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Abstract. We address the Monge problem in metric spaces with a geodesic distance: (X, d) is a Polish non branching
geodesic space. We show that we can reduce the transport problem to 1-dimensional transport problems along geodesics.
We introduce an assumption on the transport problem π which implies that the conditional probabilities of the first marginal
on each geodesic are continuous. It is known that this regularity is sufficient for the construction of an optimal transport
map.
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1. Introduction. This paper concerns the Monge transportation problem in geodesic spaces, i.e.
metric spaces with a geodesic structure. Given two Borel probability measures µ, ν ∈ P(X), where (X, d)
is a locally compact Polish space, i.e. a separable complete locally compact metric space, we study the
minimization of the functional

I(T ) =

∫

d(x, T (x))µ(dy)

where T varies over all Borel maps T : X → X such that T♯µ = ν and d is a distance that makes (X, d)
a non branching geodesic space.

Before giving an overview of the paper and of the existence result, we recall which are the main
results concerning the Monge problem.

In the original formulation given by Monge in 1781 the problem was settled in Rn, with the cost given
by the Euclidean norm and the measures µ, ν were supposed to be absolutely continuous and supported
on two disjoint compact sets. The original problem remained unsolved for a long time. In 1978 Sudakov
[13] claimed to have a solution for any distance cost function induced by a norm: an essential ingredient
in the proof was that if µ ≪ Ld and Ld-a.e. Rd can be decomposed into convex sets of dimension k,
then the conditional probabilities are absolutely continuous with respect to the Hk measure of the correct
dimension. But it turns out that when d > 2, 0 < k < d−1 the property claimed by Sudakov is not true.
An example with d = 3, k = 1 can be found in [11] and [1].

The Euclidean case has been correctly solved only during the last decade. L. C. Evans and W.
Gangbo in [8] solved the problem under the assumptions that sptµ ∩ spt ν = ∅, µ, ν ≪ Ld and their
densities are Lipschitz function with compact support. The first existence results for general absolutely
continuous measures µ, ν with compact support have been independently obtained by L. Caffarelli, M.
Feldman and R.J. McCann in [5] and by N. Trudinger and X.J. Wang in [14]. Afterwards M. Feldman
and R.J. McCann [9] extended the results to manifolds with geodesic cost. The case of a general norm as
cost function on Rd, including also the case with non strictly convex unitary ball, has been solved first
in the particular case of crystalline norm by L. Ambrosio, B. Kirchheim and A. Pratelli in [1], and then
in fully generality independently by L. Caravenna in [6] and by T. Champion and L. De Pascale in [7].

1.1. Overview of the paper. The presence of 1-dimensional sets (the geodesics) along which the
cost is linear is a strong degeneracy for transport problems. This degeneracy is equivalent to the following
problem in R: if µ is concentrated on (−∞, 0], and ν is concentrated on [0,+∞), then every transference
plan is optimal for the 1-dimensional distance cost | · |. In fact, every π ∈ Π(µ, ν) is supported on the set
(−∞, 0] × [0,+∞), on which |x− y| = y − x and thus

∫

|x− y|π(dxdy) = −

∫

xµ(dx) +

∫

yν(dy).

Nevertheless, for this easy case an explicit map T : R → R can be constructed if µ is non atomic: the
easiest choice is the monotone map, a minimizer of the quadratic cost | · |2.

The approach suggested by the above simple case is the following:
1. reduce the problem to transportation problems along distinct geodesics;
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2. show that the disintegration of the marginal µ on each geodesic is continuous;
3. find a transport map on each geodesic and piece them together.

While the last point can be seen as an application of selection principles in Polish spaces, the first two
points are more subtle.

The geodesics used by a given transference plan π to transport mass can be obtained from a set Γ
on which π is concentrated. If π wants to be a minimizer, then it certainly chooses the shortest paths:
however the metric space can be branching, i.e. geodesics can bifurcate. In this paper we assume that
the space is non branching.

Under this assumption, a cyclically monotone plan π yields a natural partition R of the transport
set Te, i.e. the set of the geodesics used by π:

• the set T made of inner points of geodesics,
• the set a ∪ b := Te \ T of initial points a and end points b.

