U in Rn, we consider the signed distance from ∂U :

d(x) =

{
dist(x, ∂U) for x ∈ U,
−dist(x, ∂U) for x /∈ U.

(5.1)

We summarize some known results on the signed distance function in the following lemma.

Lemma 5.1. The function d(x) is Lipschitz in Rn with Lipschitz constant equal to 1 and satisfies

|∇d(x)| = 1 for L n–a.e. x /∈ ∂U.
In addition, ∇d = 0 L n–a.e. on sets {d = t} for any t ∈ R.
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Proof. The elementary properties of the distance show that d is Lipschitz with Lipschitz constant
L ≤ 1, and hence differentiable L n–almost everywhere. Then it is clear that |∇d(x)| ≤ 1.

Let now x ∈ U such that d is differentiable at x and |∇d(x)| < 1. Then there exists a point
y ∈ ∂U , depending on x, such that d(x) = |x−y|. Indeed, given z ∈ ∂U such that d(x) ≤ |x−z|,
then we can look for y ∈ B(x, |x− z|) ∩ ∂U , which is a compact set.

Setting xr := x+ r(y − x), we see that d(xr) = (1− r)|x− y| for any r ∈ [0, 1]. Otherwise, if
there would exist z ∈ ∂U such that |xr − z| < |xr − y|, then we would obtain

|x− z| ≤ |x− xr|+ |xr − z| < r|y − x|+ |xr − y| = |x− y|,

which contradicts the assumption that y realizes the minimum distance from x.
Since d is differentiable at x, then

d(xr)− d(x) = ∇d(x) · (y − x) r + o(r),

that is,

|y − x| = ∇d(x) · (x− y) + o(1),

which yields a contradiction with the assumption that |∇d(x)| < 1.
Similarly, we also obtain a contradiction, provided that d is differentiable at x ∈ Rb \ U and

|∇d(x)| < 1. Since the Lipschitz constant L satisfies L ≥ ‖∇d‖L∞(Rn,Rn), we conclude that
L = 1.

As for the second part of the statement, we refer to [3, Theorem 3.2.3]. �

For any ε > 0, denote

U ε := {x ∈ Rn : d(x) > ε}, (5.2)

and

Uε := {x ∈ Rn : d(x) > −ε}. (5.3)

Then U ε
′ ⊂ U ε when ε′ > ε, and ⋃

ε>0

U ε = U.

Similarly, Uε′ ⊂ Uε when ε′ < ε, and ⋂
ε>0

Uε = U.

It is clear that, for K := U and Kε := Uε, we recover the same setting of Schuricht’s result as
in (1.2).

Remark 5.2. By Lemma 5.1, we can integrate indifferently on {d ≥ t} and {d > t} for any
t ∈ R with respect to ∇ddx (or, analogously, on {d ≤ t} and {d < t}). This means that ∂U ε

and ∂Uε are negligible for measure ∇d dx for any ε ≥ 0 (with U0 = U0 = U). In particular, it
follows that (2.2) holds for any t ∈ R and h ≥ 0, if u = d and g = f ∇d for some f : Rn → R
L n–summable.

We can say more on the regularity of sets U ε and Uε. Indeed, since d is a Lipschitz function,
which is particularly in BVloc(Rn), the coarea formula (Theorem 2.4) implies that the superlevel
and sublevel sets of d are almost all sets of locally finite perimeter. Thus, we can conclude that
U ε and Uε are sets of locally finite perimeter for L 1–a.e. ε > 0. In fact, we can show the
following slightly stronger result.

Lemma 5.3. For any open set U in Rn, for L 1–a.e. ε > 0,

H n−1(∂U ε \ ∂∗U ε) = 0, ∇d(x) = νUε(x) for H n−1–a.e. x ∈ ∂U ε,

where νUε is the measure-theoretic interior normal to U ε. Analogously, for L 1–a.e. ε > 0,

H n−1(∂Uε \ ∂∗Uε) = 0, ∇d(x) = νUε(x) for H n−1–a.e. x ∈ ∂Uε.
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Proof. By the previous remarks, U ε is a set of locally finite perimeter for L 1–a.e. ε > 0. Then,
for any smooth vector field ϕ ∈ C1

c (Rn;Rn),∫
Uε

divϕdx = −
∫
∂∗Uε

ϕ · νUε dH n−1 for L 1–a.e. ε > 0. (5.4)

Consider now the functions:

ψUε (x) :=


ε if x ∈ U ε,
d(x) if x ∈ U \ U ε,
0 if x /∈ U.

Then ∫
U
ψUε divϕdx = ε

∫
Uε

divϕdx+

∫
U\Uε

d(x) divϕdx

= −
∫
U\Uε

ϕ · ∇ddx

= −
∫
U\Uε

ϕ · ∇d |∇d| dx

= −
∫ ε

0

∫
∂Ut

ϕ · ∇d dH n−1 dt,

since |∇d(x)| = 1 for L n–a.e. x /∈ ∂U and ∇d(x) = 0 for L n–a.e. x ∈ ∂U ε (Lemma 5.1 and
Remark 5.2), and by the coarea formula (2.2) with u = d and g = χUϕ · ∇d |∇d|. Indeed, using
(2.1), we have ∫

Rn\Uε
χUϕ · ∇d |∇d|dx =

∫
{d<ε}

χUϕ · ∇d |∇d| dx

=

∫
{−d>−ε}

χUϕ · ∇d |∇d| dx

=

∫ ∞
−ε

∫
{−d=t}

χUϕ · ∇ddH n−1 dt

=

∫ ε

−∞

∫
{d=t}

χUϕ · ∇ddH n−1 dt

=

∫ ε

0

∫
∂Ut

ϕ · ∇ddH n−1 dt,

since d > 0 in U and |∇d(x)| = 1 for L n–a.e. x ∈ ∂U .
We can repeat the same calculation with ψε+h for h > 0, and subtract the two resultant

equations to obtain

h

∫
Uε+h

ddivϕ+

∫
Uε\Uε+h

(d(x)− ε) ddivϕ = −
∫ ε+h

ε

∫
∂Ut

ϕ · ∇ddH n−1 dt.

We now divide by h and use the fact that 0 ≤ d(x)− ε ≤ h in U ε \U ε+h and |U ε \U ε+h| → 0
as h→ 0 to conclude∫

Uε
divϕdx = −

∫
∂Uε

ϕ · ∇ddH n−1 for L 1–a.e. ε > 0. (5.5)

Notice that, for any R > 0,

H n−1(B(0, R) ∩ ∂∗U ε) = sup
{∫

Uε
div(−ϕ) dx : ϕ ∈ C1

c (B(0, R);Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1
}
.

(5.6)

Now, we can take a double index sequence of fields ϕk,m in C1
c (B(0, R);Rn) such that

ϕk,m → χB(0,R− 1
m

)∇d in L1(Rn;Rn) as k →∞, for any fixed m ∈ N.
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For each k and m, there is a set Nk,m ⊂ R with L 1(Nk,m) = 0 such that (5.5) holds for any
ε /∈ Nk,m. Set N :=

⋃
(k,m)∈N2 Nk,m. Then, for any ε /∈ N , we obtain

sup
{∫

Uε
div(−ϕ) dx : ϕ ∈ C1

c (B(0, R);Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1
}
≥
∫
Uε

div(−ϕk,m) dx

=

∫
∂Uε

ϕk,m · ∇ddH n−1.

Now we let k →∞ and employ (5.6) to obtain

H n−1(B(0, R) ∩ ∂∗U ε) ≥H n−1(B(0, R− 1

m
) ∩ ∂U ε),

and the arbitrariness of m ∈ N yields

H n−1(B(0, R) ∩ ∂∗U ε) ≥H n−1(B(0, R) ∩ ∂U ε). (5.7)

Combining (5.7) with the well-known fact that ∂∗U ε ⊂ ∂U ε, we obtain

H n−1(B(0, R) ∩ (∂U ε \ ∂∗U ε)) = 0,

which implies that H n−1(∂U ε \ ∂∗U ε) = 0, by the arbitrariness of R > 0.
Therefore, from (5.4)–(5.5), we have∫

∂∗Uε
ϕ · (νUε −∇d) dH n−1 = 0 for any ϕ ∈ C1

c (Rn;Rn),

which implies our assertion.
The second part of the statement is proved in a similar way by considering the following

functions instead:

ξUε (x) :=


ε if x ∈ U,
d(x) + ε if x ∈ Uε \ U,
0 if x /∈ Uε.

�

Using similar techniques as in the proof of Lemma 5.3, we are able to show the following
Gauss-Green formulas.

Theorem 5.4 (Interior normal trace). Let U ⊂ Ω be a bounded open set, and let F ∈ DMp(Ω)

for 1 ≤ p ≤ ∞. Then, for any φ ∈ C0(Ω) ∩ L∞(Ω) with ∇φ ∈ Lp′(Ω;Rn), there exists a set
N ⊂ R with L1(N ) = 0 such that, for every nonnegative sequence {εk} satisfying εk /∈ N for
any k and εk → 0, the following representation for the interior normal trace on ∂U holds:

〈F · ν, φ〉∂U =

∫
U
φ ddivF +

∫
U
F · ∇φ dx = − lim

k→∞

∫
∂∗Uεk

φF · νUεk dH n−1, (5.8)

where νUεk is the inner unit normal to U εk on ∂∗U εk . In addition, (5.8) holds also for any open
set U ⊂ Ω, provided that supp(φ) ∩ U δ b Ω for any δ > 0.

Proof. We divide the proof into three steps.

1. Suppose first that U b Ω. Then U ε b Ω for any small ε > 0. Recall that U ε
′ ⊂ U ε if

ε′ > ε and
⋃
ε>0 U

ε = U . Define

ψUε (x) :=


ε if x ∈ U ε,
d(x) if x ∈ U \ U ε,
0 if x /∈ U.

Since ψUε ∈ Lipc(Ω), we can use it as a test function. In addition, for any φ ∈ C0(Ω) ∩ L∞(Ω)

with ∇φ ∈ Lp′(Ω;Rn), φF ∈ DMp(Ω) by Proposition 3.1. Then∫
U
ψUε ddiv(φF ) = −

∫
U\Uε

φF · ∇ddx = −
∫
U\Uε

φF · ∇d |∇d|dx

= −
∫ ε

0

∫
∂Ut

φF · ∇ddH n−1 dt, (5.9)
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by the coarea formula (2.2) with u = d and g = χUφF · ∇d |∇d|, by Lemma 5.1 and Remark
5.2. Thus, we use test functions ψUε and ψUε+h with h > 0 to obtain∫

Uε
εddiv(φF ) +

∫
U\Uε

d(x) ddiv(φF ) = −
∫ ε

0

∫
∂Ut

φF · ∇ddH n−1 dt,

and ∫
Uε+h

(ε+ h) ddiv(φF ) +

∫
U\Uε+h

d(x) ddiv(φF ) = −
∫ ε+h

0

∫
∂Ut

φF · ∇ddH n−1 dt.

Subtracting the first equation from the second one, we have

h

∫
Uε+h

ddiv(Fφ) +

∫
Uε\Uε+h

(d(x)− ε) ddiv(Fφ) = −
∫ ε+h

ε

∫
∂Ut

φF · ∇ddH n−1 dt.

We now divide by h and use the fact that

0 ≤ d(x)− ε ≤ h in U ε \ U ε+h, |div(Fφ)|(U ε \ U ε+h)→ 0 as h→ 0

to conclude ∫
Uε

ddiv(Fφ) = −
∫
∂Uε

φF · ∇d dH n−1 for L 1–a.e. ε > 0. (5.10)

We can take any sequence εk → 0 of such good values to obtain∫
U
φ ddivF +

∫
U
F · ∇φ dx = − lim

k→∞

∫
∂Uεk

φF · ∇d dH n−1. (5.11)

By Lemma 5.3, such a sequence can be chosen so that H n−1(∂U εk \ ∂∗U εk) = 0 and ∇d is the
inner normal to U εk at H n−1–almost every point of ∂∗U εk . Then the result follows.

2. Let now U ⊂ Ω be bounded. Since U δ b Ω for any δ > 0, we can consider the test
functions:

ψU
δ

ε (x) :=


ε if x ∈ U ε+δ,
d(x)− δ if x ∈ U δ \ U ε+δ,
0 if x /∈ U δ.

Clearly, ψU
δ

ε ∈ Lipc(Ω) for any δ, ε > 0. Arguing as before, identity (5.9) becomes∫
Uδ
ψU

δ

ε ddiv(φF ) = −
∫ ε+δ

δ

∫
∂Ut

φF · ∇ddH n−1 dt.

We use test functions ψU
δ

ε and ψU
δ

ε+h for any h > 0, and then subtract the equation involving

ψU
δ

ε+h from the one involving ψU
δ

ε to obtain

h

∫
Uε+h+δ

ddiv(φF ) +

∫
Uε+δ\Uε+h+δ

(
d(x)− δ− ε

)
ddiv(φF ) = −

∫ ε+h+δ

ε+δ

∫
∂Ut

φF ·∇d dH n−1 dt.

We can divide by h and send h→ 0 to obtain∫
Uε+δ

ddiv(φF ) = −
∫
∂Uε+δ

φF · ∇ddH n−1 for L 1–a.e. ε, δ > 0.

Now set ε′ := ε+ δ. We choose a suitable sequence ε′k → 0 for which Lemma 5.3 applies so that
(5.8) holds by (3.3).

3. Consider the case that U ⊂ Ω is not bounded. Then we take φ with bounded support in Ω.

Thus, we can choose test functions ηψU
δ

ε for some ε, δ > 0 and η ∈ C∞c (Ω) satisfying η ≡ 1 on

an open set V such that supp(φ) ∩ U δ ⊂ V b Ω. Indeed, ηψU
δ

ε ∈ Lipc(Ω) and φηψU
δ

ε = φψU
δ

ε .
By the product rule (3.3), we have∫

Ω
φψU

δ

ε ddivF =

∫
Ω
ηψU

δ

ε ddiv(φF )−
∫

Ω
ψU

δ

ε F · ∇φ dx.
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Again, by the product rule, we obtain that supp(div(φF )) ⊂ supp (φ), which implies∫
Ω
ηψU

δ

ε ddiv(φF ) =

∫
Ω
ψU

δ

ε ddiv(φF ),

since η ≡ 1 on supp(φ) ∩ U δ ⊃ supp(div(φF )) ∩ supp(ψU
δ

ε ). Therefore, from this point, we can
repeat the same steps as before to conclude the proof. �

Remark 5.5. Theorem 5.4 implies that we may take U = Ω in (5.8) to obtain the Gauss-Green
formula up to the boundary of the open set where F is defined.

As an immediate consequence of Theorem 5.4, we obtain approximations of the classical
Green’s identities for scalar functions with gradients in DMp(Ω).

Theorem 5.6 (First Green’s identity). Let u ∈ W 1,p(Ω) for 1 ≤ p ≤ ∞ be such that ∆u ∈
M(Ω), and let U ⊂ Ω be a bounded open set. Then, for any φ ∈ C0(Ω) ∩ L∞(Ω) with ∇φ ∈
Lp
′
(Ω;Rn), there exists a set N ⊂ R with L1(N ) = 0 such that, for every nonnegative sequence

{εk} satisfying εk /∈ N for any k and εk → 0,∫
U
φ d∆u+

∫
U
∇u · ∇φ dx = − lim

k→∞

∫
∂∗Uεk

φ∇u · νUεk dH n−1, (5.12)

where νUεk is the inner unit normal to U εk on ∂∗U εk .
In particular, if u ∈W 1,2(Ω) ∩ C0(Ω) ∩ L∞(Ω) with ∆u ∈M(Ω),∫

U
ud∆u+

∫
U
|∇u|2 dx = − lim

k→∞

∫
∂∗Uεk

u∇u · νUεk dH n−1. (5.13)

In addition, (5.12) holds also for any open set U ⊂ Ω, provided that supp(φ)∩U δ b Ω for any
small δ > 0. Analogously, (5.13) holds for any open set U ⊂ Ω, provided that supp(u)∩U δ b Ω
for any δ > 0.

