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Abstract

In this paper we study the class of optimal entropy-transport problems introduced by
Liero, Mielke and Savaré in Inventiones Mathematicae 211 in 2018. This class of unbal-
anced transport metrics allows for transport between measures of different total mass,
unlike classical optimal transport where both measures must have the same total mass.
In particular, we develop the theory for the important subclass of semi-discrete unbal-
anced transport problems, where one of the measures is diffuse (absolutely continuous
with respect to the Lebesgue measure) and the other is discrete (a sum of Dirac masses).
We characterize the optimal solutions and show they can be written in terms of gen-
eralized Laguerre diagrams. We use this to develop an efficient method for solving the
semi-discrete unbalanced transport problem numerically. As an application we study the
unbalanced quantization problem, where one looks for the best approximation of a diffuse
measure by a discrete measure with respect to an unbalanced transport metric. We prove
a type of crystallization result in two dimensions – optimality of a locally triangular lattice
with spatially varying density – and compute the asymptotic quantization error as the
number of Dirac masses tends to infinity.

1 Introduction

In this paper we study semi-discrete unbalanced optimal transport problems: What is the
optimal way of transporting a diffuse measure to a discrete measure (hence the name semi-
discrete), where the two measures may have different total mass (hence the name unbalanced)?
As an application we study the unbalanced quantization problem: What is the best approxi-
mation of a diffuse measure by a discrete measure with respect to an unbalanced transport
metric?

1.1 Unbalanced optimal transport

Classical optimal transport theory asks for the most efficient way to rearrange mass between
two given probability distributions. Its origin goes back to 1781 and the French engineer
Gaspard Monge, who was interested in the question of how to transport and reshape a pile of
earth to form an embankment at minimal effort. It took over 200 years to develop a complete
mathematical understanding of this problem, even to answer the question of whether there
exists an optimal way of redistributing mass. Since the mathematical breakthroughs of the
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1980s and 1990s, the field of optimal transport theory has thrived and found applications
in crowd and traffic dynamics, economics, geometry, image and signal processing, machine
learning and data science, PDEs, and statistics. Depending on the context, mass may repre-
sent the distribution of particles (people or cars), supply and demand, population densities,
etc. For thorough introductions see, e.g., [26, 57, 60, 68].

In classical optimal transport theory the initial and target measures must have the same
total mass. In applications this is not always natural. Changes in mass may occur due to
creation or annihilation of particles or a mismatch between supply and demand. Therefore so-
called unbalanced transport problems, accounting for such differences, have recently received
increased attention [25, 38, 18, 44]. Brief overviews and discussions of various formulations
can be found, for instance, in [19, 63]. Further theoretical properties are examined in [40, 45],
examples for applications in data analysis can be found in [41, 17, 65]. In this article we
study the class of unbalanced transport problems called optimal entropy-transport problems
from [44]; see Definition 2.4. In particular, we develop this theory for the special case of
semi-discrete transport.

1.2 Semi-discrete transport

Semi-discrete optimal transport theory is about the best way to transport a diffuse measure,
µ ∈ L1(Ω), Ω ⊂ Rd, to a discrete measure, ν =

∑M
i=1miδxi . These type of problems arise

naturally, for instance, in economics in computing the distance between a population with
density µ and a resource with distribution ν =

∑M
i=1miδxi , where xi ∈ Ω represent the

locations of the resource and mi > 0 represent the size or capacity of the resource. The
classical semi-discrete optimal transport problem, where µ and ν are probability measures,
has a nice geometric characterization. For example, for p ∈ [1,∞), the Wasserstein-p metric
Wp is defined by

Wp(µ, ν) = min

{
M∑
i=1

∫
T−1(xi)

|x− xi|pµ(x) dx

∣∣∣∣∣T : Ω → {xi}Mi=1,

∫
T−1(xi)

µ(x) dx = mi

}1/p

where
∑M

i=1mi =
∫
Ω µ(x) dx = 1. This is an optimal partitioning (or assignment) problem,

where the domain Ω is partitioned into the regions T−1(xi) of mass mi, i ∈ {1, . . . ,M}, and
each point x ∈ T−1(xi) is assigned to point xi. For example, in two dimensions, Ω could
represent a city, µ the population density of children, xi and mi the location and size of
schools, T−1(xi) the catchment areas of the schools, and Wp(µ, ν) the cost of transporting
the children to their assigned schools. If p = 2, it turns out that the optimal partition
{T−1(xi)}Mi=1 is a Laguerre diagram or power diagram, which is a type of weighted Voronoi
diagram: There exist weights w1, . . . , wM ∈ R such that

T−1(xi) = {x ∈ Ω | |x− xi|2 − wi ≤ |x− xj |2 − wj ∀ j ∈ {1, . . . ,M}}.

The transport cells T−1(xi) are the intersection of convex polytopes (polygons if d = 2,
polyhedra if d = 3) with Ω. The weights w1, . . . , wM ∈ R can be found by solving an
unconstrained concave maximization problem. If p = 1, the optimal partition {T−1(xi)}Mi=1

in an Apollonius diagram. See, e.g., [3, Sec. 6.4], [26, Chap. 5], [36, 51], [57, Chap. 5],
and Section 2.3 below, where we summarize the main results from classical semi-discrete
optimal transport theory. Applications of semi-discrete transport include fluid mechanics
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[27, 28], microstructure modelling [10, 15], optics [52], and the Lagrangian discretization of
Wasserstein gradient flows [42] and mean field games [62].

In Section 3 we extend these results to unbalanced transport, where µ and ν no longer
need to have the same total mass, and the Wasserstein-p metric is replaced by the unbalanced
transport metric W from Definition 2.4. We prove that, also in the unbalanced case, the
optimal partition is a type of generalized Laguerre diagram and it can be found by solving
a concave maximization problem for a set of weights w1, . . . , wM ; see Theorems 3.1 and 3.2.
This problem is natural from a modelling perspective, for example to describe a mismatch
between the demand of a population µ and the supply of a resource ν, and to model the
prioritization of high-density regions at the expense of areas with a low population density.

For unbalanced transport, there is no one, definitive transport cost, but many models are
conceivable. As a first application of our theory of semi-discrete unbalanced transport, in
Examples 3.13 and 3.14, we use it to compare different unbalanced transport models. As a
second application, in Section 4, we apply it to the quantization problem.

1.3 Quantization

Quantization of measures refers to the problem of finding the best approximation of a diffuse
measure by a discrete measure [31], [34, Sec. 33]. For example, the classical quantization
problem with respect to the Wasserstein-p metric, p ∈ [1,∞), is the following: Given µ ∈
L1(Ω), Ω ⊂ Rd,

∫
Ω µ(x) dx = 1, find a discrete probability measure ν =

∑M
i=1miδxi that gives

the best approximation of µ in the Wasserstein-p metric,

QM
p (µ) = min

{
W p

p (µ, ν)

∣∣∣∣∣ ν =
M∑
i=1

miδxi , x1, . . . , xM ∈ Ω, mi > 0,
M∑
i=1

mi = 1

}
. (1.1)

We call QM
p the quantization error. Problems of this form arise in a wide range of appli-

cations including economic planning and optimal location problems [7, 8, 14], finance [56],
numerical integration [21, Sec. 2.2], [56, Sec. 2.3], energy-driven pattern formation [11, 39],
and approximation of initial data for particle (meshfree) methods for PDEs. An approach to
quantization using gradient flows is given in [16, 35]. We mention a few important variations
on the classical quantization problem. The case where the masses m1, . . . ,mM are fixed and
the minimisation in (1.1) is only taken over x1, . . . , xM is considered for example in [10, 50, 69].
The case where µ is a discrete measure, with support of cardinality N ≫M , has applications
in image and signal compression [22, 30] and data clustering (k-means clustering) [48, 64].
If ν is a one-dimensional measure (supported on a set of Hausdorff dimension 1), then the
quantization problem is known as the irrigation problem [47, 54]. In this paper we consider
the variation where the Wasserstein-p metric in (1.1) is replaced by an unbalanced transport
metric.

It can be shown that the quantization problem (1.1) can be rewritten as an optimization
problem in terms of the particle locations {xi}Mi=1 and their Voronoi tessellation:

QM
p (µ) = min {J(x1, . . . , xM ) |x1, . . . , xM ∈ Ω} (1.2)

where

J(x1, . . . , xM ) =

M∑
i=1

∫
Vi(x1,...,xM )

|x− xi|pµ(x) dx
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and where {Vi}Mi=1 is the Voronoi diagram generated by {xi}Mi=1,

Vi = Vi(x1, . . . , xM ) = {x ∈ Ω | |x− xi| ≤ |x− xj | for all j ∈ {1, . . . ,M}} .

If (x1, . . . , xM ) is a global minimizer of J , then
∑M

i=1

(∫
Vi
µ dx

)
δxi is an optimal quantizer

of µ with respect to the Wasserstein-p metric. See for instance [11, Sec. 4.1], [37, Sec. 7] and
Theorem 4.1. In the vector quantization (electrical engineering) literature J is known as the
distortion of the quantizer [30].

The quantization problem with respect to the Wasserstein-2 metric is particularly well
studied. In this case it can be shown that critical points of J are generators of centroidal
Voronoi tessellations (CVTs) of M points [21]; this means that ∇J(x1, . . . , xM ) = 0 if and
only if xi is the centre of mass of its own Voronoi cell Vi for all i,

xi =

∫
Vi(x1,...,xM )

xµ(x) dx∫
Vi(x1,...,xM )

µ(x) dx

, i ∈ {1, . . . ,M}. (1.3)

In general there does not exist a unique CVT of M points, as illustrated in Fig. 1, and J is
non-convex with many local minimisers for large M . Equation (1.3) is a nonlinear system
of equations for x1, . . . , xM . A simple and popular method for computing CVTs is Lloyd’s
algorithm [21, 24, 46, 59], which is a fixed point method for solving the Euler–Lagrange
equations (1.3).

0 1
0

1

0 1
0

1

Figure 1: Two (approximate) centroidal Voronoi tessellations (CVTs) of 10 points for the
uniform density µ = 1 on a unit square. The polygons are the centroidal Voronoi cells Vi
and the circles are the generators xi. The CVTs were computed using Lloyd’s algorithm.
The CVT on the left has a lower energy J than the CVT on the right. The corresponding
quantizer ν =

∑10
i=1miδxi of µ is reconstructed from the CVT by taking mi as the areas of

the centroidal Voronoi cells and xi as their generators.

In Sections 4.1 and 4.2 we extend these results to unbalanced quantization, where the
Wasserstein-p metric in (1.1) is replaced by the unbalanced transport metric W (defined in
equation (2.6)) and where µ and ν need not have the same total mass. In Theorem 4.1 we
prove an expression of the form (1.2), which states that the unbalanced quantization problem
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can be reduced to an optimization problem for the locations x1, . . . , xM of the Dirac masses.
This optimization problem is again formulated in terms of the Voronoi diagram generated by
x1, . . . , xM . In Section 4.2 we solve the unbalanced quantization problem numerically, which
includes extending Lloyd’s algorithm to the unbalanced case.

We conclude the paper in Section 4.3 by studying the asymptotic unbalanced quantization
problem: What is the optimal configuration of the particles x1, . . . , xM as M → ∞, and how
does the quantization error scale in M? Consider for example the classical quantization
problem (1.1) with p = 2, |Ω| = 1, µ = 1 (i.e., µ is the Lebesgue measure on Ω), and M
fixed. From above, we know that an optimal quantizer ν corresponds to an optimal CVT
of M points, where optimal means that the CVT has lowest energy J amongst all CVTs of
M points. Gersho [29] conjectured that, as M → ∞, the Voronoi cells of the optimal CVT
asymptotically have the same shape, i.e., asymptotically they are translations and rescalings
of a single polytope. In two dimensions (d = 2) various versions of Gersho’s Conjecture have
been proved independently by several authors [7, 32, 53, 55, 66, 67]. Roughly speaking, it has
been shown that the hexagonal tiling is optimal as M → ∞. In other words, arranging the
seeds x1, . . . , xM in a regular triangular lattice is asymptotically optimal. This crystallization
result can be stated more precisely as follows: If Ω is a convex polygon with at most 6 sides,
then

J(x1, . . . , xM ) ≥ 5
√
3

54

1

M
(1.4)

where the right-hand side is the energy of a regular triangular lattice of M points such that
the Voronoi cells Vi are regular hexagons of area 1/M . In general this lower bound is not
attained for finite M (unless Ω is a regular hexagon and M = 1), but it is attained in limit
M → ∞:

lim
M→∞

M ·QM
2 (1) = lim

M→∞
M · min

xi∈Ω
J(x1, . . . , xM ) =

5
√
3

54
. (1.5)

See the references above or [12, Thm. 5]. We generalise (1.4) and (1.5) to the unbalanced
quantization problem in Theorem 4.6 and Theorem 4.14, respectively. Roughly speaking, we
show that again for µ = 1 the triangular lattice is optimal in the limit M → ∞. For general
µ ∈ L1(Ω), it is asymptotically optimal for the particles to locally form a triangular lattice
with density determined by a nonlocal function of µ.

While our quantization results are limited to two dimensions, this is also largely true for
the classical quantization problem. In three dimensions it is not known whether Gersho’s
Conjecture holds, although there is some numerical evidence for the case p = 2 that optimal
CVTs ofM points tend asM → ∞ to the Voronoi diagram of the body-centered cubic (BCC)
lattice, where each Voronoi cell is congruent to a truncated octahedron [23]. See also [20].
For p = 2 it has been proved that, amongst lattices, the BCC lattice is optimal [5].

For general p, d and µ, the scaling of the quantization error is known even if the optimal
quantizer is not; Zador’s Theorem [70], [34, Cor. 33.3] states that

lim
M→∞

M
p
d ·QM

p (µ) = c(p, d) ∥µ∥
L

d
d+p (Ω)

(1.6)

where the constant c(p, d) is characterised by

c(p, d) = lim
M→∞

M
p
d ·QM

p (L⌞[0, 1]d),
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and where L is the d-dimensional Lebesgue measure. For a modern proof using Γ-convergence
see [9] and [61, Proposition 7.21]. For generalisations to quantization on Riemannian mani-
folds see [33], [37, Thm. 1.2] and [4]. It is an open problem to compute the optimal constant
c(p, d) except for d = 1 and d = 2, where

c(p, 1) =

∫ 1/2

−1/2
|x|p dx, c(p, 2) =

∫
H(1)

|x|p dx, (1.7)

whereH(1) is a regular hexagon of area 1 centred at the origin 0. We recover Zador’s Theorem
for the case d = 2, along with the optimal constant c(p, 2), as a special case of Theorem 4.14;
see Example 4.17.

1.4 Outline and contribution

Section 2 collects relevant results from classical, unbalanced, and semi-discrete transport,
which will be generalized in Section 3 to the case of semi-discrete unbalanced transport.
Finally, Section 4 considers the unbalanced quantization problem.

In more detail, the contributions of this article are the following.

• Section 3.1: We extend semi-discrete transport theory to the unbalanced case, most
importantly a simple, geometric tessellation formulation (Theorem 3.1), optimality con-
ditions that fully characterize primal and dual solutions (Theorem 3.2), and additional
different primal and dual convex formulations. Unlike in the balanced case, the dual
potentials associated with the discrete mass locations do not only determine the tessel-
lation of the continuous measure, but also the density of the optimal transport plan.
Particular attention needs to be paid to areas where the ground transport cost func-
tion becomes infinite. Special cases of these results were derived in [42, 62] to study
a Lagrangian discretization of Wasserstein gradient flows and variational mean field
games.

• Section 3.2: We develop numerical algorithms for solving the semi-discrete unbalanced
transport problem and numerically illustrate novel phenomena of unbalanced transport
(Example 3.13). In particular, we show qualitative differences between different un-
balanced transport models and examine the effect of changing the length scale, which
typically is intrinsic to unbalanced transport models.

• Sections 4.1 and 4.2: We extend the theory of optimal transport-based quantiza-
tion of measures to unbalanced transport, deriving in particular an equivalent Voronoi
tessellation problem (Theorem 4.1), which turns out to be a natural generalization of
the known corresponding formulation in classical transport. The interesting fact here
is that the simple geometric Voronoi tessellation structure survives when passing from
balanced to unbalanced transport, but the mass of the generating points now depends in
a more complex way on the mass within their cells. We also illustrate unbalanced quan-
tization numerically, extending the standard algorithms (including Lloyd’s algorithm)
to the unbalanced case.

