Stability properties for quasilinear parabolic equations with measure data

Marie-Françoise BIDAUT-VERON* Quoc-Hung NGUYEN ${ }^{\dagger}$

Abstract

Let Ω be a bounded domain of \mathbb{R}^{N}, and $Q=\Omega \times(0, T)$. We study problems of the model type $$
\left\{\begin{array}{l} u_{t}-\Delta_{p} u=\mu \quad \text { in } Q \\ u=0 \quad \text { on } \partial \Omega \times(0, T), \\ u(0)=u_{0} \quad \text { in } \Omega \end{array}\right.
$$ where $p>1, \mu \in \mathcal{M}_{b}(Q)$ and $u_{0} \in L^{1}(\Omega)$. Our main result is a stability theorem extending the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators $u \longmapsto$ $\mathcal{A}(u)=\operatorname{div}(A(x, t, \nabla u))$.

1 Introduction

Let Ω be a bounded domain of \mathbb{R}^{N}, and $Q=\Omega \times(0, T), T>0$. We denote by $\mathcal{M}_{b}(\Omega)$ and $\mathcal{M}_{b}(Q)$ the sets of bounded Radon measures on Ω and Q respectively. We are concerned with the problem

$$
\begin{cases}u_{t}-\operatorname{div}(A(x, t, \nabla u))=\mu \quad \text { in } Q \tag{1.1}\\ u=0 & \text { on } \partial \Omega \times(0, T) \\ u(0)=u_{0} & \text { in } \Omega\end{cases}
$$

where $\mu \in \mathcal{M}_{b}(Q), u_{0} \in L^{1}(\Omega)$ and A is a Caratheodory function on $Q \times \mathbb{R}^{N}$, such that for a.e. $(x, t) \in Q$, and any $\xi, \zeta \in \mathbb{R}^{N}$,

$$
\begin{gather*}
A(x, t, \xi) \cdot \xi \geq \Lambda_{1}|\xi|^{p}, \quad|A(x, t, \xi)| \leq a(x, t)+\Lambda_{2}|\xi|^{p-1}, \quad \Lambda_{1}, \Lambda_{2}>0, a \in L^{p^{\prime}}(Q) \tag{1.2}\\
(A(x, t, \xi)-A(x, t, \zeta)) \cdot(\xi-\zeta)>0 \quad \text { if } \xi \neq \zeta \tag{1.3}
\end{gather*}
$$

for $p>1$.This includes the model problem where $\operatorname{div}(A(x, t, \nabla u))=\Delta_{p} u$, where Δ_{p} is the p-Laplacian.
The corresponding elliptic problem:

$$
-\Delta_{p} u=\mu \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

[^0]with $\mu \in \mathcal{M}_{b}(\Omega)$, was studied in $[9,10]$ for $p>2-1 / N$, leading to the existence of solutions in the sense of distributions. For any $p>1$, and $\mu \in L^{1}(\Omega)$, existence and uniqueness are proved in [4] in the class of entropy solutions. For any $\mu \in \mathcal{M}_{b}(\Omega)$ the main work is done in [14, Theorems 3.1, 3.2], where not only existence is proved in the class of renormalized solutions, but also a stability result, fundamental for applications.

Concerning problem (1.1), the first studies concern the case $\mu \in L^{p^{\prime}}(Q)$ and $u_{0} \in L^{2}(\Omega)$, where existence and uniqueness are obtained by variational methods, see [19]. In the general case $\mu \in \mathcal{M}_{b}(Q)$ and $u_{0} \in$ $\mathcal{M}_{b}(\Omega)$, the pionner results come from [9], proving the existence of solutions in the sense of distributions for

$$
\begin{equation*}
p>p_{1}=2-\frac{1}{N+1} \tag{1.4}
\end{equation*}
$$

see also [11]. The approximated solutions of (1.1) lie in Marcinkiewicz spaces $u \in L^{p_{c}, \infty}(Q)$ and $|\nabla u| \in$ $L^{m_{c}, \infty}(Q)$, where

$$
\begin{equation*}
p_{c}=p-1+\frac{p}{N}, \quad m_{c}=p-\frac{N}{N+1} \tag{1.5}
\end{equation*}
$$

This condition (1.4) ensures that u and $|\nabla u|$ belong to $L^{1}(Q)$, since $m_{c}>1$ means $p>p_{1}$ and $p_{c}>1$ means $p>2 N /(N+1)$. Uniqueness follows in the case $p=2, A(x, t, \nabla u)=\nabla u$, by duality methods, see [21].