Proof. In order to obtain (5.12), it suffices to apply Theorem 5.4 to the vector field F = ∇u,
which clearly belongs to DMp(Ω). Then, if u ∈ W 1,2(Ω) ∩ C0(Ω) ∩ L∞(Ω), we can take φ = u
to obtain (5.13). �

Corollary 5.7 (Second Green’s identity). Let u ∈W 1,p(Ω)∩C0(Ω)∩L∞(Ω) and v ∈W 1,p′(Ω)∩
C0(Ω) ∩ L∞(Ω) for 1 ≤ p ≤ ∞ be such that ∆u,∆v ∈M(Ω), and let U ⊂ Ω be a bounded open
set. Then there exists a set N ⊂ R with L1(N ) = 0 such that, for every nonnegative sequence
{εk} satisfying εk /∈ N for any k and εk → 0,∫

U
v d∆u− ud∆v = − lim

k→∞

∫
∂∗Uεk

(v∇u− u∇v) · νUεk dH n−1, (5.14)

where νUεk is the inner unit normal to U εk on ∂∗U εk . In addition, (5.14) holds also for any
open set U ⊂ Ω, provided that supp(u), supp(v) ∩ U δ b Ω for any small δ > 0.

Proof. We just need to apply Theorem 5.6 to the vector field ∇u, by using v as scalar function,
and vice versa. Then we can obtain (5.12) for the vector fields ∇u and ∇v with the same
sequence U εk , since it is enough to select one sequence suitable for ∇u and then extract a
subsequence for ∇v. Thus, we have∫

U
v d∆u+

∫
U
∇u · ∇v dx = − lim

k→∞

∫
∂∗Uεk

v∇u · νUεk dH n−1,∫
U
ud∆v +

∫
U
∇u · ∇v dx = − lim

k→∞

∫
∂∗Uεk

u∇v · νUεk dH n−1,

and subtracting the second equation from the first yields (5.14). �

Theorem 5.8 (Exterior normal trace). Let U b Ω be an open set, and let F ∈ DMp(Ω) for

1 ≤ p ≤ ∞. Then, for any φ ∈ C0(Ω) with ∇φ ∈ Lp′(Ω;Rn), there exists a set N ⊂ R with
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L1(N ) = 0 such that, for every nonnegative sequence {εk} satisfying εk /∈ N for any k and
εk → 0, the following representation for the exterior normal trace on ∂U holds:

〈F · ν, φ〉∂U =

∫
U
φ ddivF +

∫
U
F · ∇φ dx = − lim

k→∞

∫
∂∗Uεk

φF · νUεk dH n−1, (5.15)

where νUεk is the inner unit normal to Uεk on ∂∗Uεk . In addition, (5.15) holds also for any open

set U satisfying U ⊂ Ω, provided that supp(φ) is compact in Ω.

Proof. We start with the case U b Ω. Then Uε b Ω for any ε > 0 small enough.
We consider the Lipschitz functions:

ξUε (x) :=


ε if x ∈ U,
d(x) + ε if x ∈ Uε \ U,
0 if x /∈ Uε.

By Proposition 3.1, φF ∈ DMp(Ω′) for any open set Ω′ satisfying Uε b Ω′ b Ω for any ε > 0
small enough. Thus, we can use ξUε as test functions to obtain∫

Ω′
ξUε ddiv(φF ) = −

∫
Ω′
φF · ∇ξUε dx = −

∫
Uε\U

φF · ∇ddx = −
∫ ε

0

∫
∂Ut

φF · ∇d dH n−1dt,

(5.16)
by the coarea formula (2.2) with u = d and g = χΩ′\UφF · ∇d|∇d|, by Lemma 5.1 and Remark
5.2.

Now we proceed as in the proof of Theorem 5.4: Take ξUε and ξUε+h for some h > 0 small
enough as test functions so that∫

Uε\U

(
d(x) + ε

)
ddiv(φF ) +

∫
U
εddiv(φF ) = −

∫ ε

0

∫
∂Ut

φF · ∇ddH n−1 dt,

and∫
Uε+h\U

(
d(x) + ε+ h

)
ddiv(φF ) +

∫
U

(ε+ h) ddiv(φF ) = −
∫ ε+h

0

∫
∂Ut

φF · ∇ddH n−1 dt.

By subtracting the first equation from the second one, we have∫
Uε+h\Uε

(
d(x) + ε+ h

)
ddiv(φF ) +

∫
Uε

hddiv(φF ) = −
∫ ε+h

ε

∫
∂Ut

φF · ∇d dH n−1 dt.

It is clear that 0 ≤ d(x) + ε ≤ h on Uε+h \ Uε and that
⋂
h>0 Uε+h = Uε for any ε > 0 implies

|div(φF )|(Uε+h \ Uε)→ 0 as h→ 0.

Then we can divide by h and let h→ 0, by applying the Lebesgue theorem, to obtain that, for
L 1–a.e. ε > 0, ∫

Uε

φ ddivF +

∫
Uε

F · ∇φ dx = −
∫
∂Uε

φF · ∇ddH n−1, (5.17)

by the product rule (3.3). We now choose a sequence εk → 0 such that (5.17) holds and pass to
the limit to obtain∫

U
φ ddivF +

∫
U
F · ∇φ dx = − lim

k→∞

∫
∂Uεk

φF · ∇d dH n−1. (5.18)

As in the proof of Theorem 5.4, we can choose the sequence in such a way that the assertion
in Lemma 5.3 also hold. Thus, we obtain the result.

In the general case, U ⊂ Ω, and supp(φ) is a compact subset of Ω. Hence, we can argue as in
the last part of the proof of Theorem 5.4, by taking a smooth cutoff function η ∈ C∞c (Ω) such
that η ≡ 1 on an open neighborhood V of supp(φ). Following the same steps and replacing ξUε
as test functions, we obtain the desired result. �

Remark 5.9. The previous results apply in particular to the case when U is an open set of
finite perimeter.
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Remark 5.10. As a byproduct of the proofs of Theorems 5.4 and 5.8, we obtain the Gauss-
Green formulas for almost every set that is approximating a given open set U from the interior
and the exterior. More precisely, if U b Ω is an open set, F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and

φ ∈ C0(Ω) with ∇φ ∈ Lp′(Ω;Rn), then, for L 1–a.e. ε > 0,∫
Uε
φ ddivF +

∫
Uε

F · ∇φ dx = −
∫
∂∗Uε

φF · νUε dH n−1, (5.19)∫
Uε

φddivF +

∫
Uε

F · ∇φ dx = −
∫
∂∗Uε

φF · νUε dH n−1. (5.20)

This follows from (5.10) and (5.17) and by taking ε > 0 (up to another negligible set) such that
Lemma 5.3 holds, so that H n−1(∂U ε \ ∂∗U ε) = 0, H n−1(∂Uε \ ∂∗Uε) = 0 (which implies that
|∂U ε| = 0), ∇d = νUε H n−1–a.e. on ∂∗U ε, and ∇d = νUε H n−1–a.e. on ∂∗Uε.

In addition, (5.19)–(5.20) also hold for any open set U satisfying U ⊂ Ω, provided that supp(φ)
is compact in Ω. In general, this statement is valid for L 1–a.e. ε > 0 because we need to apply
Lemma 5.3 and to derive the integrals in h > 0:∫ ε+h

ε

∫
∂Ut

φF · ∇ddH n−1 dt,

∫ ε+h

ε

∫
∂Ut

φF · ∇ddH n−1 dt.

Therefore, such a condition may be removed as long as the conclusions of Lemma 5.3 hold for
any ε > 0, and

∫
∂Ut φF ·∇d dH n−1 and

∫
∂Ut

φF ·∇ddH n−1 are continuous functions of t > 0.

Remark 5.11. It is not necessary to use the signed distance function to construct a family of
approximating sets suitable for Theorems 5.4 and 5.8. Such an argument is related to the one
in [57, Theorem 2.4].

If, for a given open set U b Ω, there exists a function m ∈ Lip(Ω) satisfying m > 0 in U ,
m = 0 on ∂U , and essinf(|∇m|) > 0 in U , then sets {m > ε}, ε ∈ R, can be used for the
approximation. In fact, sets {m > ε} are of finite perimeter for L 1–a.e. ε > 0 and, for such
good values of ε, the measure-theoretic unit interior normals satisfy

ν{m>ε} =
∇m
|∇m|

H n−1–a.e. on ∂∗{m > ε}.

In addition, if there exists such a function m with Ck, k ≥ 2, or C∞ regularity, then {m > ε}
has a Ck or smooth boundary.

As we will see in §7, if U is an open bounded set with C0 boundary, then there exists a smooth
regularized distance ρ satisfying the previously mentioned properties. For a general open set U ,
this may be false.

We can extend Theorem 5.8 to any compact set K ⊂ Ω, in the spirit of [53, Theorem 5.20].
Indeed, we just need to choose the following Lipschitz functions as test functions:

ϕεK(x) :=


ε if dist(x,K) = 0,

ε− dist(x,K) if 0 < dist(x,K) < ε,

0 if dist(x,K) ≥ ε,
and then argue as in the proof of Theorem 5.8 to achieve the following result.

Corollary 5.12. Let K ⊂ Ω be a compact set, and let F ∈ DMp(Ω). Then, for any φ ∈ C0(Ω)

with ∇φ ∈ Lp′(Ω;Rn), there exists a set N ⊂ R with L1(N ) = 0 such that, for every nonnegative
sequence {εk} satisfying εk /∈ N for any k and εk → 0,∫

K
φ ddivF +

∫
K
F · ∇φ dx = lim

k→∞

∫
∂Kεk

φF · ∇dist(x,K) dH n−1, (5.21)

where Kε: = {x ∈ Ω : dist(x,K) ≤ ε}. In addition, (5.21) holds also for any closed set C ⊂ Ω,
provided that supp(φ) is compact in Ω.

The right-hand side of (5.21) can be seen as the definition of the generalized normal trace
functional related to F on ∂K, where ∇dist(x,K) plays the role of a generalized unit exterior

normal, even in the case K̊ = ∅.
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Remark 5.13. The results of Schuricht [53, Theorem 5.20] and Šilhavý [57, Theorem 2.4] can
be recovered by (5.16) and (5.9), respectively.

Indeed, under the same assumptions of Theorem 5.4, we divide by ε in (5.9), use the product
rule (3.3), and send ε→ 0 to obtain∫

U
φ ddivF +

∫
U
F · ∇φ dx = − lim

ε→0

1

ε

∫
U\Uε

φF · ∇ddx, (5.22)

since 0 ≤ ψUε
ε ≤ 1 on U \ U ε and |div(Fφ)|(U \ U ε)→ 0 as ε→ 0. On the other hand, applying

the same steps to (5.16) yields∫
U
φ ddivF +

∫
U
F · ∇φ dx = − lim

ε→0

1

ε

∫
Uε\U

φF · ∇ddx, (5.23)

if F , φ, and U satisfy the conditions of Theorem 5.8. In particular, this works for any compact
set K ⊂ Ω, as in Corollary 5.12:∫

K
φ ddivF +

∫
K
F · ∇φ dx = lim

ε→0

1

ε

∫
Kε\K

φF · ∇dist(x,K) dx. (5.24)

Remark 5.14. Formulas (5.8) and (5.15) can be used to obtain the Gauss-Green formula on
the boundary of U b Ω:

div(Fφ)(∂U) = div(Fφ)(U)− div(Fφ)(U)

= lim
k→∞

(∫
∂∗Uεk

φF · νUεk dH n−1 −
∫
∂∗Uεk

φF · νUεk dH n−1
)
, (5.25)

since we can extract the same subsequence εk for U and U . The same result holds for U such
that U ⊂ Ω if φ has compact support in Ω.

Remark 5.15. If U = B(x0, r), we obtain the Gauss-Green formula for L 1–a.e. r > 0.
Indeed, dist(x, ∂B(x0, r)) = r − |x− x0| for any x ∈ B(x0, r) so that (5.19) implies∫

B(x0,r−ε)
ddiv(φF ) =

∫
∂B(x0,r−ε)

φ(x)F (x) · (x− x0)

|x− x0|
dH n−1(x)

= −
∫
∂B(x0,r−ε)

φF · νB(x0,r−ε) dH n−1 for L 1–a.e. ε ∈ (0, r).

Since the initial choice of r is arbitrary, we conclude that∫
B(x0,r)

ddiv(φF ) = −
∫
∂B(x0,r)

φF · νB(x0,r) dH n−1 for L 1–a.e. r > 0. (5.26)

Moreover, the same argument works with closed balls so that, since dist(x, ∂B(x0, r)) = |x−x0|−r
for any x /∈ B(x0, r), then, by (5.20),∫

B(x0,r)
ddiv(φF ) = −

∫
∂B(x0,r)

φF · νB(x0,r) dH n−1 for L 1–a.e. r > 0. (5.27)

This can also be seen as a consequence of the fact that |div(φF )|(∂B(x0, r)) = 0 for L 1–a.e.
r > 0, since div(φF ) is a Radon measure.

We now present a concrete example of applications of (5.8) and (5.15) to a DMp–field whose
norm blows up on the boundary of the integration domains.

Example 5.16. Let F : R2 \ {(0, 0)} → R2 be the vector field:

F (x1, x2) :=
(x1, x2)

x2
1 + x2

2

. (5.28)

This is the particular case for n = 2 of the vector field F : Rn \ {(0, 0)} → Rn given by

F (x) :=
x

|x|n
.
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Then F ∈ DMp
loc(R

n) for 1 ≤ p < n
n−1 and

divF = nωnδ(0,0), (5.29)

where ωn = |B(0, 1)|. In particular, if n = 2, F ∈ DMp
loc(R

2) for 1 ≤ p < 2, and divF = 2πδ0.
Consider U = (0, 1)2. Chen-Frid [12, Example 1.1] observed that

0 = divF (U) 6= −
∫
∂U

F · νU dH 1 =
π

2
,

since F · νU = 0 on
(
{0} × (0, 1)

)
∪
(
(0, 1)× {0}

)
and

∫ 1

0

1

1 + x2
1

dx1 =
π

4
.

The approach employed in the proof of Theorems 5.4 and 5.8 enable us to solve this apparent
contradiction, by showing that

0 = divF (U) = − lim
ε→0

∫
∂Uε

F · νUε dH 1,

2π = divF (U) = − lim
ε→0

∫
∂Uε

F · νUε dH 1,

where U ε and Uε are given by (5.2) and (5.3), respectively.
In this case, we do not have to select a suitable sequence εk → 0. Indeed, F is smooth away

from the origin, and U ε and Uε are sets of finite perimeter for any ε > 0. Moreover, for this
choice of U , Lemma 5.3 is valid for any ε ∈ (0, 1). Also, the continuity condition mentioned in
Remark 5.10 can be checked. Therefore, by (5.19)–(5.20), we obtain that, for any ε > 0,

0 = divF (U ε) = −
∫
∂Uε

F · νUε dH 1, (5.30)

2π = divF (Uε) = −
∫
∂Uε

F · νUε dH 1. (5.31)

Passing to the limit verifies our assertion.
We may also verify this statement by hand. Observe that U ε = (ε, 1− ε)2 for any ε ∈ (0, 1).

Therefore, we have

∫
∂Uε

F · νUε dH 1 =

∫ 1−ε

ε

ε

ε2 + x2
1

dx1 −
∫ 1−ε

ε

1− ε
(1− ε)2 + x2

1

dx1

+

∫ 1−ε

ε

ε

ε2 + x2
2

dx2 −
∫ 1−ε

ε

1− ε
(1− ε)2 + x2

2

dx2

= 2

(
arctan

(
1− ε
ε

)
− π

4
− π

4
+ arctan

(
ε

1− ε

))
= 0 = −divF (U ε)

for any ε > 0, which is (5.30). As for (5.31), ∂Uε is the union of four segments:

(0, 1)× {−ε}, {1 + ε} × (0, 1), (0, 1)× {1 + ε}, {−ε} × (0, 1),
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and of four circumference arcs of angle π
2 and radius ε centered at the corners of square U .

Therefore, these terms give∫
∂Uε

F · νUε dH 1 = −
∫ 1

0

ε

ε2 + x2
1

dx1 −
∫ 1

0

1 + ε

(1 + ε)2 + x2
2

dx2 −
∫ 1

0

1 + ε

(1 + ε)2 + x2
1

dx1

−
∫ 1

0

ε

ε2 + x2
2

dx2 +

∫ 3
2
π

π

(
− 1

ε

)
ε dθ −

∫ π

π
2

ε(ε+ sin θ)

1 + ε2 + 2ε sin θ
dθ

−
∫ 2π

3
2
π

ε(ε+ cos θ)

1 + ε2 + 2ε cos θ
dθ −

∫ π
2

0

ε(ε+ cos θ + sin θ)

2 + ε2 + 2ε(cos θ + sin θ)
dθ

= −2 arctan

(
1

ε

)
− 2 arctan

(
1

1 + ε

)
− π

2
− π

4
+ arctan

(
1− ε
1 + ε

)
− π

2
+ arctan

(
1

ε

)
− π

4
− arctan

(
ε

ε+ 2

)
+ arctan

(
1

1 + ε

)
= −3

2
π − arctan

(
1

ε

)
− arctan

(
1

1 + ε

)
+
π

2
− arctan ε− arctan (1 + ε)

= −3

2
π − π

2
= −2π = −divF (Uε) for any ε > 0.