The non branching assumption and the cyclical monotonicity of Γ imply that the geodesics used by π are
a partition on T , but no other conditions can be obtained on a∪ b: one can think to the one dimensional
torus T1 with µ = δ0 and ν = δ1/2. We note here that π gives also a direction along each component of
R, as the one dimensional example above shows.

Even if we have a natural partition R in T and µ(a∪b) = 0, we cannot reduce the transport problem
to one dimensional problems: a necessary and sufficient condition is that the disintegration of the measure
µ is strongly consistent, which is equivalent to the fact that there exists a µ-measurable quotient map
f : T → T . In this case, one can write

m := f♯µ, µ =

∫

µym(dy), µy(f
−1(y)) = 1,

i.e. the conditional probabilities µy are concentrated on the counterimages f−1(y) (which are single
geodesics). At this point we can obtain the one dimensional problems by partition π w.r.t. the partition
R× (X ×X),

π =

∫

πym(dy), ν =

∫

νym(dy) νy := (P2)♯πy,

and considering the one dimensional problems along the geodesic R(y) with marginals µy, νy and cost | · |,
the length on the geodesic. At this point we can study the problem of the regularity of the conditional
probabilities µy.

The existence of a strongly consistent disintegration relies only on the properties of geodesics in
Polish spaces. Moreover, a natural operation on sets can be considered: the translation along geodesics.
If A is a subset of T , we denote by At the set translated by t in the direction determined by π.

It turns out that the fact that µ(a∪ b) = 0 and the measures µy are continuous depends on how the
function t 7→ µ(At) behaves. We can now state the main result.

Theorem 1.1 (Lemma 5.3 and Proposition 5.1). If ♯{t > 0 : µ(At) > 0} is uncountable for all A
Borel such that µ(A) > 0, then µ(a ∪ b) = 0 and m-a.e. conditional probability µy is continuous.

This is sufficient to solve the Monge problem, i.e. to find a transport map which has the same cost
as π. For a more general setting we refer to [3].

2. Preliminaries. In this section we recall some general facts about projective classes, the Disinte-
gration Theorem for measures, measurable selection principles, geodesic spaces and optimal transporta-
tion problems.

2.1. Borel, projective and universally measurable sets. The projective class Σ1
1(X) is the

family of subsets A of the Polish space X for which there exist Y Polish and B ∈ B(X × Y ) such that
A = P1(B). The coprojective class Π1

1(X) is the complement in X of the class Σ1
1(X). The class Σ1

1 is
called the class of analytic sets, and Π1

1 are the coanalytic sets.
We will denote by A the σ-algebra generated by Σ1

1.
We recall that a subset of X Polish is universally measurable if it belongs to all completed σ-algebras

of all Borel measures on X : it can be proved that every set in A is universally measurable.



2.2. Disintegration of measures. Given a measurable space (R,R) and a function r : R → S,
with S generic set, we can endow S with the push forward σ-algebra S of R:

Q ∈ S ⇐⇒ r−1(Q) ∈ R,

which could be also defined as the biggest σ-algebra on S such that r is measurable. Moreover, given a
measure space (R,R, ρ), the push forward measure η is then defined as η := (r♯ρ).

Consider a probability space (R,R, ρ) and its push forward measure space (S,S , η) induced by a
map r. From the above definition the map r is clearly measurable and inverse measure preserving.

Definition 2.1. A disintegration of ρ consistent with r is a map ρ : R × S → [0, 1] such that
1. ρs(·) is a probability measure on (R,R), for all s ∈ S,
2. ρ·(B) is η-measurable for all B ∈ R,

and satisfies for all B ∈ R, C ∈ S the consistency condition

ρ
(

B ∩ r−1(C)
)

=

∫

C

ρs(B)η(ds).

A disintegration is strongly consistent with r if for all s we have ρs(r
−1(s)) = 1.

We say that a σ-algebra A is essentially countably generated with respect to a measure m, if there exists
a countably generated σ-algebra Â such that for all A ∈ A there exists Â ∈ Â such that m(A △ Â) = 0.

We recall the following version of the theorem of disintegration of measure that can be found on [10],
Section 452.

