Stability properties for quasilinear parabolic equations with
measure data
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Abstract
Let Q be a bounded domain of RV, and Q = Q x (0, T). We study problems of the model type

uy — Apu = in Q,
u=20 on 092 x (0,T),
u(0) = uo in Q,

where p > 1, u € My(Q) and uo € L'(Q). Our main result is a stability theorem extending the re-
sults of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators u ——

A(u) =div(A(z, t, Vu)).

1 Introduction

Let © be a bounded domain of RV, and Q = Q x (0,T), T > 0. We denote by M;(2) and M;(Q) the sets
of bounded Radon measures on 2 and @ respectively. We are concerned with the problem

ug — div(A(z, ¢, Vu)) = p in Q,
u=0 on 092 x (0,7, (1.1)
u(0) = ug in Q,

where 1 € My(Q), ug € L'(Q) and A is a Caratheodory function on @ x R¥, such that for a.e. (z,t) € Q,
and any &, ¢ € RV,

Az, t,8).6 > Ay €], |A(x,t, )| < a(x,t) + Ag |€]P7, A1, Ay > 0,a € Lp/(Q), (1.2)

(A0, ,€) = A, 1,0). (€~ ) >0 ifE£C, (1.3)
for p > 1.This includes the model problem where div(A(z,t, Vu)) = A,u, where A, is the p-Laplacian.

The corresponding elliptic problem:

—Apu=p in Q, u=0 on 012,
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with p € My(Q2), was studied in [9, 10] for p > 2 — 1/N, leading to the existence of solutions in the sense of
distributions. For any p > 1, and u € L*(), existence and uniqueness are proved in [4] in the class of entropy
solutions. For any p € Mp(§2) the main work is done in [14, Theorems 3.1, 3.2], where not only existence is
proved in the class of renormalized solutions, but also a stability result, fundamental for applications.

Concerning problem (1.1), the first studies concern the case € L?' (Q) and ug € L2(£2), where existence
and uniqueness are obtained by variational methods, see [19]. In the general case u € My(Q) and uy €
M;(Q), the pionner results come from [9], proving the existence of solutions in the sense of distributions for

1

- 1.4
N+1’ (1.4)

p>p1=2—
see also [11]. The approximated solutions of (1.1) lie in Marcinkiewicz spaces u € LP=* (Q) and |Vu| €

L™ (Q), where
N ) _,_ N
De =P 1+N, Me =D Nil (1.5)

This condition (1.4) ensures that u and |Vu| belong to L (Q), since m, > 1 means p > p; and p. > 1 means
p > 2N/(N + 1). Uniqueness follows in the case p = 2, A(z,t, Vu) = Vu, by duality methods, see [21].

For u € L'(Q), uniqueness is obtained in new classes of entropy solutions, and renormalized solutions,
see [5, 26, 27].

A larger set of measures is studied in [15]. They introduce a notion of parabolic capacity initiated and
inspired by [24], used after in [22, 23], defined by

c(E) = inf(EcUig;fean{HuHW cueW,u>xy ae in @Q}),

for any Borel set E C Q, where setting X = LP((0,T); W, () N L3(Q)),
W={z:2€X, =z €X'}, embedded with the norm [|u|[w = ||u||x + ||u||x"-
Let Mo(Q) be the set of Radon measures p on @ that do not charge the sets of zero cg—capacity:

VE Borel set C Q, c%(E)=0=> |u|(E)=0.

Then existence and uniqueness of renormalized solutions of (1.1) hold for any measure u € M;(Q) N Mo(Q),
called soft (or diffuse, or reqular) measure, and ug € L*(Q2), and p > 1. The equivalence with the notion of
entropy solutions is shown in [16]. For such a soft measure, an extension to equations of type (b(u))i—A,u = p
is given in [6]; another formulation is used in [23] for solving a perturbed problem from (1.1) by an absorption
term.

Next consider an arbitrary measure p € Mp(Q). Let M,(Q) be the set of all bounded Radon measures
on () with support on a set of zero cg—capacity, also called singular. Let M, (Q), M (Q), M (Q) be the
positive cones of M;(Q), Mo(Q), Ms(Q). From [15], p can be written (in a unique way) under the form

[=po+ s, po € Mo(Q), ps=pd—py,  pdipg € MI(Q), (1.6)
and po € Mo(Q) admits (at least) a decomposition under the form
po=f—divg+h,  fELNQ), ge(LV@Q)Y, heEX, (1.7)

and we write o = (f, g, h). Conversely, any measure of this form, such that h € L*(Q), lies in My(Q),
see [23, Proposition 3.1]. The solutions of (1.1) are searched in a renormalized sense linked to this decom-
position, introduced in [15, 22]. In the range (1.4) the existence of a renormalized solution relative to the



decomposition (1.7) is proved in [22], using suitable approximations of po and ps. Uniqueness is still open,
as well as in the elliptic case.

In all the sequel we suppose that p satisfies (1.4). Then the embedding W, *(Q) € L2() is valid, that
means

X =LP((0,T); WoP (), X =LV ((0,T); W ().

In Section 2 we recall the definition of renormalized solutions, given in [22], that we call R-solutions of
(1.1), relative to the decomposition (1.7) of 1o, and study some of their properties. Our main result is a
stability theorem for problem (1.1), proved in Section 3, extending to the parabolic case the stability result
of [14, Theorem 3.4]. In order to state it, we recall that a sequence of measures u, € M;(Q) converges to a
measure p € Mp(Q) in the narrow topology of measures if

n— oo

lim [ pdun, = / pdu Vo e C(Q)NL¥(Q).
Q Q

Theorem 1.1 Let A:Q x RN — RY satisfy (1.2),(1.3). Let ug € L*(2), and
p=f—divg+h+pf —pg € My(Q),
with f € LY(Q), g € (LF(Q))N, h € X and it py € MF(Q). Let ug,, € L(),
fin = fr = divgn + (hn)i + pn = 10 € M(Q),
with fn € LYQ), gn € (L (Q))N, h € X, and pp,1n € M (Q), such that
pn=pp —diVPE + ppsy M =1k — divy2 + s,
with ph, il € LMQ), 922 € (¥ (Q)N and prs,ins € MI(Q). Assume that

sup |pn| (@) < oo,

and {ug.n} converges to ug strongly in L*(Q), {f.} converges to f weakly in L'(Q), {gn} converges to g
strongly in (LP (Q))N, {hn} converges to h strongly in X, {pn} converges to ut and {n,} converges to py
in the narrow topology; and {pL},{nL} are bounded in L'(Q), and {p%},{n2} bounded in (L (Q))N.

Let {u,} be a sequence of R-solutions of

Un,t — diU(A(CC,t, vun)) = Un mn Q,
up =0 on 92 x (0,T), (1.8)
Un(O) = Uo,n i Q.

relative to the decomposition (fn + pL —nk, gn + P2 — 02, hy) of pno. Let Uy = wy — hoy.

Then up to a subsequence, {u,} converges a.e. in @ to a R-solution u of (1.1), and {U,} converges a.e.
in @ to U = u — h. Moreover, {Vuy,},{VU,} converge respectively to Vu,VU a.e. in Q, and {T(U,)}
converge to Ty, (U) strongly in X for any k > 0.

In Section 4 we check that any measure p € M;(Q) can be approximated in the sense of the stability
Theorem, hence we find again the existence result of [22]:



Corollary 1.2 Let ug € LY(Q) and p € My(Q). Then there exists a R-solution u to the problem (1.1) with
data (p,ug).

Moreover we give more precise properties of approximations of u € M;(Q), fundamental for applications,
see Propositions 4.1 and 4.2. As in the elliptic case, Theorem 1.1 is a key point for obtaining existence results
for more general problems, and we give some of them in [2, 3, 20], for measures p satisfying suitable capacitary
conditions. In [2] we study perturbed problems of order 0, of type

u — Apu+Gu) = p in Q, (1.9)

where G(u) is an absorption or a source term with a growth of power or exponential type, and p is a good
in time measure. In [3] we use potential estimates to give other existence results in case of absorption with
p > 2. In [20], one considers equations of the form

up — div(A(z, t, Vu)) + G(u, Vu) = u

under (1.2),(1.3) with p = 2, and extend in particular the results of [1] to nonlinear operators.

2 Renormalized solutions of problem (1.1)

2.1 Notations and Definition

For any function f € L'(Q), we write fQ f instead of fQ fdzdt, and for any measurable set £ CQ, fEf
instead of [, fdxzdt. For any open set @ of R™ and F € (L¥(w))”, k € [1,00] ,m,v € N*, we set 1FNy. =
E (2 (o)

We set Ty (r) = max{min{r, k}, —k}, for any & > 0 and r € R. We recall that if u is a measurable function
defined and finite a.e. in @, such that Tj(u) € X for any k > 0, there exists a measurable function w from
Q into RY such that VTj(u) = Xjuj<xw, a.e. in Q, and for any k > 0. We define the gradient Vu of u by
w = Vu.