6. Other Classes of Divergence-Measure Fields
with Normal Trace Measure

In this section, as a result of the construction in §5, we characterize a class of DMp–fields
whose normal trace on ∂U is represented by a Radon measure.

Remark 5.13 allows us to find a new sufficient condition under which the normal trace func-
tional on an open or closed set can be represented by a Radon measure on the boundary. Such a
condition requires a particular representation for the vector field F , first introduced by Šilhavý
[56, Proposition 6.1]. We also need to recall the notion of lower (n− 1)–dimensional Minkowski
content.

Definition 6.1. Given a closed set K in Rn, the (n − 1)–dimensional Minkowski content is
defined as

M n−1
∗ (K) := lim inf

ε→0

|K +B(0, ε)|
2ε

.

Proposition 6.2. Let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and let U ⊂ Ω be a bounded open set such
that M n−1

∗ (∂U) <∞. Assume that divF has compact support in U and that

F (x) =
1

nωn

∫
Ω

(x− y)

|x− y|n
ddivF (y) for L n–a.e. x ∈ Ω. (6.1)

Then

〈F · ν, ·〉∂U ∈M(∂U).

Similarly, if K ⊂ Ω is a compact set such that M n−1
∗ (∂K) <∞, then

〈F · ν, ·〉∂K ∈M(∂K),

which is in particular true for K = U if U b Ω.

Proof. The normal trace 〈F · ν, ·〉∂U has the following representation:

〈F · ν, ϕ〉∂U = − lim
ε→0

1

ε

∫
U\Uε

ϕ(x)F (x) · ∇d(x) dx for any ϕ ∈ Lipc(Rn); (6.2)

see (5.22) and the observations in Remark 5.13. Thus, in order to prove that 〈F · ν, ·〉∂U ∈
M(∂U), it suffices to show that

| 〈F · ν, ϕ〉∂U | ≤ C ‖ϕ‖L∞(∂U) (6.3)
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for a constant C independent of ϕ. Let V ⊂ U be a compact set such that supp (|divF |) ⊂ V .
Then it follows that∣∣ 〈F · ν, ϕ〉∂U ∣∣ = lim

ε→0

∣∣∣1
ε

∫
U\Uε

ϕ(x)F (x) · ∇d(x) dx
∣∣∣

= lim
ε→0

∣∣∣1
ε

∫
U\Uε

ϕ(x)

(∫
Ω

(x− y)

|x− y|n
ddivF (y) · ∇d(x)

)
dx
∣∣∣

≤ lim inf
ε→0

1

ε
‖ϕ‖L∞(U\Uε)

∫
U\Uε

∫
V

1

|x− y|n−1
d|divF |(y) dx

= lim inf
ε→0

1

ε
‖ϕ‖L∞(U\Uε)

∫
V

∫
U\Uε

1

|x− y|n−1
dx d|divF |(y), (6.4)

where we have used Fubini’s theorem and the fact that |∇d| = 1 L n–a.e. (Lemma 5.1).
Moreover, limε→0 supU\Uε |ϕ| = ‖ϕ‖L∞(∂U), by the continuity of ϕ.

Since V ⊂ U is a compact set, there exists k = k(V ) such that, for small enough ε,

|x− y| ≥ k for any x ∈ U \ U ε and y ∈ V .

Then it follows that

| 〈F · ν, ϕ〉∂U | ≤ ‖ϕ‖L∞(∂U) |divF |(V )k1−n lim inf
ε→0

1

ε
|U \ U ε|

≤ 2k1−n|divF |(V ) ‖ϕ‖L∞(∂U) lim inf
ε→0

1

2ε
|∂U +B(0, ε)|

≤ 2k1−n|divF |(V )M n−1
∗ (∂U) ‖ϕ‖L∞(∂U) .

This proves (6.3), since ∂U is of finite lower (n− 1)–dimensional Minkowski content.
In the same way, using (5.24), we can show that 〈F · ν, ·〉∂K ∈M(∂K) if K ⊂ Ω is a compact

set, especially when K = U for some bounded open set U . �

Remark 6.3. Condition (6.1) is not strongly restrictive in the sense that F may not be com-
pactly supported and unbounded. Indeed, let F (x) = x

|x|n as in Example 5.16. Then, by (5.29),

F satisfies (6.1), even though F is unbounded and supported on the whole Rn.
Moreover, (6.1) is satisfied by a large class of vector fields F , as shown in [56, Proposition

6.1]. Indeed, given any µ ∈M(Ω) with compact support in Ω, the vector field

F (x) =
1

nωn

∫
Ω

(x− y)

|x− y|n
dµ(y)

satisfies divF = µ in M(Ω), and F ∈ Lploc(Ω;Rn) for any 1 ≤ p < n
n−1 . In addition, if

n
n−1 ≤ p ≤ ∞, then F ∈ Lploc(Ω;Rn) if |µ|(B(x, r)) ≤ crm for any x ∈ Rn and r ∈ (0, a), for

some m > n− p
p−1 , a > 0, and c > 0.

Remark 6.4. Proposition 6.2 applies to a particular subfamily of sets of finite perimeter. Indeed,
any bounded open set U with M n−1

∗ (∂U) <∞ is a set of finite perimeter in Rn.
Even though the result is well known, we give here a short proof for the ease of the reader.

Let

gε(x) := max

{
0, 1− dist(x, U ε)

ε

}
.

Then gε → χU in L1(Rn), and |∇gε| = 1
εχU\Uε . Thus, for any φ ∈ C1

c (Rn;Rn), we have∣∣∣∣∫
Rn
χUdivφ dx

∣∣∣∣ = lim
ε→0

∣∣∣∣∫
Rn
gεdivφ dx

∣∣∣∣ = lim
ε→0

∣∣∣∣∫
Rn
φ · ∇gε dx

∣∣∣∣
≤ ‖φ‖L∞(Rn;Rn) lim inf

ε→0

|U \ U ε|
ε

≤ 2M n−1
∗ (∂U)‖φ‖L∞(Rn;Rn).

This implies that U is a set of finite perimeter with |DχU |(Rn) ≤ 2M n−1
∗ (∂U).
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Arguing analogously, we can also show that any compact set K with M n−1
∗ (∂K) <∞ is a set

of finite perimeter in Rn, with |DχK |(Rn) ≤ 2M n−1
∗ (∂K). This can be shown by considering

the functions:

fε(x) := max

{
0, 1− d(x,K)

ε

}
,

which satisfy that fε → χK in L1(Rn) and |∇fε| = 1
εχKε\K .

In the case p = ∞, assumption (6.1) is superfluous, as shown in the following proposition,
which can be seen as a particular case of [57, Theorem 2.4] and [32, Theorem 2.4].

Proposition 6.5. Let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and let U ⊂ Ω be a bounded open set such
that M n−1

∗ (∂U) <∞. If p =∞, or 1 ≤ p <∞ and F satisfies

lim sup
ε→0

1

ε

∫
U\Uε

|F |p dx <∞, (6.5)

then

〈F · ν, ·〉∂U ∈M(∂U).

Analogously, let K ⊂ Ω be a compact set such that M n−1
∗ (∂K) < ∞. If p = ∞, or 1 ≤ p < ∞

and F satisfies

lim sup
ε→0

1

ε

∫
Kε\K

|F |p dx <∞, (6.6)

then

〈F · ν, ·〉∂K ∈M(∂K).

In particular, this implies that, if U b Ω, M n−1
∗ (∂U) < ∞, and the same assumption on F is

made with K = U , then

〈F · ν, ·〉∂U ∈M(∂U).

Proof. Arguing as in the proof of Proposition 6.2, we see that, for any ϕ ∈ Lipc(Rn),

∣∣ 〈F · ν, ϕ〉∂U ∣∣ = lim
ε→0

∣∣∣∣∣1ε
∫
U\Uε

ϕ(x)F (x) · ∇d(x) dx

∣∣∣∣∣
≤ lim inf

ε→0
‖ϕ‖L∞(U\Uε)

1

ε
|U \ U ε|

1
p′ ‖F ‖Lp(U\Uε;Rn).

If p =∞, we have

| 〈F · ν, ϕ〉∂U | ≤ 2‖F ‖L∞(U ;Rn)M
n−1
∗ (∂U) ‖ϕ‖L∞(∂U) .

If 1 ≤ p <∞, then

| 〈F · ν, ϕ〉∂U | ≤
(

lim inf
ε→0

1

ε
|U \ U ε|

) 1
p′
(

lim sup
ε→0

ε
− 1
p ‖F ‖Lp(U\Uε;Rn)

)
‖ϕ‖L∞(∂U)

≤
(
2M n−1

∗ (∂U)
) 1
p′

(
lim sup
ε→0

1

ε

∫
U\Uε

|F |p dx

) 1
p

‖ϕ‖L∞(∂U) ,

from which 〈F · ν, ·〉∂U ∈ M(∂U), because of (6.5). The case of the compact set follows analo-
gously from (5.24), by employing (6.6), if F /∈ DM∞(Ω). �

This proposition may also be seen as an alternative way of obtaining a part of the results
of Proposition 4.9 in the case that E is an open or compact set whose boundary has finite
Minkowski content.

Remark 6.6. In particular, Propositions 6.2 and 6.5 hold also for U = Ω, when Ω is an open
bounded set such that M n−1

∗ (∂Ω) <∞.
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Remark 6.7. We can reinterpret Theorems 5.4 and 5.8 in the distributional sense. Indeed,
given F ∈ DMp(Ω) for 1 ≤ p ≤ ∞, and an open bounded set U ⊂ Ω, (5.8) is equivalent to the
following: There exists a set N ⊂ R with L1(N ) = 0 such that, for every nonnegative sequence
{εk} satisfying εk /∈ N for any k and εk → 0,

F · νUεk H n−1 ∂U εk = F ·DχUεk
∗
⇀ −〈F · ν, ·〉∂U (6.7)

in the distributional sense on Rn; that is, testing the traces against φ ∈ Lipc(Rn).
Analogously, if U b Ω, (5.15) implies that there exists a set N ′ ⊂ R with L1(N ′) = 0 such

that, for every nonnegative sequence {εk} satisfying εk /∈ N for any k and εk → 0,

F · νUεk H n−1 ∂Uεk = F ·DχUεk
∗
⇀ −〈F · ν, ·〉∂U (6.8)

in the distributional sense on Rn. In particular, this means that, if 〈F · ν, ·〉∂U ∈ M(Ω), then,
by the uniform boundedness principle, we have

lim sup
k→∞

‖F · νUεk‖L1(∂∗Uεk ;H n−1) <∞.

Analogously, if 〈F · ν, ·〉∂U ∈M(Ω), then

lim sup
k→∞

‖F · νUεk‖L1(∂∗Uεk ;H n−1) <∞.

Furthermore, if U is an open set of finite perimeter in Ω, then

DχUεk ⇀ DχU

in the sense of Radon measures, where εk is a vanishing sequence for which the conclusions of
Lemma 5.3 hold. Indeed, for any φ ∈ C1

c (Ω;Rn),

−
∫

Ω
φ · dDχUεk =

∫
Ω
χUεk divφ dx −→

∫
Ω
χU divφ dx = −

∫
Ω
φ · dDχU ,

and the assertion follows by the density of C1
c (Ω;Rn) in Cc(Ω;Rn) with respect to the supremum

norm. If U is also a set of finite perimeter in Ω, then DχUεk ⇀ DχU analogously.

Thanks to Remark 6.7, we can show that the normal traces on open and closed sets of finite
perimeter agree with the classical dot product, provided that F is continuous. It is true that
F ∈ C0(Ω;Rn)∩DMp(Ω) for 1 ≤ p ≤ ∞ implies that F ∈ DM∞loc(Ω). Thus, we may expect the
existence of normal traces as locally bounded function by the known theory ([14, 16]). Through
(6.7)–(6.8), we now give a more direct proof.

Proposition 6.8. Let F ∈ C0(Ω;Rn)∩DMp(Ω) for 1 ≤ p ≤ ∞, and let U ⊂ Ω be an open set
of finite perimeter. Then

〈F · ν, ·〉∂U = −F · νUH n−1 ∂∗U in Mloc(Ω).

Similarly, if U ⊂ Ω is a set of finite perimeter, then

〈F · ν, ·〉∂U = −F · νUH n−1 ∂∗U in Mloc(Ω).

In addition, if U b Ω, the previous identities hold in M(Ω).

Proof. Let εk → 0 be a sequence such that both (6.7) and the conclusions of Lemma 5.3 hold.
By Remark 6.7, we obtain∫

∂Uεk
φF · νUεk dH n−1 −→

∫
∂∗U

φF · νU dH n−1 for any φ ∈ Cc(Ω),

since φF ∈ Cc(Ω;Rn) and νUεk H n−1 ∂∗U εk = DχUεk ⇀ DχU = νU H n−1 ∂∗U in M(Ω).
This implies

〈F · ν, φ〉∂U = −
∫
∂∗U

φF · νU dH n−1 for any φ ∈ Cc(Ω),

which means that 〈F · ν, ·〉∂U = −F · νUH n−1 ∂∗U in Mloc(Ω).
We can argue in a similar way with (6.8) and the fact that DχUεk ⇀ DχU in M(Ω) to prove

the second part of the statement.
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Finally, if U b Ω, there exists η ∈ Cc(Ω) such that η ≡ 1 on U . Hence, for any φ ∈ C0(Ω),
ηφF ∈ Cc(Ω;Rn) so that∫

∂Uεk
φF · νUεk dH n−1 =

∫
∂Uεk

ηφF · νUεk dH n−1

→
∫
∂∗U

ηφF · νU dH n−1 =

∫
∂∗U

φF · νU dH n−1,

which implies that 〈F · ν, ·〉∂U = −F · νUH n−1 ∂∗U in M(Ω). Arguing similarly for U , we
complete the proof. �

This result also allows us to obtain Green’s identities for scalar functions in C1(Ω) with
gradient in DMp(Ω) and open sets of finite perimeter.

Proposition 6.9. Let u ∈ C1(Ω) ∩W 1,p(Ω) for 1 ≤ p ≤ ∞ be such that ∆u ∈ M(Ω), and let

U b Ω be an open set of finite perimeter. Then, for any φ ∈ C0(Ω) with ∇φ ∈ Lp′(Ω;Rn),∫
U
φ d∆u+

∫
U
∇u · ∇φ dx = −

∫
∂∗U

φ∇u · νU dH n−1. (6.9)

In particular, if u ∈ C1(Ω) ∩W 1,2(Ω) with ∆u ∈M(Ω), then∫
U
ud∆u+

∫
U
|∇u|2 dx = −

∫
∂∗U

u∇u · νU dH n−1. (6.10)

In addition, if u ∈ C1(Ω) ∩W 1,p(Ω) and v ∈ C1(Ω) ∩W 1,p′(Ω) for 1 ≤ p ≤ ∞ with ∆u,∆v ∈
M(Ω), then ∫

U
v d∆u− ud∆v = −

∫
∂∗U

(v∇u− u∇v) · νU dH n−1. (6.11)

Finally, we can also consider open sets of finite perimeter U ⊂ Ω, if the supports of φ, u, and v
are required to be compact in Ω.

Proof. Clearly, ∇u ∈ C0(Ω;Rn)∩DMp(Ω) and ∇v ∈ C0(Ω;Rn)∩DMp′(Ω). Thus, it suffices to
combine the results of Theorem 5.6, Corollary 5.7, and Proposition 6.8 to complete the proof. �

We notice that (6.9) and (6.11) are closely related to the results of Comi-Payne [16, Proposition
4.5], where Green’s identities are achieved for C1 functions (whose gradients are essentially
bounded DM–fields) and sets of finite perimeter.

Arguing in a similar way and employing the refinement of the Gauss-Green formula for DM∞–
fields given in Proposition 4.9, we now achieve all Green’s identities for Lipschitz functions with
Laplacian measure and sets of finite perimeter.