Theorem 2.1 (Disintegration of measure). Assume that (R,R, ρ) is a countably generated proba-
bility space, R = ∪s∈SRs a decomposition of R, r : R → S the quotient map and (S,S , η) the quotient
measure space. Then S is essentially countably generated w.r.t. η and there exists a unique disintegration
s → ρs in the following sense: if ρ1, ρ2 are two consistent disintegration then ρ1,s(·) = ρ2,s(·) for η−a.e.
s.

If {Sn}n∈N
is a family essentially generating S define the equivalence relation:

s ∼ s′ ⇐⇒ {s ∈ Sn ⇐⇒ s′ ∈ Sn, ∀n ∈ N}.

Denoting with p the quotient map associated to the above equivalence relation and with (L,L , λ) the
quotient measure space, the following properties hold:

• Rl := ∪s∈p−1(l)Rs = (p ◦ r)−1(l) is ρ-measurable and R = ∪l∈LRl;
• the disintegration ρ =

∫

L
ρlλ(dl) satisfies ρl(Rl) = 1, for λ-a.e. l. In particular there exists a

strongly consistent disintegration w.r.t. p ◦ r;
• the disintegration ρ =

∫

S
ρsη(ds) satisfies ρs = ρp(s), for η-a.e. s.

In particular we will use the following corollary.

Corollary 2.1. If (S,S ) = (X,B(X)) with X Polish space, then the disintegration is strongly
consistent.

2.3. Selection principles. Given a multivalued function F : X → Y , X , Y metric spaces, the
graph of F is the set

graph(F ) :=
{

(x, y) : y ∈ F (x)
}

.(2.1)

The inverse image of a set S ⊂ Y is defined as:

F−1(S) :=
{

x ∈ X : F (x) ∩ S 6= ∅
}

.(2.2)

For F ⊂ X × Y , we denote also the sets

Fx := F ∩ {x} × Y, F y := F ∩X × {y}.(2.3)



In particular, F (x) = P2(graph(F )x), F
−1(y) = P1(graph(F )y). We denote by F−1 the graph of the

inverse function

F−1 :=
{

(x, y) : (y, x) ∈ F
}

.(2.4)

We say that F is R-measurable if F−1(B) ∈ R for all B open. We say that F is strongly Borel mea-
surable if inverse images of closed sets are Borel. A multivalued function is called upper-semicontinuous
if the preimage of every closed set is closed: in particular u.s.c. maps are strongly Borel measurable.

In the following we will not distinguish between a multifunction and its graph. Note that the domain
of F (i.e. the set P1(F )) is in general a subset of X . The same convention will be used for functions, in
the sense that their domain may be a subset of X .

Given F ⊂ X ×Y , a section u of F is a function from P1(F ) to Y such that graph(u) ⊂ F . A cross-
section of the equivalence relation E is a set S ⊂ E such that the intersection of S with each equivalence
class is a singleton. We recall that a set A ⊂ X is saturated for the equivalence relation E ⊂ X ×X if
A = ∪x∈AE(x).

We recall the following selection principle, Theorem 5.2.1 of [12].

Theorem 2.2. Let Y be a Polish space, X a nonempty set, and L a σ-algebra of subset of X. Every
L-measurable, closed value multifunction F : X → Y admits an L-measurable selection.

2.4. Metric setting. In this section we refer to [4].

Definition 2.2. A length structure on a topological space X is a class A of admissible paths, which
is a subset of all continuous paths in X, together with a map L : A → [0,+∞]: the map L is called length
of path.

The class A and the map L must satisfy the natural assumptions that one expects (for shortness we
do not list them here).

Given a length structure, we can define a distance

dL(x, y) = inf
{

L(γ) : γ : [a, b] → X, γ ∈ A, γ(a) = x, γ(b) = y
}

,

that makes (X, dL) a metric space (allowing dL to be +∞). The metric dL is called intrinsic.

Definition 2.3. A length structure is said to be complete if for every two points x, y there exists
an admissible path joining them whose length L(γ) is equal to dL(x, y) < +∞.

In other words, a length structure is complete if there exists a shortest path between two points with
finite length.

Intrinsic metrics associated with complete length structure are said to be strictly intrinsic. The
metric space (X, d) with d strictly intrinsic is called a geodesic space. A curve whose length equals the
distance between its end points is called geodesic.