Let o = po+ps € Mp(Q), and (f, g, h) be a decomposition of g given by (1.7), and g = po—hy = f—divg.
In the general case g ¢ M(Q), but we write, for convenience,

/ wdjig := / (fw+ g.Vw), Yw € XNL*®(Q).
Q Q

Definition 2.1 Let ug € LY(Q), p = po + pus € Mp(Q). A measurable function u is a renormalized
solution, called R-solution of (1.1) if there exists a decompostion (f,g,h) of po such that

U=u—heL((0,T);Wy°()NL=((0,T); LY(Q)), Yoe[l,m); TU)eX, Yk>0, (2.1)

and:

(i) for any S € W2>°(R) such that S’ has compact support on R, and S(0) =0,

/QS(uo)gp(O)dx/ngtS(U)+/QS'(U)A(:E,t,Vu).V<p+/QS"(U)@A(m,t,Vu).VU/QS/(U)cpdﬁB,

(2.2)
for any ¢ € X N L*>®(Q) such that p; € X' + LY (Q) and ¢(.,T) = 0;



(ii) for any ¢ € C(Q),

1
lim — / (bA(J:,t,Vu).VU:/ pdut (2.3)
m—oo M Q
{m<U<2m}
1
lim — / qSA(x,LVu).VU:/ pduy . (2.4)
m—o0 M, Q

{—-m>U>—-2m}

Remark 2.2 As a consequence, S(U) € C([0,T]; L*(2)) and S(U)(.,0) = S(u,) in Q; and u satisfies the
equation

(S(U)), — div(S'(U)A(x,t, V) + S"(U)A(x, t, Vu). VU= £§'(U) — div(gS"(U)) + S"(U)g.VU,  (2.5)

in the sense of distributions in Q, see [22, Remark 3]. Moreover assume that [—k,k] D suppS’. then from
(1.2) and the Hélder inequality, we find easily that

1/p’
ISl 11 (@) < C ISl @ IVl xwi<illy + I1VuPxw1<k]l, o + V@)L o

’ 1/
+lall,y g + llally, wa IVl xjwi<ell o + 9l o) (2.6)

where C = C(p, Aa). We also deduce that, for any ¢ € X N L>®(Q), such that ps€ X' + L'(Q),

/S da:—/Suo dx—/ 0 S(U /S’ Az, t,Vu).V

+/QS’/(U)A(x,t7Vu).VU<p:/QS’(U)gadﬁB. (2.7)

Remark 2.3 Let u,U satisfy (2.1). 1t is easy to see that the condition (2.3) ( resp. (2.4) ) is equivalent to

lim e / PA(x,t, Vu).Vu:/ odut (2.8)
m—oo 1M Q
{m<U<2m}
resp.
1
lim — / qSA(x,t,Vu).Vu:/ pdp, . (2.9)
m—oo 1M Q

{m>U>—-2m}

In particular, for any ¢ € Lp,(Q) there holds

1 1
lim — / |[Vulp =0, lim — / |[VU|p = 0. (2.10)

m—o0 M,

m<|U|<2m m<|U|<2m
Remark 2.4 (i) Any function U € X such that Uy € X' + LY(Q) admits a unique c§-quasi continuous
representative, defined cg—quasi a.e. in @, still denoted U. Furthermore, if U € L*(Q), then for any uo €
My (Q), there holds U € L (Q,duo), see [22, Theorem 3 and Corollary 1].

(ii) Let u be any R- solution of problem (1.1). Then, U = u — h admits a c¢3-quasi continuous functions
representative which is finite cg—quasi a.e. in @, and u satisfies definition 2.1 for every decomposition (f, g, iz)
such that h — h € L>(Q), see [22, Proposition 3 and Theorem 4 |.



2.2 Steklov and Landes approximations

A main difficulty for proving Theorem 1.1 is the choice of admissible test functions (S, ) in (2.2), valid for
any R-solution. Because of a lack of regularity of these solutions, we use two ways of approximation adapted
to parabolic equations:

Definition 2.5 Let ¢ € (0,T) and z € L},.(Q). For anyl € (0,e) we define the Steklov time-averages
[2]1, [2]=1 of = by

+
1
=7 / ds for a.e. (z,t) € QA x (0, T —¢),

2] % / ds  fora.e. (z,t) € Qx (,7T).

The idea to use this approximation for R-solutions can be found in [7]. Recall some properties, given in [23].
Let e € (0,T), and @1 € CZ(Q x [0,T)), p2 € C(Q x (0,T]) with Supppr C Q x [0,T — €], Suppps C
QO x [g,T]. There holds:

(i) If z € X, then ¢4[z]; and @a[z]_; € W.

(i) If 2 € X and 2z, € X' + LY(Q), then, as | — 0, (¢1[z];) and (p2[2]—;) converge respectively to (12 and
p2z in X, and a.e. in Q; and (p1z]1),, (w2[2]-1), converge to (p12)s, (p22)¢ in X' + L1(Q).

(iii) If moreover z € L*°(Q), then from any sequence {l,} — 0, there exists a subsequence {/,} such that
{[zli, } , {[2]-1, } converge to z, c?-quasi everywhere in Q.

Next we recall the approximation used in several articles [8, 12, 11], first introduced in [17].

Definition 2.6 Let k > 0, and y € L>*(Q) and Y € X such that ||y||p~) < k and ||Y||p~q) < k. For
any v € N, a Landes-time approximation (Y), of the function Y is defined as follows:

t
), (z,t) = u/o Y (x,8)e’Cds + ez, (2), V(z,t) € Q.

where {z,} is a sequence of functions in W *(2) N L>®(Q), such that 20|z (@) < K, {2} converges toy

a.e. in , and 1/_1||zy||€vl,pm) converges to 0.
0

Therefore, we can verify that ((Y),): € X, (Y), € X NL>®(Q), ||{Y)|lcw.0 < k and {(Y),} converges
to Y strongly in X and a.e. in Q. Moreover, (Y), satisfies the equation ((Y),): = v (Y — (Y),) in the sense
of distributions in @, and (Y, (0) = 2, in . In this paper, we only use the Landes-time approximation
of the function Y = T}, (U), where y = Tj(ug).

2.3 First properties

In the sequel we use the following notations: for any function J € W1*°(R), nondecreasing with J(0) = 0,
we set

T(r) = /O J(Fydr, ) = /0 J'(r)rdr. (2.11)
It is easy to verify that J(r) > 0
Jr)+Jr)=J(r)r, and J(r)—JT(s) > s(J(r)—J(s)) vr,s € R. (2.12)



In particular we define, for any k > 0, and any r € R,

s T
Ti(r) = / Ty (7)dT, Ti(r) = / Ty (T)rdr, (2.13)
0 0
and we use several times a truncature used in [14]:
2m — |s|
Hin(r) = X(—m,m) (1) + == Xm<[s|<2m (" H (2.14)

The next Lemma allows to extend the range of the test functions in (2.2).

Lemma 2.7 Let u be a R-solution of problem (1.1). Let J € W*(R) be nondecreasing with J(0) = 0, and
J defined by (2.11). Then,

/S’ Az, t,Vu). /S” Az, t, Vu).VUET(S(U))
5() S(uo))S (uo)dz— /ft /S’ VET(S(U))dfo, (2.15)

for any S € W2’°°(R) such that S’ has compact support on R and S(0) = 0, and for any & € CH(Q) N
Whe(Q),€ = 0.

Proof. Let J be defined by (2.11). Let ¢ € CL([0,T)) with values in [0,1], such that ¢; < 0, and
© = CE,[J(S(U))]i. Clearly, ¢ € X N L>=(Q); we choose the pair of functions (p, S) as test function in (2.2).
From the convergence properties of Steklov time-averages, we easily will obtain (2.15) if we prove that

im (- [ celsis >~ [t
We can write — [, (¢§[/(S(U))],),S(U) = F + G, with

P [ QOUISUNS®), == [ SO IS0t +D - IS0 0).
Q
Using (2.12) and integrating by parts we have
G2~ [ 6 (ISt +D)-T(SO)@t) = - [ o (7SO
Q Q

- / (CET (SO, + / CO)EO)T(SW))],(0)dz > / (TSN,
Q Q Q

since J(S(U)) > 0. Hence,
- [ el s©) = [ TS+ F = [ (€@ (TS, - IS SW)).
Q Q Q

Otherwise, J(S(U)) and J(S(U)) € C([0,T] s L1(92)), thus {(¢€); ([T (S(w))]; — [J(S(u))],;S(u))} converges
to —(¢€)¢J(S(u)) in LY(Q) as | — 0. Therefore,

([ el @)l), S0 = 1 (- [ o 75w0)) = - [ &7

7




which achieves the proof. [

Next we give estimates of the function and its gradient, following the first ones of [11], inspired by the
estimates of the elliptic case of [4]. In particular we extend and make more precise the a priori estimates of
[22, Proposition 4] given for solutions with smooth data; see also [15, 18].