For $\mu \in L^{1}(Q)$, uniqueness is obtained in new classes of entropy solutions, and renormalized solutions, see $[5,26,27]$.

A larger set of measures is studied in [15]. They introduce a notion of parabolic capacity initiated and inspired by [24], used after in [22, 23], defined by

$$
c_{p}^{Q}(E)=\inf \left(\inf _{E \subset U \text { open } \subset Q}\left\{\|u\|_{W}: u \in W, u \geq \chi_{U} \quad \text { a.e. in } Q\right\}\right)
$$

for any Borel set $E \subset Q$, where setting $X=L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega) \cap L^{2}(\Omega)\right)$,

$$
W=\left\{z: z \in X, \quad z_{t} \in X^{\prime}\right\}, \text { embedded with the norm }\|u\|_{W}=\|u\|_{X}+\left\|u_{t}\right\|_{X^{\prime}}
$$

Let $\mathcal{M}_{0}(Q)$ be the set of Radon measures μ on Q that do not charge the sets of zero c_{p}^{Q}-capacity:

$$
\forall E \text { Borel set } \subset Q, \quad c_{p}^{Q}(E)=0 \Longrightarrow|\mu|(E)=0
$$

Then existence and uniqueness of renormalized solutions of (1.1) hold for any measure $\mu \in \mathcal{M}_{b}(Q) \cap \mathcal{M}_{0}(Q)$, called soft (or diffuse, or regular) measure, and $u_{0} \in L^{1}(\Omega)$, and $p>1$. The equivalence with the notion of entropy solutions is shown in [16]. For such a soft measure, an extension to equations of type $(b(u))_{t}-\Delta_{p} u=\mu$ is given in [6]; another formulation is used in [23] for solving a perturbed problem from (1.1) by an absorption term.

Next consider an arbitrary measure $\mu \in \mathcal{M}_{b}(Q)$. Let $\mathcal{M}_{s}(Q)$ be the set of all bounded Radon measures on Q with support on a set of zero c_{p}^{Q}-capacity, also called singular. Let $\mathcal{M}_{b}^{+}(Q), \mathcal{M}_{0}^{+}(Q), \mathcal{M}_{s}^{+}(Q)$ be the positive cones of $\mathcal{M}_{b}(Q), \mathcal{M}_{0}(Q), \mathcal{M}_{s}(Q)$. From [15], μ can be written (in a unique way) under the form

$$
\begin{equation*}
\mu=\mu_{0}+\mu_{s}, \quad \mu_{0} \in \mathcal{M}_{0}(Q), \quad \mu_{s}=\mu_{s}^{+}-\mu_{s}^{-}, \quad \mu_{s}^{+}, \mu_{s}^{-} \in \mathcal{M}_{s}^{+}(Q) \tag{1.6}
\end{equation*}
$$

and $\mu_{0} \in \mathcal{M}_{0}(Q)$ admits (at least) a decomposition under the form

$$
\begin{equation*}
\mu_{0}=f-\operatorname{div} g+h_{t}, \quad f \in L^{1}(Q), \quad g \in\left(L^{p^{\prime}}(Q)\right)^{N}, \quad h \in X \tag{1.7}
\end{equation*}
$$

and we write $\mu_{0}=(f, g, h)$. Conversely, any measure of this form, such that $h \in L^{\infty}(Q)$, lies in $\mathcal{M}_{0}(Q)$, see [23, Proposition 3.1]. The solutions of (1.1) are searched in a renormalized sense linked to this decomposition, introduced in $[15,22]$. In the range (1.4) the existence of a renormalized solution relative to the
decomposition (1.7) is proved in [22], using suitable approximations of μ_{0} and μ_{s}. Uniqueness is still open, as well as in the elliptic case.