• Section 4.3: In two spatial dimensions, where crystallization results from discrete
geometry are available, we derive the optimal asymptotic quantization cost and the
optimal asymptotic point density for quantizing a given measure µ using unbalanced
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transport (Theorem 4.14). Our result includes Zador’s Theorem for classical, balanced
quantization as a special case; see Example 4.17. As is common in asymptotic quantiza-
tion, we consider a spatial rescaling of the domain as the number of points increases and
the most interesting regime is where the rescaled point density converges to a non-zero,
finite limit. While in the balanced case, the rescaled asymptotic cost only depends on
the growth behaviour of the transport ground cost function, in the unbalanced setting
we now observe an interplay between the rescaled point density and the intrinsic length
scale of unbalanced transport. An interesting, novel effect in this unbalanced setting is
that the optimal point density depends nonlocally on the global mass distribution in
such a way that whole regions with positive measure may be completely neglected in
favour of regions with higher mass.

1.5 Setting and notation

Throughout this article we work in a domain Ω = U for U ⊂ Rd open and bounded. (In
principle, the results could be extended to more general metric spaces such as Riemannian
manifolds.) The Euclidean distance on Rd is denoted d(·, ·), and we will write πi : Ω×Ω → Ω,
for the projections πi(x1, x2) = xi, i = 1, 2. The (d-dimensional) Lebesgue measure of a
measurable set A ⊂ Rd will be indicated by L(A) or |A| for short, its diameter by diam(A).

By M+(Ω) we denote the set of nonnegative Radon measures on Ω, and P(Ω) ⊂ M+(Ω)
is the subset of probability measures. The notation µ ≪ ν for two measures µ, ν ∈ M+(Ω)
indicates absolute continuity of µ with respect to ν, and the corresponding Radon–Nikodym
derivative is written as dµ

dν . The restriction of µ ∈ M+(Ω) to a measurable set A ⊂ Rd is
denoted µ⌞A, and its support is denoted sptµ. For a Dirac measure at a point x ∈ Rd we
write δx. The pushforward of a measure µ under a measurable map T is denoted T#µ.

The spaces of Lebesgue integrable functions on U or of µ-integrable functions with µ ∈
M+(Ω) are denoted L1(U) and L1(µ), respectively. Continuous functions on Ω are denoted
by C(Ω).

2 Background

The purpose of this section is a short introduction to classical, unbalanced, and semi-discrete
transport.

2.1 Optimal transport

Here we briefly recall the basic setting of optimal transport. For a thorough introduction we
refer, for instance, to [60, 68]. For µ, ν ∈ P(Ω) the set

Γ(µ, ν) = {γ ∈ P(Ω× Ω) |π1#γ = µ, π2#γ = ν} (2.1)

is called the couplings or transport plans between µ and ν. A measure γ ∈ Γ(µ, ν) can be
interpreted as a rearrangement of the mass of µ into ν where γ(x, y) intuitively describes how
much mass is taken from x to y. The total cost associated to a coupling γ is given by∫

Ω×Ω
c(x, y) dγ(x, y) (2.2)
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where c : Ω×Ω → [0,∞] and c(x, y) specifies the cost of moving one unit of mass from x to y.
The optimal transport problem asks for finding a γ that minimizes (2.2) among all couplings
Γ(µ, ν),

WOT(µ, ν) = inf

{∫
Ω×Ω

c dγ

∣∣∣∣ γ ∈ Γ(µ, ν)

}
. (2.3)

Under suitable regularity assumptions on c, existence of minimizers follows from standard
compactness and lower semi-continuity arguments.

Theorem 2.1 ([68, Thm. 4.1]). If c : Ω × Ω → [0,∞] is lower semi-continuous, then mini-
mizers of (2.3) exist. The minimal value may be +∞.

2.2 Unbalanced transport

The optimal transport problem (2.3) only allows the comparison of measures µ, ν with equal
mass. Otherwise, the feasible set Γ(µ, ν) is empty. Therefore, so-called unbalanced transport
problems have been studied, where mass may be created or annihilated during transport and
thus measures of different total mass can be compared in a meaningful way. See Section 1 for
context and references.

Throughout this article we consider unbalanced optimal entropy-transport problems as
studied in [44]. The basic idea is to replace the hard marginal constraints π1#γ = µ, π2#γ = ν
in (2.1) with soft constraints where the deviation between the marginals of γ and the measures
µ and ν is penalized by a marginal discrepancy function. This allows more flexibility for
feasible γ. We focus on a subset of the family of marginal discrepancies considered in [44].

Definition 2.2 (Marginal discrepancy). Let F : [0,∞) → [0,∞] be proper, convex, and lower

semi-continuous with lims→∞
F (s)
s = ∞. For a given measure µ ∈ M+(Ω), the function F

induces a marginal discrepancy F(·|µ) : M+(Ω) → [0,∞] via

F(ρ|µ) =


∫
Ω
F
( dρ
dµ

)
dµ if ρ≪ µ,

+∞ otherwise.
(2.4)

Note that the integrand is only defined µ-almost everywhere. F is (sequentially) weakly-∗
lower semi-continuous [1, Thm. 2.34].

We extend the domain of definition of F to R by setting F (s) = ∞ for s < 0. The
Fenchel–Legendre conjugate of F is then the convex function F ∗ : R → (−∞,+∞] defined by

F ∗(z) = sup
s∈R

(z · s− F (s)) = sup
s≥0

(z · s− F (s)) .

Example 2.3 (Kullback–Leibler divergence). The Kullback–Leibler divergence is an example
of Definition 2.2 for the choice FKL : [0,∞) → [0,∞),

FKL(s) =

{
s log s− s+ 1 if s > 0,

1 if s = 0.

The Fenchel–Legendre conjugate is given by F ∗
KL(z) = ez − 1.

8



Definition 2.4 (Unbalanced optimal transport problem). Let F be as in Definition 2.2 and
let F be the induced marginal discrepancy. Let µ, ν ∈ M+(Ω) and c : Ω×Ω → [0,∞] be lower
semi-continuous. The corresponding unbalanced transport cost E : M+(Ω × Ω) → [0,∞] is
given by

E(γ) =
∫
Ω×Ω

cdγ + F(π1#γ|µ) + F(π2#γ|ν) (2.5)

and induces the optimization problem

W (µ, ν) = inf {E(γ) | γ ∈ M+(Ω× Ω)} . (2.6)

Theorem 2.5 ([44, Thm. 3.3]). Minimizers of (2.6) exist. The minimal value may be +∞.

Remark 2.6. Observe that F(ρ|µ) = ∞ whenever ρ ̸≪ µ and F(ρ|ν) = ∞ whenever ρ ̸≪ ν.
This guarantees that π1#γ ≪ µ and π2#γ ≪ ν for all feasible γ, where feasible means that
E(γ) <∞. Thus, when µ≪ L and ν is discrete, as in the semi-discrete setting (which will be
discussed in the following section), then the first and second marginal of any feasible γ will
share these properties.

Remark 2.7. For simplicity we assume that the same marginal discrepancy is applied to
both marginals in (2.5), but of course in some cases it may be more appropriate to consider
two different discrepancies. All results in this article generalize to this case in a canonical
way.

In this article we focus on cost functions c that can be written as increasing functions of
the distance between x and y.

Definition 2.8 (Radial cost). A cost function c : Ω×Ω → [0,∞] is called radial if it can be
written as c(x, y) = ℓ(d(x, y)) for a strictly increasing function ℓ : [0,∞) → [0,∞], continuous
on its domain with ℓ(0) = 0.

Note that the cost c need not be twisted [60, Definition 1.16], which leads to some technical
complications. The following examples shall be used throughout for illustration. They all
feature a radial transport cost c in the sense of Definition 2.8.

Example 2.9 (Unbalanced transport models).

(a) Standard Wasserstein-2 distance (W2). Classical balanced optimal transport can
be recovered as a special case of Definition 2.4 by choosing F(ρ|µ) = 0 if ρ = µ and ∞
otherwise. This corresponds to

F (s) = ι{1}(s) =

{
0 if s = 1,

∞ otherwise,
F ∗(z) = z .

Then E(γ) < ∞ only if γ ∈ Γ(µ, ν), and therefore (2.6) reduces to (2.3). In particu-
lar, the Wasserstein-2 setting is obtained for c(x, y) = d(x, y)2, and the Wasserstein-2
distance is defined by W2(µ, ν) =

√
W (µ, ν).

(b) Gaussian Hellinger–Kantorovich distance (GHK). This distance is introduced in
[44, Thm. 7.25] using

F (s) = FKL(s) =

{
s log s− s+ 1 if s > 0,

1 if s = 0,
F ∗(z) = ez − 1 , c(x, y) = d(x, y)2 .
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(c) Hellinger–Kantorovich distance (HK). This important instance of unbalanced
transport was introduced in different formulations in [38, 18, 44] whose mutual rela-
tions are described in [19]. In Definition 2.4 one chooses

F (s) = FKL(s) , F ∗(z) = ez − 1 ,

c(x, y) = cHK(x, y) =

{
−2 log

[
cos
(
d(x, y)

)]
if d(x, y) < π

2 ,

∞ otherwise,

and the Hellinger–Kantorovich distance is defined by HK(µ, ν) =
√
W (µ, ν). The dis-

tance HK is actually a geodesic distance on the space of non-negative measures over a
metric base space. From cHK(x, y) = ∞ for d(x, y) ≥ π

2 , we learn that mass is never
transported further than π

2 in this setting.

(d) Quadratic regularization (QR). The Kullback–Leibler discrepancy FKL used in both
previous examples has an infinite slope at 0, which in Definition 2.4 leads to a strong in-
centive to achieve π1#γ ≫ µ and π2#γ ≫ ν. The following mere quadratic discrepancy
does not have this property,

F (s) = (s− 1)2 , F ∗(z) =

{
z2

4 + z if z ≥ −2,

−1 otherwise,
c(x, y) = d(x, y)2 .

Unsurprisingly, the structure of the function F has a great influence on the behaviour of
the unbalanced optimization problem (2.6). Often it is helpful to analyze corresponding dual
problems where the conjugate function F ∗ appears. We gather some properties of F ∗, implied
by the assumptions on F in Definition 2.2 and on some additional assumptions that we will
occasionally make in this article.

Lemma 2.10 (Properties of F ∗). Let F satisfy the assumptions given in Definition 2.2. Then

(i) F ∗(z) > −∞ for z ∈ R;

(ii) F ∗ is increasing;

(iii) F ∗(z) ≤ 0 for z ≤ 0;

(iv) F ∗(z) <∞ for z ∈ (0,∞);

(v) F ∗ is real-valued and continuous on R;

(vi) if F is strictly convex on its domain, then F ∗ is continuously differentiable on R;

(vii) if F (0) <∞, then F ∗(z) ≥ −F (0) for all z ∈ R and

lim
z→−∞

min ∂F ∗(z) = lim
z→−∞

max ∂F ∗(z) = 0.

Proof. (i) Since F is proper, we can find s ∈ (0,∞) with F (s) < ∞. Then for all z ∈ R,
F ∗(z) = supx≥0(z · x− F (x)) ≥ z · s− F (s) > −∞.

(ii) Let z1 ≤ z2. Then F
∗(z2) = supx≥0(z2 · x− F (x)) ≥ supx≥0(z1 · x− F (x)) = F ∗(z1).

10



(iii) Let z ≤ 0. Since F ≥ 0, then F ∗(z) = supx≥0(z · x− F (x)) ≤ supx≥0 z · x = 0.
(iv) Let z ∈ (0,∞). Since F ≥ 0, F ∗(z) = ∞ is only possible if any maximizing sequence

x1, x2, . . . for F
∗(z) = supx≥0(z ·x−F (x)) is unbounded. However, limn→∞(z ·xn−F (xn)) =

limx→∞ x
(
z − F (x)

x

)
= −∞ since lims→∞

F (s)
s = ∞. So F ∗(z) <∞.

(v) (i), (iv), and (iii) imply dom(F ∗) = R. By convexity, F ∗ is therefore continuous.
(vi) This is a special case of a classical result in convex analysis, which can be found, for

instance, in [58, Thm. 26.3].
(vii) Let z ∈ R. Then F ∗(z) = supx≥0(z ·x−F (x)) ≥ −F (0). Moreover, let z1, z2, . . . and

u1, u2, . . . be sequences with zn → −∞ as n→ ∞ and un ∈ ∂F ∗(zn). By monotonicity of F ∗,
(ii), we have un ≥ 0. By (iii) and convexity one finds 0 ≥ F ∗(0) ≥ F ∗(zn) + un · (0 − zn) ≥
−F (0) + un · |zn|, which implies that un → 0.

Remark 2.11 (Feasibility for finite F (0)). Note that for F (0) <∞ the trivial transport plan
γ = 0 leads to a finite cost in (2.5) so that W (µ, ν) <∞ for all µ, ν ∈ M+(Ω).

2.3 Semi-discrete transport

An important special case of the classical balanced optimal transport problem (2.3) is the
case where µ is absolutely continuous with respect to the Lebesgue measure,

µ≪ L , (2.7a)

and ν is a discrete measure,

ν =
M∑
i=1

miδxi , (2.7b)

with mi > 0, xi ∈ Ω, and xi ̸= xj for i ̸= j. See Section 1 for context and references. In
this section we review the special structure of problem (2.3) that follows from (2.7). For
instance, optimal couplings for (2.3) turn out to have a very particular form: the domain Ω
is partitioned into cells, one cell for each discrete point xi, and mass will only be transported
from each cell to its corresponding discrete point. The shape of the cells is determined by
µ, ν and the cost function c and can be expressed with the aid of Definition 2.12. Problem
(2.3) can be rewritten explicitly as an optimization problem in terms of the cells. This
tessellation formulation is given in Theorem 2.14, and its optimality conditions are described
in Theorem 2.16.

Definition 2.12 (Generalized Laguerre cells). Given a transportation cost c and points
x1, . . . , xM ∈ Ω, we define the generalized Laguerre cells corresponding to the weight vec-
tor w ∈ RM by

Ci(w) = {x ∈ Ω | c(x, xi) <∞, c(x, xi)− wi ≤ c(x, xj)− wj for all j ∈ {1, . . . ,M}} (2.8)

for i ∈ {1, . . . ,M}. The residual of Ω, the set not covered by any of the cells Ci, is defined by

R = {x ∈ Ω | c(x, xi) = ∞ for all i ∈ {1, . . . ,M}} . (2.9)

Note that R can also be written as R = Ω \
(⋃M

i=1Ci(w)
)
, which does not depend on w ∈

RM . Note also that, if a = λ(1, 1, . . . , 1) ∈ RM is a vector with all components equal, then
Ci(w + a) = Ci(w) for all i ∈ {1, . . . ,M}.
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Example 2.13 (Generalized Laguerre cells [3]).

(a) Voronoi diagrams. If c is radial (see Definition 2.8) and finite, then the collection of
generalized Laguerre cells with weight vector 0 ∈ RM , {Ci(0)}Mi=1, is just the Voronoi
diagram generated by the points x1, . . . , xM . The residual set R = ∅.

(b) Laguerre diagrams or power diagrams. If c(x, y) = |x − y|2, then the collection
of generalized Laguerre cells {Ci(w)}Mi=1 is known as the Laguerre diagram or power
diagram generated by the weighted points (x1, w1), . . . , (xM , wM ). The cells Ci are the
intersection of convex polytopes with Ω. The residual set R = ∅.

(c) Apollonius diagrams. If c(x, y) = |x− y|, then the collection of generalized Laguerre
cells {Ci(w)}Mi=1 is known as the Apollonius diagram generated by the weighted points
(x1, w1), . . . , (xM , wM ). The cells Ci are the intersection of star-shaped sets with Ω, and
in two dimensions the boundaries between cells are arcs of hyperbolas. Again, R = ∅.

Theorem 2.14 (Dual tessellation formulation for semi-discrete transport). Assume that µ
and ν satisfy (2.7) and µ(Ω) = ν(Ω). Let the cost function c be radial (see Definition 2.8)
and WOT(µ, ν) <∞. Then

WOT(µ, ν) = sup

{
M∑
i=1

∫
Ci(w)

c(x, xi) dµ(x) +
M∑
i=1

(
mi − µ(Ci(w))

)
· wi

∣∣∣∣∣w ∈ RM

}
. (2.10)

Remark 2.15 (Existence of optimal weights). Maximizers for (2.10) do not always exist,
even when WOT(µ, ν) < ∞. A simple sufficient condition for existence is that c is bounded
from above on Ω× Ω. More details can be found, for instance, in [68, Thm. 5.10].