Proposition 2.8 If u is a R-solution of problem (1.1), then there exists C1 = Cy(p, A1, A2) such that, for
any k>1 and ¢ >0,

|Vul|P+ / |VU|P < C1kM, (2.16)
<|U|<e+k 1<|U|<l+k
U Lo (0,521 02y < CL(M + |€2]), (2.17)

where M = |[uglly o + [ (Q)+ | Flly.q + l9l% o + 115 + [lal[Z ¢
As a consequence, for any k > 1,

meas {|U| > k} < CoMik™Pe, meas {|VU| > k} < CoMak™™, (2.18)
meas {|u| > k} < CoMok™Pe, meas {|Vu| > k} < CaMak™™e, (2.19)
where Co = Co(N,p, A1, As), and My = (M+|Q|)%M and My = M, + M.
Proof. Set for any r € R, and m, k, £ > 0,
Ty ¢(r) = max{min{r — ¢, k}, 0} + min{max{r + ¢, -k}, 0}.

For m > k + {, we can choose (J,5,§) = (T, Hm,€) as test functions in (2.15), where H,, is defined at
(2.14) and ¢ € C'([0,77]) with values in [0, 1], independent on z. Since Tk ¢(Hy (1)) = Ty o(r) for all r € R,
we obtain

— Jo £(0) Tk e (o) Hip (uo)da — [y & T e (Him(U))
+ i EA(z,t,Vu).VU — £ J EA(z, 1, Vu).VU < [ Hyn(U)ETy,o(U)dfio.

{e<|U|<t+k} {m<|U|<2m}

k
/ Hop (U)ET o (U)dfio = / HAOTAO)f+ [ evug-t [ evug
{¢<|U|<l+k} {m<|U|<2m}

Let m — oo; then, for any k > 1, since U € L'(Q) and from (2.3), (2.4), and (2.10), we find

- [emoyr [ cAwevovu s [ eTUg 4 (ol ot el @ 1] o). (220)
@ {£<|U| <4k} {e<|U|<t+k}

Next, we take £ = 1. We verify that
A / ’
A(z,t,Vu).VU — VU.g zjuwp +|VUPP) = e1(|gl” + |VAIP + |al?)

for some ¢; = ¢1(p, A1, A2) > 0. Hence (2.16) follows. Thus, from (2.20) and the Holder inequality, we get,
for any ¢ € C1([0,T]) with values in [0, 1],

—/ &To(U) < cokM
Q



for some ¢ = ca(p, A1, Ag) > 0.Thus [, Ty, ¢(U)(t)dz < cokM, for a.e. t € (0,T). We deduce (2.17) by taking
k=1,0=0,since T o(r) = T1(r) > |r| — 1, for any r € R.

Next, from the Gagliardo-Nirenberg embedding Theorem, see [13, Proposition 3.1], we have

p(N+1)

/QTk(U)| Vo<e ||U||g®o(((0,T));L1(Q))/C\2|ka(U)|p,

where c3 = c3(N, p). Then, from (2.16) and (2.17), we get, for any k > 1,

p(N+1)

_ p(N+1) % _ p(N+1) P _
meas {|U] > kp < k5 [ (05 < @01 o T [ VRO < etk
Q Q

with ¢4 = ¢4(N,p, A1, A2). We obtain

1 [
meas {|VU| > k} < w meas ({|VU|P > s})ds
0

I

N N

Smeas{|U|>kN7+l}+ﬁ/ meas({\VU\p>s,|U|§k:N+1
0

})ds

1
< cegMik™™e + I / |VU|p < esMak™ ™,

N
|U|<kN+I

with ¢5 = ¢5(N, p, A1, As). Furthermore, for any & > 1,
meas {|h| > k} + meas {|Vh| > k} < csk™P |||,
where cg = cg(N,p). Therefore, we easily get (2.19). |

Remark 2.9 If u € LY(Q) and a =0 in (1.2), then (2.16) holds for all k > 0 and the term || in inequality
(2.17) can be removed, where M = ||up||1,0 + |1|(Q). Furthermore, (2.19) is stated as follows:

pt

meas {|u| > k} < CoM NP meas {|Vu| > k} < CQM%k_mC,Vk > 0. (2.21)

with Cy = Co(N,p, A1, As). To see last inequality, we do in the following way:

1 N

meas {|VU| > k} < meas {|U| > M~ kN

Lo "
}—i— / meas{|VU|p>S’|U|SMN+1kN+1}dS
kP Jo
N+42
< CyMNH e,

Proposition 2.10 Let {u,} C My(Q), and {uo,} C L*(Q), such that

sup |pn| (Q) < 00, and sup ||ugn|1,0 < oo.
n n
Let u,, be a R-solution of (1.1) with data fin, = pin,0 + tn,s and oy, relative to a decomposition (fu, gn, hn)

of im0, and U, = uy, — hy,. Assume that {f,} is bounded in L*(Q), {gn} bounded in (L? (Q))N and {h,}
bounded in X.

Then, up to a subsequence, {U,} converges a.e. to a function U € L>((0,T); L*(2)), such that T},(U) € X
for any k > 0and U € L((0,T); Wy (Q)) for any o € [1,m,). And



(i) {Un} converges to U strongly in L?(Q) for any o € [1,mc), and sup |Un |l 1o (0, 7)1 () < 0

(i) SUpP}~o SUD,, 71 Jo IVTe(Up)|P < o0,
(i11) {Tx(Up)} converges to Ty, (U) weakly in X, for any k > 0,
(iv) {A (2, t,V (Ti(Uy,) + hn))} converges to some Fy weakly in (L (Q))N.

Proof. Take S € W2°°(R) such that S’ has compact support on R and S(0) = 0. We combine (2.6) with
(2.16), and deduce that {S(U,);} is bounded in X’ + L'(Q) and {S(U,)} bounded in X. Hence, {S(U,)}
is relatively compact in L'(Q). On the other hand, we choose S = S, such that Si(z) = 2, if |z| < k and
S(z) = 2k signz, if |z| > 2k. From (2.17), we obtain

meas {|U,, — Up,| > 0} < meas{|U,| > k} + meas {|Uy,,| > k} + meas {|Sk(U,) — Sx(Un)| > o}
< % + meas {|Sx(Uy,) — Sk (Un)| > o},
where ¢ does not depend of n, m. Thus, up to a subsequence {u,} is a Cauchy sequence in measure, and
converges a.e. in () to a function u. Thus, {T% (U, )} converges to T} (U) weakly in X, since sup,, [|T%(U,)|| x <

oo for any k > 0. And {|V (T (Uy) + hy) [P72V (T (Uy) + hy) } converges to some Fj, weakly in (LY (Q)N.
Furthermore, from (2.18), {U,} strongly converges to U in L?(Q), for any o < p.. |

3 The convergence theorem

We first recall some properties of the measures, see [22, Lemma 5], [14].

Proposition 3.1 Let pus = puf — pu; € My(Q), where ut and pg are concentrated, respectively, on two
disjoint sets ET and E~ of zero cg-capacity. Then, for any § > 0, there exist two compact sets K; C Bt

and K5 C E~ such that

pHEN\KS) <6, pg (B7\K;) <6,
and there exist ¥, 5 € CHQ) with values in [0,1], such that ¥y, 5 = 1 respectively on K, K5, and
supp(y) N supp(vy ) = 0, and

loFllx + @ )ellxrri@ <6 105 lIx + 15 )ellxrv21 @) <0
There exist decompositions (3 ) = (v ) (o ) and (Y5 )e = (V5 ) (wg)f in X' + LY(Q), such that
) (5 _ 5 _ 1)
@il <5 @il <5 lel,<s el <5 6o

Both {1/1;'} and {7,/15_} converge to 0, weak-* in L>=(Q), and strongly in L*(Q) and up to subsequences, a.e.
in Q, as § tends to 0.
Moreover if p, and n, are as in Theorem 1.1, we have, for any §,d1,2 > 0,

Sdpy, Tdn, = ,0), sdut <6, Ydu; <6, .
/Q¢50+/Q¢577 W(n) /Q¢5M< /Qw(s/l< (32)
/(1—1/);1@/1;2)61/)71:&0(”751,52)7 /(1—¢;¢£)duj§51+52» (3.3)
Q Q
/(l—wiwé)dnn:w(nﬁhég), /(1—w(;1wgz)dus_§§1+62. (3.4)
Q Q
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Hereafter, if n,e, ..., are real numbers, and a function ¢ depends on n,¢,...,v and eventual other pa-
rameters a, §3,..,7, and n — ng,e — &o,.., v — 1y, we write ¢ = w(n,e,..,v), then this means that, for
fixed «, 3, ..,7, there holds lim,_,,,..lim. . lim,_,, |#| = 0. In the same way, ¢ < w(n,¢,d,...,) means
lim, . Jime e, limy, ¢ < 0, and ¢ > w(n, e, ..,v) means —¢ < w(n, e, ..,v).