In all the sequel we suppose that p satisfies (1.4). Then the embedding $W_{0}^{1, p}(\Omega) \subset L^{2}(\Omega)$ is valid, that means

$$
X=L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega)\right), \quad X^{\prime}=L^{p^{\prime}}\left((0, T) ; W^{-1, p^{\prime}}(\Omega)\right)
$$

In Section 2 we recall the definition of renormalized solutions, given in [22], that we call R-solutions of (1.1), relative to the decomposition (1.7) of μ_{0}, and study some of their properties. Our main result is a stability theorem for problem (1.1), proved in Section 3, extending to the parabolic case the stability result of $\left[14\right.$, Theorem 3.4]. In order to state it, we recall that a sequence of measures $\mu_{n} \in \mathcal{M}_{b}(Q)$ converges to a measure $\mu \in \mathcal{M}_{b}(Q)$ in the narrow topology of measures if

$$
\lim _{n \rightarrow \infty} \int_{Q} \varphi d \mu_{n}=\int_{Q} \varphi d \mu \quad \forall \varphi \in C(Q) \cap L^{\infty}(Q)
$$

Theorem 1.1 Let $A: Q \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ satisfy (1.2),(1.3). Let $u_{0} \in L^{1}(\Omega)$, and

$$
\mu=f-\operatorname{div} g+h_{t}+\mu_{s}^{+}-\mu_{s}^{-} \in \mathcal{M}_{b}(Q)
$$

with $f \in L^{1}(Q), g \in\left(L^{p^{\prime}}(Q)\right)^{N}, h \in X$ and $\mu_{s}^{+}, \mu_{s}^{-} \in \mathcal{M}_{s}^{+}(Q)$. Let $u_{0, n} \in L^{1}(\Omega)$,

$$
\mu_{n}=f_{n}-\operatorname{div} g_{n}+\left(h_{n}\right)_{t}+\rho_{n}-\eta_{n} \in \mathcal{M}_{b}(Q)
$$

with $f_{n} \in L^{1}(Q), g_{n} \in\left(L^{p^{\prime}}(Q)\right)^{N}, h_{n} \in X$, and $\rho_{n}, \eta_{n} \in \mathcal{M}_{b}^{+}(Q)$, such that

$$
\rho_{n}=\rho_{n}^{1}-\operatorname{div} \rho_{n}^{2}+\rho_{n, s}, \quad \eta_{n}=\eta_{n}^{1}-\operatorname{div} \eta_{n}^{2}+\eta_{n, s}
$$

with $\rho_{n}^{1}, \eta_{n}^{1} \in L^{1}(Q), \rho_{n}^{2}, \eta_{n}^{2} \in\left(L^{p^{\prime}}(Q)\right)^{N}$ and $\rho_{n, s}, \eta_{n, s} \in \mathcal{M}_{s}^{+}(Q)$. Assume that

$$
\sup _{n}\left|\mu_{n}\right|(Q)<\infty
$$

and $\left\{u_{0, n}\right\}$ converges to u_{0} strongly in $L^{1}(\Omega),\left\{f_{n}\right\}$ converges to f weakly in $L^{1}(Q),\left\{g_{n}\right\}$ converges to g strongly in $\left(L^{p^{\prime}}(Q)\right)^{N},\left\{h_{n}\right\}$ converges to h strongly in $X,\left\{\rho_{n}\right\}$ converges to μ_{s}^{+}and $\left\{\eta_{n}\right\}$ converges to μ_{s}^{-} in the narrow topology; and $\left\{\rho_{n}^{1}\right\},\left\{\eta_{n}^{1}\right\}$ are bounded in $L^{1}(Q)$, and $\left\{\rho_{n}^{2}\right\},\left\{\eta_{n}^{2}\right\}$ bounded in $\left(L^{p^{\prime}}(Q)\right)^{N}$.