Theorem 2.16 (Optimality conditions). Under the conditions of Theorem 2.14, a coupling
γ ∈ Γ(µ, ν) and a vector w ∈ RM are optimal for WOT(µ, ν) in (2.3) and (2.10) respectively,
if and only if

γ =

M∑
i=1

(µ⌞Ci(w)⊗ δxi) , µ(Ci(w)) = mi for i ∈ {1, . . . ,M}. (2.11)

Proofs of Theorem 2.14 and Theorem 2.16 can be found below and for example in [36]
and [51, Section 4] for twisted costs c. We provide proofs of Theorems 2.14 and 2.16 for
two reasons. They serve as preparation for the proof of Theorems 3.1 and 3.2 in the case of
semi-discrete unbalanced transport, which generalize Theorems 2.14 and 2.16. In addition,
they deal with the technical aspect that our cost function c is not necessarily twisted and may
take the value +∞ at finite distances. In particular, c does not satisfy the assumptions in
[36, 51]. We rely on the following lemma, which essentially provides the existence of a Monge
map in the semi-discrete setting (Corollary 2.18). For twisted costs this result can be found
in [51, Proposition 37].

Lemma 2.17 (Laguerre cell boundaries). Let the cost function c be radial in the sense of
Definition 2.8 and let {xi}Mi=1 be M distinct points in Ω. The induced generalized Laguerre
cells satisfy |Ci(w) ∩ Cj(w)| = 0 for i ̸= j.
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Proof. Fix i ̸= j and w ∈ RM and recall that c(x, y) = ℓ(d(x, y)). We have

Ci(w) ∩ Cj(w) =
⋃
n∈N

An for An = {x ∈ Ω | c(x, xi)− wi = c(x, xj)− wj , c(x, xi) ≤ n} ,

and we will show that the d-dimensional Hausdorff measure of each An is zero, Hd(An) = 0,
which implies |An| = 0 and thus also |Ci(w) ∩ Cj(w)| = 0. Indeed, as a Borel set, An ⊂ Rd

is countably Hd-rectifiable (since it is Hd-measurable). Thus, abbreviating f = d(·, xi), the
coarea formula [1, Thm. 2.93] yields

Hd(An) =

∫
An

1 dHd =

∫
R
Hd−1(An ∩ f−1(t)) dt =

∫ ℓ−1(n)

0
Hd−1(An ∩ f−1(t)) dt .

Now, for t ∈ [0, ℓ−1(n)],

An ∩ f−1(t) = {x ∈ Ω | d(x, xi) = t and d(x, xj) ∈ ℓ−1(ℓ(d(x, xi)) + wj − wi)},

where ℓ−1(ℓ(d(x, xi))+wj−wi) is either empty or single-valued due to the strict monotonicity
of ℓ. Hence, An ∩ f−1(t) is contained in the intersection of two non-concentric (d − 1)-
dimensional spheres and thus is Hd−1-negligible.

Proof of Theorem 2.14. By Kantorovich duality [68, Thm. 5.10] we can write

WOT(µ, ν) = sup

{∫
Ω
ϕ dµ+

∫
Ω
ψ dν

∣∣∣∣ϕ ∈ L1(µ), ψ ∈ L1(ν),

ϕ(x) + ψ(y) ≤ c(x, y)∀ (x, y) ∈ Ω× Ω

}
. (2.12)

Since ν is discrete, L1(ν) is isomorphic to RM under the isomorphism I : L1(ν) → RM ,
ψ 7→ (ψ(x1), . . . , ψ(xM )). The above dual problem thus becomes

WOT(µ, ν) = sup

{∫
Ω
ϕ dµ+

M∑
i=1

wimi

∣∣∣∣∣ϕ ∈ L1(µ), w ∈ RM ,

ϕ(x) + wi ≤ c(x, xi) ∀x ∈ Ω, i ∈ {1, . . . ,M}
}
.

Next, for fixed w, one can explicitly maximize over ϕ, which corresponds to pointwise maxi-
mization subject to the constraint. We denote the maximizer by ϕw to emphasize the depen-
dency on w,

ϕw(x) = min
{
c(x, xi)− wi | i = 1, . . . ,M

}
. (2.13)

SinceWOT(µ, ν) <∞ (and c is bounded from below in our setting) one must have ϕw ∈ L1(µ)
for all w ∈ RM , and we find

WOT(µ, ν) = sup{ESD(w) |w ∈ RM} with ESD(w) =
∫
Ω
ϕw(x) dµ(x) +

M∑
i=1

wimi . (2.14)
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Since ϕw ∈ L1(µ) for any w ∈ RM , the residual set R must be µ-negligible; likewise, the
intersection of generalized Laguerre cells is µ-negligible by Lemma 2.17. Consequently,

ESD(w) =
M∑
i=1

∫
Ci(w)

ϕw(x) dµ(x) +

M∑
i=1

wimi =

M∑
i=1

∫
Ci(w)

[c(x, xi)− wi] dµ(x) +

M∑
i=1

wimi ,

which leads to the desired result.

Proof of Theorem 2.16. The condition γ ∈ Γ(µ, ν) implies that γ can be written as γ =∑M
i=1 γi ⊗ δxi where γi ∈ M+(Ω), γi(A) := γ(A × {xi}). Observe that

∑M
i=1 γi = µ and

γi(Ω) = mi. We obtain

WOT(µ, ν) ≤
∫
Ω×Ω

cdγ =
M∑
i=1

∫
Ω
c(x, xi) dγi(x) , (2.15)

where the inequality is an equality if and only if γ is optimal. Let w ∈ RM . From (2.14) with
ϕw given by (2.13) we find

WOT(µ, ν) ≥
∫
Ω
ϕw(x) dµ(x) +

M∑
i=1

wimi =

M∑
i=1

∫
Ω
[ϕw(x) + wi] dγi(x) , (2.16)

where the inequality is an equality if and only if w is optimal. Subtracting (2.16) from (2.15)
yields

0 ≤
M∑
i=1

∫
Ω
[c(x, xi)− wi − ϕw(x)] dγi(x). (2.17)

with equality if and only if γ and w are optimal. By definition of ϕw the integrand in each
term of the sum is nonnegative and strictly positive for x /∈ Ci(w). Therefore (2.17) is an
equality if and only if γi is concentrated on Ci(w) for all i ∈ {1, . . . ,M}. Combining absolute
continuity with respect to the Lebesgue measure of µ and γi and Lemma 2.17 implies that
the unique choice is γi = µ⌞Ci(w). Due to the second marginal constraint this implies
µ(Ci(w)) = γi(Ω) = mi.

The above results imply the existence of an optimal Monge map for the semi-discrete
problem.

Corollary 2.18 (Existence of Monge map). If a maximizer w ∈ RM of (2.10) exists (cf. Re-
mark 2.15), then the optimal coupling γ in Theorem 2.14 is induced by a transport map
T : Ω → {xi}Mi=1 ⊂ Ω, γ = (Id×T )#µ, defined by T (x) = xi when x ∈ Ci(w). By virtue of
Lemma 2.17 and since µ≪ L, T is well-defined µ-almost everywhere.

Example 2.19 (Optimal tessellations for Wasserstein distances). Let µ and ν satisfy (2.7).

(a) Wasserstein-2 distance. Let c(x, y) = |x− y|2. If T is an optimal Monge map, then
the optimal transport cells T−1({xi}) are the Laguerre cells (or power cells) Ci(w) with
weight vector w = (ψ(x1), . . . , ψ(xM )), where ψ : Ω → R is an optimal Kantorovich
potential for the dual transport problem (2.12).

(b) Wasserstein-1 distance. Let c(x, y) = |x − y|. If T is an optimal Monge map, then
the optimal transport cells T−1({xi}) are the Apollonius cells Ci(w) with weight vector
w = (ψ(x1), . . . , ψ(xM )), where ψ is an optimal Kantorovich potential.
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3 Semi-discrete unbalanced transport

In this section we consider semi-discrete unbalanced transport. That is, we study (2.6) for
the cases where µ is absolutely continuous with respect to the Lebesgue measure and ν is
discrete, as stated in (2.7), and we do not require that µ(Ω) = ν(Ω). Semi-discrete unbalanced
transport models the situation where there is a mismatch between the capacity of a discrete
resource ν and the demand of a population µ.

3.1 Tessellation formulation

The main results of this Section are Theorems 3.1 and 3.2, which generalize Theorems 2.14
and 2.16 to the unbalanced setting. Furthermore, in Corollary 3.5 we state a ‘primal’ coun-
terpart of Theorem 3.1 which is somewhat pathological in the classical, balanced optimal
transport setting, but quite natural in the unbalanced case.

The following result generalizes Theorem 2.14 to unbalanced transport.

Theorem 3.1 (Tessellation formulation for semi-discrete unbalanced transport). Let the
cost function c be radial (see Definition 2.8). Given µ, ν ∈ M+(Ω) satisfying (2.7), define
G : RM → (−∞,∞] by

G(w) = −
M∑
i=1

(∫
Ci(w)

F ∗(− c(x, xi) + wi

)
dµ(x) + F ∗(−wi) ·mi

)
+ F (0) · µ(R). (3.1a)

Then the unbalanced optimal transport distance can be obtained via

W (µ, ν) = sup
{
G(w)

∣∣w ∈ RM
}
. (3.1b)

This is a concave maximization problem.

Proof. In analogy to the Kantorovich duality (2.12) for the classical optimal transport problem
(2.3) we make use of a corresponding duality result for the unbalanced transport problem (2.6),

W (µ, ν) = sup

{
−
∫
Ω
F ∗(−ϕ(x)) dµ(x)−

∫
Ω
F ∗(−ψ(x)) dν(x)

∣∣∣∣ϕ, ψ ∈ C(Ω),

ϕ(x) + ψ(y) ≤ c(x, y) ∀ (x, y) ∈ Ω× Ω

}
.

This follows from [44, Thm. 4.11 and Cor. 4.12], where the former establishes the duality
formula with ϕ and ψ ranging over all lower semi-continuous simple functions and the latter
allows us to use continuous functions instead, exploiting the fact that F ∗ is continuous on
R by Lemma 2.10(v). Analogously to the proof of Theorem 2.14 we now parameterize the
function ψ on the set {xi}Mi=1 by a vector w ∈ RM , wi = ψ(xi), and obtain

W (µ, ν) = sup

{
−
∫
Ω
F ∗(−ϕ(x)) dµ(x)−

M∑
i=1

miF
∗(−wi)

∣∣∣∣∣ϕ ∈ C(Ω), w ∈ RM ,

ϕ(x) + wi ≤ c(x, xi) ∀x ∈ Ω, i ∈ {1, . . . ,M}

}
. (3.2)
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Next, given w ∈ RM we would like to optimize for ϕ as we did in (2.13). Note though that
ϕw = ∞ on the residual set R, which in unbalanced transport may be nonnegligible despite
finite W (µ, ν). For this reason we argue by truncation: For given w ∈ RM and n ∈ N, the
function ϕ = ϕw,n with

ϕw,n : Ω → R, ϕw,n(x) = min{n,min{c(x, xi)− wi | i ∈ {1, . . . ,M}}}

lies in C(Ω) and is feasible in (3.2). Moreover, for fixed w the sequence (ϕw,n)n∈N is a
maximizing sequence for the maximization over ϕ, and it converges pointwise monotonically
to the function ϕw defined in (2.13). By Lemma 2.10(ii) and (v), z 7→ −F ∗(−z) is continuous
and increasing. Therefore the monotone convergence theorem implies that

lim
n→∞

∫
Ω
F ∗(−ϕw,n(x)) dµ(x) =

∫
Ω
F ∗(−ϕw(x)) dµ(x) ,

where by convention F ∗(−∞) = limz→−∞ F ∗(z) = −F (0) (see Lemma 2.10). With this, (3.2)
finally becomes

W (µ, ν) = sup

{
−
∫
Ω
F ∗(−ϕw(x)) dµ(x)−

M∑
i=1

miF
∗(−wi)

∣∣∣∣∣w ∈ RM

}
. (3.3)

Now we decompose the integration domain Ω into {Ci(w)}Mi=1 and R (using once more µ≪ L
and Lemma 2.17; it is only here that we use the radiality of the cost function c so that the cells
Ci(w) are well-defined with negligible overlap). For x ∈ Ci(w) one finds ϕw(x) = c(x, xi)−wi,
while for x ∈ R one obtains ϕw(x) = ∞ and therefore F ∗(−ϕw(x)) = −F (0). This leads to
expression (3.1a).

For fixed x ∈ Ω the map w 7→ ϕw(x) is concave (since it is a minimum over affine
functions). Moreover, the map z 7→ −F ∗(−z) is concave and increasing (cf. Lemma 2.10(ii)).
Therefore, the objective function in (3.3) and consequently G are concave functions of w.

The following result generalizes the optimality conditions of Theorem 2.16 to unbalanced
transport.

Theorem 3.2 (Optimality conditions). Let γ ∈ M+(Ω×Ω), w ∈ RM , and set ρ = π1#γ. If
W (µ, ν) <∞ and γ and w are optimal for W (µ, ν) in (2.6) and (3.1), respectively, then

γ =
M∑
i=1

ρ⌞Ci(w)⊗ δxi , (3.4a)

dρ
dµ(x) ∈ ∂F ∗(−c(x, xi) + wi) for µ-a.e. x ∈ Ci(w),

dρ
dµ(x) = 0 for x ∈ R, (3.4b)

ρ(Ci(w))
mi

∈ ∂F ∗(−wi) for i ∈ {1, . . . ,M}. (3.4c)

Conversely, if γ and w satisfy (3.4), then they are optimal in (2.6) and (3.1), respectively.

Proof. Let γ ∈ M+(Ω × Ω) be such that E(γ) in (2.5) is finite. This implies that γ can be
written as γ =

∑M
i=1 γi ⊗ δxi for γi ∈ M+(Ω),

∑M
i=1 γi = π1#γ = ρ≪ µ and ρ(R) = 0. (Note

that the same holds true if (3.4) is assumed instead of E(γ) <∞.) We obtain

E(γ) =
∫
Ω×Ω

cdγ + F(ρ|µ) + F(π2#γ|ν)

=

M∑
i=1

∫
Ω\R

c(x, xi) dγi(x) +

∫
Ω\R

F
( dρ
dµ(x)

)
dµ(x) + F (0) · µ(R) +

M∑
i=1

F
(γi(Ω)

mi

)
·mi
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so that the duality gap between the primal and dual formulations (2.6) and (3.1) reads

E(γ)− G(w) =
M∑
i=1

∫
Ω\R

c(x, xi) dγi(x) +

∫
Ω\R

[
F
( dρ
dµ(x)

)
+ F ∗(−ϕw(x))

]
dµ(x)

+
M∑
i=1

(
F
(γi(Ω)

mi

)
+ F ∗(−wi)

)
·mi .

Using the Fenchel–Young inequality, which states that F (s) + F ∗(z) ≥ s · z with equality if
and only if z ∈ ∂F (s) or equivalently s ∈ ∂F ∗(z) [6, Prop. 13.13 and Thm. 16.23], we obtain
the lower bound

E(γ)− G(w) ≥
M∑
i=1

∫
Ω\R

c(x, xi) dγi(x)−
∫
Ω\R

ϕw(x) dρ(x)−
M∑
i=1

wi · γi(Ω)

=
M∑
i=1

∫
Ω\R

[c(x, xi)− wi − ϕw(x)] dγi(x) ≥ 0 ,

where the first inequality is an equality if and only if dρ
dµ(x) ∈ ∂F ∗(−ϕw(x)) for µ-almost

every x ∈ Ω \ R and γi(Ω)
mi

∈ ∂F ∗(−wi) for i = 1, . . . ,M , and where the second inequality
is an equality if and only if spt γi ⊂ Ci(w) and thus γi = ρ⌞Ci(w) for i = 1, . . . ,M . As a
consequence, we have E(γ)− G(w) = 0 if and only if (3.4) holds.