Remark 3.2 In the sequel we recall a convergence property still used in [14]: If {b1,} is a sequence in
LY(Q) converging to by weakly in L'(Q) and {bsn} a bounded sequence in L>(Q) converging to by, a.e. in
Q, then hmn_>OO fQ bl,an,n = fQ blbg.

Next we prove Thorem 1.1.

Scheme of the proof. Let {u,},{uon} and {u,} satisfy the assumptions of Theorem 1.1. Then
we can apply Proposition 2.10. Setting U,, = u, — hy, up to subsequences, {u,} converges a.c. in Q
to some function u, and {U,} converges a.e. to U = u — h, such that T (U) € X for any k > 0, and
U e L7((0,T); Wy (Q)) N L>=((0,T); L (Q)) for every o € [1,m.). And {U,} satisfies the conclusions (i) to
(iv) of Proposition 2.10. We have

i = (fr — div gn + (hn)e) + (p}z —div p?z) - (77711 —div 77721) + Pns — Nn,s
= tn,0 + (s = Mnys) T = (s = 1) ™

where
Hn,0 = )\n,O +pn,0 — 1,0, with )\n,O = fn —div 9n + (hn)ta Pn,0 = p711 —div Piv n,0 = 7771L —div TIVZL (35)

Hence
Pn,05 TIn,0 S MZ_(Q) N MO(Q)a and Pn 2 Pn,0, Tin 2 Tn,0- (36)

Let BT, E~ be the sets where, respectively, uF and p; are concentrated. For any &1, d2 > 0, let wg'l , w('s'; and
s, ¥s, as in Proposition 3.1 and set

®5,.5, = V3 Vf 4+ U5 05

Suppose that we can prove the two estimates, near E

Il = / (1)61,52A(x7t5 vun)'v (Un_<Tk(U)>V) S W(TL?V’ 61752)7 (37)
{lUn|<k}
and far from E,
Is = / (1= ®s,.5,) Az, t, Vuy,). VU, —(T(U))y) < w(n,v,o1,02). (3.8)
{1Un|<k}

Then it follows that

Ty, / A, t, Vin).V (Un—(Th(U)),) < 0, (3.9)
[0.<k)
which implies
Ty oo / A1, V).V (U — TH(U)) <0, (3.10)
{021<k)
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since {(T%(U)),} converges to T(U) in X. On the other hand, from the weak convergence of {T}(U,)} to
T, (U) in X, we verify that

Ay, V(TW(U) + ha).¥ (Te(Un) — To(U)) = w(n).
{lUn|<E}
Thus we get
(A(z,t, Vuy) — A(z, 6, V(T (U) + hy))) .V (un, — (Tk(U) + hy)) = w(n).
{1Un|<k}
Then, it is easy to show that, up to a subsequence,
{Vu,} converges to Vu, a.e. in Q. (3.11)
Therefore, {A(x,t, Vuy,)} converges to A(x,t, Vu) weakly in (L (Q))N ; and from (3.10) we find

En_,oo/ A(a:,t,Vun).VTk(Un)S/A(x,t,Vu)VTk(U).
Q Q

Otherwise, {A(z,t, V (Ti(Up) + hy))} converges weakly in (L?' (Q))Nto some Fy, from Proposition 2.10, and
we obtain that Fy, = A(x,t,V (T, (U) + h)). Hence

m,,%o/ A, t, V(Tu(Un) + b))V (T (Un) + h)
Q
< Ty / Az, £, V) VTo(Un) + Tt / A, £,V (To(Uy) + o))V
Q Q
g/ A, t, V(Tu(U) + ). V(Tu(U) + h).
Q

As a consequence
{Tx(U,)} converges to T, (U), strongly in X, VEk > 0. (3.12)

Then to finish the proof we have to check that u is a solution of (1.1). [

In order to prove (3.7) we need a first Lemma, inspired of [14, Lemma 6.1]. It extends the results of [22,
Lemma 6 and Lemma 7] relative to sequences of solutions with smooth data:

Lemma 3.3 Let ¢y 5,925 € CY(Q) be uniformly bounded in W'>°(Q) with values in [0,1], and such that
fQ P1,5dpy; <6 and fQ 1/}275duj < 6. Let {u,} satisfying the assumptions of Theorem 1.1, and Uy, = uy, — hy,.
Then

1 1
- |V, P25 = w(n,m, ), . VU, P25 = w(n,m,d), (3.13)
{m<U,<2m} {m<U,<2m}
1 1
o / Vs = wlmm,5), / VU5 = w(n,m, o), (3.14)
—2m<U,<—-m —2m<U,<—-m
and for any k > 0,
|V, |P1ha s = w(n,m, ), / |VUn|p1/J275 =w(n,m,?d), (3.15)
{m<U, <m+k} {m<U, <m+k}
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|Vu, P16 = w(n,m,d), / VU, | 1 5 = w(n,m,?). (3.16)

{—-m—k<U,<-m} {—-m—k<U,<-m}
Proof. (i) Proof of (3.13), (3.14). Set for any r € R and any m,¢ > 1

4dm +2h — T
2m +/

"f—m+T
Sm)e(’l“> = / ( X[m,2m] (T) + X (2m,2m+-{) (T) +
0

— X (2m+€,4m+2h) (T>> dr,

(-m+
Sm(T'):/O ( m TX[m,Qm] (T) +X(2m,oo)(7-)> dr.

m

Note that S, /= X[m,2m] /M~ X2m+e.2(2m+0)]/ (2m+€). We choose (£, J, S) = (2,5, T1, Sm,¢) as test functions
in (2.15) for Un, and observe that, from (3.5),

m = Un,0 — (hn)t = )\n,O + Pn,0 — Tn,0 = fn —div In + Pn,0 — Tn,0- (317)

Thus we can write ZZ 14 < ZZ +A;, where
[ 2O S0, S slto ), Az == [ (120) T5(Son(U)
Q Q

Aa:/ St (Un)T1 (S e (Un)) A, 1, Vin) Viba s, A4=/( st (Un)) 02 5T (S, o (Un) Al t, Vit )V Uy,
Q Q

1
As - E / ¢2,5T1(Sm,l(Un))A(xat’ vun)VU"’
{m<U, <2m}
Ag = — ! Yo s Az, t, Vu,)VU,
6 = 2+ ¢ 2,0 s Uy n n

{2m+L<U, <2(2m+£)}

Ar = /sme TSt (U os fur As = /sz T4 (S (Un) ) g Vs,
1

Ay = / (St e (U) T4 (St (Ua)o2.590- VU, Aro = — / Ty (S e(Un))th2,59n-VUn,
Q
m<U,<2m

1

Ay =——— / Y2.59n-VUy, Aig = / St (Un)T1 (St (Un) )2,5d (Pr,o — Mn0) -

{2m+4<U, <2(2m~+20)}

Since ||Sm e(uon)lli,0 < [ wondz, we find Ay = w(¢,n,m). Otherwise
{mSUO,n}

-1
Al < Waslwimgy [ Un A < Wil [ (ol + AalVun™).
{(m<U.} {(m<U,}

which imply As = w(¢,n,m) and Az = w(¢,n,m). Using (2.3) for u,,, we have

- / Uo5d(pns — )" +w(0) = w(t,n,m, 5).
Q

13



Hence Ag = w(f,n,m,d), since (pn,s —177173)+ converges to put as m — oo in the narrow topology, and
Jo ¥2,6dus < 6. We also obtain Ayy = w({) from (2.10).

Now {s;,e(Un)Tl(sm,z(Un))}f converges to S, (U )T1 (S (Un)), {85, (Un)T1 (S (Un))},, converges to S, (U)

T1(Sm(U)), {85, (U)T1(Sm(U))},, converges to 0, weak-* in L>°(Q) and { f,, } converges to f weakly in L'(Q),
{gn} converges to g strongly in (L? (Q))". From Remark 3.2, we obtain

Ar = [ S, U (SnUa)b2sta 60 = [ SOT(Sn0))basf +wltim) =w(ton,m),
Q Q
Ag = / S, (Un)T1 (S (Un))gn-Vipa,s + w(l) = / S, (U1 (S (U)gVpe s + w(l,n) = w(l,n,m).
Q Q
Otherwise, Ajg < fQ Vs 5dpy,, and {fQ w275dpn} converges to fQ Vo sdut, thus Ayp < w(l,n,m,d).
Using Holder inequality and the condition (1.2), we have
90 VUn = A(@,t, Vi) VU, < 1 (gnl” + [Vhal? + o)

with ¢; = ¢1(p, A1, Ag), which implies
A= As < ex [ (S U TS U)o (Il + 1l + o) = otm,m)

Similarly we also show that Ajg — A5/2 < w(¢,n, m). Combining the estimates, we get A5/2 < w(f,n,m,J).
Using Holder inequality we have

.A. ’
Az, 1, Vun) VU, 2 2V l? = ea(|al?’ + [Vha|).

with ¢o = ¢a(p, A1, Ag), which implies

1
m / IV "2 sT1 (Sm e (Un)) = w(l,n,m, ).