Proposition 6.10. Let u ∈ Liploc(Ω) be such that ∆u ∈ Mloc(Ω), and let E ⊂ Ω be a set
of locally finite perimeter. Then there exist interior and exterior normal traces of ∇u: (∇ui ·
νE), (∇ue · νE) ∈ L∞loc(∂

∗E; H n−1) such that, for any v ∈ C0(Ω) satisfying ∇v ∈ L1
loc(Ω;Rn)

and supp(χEv) b Ω,∫
E1

v d∆u+

∫
E
∇v · ∇udx = −

∫
∂∗E

v(∇ui · νE) dH n−1, (6.12)∫
E1∪∂∗E

v d∆u+

∫
E
∇v · ∇udx = −

∫
∂∗E

v(∇ue · νE) dH n−1. (6.13)

For any open set U b Ω, the following estimates hold:

‖∇ui · νE‖L∞(∂∗E∩U ;H n−1) ≤ ‖∇u‖L∞(U∩E;Rn), (6.14)

‖∇ue · νE‖L∞(∂∗E∩U ;H n−1) ≤ ‖∇u‖L∞(U\E;Rn). (6.15)
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In addition, if v ∈ Liploc(Ω) with ∆v ∈ Mloc(Ω), and supp(χEv), supp(χEu) b Ω, then the
following formulas hold:∫

E1

v d∆u− ud∆v = −
∫
∂∗E

(
v(∇ui · νE)− u(∇vi · νE)

)
dH n−1, (6.16)∫

E1∪∂∗E
v d∆u− ud∆v = −

∫
∂∗E

(
v(∇ue · νE)− u(∇ve · νE)

)
dH n−1. (6.17)

In particular, if supp(χEu) b Ω, then∫
E1

ud∆u+

∫
E
|∇u|2 dx = −

∫
∂∗E

u(∇ui · νE) dH n−1, (6.18)∫
E1∪∂∗E

u d∆u+

∫
E
|∇u|2 dx = −

∫
∂∗E

u(∇ue · νE) dH n−1. (6.19)

Proof. Since∇u ∈ DM∞loc(Ω), the existence of interior and exterior normal traces in L∞loc(∂
∗E; H n−1)

and estimates (6.14)–(6.15) follow from [16, Theorem 4.2] and Proposition 4.9. Analogously,
(6.12)–(6.13) are an immediate consequence of (4.6)–(4.7), with F = ∇u and φ = v.

In addition, if supp(χEu) b Ω and v ∈ Liploc(Ω) with ∆v ∈ Mloc(Ω), then we can exchange
the role of u and v in (6.12) and (6.13):∫

E1

u d∆v +

∫
E
∇v · ∇udx = −

∫
∂∗E

u(∇vi · νE) dH n−1, (6.20)∫
E1∪∂∗E

v d∆v +

∫
E
∇v · ∇udx = −

∫
∂∗E

u(∇ve · νE) dH n−1. (6.21)

Thus, it suffices to subtract (6.20) from (6.12) to obtain (6.16), and to subtract (6.21) from
(6.13) to obtain (6.17). Finally, choosing u = v in (6.12)–(6.13), we obtain (6.18)–(6.19). �

7. Normal Traces for Open Sets as the Limits of the Classical Normal Traces
for Smooth Sets

In this section, we show that the approximations of a general open set U can be refined in such
a way that 〈F · ν, ·〉∂U and 〈F · ν, ·〉∂U can be regarded as the limits of the classical normal traces
on the boundaries of smooth sets. In the case that the open set U has continuous boundary, we
can exhibit explicit approximating families of open sets with smooth boundary as deformations
to the open set U .

7.1. The general case. In order to achieve the smooth approximation, we recall another re-
markable result concerning the approximation of any open set by an increasing sequence of open
sets with smooth boundary, a very simple proof of which was given by Daners [21, Proposition
8.2.1].

Proposition 7.1. Let U ⊂ Rn be an open set. Then there exists a sequence of bounded open
sets Uk with boundary of class C∞ such that Uk b Uk+1 b U and

⋃
k Uk = U .

We can use this result to extend Theorem 5.4, via showing that the normal trace can be
approximated by a sequence of the classical normal traces on smooth boundaries.

Theorem 7.2. Let U ⊂ Ω be a bounded open set, and let F ∈ DMp(Ω). Then, for any

φ ∈ C0(Ω)∩L∞(Ω) with ∇φ ∈ Lp′(Ω;Rn), there exists a sequence of bounded open sets Uk with
boundary of class C∞ such that Uk b U ,

⋃
k Uk = U , and

〈F · ν, φ〉∂U = − lim
k→∞

∫
∂Uk

φF · νUk dH n−1, (7.1)

where νUk is the inner unit normal to Uk. In addition, (7.1) holds also for any open set U ⊂ Ω,
provided that supp(φ) ∩ U δ b Ω for any δ > 0.
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Proof. We just need to apply Proposition 7.1 to U in order to obtain an approximating sequence
of smooth sets Um, and then argue as in the proof of Theorem 5.4 with respect to any Um.

We note that sets U εm have smooth boundaries, for any 0 < ε < δm, for some δm sufficiently

small. Indeed, the signed distance function dm from ∂Um is smooth in Um \ U δmm and satisfies

∇dm(x) = νUεm(x) for any x ∈ ∂U εm, which implies that |∇dm(x)| = 1 for any x ∈ Um \U δmm (for
a proof of these facts, we refer to [35, Appendix B] and [34, Lemma 14.16]). Therefore, the level
sets {dm = ε} = ∂U εm are smooth for any ε ∈ [0, δm).

Then we obtain a sequence of open bounded sets U
εj
m with smooth boundary satisfying∫

U
εj
m

φ ddivF +

∫
U
εj
m

F · ∇φ dx = −
∫
∂U

εj
m

φF · ν
U
εj
m

dH n−1 (7.2)

for some decreasing sequence εj → 0 and any m, j ∈ N.

Clearly, U
εj
m b U

εj
m+1 and U

εj
m b U

εj+1
m , so that we can find a subsequence U εkk =: Uk satisfying

Uk b Uk+1, Uk b U , and
⋃
k Uk = U . Therefore, we can pass to the limit in the left-hand side

of (7.2) by the Lebesgue theorem to obtain (7.1) (in the case that U is not bounded, we employ
the condition on the support of φ). �

Similarly, an analogous kind of approximation can also be shown for closed sets.

Proposition 7.3. Let C ⊂ Rn be a closed set. Then there exists a sequence of closed sets Ck
with boundary of class C∞ such that Ck ⊃ C̊k ⊃ Ck+1 ⊃ C̊k+1 ⊃ C and

⋂
k Ck = C. In addition,

if C is bounded, then the closed sets Ck can be chosen to be bounded.

Proof. Let U := Rn \ C. Then it suffices to define Ck := Rn \ Uk and apply Proposition 7.1 to
U . The result follows easily.

In the case that C is bounded, then, for any δ > 0, there exists k0 large enough such that
∂Uk ∩∂Cδ = ∅ for any k ≥ k0, where Cδ = {x ∈ Rn : dist(x,C) < δ}. Then we set Ck = Cδ \Uk,
up to relabeling the sequence Uk in such a way that it starts from k0. �

Arguing similarly as before, Proposition 7.3 can be used to represent the exterior normal trace
as the limit of the classical normal traces on smooth boundaries, thus improving the result of
Theorem 5.8.

Theorem 7.4. Let U b Ω be an open set, and let F ∈ DMp(Ω). Then, for any φ ∈ C0(Ω)

with ∇φ ∈ Lp′(Ω;Rn), there exists a sequence of bounded open sets Vk with boundary of class
C∞ such that U b Vk ⊂ Ω,

⋂
k Vk = U , and

〈F · ν, φ〉∂U = − lim
k→∞

∫
∂Vk

φF · νVk dH n−1, (7.3)

where νVk is the classical inner unit normal to Vk. In addition, (7.3) holds also for any open set

U satisfying U ⊂ Ω, provided that supp(φ) is compact in Ω.

Proof. It suffices to define Vk := C̊k and apply Proposition 7.3 to C = U . Then the result follows
in an analogous way as in the proof of Theorem 7.2. �

7.2. The case of C0 open sets. We now consider the question of constructing the interior and
exterior normal traces as the limit of classical normal traces over smooth approximations of the
open bounded set U with C0 boundary. In general, as it has been explained in the introduction,
it is a challenging question to approximate an open (bounded) set U with smooth domains U ε

essentially from the inside in such a way that divF (U ε) → divF (U) and an interior Gauss-
Green formula holds for unbounded DMp–fields. Indeed, in §5, we have used the standard
signed distance d to obtain Theorems 5.4 and 5.8, but the approximating sets are not smooth.
We have shown that such results in Theorems 7.2 and 7.4 can be improved. On the other hand,
such an approximation is quite abstract, and it gives little insight in the actual shape of the
approximating sets.
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Remark 7.5. We observe that an open bounded set U with C0 boundary might not have finite
perimeter; such examples include von Koch’s snowflake [64]. Also, we do not have a notion of
unit normals to a C0 open set. Thus, such a type of sets is more general in this sense. On the
other hand, an open set of finite perimeter may have really wild topological boundary even with
full Lebesgue measure (see e.g. [43, Example 12.25]) so that it is not a C0 open set in general,
since it is well know that, if ∂U can be seen locally as the graph of a continuous function, then
|∂U | = 0.

We now exhibit here a rather explicit family of open smooth sets approximating a given
bounded open set with C0 boundary from both the interior and the exterior. To this purpose,
we consider a different type of distance, the regularized distance ρ, which was introduced in
Lieberman [41].

Definition 7.6. ρ is a regularized distance for U if the following holds:

(i) ρ ∈ C2(Rn \ ∂U) ∩ Lip(Rn);

(ii) The ratios ρ(x)
d(x) and d(x)

ρ(x) are positive and uniformly bounded for all x ∈ Rn \ ∂U , where

d is the signed distance introduced in §5.

It was proved by Lieberman [41, Lemma 1.1] that any open set U has a regularized distance,
since the signed distance d is a 1-Lipschitz function (Lemma 5.1). Indeed, given any η ∈ C2(Rn),
supp η ⊂ B(0, 1), and

∫
Rn η(z)dz = 1, we can define

G(x, τ) =

∫
B(0,1)

d
(
x− τ

2
z
)
η(z) dz. (7.4)

The regularized distance ρ is then given by the equation

ρ(x) = G(x, ρ(x)), (7.5)

which has a unique solution for every x ∈ Rn. Moreover,

1

2
≤ ρ(x)

d(x)
≤ 2 for all x ∈ Rn \ ∂U. (7.6)

Then the following result holds, for which we refer to Lieberman [41, Lemma 1.1, Corollary 1.2]
and the comments before it.

Lemma 7.7. Every open set U has a regularized distance ρ. Moreover, if η ∈ C∞(Rn) is chosen
for (7.4), then ρ ∈ C∞(Rn \ ∂U).

Even though every open set U has a regularized distance, it is important to obtain properties
concerning the non-degeneracy of gradient ∇ρ. Indeed, if the gradient of ρ does not vanish in a
neighborhood of ∂U , then we can apply the techniques in §5 to obtain the interior and exterior
Gauss-Green formulas for DMp–fields.

The non-degeneracy of ∇ρ might not be true for general open sets U (see [41, Corollary 1.2]
and the comments following it). However, it was proved by Ball-Zarnescu [7, Proposition 3.1]
that this property holds for C0 domains, which yields the following result.

Theorem 7.8 (Ball-Zarnescu). If U is an open bounded set with C0 boundary, then |∇ρ(x)| 6= 0
for all x in a neighborhood of ∂U but x /∈ ∂U .

Remark 7.9. The argument of the proof of Theorem 7.8 relies on both the construction of a
suitable good neighborhood for any point of ∂U and the use of the compactness assumption.
Hence, we see that the local version of this result also applies to general open sets with C0

boundary: For any compact subset K ⊂ ∂U , there exists a suitable neighborhood V of K such
that |∇ρ(x)| 6= 0 for any x ∈ V \ ∂U .

Thanks to the Ball-Zarnescu theorem (Theorem 7.8), we can proceed as in §5 to obtain an
analogous statement, by approximating U and U in Ω with the following smooth sets:

U ε,ρ := {x ∈ Rn : ρ(x) > ε}, Uε,ρ := {x ∈ Rn : ρ(x) > −ε} for ε > 0.
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Theorem 7.10 (Interior normal trace via smooth approximations). Let U ⊂ Ω be a bounded
open set with C0 boundary, and let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞. Then, for any φ ∈ C0(Ω) ∩
L∞(Ω) with ∇φ ∈ Lp′(Ω;Rn), there exists a set N ⊂ R with L1(N ) = 0 such that, for every
nonnegative sequence {εk} satisfying εk /∈ N for any k and εk → 0,

〈F · ν, φ〉∂U =

∫
U
φ ddivF +

∫
U
F · ∇φ dx = − lim

k→∞

∫
∂Uεk,ρ

φF · νUεk,ρ dH n−1, (7.7)

where νUεk,ρ is the inner unit normal to the smooth sets U εk,ρ. In addition, (7.7) holds also for
any open set U ⊂ Ω, provided that supp(φ) ∩ U δ b Ω for any small δ > 0.

Proof. Since ρ is smooth and |∇ρ(x)| 6= 0 for any x ∈ U \U ε,ρ for small enough ε, it follows that
{x ∈ Rn : ρ(x) = ε} is a smooth hypersurface in Rn. Therefore, ∂U ε,ρ = ∂∗U ε,ρ and

∇ρ
|∇ρ|

(x) = νUε,ρ(x) for every x ∈ ∂U ε,ρ.

We can now proceed in the same way as in the second step of the proof of Theorem 5.4 by
noticing that the only difference is in the application of the coarea formula and in the use of ρ,

instead of d, in the definition of ψU
δ,ρ

ε,ρ for δ, ε > 0. Indeed, using Theorem 7.8, we rewrite (5.9)
in the case U b Ω as follows:∫

U
ψU

δ,ρ

ε,ρ ddiv(φF ) = −
∫
Uδ,ρ\Uδ+ε,ρ

φF · ∇ρ dx

= −
∫
Uδ,ρ\Uδ+ε,ρ

φF · ∇ρ
|∇ρ|

|∇ρ| dx

= −
∫ δ+ε

δ

∫
∂Ut,ρ

φF · ∇ρ
|∇ρ|

dH n−1 dt,

by the coarea formula (2.2) with u = ρ and g = χUδ,ρφF ·
∇ρ
|∇ρ| |∇ρ|, since

essinf|∇ρ| > 0 on U δ,ρ \ U δ+ε,ρ for any δ, ε > 0.

Then we can proceed as in Steps 2–3 of the proof of Theorem 5.4. Finally, in the case that U
is not bounded, we employ Remark 7.9 to obtain the desired result. �

Remark 7.11. In particular, Theorem 7.10 implies that, if Ω is of C0 boundary, the Gauss-
Green formula up to the boundary by approximating ∂Ω with a sequence of smooth sets. This
can be seen by taking U = Ω in (7.7).

Analogously, we also have a smooth version of Theorem 5.8, in which we employ the fact that
|∂U | = 0 if U has a C0 boundary, by Remark 7.5, in order to integrate F · ∇φ only on U .

Theorem 7.12 (Exterior normal traces via smooth approximations). Let U b Ω be a C0 open

set, and let F ∈ DMp(Ω) for 1 ≤ p ≤ ∞. Then, for any φ ∈ C0(Ω) with ∇φ ∈ Lp′(Ω;Rn), there
exists a set N ⊂ R with L1(N ) = 0 such that, for every nonnegative sequence {εk} satisfying
εk /∈ N for any k and εk → 0,

〈F · ν, φ〉∂U =

∫
U
φ ddivF +

∫
U
F · ∇φ dx = − lim

k→∞

∫
∂Uεk,ρ

φF · νUεk,ρ dH n−1, (7.8)

where νUεk,ρ is the inner unit normal to the smooth sets Uεk,ρ. In addition, (7.8) holds also for

any open set U satisfying U ⊂ Ω, provided that supp(φ) is compact in Ω.