Now let W (µ, ν) < ∞ and γ and w be optimal in (2.6) and (3.1) so that W (µ, ν) =
E(γ) = G(w) <∞. Then necessarily E(γ)−G(w) = 0 and so (3.4) holds. Conversely, if (3.4)
holds, then if E(γ) < ∞ or G(w) < ∞ (so that the difference E(γ) − G(w) is well-defined),
the above argument shows that E(γ) − G(w) = 0, which due to E(γ) ≥ W (µ, ν) ≥ G(w)
implies W (µ, ν) = E(γ) = G(w) and thus the optimality of γ and w. If on the other hand
E(γ) = G(w) = ∞, then W (µ, ν) = ∞ so that γ and w are trivially optimal.

Corollary 3.3 (Uniqueness of coupling). Let W (µ, ν) <∞ and w be optimal for (3.1). Then
the unique minimizer γ for (2.6) is given by (3.4a), where ρ is uniquely determined by (3.4b)
and automatically satisfies (3.4c).

Proof. We first show that (3.4b) fully specifies ρ. Let S be the set where ∂F ∗ is not a
singleton. By convexity, S is countable. In analogy to Lemma 2.17, for any s ∈ S the
set {x ∈ R | − c(x, xi) + wi = s} is Lebesgue negligible. Since S is countable, the set
{x ∈ R | − c(x, xi) +wi ∈ S} is Lebesgue-negligible and thus also µ-negligible. Consequently,
dρ
dµ is uniquely defined by (3.4b) on Ω up to a µ-negligible set.

For W (µ, ν) < ∞, conditions (3.4) are necessary and must therefore be satisfied by any
minimizer γ (which exists by Theorem 2.5). Therefore, as ρ is uniquely determined by (3.4b),
so is γ by (3.4a). Optimality of γ and w ensures that (3.4c) also holds.

To gain some intuition we will illustrate the previous results with numerical examples in
the next section. Here we just spell out consistency with the balanced transport setting.

Remark 3.4 (Balanced transport). For classical optimal transport with F = ι{1} (such as the
Wasserstein-2 distance from Example 2.9(a)) one obtains −F ∗(−z) = z. Then (3.1) becomes
(2.10) (and finiteness of WOT(µ, ν) implies that µ(R) = 0). Furthermore, with ∂F ∗(z) = 1
for all z, equation (3.4b) implies ρ = µ⌞(Ω \R) = µ. Then (3.4a) and (3.4c) become (2.11).
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From the derivation of (3.1) we learned that it can be interpreted as a variant of the dual
problem to (2.6), where one of the dual variables is parametrized by w. Given the form of
primal optimizers γ according to Theorem 3.2, we can formulate a corresponding variant of
the primal problem.

Corollary 3.5 (Primal tessellation formulation of semi-discrete unbalanced transport). As-
sume W (µ, ν) <∞ and that optimizers of the unbalanced primal and dual problems (2.6) and
(3.1) exist. Then

W (µ, ν) = min

{
M∑
i=1

∫
Ci(w)

c(x, xi) dρ(x) + F(ρ|µ)

+

M∑
i=1

F
(ρ(Ci(w))

mi

)
·mi

∣∣∣∣∣w ∈ RM , ρ ∈ M+(Ω), ρ⌞R = 0

}
. (3.5)

If γ and w are optimal in (2.6) and (3.1), respectively, then w and ρ = π1#γ are optimal in
(3.5). Conversely, if w and ρ are optimal in (3.5), then (3.4a) defines an optimal γ for (2.6).

Proof. For any w ∈ RM and ρ ∈ M+(Ω) with ρ⌞R = 0, the objective function in (3.5) is equal
to E(γ) for γ =

∑M
i=1 ρ⌞Ci(w)⊗ δxi . Therefore, minimizing (3.5) corresponds to minimizing

E over a particular subset of M+(Ω × Ω), which implies that the right-hand side of (3.5) is
no smaller than W (µ, ν). Now, if γ and w are a pair of optimizers for (2.6) and (3.1), then
by (3.4), the objective function in (3.5) for w and ρ = π1#γ becomes E(γ) =W (µ, ν) so that
the right-hand side of (3.5) actually equals W (µ, ν) and w and ρ are minimizers of (3.5).

Conversely, if w and ρ minimize (3.5), the induced γ must minimize E .

Remark 3.6 (Optimality of dual variable). The converse conclusion that optimal w in (3.5)
are optimal in (3.1) is in general not true. Indeed, (3.5) only depends on w via the cells
{Ci(w)}Mi=1 and therefore is invariant with respect to adding the same constant to all compo-
nents of w, which does not change the cells. For general F , the objective function of (3.1) is
not invariant under such transformations.

Similarly, if c(x, xi) becomes infinite for sufficiently small d(x, xi), then there exists an
isolated cell Ci(w) that is strictly bounded away from any other cell (see Fig. 4, right). In
that case, none of the cells {Cj(w)}Mj=1 depend on wi, and so neither does (3.5). However,
the objective function of (3.1) in general still depends on wi via F

∗.
Finally, when the support of the optimal ρ in (3.5) is bounded strictly away from the

boundary of some Ci(w) (see Fig. 2, right), then slightly changing the corresponding wi will
not affect the value of (3.5), whereas (3.1) will usually not exhibit this invariance.

Remark 3.7 (Primal tessellation formulation for classical optimal transport). For classical
optimal transport with F = ι{1}, the term F(ρ|µ) in (3.5) is finite (and zero) if and only if

ρ = µ. Likewise,
∑M

i=1 F
(ρ(Ci(w))

mi

)
·mi is finite (and zero) if and only if ρ(Ci(w)) = mi. These

are the optimality conditions given in Theorem 2.16. Thus, the objective function in (3.5) is
finite only where it is optimal, making it somewhat pathological.

Even though (3.5) is less pathological for more general unbalanced transport problems,
we focus on (3.1) for numerical optimization.
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3.2 Numerical examples and different models

Depending on the choice of the cost function c and the marginal discrepancy F , the semi-
discrete unbalanced transport problem exhibits several qualitatively different regimes which
we will illustrate in this section. The discussion will be complemented with numerical exam-
ples.

Problem (3.1) is an unconstrained, finite-dimensional maximization problem over a con-
cave objective. For simplicity, throughout this section we shall assume that the cost c is radial
and F ∗ is differentiable or equivalently F is strictly convex (those assumptions are satisfied
for the models from Example 2.9). This allows us to derive the objective function gradient
in Theorem 3.9 and to treat the optimization problem with methods of smooth (as opposed
to nonsmooth) optimization. A simple discretization scheme is given in Remark 3.11. The
resulting discrete problem is solved with an L-BFGS quasi-Newton method [71]. As stated in
Remark 3.12, the quality of the obtained solution can easily be verified via the primal-dual
gap between (3.1) and (3.5). The special case of balanced optimal transport is discussed in
Remark 3.10. Afterwards we provide numerical illustrations for several examples of different
unbalanced models.

To calculate the gradient of G we make use of the following lemma.

Lemma 3.8 (Derivative of integral functionals). Let f : Ω×RM → R be uniformly Lipschitz
in its second argument, and let µ ∈ M+(Ω) and u ∈ RM be such that RM ∋ ũ 7→ f(x, ũ) is dif-
ferentiable at ũ = u for µ-almost all x ∈ Ω. Define H : RM → R by H(ũ) =

∫
Ω f(x, ũ) dµ(x).

If H(u) <∞, then H is differentiable at ũ = u with

∂H
∂ũ

(u) =

∫
Ω

∂f

∂ũ
(x, u) dµ(x) .

Proof. We show that the directional derivative of H in an arbitrary direction û ∈ RM exists
and is of the desired form. Indeed, let L > 0 be the Lipschitz constant of f in its second argu-
ment. By assumption there exists S ⊂ Ω Lebesgue-negligible such that f(x, ·) is differentiable
at u for all x ∈ Ω \ S. Now for t ̸= 0,

H(u+ tû)−H(u)

t
=

∫
Ω\S

f(x, u+ tû)− f(x, u)

t
dµ(x) .

Since the integrand is bounded in absolute value by L∥û∥ and since it converges pointwise to
∂f
∂u(x, u) · û as t→ 0, by the Dominated Convergence Theorem we have

lim
t→0

H(u+ tû)−H(u)

t
=

∫
Ω\S

∂f

∂ũ
(x, u) · û dµ(x) =

∫
Ω

∂f

∂ũ
(x, u) dµ(x) · û .

The arbitrariness of û and the linearity of the directional derivative imply that H is differen-
tiable and has the desired form.

Theorem 3.9 (Gradient of dual tessellation formulation). If F is strictly convex and F (0)
is finite or ℓ is bounded, then G from Theorem 3.1 is differentiable with

∂G
∂wi

(w) = (F ∗)′(−wi) ·mi −
∫
Ci(w)

(F ∗)′(−c(x, xi) + wi) dµ(x) . (3.6)
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Proof. Define
f(x,w) = min{−F ∗(−c(x, xj) + wj) | j = 1, . . . ,M}.

Since F ∗ is increasing by Lemma 2.10(ii), then f(x,w) = −F ∗(−c(x, xi) +wi) for x ∈ Ci(w).
If ℓ is bounded, the residual set R is empty; otherwise we have f(x,w) = −F ∗(−∞) = F (0)
for x ∈ R. Therefore

G(w) =
∫
Ω
f(x,w) dµ(x)−

M∑
i=1

F ∗(−wi) ·mi.

Now consider the function Ω × R ∋ (x, v) 7→ fi(x, v) = −F ∗(−c(x, xi) + v), where i ∈
{1, . . . ,M}. By Lemma 2.10(iii),(iv) combined with Lemma 2.10(vii) or the boundedness of ℓ,
the function fi(·, v) is uniformly bounded for any v ∈ R. Due to f(x,w) = min{fi(x,wi) | i =
1, . . . ,M} this implies that G(w) is finite for all w ∈ RM . Furthermore, by Lemma 2.10
(vi) the strict convexity of F implies continuous differentiability of its conjugate F ∗ so that
fi(x, ·) is differentiable for any x ∈ Ω. Moreover, since F ∗ is convex and increasing, ∂fi/∂v
is nonpositive and decreasing so that fi(x, ·) is Lipschitz on (−∞, ω] for any ω ∈ R with
Lipschitz constant L ≤ −∂fi

∂v (x, ω) ≤ (F ∗)′(ω). Consequently, (−∞, ω]M ∋ ŵ 7→ f(x, ŵ)

is Lipschitz with constant
√
ML for all x ∈ Ω and differentiable for all x ∈ Ω \ S, where

S =
⋃M

i=1 ∂Ci(w) is Lebesgue-negligible and thus also µ-negligible. Thus, by the previous
Lemma, G is differentiable with

∂G(w)
∂wi

= (F ∗)′(−wi) ·mi +

∫
Ω

∂f

∂wi
(x,w) dµ(x) ,

where ∂f
∂wi

(x,w) = −(F ∗)′(−c(x, xi) + wi) for µ-almost all x ∈ Ci(w) and ∂f
∂wi

(x,w) = 0 for
µ-almost all x /∈ Ci(w).

Remark 3.10 (Balanced transport). For classical optimal transport with F = ι{1} as in
Remark 3.4, Theorem 3.9 reduces to well-known results. In particular, (3.6) becomes

∂G(w)
∂wi

= mi − µ(Ci(w)) . (3.7)

For more details we refer, for example, to [36, Thm. 1.1] or [51, Thm. 40]. For marginals
µ = µ̃L with µ̃ ∈ C(Ω) the Hessian

∂2G(w)
∂wi∂wj

= −∂µ(Ci(w))

∂wj
(3.8)

can also be computed explicitly in terms of face integrals (see, for instance, [36, Thm. 1.3] and
[51, Thm. 45]). Therefore (2.10) lends itself to efficient numerical optimization [2, 49, 36, 43].
For special cost functions, most prominently for the squared Euclidean distance, the gradient
(3.7) and Hessian (3.8) can be evaluated numerically efficiently and with high precision,
allowing the application of Newton’s method [36].

The semi-discrete unbalanced problem (3.1) is more complicated due to the influence of
the marginal fidelity F and since we are often interested in non-standard cost functions such
as cHK. Generalizing the above methods for balanced transport to the unbalanced case is
therefore beyond the scope of this article.
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Remark 3.11 (Discretization). Problem (3.1) is already finite-dimensional. We must how-
ever evaluate the integrals over Ci(w). For classical optimal transport and special cost func-
tions c, these integrals can be evaluated essentially in closed form (see Remark 3.10). For
simplicity, in this section we approximate (Ω, µ) with Dirac masses on a fine Cartesian grid.
The cells {Ci(w)}Mi=1 are approximated using brute force by computing c(x, xi)−wi for each
point x in the Cartesian grid for each i ∈ {1, . . . ,M}. Points x on the common boundaries
of several cells {Ci(w)}Mi=1 are arbitrarily assigned to one of those cells. (An efficient GPU-
implementation of this brute force method can be found in [15].) Note that for the special cost
c(x, y) = |x− y|2, the Laguerre diagram {Ci(w)}Mi=1 can be computed exactly, up to machine
precision, and much more efficiently using, e.g., the lifting method [3, Sec. 6.2.2], which has
complexity O(M logM) in R2 and O(M2) in R3. Our discretization yields an approximation
of G(w) from (3.1a) and of ∇G(w) from (3.6), as required for the quasi-Newton method. In
the numerical examples below we use Ω = [0, L]2 for some L > 0 and approximate it by a
regular Cartesian grid with 1000 points along each dimension.

Remark 3.12 (Primal-dual gap). The sub-optimality of any vector w ∈ RM for (3.1) can
be bounded by the primal-dual gap between (3.1a) and the objective of (3.5). We avoid
the remaining optimization over ρ in (3.5) by generating a feasible candidate via (3.4b).
Corollaries 3.3 and 3.5 guarantee that the primal-dual gap vanishes for optimal w.

In the remainder of the section we illustrate semi-discrete unbalanced transport by nu-
merical examples. In particular, we showcase qualitative differences between different models
as well as phenomena due to model-inherent length scales, which do not occur in classical,
balanced transport.

Example 3.13 (Comparison of unbalanced transport models). The structure of the optimal
unbalanced coupling γ in (2.6) and its first marginal ρ = π1#γ can vary substantially, de-
pending on the choices for c and F . Below we discuss the models from Example 2.9 with a
corresponding numerical illustration in Fig. 2.

(a) Standard Wasserstein-2 distance (W2, Fig. 2(a)). Since this is an instance of
balanced transport, necessarily we have ρ = µ. Furthermore, the cells {Ci(w)}Mi=1 are
standard, polygonal Laguerre cells, and R = ∅.

(b) Gaussian Hellinger–Kantorovich distance (GHK, Fig. 2(b)). The cells are still
standard polygonal Laguerre cells with R = ∅. This time, however, we usually have
ρ ̸= µ. Nevertheless, we find spt ρ = sptµ since (3.4b) with (F ∗

KL)
′(z) = ez > 0 implies

dρ
dµ > 0. This behaviour essentially originates from the infinite slope of FKL in 0. Since

c(x, y) = d(x, y)2, the density dρ
dµ is piecewise Gaussian.

(c) Hellinger–Kantorovich distance (HK, Fig. 2(c)). This time, the generalized
Laguerre cells have curved boundaries, and also R is in general no longer empty, as
cHK(x, y) = +∞ for d(x, y) ≥ π

2 . Thus, ρ = 0 on R by (3.4b), independent of µ.

However, similarly to (b) we have dρ
dµ(x) > 0 on the complement of R, the union of all

generalized Laguerre cells.

(d) Quadratic regularization (QR, Fig. 2(d)-(e)). Since c(x, y) = d(x, y)2, once
more the cells are polygonal Laguerre cells and R = ∅. However, (3.4b) together with
(F ∗)′(z) = 0 for z ≤ −2 implies dρ

dµ(x) = 0 whenever ϕw(x) = min
{
c(x, xi) − wi | i =
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1, . . . ,M
}
≥ 2, even on Ω\R. Intuitively, this is possible since F and its right derivative

are finite at z = 0 so that, for large transport costs c(x, xi), mass removal may be more
profitable than transport.

We emphasize that the reasons for dρ
dµ(x) = 0 between models (c) and (d) are different: In the

Hellinger–Kantorovich case, c(x, xi) = ∞ for x ∈ R prohibits any transport. In the quadratic
case, despite finite transport cost and R = ∅, it may still be cheaper to remove and create
mass via the fidelity F , due to its behaviour at z = 0. Also the slope at which dρ

dµ approaches
zero is different for both models, as can be seen in the one-dimensional slice visualized in
Fig. 3.