{m<U,<2m}

Note that for all m > 4, S, ¢(r) > 1 for any r € [3m, 2m]; hence T} (S, (1)) = 1. So,

/ |Vun|pw275 =w(l,n,m,0).

{$m<U,<2m}

1
m
Since |VU,|" < 2P=YVu, |’ + 2P~ Vh,|", there also holds

/ VU, P25 = w(l,n,m, ).

{§m<vU,<2m}

1
m

We deduce (3.13) by summing on each set {(5)'m < U, < (3)"'m} for i = 0,1, 2. Similarly, we can choose
&, 8) = (Y16, 11, Sm,[) as test functions in (2.15) for u,,, where §m7g(7") = S ¢(—r), and we obtain (3.14).

(ii) Proof of (3.15), (3.16). We set, for any k,m,£ > 1,

(k+L+m)—T
k+m+/¢

r 2
Skm,e(r) = / (Tk(T — T (7)) Xmhtmq) + K X(k+m+€,2(k+m+£)]> dr
0
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Sk)m(T) :/ Tk(T—Tm(T))X[mpo)dT.
0

We choose (§,v,5) = (¥2,5,T1, Sk,m,¢) as test functions in (2.15) for u,. In the same way we also obtain

|vun|p¢2,5TI(Sk,m,é(Un)) = w(f, n,m, 5)

{mSUn <m+k)}

Note that T4 (Sk,m.e(r)) = 1 for any r > m + 1, thus J |V, [P1h9,s = w(n,m,d), which implies
{m+1<U,, <m+k}
(3.15) by changing m into m — 1. Similarly, we obtain (3.16). ]

Next we look at the behaviour near E.
Lemma 3.4 FEstimate (3.7) holds.
Proof. There holds
I = / @51’5214(1',15, Vun).VTk(Un)— / @51752/1(:5,15,Vun).V<Tk(U)>V.
@ {IUn|<k}

From Proposition 2.10, (iv), {A(x,t,V (Tx(Uy) + hy)).V{(Tx(U)), } converges weakly in L*(Q) to F, V(T (U)),.
And {X{lUnlgk}} converges to x|y|<k, a-€. in Q , and ®s, 5, converges to 0 a.e. in Q as 6; — 0, and Py, 5,
takes its values in [0,1]. From Remark 3.2, we have

@5, 5, A, t, Vuy,) V(T (U)), = / X{|Ua 1<k} @616, A, 8, V (T (Un) + ). V(Ti(U))
{IUn|<k} ?
— [ w1k 5 BV TUD), +() = w1 52)
Q
Therefore, if we prove that

/ D5, 5, A(x, t, Vuy,).VIp(Uy) < w(n,dy,ds), (3.18)
Q

then we deduce (3.7). As noticed in [14, 22], it is precisely for this estimate that we need the double cut
1/);1 1/1;2. To do this, we set, for any m > k > 0, and any r € R,

Skm(r) = / (k = Tx(7)) Hm(7)dr,
0
where H,, is defined at (2.14). Hence supp S,m C [~2m, k] ; and S’,’;m: ~X[—k,k] T %X[_Q,ﬂh_m]. We choose
(p,8) = (%%,Skm) as test functions in (2.2). From (3.17), we can write
Ay +As — Az + Ay + As + A6 =0,
where
A= —/Q(w(;wg)ték,m(Un), A, = /Q (k = Te(Un))Hum (Un) A, t, Vg ).V (4] 07 ),

2k
ASZ/ VR UG A@,t, Vun) VT(Un), A, = — / U5 s, Al t, V). VU,
@ {-2m<U,<-m}

As =~ / (k = Tk (Un) Hon (U0, 00 Mo, Ag = / (k = T (Un)) Hin (Un )05, 5, (1.0 = p.0) -
Q Q
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We first estimate As. As in [22, p.585], since {Skﬁm(Un)} converges to Sy, (U) weakly in X, and
S’km(U) € L™(Q), using (3.1), we find

A= —/(%)M;Sk,m(m—/ VE (03), Sk (U) + w(n) = w(n, 8y).
Q Q

Next consider As. Notice that U,, =T5,,(U,) on supp (H,,(Uy)). From Proposition 2.10, (iv), the se-
quence {A(z,t,V (Tom (Up) + hn)). V(45,93 ) } converges to Fy,, . V(9§ ¢ ) weakly in L'(Q). From Remark
3.2 and the convergence of 1/); 77213'2 in X to 0 as §; tends to 0, we find

Ay = / (k- Tk(U))Hm(U)Fgm.V(w;l?/ng) +w(n) =w(n,d).
Q
Then consider A4. Then for some ¢; = ¢1(p, Az),
2k p P P\ ot ot
Ad € (IVunl? + VU + 0l ) 63, 07
{—2m<U,<—-m}

Since w;l takes its values in [0,1], from Lemma 3.3, we get in particular Ay = w(n,d1, m, d2).

Now we estimate As. The sequence {(k — Tk(Un))Hm(Un)@bg’1 1/);; } converges to (k:ka(U))Hm(U)@/J;'1 1/);;,
weakly in X, and {(k — T (Uy))Hpm(Uyn)} converges to (k — Ty (U))H,,(U), weak-* in L*°(Q) and a.e. in Q.
Otherwise {f,} converges to f weakly in L' (Q) and {g,} converges to g strongly in (L* (Q))". From
Remark 3.2 and the convergence of w;'l w;; to 0 in X and a.e. in @ as §; — 0, we deduce that

Ay = - /Q (k = Te(Un)) Hun(U)Y5, 45,0 + w(n) = w(n, &),

where 7y = f — divg.
Finally Ag < 2k fQ 1/)}11/13'2d77n; using (3.2) we also find Ag < w(n,d1,m,d2). By addition, since A3 does
not depend on m, we obtain

Ay :/ BEE At V)V (Un) < w(n, 61,6).
Q

Arguying as before with (¢35 ¥5,, Si.m) as test function in (2.2), where Sy, (r) = —Sk.m(—7), we get in the
same way

/ U5 b A, Vi )V Tk(Un) < w(n, 61, 6).
Q

Then, (3.18) holds. |

Next we look at the behaviour far from E.
Lemma 3.5 . Estimate (3.8) holds.

Proof. Here we estimate I>; we can write

I = / (1= Bs, 5,) A, £, V)V (Th(Un)—(Th(T))s) -

{lUn|<k}
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Following the ideas of [25], used also in [22], we define, for any r € R and £ > 2k > 0,
Rn,u,f = T£+k: (Un_<Tk(U)>u) - Tffk (Un - Tk: (Un)) .
Recall that [[(T%(U)). || < k, and observe that

00,Q —
Ryve =2ksign(U,) in {|U,| > €+2k}, |Ruve <4k, Rp,e=w(n,vf) ae. in Q, (3.19)
lim Ry, 0= Tok U = (Tx(U)),) = To—r (U =Ty (U)), a.e. in @, and weakly in X. (3.20)

Next consider &1 ,, € C([0,T)), 2.0, € C°((0,T]) with values in [0, 1], such that (&1.,,): < 0 and (€2, )1
> 0; and {&1.0, ()} (resp. {&1.n,(t)}) converges to 1,for any ¢ € [0,T) (resp. ¢t € (0,7] ); and moreover,

for any a € C([0,7T]; L' (1)), {fQ a(ﬁl,m)t} and [, a(&2,n,), converge respectively to — [, a(.,T)dz and
Jo al.,0)dz. We set
= Onnr,nadiat = §1,n1 (1= Poy6) [ Lok (Un—(Ti(U))0)]), — 2,00 (1 = Poy,65) [Lo—i (Un — Ti(Un))]_y, -
We observe that
0 —(1—®5, 5,)Rne=w(li,l2,n1,m2) innormin X and a.e. in Q. (3.21)

We can choose (¢,S) = (Pn.ny no.ly.00.0s Hm) as test functions in (2.7) for u,, where H,, is defined at (2.14),
with m > ¢ + 2k. We obtain
Ap+ Ay + Az + Ay + As = Ag + Az,

with
tr = [ AN, da == [ GO0, Ay == [ ()

A= [ Ho(U) A, t, V). Ve, A5:/ SH! (Un) A(2,t, Vi ).V U,
Q Q

As = [ HoU)pdrg,  Ar = / Hon(Un)od (P — o) -
Q Q

Estimate of A4. This term allows to study I». Indeed, {H,,(U,)} converges to 1, a.e. in Q; From (3.21),
(3.19) (3.20), we have