Let $\left\{u_{n}\right\}$ be a sequence of R-solutions of

$$
\left\{\begin{array}{l}
u_{n, t}-\operatorname{div}\left(A\left(x, t, \nabla u_{n}\right)\right)=\mu_{n} \quad \text { in } Q \tag{1.8}\\
u_{n}=0 \quad \text { on } \partial \Omega \times(0, T) \\
u_{n}(0)=u_{0, n} \quad \text { in } \Omega
\end{array}\right.
$$

relative to the decomposition $\left(f_{n}+\rho_{n}^{1}-\eta_{n}^{1}, g_{n}+\rho_{n}^{2}-\eta_{n}^{2}, h_{n}\right)$ of $\mu_{n, 0}$. Let $U_{n}=u_{n}-h_{n}$.
Then up to a subsequence, $\left\{u_{n}\right\}$ converges a.e. in Q to a R-solution u of (1.1), and $\left\{U_{n}\right\}$ converges a.e. in Q to $U=u-h$. Moreover, $\left\{\nabla u_{n}\right\},\left\{\nabla U_{n}\right\}$ converge respectively to $\nabla u, \nabla U$ a.e. in Q, and $\left\{T_{k}\left(U_{n}\right)\right\}$ converge to $T_{k}(U)$ strongly in X for any $k>0$.

In Section 4 we check that any measure $\mu \in \mathcal{M}_{b}(Q)$ can be approximated in the sense of the stability Theorem, hence we find again the existence result of [22]:

Corollary 1.2 Let $u_{0} \in L^{1}(\Omega)$ and $\mu \in \mathcal{M}_{b}(Q)$. Then there exists a R-solution u to the problem (1.1) with data $\left(\mu, u_{0}\right)$.

Moreover we give more precise properties of approximations of $\mu \in \mathcal{M}_{b}(Q)$, fundamental for applications, see Propositions 4.1 and 4.2. As in the elliptic case, Theorem 1.1 is a key point for obtaining existence results for more general problems, and we give some of them in [2,3,20], for measures μ satisfying suitable capacitary conditions. In [2] we study perturbed problems of order 0 , of type

$$
\begin{equation*}
u_{t}-\Delta_{p} u+\mathcal{G}(u)=\mu \quad \text { in } Q \tag{1.9}
\end{equation*}
$$

where $\mathcal{G}(u)$ is an absorption or a source term with a growth of power or exponential type, and μ is a good in time measure. In [3] we use potential estimates to give other existence results in case of absorption with $p>2$. In [20], one considers equations of the form

$$
u_{t}-\operatorname{div}(A(x, t, \nabla u))+\mathcal{G}(u, \nabla u)=\mu
$$

under $(1.2),(1.3)$ with $p=2$, and extend in particular the results of [1] to nonlinear operators.

2 Renormalized solutions of problem (1.1)

2.1 Notations and Definition

For any function $f \in L^{1}(Q)$, we write $\int_{Q} f$ instead of $\int_{Q} f d x d t$, and for any measurable set $E \subset Q, \int_{E} f$ instead of $\int_{E} f d x d t$. For any open set ϖ of \mathbb{R}^{m} and $F \in\left(L^{k}(\varpi)\right)^{\nu}, k \in[1, \infty], m, \nu \in \mathbb{N}^{*}$, we set $\|F\|_{k, \varpi}=$ $\|F\|_{\left(L^{k}(\varpi)\right)^{\nu}}$
We set $T_{k}(r)=\max \{\min \{r, k\},-k\}$, for any $k>0$ and $r \in \mathbb{R}$. We recall that if u is a measurable function defined and finite a.e. in Q, such that $T_{k}(u) \in X$ for any $k>0$, there exists a measurable function w from Q into \mathbb{R}^{N} such that $\nabla T_{k}(u)=\chi_{|u| \leq k} w$, a.e. in Q, and for any $k>0$. We define the gradient ∇u of u by $w=\nabla u$.