8. The Gauss-Green Formula on Lipschitz Domains

In Ball-Zarnescu [7], it is shown that, if a domain U is of class C0, then there is a canonical
smooth field of good directions defined in a suitable neighborhood of ∂U , in terms of which a
corresponding flow can be defined. By means of this flow, U can be approximated from both the
interior and the exterior by diffeomorphic domains of class C∞; see also Hofmann-Mitrea-Taylor
[37] for the definition of a continuous vector field transversal to the boundary of an open set of
locally finite perimeter.
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In a related issue, Chen-Frid in [11, 12] introduced the notion of regular Lipschitz deformable
boundary (see Definition 2.7). Then, for a bounded open set U satisfying this condition, they
proceeded to obtain the Gauss-Green formulas for DMp–fields F . For the case p 6=∞, the nor-
mal trace of F is defined as a distribution which is expressed as an average over a neighborhood
of Lipschitz deformable boundary ∂U determined by the Lipschitz deformations. However, as
explained in the introduction, the main goal of this paper is to present the Gauss-Green formula
for the case p 6= ∞, by using the classical normal traces F · ν which are defined on almost
every surface that approximates ∂U . Thus, the present paper aligns with the later work by
Chen-Torres-Ziemer [14], in which the Gauss-Green formula for bounded DM–fields has been
established over arbitrary sets of finite perimeter E via the normal trace on ∂∗E as the limit of
classical normal traces on smooth approximations of E. The goal of this section is to show that
the main result in Ball-Zarnescu [7] implies that any Lipschitz domain satisfies condition (ii) of
Definition 2.7, which indicates that condition (ii) holds automatically for a Lipschitz domain.

For a domain U in the class C0, the concept of a good direction (see Definition 2.6) has been
introduced, and the following result has been established in [7].

Proposition 8.1. [7, Proposition 2.1] Let U ⊂ Rn be a bounded open set with boundary of class
C0. Then there exist a neighborhood V of ∂U and a smooth function G : V → Sn−1 so that, for
each P ∈ V , the unit vector G(P ) is a good direction.

Remark 8.2. Proposition 8.1 can be localized. Indeed, if U is an unbounded open set with
boundary of class C0, then U ∩ B(0, R) is a bounded open set with boundary of class C0 for
any R > 0. Therefore, there exist a neighborhood V of any compact set K ⊂ ∂U and a smooth
function G : V → Sn−1 so that, for each P ∈ V , the unit vector G(P ) is a good direction.

We recall that ν = G(P ) is a good direction if ∂U is the graph of a continuous function in a
small neighborhood B(P, δ) and in some system of coordinates (y′, yn), where ν is a unit vector
in the direction of yn. Using the field of good directions G(p), a flow S(·)(·) : R×Rn → Rn can
be defined through:

ẋ(t) = γ(x(t))G(x(t)), x(0) = x0, (8.1)

with x(t) = S(t)(x0) as the solution of the initial value problem (8.1) for the differential equation
at time t, where γ is an appropriate smooth function (see [7, §4] for the details on the construction
of the flow).

By exploiting the properties of the flow of good directions, the following theorem has been
proved in Ball-Zarnescu [7], which is very helpful in the rest of this section.

Theorem 8.3. [7, Theorem 5.1] Let U ⊂ Rn, n ≥ 2, be a bounded domain of class C0. Let ρ
be a regularized distance defined in §7. For ε ∈ R, define

U ε,ρ = {x ∈ Rn : ρ(x) > ε}, Uε,ρ = {x ∈ Rn : ρ(x) > −ε}.
Then there exists ε0 = ε0(U) > 0 such that, if 0 < ε < ε0, Uε,ρ and U ε,ρ are bounded domains
of class C∞ and satisfy the following:

(i)
⋂

0<ε<ε0
Uε,ρ = U,

⋃
0<ε<ε0

U ε,ρ = U , and

U
ε′,ρ ⊂ U ε,ρ and Uε′,ρ ⊃ U ε,ρ if 0 < ε < ε′ < ε0.

(ii) For −ε0 < ε < ε0, there is a homeomorphism f(ε, ·) of Rn onto Rn with inverse denoted
f−1(ε, ·) so that

• f(ε, U) = U
ε,ρ

and f(ε, ∂U) = ∂U ε,ρ for ε > 0,
f(ε, U) = U−ε,ρ and f(ε, ∂U) = ∂U−ε,ρ for ε < 0;

• f(ε, x) = x for |ρ(x)| ≥ 3|ε|, so that f(0, ·) is the identity;

• f(ε, ·) : Rn \ ∂U → Rn \ ∂U ε,ρ for ε > 0, and f(ε, ·) : Rn \ ∂U → Rn \ ∂U−ε,ρ for
ε < 0 are both C∞ diffeomorphisms. In addition, f, f−1 ∈ C0((−ε0, ε0)× Rn;Rn).

(iii) There is a map g : (0, ε0)× (−ε0, 0)×Rn → Rn such that, if ε ∈ (0, ε0) and ε′ ∈ (−ε0, 0),
then

• g(ε, ε′, ·) is a C∞ diffeomorphism of Rn onto Rn with inverse g−1(ε, ε′, ·) : Rn → Rn;
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• g(ε, ε′, U ε,ρ) = U−ε′,ρ, g(ε, ε′, ∂U ε,ρ) = ∂U−ε′,ρ;

• g(ε, ε′, x) = x for 3ε ≤ ρ(x) ≤ 3ε′.

Remark 8.4. An easy consequence of Theorem 8.3(ii) is that f(ε, ·) converges uniformly to the
identity. Indeed,

|f(ε, x)− x| = 0 in {x : |ρ(x)| ≥ 3|ε|},
and

|f(ε, x)− x| ≤ diam({|ρ| < 3|ε|}) in {x : |ρ(x)| < 3|ε|},
since f(ε, ·) is injective so that, for any x such that |ρ(x)| < 3|ε|, f(ε, x) − x cannot belong to
{|ρ| ≥ 3|ε|}. Then this shows that

sup
x∈Rn

|f(ε, x)− x| → 0 as ε→ 0.

We now proceed to show that condition (ii) of Definition 2.7 is not necessary; that is, any
Lipschitz domain admits a bi-Lipschitz deformation. Even though the proof of Theorem 8.8
is outlined in [7, Remark 5.3], we present a detailed proof for our purpose of the subsequent
developments. First we recall a result of Lieberman [42, Lemma A.1] and an extension theorem
for Sobolev functions.

Lemma 8.5. If U is a Lipschitz domain with Lipschitz constant of the local parametrization of
∂U uniformly bounded, then there exists δ > 0 such that, for any x with 0 < |ρ(x)| < δ,

∂ρ

∂xn
(x) ≥ 2

3
√

1 + L2
, (8.2)

where x = (x′, xn) is an orthonormal coordinate system for which ∂U is locally parameterized
by a Lipschitz function with Lipschitz constant less or equal to L, and en is a good direction.

Remark 8.6. Lemma 8.5 applies to the case that U is a bounded Lipschitz domain, since, by
compactness, ∂U can be covered with a finite number of charts of the local Lipschitz parametriza-
tion. However, there are cases of unbounded U which still satisfy the assumption, such as the
half-spaces. In addition, since (8.2) is a local result, it holds for any open set U with Lipschitz
boundary, up to localizing to a bounded subset of ∂U .

Lemma 8.7. Let U be a domain satisfying the minimal smoothness conditions; that is, there
exist ε > 0, N ∈ N, M > 0, and a sequence of open sets {Vi} such that:

(i) If x ∈ ∂U , then B(x, ε) ⊂ Vi for some i;

(ii) No point in Rn is contained in more than N of {Vi};
(iii) For each i, there exists a Lipschitz function ψi with Lipschitz constant less or equal to

M such that Vi ∩ U is the subgraph of ψi inside Vi.

Then there exists a continuous linear operator E : W k,p(U) → W k,p(Rn), for any k ∈ N and
1 ≤ p ≤ ∞, such that E(f) = f on U .

For the proof of this result, we refer to Stein [58, Chapter VI, §3, Theorem 5]. These conditions
are satisfied for any bounded open Lipschitz domain U . However, they may fail in the general
case of an unbounded open Lipschitz domain.

Theorem 8.8. If U is a bounded Lipschitz domain, then fε(·) : U → U
ε,ρ

is bi-Lipschitz with
Lipschitz constants uniformly bounded in ε > 0. If ε < 0, the corresponding result is also true.

Proof. Unless otherwise stated, in this proof, ∇ stands for the gradient with respect to the
spatial variable, denoted by x, y, or z. We divide the proof into five steps.

1. We first consider 0 < ε < ε0, for some ε0 > 0 sufficiently small to be assigned. From
Theorem 8.3, f(ε, ·) : Rn → Rn is continuous with continuous inverse f−1. Thus, the restriction:

f(ε, ·) : U → U
ε,ρ
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is also continuous with continuous inverse. We need to show that f(ε, ·) : U → U
ε,ρ

is Lipschitz
with the Lipschitz constant uniformly bounded in ε ∈ (0, ε0). Following the proof of [7, Theorem
5.1], the continuous map f(ε, ·) is defined as

f(ε, x) =

{
S(t(ε, x))x for x ∈ U \ U3ε,ρ,

x for x ∈ U3ε,ρ,
(8.3)

where t(ε, x) is the unique t ≥ 0 such that

ρ(S(t(ε, x))x) = ρ(x) + h(ε, ρ(x)), (8.4)

and h(ε, ·) : R+ → [0, ε] is smooth with value ε on [0, ε] and 0 on [5ε
2 ,∞) and, for some σ > 0,

−1 + σ < ∂h
∂r (ε, r) ≤ 0 for any r ≥ 0 and ε sufficiently small.

2. In view of (8.3), it suffices to show that t(ε, x) is Lipschitz, with Lipschitz constant
uniformly bounded in ε. Define

F (t, ε, x) := ρ(S(t)x)− ρ(x)− h(ε, ρ(x)). (8.5)

Then, from (8.4),
F (t(ε, x), ε, x) = 0. (8.6)

We take derivatives in (8.6) with respect to xi to obtain ∂F
∂t

∂t
∂xi

+ ∂F
∂xi

= 0; that is, ∂t
∂xi

=

− ∂F
∂xi

(
∂F
∂t

)−1
. We need to show that | ∂F∂xi | is bounded from above. By definition (8.5), it follows

that
∂F

∂xi
= ∇ρ(S(t)x) · ∂S(t)x

∂xi
− ∂ρ

∂xi
− ∂h

∂r
(ε, ρ(x))

∂ρ

∂xi
. (8.7)

Notice that |∂h∂r (ε, ρ(x))| < 1 by the definition of h, and |∇(S(t)x)| ≤ M = Mε0 uniformly on

x ∈ U \U3ε0,ρ for some ε0 > 0, since it is the flow of the smooth compactly supported vector field
γG; see (8.1). Thus, it suffices to show that |∇ρ(x)| is bounded above. Relation (7.5) implies

∂ρ

∂xi
=
∂G

∂xi
+
∂G

∂τ

∂ρ

∂xi
=⇒ ∂ρ

∂xi
=

∂G
∂xi

1− ∂G
∂τ

=⇒ ∇ρ(x) =
∇G

1− ∂G
∂τ

. (8.8)

From (7.4), we obtain

∇G(x, τ) =

∫
B(0,1)

∇d
(
x− τ

2
z
)
η(z) dz,

∂G

∂τ
(x, τ) = −1

2

∫
B(0,1)

∇d
(
x− τ

2
z
)
zη(z) dz.

In turn, it follows that

|∇G(x, τ)| ≤ 1,

∣∣∣∣∂G∂τ (x, τ)

∣∣∣∣ ≤ 1

2
for any x ∈ Rn and τ = ρ(x), (8.9)

so that
|∇ρ(x)| ≤ 2 for any x ∈ Rn, (8.10)

since |∇d| = 1 L n–a.e, by Lemma 5.1. Therefore, from (8.7) and (8.9), we have

|∇F | ≤ 2(M + 2).

It remains to show that |∂F∂t | is bounded away from zero. From (8.5), it follows by [7, Remark
3.1] that

∂F

∂t
= γ(x(t)) (∇ρ ·G)(S(t)x) > 0

for any t small enough and x in a suitable neighborhood of ∂U .
However, in order to prove the uniformity of this estimate in x ∈ U \ U3ε0,ρ, independent of

ε, we need to employ the compactness of ∂U . As recalled in [7, Remark 5.3], in the case that
∂U is Lipschitz, Lemma 8.5 can be applied. In this way, since G(x) is a field of good directions,
we use (8.2) to show that there exists δ > 0 such that, for any x ∈ U with d(x) < δ,

∇ρ(x) ·G(x) ≥ 2

3
√

1 + L2
, (8.11)
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where L is the maximal Lipschitz constant of the Lipschitz parametrizations of ∂U . This implies
that there exists ε0 = ε0(δ) > 0 such that (8.11) holds for any x ∈ U \U3ε,ρ and any ε ∈ (0, ε0).
Since γ can be chosen in such a way that γ ≡ 1 in U \ U3ε0,ρ (see [7, §4 and Theorem 5.1]), we
obtain

∂F

∂t
≥ 2

3
√

1 + L2
.

Thus, this implies

|∇t(ε, x)| ≤ 3(M + 2)
√

1 + L2 for any (ε, x) ∈ (0, ε0)× U \ U3ε0,ρ. (8.12)

From the proof of [7, Theorem 5.1], we also know that t ∈ C∞((0, ε0)×U)∩C0([0, ε0)×U) and
t(ε, x) = 0 for any x ∈ U3ε,ρ. From (8.12), it follows that f(ε, ·) ∈ W 1,∞(U ;Rn). Since ∂U is
only Lipschitz, the classical extension theorems for Sobolev mappings (cf. [27, Theorem 1, §4.4]
and [28, Theorem 1, §5.4]) do not apply, and we know only that f(ε, ·) ∈ Liploc(U ;Rn) (cf. [27,
Theorem 5, §4.2.3] and [28, Theorem 4, §5.8.2]). However, Lemma 8.7 can be applied in the
case p =∞.

Therefore, there exists a function f̄(ε, ·) ∈ W 1,∞(Rn;Rn), uniformly in ε ∈ [0, ε0), such that
f(ε, ·) = f̄(ε, ·) on U . Moreover, f(ε, ·) and f̄(ε, ·) also agree on ∂U since, for any x ∈ ∂U ,
there exists a sequence {xj} ⊂ U with xj → x, so that f(ε, x) = f̄(ε, x) because both f(ε, ·)
and f̄(ε, ·) are continuous in U . Clearly, f̄(ε, ·) is Lipschitz in Rn uniformly in ε ∈ [0, ε0) so that
f(ε, ·) ∈ Lip(U ;Rn) uniformly in ε ∈ [0, ε0).

3. Let us now consider the inverse map f−1(ε, ·) : U
ε,ρ → U . From the proof of [7, Theorem

5.1], we know that it can be defined as

f−1(ε, z) :=

{
S(β(ε, z))z if z ∈ U ε,ρ \ U3ε,ρ,

z if z ∈ U3ε,ρ,

where β(ε, z) is the unique solution to the equation:

g(ε, z, β(ε, z)) = 0,

where

g(ε, z, τ) := ρ(z)− ρ(S(τ)z)− h(ε, ρ(S(τ)z)).

By the implicit function theorem, β(ε, ·) ∈ C∞(U ε,ρ) ∩ C0(U
ε,ρ

). It is also clear from the
definition of h that β(ε, z) = 0 for any z ∈ U3ε,ρ. In addition, we have

∇β(ε, z) = −∇g(ε, z, β(ε, z))
∂g
∂τ (ε, z, β(ε, z))

,

and

∇g(ε, z, τ) = ∇ρ(z)−∇(S(τ)z) · ∇ρ(S(τ)z)− ∂h

∂r
(ε, ρ(S(τ)z))∇(S(τ)z) · ∇ρ(S(τ)z), (8.13)

∂g

∂τ
(ε, z, τ) = −∇ρ(S(τ)z) · (γG)(S(τ)z)

(
1 +

∂h

∂r
(ε, ρ(S(τ)z))

)
. (8.14)

Arguing as above and using (8.9), we obtain

|∇g(ε, z, β(ε, z))| ≤ 2(Mε0 + 2)

for any ε ∈ [0, ε0) with any fixed ε0 > 0, and z ∈ U ε,ρ.

As for the estimate on the denominator, we can use (8.2) and the fact that
∂h

∂r
(ε, r) ≥ −1+σ >

−1, for some σ > 0 independent on ε, in order to show that there exists ε0 = ε0(δ) > 0 such
that ∣∣∣∣∂g∂τ (ε, z, β(ε, z))

∣∣∣∣ > 2

3
√

1 + L2
σ for any ε ∈ [0, ε0) and x ∈ U ε,ρ \ U3ε,ρ.

Therefore, for any ε ∈ [0, ε0) and x ∈ U ε,ρ \ U3ε,ρ,

|∇β(ε, z)| ≤ 3

σ
(M + 2)

√
1 + L2
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for some η depending on the choice of h, M = Mε0 depending on domain U , and L depending
on the Lipschitz parametrization of ∂U .