Ay :/ (1 —®5, 5,) Az, 8, Vur). VRy s 7/ Ry Az, t, V). Vs, 5,+w(l,l2,n1, n2, m)
Q Q
:/ (1 —®s,.5,) Az, t, Vuy). VR, po+w(ln,l2, 1, no,m,n, v, f)
Q

=15+ / (1— ®s,.5,)A(z, t, V). VR, 1, o+w(le, la, n1, n2,m,n, v, £)
{lUn|>k}
= I? + Bl + B2 +w(l1712an1an2am7na V7€)a

where

By = / (1 - ®57U)(X|Un7(Tk(U)>V|§E+k - XHUnIfk\géfk)A(xat7vun)~VUna
{lUn|>k}

By— - / (1= ®5,0.)X[0r,ru(0y, | <tk ALE s Vi) T(T(D)),
{|Un|>k}
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Now {A(2,t,V (To42k(Un) + hn)).V(T(U)),} converges to FryopV(T}(U)),, weakly in L*(Q). Otherwise

{X\Un\>kX Un—(TW(U)), | <etk | COBVETBES to X|UI>kX|U— (T3, (U)), | <ok B-C in Q. And {{T(U)),} converges to
T, (U) strongly in X. From Remark 3.2 we get

By = /Q (1= ®51.5.) Xvi>k X|v— (1)), |<ern Feron-VITEU)), +w(n)
= —/ (1= ®5,.5,) Xju|>k Xju—13 ()| <4k F 012k VTR (U) + w(n,v) = w(n,v),
Q
since VI (U) X|u|>k = 0. Besides, we see that, for some c¢; = c1(p, Az),
Bla [ Q- 0us)(Tul + VUL + o),
[0—2k<|U, | <t+2k}
Using (3.3) and (3.4) and applying (3.15) and (3.16) to 1 — ®4, 5,, we obtain, for k£ > 0,
(|Vun|” + |[VUL")(1 = s, 5,) = w(n,m, b1, da). (3.22)
{m<|U, |[<m+4k}
Thus, By = w(n,v,{,01,92), hence By + By = w(n, v, ¥, d1,02). Then
Ay = I +w(ly, Iz, n1,m2,m,n, v, 4,51, 02). (3.23)

Estimate of As. For m > ¢+ 2k, since |¢| < 2¢, and (3.21) holds, we get, from the dominated convergence
Theorem,

A5 = / (1 — @51’52)RR,V’EH;1(U71)A(ZL'7t, Vun)VUn + W(ll, lQ,TLl,TLQ)
Q

2k
- / (1= @5, 5,) Az, 8, Vu,) VU Fw(ly, l2,n1,n2);

{m<|Un|<2m}
here, the final equality followed from the relation, since m > ¢ 4 2k,

2k .
Ry.0H,,(U,) = — o Xm<|Uy|<2m, @€ D Q. (3.24)

Next we go to the limit in m, by using (2.3), (2.4) for u,, with ¢ = (1 — ®;4, 5,). There holds
A5 = _2k/ (1 - (1)61,62)d ((pn,s - 'r]n,s)Jr + (pn,s - nn,s)i) ‘Hd(lla l27n17n27m)-
Q

Then, from (3.3) and (3.4), we get A5 = w(ly,l2,n1,n2, m,n,v,£,51,02).
Estimate of Ag. Again, from (3.21),

%LHmwwm+A%VWM%M

- / Hm(Un)(l - (I)El,ﬁg)Rn,V,ffn + / gnv(Hm(Un)(l - ¢61,52)Rn,u,€)+w(117l27n17n2)~
Q Q
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Thus we can write Ag = Dy + Do + D3 + Dy + w(ly,l2,n1, n2), where
Dl - Hm(Un)(l - (D(Sl,ég)Rn,l/,ffna D2 = / (1 - (I)él,ﬁg)Rn,l/,ZH:n(Un)gn~VUnv
Q

Q
DS - Hm(Un)(l - ¢)517§2)g7l'an71/,27 D4 = _/ Hm(Un)Rn,V,Zgn-vq>51752-
Q Q

Since {f,} converges to f weakly in L!(Q), and (3.19)-(3.20) hold, we get, from Remark 3.2,
Dy = / (1= ®5,,8,) (T (U—({Tk(U)),) = To—ip (U = T (U))) fHw(m,n) = w(m, n,v,{).
Q

We deduce from (2.10) that Do = w(m). Next consider D3. Note that H,,(U,) =1+ w(m), and (3.20)
holds, and {g,,} converges to g strongly in (L? (Q))", and (T} (U)), converges to T)(U) strongly in X. Then
we obtain successively that

Da= [ (1 85,5009 (T (0 = (0),) = Tk (U = T 0) 4l )

= /Q (1= 25,.6,)9-V (Toskx (U =T (U)) = Tp— (U = T, (U))) +w(m,n,v)
= w(m,n,v,?).

Similarly we also get Dy = w(m,n,v,£). Thus Ag = w(ly,la,n1,ne, m,n,v,£,01,d2).

Estimate of A;. We have
|A7| - ‘/ Slm(Un) (]- - (I)51,62) Rn,u,ld (pn,O - 7777,,0) + w(11»l27n17n2)
Q
< 4k/ (1= ®5,.5,) d(pn +nn) +w(l1,l2,n1,n2).
Q

From (3.3) and (3.4) we get A7 = w(ly,l2,n1,n9,m,n,v, ¢, d1,02).
Estimate of A; + Ay + A3. We set

J(T‘) =T (T*Tk- (T)) R Vr € R,

and use the notations J andJ of (2.11). From the definitions of &1 ,,,,&1,n,, We can see that

A+ Ay = —/ J(Un(T))Him(Un(T))dx — / Tg+k(UQ’n — z,,)Him(u()’n)dx + w(ll,lg,nl,ng)
Q Q
J

= —/ (Un(D)Up(T)dx — / Toti(uo n — 2v)uondx + w(ly, la, n1,n2, M), (3.25)
Q Q
where z, = (T (U)),(0). We can write As = F} + Fy, where
Fu= = [ (6000 = @0, 0) Tk U = TO,L), B,

Fy = /Q (€na (1= ®5,.5,)[Te—ic (Un = T (Un)))] ) Hon (Un)-
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Estimate of F,. We write F5 = G1 + G2 + G3, with

—~
S
~—

G =- / (®5,,62) 62 (Lo (Un = T (Un))] .y, Hn
Q

=
=

G, = / (1= @5,.5)Ena)s [Tt (Un — T (U], Tl
Gs = / €ny (1= @5,.6,) ((To—k (U = Ti (Un))] ), Hin (Un).-

We find easily that
G = —/ (®5,.52),7 (Un)Un+0(11, I, 1, m2, ),
Q

Go — /Q (1= ®5,.5,)(Ena)yd (U o (Un) 4ol 1) = /Q T(tonYtomda-+a(ly L, n1, ngsm).

Next consider G3. Setting b = H,,(U,,), there holds from (2.13) and (2.12),

Hence

(Tt (U = T U)]_,), Ha(Un) = ([T En(U))] ) = (T W),

t

since J is constant in {|r| > m + ¢ + 2k} . Integrating by parts in G3, we find

G3 / 52 ’I’L2 (bél (52 (U )]712) = _/ <£2 ’I’L2( (bél (52 / €2 n2
_/ (62%2) ( - (1)51 52 / 52 na (1)51 52 / 52 n2 dz+w(l15l2)
[ Tt dx+/ (@516 T )+ [ TOAT)drslls b ).

Therefore, since J(U,,) — J(Up)Up = —J(Uy,,) and J(ug ) =J (1o n)tuon—JT (Uo.n), we obtain

B> / T(uon)de — / (5,62, / T(Un(T))da-+(ls, Ia, n1, mzy m).
Q

_,(T)dx

(3.26)

Estimate of F}. Since m > ¢ + 2k, there holds Ty (Un—(T(U)),) = Toqr (Hm(Un)—(Tk(Him(U))),) on

suppH,,(U,). Hence we can write F} = Lj + Lo, with

L= —/Q (517,”(1 - ‘1)61,62)[Té+k (?m(Un)_<Tk(Hvrz(U))>y)]ll) (E(U")_<Tk(H”L(U>>V)

Ly = —/Q (51,n1(1 — ®5,.5,) [Tok (Him(Un)—<Tk(H7m(U))>y)]h> (Tr(Hm(U))),,.
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Integrating by parts we have, by definition of the Landes-time approximation,

Ly= /Q 1 (1= B, 6) [Tose (Hon(U) —~(Te(E(0),)],. (D@ (0)),),

2u) Zpdrtw(ly, la,ny,n2).