Let $\mu=\mu_{0}+\mu_{s} \in \mathcal{M}_{b}(Q)$, and (f, g, h) be a decomposition of μ_{0} given by (1.7), and $\widehat{\mu_{0}}=\mu_{0}-h_{t}=f-\operatorname{div} g$. In the general case $\widehat{\mu_{0}} \notin \mathcal{M}(Q)$, but we write, for convenience,

$$
\int_{Q} w d \widehat{\mu_{0}}:=\int_{Q}(f w+g \cdot \nabla w), \quad \forall w \in X \cap L^{\infty}(Q)
$$

Definition 2.1 Let $u_{0} \in L^{1}(\Omega), \mu=\mu_{0}+\mu_{s} \in \mathcal{M}_{b}(Q)$. A measurable function u is a renormalized solution, called \boldsymbol{R}-solution of (1.1) if there exists a decompostion (f, g, h) of μ_{0} such that

$$
\begin{equation*}
U=u-h \in L^{\sigma}\left((0, T) ; W_{0}^{1, \sigma}(\Omega)\right) \cap L^{\infty}\left((0, T) ; L^{1}(\Omega)\right), \quad \forall \sigma \in\left[1, m_{c}\right) ; \quad T_{k}(U) \in X, \quad \forall k>0 \tag{2.1}
\end{equation*}
$$

and:
(i) for any $S \in W^{2, \infty}(\mathbb{R})$ such that S^{\prime} has compact support on \mathbb{R}, and $S(0)=0$,

$$
\begin{equation*}
-\int_{\Omega} S\left(u_{0}\right) \varphi(0) d x-\int_{Q} \varphi_{t} S(U)+\int_{Q} S^{\prime}(U) A(x, t, \nabla u) \cdot \nabla \varphi+\int_{Q} S^{\prime \prime}(U) \varphi A(x, t, \nabla u) \cdot \nabla U=\int_{Q} S^{\prime}(U) \varphi d \widehat{\mu_{0}}, \tag{2.2}
\end{equation*}
$$

for any $\varphi \in X \cap L^{\infty}(Q)$ such that $\varphi_{t} \in X^{\prime}+L^{1}(Q)$ and $\varphi(., T)=0$;
(ii) for any $\phi \in C(\bar{Q})$,

$$
\begin{align*}
\lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{m \leq U<2 m\}} \phi A(x, t, \nabla u) \cdot \nabla U & =\int_{Q} \phi d \mu_{s}^{+} \tag{2.3}\\
\lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{-m \geq U>-2 m\}} \phi A(x, t, \nabla u) \cdot \nabla U & =\int_{Q} \phi d \mu_{s}^{-} . \tag{2.4}
\end{align*}
$$

Remark 2.2 As a consequence, $S(U) \in C\left([0, T] ; L^{1}(\Omega)\right)$ and $S(U)(., 0)=S\left(u_{0}\right)$ in Ω; and u satisfies the equation

$$
\begin{equation*}
(S(U))_{t}-\operatorname{div}\left(S^{\prime}(U) A(x, t, \nabla u)\right)+S^{\prime \prime}(U) A(x, t, \nabla u) \cdot \nabla U=f S^{\prime}(U)-\operatorname{div}\left(g S^{\prime}(U)\right)+S^{\prime \prime}(U) g \cdot \nabla U \tag{2.5}
\end{equation*}
$$

in the sense of distributions in Q, see [22, Remark 3]. Moreover assume that $[-k, k] \supset$ supp S^{\prime}. then from (1.2) and the Hölder inequality, we find easily that

$$
\begin{align*}
\left\|S(U)_{t}\right\|_{X^{\prime}+L^{1}(Q)} & \leq C\|S\|_{W^{2, \infty}(\mathbb{R})}\left(\left\||\nabla u|^{p} \chi_{|U| \leq k}\right\|_{1, Q}^{1 / p^{\prime}}+\left\||\nabla u|^{p} \chi_{|U| \leq k}\right\|_{1, Q}+\left\|\left|\nabla T_{k}(U)\right|\right\|_{p, Q}^{p}\right. \\
& \left.+\|a\|_{p^{\prime}, Q}+\|a\|_{p^{\prime}, Q}^{p^{\prime}}+\|f\|_{1, Q}+\|g\|_{p^{\prime}, Q}\left\||\nabla u|^{p} \chi_{|U| \leq k}\right\|_{1, Q}^{1 / p}+\|g\|_{p^{\prime}, Q}\right) \tag{2.6}
\end{align*}
$$