It follows from Proposition 2.5.9 of [4] that every admissible curve of finite length admits a constant
speed parametrization, i.e. γ defined on [0, 1] and L(γx[t, t′]) = v(t′ − t), with v velocity. Hence from
now on geodesics when parametrized are understood as constant speed geodesics.

Definition 2.4. Let (X, dL) be a metric space. The distance dL is said to be strictly convex if, for
all r ≥ 0, dL(x, y) = r/2 implies that

{z : dL(x, z) = r} ∩ {z : dL(y, z) = r/2}

is a singleton.

The definition can be restated as: geodesics cannot branch in the interior. More precisely: let
γ1, γ2 : [0, 1] → X be geodesics such that γ1(I1) = γ2(I2) for some intervals I1, I2 ⊂ [0, 1]. Then either
γ1 ⊂ γ2 or γ2 ⊂ γ1. An equivalent requirement is that if γ1(0) = γ2(0), γ1(1) = γ2(1), then such geodesics



do not admit a geodesic extension i.e. they are not a part of a longer one. The metric space (X, d) is
said non-branching.

From now on

(X, d) is a non-branching geodesic locally compact Polish space.

2.5. General facts about optimal transportation. Let (X,Ω, µ) and (Y,Σ, ν) be two probability
spaces and c : X × Y → R+ be a Ω × Σ measurable function. Consider the set of transference plans

Π(µ, ν) :=
{

π ∈ P(X × Y ) : (P1)♯π = µ, (P2)♯π = ν
}

,

where Pi(x1, x2) = xi, i = 1, 2 and P(X × Y ) is the set of probability measure on X × Y . Define the
functional

I : Π(µ, ν) −→ R+

π 7−→ I(π) :=

∫

X×Y

cπ.
(2.5)

The Monge-Kantorovich minimization problem is to find the minimum of I over all transference plans.
If we consider a map T : X → Y such that T♯µ = ν, the functional 2.5 becomes

I(T ) := I((Id × T )♯µ) =

∫

X

c(x, T (x))µ(dx).

The minimum problem over all T is called Monge minimization problem.
The Kantorovich problem admits a (pre) dual formulation: before stating it, we give a definition.

Definition 2.5. A set Γ ⊂ X ×Y is said to be c-cyclically monotone if, for any n ∈ N and for any
family (x1, y1), . . . , (xn, yn) of points of Γ, the following inequality holds

n
∑

i=0

c(xi, yi) ≤
n

∑

i=0

c(xi+1, yi),

with xn+1 = x1. A transference plan is said to be c-cyclically monotone if it is concentrated on a c-
cyclically monotone set.

Consider the set

Φc :=
{

(ϕ, ψ) ∈ L1(µ) × L1(ν) : ϕ(x) + ψ(y) ≤ c(x, y)
}

.(2.6)

Define for all (ϕ, ψ) ∈ Φc the functional

J(ϕ, ψ) :=

∫

ϕµ+

∫

ψν.(2.7)

The following is a well known result (see Theorem 5.10 of [16]).

Theorem 2.3 (Kantorovich Duality). Let X and Y be Polish spaces, let µ ∈ P(X) and ν ∈ P(Y ),
and let c : X × Y → R+ ∪ {+∞} be lower semicontinuous. Then the following holds:

1. Kantorovich duality:

inf
π∈Π[µ,ν]

I(π) = sup
(ϕ,ψ)∈Φc

J(ϕ, ψ).

Moreover, the infimum on the left-hand side is attained and the right-hand side is also equal to

sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ, ψ),

where Cb = Cb(X,R) × Cb(Y,R).



2. If c is real valued and the optimal cost

C(µ, ν) := inf
π∈Π(µ,ν)

I(π)

is finite, then there is a measurable c-cyclically monotone set Γ ⊂ X×Y , closed if c is continuous,
such that for any π ∈ Π(µ, ν) the following statements are equivalent:
(a) π is optimal;
(b) π is c-cyclically monotone;
(c) π is concentrated on Γ;
(d) there exists a c-concave function ϕ such that π-a.s. ϕ(x) + ϕc(y) = c(x, y).

3. If moreover

c(x, y) ≤ cX(x) + cY (y), (cX , cY ) ∈ L1(µ) × L1(ν),

then there exist a couple of potentials and the optimal transference plan π is concentrated on the
set

{

(x, y) ∈ X × Y |ϕ(x) + ψ(y) = c(x, y)
}

.