(a) W2 (b) GHK (c) HK (d) QR (e) scaled QR

Figure 2: Semi-discrete transport between the Lebesgue measure on Ω = [0, L]2, L =
5 and a discrete measure with M = 4 Dirac masses of locations (x1, x2, x3, x4) =
L · ((0.375, 0.375), (0.75, 0.35), (0.65, 0.75), (0.25, 0.8)) and weights (m1,m2,m3,m4) = |Ω| ·
(0.38, 0.29, 0.19, 0.14). Top row: optimal cells {Ci(w)}Mi=1; the residual set R is represented
by white; location of the discrete points (x1, . . . , xM ) is indicated with red dots. Bottom row:
optimal marginal ρ (identical colour scale in all figures; regions with dρ

dµ(x) = 0 are white for

emphasis) and boundaries of cells {Ci(w)}Mi=1 (red) are shown for models (a)–(d) from Ex-
amples 2.9 and 3.13. Figure (e) shows the same model as (d), only with c(x, y) = [d(x, y)/2]2

instead of c(x, y) = d(x, y)2; on some cells spt ρ is now strictly bounded away from the bound-
aries of Ci(w).

Example 3.14 (Varying transport length scales). As illustrated in the previous comparison
of different models, unbalanced transport models typically have an intrinsic length scale which
determines how far mass is optimally transported. Varying this length scale for fixed µ and
ν changes the behaviour of the semi-discrete transport. For illustration we concentrate on
the Hellinger–Kantorovich distance and vary its intrinsic length scale by replacing c(x, y) =
cHK(x, y) with

c(x, y) = cεHK(x, y) = cHK(
x
ε ,

y
ε ) =

{
−2 log

[
cos
(
d(x, y)/ε

)]
if d(x, y) < π

2 ε,

∞ otherwise,
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Figure 3: One-dimensional slices of computational results from Fig. 2 along [0, L]×{0.375L}
with L = 5. Left: ϕw for optimal w ∈ RM . For models (a), (b), and (d), ϕw is piecewise
quadratic; for (c) the profile is determined by cHK and ϕw = ∞ on R ̸= ∅. Right: Optimal
density dρ

dµ , where
dρ
dµ = (F ∗)′(−ϕw) on Ω \ R and 0 elsewhere by (3.4b). For (a) the density

is constant, for (b) it is piecewise Gaussian, for (c) it is piecewise given by cos(d(y, xi))
2 on

Ω \R and 0 on R, and for (d) it is given by truncated paraboloids.

that is, we set

HKε(µ, ν)2 =

inf

{∫
Ω×Ω

cεHKdγ +

∫
Ω
FKL

(
dπ1#γ
dµ

)
dµ+

∫
Ω
FKL

(
dπ2#γ
dν

)
dν

∣∣∣∣ γ ∈ M+(Ω× Ω)

}
.

Note that this is equivalent to rescaling the domain Ω by the factor 1
ε and simultaneously

replacing the measures µ and ν by their pushforwards under x 7→ x
ε .

For large ε, transport becomes very cheap relative to mass changes and thus asymptoti-
cally, as ε → ∞, one recovers the Wasserstein-2 distance: limε→∞ εHKε(µ, ν) = W2(µ, ν) by
[44, Thm. 7.24]. In particular the distance diverges when µ(Ω) ̸= ν(Ω). Conversely, as ε↘ 0,
transport becomes increasingly expensive and mass change is preferred. Asymptotically one
obtains limε↘0HK

ε(µ, ν) = Hell(µ, ν) [44, Thm. 7.22], where Hell denotes the Hellinger dis-
tance

Hell(µ, ν)2 =

∫
Ω

(√
dµ
dσ −

√
dν
dσ

)2

dσ

for σ ∈ M+(Ω) an arbitrary reference measure with µ, ν ≪ σ (for instance |µ| + |ν| with
| · | indicating the total variation measure). By positive one-homogeneity of the function
(m1,m2) 7→ (

√
m1−

√
m2)

2 the value of Hell(µ, ν) does not depend on the choice of σ. In our
semi-discrete setting, µ and ν are always mutually singular so that Hell(µ, ν)2 = µ(Ω)+ν(Ω).

Figure 4 illustrates the optimal cells {Ci(w)}Mi=1 and marginal densities ρ = π1#γ between

the uniform volume measure µ = L on Ω = [0, 1]2 and a discrete measure ν =
∑M

i=1mi δxi

for M = 4, using different values of the intrinsic length scale ε (the same experiment with
M = 128 discrete points is shown in Fig. 5). As expected, for large ε the cells {Ci(w)}Mi=1

look very similar to standard, polygonal Laguerre cells for the squared Euclidean distance
c(x, y) = d(x, y)2, and the residual set R is empty. The optimal ρ is essentially equal to µ,
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ε = 1 ε = 1/2 ε = 1/4 ε = 1/5 ε = 1/8

Figure 4: Semi-discrete Hellinger–Kantorovich transport on Ω = [0, 1]2 (using the same
values for xi/L and mi/|Ω| as in Fig. 2) for different length scales ε. Top row: optimal
cells {Ci(w)}Mi=1; the residual set R is represented by white; location of the discrete points
(x1, . . . , xM ) is indicated with red dots. Bottom row: optimal marginal ρ (using the same
colour scale for all images). For large ε the behaviour is similar to that of the standard semi-
discrete Wasserstein-2 distance. As ε decreases, the effects of unbalanced transport become
increasingly prominent.

as dictated by balanced transport. As ε decreases, the boundaries between the cells become
curved. Eventually R becomes non-empty, and finally the cells start to decompose into disjoint
discs. In accordance, the density of the optimal marginal ρ is given on each cell Ci(w) by
cos(d(x, xi)/ε)

2 ·ewi . The interpolatory behaviour of HKε between the Wasserstein-2 distance
W2 and the Hellinger distance Hell for ε→ ∞ and ε↘ 0 is numerically verified in Fig. 6.

4 Unbalanced quantization

In this section we study the unbalanced quantization problem: we aim to approximate a given
Lebesgue-continuous measure µ ∈ M+(Ω) by a discrete, quantized measure ν =

∑M
i=1mi · δxi

with at most M ∈ N Dirac masses, where the unbalanced transport cost serves as a measure
of approximation quality. To be precise, we consider the optimization problem

min

{
W (µ, ν)

∣∣∣∣∣ ν =

M∑
i=1

miδxi , x1, . . . , xM ∈ Ω, m1, . . . ,mM ≥ 0

}
. (4.1)

Applications include optimal location problems (economic planning), information theory (vec-
tor quantization) and particle methods for PDEs (approximation of continuous initial data by
particles). We first characterize optimal particle configurations in terms of Voronoi diagrams,
then consider a corresponding numerical scheme, and finally prove the optimal energy scaling
of the quantization problem in terms of M for the case d = 2. The procedure essentially
follows the one known for classical optimal transport; the important fact is that the Voronoi
tessellation structure survives if mass changes are allowed.
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ε = 4/5 ε = 2/5 ε = 1/5 ε = 1/10 ε = 1/20

Figure 5: Semi-discrete Hellinger–Kantorovich distance on Ω = [0, 1]2 for different length
scales ε, as in Fig. 4, but for M = 128. The evolution of one cell Ci(w) for fixed i is
highlighted in red (top row). For large ε, Ci(w) is essentially the standard Wasserstein-2
Laguerre cell, not necessarily containing xi. For small ε, Ci(w) becomes (a fraction of) the
open ball Bεπ/2(xi).

Throughout this section we will assume that zero mass change induces zero cost,

F (1) = 0 . (4.2a)

This is the natural choice for approximating µ, as it implies a preference for π1#γ = µ in the
first marginal fidelity term F of (2.5). Since F (z) ≥ 0 by Definition 2.2, a consequence is

0 ∈ ∂F (1) ⇔ 1 ∈ ∂F ∗(0) ⇔ F ∗(0) = 0 . (4.2b)

Also note that for the quantization problem only the behaviour of F on [0, 1] is relevant
since by a simple comparison argument one can see that any minimizer ν in (4.1) and any
associated coupling γ in Definition 2.4 satisfy π2#γ = ν and π1#γ ≤ µ.
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2

Figure 6: HKε(µ, ν)2 for different length scales ε for the setup from Fig. 4. Left: as ε ↘ 0,
HKε(µ, ν)2 tends to Hell(µ, ν)2 = 2. Right: as ε→ ∞, ε2HKε(µ, ν)2 tends to W2(µ, ν)

2.
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4.1 Unbalanced quantization as a Voronoi tessellation problem

The existence of solutions to (4.1) follows from the direct method of the calculus of variations,
noting that without loss of generality one may restrict to the compact search space ΩM ×
[0, µ(Ω)]M (indeed, projecting the mi to [0, µ(Ω)] decreases W (µ, ν) due to assumption (4.2))
and thatW is weakly-∗ lower semi-continuous in its arguments. The following theorem shows
that the quantization problem can equivalently be formulated as an optimization of the points
x1, . . . , xM with a functional depending on the Voronoi tessellation induced by (x1, . . . , xM ).

Theorem 4.1 (Tessellation formulation of quantization problem). For F satisfying (4.2),
the unbalanced quantization problem (4.1) is equivalent to the minimization problem

min {J(x1, . . . , xM ) |x1, . . . , xM ∈ Ω} (4.3)

where

J(x1, . . . , xM ) =
M∑
i=1

∫
Vi(x1,...,xM )

−F ∗(−c(x, xi)) dµ(x)

and where Vi(x1, . . . , xM ) = {x ∈ Ω | d(x, xi) ≤ d(x, xj) for j = 1, . . . ,M } is the Voronoi cell
associated with xi and we adopt the convention −F ∗(−∞) = F (0) (cf. Lemma 2.10). Indeed,
the minimum values coincide and, if (x1, . . . , xM ) minimizes (4.3) and the minimal value is
finite, then (x1, . . . , xM ,m1, . . . ,mM ) minimizes (4.1) for

mi =

∫
Vi(x1,...,xM )

∂F ∗(−c(x, xi)) dµ(x) , i = 1, . . . ,M. (4.4)

(By the proof of Corollary 3.3 the subgradient ∂F ∗(−c(x, xi)) contains a unique element for
µ-almost every x and so the mi are well defined.) Furthermore, the optimal transport plan
γ associated with W (µ, ν) only transports mass from each Voronoi cell Vi(x1, . . . , xM ) to the
corresponding point xi.

Example 4.2 (Tessellation formulation for unbalanced transport models). The cost func-
tional in (4.3) and the masses in (4.4) for the models from Example 2.9 are

W2 :

J =
M∑
i=1

∫
Vi

d(x, xi)
2 dµ(x) ,

mi = µ(Vi) ,

GHK :


J =

M∑
i=1

∫
Vi

[
1− e−d(x,xi)

2
]
dµ(x) ,

mi =

∫
Vi

e−d(x,xi)
2
dµ(x) ,

HK :


J =

M∑
i=1

∫
Vi

sin2
(
min

{
d(x, xi),

π
2

})
dµ(x) ,

mi =

∫
Vi

cos2
(
min

{
d(x, xi),

π
2

})
dµ(x) ,

QR :


J =

M∑
i=1

∫
Vi∩B√

2(xi)

[
d(x, xi)

2 − d(x, xi)
4

4

]
dµ(x) + µ(Vi \B√

2(xi)) ,

mi =

∫
Vi

max

{
1− d(x, xi)

2

2
, 0

}
dµ(x).
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Remark 4.3. An intuitive strategy for proving Theorem 4.1 could be as follows. One starts
from the primal tessellation formulation in Corollary 3.5 and in addition minimizes over
masses (m1, . . . ,mM ) and positions (x1, . . . , xM ). By (4.2) we find that minimizing masses
are given by mi = ρ(Ci(w)). Next, only the transport term depends on the weights w,
and since the cost c is a strictly increasing function of distance, the term is minimized for
w = 0, thus essentially reducing the generalized Laguerre cells Ci(w) into (truncated) Voronoi
cells. Finally, the remaining minimization over ρ can be handled with arguments from convex
analysis, similar to those of Theorem 3.2, thus arriving at (4.3). We give a shorter proof,
using results from the dual tessellation formulation and its optimality conditions.

Proof of Theorem 4.1. Let ν =
∑M

i=1mi · δxi be any admissible measure for (4.1). From
(3.1b) we find W (µ, ν) ≥ G(0) for any positions x1, . . . , xM and masses m1, . . . ,mM . Note
that G(0) does not depend on m1, . . . ,mM since we assume F ∗(0) = 0, (4.2b). We now show
W (µ, ν) = G(0) for a particular choice of m1, . . . ,mM , which therefore must be optimal (for
given locations x1, . . . , xM ). We first define ρ via (3.4b) and then γ via (3.4a) for w = 0 (ρ and
γ are fully determined, see Corollary 3.3). Furthermore, since 1 ∈ ∂F ∗(0) by (4.2b), equation
(3.4c) is satisfied by the choice mi = ρ(Ci(0)). By Theorem 3.2, γ and w are optimizers of E
and G for these mass coefficients, which implies that W (µ, ν) = G(0). Using F ∗(0) = 0 from
(4.2b), we have

min
(m1,...,mM )

W (µ, ν) = G(0) = −
M∑
i=1

∫
Ci(0)

F ∗(− c(x, xi)
)
dµ(x) + F (0) · µ(R) .

Since c(x, y) is a strictly increasing function of the distance d(x, y), for w = 0 we find
Ci(0) ⊂ Vi(x1, . . . , xM ). With the convention −F ∗(−∞) = F (0) (cf. Lemma 2.10), the
term F (0) · µ(R) becomes

∫
R −F ∗(−ϕ0(x)) dµ(x), where ϕ0 was defined in equation (2.13).

Since µ ≪ L, integrating over R and Ω \R is equivalent to integrating over all Voronoi cells
{Vi(x1, . . . , xM )}Mi=1, and we arrive at

min
(m1,...,mM )

W (µ, ν) = −
M∑
i=1

∫
Vi(x1,...,xM )

F ∗(− c(x, xi)
)
dµ(x) ,

which establishes equivalence between (4.1) and (4.3).
Finally, with mi = ρ(Ci(0)) and ρ given by (3.4b) one obtains (4.4), where the integral

runs over Ci(0) instead of Vi(x1, . . . , xM ). If the minimum is finite, then either µ(R) = 0 or
F (0) is finite, which implies the convention (F ∗)′(−∞) = 0 (cf. Lemma 2.10(vii)). In both
cases we can extend the area of integration to Vi(x1, . . . , xM ) without changing its value.
Equation (3.4a) implies that mass is only transported from each Voronoi cell Vi(x1, . . . , xM ) ⊃
Ci(0) to the corresponding point xi.

4.2 A numerical method: Lloyd’s algorithm and quasi-Newton variant

Formulation (4.3) has the advantage over (4.1) that it does not contain an inner minimization
to find the optimal transport coupling. Thus we aim to solve (4.3) numerically. To this end
we compute the gradient ∂xjJ (see also analogous derivatives for similar functionals as for
instance in [13]).
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Lemma 4.4 (Derivative of the cost functional J). Let µ ∈ M+(Ω) be Lebesgue-continuous,
and let F ∗ ◦ (−ℓ) be Lipschitz continuous on [0, diam(Ω)]. Then for j = 1, . . . ,M ,

∂xjJ(x1, . . . , xM ) =

∫
Vj(x1,...,xM )

r(d(x, xj))(xj − x) dµ(x)

where

r(s) =
[−F ∗ ◦ (−ℓ)]′(s)

s

(note that −F ∗◦(−ℓ) is differentiable for almost every s ∈ [0, diam(Ω)] so that r and r(d(·, xj))
are well-defined almost everywhere).

Example 4.5 (Cost derivative for unbalanced transport models). For the models from Ex-
ample 2.9 one can readily check

W2 : r(s) = 2 ,

GHK : r(s) = 2e−s2 ,

HK : r(s) = sin(2s)/s if s ≤ π
2 and 0 otherwise,

QR : r(s) = max{2− s2, 0} .