Il
N
S~

_

|

&
>
S
=
+

ol

-
=
S
g\j 3
=
S
=
Q
+

:>\

=
+
ol
=
O
3

(3.27)
We decompose L; into Ly = K1 + Ko + K3, where

Ky = / E1,m (sy,50); [Tosk (Him(Un)%Tk(Him(U))h)Ll (Hun (Un)—(T(H, (U))),)

/ E1my (1= Psy.5,) Te+k (Him(Un)%Tk(Him(U)»y)]h)t (Hom(Un)~(Tu(Hn(U)),) -
Then we check easily that

Ky Z/QTuk (Un=(Tx(U)),) (T) (Un—(T(U)), ) (T)dz+w(l1, l2,n1, 12, m),

Ky = /Q (®51.8,); Tk (Un—(Ti(U)),,) (Un—(T(U)),) +w(l1, l2,n1, n2, m).

Next consider K3. Here we use the function 7, defined at (2.13). We set b = H,,,(U,,)— (T} (H(U))), . Hence
from (2.12),

(et )00 = S Ta @)t +1) = Trn®) 1)

S%(ﬁ+k(b)<(.,t+l1)) = Terk(0) (1) = ([Tewr (D)), -

Thus

Then

Q
- / (€100, (1 = ®s, ) [To (Un—(TH(D), / €1 (@550, [Tor (Un—(TH(U)),)],

/ €1 (0)[Tosr (Un—(Te(U)), )], (0)d
- / o (Un(T) — (To(U)), (T)) de — / (Bs,.5,), Tosk (Un—(Tk(U)),)
Q

/%—&-k U, — 2 dx—l—w(ll lo,nq, ’I’Lg)
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We find by addition, since Ty;x(r) — Toyk(r) = Tryx(r) for any r € R,
Loz [ T (o = 2)do | Tops (UT) = (B0)), (1)) da
Q Q
+ / (®s,,65), Lok (Un—(Ti(U)),) +w(l1, la, ny, na, m). (3.28)
Q
We deduce from (3.28), (3.27), (3.26),
Az > /Qj(uo,n)dx + /Q Torr (Wo,n — 20) dz + /Q Totr (uo.n — 2v) 2udx (3.29)
[ Toss W)= @@, ) de+ | JO0+ | (i), (T Uan TV, = T(0)
+ Z//Q (1 - (I)51,52)Té+7€ (Un_<T7€(U)>y) (Tk(U)_<Tk(U)>y) "H’J(ll’ l2,n1,n2, m)

Next we add (3.25) and (3.29). Note that J (U, (T)) — J(Up(T))Un(T) = —J(U,(T)), and also

T€+k: (uO,n - ZV) - TZJrk (Uo,n - Zl/) (ZV - U/O,n) = _TZJrk (uO,n - Zu) .

Then we find

A1+A2+A32/

; (J(uon) = Terr (w0 — 2)) dx + /Q (T (Un(T) = (Ti(V)),(T)) = J(Un(T))) dx

[ @)y (Teon Wa(@0),) = T(U)
Q
T /Q (1= B 5) Tosk Un—(Th(U)), ) (Te(U)~(TH(U)), ) +o(lr, Iz, 1, mz, m).
Notice that Tyyy (r—s) — J(r)>0 for any r, s € R such that |s| < k; thus
| T ) =E0)), (1) = TW(T) d > 0.

And {ug,,} converges to ug in L'(Q) and {U,} converges to U in L'(Q) from Proposition 2.10. Thus we
obtain

Ay + Ay + Az > [, (J(uo) — Toqr (uo — 2)) da + fQ (@s,,55), (Tor (U—(T(U)),) — J(U))

v Jo U= @s,,6.) Lo U—(Ti(U)),) (Ti(U) (T (V)),) +w(ly, Iz, n1, 2, m, n).

Moreover Tyiy (r—s) (Ti(r) — s)>0 for any r, s € R such that |s| < k, hence

(J(uo) = Toqr (uo — 2)) da +/ (®5,.5,); (Teqr (U—(T(U)),) — J(U))

A1—|—A2—|—A32/
Q

Q

+W(l1,l2,n1,n2,m,n)-
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As v — 00, {2, } converges to Tj(ug), a.e. in 2, thus we get

(J(uo) = T gk (uo — T (uo))) da + / (®5,,5,); (Terr (U —Te(U)) — J(U))

A1+A2+A32/
Q

Q
+ w(llv 127 n’l) n2) ma n? V)'

Finally [Ty, (r—=Ti(r)) — J(r)| < 2k|r|x (s> for any r € R, thus

Al + AQ + A3 > w(lthanlanQamvna l/7£)'

Combining all the estimates, we obtain Iy < w(ly,ls,n1,n2, m,n,v, £, 01,02), which implies (3.8), since I
does not depend on Iy, Iy, ny,no, m, £. [

Next we conclude the proof of Theorem 1.1:
Lemma 3.6 The function u is a R-solution of (1.1).

Proof. (i) First show that w satisfies (2.2). Here we proceed as in [22]. Let ¢ € X N L*°(Q) such
0y € X'+ LYQ), ¢(.,T) = 0, and S € W?>(R), such that S’ has compact support on R, S(0) = 0. Let
M > 0 such that suppS’ C [~M, M]. Taking successively (¢, S) and (95, S) as test functions in (2.2)
applied to u,, we can write

Ar+Ag+ Az + Ay = As + As + Ay, Ass++Azs+ +Ass+ =Ass+ + Ass,+ + Ar s+,

where

A= - /Q p(0)S (up,p)dw, Ay =— /Q peS(Un), Azss == /Q (P05 )45 (),

Ay = / S (U Al t, Vun) Vo, Asss — / S (U A, t, Vun). V()
Q Q

A4:/ S"(Un)pA(x,t, Vun).VU,, Asss =/ S"(Un)ppE A, t, Vg ). VU,,
Q Q
A5:/ S/(Un)‘pdmv AGZ/ S/(Un)wdpn,Oa A7:_/ S/(Un)‘ﬁdnn,Oa
Q Q Q
Asps = /Q S(U)ptEdn,  Agy, = /Q S/ (Un) ot dpng, Args=— /Q S/ (U)ot dino.

Since {ug , } converges to ug in L' (£2), and {S(U,)} converges to S(U), strongly in X and weak-* in L>(Q),
there holds, from (3.2),

A = —/Qcp(O)S(uo)dx+w(n), Ay = —/Q%S(U)w(n), Ay gpe = w(n,0).

Moreover Ty (Uy,) converges to Tas(U), then Ty (Uy,) + hy, converges to Ty (U) + h strongly in X, thus
Ay = [ SU)AE LY (T (O) + )T = [ S0)A 4.7 (T (©) + 1)V + ()
Q Q

= /Q S"(U)A(z,t, Vu). Vi + w(n);
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and
Ay :/ S"(Un) oA (@, t, Y (Tar (Un) + hn)).VTar (Un)
/S" Yo A(x, 6,V (T (U) + h)). VT (U) +w(n /S” YoA(x,t, Vu).VU + w(n).
In the same way, since wf;t converges to 0 in X,
Avse = [ $'0)A 1 Tu)V(e0) + () = w(n,5),
Q
Ay s :/ S"(U) b Az, t, Vu).VU + w(n) = w(n,d).
Q
And {g,} strongly converges to g in (L¥' ()Y, thus
As= [ SWeht [ W9 Tt [ 8000 Tu ()
Q Q Q
:/ S’(U)cpf+/ S'(U)g.V<p+/ S"(U)g.VTa(U) + w(n)
Q Q Q
:/ S (U)pdis + w(n).
Q

Now A s5+= fQ S’(U)(p@b(;id)\/n?) +w(n) =w(n,d). Then Ag s+ + A75+ = w(n,d). From (3.2) we verify that
Az5+ =w(n,d) and Ag 5 = w(n,d). Moreover, from (3.6) and (3.2), we find

A — Ags.il < /Q 1S/ (Un)pl (1 = 07 )dpnio < 1Sz iy 19l 1 ) /Q (1 = 45 dp, = w(n,5).