Finally if (cX , cY ) ∈ L1(µ) × L1(ν) then the supremum is attained

sup
Φc

J = J(ϕ,ϕc).

We recall also that if c is Borel, then every optimal transference plan π is concentrated on a c-
cyclically monotone set [2].

3. Optimal transportation in geodesic spaces. Take µ, ν ∈ P(X) and consider the optimal
transportation problem with cost c(x, y) = d(x, y). In our setting the following holds.

1. It is possible to restrict the Kantorovich duality just to 1-Lipschitz functions.
2. For a 1-Lipschitz map the d-transform has a particular form ϕd(x) = −ϕ(x).
3. It follows that the support of the minimizing measures is the transport set

Γ :=
{

(x, y) ∈ X ×X : ϕ(x) − ϕ(y) = d(x, y)
}

,(3.1)

for any potential ϕ ∈ Lip1(X).
4. The distance cost allows to assume µ ⊥ ν because of the triangular inequality.

In this section we study the transport set Γ. Note that Γ is closed, hence σ-compact.

Definition 3.1 (Transport rays). Define for x ∈ X the outgoing transport ray

G(x) :=
{

y ∈ X : ϕ(x) − ϕ(y) = d(x, y)
}

(3.2)

and the incoming transport ray

G−1(x) :=
{

y ∈ X : ϕ(y) − ϕ(x) = d(x, y)
}

.(3.3)

Define the set of transport rays through x as the set

R(x) := G(x) ∪G−1(x).(3.4)

Observe that the multivalued maps G, G−1, and R have σ-compact graph.

Definition 3.2. Define the transport sets

T := P1

(

graph(G−1) \ {x = y}
)

∩ P1

(

graph(G) \ {x = y}
)

,(3.5)

Te := P1

(

graph(G−1) \ {x = y}
)

∪ P1

(

graph(G) \ {x = y}
)

.(3.6)



From the definition of G it is fairly easy to prove that T , Te are σ-compact sets. The subscript e
refers to the endpoints of the geodesics: clearly we have

Te = P1(R \ {x = y}).(3.7)

Since π(Γ) = 1, it is fairly easy to prove that π(Te × Te ∪ {x = y}) = 1. As a consequence,
µ(Te) = ν(Te) and any maps T such that for νxTe

= T♯µxTe
can be extended to a map T ′ such that

ν = T♯µ with the same cost by setting

T ′(x) =

{

T (x) x ∈ Te
x x /∈ Te

(3.8)

Therefore we have only to study the Monge problem in Te.

Remark 3.1. Take y ∈ G(x), and take the points z such that

d(x, y) = d(x, z) + d(z, y).

From the definition of G, z ∈ G(x) and y ∈ G(z) or, equivalently, z ∈ G−1(y). Similarly if we take
y ∈ G(x) and z ∈ G(y) we get z ∈ G(x) and y is on the geodesic from x to z. So we can say that if
y ∈ G(x), the set

G(x) ∩G−1(y)

is the union of the minimizing geodesic connecting x to y. Therefore, by the non-branching assumption,
if x ∈ T , then R(x) is a single geodesic.

Definition 3.3. Define the multivalued endpoint maps a, b : Te → Te by:

a(y) :=
{

z ∈ G−1(y) : ∄x ∈ X \ {z}, x ∈ G−1(z)
}

,(3.9)

b(y) :=
{

z ∈ G(y) : ∄x ∈ X \ {z}, x ∈ G(z)
}

.(3.10)

We call a(Te) the set of initial points and b(Te) the set of final points.

Observe that the multivalued maps a, b : Te −→ Te have σ-compact graph. Other properties of the
end point maps:

1. a(x), b(x) are singleton or empty when x ∈ T ;
2. a(T ) = a(Te), b(T ) = b(Te);
3. Te = T ∪ a(T ) ∪ b(T ), T ∩ (a(T ) ∪ b(T )) = ∅.

W.l.o.g. we can assume that the µ-measure of final points and the ν-measure of the initial points
are 0.