Proof. Note that J(x1, . . . , xM ) =
∫
Ω f(x, (x1, . . . , xM )) dµ(x) with

f(x, (x1, . . . , xM )) = min{−F ∗(−ℓ(d(x, xi))) | i = 1, . . . ,M}

since F ∗ and l are increasing. By assumption on F ∗ ◦ (−ℓ), f is Lipschitz in its second argu-
ment. Furthermore, F ∗◦(−ℓ) is differentiable almost everywhere, and d(x, xi) is differentiable
in its second argument for all x ̸= xi. Therefore, f is differentiable in its second argument at
(x1, . . . , xM ) for almost all x ∈ Ω (thus for µ-almost all x ∈ Ω) with

∂xjf(x, (x1, . . . , xM )) =

{
r(d(x, xj))(xj − x) if x ∈ Vj(x1, . . . , xM ),

0 otherwise.

Lemma 3.8 now implies the desired result.

To find a minimizer of J and thus a solution to the optimality condition ∂xjJ = 0 for j =
1, . . . ,M , one can perform the following fixed point iteration associated with the optimality
conditions,

x
(k+1)
i =

∫
Vi(x

(k)
1 ,...,x

(k)
M )

xr(d(x
(k)
i , x)) dµ(x)∫

Vi(x
(k)
1 ,...,x

(k)
M )

r(d(x
(k)
i , x)) dµ(x)

, i = 1, . . . ,M,

starting from some initialization x
(0)
1 , . . . , x

(0)
M ∈ Ω. This iteration is well-defined as long as

the denominator is nonzero, for instance if µ is strictly positive on Ω. This is a generalisation
of Lloyd’s algorithm for computing Centroidal Voronoi Tessellations [21], which are critical
points of the function

J̃(x1, . . . , xM ) =
M∑
i=1

∫
Vi(x1,...,xM )

|x− xi|2 dµ(x) .
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Figure 7: Quantization energy decrease of Lloyd’s algorithm and a BFGS method versus
number of iterations (left) and function evaluations (centre) for the example shown on the
right. Right: Input density µ and optimal locations (x1, . . . , xM ) for M = 100, where µ is
population density in Germany 2015 (published by the Federal Statistical Office of Germany
in the “Regional Atlas” http://www.destatis.de/regionalatlas). The computations use
the Hellinger–Kantorovich model.

Its convergence has been proven in a number of settings [59, 24, 13] which also cover many
possible choices for our µ, c, and F . Since the algorithm is based solely on the first variation
one can expect linear convergence. To achieve faster convergence one may use a quasi-Newton
method for the minimization of J instead, which seems particularly well-suited since the
optimization is performed over a finite-dimensional space.

Our numerical implementation is performed in Matlab. The integrals over a Voronoi
cell Vi(x1, . . . , xM ) are evaluated using Gaussian quadrature on the triangulation which is
obtained by connecting each vertex of Vi(x1, . . . , xM ) with xi. The Voronoi cells themselves are
computed using the built-in function voronoin. Figure 7 shows a slightly faster convergence
of the BFGS method compared to Lloyd’s algorithm, while Fig. 8 shows quantization results
for the same models as in Fig. 2, resulting in different point distributions. Similarly, Fig. 9
shows quantization results for the same input marginal µ and the Hellinger–Kantorovich
model, but for varying length scales.

4.3 Crystallization in two dimensions

In this section we consider the asymptotic behaviour of the unbalanced quantization problem
in the limit of infinitely many points, M → ∞, in two dimensions, Ω ⊂ R2, in which case
crystallization results from discrete geometry are available.

To simplify the exposition in this section we assume

F (0) <∞ or ℓ(s) <∞ ∀ s ∈ [0,∞) (4.5a)

so that −F ∗ ◦ (−ℓ) <∞ and thus the unbalanced transport cost is always finite. Additionally
we assume

0 < F (0) or equivalently F ∗(z) < 0 for z < 0, (4.5b)

which simply ensures that the quantization problem is not trivially degenerate. The case
F (0) = ∞ and ℓ(s) = ∞ for some s > 0 can in principle be treated similarly, but requires a
number of technical case distinctions (such as whether the domain of (−F ∗ ◦ (−ℓ)) is open or
closed).
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(a) W2 (b) GHK (c) HK (d) QR

Figure 8: Quantization results for µ = (1+ exp(− |x|2
2(4π)2

)) · L⌞Ω and Ω = [−4π, 4π]2, M = 16

on the same models as in Fig. 2. Top row: optimal locations x1, . . . , xM and Voronoi cells
{Vi(x1, . . . , xM )}Mi=1. Bottom row: optimal marginal ρ = π1#γ (identical colour scale in all

figures; regions with dρ
dµ(x) = 0 are white for emphasis). For (a) we have ρ = µ.

As we increase M , the average distance between points of Ω and their nearest discrete
point xi decreases so that the (balanced) transport cost from µ onto ν vanishes in the limit,
whereas the cost for changing mass remains unchanged. Therefore, in the limit M → ∞
the interplay of transport and mass change in unbalanced transport would not be visible. To
avoid this, we will rescale the metric on the domain Ω as M grows and study the resulting
different regimes, depending on the scaling. Consequently, in this section we consider the
scaled cost

JM
ε (x1, . . . , xM ) =

M∑
i=1

∫
Vi(x1,...,xM )

−F ∗
(
−ℓ
(
d(x,xi)

ε

))
dµ(x) (4.6)

for M ∈ N, ε ∈ (0,∞).
We first prove a lower bound on the quantization cost JM

ε for the Lebesgue measure, which
corresponds to a perfect triangular lattice. Then a corresponding upper bound is derived.
Finally, for µ with Lipschitz continuous Lebesgue density, we show that these two bounds
imply that asymptotically a locally regular triangular lattice becomes an optimal quantization
configuration, where the local density of points depends on the density of µ.

Theorem 4.6 (Lower bound for quantization of the Lebesgue measure). Let Ω ⊂ R2 be a
convex polygon with at most six sides, and let µ be the Lebesgue measure on Ω. A lower bound
on (4.6) is given by

min
x1,...,xM∈R2

JM
ε (x1, . . . , xM ) ≥M

∫
H(|Ω|/M)

−F ∗
(
−ℓ
(
d(x,0)

ε

))
dx , (4.7)

where H(|Ω|/M) is a regular hexagon of area |Ω|/M = L(Ω)/M centred at the origin 0.

Remark 4.7 (Cost of the triangular lattice). Comparing with Theorem 4.1, the lower bound
is exactly the unbalanced transportation cost W (µ, ν) from a regular triangular lattice ν of
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ε = 15.391 ε = 8.886 ε = 4.867 ε = 2.591

ε = 1.650 ε = 1.106 ε = 0.770 ε = 0.541

Figure 9: Quantization results for the Hellinger–Kantorovich model and different length scales,
showing the optimal Laguerre cells Ci(0) (which coincide with the optimal Voronoi cells up to
the set R from (2.9)) and the optimal marginals ρ = π1#γ (same domain and µ as in Fig. 8;
identical colour scale in all figures).

M Dirac measures of mass

m =

∫
H(|Ω|/M)

∂F ∗
(
−ℓ
(
d(x,0)

ε

))
dx ,

whose Voronoi cells are translations of H(|Ω|/M), onto µ the Lebesgue measure on the union
of these Voronoi cells.

Proof of Theorem 4.6. First observe that −F ∗(−ℓ(·/ε)) is increasing since both ℓ and F ∗ are

M = 16, εM = 1.000 M = 32, εM = 0.707 M = 64, εM = 0.500 M = 128, εM = 0.354

Figure 10: Quantization results for the Hellinger–Kantorovich model using different length
scales and numbers of discrete points, with constant total point density ε2MM . The optimal
marginals ρ = π1#γ are shown (same domain and µ as in Fig. 8; identical colour scale in all
figures).
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increasing. Thus, for x1, . . . , xM ∈ Ω we have

JM
ε (x1, . . . , xM ) =

M∑
i=1

∫
Vi(x1,...,xM )

−F ∗
(
−ℓ
(
d(x,xi)

ε

))
dx

=

∫
Ω

min
i=1,...,M

−F ∗
(
−ℓ
(
d(x,xi)

ε

))
dx ,

and the result follows immediately from L. Fejes Tóth’s Theorem on Sums of Moments [32]
(see also [67, 53]).

Remark 4.8 (Degeneracy of minimizers). As opposed to the quantization problem for clas-
sical optimal transport, the set of minimizers in the unbalanced transport case can exhibit
strong degeneracies. As an example, consider the case of Hellinger–Kantorovich transport
with M ≪ 4 |Ω|/(π3ε2). Let x1, . . . , xM be any arrangement of the point masses such
that the balls Bε π/2(xi) are pairwise disjoint and included in Ω (which necessarily implies
M ≤ 4 |Ω|/(π3ε2)). Then (x1, . . . , xM ) achieves the lower bound since

JM
ε (x1, . . . , xM ) =

M∑
i=1

∫
Vi(x1,...,xM )

−F ∗
(
−ℓ
(
d(x,xi)

ε

))
dx

=
M∑
i=1

∫
Vi(x1,...,xM )

sin2
(
min

{
d(x, xi)/ε,

π
2

})
dx

= |Ω| −Mε2 π3/4 +

M∑
i=1

∫
Bε π/2(xi)

sin2 (d(x, xi)/ε) dx

=M

∫
H(|Ω|/M)

−F ∗(−ℓ(d(x, 0)/ε)) dx ,

where we used H(|Ω|/M) ⊃ Bε π/2(0).

Theorem 4.9 (Upper bound for quantization of the Lebesgue measure). Let Ω ⊂ R2 be
convex and let µ be the Lebesgue measure. Let x1, . . . , xM be a regular triangular arrangement
of points in the following sense: Let G ⊂ R2 be a regular triangular lattice with lattice spacing√

2 |Ω|√
3M

, such that the corresponding Voronoi cells are regular hexagons with area |Ω|/M and

side length L =
√

2 |Ω|
3
√
3M

. Let {x1, . . . , xM̂} ⊂ G be those points for which the corresponding

hexagon Hi is fully contained in Ω. If M̂ < M , pick {xM̂+1, . . . , xM} arbitrarily from Ω.
Then

JM
ε (x1, . . . , xM ) ≤M

∫
H(

|Ω|
M

)
−F ∗

(
−ℓ
(
d(x,0)

ε

))
dx− |∂Ω|

√
8|Ω|

3
√
3M

F ∗
(
−ℓ
(√

6 |Ω|√
3ε2M

))
,

(4.8)
where |∂Ω| denotes the one-dimensional Hausdorff measure of ∂Ω and |Ω| = L(Ω).

Proof. Let S = Ω\
⋃M̂

i=1Hi be those points in Ω that are not covered by any hexagon Hi. Note

that all x ∈ S lie no further away from ∂Ω than the diameter of a hexagon, 2L =
√

8 |Ω|
3
√
3M

.

Since Ω is convex we thus have |S| ≤ |Ω ∩
⋃

x∈∂ΩB2L(x)| ≤ 2L |∂Ω|. Likewise, any point
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x ∈ S lies no further away from the union of all hexagons Hi than 2L and thereby no further
away from {x1, . . . , xM} than 3L, thus mini d(x, xi) ≤ 3L.

Note that Vi(x1, . . . , xM ) \ S ⊆ Hi for i = 1, . . . , M̂ and that −F ∗ ◦ (−ℓ) is monotonously
increasing so that we find

JM
ε (x1, . . . , xM ) ≤

M̂∑
i=1

∫
Hi

−F ∗
(
−ℓ
(
d(x,xi)

ε

))
dx+

∫
S
−F ∗

(
−ℓ
(
mini d(x,xi)

ε

))
dx

≤M ·
∫
H(|Ω|/M)

−F ∗
(
−ℓ
(
d(x,0)

ε

))
dx− |S|F ∗ (−ℓ (3Lε )) .

Substituting the value of L and the above bound for |S| proves the claim.

Remark 4.10 (A priori estimate). Since −F ∗ ◦ (−ℓ) is increasing we also have the estimate

min JM
ε ≤

∫
Ω
−F ∗(−ℓ(diam(Ω))) dµ ≤ µ(Ω) · (−F ∗(−ℓ(diam(Ω)))),

whose right-hand side may be further bounded by the potentially infinite µ(Ω)F (0) =W (µ, 0).

Let now (εM )M∈N be a positive, decreasing sequence of scaling factors. We use Theo-
rems 4.6 and 4.9 to study the asymptotic quantization behaviour of the sequence of function-
als (JM

εM
)M asM → ∞ for a non-uniform mass distribution µ with Lipschitz Lebesgue density

m. We identify three different regimes, depending on the behaviour of the sequence ε2M M
(the quantity ε2M M indicates something like the average point density). A corresponding
numerical illustration for the case of constant average point density is provided in Fig. 10.

Before stating the asymptotic result we need to analyse the cell problem of quantizing a
hexagon by a single Dirac mass.

Lemma 4.11 (Properties of the cell problem). Assume in addition to (4.2a) and (4.5a)-(4.5b)
that lims→∞ ℓ(s) = ∞. Define B : (−∞,∞) → (0,∞] by

B(z) = z ·
∫
H(1/z)

−F ∗(−ℓ(d(x, 0))) dx for z > 0,

B(0) = F (0), B(z) = ∞ for z < 0. Then, on (0,∞), B is nonnegative, nonincreasing, and
convex with continuous derivative

B′(z) =
1

z

[
B(z)− 1

|∂H(1/z)|

∫
∂H(1/z)

−F ∗(−ℓ(d(x, 0))) dx

]
=: G(z).

Furthermore, B(z) → F (0) as z ↘ 0, while B(z) → 0 and B′(z) → 0 as z → ∞. Also, there
exists some Z ≥ 0 such that B′ is constant on (0, Z] and strictly increasing on (Z,∞), where
Z > 0 if F has finite right derivative F ′(0) > −∞ (or equivalently F ∗(z) is constant for z
sufficiently negative). With r = limz↘Z B

′(z) ∈ [−∞, 0) we can summarize r < G(z) < 0 for
z > Z and

∂B(z) =


∅ for z < 0,

(−∞, r] for z = 0,

{r} for z ∈ (0, Z],

{G(z)} for z > Z,

∂(B∗)(s) =


{0} for s < r,

[0, Z] for s = r,

{G−1(s)} for s ∈ (r, 0),

∅ for s ≥ 0.
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Example 4.12 (Balanced quantization). We consider the case of the standard Wasserstein-2
distance, where ℓ(t) = t2, F ∗(z) = z and F (0) = ∞. Then for z > 0,

B(z) = z

∫
H(1/z)

|x|2dx =
5
√
3

54

1

z
, B′(z) = G(z) = −5

√
3

54

1

z2
.

and so Z = 0, r = −∞. For s < 0,

B∗(s) = −2

√
−5

√
3

54
s, (B∗)′(s) =

√
−5

√
3

54

1

s
= G−1(s).

Remark 4.13 (Bounds in terms of cell problem). B(z) can be interpreted as energy density
associated with a regular triangular lattice with point density z (that is, each Voronoi cell
occupies an area of 1/z). The energy of such a lattice with M cells with total area |Ω| will be
given by B(M/|Ω|) · |Ω|. Taking into account the scaling factor ε, we can restate the bounds
(4.7) and (4.8) as

min
x1,...,xM∈Ω

JM
ε (x1, . . . , xM ) ≥ |Ω| ·B

(
ε2 M
|Ω|
)

and

JM
ε (x1, . . . , xM ) ≤ |Ω| ·B

(
ε2 M
|Ω|
)
− |∂Ω|

√
8|Ω|

3
√
3M

F ∗
(
−ℓ
(√

6 |Ω|√
3ε2M

))
.

Proof of Lemma 4.11. By (4.5b), −F ∗(−ℓ(d(x, 0))) > 0 for x ̸= 0, therefore B(z) > 0 for
z > 0. Likewise, −F ∗ ◦ (−ℓ) is finite and continuous by (4.5a), so B(z) < ∞. Now observe
that B yields the average value of −F ∗(−ℓ(d(·, 0))) over H(1/z). Hence, the monotonicity of
−F ∗ ◦ (−ℓ) implies that B is nonincreasing, and moreover

B(z) = −F ∗(−ℓ(d(ξ(z), 0)))

for some ξ(z) ∈ H(1/z). Therefore limz→∞B(z) = −F ∗(−ℓ(0)) = −F ∗(0) = 0 by (4.2b).
Conversely,

lim
z↘0

B(z) = lim
z↘0

∫
H(1)

−F ∗(−ℓ(d(y/
√
z, 0))) dy = −F ∗(−ℓ(∞)) = −F ∗(−∞) = F (0).