This implies that f−1(ε, ·) ∈W 1,∞(U ε,ρ;Rn) uniformly in ε ∈ (0, ε0). Thus, arguing as before,
there exists an extension f̄−1(ε, ·) ∈W 1,∞(Rn;Rn) uniformly in ε ∈ (0, ε0), which coincides with

f−1(ε, ·) on U
ε,ρ

by the uniform continuity, and it is Lipschitz uniformly in ε ∈ (0, ε0). Thus,
we have proved that f−1(ε, ·) ∈ Lip(U

ε,ρ
;Rn) uniformly in ε ∈ (0, ε0); that is, the Lipschitz

constant of f−1(ε, ·) on U
ε,ρ

is uniformly bounded in ε ∈ (0, ε0).

4. Let now ε < 0. By the proof of [7, Theorem 5.1], we know that, for ε ∈ (−ε0, 0) and x ∈ U ,
the map f is defined as

f(ε, x) := g(−ε, ε, f(−ε, x)),

where g(−ε, ε, ·) is the diffeomorphism introduced in Theorem 8.3 (iii), and f is the map defined
in the first part of the proof; see also definition (5.16) in the proof of [7, Theorem 5.1].

Since f(−ε, ·) is uniformly Lipschitz as proved in the first part of the proof, we need to check
the same property for g(−ε, ε, ·). In order to do so, we need to introduce some auxiliary functions
from the proof of [7, Theorem 5.1].

Let θ = θ(τ, y) be the unique solution to the equation: ρ(S(θ)y) = τ . By [7, Lemma 4.1],
such a function is well defined for |τ | < 3ε0 and |ρ(y)| < 3ε0, is smooth for τ 6= 0, and

∇θ(τ, y) = − ∇(S(θ)y) · ∇ρ(S(θ)y)

∇ρ(S(θ)y) · (γG)(S(θ)y)
(τ, y) (8.15)

by the implicit function theorem, since ∂θ
(
S(θ)y

)
= (γG)(S(θ)y). This implies that, using (8.2)

if 0 < |d(S(θ)y)| < δ for some δ > 0 sufficiently small, the denominator of ∇θ(τ, y) is bounded
away from zero uniformly in τ . Arguing in a similar way as above, we can show that there exists
ε0 = ε0(δ) > 0 such that

|∇θ(τ, y)| ≤ 3Mε0

√
1 + L2 (8.16)

for any τ ∈ (−3ε0, 3ε0), τ 6= 0, and y ∈ U3ε0,ρ \ U
3ε0,ρ, since d(S(θ(τ, y))y) = 0 if and only if

ρ(S(θ(τ, y))y) = 0, which means that τ = 0. On the other hand, for our purposes, τ = 0 if and
only if ε = 0; in such a case, f(0, x) = x for any x ∈ Rn, which is clearly Lipschitz.

Furthermore, θ(τ, y) is increasing in τ for fixed y, and

∂θ

∂τ
(τ, y) =

1

(∇ρ · (γG))(S(θ(τ, y))y)
>

3

2

√
1 + L2,

which is uniformly strictly positive in U3ε0,ρ \ U
3ε0,ρ. Given ε̃ ∈ (0, ε0) and ε′ ∈ (−ε0, 0), we

obtain

q(ε̃, ε′, y) := − θ(2ε′, y)

θ(2ε̃, y)− θ(2ε′, y)
, (8.17)

r(ε̃, ε′, y) :=
θ(ε̃, y)− θ(2ε′, y)

θ(2ε̃, y)− θ(2ε′, y)
, (8.18)

s(ε̃, ε′, y) :=
θ(ε′, y)− θ(2ε′, y)

θ(2ε̃, y)− θ(2ε′, y)
. (8.19)

By the monotonicity property of θ, it is clear that r, s ∈ (0, 1).
Let u : (0, 1) × (0, 1) × R → R be the smooth function described in [7, Lemma 5.1], which

particularly satisfies the property that u(a, b, c) = c for any (a, b) ∈ (0, 1)× (0, 1) and c /∈ [0, 1].
Finally, we define g by

g(ε̃, ε′, y) :=

{
S(w(ε̃, ε′, y))y if ρ(y) ∈ (3ε′, 3ε̃),

y otherwise,
(8.20)

where

w(ε̃, ε′, y) := (θ(2ε̃, y)− θ(2ε′, y))u(r(ε̃, ε′, y), s(ε̃, ε′, y), q(ε̃, ε′, y)) + θ(2ε′, y). (8.21)
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We observe that, if y ∈ U , then θ(2ε′, y) > 0 so that q(ε̃, ε′, y) > 0. Moreover, if q(ε̃, ε′, y) > 1,
then w(ε̃, ε′, y) = 0 by the property of u. Hence, we can restrict ourselves to the case that
0 < q(ε̃, ε′, y) ≤ 1, without loss of generality.

In our case, we are dealing with g(−ε, ε, y) for ε < 0, and y = f(−ε, x) ∈ U−ε,ρ, so that we
can select ε̃ = −ε and ε′ = ε.

Since S is the flow of the smooth vector field γG, it suffices to show uniform bounds on the

gradient of w for y ∈ U \ U3ε0,ρ. We have

∇w(−ε, ε, y)

= ∇θ(2ε, y) +
(
∇θ(−2ε, y)−∇θ(2ε, y)

)
u(r(−ε, ε, y), s(−ε, ε, y), β(−ε, ε, y))

+
(
θ(−2ε, y)− θ(2ε, y)

)(∂u
∂r

(r(−ε, ε, y), s(−ε, ε, y), q(−ε, ε, y))∇r(−ε, ε, y)

+
∂u

∂s
(r(−ε, ε, y), s(−ε, ε, y), q(−ε, ε, y))∇s(−ε, ε, y)

+
∂u

∂q
(r(−ε, ε, y), s(−ε, ε, y), q(−ε, ε, y))∇q(−ε, ε, y)

)
. (8.22)

Observe that h is smooth, and r(−ε, ε, y), s(−ε, ε, y) ∈ (0, 1) for any ε ∈ (−ε0, 0) and y ∈
U \ U3ε0,ρ by the properties of θ. In addition, only the intersection with set {(ε, y) : 0 <
q(−ε, ε, y) ≤ 1} is relevant to us, since w vanishes on the outside of the intersection. Therefore,

h and all its derivatives are uniformly bounded in U \ U3ε0,ρ for any ε ∈ (−ε0, 0).
Moreover, by standard calculations, we have(

θ(−2ε, y)− θ(2ε, y)
)
∇q(−ε, ε, y) = −∇θ(2ε, y)− q(−ε, ε, y)

(
∇θ(−2ε, y)−∇θ(2ε, y)

)
,(

θ(−2ε, y)− θ(2ε, y)
)
∇r(−ε, ε, y) = ∇θ(−ε, y)−∇θ(2ε, y)

− r(−ε, ε, y)
(
∇θ(−2ε, y)−∇θ(2ε, y)

)
,(

θ(−2ε, y)− θ(2ε, y)
)
∇s(−ε, ε, y) = ∇θ(ε, y)−∇θ(2ε, y)

− s(−ε, ε, y)
(
∇θ(−2ε, y)−∇θ(2ε, y)

)
.

From these formulas, the bounds on (q, r, s), and (8.16), we conclude that ∇w(−ε, ε, ·) ∈ L∞(U \
U3ε0,ρ;Rn) uniformly in ε ∈ (−ε0, 0).

Arguing now as in the previous two cases, we can extend f(ε, ·) for ε < 0 to a W 1,∞–map on
the whole Rn, whose restriction on U coincides with f(ε, ·); thus proving that f(ε, ·) ∈ Lip(U ;Rn)
uniformly in ε ∈ (−ε0, 0].

5. Finally, the inverse map for ε < 0 is given by

f−1(ε, x) := f−1(−ε, g−1(−ε, ε, x)) for x ∈ U ε,ρ and ε ∈ (−ε0, 0), (8.23)

for some ε0 > 0 sufficiently small (cf. definition (5.17) in the proof of [7, Theorem 5.1]).
The inverse map g−1(−ε, ε, ·) is defined in a similar way to (8.20), by using h−1(a, b, ·) instead

of h; that is, the inverse function of h(a, b, ·). Since h−1(a, b, d) = d for any (a, b) ∈ (0, 1)× (0, 1)
and d /∈ [0, 1], then we can argue as before to obtain the uniform essential boundedness of
∇g−1(−ε, ε, ·), which concludes that f(ε, ·) for ε < 0 is a uniform bi-Lipschitz function. �

Remark 8.9. As a consequence of Theorem 8.8, we can show that, if U has Lipschitz boundary,
then ∇f(ε, ·)→ In in Lp(Rn;Rn×n) for any 1 ≤ p <∞.

Indeed, by Theorem 8.3 (ii), ∇f(ε, x) = In for any x such that |ρ(x)| > 3|ε|. This implies that
∇f(ε, x)→ In for any x ∈ Rn \ ∂U , and∫

Rn
|∇f(ε, x)− In|p dx ≤ CpL n({|ρ(x)| ≤ 3|ε|}), (8.24)

where C is a constant depending only on U and n, since the Lipschitz constants of f(ε, ·) are
uniformly bounded for ε ∈ (−ε0, ε0), by Theorem 8.8. This implies the convergence, since
L n(∂U) = 0.

As an immediate consequence, we have the following result.
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Theorem 8.10. The boundary of any Lipschitz domain is Lipschitz deformable in the sense of
Definition 2.7.

Proof. Indeed, we can employ Theorem 8.8 to construct a Lipschitz deformation Ψ as in Defini-
tion 2.7. It suffices to set

Ψ(x, τ) := f(τε1, x) for any 0 < ε1 < ε0,

where f is given in Theorem 8.3. By the properties of f(ε, ·), Ψ(·, τ) is a bi-Lipschitz homeo-
morphism over its image uniformly in τ ∈ [0, 1] and Ψ(·, 0) = Id. �

Remark 8.11. In fact, Definition 2.7 refers to open sets with Lipschitz boundary, while, thanks
to Theorem 8.8, we are able to deal with open bounded Lipschitz domains. However, the connect-
edness assumption is not relevant, since one can work separately with each connected component
of a bounded open set with Lipschitz boundary to achieve Theorems 8.8 and 8.10 for each com-
ponent. In a similar way, one can also consider an unbounded open set with Lipschitz boundary
U , and then localize the problem by considering, for instance, U ∩B(0, R) for R > 0, which are
open bounded sets with Lipschitz boundary. It is then clear that Theorems 8.8 and 8.10 apply to
U ∩ B(0, R) for any R > 0. Thus, we can conclude that any open set with Lipschitz boundary
has a regular Lipschitz deformable boundary, at least locally.

An immediate consequence of the existence of such Lipschitz diffeomorphism between ∂U and
∂U ε,ρ or ∂Uε,ρ is that the area formula can be employed in order to consider only integrals on
∂U .

Theorem 8.12. Let U b Ω be an open set with Lipschitz boundary, let F ∈ DMp(Ω) for

1 ≤ p ≤ ∞, and let φ ∈ C0(Ω) with ∇φ ∈ Lp
′
(Ω;Rn). Then there exists a set N ⊂ R with

L1(N ) = 0 such that, for every nonnegative sequence {εk} satisfying εk /∈ N for any k and
εk → 0,∫

U
φ ddivF +

∫
U
F · ∇φ dx = − lim

k→∞

∫
∂U

(
φF · ∇ρ

|∇ρ|

)
(f(εk, x))J∂Uf(εk, x) dH n−1, (8.25)

and∫
U
φ ddivF +

∫
U
F ·∇φ dx = − lim

k→∞

∫
∂U

(
φF · ∇ρ

|∇ρ|

)
(f(−εk, x))J∂Uf(−εk, x) dH n−1, (8.26)

where f(±ε, ·) is the bi-Lipschitz diffeomorphism introduced in Theorem 8.3.
In addition, (8.25) holds also for any bounded open set U with Lipschitz boundary if φ ∈

L∞(Ω), and even for an unbounded open set U with Lipschitz boundary if supp(φ) ∩ U δ b Ω
for any δ > 0. Similarly, (8.26) also holds for any open set U satisfying U ⊂ Ω, provided that
supp(φ) is compact in Ω.

Proof. We need to apply the area formula to the Lipschitz maps f(ε, ·) : ∂U → ∂U ε,ρ in (7.7)–
(7.8).

We denote by J∂Uf(ε, ·) the (n − 1)–dimensional Jacobian of f(ε, ·) on ∂U , and recall that

the inner unit normal to ∂U ε,ρ is given by ∇ρ
|∇ρ| from Theorem 7.10. Then∫

∂Uεk,ρ

(
φF · ∇ρ

|∇ρ|

)
(x) dH n−1 =

∫
∂U

(
φF · ∇ρ

|∇ρ|

)
(f(εk, x))J∂Uf(εk, x) dH n−1.

We can argue analogously with ∂Uεk,ρ. Therefore, we can rewrite (7.7)–(7.8) as (8.25)–(8.26). �

From this result, we can deduce some known facts again from the theory of DM–fields.

Corollary 8.13. Let F ∈ DMp(Ω) ∩ C0(Ω;Rn) for 1 ≤ p ≤ ∞, let φ ∈ C0(Ω) ∩ L∞(Ω) with

∇φ ∈ Lp′(Ω;Rn), and let U ⊂ Ω be a bounded Lipschitz domain. Then

〈F · ν, φ〉∂U =

∫
U
φddivF +

∫
U
F · ∇φ dx = −

∫
∂U
φF · νU dH n−1. (8.27)

If F ∈ DM∞(Ω), then the normal trace functional on ∂U is indeed a Radon measure, absolutely
continuous with respect to H n−1 ∂U , with essentially bounded density function −Fi · νU ∈
L∞(∂U ; H n−1).
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Proof. In order to prove the first statement, we consider ψ ∈ C1
c (Rn;Rn).

Notice that∫
U
divψ dx = −

∫
∂U
ψ · νU dH n−1,

∫
Uε,ρ

divψ dx = −
∫
∂Uε,ρ

ψ · ∇ρ
|∇ρ|

dH n−1.

Arguing as in the proof of Theorem 8.12, we obtain∫
∂Uε,ρ

ψ · ∇ρ
|∇ρ|

dH n−1 =

∫
∂U

(ψ ◦ f)(ε, ·) ·
(
∇ρ
|∇ρ|

◦ f
)

(ε, ·) J∂Uf(ε, ·) dH n−1.

Since

lim
ε→0

∫
Uε,ρ

divψ dx =

∫
U
divψ dx,

we conclude

lim
ε→0

∫
∂U

(ψ ◦ f)(ε, ·) ·
(
∇ρ
|∇ρ|

◦ f
)

(ε, ·) J∂Uf(ε, ·) dH n−1 =

∫
∂U
ψ · νU dH n−1 (8.28)

for any ψ ∈ C1
c (Rn;Rn). By the density of C1

c (Rn;Rn) in Cc(Rn;Rn) with respect to the
supremum norm, we can deduce that (8.28) holds also for any ψ ∈ Cc(Rn;Rn). Thus, by (8.25),
we conclude that (8.27) holds.

As for the second part of the statement, we can argue as in the proof of [11, Theorem 2.2],
since U has a Lipschitz deformable boundary, by Theorem 8.10. �

Remark 8.14. Corollary 8.13 can also be regarded as a consequence of Proposition 6.8, together
with the well-known fact that H n−1(∂U \∂∗U) = 0 for any open set U with Lipschitz boundary.
In addition, this implies that, in the case that ∂U is Lipschitz regular, ∂∗U can be substituted
with ∂U in (6.9)–(6.11).

We end this section by recalling an alternative result concerning the approximation of open
bounded sets with Lipschitz boundary which has been proved by Nečas in [45]. For this expo-
sition, we refer mostly to the paper of Verchota [60], in which the result in [45] is extended and
applied.

Definition 8.15. We denote by Z(P, r) the truncated cylinder centered at point P and with
basis radius r. Given a Lipschitz domain U and a point P ∈ ∂U , we say that Z(P, r) is a
coordinate cylinder if

(i) The bases of Z(P, r) have a positive distance from ∂U ;
(ii) There exists a coordinate system (x̂n, xn) such that {x̂n = 0} is the axis of Z(P, r), and

there exists a Lipschitz function ϕ = ϕZ : Rn−1 → R such that

Z(P, r) ∩ U = Z(P, r) ∩ {(x̂n, xn) : xn > ϕ(x̂n)};

(iii) P = (0, ϕ(0)) or, equivalently, P is the origin of the coordinate system and ϕ(0) = 0.

The pair (Z,ϕ) is called a coordinate pair.