where $C=C\left(p, \Lambda_{2}\right)$. We also deduce that, for any $\varphi \in X \cap L^{\infty}(Q)$, such that $\varphi_{t} \in X^{\prime}+L^{1}(Q)$,

$$
\begin{align*}
\int_{\Omega} S(U(T)) \varphi(T) d x-\int_{\Omega} S\left(u_{0}\right) \varphi(0) d x & -\int_{Q} \varphi_{t} S(U)+\int_{Q} S^{\prime}(U) A(x, t, \nabla u) \cdot \nabla \varphi \\
& +\int_{Q} S^{\prime \prime}(U) A(x, t, \nabla u) . \nabla U \varphi=\int_{Q} S^{\prime}(U) \varphi d \widehat{\mu_{0}} \tag{2.7}
\end{align*}
$$

Remark 2.3 Let u, U satisfy (2.1). It is easy to see that the condition (2.3) (resp. (2.4)) is equivalent to

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{m \leq U<2 m\}} \phi A(x, t, \nabla u) \cdot \nabla u=\int_{Q} \phi d \mu_{s}^{+} \tag{2.8}
\end{equation*}
$$

resp.

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{m \geq U>-2 m\}} \phi A(x, t, \nabla u) \cdot \nabla u=\int_{Q} \phi d \mu_{s}^{-} \tag{2.9}
\end{equation*}
$$

In particular, for any $\varphi \in L^{p^{\prime}}(Q)$ there holds

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{m} \int_{m \leq|U|<2 m}|\nabla u| \varphi=0, \quad \lim _{m \rightarrow \infty} \frac{1}{m} \int_{m \leq|U|<2 m}|\nabla U| \varphi=0 . \tag{2.10}
\end{equation*}
$$

Remark 2.4 (i) Any function $U \in X$ such that $U_{t} \in X^{\prime}+L^{1}(Q)$ admits a unique c_{p}^{Q}-quasi continuous representative, defined c_{p}^{Q}-quasi a.e. in Q, still denoted U. Furthermore, if $U \in L^{\infty}(Q)$, then for any $\mu_{0} \in$ $\mathcal{M}_{0}(Q)$, there holds $U \in L^{\infty}\left(Q, d \mu_{0}\right)$, see [22, Theorem 3 and Corollary 1].
(ii) Let u be any R - solution of problem (1.1). Then, $U=u-h$ admits a c_{p}^{Q}-quasi continuous functions representative which is finite c_{p}^{Q}-quasi a.e. in Q, and u satisfies definition 2.1 for every decomposition $(\tilde{f}, \tilde{g}, \tilde{h})$ such that $h-\tilde{h} \in L^{\infty}(Q)$, see [22, Proposition 3 and Theorem 4].

2.2 Steklov and Landes approximations

A main difficulty for proving Theorem 1.1 is the choice of admissible test functions $(S, \varphi$) in (2.2), valid for any R-solution. Because of a lack of regularity of these solutions, we use two ways of approximation adapted to parabolic equations:

Definition 2.5 Let $\varepsilon \in(0, T)$ and $z \in L_{l o c}^{1}(Q)$. For any $l \in(0, \varepsilon)$ we define the Steklov time-averages $[z]_{l},[z]_{-l}$ of z by

$$
\begin{array}{ll}
{[z]_{l}(x, t)=\frac{1}{l} \int_{t}^{t+l} z(x, s) d s} & \text { for a.e. }(x, t) \in \Omega \times(0, T-\varepsilon), \\
{[z]_{-l}(x, t)=\frac{1}{l} \int_{t-l}^{t} z(x, s) d s \quad \text { for a.e. }(x, t) \in \Omega \times(\varepsilon, T) .}
\end{array}
$$