4. Partition of the transport set. Let {xi}i∈N be a dense sequence in (X, d).

Lemma 4.1. The sets

Zijk :=
{

x ∈ T ∩ B̄2−j (xi) : L(G(x)), L(G−1(x)) ≥ 22−k
}

form a countable covering of T of σ-compact sets.
Proof. We first prove the measurability. We consider separately the conditions defining Zijk.
Point 1. The set

Aij := T ∩ B̄2−j (xi)

is clearly σ-compact.



Point 2. The set

Bk :=
{

x ∈ T : L(G(x)) ≥ 22−k
}

= P1

(

G ∩
{

d(x, y) ≥ 22−k
}

)

is σ-compact, being the projection of a σ-compact set. Similarly, the set

Ck :=
{

x ∈ T : L(G−1(x)) ≥ 22−k
}

= P1

(

G−1 ∩
{

d(x, y) ≥ 22−k
}

)

is again σ-compact.
We finally can write

Zijk = Aij ∩Bk ∩ Ck.

To show that it is a covering, notice that for all x ∈ T it holds

min
{

L(G(x)), L(G−1(x))
}

≥ 22−k

for some k ∈ N.

From Zijk we can define a countable covering of Te of σ-compact saturated sets just taking

Tijk := R−1(Zijk).

In the natural way, we can find a countable partition into σ-compact saturated sets by defining

Zm,e := Timjmkm
\
m−1
⋃

m′=1

Tim′ jm′km′
, Z0,e := Te \

⋃

m∈N

Zm,e,(4.1)

where

N ∋ m 7→ (im, jm, km) ∈ N3

is a bijective map. Intersecting the above sets with T , we obtain the countable partition of T in σ-compact
sets

Zm := Zm,e ∩ T , m ∈ N0.(4.2)

Since

R =
{

(x, y) ∈ X ×X : |ϕ(x) − ϕ(y)| = d(x, y)
}

is the graph of an equivalence relation on T , we use this partition to prove the strong consistency of the
disintegration induced by R.

On Zm, m > 0, we define the closed values map

Zm ∋ x 7→ F (x) := R(x) ∩ B̄2−jm (xim ) ⊂ Zm.(4.3)

Lemma 4.2. The equivalence relation R admits a Borel section: there exists a Borel map f : T → T
such that

1. xRf(x),
2. xRy implies f(x) = f(y).
Proof. It is enough to consider just one Zm.
Step 1. First we show that F has σ-compact graph:

graph(F ) = Zm ×X ∩
(

R ∩X ×B2−jm (xim )
)



and F (x) is clearly compact.
Step 2. Let L the family of saturated closed sets w.r.t. F , i.e. inverse images of closed sets, and let

Lσ be the smallest σ-algebra containing L. Note that Lσ is a subset of the Borel σ-algebra. Clearly, by
construction, F is Lσ-measurable.

Step 3. From Theorem 2.2 there exists a Lσ-measurable selection f of F . Clearly the atoms of Lσ
are R(x) \ {a(x), b(x)} for x ∈ Zm and f is constant along R(x) \ {a(x), b(x)} being Lσ-measurable.
Moreover f(x) ∈ R(x) \ {a(x), b(x)}. Hence f is a Borel section.

The set S = f(T ) is a Borel cross-section of R restricted to T : indeed

S = {x : d(f(x), x) = 0}

and R(x) ∩ S = {f(x)}. Having a measurable cross-section we can define the parametrization of T , Te
by geodesics.

S × R ∋ (y, t) 7→ g(y, t) :=
{

x : ϕ(y) − ϕ(x) = t
}

.(4.4)

We summarize the properties of the set graphg
1. The set graphg is Borel.
2. It is the graph of a map with range Te.
3. t 7→ g(y, t) is a dL 1-Lipschitz G-order preserving for y ∈ T .

5. Regularity of the disintegration. Let µ be a probability measure on (X, d). This section is
divided in two parts.

In the first one we consider the translation of Borel sets by the optimal geodesic flow, we introduce
the fundamental regularity assumption (Assumption 1) on the measure η and we show that an immediate
consequence is that the set of initial points is negligible. A second consequence is that the disintegration
of η w.r.t. the R has continuous conditional probabilities.