Remark 8.16. If the Lipschitz domain U is bounded, then ∂U can be covered by a finite number
of coordinate cylinders {Zj}Nj=1, to which corresponds a finite number of coordinate pairs. In
addition, cylinders Zj can be selected in such a way that some dilation Z∗j = λjZ

∗
j , λj > 1, still

gives a coordinate pair (Z∗j , ϕj). We denote by L the maximum of the Lipschitz constants of

functions ϕj. Also we may assume that ϕj ∈ Lipc(Rn−1) without loss of generality.

Remark 8.17. Given ϕ ∈ Lipc(Rn), there exists a sequence ψk ∈ C∞c (Rn) such that ψk → ψ
uniformly, ‖∇ψk‖L∞(Rn;Rn) ≤ ‖∇ϕ‖L∞(Rn;Rn), and ∇ψk → ∇ϕ in Lq(Rn;Rn) for any 1 ≤ q <
∞. This can achieved by taking the convolution of ϕ with a smooth mollifier.

The following approximation results hold, for which we refer to [45, Theorem 1.1], [46, Lemma
1.1], [59, Appendix], and [60, Theorem 1.12]; see also the alternative proof given in [26]. For the
self-containedness, we also give here a sketch of the proof.

Proposition 8.18. Let U be a bounded Lipschitz domain. Then the following statements hold:
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(i) There exists a sequence of open sets Uk satisfying that ∂Uk is of class C∞, Uk b Uk+1 b
U , and

⋃
k Uk = U ;

(ii) There exists a covering of ∂U by coordinate cylinders such that, for any coordinate pair
(Z,ϕ) with ϕ ∈ Lipc(Rn−1), Z∗∩∂Uk is the graph of a function ϕk ∈ C∞c (Rn−1) satisfying
that ϕk → ϕ uniformly, ‖∇ϕk‖L∞(Rn−1;Rn−1) ≤ ‖∇ϕ‖L∞(Rn−1;Rn−1), and ∇ϕk → ∇ϕ
L n−1–a.e. and in Lq(Rn−1;Rn−1) for any 1 ≤ q <∞;

(iii) There exists a sequence of Lipschitz diffeomorphisms fk : Rn → Rn such that fk(∂U) =
∂Uk, the Lipschitz constants are uniformly bounded in k, fk → Id uniformly on ∂U , and
∇fk → In for H n−1–a.e. x ∈ ∂U ;

(iv) There exists a sequence of nonnegative functions ωk = J∂Ufk uniformly bounded and
bounded away from zero such that (f−1

k )#(H n−1 ∂Uk) = ωkH
n−1 ∂U :

H n−1(∂Uk ∩ fk(E)) =

∫
E
ωk dH n−1 for any Borel set E ⊂ ∂U,

and that ωk → 1 H n−1–a.e. on ∂U and in Lq(∂U ; H n−1) for any 1 ≤ q <∞;
(v) The normal vector to Uk satisfies that νUk ◦ fk → νU for H n−1–a.e. x ∈ ∂U and in

Lq(∂U ; H n−1) for any 1 ≤ q < ∞, and an analogous statement holds for the tangent
vectors;

(vi) There exists a C∞ vector field H in Rn such that

H(fk(P )) · νUk(fk(P )) ≥ C > 0 for any P ∈ ∂U,

where C = C(H,L), and L is the maximal Lipschitz constant of the parametrization of
∂U .

Sketch of Proof. Results (i)–(ii) have been proved by Nečas in [45] (see also [59, Appendix]);
while the others follows from the first two.

Indeed, we can define the homeomorphisms fk in each coordinate cylinder Zj by

fk(x) = (x̂n, xn + ϕk(x̂n)− ϕ(x̂n))

for the coordinate system (x̂n, xn) related to Zj , and then glue these definitions together with
the aid of some cutoff functions, by using the fact that the same coordinate pair can also be
used in the larger cylinder Z∗j . In this way, the uniform convergence follows immediately.

As for result (iv), we can find that

f−1
k (y) = (ŷn, yn − ϕk(ŷn) + ϕ(ŷn)),

where (ŷn, yn) is the coordinate system related to some Zj . This also shows that fk is invertible
with continuous inverse, so that it is indeed a homeomorphism. In fact, since ϕ ∈ Lipc(Rn−1)
and ϕk ∈ C∞c (Rn−1), we can conclude that fk is a Lipschitz diffeomorphism, with Lipschitz
constants uniformly bounded in k, by using that ∇ϕk → ∇ϕ for L n−1–a.e. x̂ ∈ Rn−1.

Moreover, by employing the area formula, it follows that ωk is exactly the (n−1)–dimensional
Jacobian of fk on ∂U , J∂Ufk. Notice that

∇fk =

(
In−1 0

(∇(ϕk − ϕ))> 1

)
,

where In−1 is the (n − 1) × (n − 1) identity matrix. Therefore, the convergence of ∇ϕk(x) to
∇ϕ(x) for L n−1 = H n−1–a.e. x ∈ ∂U implies that ∇fk → In for H n−1–a.e. x ∈ ∂U , which
in turn implies that J∂Ufk → 1 for H n−1–a.e. x ∈ ∂U . Then the Lq–convergence follows by
the Lebesgue theorem and the boundedness properties, which can be shown by calculating the
Jacobian explicitly. �

Proposition 8.18 allows us to refine Theorem 8.10, by showing that any open bounded set
with Lipschitz boundary admits a regular Lipschitz deformation in the sense of Definition 2.7.
Analogously, if the set is unbounded, such a statement should hold locally.
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Theorem 8.19. If U is a bounded open set with Lipschitz boundary in Rn, then there exists a
regular Lipschitz deformation Ψ(x, τ) = Ψτ (x) of ∂U satisfying

lim
τ→0+

J∂UΨτ = 1 in L1(∂U ; H n−1). (8.29)

Proof. Set

Ψ(x, τ) :=
(
k + 1− k(k + 1)τ

)
fk+1(x) +

(
k(k + 1)τ − k

)
fk(x) if τ ∈

(
1

k + 1
,

1

k

]
,

where the functions fk are given by Proposition 8.18. It is clear that Ψ(·, τ) is a bi-Lipschitz dif-
feomorphism from U over its image, by Proposition 8.18(iii), with Lipschitz constants uniformly
bounded in τ > 0. Since J∂Ufk → 1 in Lq(∂U ; H n−1) for any 1 ≤ q <∞, by Proposition 8.18
(iv), and

0 ≤ k(k + 1)τ − k ≤ 1, 0 ≤ k + 1− k(k + 1)τ ≤ 1 for τ ∈
(

1
k+1 ,

1
k

]
,

we conclude that J∂UΨ(x, τ)→ 1 in Lq(∂U ; H n−1) for 1 ≤ q <∞, which implies (8.29). �

Remark 8.20. Hofmann-Mitrea-Taylor in [37, Proposition 4.19] worked with a strongly Lips-
chitz domain U in Rn such that there exists a C1–vector field h satisfying

|h(x)| = 1, h(x) · νU (x) ≥ κ for H n−1–a.e. x ∈ ∂U
for some κ ∈ (0, 1). In the literature, a domain is said to be strongly Lipschitz if the Lipschitz
constants of the parametrization of ∂U are uniformly bounded, so that any open bounded set U
with Lipschitz boundary is a strongly Lipschitz domain, by compactness. For a more detailed
exposition, we refer to [6, Appendix B]. Then, if Uτ := {x − τh(x) : x ∈ U}, there exists
τ0 > 0 such that, for any τ ∈ (0, τ0), Uτ is a strongly Lipschitz domain satisfying Uτ ⊂ U and
∂Uτ = {x − τh(x) : x ∈ ∂U}. In addition, the results of Proposition 8.18(ii)–(vi) hold with
Lipschitz regularity, instead of C∞. However, it is clear that more regularity on the vector field
h would imply more regularity of ∂Uτ .

Moreover, a similar approximation holds from the exterior of U , if we consider U−τ , for
τ ∈ (−τ1, 0], for some τ1 > 0.

Following Theorem 8.19, we see that the assumptions of Hofmann-Mitrea-Taylor [37, Propo-
sition 4.19] are not strictly necessary; however, they allow to have this particular representation
of the approximating sets.

9. Cauchy Fluxes and Divergence-Measure Fields

In Continuum Physics, the fundamental principle of balance law can be stated in the most
general terms in the following way (cf. Dafermos [20] and Lax [39]): A balance law in an open
set Ω of Rn postulates that the production of a vector-valued “extensive” quantity in any bounded
open subset U b Ω is balanced by the Cauchy flux of this quantity through the boundary of U .

For smooth continuum media, the physical principle of balance law can be formulated in the
classical form: ∫

U
b(y) dy =

∫
∂U
f(y) dH n−1(y) (9.1)

for any given open set U that is of smooth boundary, where f is a density function of the
Cauchy flux, and b is a production density function. In mechanics, f represents the surface
force per unit area on ∂U , while f gives the heat flow per unit area across the boundary ∂E in
thermodynamics.

In 1823, Cauchy [9] (also see [10]) established the stress theorem, which states that, if f(y) :=
f(y, ν(y)), defined for each y in an open region Ω and every unit vector ν, is continuous in y,
and b(y) is uniformly bounded on Ω, and if (9.1) is satisfied for every smooth region U b Ω,
then f(y, ν) must be linear in ν; that is, there exists a vector field F such that

f(y, ν) = F (y) · ν.
The Cauchy postulate states that the density flux f through a surface depends on the surface
solely through the normal at that point. Since the time of Cauchy’s stress result [9, 10], many
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efforts have been made to generalize his ideas and remove some of his hypotheses. The first
results in this direction were obtained by Noll [47] in 1959, who set up a basis for an axiomatic
foundation for continuum thermodynamics. In particular, Noll [47] showed that the Cauchy
postulate may directly follow from the balance law. In [36], Gurtin-Martins introduced the
concept of Cauchy flux and removed the continuity assumption on f . They represented the
Cauchy flux as an additive mapping F on surfaces S such that there exists a constant C > 0
such that

|F(S)| ≤ CH n−1(S), |F(∂B)| ≤ CL n(B) for any surface S and subbody B. (9.2)

In 1983, Ziemer [65] proved Noll’s theorem in the context of geometric measure theory, in
which the Cauchy fluxes were first formulated via employing sets E of finite perimeter to rep-
resent the bodies and ∂∗E to represent the surfaces. His formulation of the balance law for the
flux function yielded the existence of a vector field F ∈ L∞ with divF ∈ L∞. The papers by
Šilhavý [54, 55] extended definition (9.2) by requiring

|F(S)| ≤
∫
S
hdH n−1, |F(∂B)| ≤

∫
B
g dx (9.3)

for suitable functions g and h in Lp for p ≥ 1 and almost every surface S. The vector fields
obtained under these conditions have distributional divergences that are integrable; that is,
F ∈ L1 and divF ∈ L1. However, all the previous formulations of Cauchy fluxes do not allow
the presence of “shock waves” since divF is absolutely continuous with respect to Ln.

Degiovanni-Marzocchi-Musesti [25] further generalized conditions (9.2) and considered the
Cauchy fluxes defined on almost every surface and satisfying

|F(S)| ≤
∫
S
hdH n−1, |F(∂B)| ≤ σ(B) (9.4)

for a suitable function h ∈ L1
loc and a nonnegative Radon measure σ. This definition of Cauchy

fluxes induced the existence of a vector field F ∈ DM1
loc. Schuricht [53] studied an alternative

formulation to (9.2), which consists in considering the contact interactions f as maps on pairs
of disjoint subbodies (instead of surfaces). Thus, f(B,A) is the resultant force exerted on B by
A. The function f is assumed to be countable additive in the first argument (i.e., a measure)
and finitely additive with respect to the second argument. This alternative formulation also
implies the existence of F ∈ DM1

loc, depending on A, such that divF = f(·, A). The Gauss-
Green formulas obtained in [25] and [53] are valid for F ∈ DMp(Ω) for any p ≥ 1, but only on
the sets of finite perimeter, E ⊂ Ω, which lie in a suitable subalgebra related to the particular
representative of F . In other words, these Gauss-Green formulas are valid only on almost every
set, thus missing the exceptional surfaces or “shock waves”. In order to recover the flux on every
surface, it is necessary to develop a theory of normal traces for divergence-measure fields.

In Chen-Torres-Ziemer [14], such a theory of normal traces on reduced boundaries of sets
of finite perimeter has been established for DM∞(Ω)–fields. The method in [14] consists in
constructing the normal traces as the limit of the classical normal traces over smooth approxi-
mations of the set of finite perimeter. This approach requires a new approximation theorem of
sets of perimeter that can distinguish between the measure-theoretic interior and exterior of the
set. The Cauchy flux introduced in [14] is defined on every set of finite perimeter, E b Ω, and
on every H n−1–rectifiable surface S ⊂ ∂∗E (so that S is oriented with the normal to the set).
The conditions that there exists a nonnegative Radon measure σ such that

|F(∂∗E)| ≤ σ(E1), |F(S)| ≤ CH n−1(S) (9.5)

imply the existence of a DM∞–field F so that the Cauchy flux over every surface can be
recovered through the normal traces of F on the oriented surface (see Remark 9.5(ii) below).

The Cauchy fluxes in the sense of Chen-Torres-Ziemer [14] allow the presence of exceptional
surfaces (i.e., shock waves) in the formulation of the axioms. In this setting, divF = gσ for
some g and Radon measure σ, and hence divF is not in general absolutely continuous with
respect to Ln. The measure σ does not vanish on the exceptional surfaces and the Cauchy flux
F has a discontinuity since F(S) 6= −F(−S). Formulations (9.2)–(9.3) deal with the particular
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case σ = Ln, and hence the measure vanishes on any H n−1–dimensional surface, excluding the
shock waves.

Example 9.1. Let

F (x1, x2) = f(x2)g(x1)(1, 0) for some f ∈ L∞(R) and g ∈ C1
c (R),

so that F ∈ DM∞(R2), and let E be as in Remark 4.14. Then, by (4.8), G = χEF is also in
DM∞(R2), while G /∈ BVloc(R2;R2), since E is not a set of locally finite perimeter.

If U := (0, 2)2 = U1, then E ∩ U = E and χUG = χEF . Hence, applying again (4.8), we
obtain

〈G · ν, ·〉∂U = χUdivG− div(χUG) = (χU1 − 1)divG = (χU1 − 1)f(x2)g(x1)Dx1χE

= −f(x2)g(x1)H 1
(
{0} × (0, 1)

)
+ f(x2)g(x1)H 1

(
{2} ×

(
1

2
,
3

4

))
. (9.6)

On the other hand, if L := U ∪ ∂∗U instead, we still obtain that χLG = χEF = G and

〈G · ν, ·〉∂L = χLdivG− div(χLG) = (χL − 1)divG

= (χU1∪∂∗U (x1, x2)− 1)f(x2)g(x1)Dx1χE = 0, (9.7)

since supp(|Dx1χE |) ⊂ U1 ∪ ∂∗U . Hence, it follows that

〈G · ν, ·〉∂U 6= 〈G · ν, ·〉∂(U∪∂∗U) (9.8)

in general. This condition is satisfied, for instance, if g(0) < 0, g(2) = 0, and f > 0 in (0, 1),
since 〈G · ν, ·〉∂U is a nontrivial nonnegative Radon measure in this case.

Thanks to the fact that G ∈ DM∞(R2), we can define an associated Cauchy flux F by using
the theory developed in [14]. Given a bounded set of finite perimeter M , there exist the interior
and exterior normal traces of G: (Gi ·νM ) and (Ge ·νM ) ∈ L∞(∂∗M ; H 1) (see Proposition 4.9).
Then we define

F(S) := −
∫
S
Gi · νM dH 1, (9.9)

if S is an H 1–rectifiable surface such that S ⊂ ∂∗M which is oriented by νM , for some bounded
set of finite perimeter M ; and

F(S) := −
∫
S
Ge · νM dH 1, (9.10)

if S is an H 1–rectifiable surface such that S ⊂ ∂∗M which is oriented by −νM , for some bounded
set of finite perimeter M .

It is not difficult to check that F is a Cauchy flux in the sense of [14]. Indeed, by definition,
F is a finitely additive functional on disjoint surfaces. Since the normal traces are essentially
bounded, from (9.9)–(9.10), we obtain

|F(S)| ≤ CH 1(S).

Then |F(∂∗M)| ≤ σ(M1) for any bounded set M of finite perimeter, if σ = |divG| is chosen.
Indeed, we need just to employ the Gauss-Green formulas and the fact that G has compact
support.