Since −F ∗◦(−ℓ) is continuous, the integral in the definition of B is differentiable with respect
to z by the Leibniz integral rule, and we have

B′(z) =
d

dz

[
z

∫
H(1/z)

−F ∗(−ℓ(d(x, 0))) dx

]

=

∫
H(1/z)

−F ∗(−ℓ(d(x, 0))) dx+ z

∫
∂H(1/z)

−F ∗(−ℓ(d(x, 0)))vn(z) dx ·
(
− 1

z2

)
,

where vn(z) = 1/|∂H(1/z)| is the normal velocity of the hexagonal boundary as the area of
the hexagon is increased at rate 1. This coincides with the formula provided in the statement.
To check convexity we first assume that −F ∗ ◦ (−ℓ) is differentiable. In the following we use
the notation

−
∫
∂H(1/z)

f dx =
1

|∂H(1/z)|

∫
∂H(1/z)

f dx
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and calculate

B′′(z) =

= − 1

z2

[
B(z)−−

∫
∂H(1/z)

−F ∗(−ℓ(d(x, 0))) dx

]

+
1

z

[
1

z

(
B(z)−−

∫
∂H(1/z)

−F ∗(−ℓ(d(x, 0))) dx

)
− d

dz

(
−
∫
∂H(1/z)

−F ∗(−ℓ(d(x, 0))) dx

)]

= −1

z

d

dz

(
−
∫
∂H(1/z)

−F ∗(−ℓ(d(x, 0))) dx

)
≥ 0

since −F ∗ ◦ (−ℓ) is nondecreasing. Therefore B is convex. Since F ∗ is nondecreasing and
convex, there exists some R ∈ (0,∞] such that −F ∗ ◦ (−ℓ) is strictly increasing on [0, R)
and constant on [R,∞). Thus we see B′′ > 0 on (Z,∞) for some Z ≥ 0 and B′′(z) = 0 for
z < Z. The monotonicity properties of B′ without assuming differentiability of −F ∗ ◦ (−ℓ)
now follow by a standard approximation argument. Note that

0 ≥ B′(z) ≥ −1

z
−
∫
∂H(1/z)

−F ∗(−ℓ(d(x, 0))) dx→ 0 as z → ∞.

We leave it as an easy exercise in convex analysis to check the expressions for the subdiffer-
entials ∂B and ∂(B∗).

Theorem 4.14 (Asymptotic quantization). Let Ω ⊂ R2 be a closed Lipschitz domain (a
domain whose boundary is locally the graph of a Lipschitz function with the domain lying on
one side) and µ = m · (L⌞Ω) for L the Lebesgue measure and m : Ω → [0,∞) a Lipschitz-
continuous density. Assume that either F (0) < +∞ or ℓ(s) < +∞ for all s ∈ [0,∞), as in
(4.5a). Furthermore, let lims→∞ ℓ(s) = ∞. For any sequence ε1, ε2, . . . > 0 with εM ↘ 0 as
M → ∞ the following holds:

1. If lim
M→∞

ε2MM = ∞, then lim
M→∞

min JM
εM

= 0.

2. If lim
M→∞

ε2MM = 0, then lim
M→∞

min JM
εM

=W (µ, 0) = µ(Ω)F (0).

3. If lim
M→∞

ε2MM = P ∈ (0,∞), then

lim
M→∞

min JM
εM

=

[
κ 7→

∫
Ω
B∗(κ/m(x)) dµ(x)

]∗
(P ) .

Furthermore, there exists a unique constant λ < 0 and some measurable function D :
Ω → [0,∞) such that

lim
M→∞

min JM
εM

=

∫
Ω
B(D(x)) dµ(x) ,

and

D(x) ∈ ∂B∗(λ/m(x)) for almost all x ∈ Ω, P =

∫
Ω
D(x) dx (4.9)
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(by convention, for m(x) = 0 we set D(x) = 0). That is, D can be interpreted as (being
proportional to) the spatially varying point density of the asymptotically optimal local
triangular grid.

Remark 4.15 (Limit cases). Theorem 4.14(1) and (2) can in fact be recovered as the special
cases P = ∞ and P = 0 of Theorem 4.14(3) if we set (λ,D) ≡ (0,∞) or (λ,D) ≡ (−∞, 0),
respectively. However, it is simpler to treat them separately.

Remark 4.16 (Calculation of asymptotic density). Given a density m, the asymptotically
optimal point density D can be computed numerically based on the function B using

D(x) ∈ ∂B∗(λ/m(x)) =


{0} if λ/m(x) < r,

[0, Z] if λ/m(x) = r,

{(B′)−1(λ/m(x))} if λ/m(x) ∈ (r, 0),

∅ otherwise,

where r was defined in Lemma 4.11.

Example 4.17 (Zador’s Theorem is a special case of Theorem 4.14). We show that Zador’s
Theorem [33, 70] in two dimensions (see equation (1.6) with d = 2) can be recovered from
Theorem 4.14 by taking ℓ(t) = tp and F (s) = ι{1}(s). In this case min JεM is just the standard
(balanced) optimal quantization error with respect to the Wasserstein-p distance. Note that
F (0) = +∞ but the transport cost ℓ is finite and so assumption (4.5a) is satisfied. We have
F ∗(z) = z and

B(z) = c6(p)z
− p

2 for z > 0 and +∞ otherwise,

where

c6(p) =

∫
H(1)

|y|p dy.

Therefore, for z > 0, s < 0,

B′(z) = −p
2
c6(p)z

− p
2
−1, (B′)−1(s) =

(
−pc6(p)

2s

) 2
p+2

.

Assume that we are in Regime 3: limM→∞ ε2MM = P . Note that B′ is nowhere constant and
so Z = 0 and r = limz→0B

′(z) = −∞. By Remark 4.16, if m(x) > 0,

D(x) = (B′)−1(λ/m(x)) =

(
−pc6(p)m(x)

2λ

) 2
p+2

(4.10)

where λ < 0 is the constant given by Theorem 4.14. Then

P =

∫
Ω
D(x) dx =

(
−pc6(p)

2λ

) 2
p+2
∫
Ω
m(x)

2
p+2 dx. (4.11)

We can eliminate λ from (4.10) and (4.11) to write D in terms of P :

D(x) = Pm
2

p+2

(∫
Ω
m(x)

2
p+2 dx

)−1

.
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Therefore, by Theorem 4.14,

lim
M→∞

ε−p
M min

{xi}Mi=1

M∑
i=1

∫
Vi

|x− xi|pm(x)dx = lim
M→∞

min JM
εM

=

∫
Ω
B(D(x))m(x)dx

= P− p
2 c6(p)

(∫
Ω
m(x)

2
p+2 dx

) p+2
2

.

Since limM→∞ ε2MM = P , we can rewrite this as

lim
M→∞

M
p
2 min
{xi}Mi=1

M∑
i=1

∫
Vi

|x− xi|pm(x)dx = c6(p)

(∫
Ω
m(x)

2
p+2 dx

) p+2
2

which is exactly Zador’s Theorem in two dimensions; see equations (1.6) and (1.7).

Proof of Theorem 4.14. Regime 1: limM→∞ ε2MM = ∞. Since Ω is a Lipschitz domain, for
any M ∈ N we can cover Ω with M balls of radius rM such that M · r2M · π ≤ K|Ω| for a
constant K ∈ R (not depending on M). Indeed, we may for instance choose

rM =
2
√
2√

3
√
3
·

√
|Ω|
M/2

+
|∂Ω|√
M/2

.

For the ball centres we then pick ⌈
√
M/2⌉ equispaced points on the boundary ∂Ω (which

thus have distance no larger than rM to their neighbours) as well as all points of a regular

triangular lattice with spacing 2
√
|Ω|/

√√
3M whose Voronoi cells are contained in Ω (those

Voronoi cells are translations of H(|Ω|/(M/2)) and have diameter no larger than rM ). The
remaining points (so far we used at most ⌈

√
M/2⌉+M/2) are spread arbitrarily over Ω.

Therefore r2M ·M remains bounded and rM/εM → 0 as M → ∞. Denote the centres of
the balls by x1, . . . , xM . We find Vi(x1, . . . , xM ) ⊂ BrM (xi) for i = 1, . . . ,M . Then

min JM
εM

≤ JM
εM

(x1, . . . , xM ) =
M∑
i=1

∫
Vi(x1,...,xM )

−F ∗
(
−ℓ
(
d(x,xi)
εM

))
dµ(x)

≤ −F ∗
(
−ℓ
(
rM
εM

))
· µ(Ω) → 0 as M → ∞

since [0,∞) ∋ z 7→ −F ∗(−ℓ(z)) is continuous and takes value 0 for z = 0.
Regime 2: limM→∞ ε2MM = 0. Remark 4.10 yields min JM

εM
≤ µ(Ω) · F (0) (which may

be infinite). Let now r1, r2, . . . be a positive sequence such that r2M ·M → 0 and rM/εM → ∞
as M → ∞. Let x1, . . . , xM be arbitrary distinct points in Ω and set S = Ω ∩

⋃M
i=1BrM (xi).

Note that, since r2M ·M → 0 and µ≪ L, µ(S) → 0 as M → ∞. Clearly,

min
i∈{1,...,M}

−F ∗
(
−ℓ
(
d(x,xi)
εM

))
≥

{
−F ∗

(
−ℓ
(
rM
εM

))
for x ∈ Ω \ S,

0 for x ∈ S.

Therefore,

JM
εM

(x1, . . . , xM ) ≥ −F ∗
(
−ℓ
(
rM
εM

))
· µ(Ω \ S) → F (0) · µ(Ω) as M → ∞.
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Regime 3: limM→∞ ε2MM = P ∈ (0,∞). For δ ∈ (0, 1) cover Ω by a regular grid of
squares with edge length δ + δ2. Denote by {Si}Ni=1 the N squares that are fully contained
in Ω. For each Si denote by Ŝi the square of edge length δ that lies centered within Si such
that dist(Ŝi, Sj) ≥ δ2/2 for i ̸= j. Denote the union of all Ŝi by Ŝ =

⋃N
i=1 Ŝi. Since Ω is a

Lipschitz domain and µ≪ L, µ(Ω \ Ŝ) → 0 as δ → 0.
Let x1, . . . , xM beM points from Ω and denote byMi the number of points in a square Si

(points on the square boundaries are assigned to precisely one square). Obviously,
∑N

i=1Mi ≤
M . Now pick an arbitrary η > 0 (we will later consider η → ∞). Note that for x ∈ Ŝi and
M large enough (depending on δ) we have

min
j
d(x, xj) ≥ min

{
min

j:xj∈Si

d(x, πŜi
(xj)),

δ2

2

}
≥ min

{
min

j:xj∈Si

d(x, πŜi
(xj)), εMη

}
where πŜi

denotes the orthogonal projection onto Ŝi. By the nonnegativity and monotonicity
of −F ∗(−ℓ(·)) one thus obtains

JM
εM

(x1, . . . , xM ) =

∫
Ω
min
j

−F ∗
(
−ℓ
(
d(x,xj)
εM

))
m(x) dx

≥
N∑
i=1

mi

∫
Ŝi

min
j:xj∈Si

−F ∗
(
−ℓ
(
min

{
d(x,πŜi

(xj))

εM
, η

}))
dx

with mi := infx∈Si m(x). Next introduce Fη as the convex envelope of a modification of F ,

Fη = F̃ ∗∗ with F̃ (s) =

{
F (s) if s ̸= 0,

−F ∗ (−ℓ (η)) else.

By construction, Fη ≤ F , and Fη has finite value and right derivative in 0 (recall that
−F ∗ ◦ (−ℓ) is finite on [0,∞)). Furthermore,

F ∗
η (−ℓ(t)) = F̃ ∗(−ℓ(t)) = max {F ∗(−ℓ(t)), F ∗ (−ℓ (η))} = F ∗ (−ℓ (min {t, η})) .

Let
M̂i = #{πŜi

(xj) : xj ∈ Si} ≤Mi

be the number of points in Si that are distinct after projecting onto Ŝi. We can now apply
Theorem 4.6 or Remark 4.13 on each square Ŝi separately (the boundary layers of width δ2

are necessary to control the interaction between neighbouring squares),

JM
εM

(x1, . . . , xM ) ≥
N∑
i=1

mi

∫
Ŝi

min
j:xj∈Si

−F ∗
η

(
−ℓ
(
d(x, πŜi

(xj))/εM

))
dx

≥
N∑
i=1

mi M̂i

∫
H(|Ŝi|/M̂i)

−F ∗
η (−ℓ (d(x, 0)/εM )) dx

=
N∑
i=1

mi |Ŝi|Bη

(
ε2M M̂i

|Ŝi|

)
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where Bη is defined as in Lemma 4.11, only with F replaced by Fη. Now set

E(x) :=


ε2M M̂i

|Ŝi|
for x ∈ Ŝi,

0 otherwise,

and let Lm denote the Lipschitz constant of the density m. Then∫
Ω
Bη(E(x)) dµ(x) =

N∑
i=1

∫
Ŝi

Bη

(
ε2M M̂i

δ2

)
m(x) dx+

∫
Ω\Ŝ

Bη(0)m(x) dx

=
N∑
i=1

∫
Ŝi

Bη

(
ε2M M̂i

δ2

)
mi dx

+

N∑
i=1

∫
Ŝi

Bη

(
ε2M M̂i

δ2

)
(m(x)−mi) dx+ µ(Ω \ Ŝ) ·Bη(0)

≤
N∑
i=1

mi|Ŝi|Bη

(
ε2M M̂i

δ2

)
+ Lm ·

√
2 δ ·Bη(0) · |Ω|+ µ(Ω \ Ŝ) ·Bη(0)

where in the last step we used Bη(z) ≤ Bη(0) = Fη(0) for z ≥ 0. Abbreviate the last two
summands (that do not depend on M) as CδBη(0) and note that Cδ → 0 as δ → 0, then in
summary we have arrived at

JM
εM

(x1, . . . , xM ) ≥
∫
Ω
Bη(E(x)) dµ(x)− CδBη(0).

The function E satisfies
∫
ΩE(x) dx ≤ ε2M

∑N
i=1 M̂i ≤ ε2MM . By minimizing over all such

functions we thus obtain a lower bound for the minimum,

min JM
εM

≥ inf

{∫
Ω
Bη(E(x))m(x) dx

∣∣∣∣E ∈ L1(Ω; [0,∞)),

∫
Ω
E(x) dx ≤ ε2M ·M

}
− CδBη(0).

Since Bη is nonincreasing, the estimate can be rewritten as

min JM
εM

≥ inf

{∫
Ω
Bη(E(x))m(x) dx

∣∣∣∣E ∈ L1(Ω; [0,∞)),

∫
Ω
E(x) dx = ε2M ·M

}
− CδBη(0).

Now denote by LB the Lipschitz constant of Bη on [0,∞) (which exists by Lemma 4.11). If
E ∈ L1(Ω; [0,∞)) satisfies

∫
ΩE(x) dx = ε2M ·M , then Ẽ := P

(ε2MM)
E satisfies

∫
Ω Ẽ(x) dx = P

and∣∣∣∣∫
Ω
Bη(Ẽ(x)) dµ(x)−

∫
Ω
Bη(E(x)) dµ(x)

∣∣∣∣ ≤ LB

∫
Ω
|E(x)− Ẽ(x)|dµ(x)

≤ LB|ε2MM − P |max
x∈Ω

m(x) =: cM ,

which converges to zero as M → ∞. Summarizing, we obtain

min JM
εM

≥ inf

{∫
Ω
Bη(E(x)) dµ(x)

∣∣∣∣E ∈ L1(Ω; [0,∞)),

∫
Ω
E(x) dx = P

}
− CδBη(0)− cM .
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Now let first M → ∞ and then δ → 0. Introducing a Lagrange multiplier λ for the constraint
on E we thus find

lim
M→∞

min JM
εM

≥ inf
E∈L1(Ω;[0,∞))

sup
λ∈R

∫
Ω
[Bη(E(x))m(x)− λE(x)] dx+ λ · P

≥ sup
λ∈R

inf
E∈L1(Ω;[0,∞))

∫
Ω
[Bη(E(x))m(x)− λE(x)] dx+ λ · P

≥ sup
λ∈R

∫
Ω
inf
E≥0

[Bη(E)m(x)− λE] dx+ λ · P

= sup
λ∈R

∫
Ω

[
−m(x) ·B∗

η(λ/m(x))
]
dx+ λ · P.