5.1. Evolution of Borel sets. Let A ⊂ Te be an analytic set and define for t ∈ R the t-evolution
At of A by

At := g
(

g−1(A) + (0, t)
)

.(5.1)

Lemma 5.1. The set At is analytic.

We can show that t 7→ µ(At) is measurable.

Lemma 5.2. Let A be analytic. The function t 7→ µ(At) is universally measurable.
Proof. Since A is analytic, then g−1(A) is analytic, and the set

Ã :=
{

(y, t, τ) : (y, t− τ) ∈ g−1(A)
}

is easily seen to be again analytic. From Fubini theorem applied to the measure µ × η, η ∈ P(R), it
follows that t 7→ µ((A)t) is η-integrable. Since this holds for all η, by definition t 7→ µ((A)t) is universally
measurable for t ∈ R.

The next assumption is the fundamental assumption of the paper.

Assumption 1 (Non-degeneracy assumption). For all compact sets A such that µ(A) > 0 the set
{t ∈ R+ : µ(At) > 0} has cardinality > ℵ0.

An immediate consequence of the Assumption 1 is that the measure µ is concentrated on T .

Lemma 5.3. If µ satisfies Assumption 1 then

µ(Te \ T ) = 0.



Proof. If A ⊂ a(X) is compact, then At ∩As = ∅ for 0 ≤ s < t. Hence

♯
{

t ∈ R+ : µ(At) > 0
}

≤ ℵ0,

because of the boundedness of µ. This contradicts the assumption unless µ(A) = 0.

Once we know that µ(T ) = 1, we can use the Disintegration Theorem 2.1 to write

µ =

∫

S

µym(dy), m = f♯µ, µy ∈ P(R(y)).(5.2)

The disintegration is strongly consistent since the quotient map f : T → T is µ-measurable and (T ,B(T ))
is countably generated.

The second consequence of Assumption 1 is that µy is continuous, i.e. µy({x}) = 0 for all x ∈ X .

Proposition 5.1. The conditional probabilities µy are continuous for m-a.e. y ∈ S.
Proof. From the regularity of the disintegration and the fact that m(S) = 1, we can assume that the

map y 7→ µy is weakly continuous on a compact set K ⊂ S of comeasure < ǫ such that L(R(y)) > ǫ for
all y ∈ K. It is enough to prove the proposition on K.

Step 1. From the continuity of K ∋ y 7→ µy ∈ P(X) w.r.t. the weak topology, it follows that the
map

y 7→ A(y) :=
{

x ∈ R(y) : µy({x}) > 0
}

= ∪n
{

x ∈ R(y) : µy({x}) ≥ 2−n
}

is σ-closed: in fact, if (ym, xm) → (y, x) and µym
({xm}) ≥ 2−n, then µy({x}) ≥ 2−n by u.s.c. on compact

sets.
Hence it is Borel, and by Lusin Theorem (Theorem 5.8.11 of [12]) it is the countable union of Borel

graphs: setting in case ci(y) = 0, we can consider them as Borel functions on S and order w.r.t. G,

µy,atomic =
∑

i∈Z

ci(y)δxi(y), xi+1(y) ∈ G(xi(y)), i ∈ Z.

Step 2. Define the sets

Sij(t) :=
{

y ∈ K : xi(y) = g
(

g−1(xj(y)) + t
)

}

∩ T .

Since K ⊂ S, to define Sij we are using the graph g ∩ S × R × T , which is analytic: hence Sij ∈ Σ1
1.

For Aj := {xj(y), y ∈ K} and t ∈ R+ we have that

µ((Aj)t) =

∫

K

µy((Aj)t)m(dy) =

∫

K

µy,atomic((Aj)t)m(dy)

=
∑

i∈Z

∫

K

ci(y)δxi(y)

(

g(g−1(xj(y)) + t)
)

m(dy) =
∑

i∈Z

∫

Sij(t)

ci(y)m(dy).

We have used the fact that Aj ∩R(y) is a singleton.
Step 3. For fixed i, j ∈ N, again from the fact that Aj ∩R(y) is a singleton

Sij(t) ∩ Sij(t
′) =

{

Sij(t) t = t′

∅ t 6= t′

so that

♯
{

t : m(Sij(t)) > 0
}

≤ ℵ0.