In particular, if we apply (4.6) to G, a bounded set of finite perimeter M and φ ∈ Lipc(R2)
with φ ≡ 1 on M , then

F(∂∗M) = −
∫
∂∗M

Gi · νM dH 1 = divG(M1).

Arguing analogously, from (4.7), we have

F(−∂∗M) = −
∫
∂∗M

Ge · νM dH 1 = divG(M1 ∪ ∂∗M).

Since G has compact support in R2, by [16, Lemma 3.1], we obtain

0 = divG(R2) = divG(M1 ∪ ∂∗M) + divG((R2 \M)1),



50 GUI-QIANG G. CHEN, GIOVANNI E. COMI, AND MONICA TORRES

from which it follows that

F(∂∗(R2 \M)) = F(−∂∗M) = −divG((R2 \M)1).

Thus, (9.5) is satisfied. Then we have proved that F is a Cauchy flux in the sense of [14].
Choose S := ∂∗U oriented by νU , by (9.10), Proposition 4.9, and (9.6), we have

F(∂∗U) = 〈G · ν, φ〉∂U = −
∫
∂∗U

φ(x1, x2)f(x2)g(x1) dDx1χE

for any φ ∈ Lipc(R2) with φ ≡ 1 on U . Arguing analogously, by (9.10), Proposition 4.9, and
(9.7), we have

F(−∂∗U) = 〈G · ν, φ〉∂(U∪∂∗U) = 0,

for any φ ∈ Lipc(R2) with φ ≡ 1 on U . Then, by (9.8), it follows that, in general,

F(∂∗U) 6= −F(−∂∗U),

which shows that F may have a discontinuity on the rectifiable surface ∂∗U .

In this paper above, we have developed a more general theory of normal traces for unbounded
DMp fields. In particular, we have shown that the normal traces can be represented as the limit
of the classical normal traces on smooth approximations or deformations. Hence, we can now
give a more general definition of Cauchy fluxes over general open sets (not necessarily of finite
perimeter).

Definition 9.2 (Side surfaces). A side surface in Ω is a pair (S,U) so that S b Ω is a Borel
set and U b Ω is a open set such that S ⊂ ∂U . The side surface (S,U) is often written as S for
simplicity, when no confusion arises from the context.

Definition 9.3 (Cauchy fluxes). Let Ω be a bounded open set. A Cauchy flux is a functional F
defined on the side surfaces (S,U) such that the following properties hold:

(i) F(S1 ∪ S2) = F(S1) +F(S2) for any pair of disjoint side surfaces S1 and S2 in ∂U , for
some U b Ω;

(ii) There exists a nonnegative Radon measure σ in Ω such that

|F(∂U)| ≤ σ(U) for every open set U b Ω;

(iii) There exists a nonnegative Borel function h ∈ L1
loc(Ω) such that

|F(S)| ≤
∫
S
hdH n−1

for any side surface S ⊂ ∂U and any open set U b Ω (the integral could be ∞, in which
case the axiom is also true).

For simplicity, the Cauchy flux is often written as F(S), when no confusion arises from the
context.

We state now our main result on the representation of general Cauchy fluxes.

Theorem 9.4. Let F be a Cauchy flux in Ω with h ∈ L1
loc(Ω) as in Definition 9.3. Then there

exists a unique F ∈ DM1
loc(Ω) such that, for every open set U b Ω,

(i) For any φ ∈ C1
c (Ω) such that φ ≡ 1 on a neighborhood of ∂U ,

F(∂U) = 〈F · ν, φ〉∂U , (9.11)

and there exists an interior smooth approximation U ε of U as in Theorem 7.2 such that,
for a suitable subsequence εk → 0 as k →∞,

F(∂U) = − lim
εk→0

∫
∂Uεk

F · νUεk dH n−1

where F · νUεk denotes the classical dot product;

(ii) If χUF ∈ DM1
loc(Ω), then there exists µb ∈M(∂U) such that

F(∂U) =

∫
∂U

dµb;
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(iii) If U is a C0 domain, then there exists a sequence of smooth set U ε,ρ as in Theorem 7.10,
which can be represented as a deformation generated by f(ε, x) (defined in Theorem 8.3)
that is C∞ in x when ε > 0 and C0 in x when ε = 0, such that, for a suitable subsequence
εk → 0,

F(∂U) = − lim
εk→0

∫
∂Uεk,ρ

F · νUεk,ρ dH n−1;

(iv) If U has a Lipschitz boundary, then there exists a regular Lipschitz deformation Ψ(x, ε) =:
Ψε(x) of ∂U such that, for a suitable subsequence εk → 0 as k →∞,

F(∂U) = − lim
εk→0

∫
∂U

F (Ψεk(x)) · νU (Ψεk(x))JΨεk(x)dH n−1(x).

Proof. We divide the proof into four steps.

1. We first show the existence of such an F ∈ DM1
loc(Ω). Let IΩ be the collection of all

closed cubes in Rn of the form:

I = [a1, b1]× · · · × [an, bn],

such that I b Ω. For almost every s ∈ [aj , bj ], define

Ij,s := {y ∈ I : yj = s}.
Let {e1, . . . , en} be the canonical basis of Rn. We fix j ∈ {1, . . . , n}. For every cube I ∈ IΩ,

define

µj(I) :=

∫ bj

aj

F(Ij,s) ds.

From Definition 9.3(iii), we have

|µj(I)| ≤
∫ bj

aj

|F(Ij,s)|ds ≤
∫ bj

aj

∫
Ij,s

h dH n−1ds ≤
∫
I
|h|dx = ‖h‖L1(I),

where the Fubini theorem has been used. Thus, for any finite collection of disjoint cubes
I1, . . . , IK , we have

K∑
i=1

|µj(Ii)| ≤
K∑
i=1

‖h‖L1(Ii) ≤ ‖h‖L1(∪Ki=1Ii)
. (9.12)

Since h ∈ L1
loc(Ω), then, for every ε > 0, there exists δ > 0 such that

L n(A) < δ =⇒
∫
A
|h|dx < ε.

Hence, if {Ii}Ki=1 is a finite collection of disjoint cubes I1, . . . , Ik, satisfying
∑K

i=1 Ln(Ii) =
Ln(∪Ki=1Ii) < δ, then

K∑
i=1

|µj(Ii)| ≤ ‖h‖L1(∪Ki=1Ii)
< ε. (9.13)

Hence, µj is an additive set function defined on IΩ. We can now apply a generalization of
Riesz’s theorem, due to Fuglede [33] (see also [14, Theorem 9.5]), to conclude that there exists
fj ∈ L1

loc(Ω) such that

µj(I) =

∫
I
fj dx for every I ∈ IΩ.

We take sequences αk,j ↑ s and βk,j ↓ s as k →∞. We have

1

βk,j − αk,j

∫ βk,j

αk,j

F(Ij,s) ds =
1

βk,j − αk,j

∫ βk,j

αk,j

∫
Ij,s

fj dxds.

Letting k →∞ yields

F(Ij,s) =

∫
Ij,s

fj dH n−1 for L 1–a.e. s.



52 GUI-QIANG G. CHEN, GIOVANNI E. COMI, AND MONICA TORRES

Define

F := (f1, . . . , fn).

We obtain that, for every j ∈ {1, . . . , n},

F(Ij,s) = −
∫
Ij,s

F (y) · ej dH n−1(y) for L 1–a.e. s. (9.14)

From this point on, we say that a statement holds for almost every cube if it holds for all cubes
whose side intervals with endpoints in R \ N , for some L 1 negligible set N .

From (9.14), it follows that, for almost every cube I ∈ IΩ,

F(∂I) = −
∫
∂I

F (y) · νI(y) dH n−1(y), (9.15)

which, by Definition 9.3(ii), implies∣∣∣∣∫
∂I

F (y) · νI(y) dH n−1(y)

∣∣∣∣ = |F(∂I)| ≤ σ(I̊) ≤ σ(I), (9.16)

where I̊ denotes the open cube.
Using (9.16), we can now proceed as in [14, Lemma 9.6], or use [25, Theorem 5.3], to conclude

that F is a vector field with divergence measure satisfying |divF | ≤ σ, which means that
F ∈ DM1

loc(Ω).

2. Uniqueness of the DM1–field F . Assume now that there exists another vector field

G = (g1, · · · , gn) such that (9.14) holds. For fixed j ∈ {1, · · · , n}, we obtain that, for any cube
I ∈ IΩ, ∫

I
fjdx =

∫ bj

aj

∫
Is,j

fj dH
n−1(y)ds =

∫ bj

aj

∫
Is,j

gj dH n−1(y)ds =

∫
I
gjdx.

Hence, fj(x) = gj(x) for Ln–a.e. x.

3. In order to prove (i), we approximate ∂U with closed cubes in such a way that

∂U =

∞⋂
i=1

Ji,

where each Ji is a finite union of closed cubes in IΩ, which can be chosen so that (9.15) holds,
and Ji+1 ⊂ Ji. In addition, we can also choose {Ji} in such a way that

〈F · ν, ·〉∂J̊i = −F · νJiH n−1 ∂Ji. (9.17)

This follows for instance from [25, Theorem 7.2], which states that, for almost every closed cube
I ∈ IΩ, we have

divF (I) = −
∫
∂I

F · νI dH n−1. (9.18)

On the other hand, for any ϕ ∈ Lipc(Ω), ϕF ∈ DM1(Ω) by Proposition 3.1. It is clear that, by
(3.3),

div(ϕF )(I̊) = div(ϕF )(I)−
∫
∂I
ϕddivF .

By Remark 4.3 and (9.18), it follows that

〈F · ν, ϕ〉∂I̊ = div(ϕF )(I̊) = −
∫
∂I
ϕddivF −

∫
∂I
ϕF · νI dH n−1.

Then, arguing as in [2, Example 1.63], we obtain that |divF |(∂I) = 0 for almost every I ∈ IΩ,
since divF is a Radon measure. All in all, we conclude (9.17) for almost every finite union J of
closed cubes; then the sequence {Ji} is chosen from these finite unions {J} of closed cubes.

Now, from Definition 9.3(ii), we have

|F(∂(J̊i ∩ U))| ≤ σ(J̊i ∩ U).
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Standard measure theory arguments imply that

lim
i→∞

σ(J̊i ∩ U) = σ((∩iJi) ∩ U) = σ(∂U ∩ U) = 0, (9.19)

so that
lim
i→∞
F(∂(J̊i ∩ U)) = 0. (9.20)

Now, we consider 〈F · ν, φ〉∂(J̊i∩U) for some φ ∈ C1
c (Ω). We notice by Theorem 5.4 that, for

any φ ∈ C1
c (Ω),

〈F · ν, φ〉∂U = − lim
k→∞

∫
∂∗Uεk

φF · νUεk dH n−1. (9.21)

In the same way, we have

〈F · ν, φ〉∂(J̊i∩U) = − lim
k→∞

∫
∂∗W εk

φF · νW εk dH n−1 for any φ ∈ C1
c (Ω), (9.22)

where ∂W εk is defined as the superlevel set of the signed distance function associated to W =
J̊i ∩ U , as in (5.2).

We now choose a test function φ ∈ C1
c (Ω) such that φ 6= 0 in a neighborhood of ∂U , but

φ ≡ 0 on Ω \ Ji. Since Ji is closed, then φ = 0 in a neighborhood of ∂Ji ∩ U . With this choice
of φ, (9.22) reduces to

〈F · ν, φ〉∂(J̊i∩U) = − lim
k→∞

∫
∂∗Uεk

χJ̊iφF · νUεk dH n−1 (9.23)

and, from (9.21) and the fact that J̊i∩∂∗U εk = ∂∗U εk for εk small enough and i fixed, we obtain

〈F · ν, φ〉∂(J̊i∩U) = 〈F · ν, φ〉∂U for any such φ. (9.24)

Therefore, the distribution 〈F · ν, ·〉∂(J̊i∩U) coincides with 〈F · ν, ·〉∂U on ∂U .

Arguing similarly, we can show

〈F · ν, ·〉∂(J̊i∩U) = 〈F · ν, ·〉∂J̊i on U ∩ ∂Ji. (9.25)

Therefore, we conclude

〈F · ν, ·〉∂(J̊i∩U) = 〈χJiF · ν, ·〉∂U + 〈χUF · ν, ·〉∂J̊i (9.26)

= 〈F · ν, ·〉∂U + 〈χUF · ν, ·〉∂J̊i ,

since Ji ⊃ ∂U . By (4.2), we have

〈F · ν, ·〉∂(J̊i∩U) = χJ̊i∩UdivF − div(χJ̊i∩UF ). (9.27)

If we now choose φ ∈ C1
c (Ω) such that φ ≡ 1 on a neighborhood of ∂U , then φ ≡ 1 on ∂U ∪ ∂Ji

for any i large enough. Then, from (9.17) and (9.24)–(9.27), we obtain

〈F · ν, φ〉∂U −
∫
U∩∂Ji

F · νJi dH n−1 = 〈F · ν, φ〉∂U −
∫
∂Ji

φχUF · νJi dH n−1

= 〈F · ν, φ〉∂U + 〈χUF · ν, φ〉∂J̊i
= 〈F · ν, φ〉∂(J̊i∩U)

=

∫
J̊i∩U

φ ddivF −
∫

Ω
φ ddiv(χJ̊i∩UF )

=

∫
J̊i∩U

φ ddivF +

∫
Ji∩U

F · ∇φ dx→ 0

as i→∞, since |Ji ∩ U | → 0 and |divF |(J̊i ∩ U)→ 0. This implies

〈F · ν, φ〉∂U = lim
i→∞

∫
U∩∂Ji

F (y) · νJi(y)dH n−1(y). (9.28)

On the other hand, by Definition 9.3(i), we have

F(∂(J̊i ∩ U)) = F(∂U) + F(U ∩ ∂Ji),
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so that, from (9.15) and (9.20), we obtain

F(∂U) = lim
i→∞

∫
U∩∂Ji

F (y) · νJi(y)dH n−1(y). (9.29)

Finally, from (9.28)–(9.29), we conclude (9.11). Then Theorem 7.2 implies the second part of
point (i) (see also Theorem 5.4).

4. For (ii), we notice that χUF ∈ DM1(Ω), since U b Ω. Hence, Theorem 4.6 implies the
existence of a finite Radon measure µb on ∂U such that

〈F · ν, φ〉∂U =

∫
∂U
φ dµb for any φ ∈ C1

c (Ω).

Thus, if we take φ ≡ 1 on a neighborhood of ∂U , point (i) immediately implies (ii). Cases
(iii) and (iv) follow analogously from (i): for (iii), one need to apply Theorem 7.10; while (iv)
is obtained by employing the bi-Lipschitz regular deformation Ψε(x) from Theorem 8.19 as in
Theorem 8.12. �

Remark 9.5. In particular, the following assertions also hold:

(i) If U is an open set of finite perimeter, σ(∂U) = 0, and
∫
∂∗U hdH n−1 <∞, then

F(∂U) = −
∫
∂∗U

F · νU dH n−1,

where F · νU is the classical dot product.
To see this, we use the assumption that σ(∂U) = 0 and

∫
∂∗U hdH n−1 < ∞ to apply

[25, Theorem 5.4], which shows that 〈F ·ν, ·〉∂U is represented by the classical dot product
between F and νU . Hence, from Theorem 9.4(i), we have

F(∂U) = −
∫
∂∗U

F (x) · νU (x) dH n−1(x).

(ii) If the Borel function h in Definition 9.3(iii) is constant and U is an open set of finite
perimeter, then F ∈ DM∞loc(Ω), and

F(∂U) = −
∫
∂∗U

(Fi · νU ) dH n−1,

where Fi · νU ∈ L∞(∂∗U ; H n−1) is the interior normal trace of F on ∂∗U .
This corresponds to the case already treated in [14, Theorem 9.4], since U b Ω is a

set of finite perimeter and h is constant. Hence, we obtain F ∈ DM∞loc(Ω), and the
normal trace 〈F · ν, ·〉∂U is represented by the measure −(Fi · νU ) H n−1 ∂∗U , for some
(Fi · νU ) ∈ L∞(∂∗U ; H n−1); see also Proposition 4.9.

Remark 9.6. The importance of Theorem 9.4 and Remark 9.5 is that the flux can be recovered
on every open set U .

Remark 9.7. It has been discussed above that Schuricht [53] considered an alternative formu-
lation for the axioms, representing the contact interactions as maps f(B,A) on pairs of disjoint
subbodies (instead of surfaces). In this formulation, our results on normal traces for DMp–fields
improve those in [53, Theorem 5.20, equation (5.21)], since f(B,A) can be written as the limit
of the classical normal traces on the approximations of B, versus an integral average.
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