Similarly we also have |A7 — A75_| < w(n,d). Hence Ag = w(n) and A7 = w(n). Therefore, we finally
obtain (2.2):

/S)@(O)S(uo)dx/ngtS(U)Jr/QS’(U)A(x,t,Vu).Vg0+/QS”(U)cpA(m,t,Vu).VU/QS’(U)cpczﬁB. |
3.30

(ii) Next, we prove (2. ) and (2.4). We take ¢ € C°(Q) and take ((1 — 5 )p,Hy,) as test functions in
(3.30), with H,, as in (2.14). We can write D1, + D2 = D3, + Dam + Ds 1, where

= f(l—% ) Hm(U), fH Az, t, Vu).V (1= 5)9),

D3 m :gHm(U)(l — 5 )edfio,  Dam= [ (1—1g)pA(,t,Vu).VU, (3.31)

m<U<2m

Dsm=—m [ (1=¢5)pA(x,t, Vu)VU.
U
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Taking the same test functions in (2.2) applied to w,,, there holds D’fm +D3,, =Dy, +D},, +D5g,,, where

= f(l—% ¢) Hn(U ), Dy, = fH A(z,t, Vun ).V (1= 5 )¢)
Dgym fH 1 - 1/}5 )g&d( n,0 + Pn,0 — 77n,0)a Dz,m = % f (1 - wé_)@A(Ivta vun)VUn7
m<U<2m

—2m<U,<—-m
(3.32)
In (3.32), we go to the limit as m — co. Since {H,,(U,)} converges to U, and {H,,(U,)} converges to 1,
a.e. in Q, and {VH,,(U,)} converges to 0, weakly in (LP(Q))Y , we obtain the relation D} + D% = D%+ D",
where

Dy = - /Q (1= v5)9),U,, D= /Q A, t, Vun)V (1= 65)¢), DI = /Q (1 05 Jpdins
D" = / (1 - %_)@d(f?n,o - 77n,0)+/ (1 - ’(/)zi_)@d((pn,s - 77n,s)jL - (pn,s - nn,s)_)
Q Q

- / (1= 5 )ed(pn — 7).
Q

Clearly, D; ,, — D} = w(n, m) for i = 1, 2, 3. From Lemma (3.3) and (3.2)-(3.4), we obtain D5 ,,, = w(n,m,?),
and

e / s pA(z,t, Vu). VU = w(n,m,?),
m{m§U<2m}
thus,
Dy = % / pA(z,t,Vu).VU + w(n,m, ).
{m<U<2m}

Since ‘fQ (1 =95 )ednn| < ¢l fo (1 =5 )dnn, it follows that [, (1 — 5 )edn, = w(n,m,d) from (3.4).

And ‘fQ z/Jggodpn‘ < [l ze Jo ¥5 dpn, thus, from (3.2), [, (1 — 5 )edpn = [, edpd + w(n,m,d). Then
= fQ edut 4+ w(n,m,d). Therefore by subtraction, we get successively

1
P / cpA(ac,t,Vu).VU:/ oduf +w(n,m,d),
{m<U<2m} @
1
li_r)n — / goA(x,LVu).VU:/ wdu?, (3.33)
m—oo M Q

{m<U<2m}
which proves (2.3) when ¢ € C°(Q). Next assume only p € C>°(Q). Then
lim,,—s o0 % i PA(z,t,Vu).VU
{m<U<2m}

=limp oo = f o) Az, t, Vu)VU + limy oo = [ o(1 — ) A(z, t, Vu). VU
{m<U<2m} {m<U<2m}

= Joevidpd +limyee n [ 0(1 =7 A28, Vu).VU = [, pdp + D,
{m<U<2m}
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where

D= / (1—97) d,us+nhmi / (1 — Y Az, t, Vu).VU = w(9).

—o0 m
{m<U<2m}

Therefore, (3.33) still holds for ¢ € C°°(Q), and we deduce (2.3) by density, and similarly, (2.4). This
completes the proof of Theorem 1.1. [

4 Approximations of measures
Corollary 1.2 is a direct consequence of Theorem 1.1 and the following approximation property:

Proposition 4.1 Let pu = o + pus € M (Q) with o € M$(Q) and ps € MH(Q).
(i) Then, we can find a decomposition po = (f,g,h) with f € L*(Q),g € (L? (Q))N,h € X such that

Il + llglly g + [1Allx 4 1s(2) < 20(Q) (4.1)

(i1) Furthermore, there exists sequences of measures (ton = (fn, GnsPn)s thsn sSuch that fr, gn, hn € C°(Q)
strongly converge to f, g, h in L'(Q), (LP (Q))N and X respectively, and psn € (C°(Q))T converges to ps
and iy, 1= Hon + Wsn converges to p in the narrow topology, and satisfying |u,|(Q) < w(Q),

Ifallie + llgnlly g + [hnllx + ps,n(Q) < 2u(Q). (4.2)

Proof. (i) Step 1. Case where p has a compact support in Q. By [15], we can find a decomposition
wo = (f,g,h) with f,g,h have a compact support in Q. Let {p,} be sequence of mollifiers in RN+
Then fon = ¢n * o € CZ(Q) for n large enough. We see that £i9.,(Q) = po(Q) and o, admits the
decomposition o, = (fn,Gn, hn) = (On * fon * g,n * h). Since {fn},{gn},{hn} strongly converge to
frg.h in LQ), (LP (Q))Y and X respectively, we have for ng large enough,

1
Lf = froll@ + 119 = gnollpr @ + IR — hTLOHLP((O,T);WOl’p(Q)) < §MO(Q)~
Then we obtain a decomposition p = (f,§,h) = (ftng + f — frno> 9 — Gng» b — hny ), such that

@+ Ihllx +1s(Q) < (@) (13)

Step 2. General case. Let {6,} be a nonnegative, nondecreasing sequence in C2°(Q) which converges to 1,
a.e. in Q. Set fig = Oop, and fip, = (60, — 0p—1)p, for any n > 1. Since fin, = fio,n + fis,n € Mo(Q) N M (Q)
has compact support with fig,, € Mo(Q), fis.n € Ms(Q), by Step 1, we can find a decomposition fig, =
(fn,gn, n) such that

~ N ~ 5 3.
1falli@ + 1gnlly,q + [1nllx + fsn(2) < 5n(Q)-

Let ? Z fkv In = Z gkv Z hk and fis, = ZZ oﬁs k- Clearly, 0,0 = (?n??n? h )a Onpis = Hsn
k=0

and {f,}, {gn} {hy} and {fis.n} converge strongly to some f, g, h, and p respectively in L!(Q),(L* (Q))N
X and M} (Q), and

- _ - _ 3
1fnlli@ +11gnlly.@ + [1nllx + f5,n(Q) < SH(Q)-
Therefore, 1o = (f,g,h), and (4.1) holds.
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(i) We take a sequence {m,,} in N such that f,, = @, * f, Gn = ©m,. * Grs B = Oy, * Py P, * Jisn €
(CEO(Q))-i_a fQ Pm, * ﬂsmdmdt = ﬂs,n(Q) and

_ = 1
1.Q +l9n = Gullp @ + llhn = hnllx < —— u(Q).

1 =Tl s

Let Ho,n = Pm, * (anﬂo) = (fnvgny hn)7 Hsn = Pm, *,as,n and Un = Won + tsn- Therefore, {fn} y {gn} ; {hn}
strongly converge to f, g, hin L*(Q), (L? (Q))" and X respectively. And (4.2) holds. Furthermore, {151}, {fn}
converge to g, ¢ in the weak topology of measures, and s ,(Q) = IQ Ondps, pn(Q) = fQ 0, dp converges to
ws(Q), u(Q), thus {ps n}, {un} converges to us, p in the narrow topology and |u,|(Q) < u(Q). |
Observe that part (i) of Proposition 4.1 was used in [22], even if there was no explicit proof. Otherwise

part (ii) is a key point for finding applications to the stability Theorem. Note also a very useful consequence
for approximations by nondecreasing sequences:

Proposition 4.2 Let p € M; (Q) and e > 0. Let {11, } be a nondecreasing sequence in M; (Q) converging

to pin My(Q). Then, there exist f, f € Ll(Q); In,9g € (Lpl (Q))N and hy, h € X, pin s, pis € M;‘—(Q) such
that

M:f_dng+ht+NS7 ,Ufn:fn_dngn'f'(hn)t"‘,Ufn,sv
and {f.},{gn},{hn} strongly converge to f,g,h in L*(Q), (Lpl Q)N and X respectively, and {pn. s} con-
verges to ps (strongly) in My(Q) and

fnlln@ +1lgnller.@ + Ihnllx + pn,s () < 20u(Q). (4.4)

Proof. Since {1} is nondecreasing, then {/in,0}, {#in s} are nondecreasing too. Clearly, |1 — fin | pq, () =
[lo — im0 Mmy@ Ilees — “”vSHMb(Q)' Hence, {pin,s} converges to ps and {0} converges to po (strongly)
in My(Q). Set f10,0 = 0,0, and fin,0 = fn,0 — Hn—1,0 for any n > 1. By Proposition 4.1, (i), we can find
fn € LYQ), gn € (LP(Q))N and h,, € X such that fin o = (fn,Jn, hn) and

172l

1.0 + 13nllyr.@ + [1hnllx < 2f0,0(Q)

n

n ~ n ~
Let f,, = > fx, Gn = gr and h, = hi. Clearly, pino = (fn,gn, hn) and the convergence properties
k=0 =0 k=0

hold with (4.4), since

k

1falli@ + [lgnllpr.@ + [1hnllx < 2p0(Q)-
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