Finally

µ((Aj)t) > 0 =⇒ t ∈
⋃

i

{

t : m(Sij(t)) > 0
}

,

whose cardinality is ≤ ℵ0, contradicting Assumption 1.



6. Solution to the Monge problem. In this section we show that Proposition 5.1 allows to
construct an optimal map T . We recall the one dimensional result for the Monge problem that can be
found on [15].

Theorem 6.1. Let µ, ν be probability measures on R, µ with no atoms, and let

G(x) = µ((−∞;x)), F (x) = ν((−∞;x)),

be the distribution functions of µ and ν respectively. Then
1. The non decreasing function T : R → R ∪ {±∞} defined by

T (x) = sup {y ∈ R : F (y) ≤ G(x)} ,

with the convention sup ∅ = −∞, maps µ to ν. Moreover any other non decreasing map T ′ such
that T ′

♯µ = ν coincides with T on the support of µ up to a countable set.
2. If φ : [0,+∞] → R is non decreasing and convex, then T is an optimal transport relative to the

cost c(x, y) = φ(|x − y|). Moreover T is the unique optimal transference map if φ is strictly
convex.

Assume that µ satisfies Assumption 1. Then we can disintegrate µ and the optimal transference plan
π respect to the ray equivalence relation R and R×X as in equation 5.2,

µ =

∫

µym(dy), π =

∫

πym(dy), µy continuous, (P1)♯πy = µy.(6.1)

We write moreover

ν =

∫

νym(dy) =

∫

(P2)♯πym(dy).(6.2)

Note that πy ∈ Π(µy, νy) is d-monotone (and hence optimal, because R(y) is one dimensional) for m-a.e.
y. If ν(T ) = 1, then (6.2) is the disintegration of ν w.r.t. R.

Theorem 6.2. Let π ∈ Π(µ, ν) be an optimal transference plan, and assume that Assumption 1
holds. Then there exists a Borel map T : X → X with the same transport cost as π.

Proof. By means of the map g−1, we reduce to a transport problem on S × R, with cost

c((y, s), (y′, t)) =

{

|t− s| y = y′

+∞ y 6= y′.

It is enough to prove the theorem in this setting under the following assumptions: S compact and
S ∋ y 7→ (µy, νy) weakly continuous. We consider here the probabilities µy, νy on R.

Step 1. From the weak continuity of the map y 7→ (µy, νy), it follows that for all t the map

(y, t) 7→ H(y, t) := µy((−∞, t)),

is continuous in t and l.s.c. in y, hence l.s.c.. Similarly, the map

(y, t) 7→ F (y, t) := νy((−∞, t))

is easily seen to be l.s.c.. Both are clearly increasing in t.
Step 2. The map T defined as Theorem 6.1 by

T (y, s) :=
(

y, sup
{

t : F (y, t) ≤ H(y, s)
}

)

is Borel. In fact, for A Borel,

T−1(A× [t,+∞)) =
{

(y, s) : y ∈ A,H(y, s) ≥ F (y, t)
}

∈ B(S × R).

Step 3. By the definition of the set G, it follows that along each geodesic µy(g(y, (−∞, t))) ≥
νy(g(y, (−∞, t))), because in the opposite caseG is not d-monotone. Hence we can conclude that T (s) ≥ s,
and c((y, s), T (y, s)) = P2(T (y, s)) − s.



6.1. Final Remarks. So from Theorem 6.2 we know that to solve the Monge problem we need
Assumption 1 to hold. As it is clear from its formulation, Assumption 1 is not a direct hypothesis on
the geometry of the metric space (X, d). Indeed the evolution defined in the paper is induced by the
d-monotone set Γ that is deeply related to the problem.

However it is well known that in a finite dimensional manifold a lower bound on Ricci curvature
implies an estimates of how the mass is moved from a point by the exponential map. Similar notion of
curvature are present also in metric spaces. In [3] we prove that if the metric measure space (X, d, µ)
satisfies the measure contraction property (MCP ) then Assumption 1 is satisfied and therefore the Monge
problem is solved.

A possible direction of a future research is to remove the hypothesis of strictly convexity on the
distance cost d. The main problem will be that, since bifurcation of geodesics must be taken into
account, the reduction to the one-dimensional case, that is the main ingredient we use to solve the Monge
problem, will not hold anymore.
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