Now as η → ∞ one has the pointwise convergence −F ∗
η ◦(−ℓ) ↗ −F ∗◦(−ℓ) and thus Bη ↗ B

pointwise by the monotone convergence theorem. In fact, there is actually some κ(η) > 0
with κ(η) → ∞ as η → ∞ such that −F ∗

η (−ℓ(r)) = −F ∗(−ℓ(r)) for all r < κ(η) and therefore

Bη(z) = B(z) for all z > 2/(3
√
3κ(η)2). Consequently, also B∗

η ↘ B∗ monotonously so that
one obtains sharper bounds with increasing η. Thus, using again the monotone convergence
theorem,

lim
M→∞

min JM
εM

≥ sup
η>0

sup
λ∈R

∫
Ω

[
−m(x) ·B∗

η(λ/m(x))
]
dx+ λ · P

= sup
λ∈R

sup
η>0

∫
Ω

[
−m(x) ·B∗

η(λ/m(x))
]
dx+ λ · P

= sup
λ∈R

∫
Ω
[−m(x) ·B∗(λ/m(x))] dx+ λ · P.

Evaluating the supremum over λ we finally obtain

lim
M→∞

min JM
εM

≥
[
κ 7→

∫
Ω
B∗(κ/m(x)) dµ(x)

]∗
(P ) .

Observe that B∗(z) = ∞ for z > 0, B∗ is convex, lower semi-continuous, monotonically
increasing, satisfies limz→−∞B∗(z)/|z| = 0 (which follows from s · z −B∗(z) ≤ B(s) <∞ for
all s > 0, z < 0), and has infinite left derivative at 0 (by Lemma 4.11). Therefore the map

R ∋ λ 7→
∫
Ω
[−m(x) ·B∗(λ/m(x))] dx+ λ · P

is concave and there exists a maximizing λ < 0 satisfying the necessary and sufficient opti-
mality condition

0 ∈ ∂

[
κ 7→

∫
Ω
m(x) ·B∗

(
κ

m(x)

)
dx− κ · P

]
(λ) ⇐⇒

P ∈ ∂

[
κ 7→

∫
Ω
m(x)B∗

(
κ

m(x)

)
dx

]
(λ).

Now recall Z and r from Lemma 4.11 and define for ξ ∈ [0, Z] the functionDξ : Ω → [0,∞)
by

Dξ(x) =


(B∗)′(λ/m(x)) if m(x) > λ/r,

ξ ∈ [0, Z] if m(x) = λ/r,

0 otherwise.
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Since m is continuous, its superlevel sets are Lebesgue measurable. Dξ is constructed by
assigning new values to the level sets of m in a monotone way (by the monotonicity of (B∗)′,
see Lemma 4.11), hence it is also Lebesgue measurable. We now pick ξ(P ) ∈ [0, Z] such that∫
ΩDξ(P )(x) dx = P . (Note that there is no choice for ξ if Z = 0, and the choice of ξ is
irrelevant if {x ∈ Ω |m(x) = λ/r} is a nullset. The following argument still applies in these
cases.) Such a ξ(P ) exists due to

∫
ΩD0(x) dx ≤ P and

∫
ΩDZ(x) dx ≥ P , as we now show.

Indeed, note by Lemma 4.11 that for all x ∈ Ω the function D0(x) equals the left derivative
of B∗ at λ/m(x) (which by convention shall be 0 for m(x) = 0), while DZ(x) equals the right
derivative. Beppo Levi’s monotone convergence theorem thus yields

∫
Ω
D0(x) dx =

∫
Ω
lim
λ̃↗λ

m(x)B∗
(

λ̃
m(x)

)
−m(x)B∗

(
λ

m(x)

)
λ̃− λ

dx

= lim
λ̃↗λ

∫
Ω
m(x)B∗

(
λ̃

m(x)

)
dx−

∫
Ω
m(x)B∗

(
λ

m(x)

)
dx

λ̃− λ
(4.12)

≤ P

since P ∈ ∂
[
κ 7→

∫
Ωm(x)B∗

(
κ

m(x)

)
dx
]
(λ) and since (4.12) is the left derivative of λ 7→∫

Ωm(x)B∗
(

λ
m(x)

)
dx. The inequality

∫
ΩDZ(x) dx ≥ P follows analogously. Writing D =

Dξ(P ) we finally obtain (4.9) and

lim
M→∞

min JM
εM

≥
∫
Ω
−m(x)B∗(λ/m(x)) dx+ λP

=

∫
Ω

λ

m(x)
D(x)−B∗(λ/m(x)) dµ(x)

=

∫
Ω
B(D(x)) dµ(x) ,

where the last equality follows from the Moreau–Fenchel identity [6, Prop. 16.9], which states
that B(s) +B∗(t) = st ⇐⇒ s ∈ ∂B∗(t) ⇐⇒ t ∈ ∂B(s).

Finally, we derive the corresponding upper bound. Fix M ∈ N, δ > 0, and η ∈ (0, 1).
Denote the 1-neighbourhood of Ω by Ω = Ω+B1(0) and extend the mass density m and the
expected point density D from the above lower bound proof to Ω\Ω by zero. Cover Ω with a
tessellation of squares of side length δ (we will later send δ → 0). We keep the squares {Si}Nδ

i=1

that intersect Ω. We may assume δ to be small enough such that all squares lie within Ω.
Define Dη : Ω → (0,∞) to be a slight modification of the expected point density D,

Dη = (1− η)D + η
P

2|Ω|
.

The main role of the regularization parameter η is to ensure that we distribute particles
throughout the whole domain Ω, even in regions where m = 0. We will send η → 0 at
the very end of the proof. For i ∈ {1, . . . , Nδ}, define the point number Mi = Mi(M, δ, η)
associated with square Si by

Mi =

⌈
1
ε2M

∫
Si

Dη(x) dx

⌉
.
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Note that
Nδ∑
i=1

Mi ≤M if M is sufficiently large.

Indeed, we have

ε2M

Nδ∑
i=1

Mi ≤ ε2M

Nδ∑
i=1

(
1
ε2M

∫
Si

Dη(x) dx+ 1

)
<

(
(1− η)

∫
Ω
D(x) dx+ ηP

2

)
+ ε2MNδ = (1− η

2 )P + ε2MNδ

so that

ε2M

(
Nδ∑
i=1

Mi −M

)
< (1− η

2 )P − ε2MM + ε2MNδ −−−−→
M→∞

−η
2P < 0.

Next, on each Si we choose Mi quantization points as in Theorem 4.9 and distribute
the remaining M −

∑Nδ
i=1Mi points arbitrarily in Ω (which does not increase the cost). By

Remark 4.13 we thus obtain

JM
εM

(x1, . . . , xM ) ≤
Nδ∑
i=1

∫
Si

min
k∈{1,...,M}:xk∈Si

−F ∗
(
−ℓ
(
d(x, xk)

εM

))
dµ(x)

≤
Nδ∑
i=1

max
Si

m

∫
Si

min
k∈{1,...,M}:xk∈Si

−F ∗
(
−ℓ
(
d(x, xk)

εM

))
dx

≤
Nδ∑
i=1

max
Si

m

[
|Si| ·B

( ε2M Mi

|Si|
)
− |∂Si|

√
8|Si|

3
√
3Mi

F ∗
(
−ℓ
(√

6 |Si|√
3ε2MMi

))]
.

Exploiting the continuity of B and −F ∗ ◦ (−ℓ) on (0,∞) as well as

lim
M→∞

ε2MMi =

∫
Si

Dη(x) dx > 0

we thus obtain

lim sup
M→∞

JM
εM

(x1, . . . , xM ) ≤
Nδ∑
i=1

max
Si

m |Si| ·B
(

1
|Si|

∫
Si

Dη(x) dx

)
.

Define Eδ : Ω → [0,∞), mδ : Ω → [0,∞) by

Eδ(x) =
1

|Si|

∫
Si

Dη(x) dx if x ∈ Si and Eδ(x) =
ηP

2|Ω|
else,

mδ(x) = max
Si

m if x ∈ Si and mδ(x) = 0 else.

Then we can rewrite the previous inequality as follows:

lim sup
M→∞

min JM
εM

≤ lim sup
M→∞

JM
εM

(x1, . . . , xM ) ≤
∫
Ω
B
(
Eδ(x)

)
mδ(x) dx. (4.13)
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Next we pass to the limits δ → 0 and η → 0, in that order. By the Lebesgue Differentiation
Theorem, limδ→0E

δ = Dη pointwise almost everywhere. Since m is upper semi-continuous,
then limδ→0m

δ = m pointwise. Moreover, Eδ ≥ ηP/2|Ω| and B is nonincreasing on (0,∞).
Hence

B
(
Eδ(x)

)
mδ(x) ≤ B

(
ηP

2|Ω|

)
max
Ω

m.

Therefore, by the Dominated Convergence Theorem,

lim
δ→0+

∫
Ω
B
(
Eδ(x)

)
mδ(x) dx =

∫
Ω
B (Dη(x))m(x) dx. (4.14)

Finally, by the convexity of B,∫
Ω
B (Dη(x))m(x) dx ≤ (1− η)

∫
Ω
B (D(x))m(x) dx+ ηB

(
P

2|Ω|

)∫
Ω
m(x) dx. (4.15)

By taking the limits δ → 0, then η → 0 in (4.13) and using (4.14)-(4.15) we obtain the
matching upper bound

lim sup
M→∞

min JM
εM

≤
∫
Ω
B (D(x))m(x) dx

as required.

Remark 4.18 (Lipschitz condition). Inspecting the proof we see that the Lipschitz condition
on m can actually be replaced by mere continuity; then all estimates based on the Lipschitz
constant have to be replaced using the modulus of continuity of m.

Remark 4.19 (Quantization regimes). The proof shows that the set of optimal point dis-
tributions for limM→∞ ε2MM ∈ {0,∞} is quite degenerate. Indeed, if the limit is zero, then
arbitrarily placed points x1, . . . , xM ∈ Ω were shown to asymptotically achieve the optimal
energy. The interpretation is that in the limit M → ∞ no transport takes place between µ
and its discrete quantization approximation so that the quantization energy equals the cost
for changing mass distribution µ to zero. If on the other hand the limit is infinite, then
Dirac masses can be distributed over Ω in such a dense fashion that all transport distances
and thus transport costs become negligibly small. Thus, to achieve the asymptotic cost 0 it
suffices to have a more or less uniform distribution of x1, . . . , xM ∈ Ω, but otherwise the point
arrangement does not matter. The case limM→∞ ε2MM ∈ (0,∞) seems to be more rigid; here
the optimal asymptotic cost is achieved by a construction which locally looks like a triangular
lattice.

Example 4.20 (Hellinger–Kantorovich). The function B from Lemma 4.11 and its derivative
B′ can be computed numerically for different unbalanced transport models; we here consider
the Hellinger–Kantorovich setting. In this case, computing the integral just on one triangular
segment of H(1z ) we obtain

B(z) = z

(
6

∫ π/6

−π/6

∫ L(α,z)

0
sin2

(
min

{
r, π2
})
r dr dα

)

= 3

∫ π/6

−π/6
zmax

{
1
4 + L(α,z)2

2 − cos(2L(α,z))
4 − L(α,z) sin(2L(α,z))

2 , 12 − π2

8 + L(α, z)2
}
dα
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input µ P = 0.90 P = 0.25 P = 0.093 P = 0.035 P = 0.0075 P = 0.0015

Figure 11: Top row: B′ from Lemma 4.11 for Hellinger–Kantorovich transport. Middle
and bottom row: input distribution µ (a Gaussian and same data as in Fig. 7) as well as
asymptotically optimal point densities D for different values of P = limM→∞ ε2MM (colour-
coding from blue for 0 to red for maximum value).

for L(α, z) = 1/(
√

2
√
3z cosα) the length of the ray starting from the hexagon centre at

angle α. The resulting B′ (computed numerically) is shown in Fig. 11. Thus, for a given
mass distribution µ = mL⌞Ω we can compute the asymptotically optimal point density D of
the quantization problem from Theorem 4.14 and Remark 4.16. Figure 11 shows computed
examples for such asymptotic densities. One can see that the variations of µ are reduced for
large values of P , but amplified for small values of P (in particular, large areas of Ω have zero
point density).
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[9] G. Bouchitté, C. Jimenez, and M. Rajesh. Asymptotique d’un problème de position-
nement optimal. C. R. Acad. Sci. Paris Ser. I Math., 335:1–6, 2002.

[10] D. P. Bourne, P. J. J. Kok, S. M. Roper, and W. D. T Spanjer. Laguerre tessellations and
polycrystalline microstructures: a fast algorithm for generating grains of given volumes.
Phil. Mag., 100(21):2677–2707, 2020.

[11] D. P. Bourne, M. A. Peletier, and S. M. Roper. Hexagonal patterns in a simplified model
for block copolymers. SIAM J. Appl. Math., 74(5):1315—-1337, 2014.

[12] D. P. Bourne, M. A. Peletier, and F. Theil. Optimality of the triangular lattice for a
particle system with Wasserstein interaction. Commun. Math. Phys., 329(1):117–140,
2014.

[13] D. P. Bourne and S. M. Roper. Centroidal power diagrams, Lloyd’s algorithm, and
applications to optimal location problems. SIAM J. Numer. Anal., 53(6):2545–2569,
2015.

[14] G. Buttazzo and F. Santambrogio. A mass transportation model for the optimal planning
of an urban region. SIAM Rev., 51(3):593–610, 2009.

[15] M. Buze, J. Feydy, S. M. Roper, K. Sedighiani, and D. P. Bourne. Anisotropic power
diagrams for polycrystal modelling: Efficient generation of curved grains via optimal
transport. arXiv:2403.03571, 2024.

[16] E. Caglioti, F. Golse, and M. Iacobelli. A gradient flow approach to quantization of
measures. Math. Models Methods Appl. Sci., 25(10):1845–1885, 2015.

45



[17] T. Cai, J. Cheng, B. Schmitzer, and M. Thorpe. The linearized Hellinger–Kantorovich
distance. SIAM J. Imaging Sci., 15(1):45–83, 2022.
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[19] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. Unbalanced optimal transport:
Dynamic and Kantorovich formulations. J. Funct. Anal., 274(11):3090–3123, 2018.

[20] R. Choksi and X. Y. Lu. Bounds on the geometric complexity of optimal Centroidal
Voronoi Tesselations in 3D. Comm. Math. Phys., 377(3):2429–2450, 2020.

[21] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: Applications
and algorithms. SIAM Rev., 41(4):637–676, 1999.

[22] Q. Du, M. Gunzburger, L. Ju, and X. Wang. Centroidal Voronoi tessellation algorithms
for image compression, segmentation, and multichannel restoration. J. Math. Imaging
Vis, 24(2):177–194, 2006.

[23] Q. Du and D. S. Wang. The optimal centroidal Voronoi tessellations and the Gersho’s
conjecture in the three-dimensional space. Comput. Math. Appl., 49(9-10):1355–1373,
2005.

[24] M. Emelianenko, L. Ju, and A. Rand. Nondegeneracy and weak global convergence of
the Lloyd algorithm in Rd. SIAM J. Numer. Anal., 46(3):1423–1441, 2008.

[25] A. Figalli. The optimal partial transport problem. Arch. Ration. Mech. Anal.,
195(2):533–560, 2010.

[26] A. Galichon. Optimal Transport Methods in Economics. Princeton University Press,
2016.
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[69] S.-Q. Xin, B. Lévy, Z. Chen, L. Chu, Y. Yu, C. Tu, and W. Wang. Centroidal power
diagrams with capacity constraints: Computation, applications, and extension. ACM
Trans. Graph., 35(6):244:1–244:12, 2016.

[70] P. L. Zador. Asymptotic quantization error of continuous signals and the quantization
dimension. IEEE Trans. Inform. Theory, 28(2):139–149, 1982.

[71] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran sub-
routines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.,
23(4):550–560, 1997.

49


	Introduction
	Unbalanced optimal transport
	Semi-discrete transport
	Quantization
	Outline and contribution
	Setting and notation

	Background
	Optimal transport
	Unbalanced transport
	Semi-discrete transport

	Semi-discrete unbalanced transport
	Tessellation formulation
	Numerical examples and different models

	Unbalanced quantization
	Unbalanced quantization as a Voronoi tessellation problem
	A numerical method: Lloyd's algorithm and quasi-Newton variant
	Crystallization in two dimensions