The idea to use this approximation for R -solutions can be found in [7]. Recall some properties, given in [23]. Let $\varepsilon \in(0, T)$, and $\varphi_{1} \in C_{c}^{\infty}(\bar{\Omega} \times[0, T)), \varphi_{2} \in C_{c}^{\infty}(\bar{\Omega} \times(0, T])$ with $\operatorname{Supp} \varphi_{1} \subset \bar{\Omega} \times[0, T-\varepsilon], \operatorname{Supp} \varphi_{2} \subset$ $\bar{\Omega} \times[\varepsilon, T]$. There holds:
(i) If $z \in X$, then $\varphi_{1}[z]_{l}$ and $\varphi_{2}[z]_{-l} \in W$.
(ii) If $z \in X$ and $z_{t} \in X^{\prime}+L^{1}(Q)$, then, as $l \rightarrow 0,\left(\varphi_{1}[z]_{l}\right)$ and $\left(\varphi_{2}[z]_{-l}\right)$ converge respectively to $\varphi_{1} z$ and $\varphi_{2} z$ in X, and a.e. in Q; and $\left(\varphi_{1}[z]_{l}\right)_{t},\left(\varphi_{2}[z]_{-l}\right)_{t}$ converge to $\left(\varphi_{1} z\right)_{t},\left(\varphi_{2} z\right)_{t}$ in $X^{\prime}+L^{1}(Q)$.
(iii) If moreover $z \in L^{\infty}(Q)$, then from any sequence $\left\{l_{n}\right\} \rightarrow 0$, there exists a subsequence $\left\{l_{\nu}\right\}$ such that $\left\{[z]_{l_{\nu}}\right\},\left\{[z]_{-l_{\nu}}\right\}$ converge to z, c_{p}^{Q}-quasi everywhere in Q.

Next we recall the approximation used in several articles [8, 12, 11], first introduced in [17].
Definition 2.6 Let $k>0$, and $y \in L^{\infty}(\Omega)$ and $Y \in X$ such that $\|y\|_{L^{\infty}(\Omega)} \leq k$ and $\|Y\|_{L^{\infty}(Q)} \leq k$. For any $\nu \in \mathbb{N}$, a Landes-time approximation $\langle Y\rangle_{\nu}$ of the function Y is defined as follows:

$$
\langle Y\rangle_{\nu}(x, t)=\nu \int_{0}^{t} Y(x, s) e^{\nu(s-t)} d s+e^{-\nu t} z_{\nu}(x), \quad \forall(x, t) \in Q
$$

where $\left\{z_{\nu}\right\}$ is a sequence of functions in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$, such that $\left\|z_{\nu}\right\|_{L^{\infty}(\Omega)} \leq k$, $\left\{z_{\nu}\right\}$ converges to y a.e. in Ω, and $\nu^{-1}\left\|z_{\nu}\right\|_{W_{0}^{1, p}(\Omega)}^{p}$ converges to 0 .

Therefore, we can verify that $\left(\langle Y\rangle_{\nu}\right)_{t} \in X,\langle Y\rangle_{\nu} \in X \cap L^{\infty}(Q),\left\|\langle Y\rangle_{\nu}\right\|_{\infty, Q} \leq k$ and $\left\{\langle Y\rangle_{\nu}\right\}$ converges to Y strongly in X and a.e. in Q. Moreover, $\langle Y\rangle_{\nu}$ satisfies the equation $\left(\langle Y\rangle_{\nu}\right)_{t}=\nu\left(Y-\langle Y\rangle_{\nu}\right)$ in the sense of distributions in Q, and $\langle Y\rangle_{\nu}(0)=z_{\nu}$ in Ω. In this paper, we only use the Landes-time approximation of the function $Y=T_{k}(U)$, where $y=T_{k}\left(u_{0}\right)$.

2.3 First properties

In the sequel we use the following notations: for any function $J \in W^{1, \infty}(\mathbb{R})$, nondecreasing with $J(0)=0$, we set

$$
\begin{equation*}
\bar{J}(r)=\int_{0}^{r} J(\tau) d \tau, \quad \mathcal{J}(r)=\int_{0}^{r} J^{\prime}(\tau) \tau d \tau \tag{2.11}
\end{equation*}
$$

It is easy to verify that $\mathcal{J}(r) \geq 0$,

$$
\begin{equation*}
\mathcal{J}(r)+\bar{J}(r)=J(r) r, \quad \text { and } \quad \mathcal{J}(r)-\mathcal{J}(s) \geq s(J(r)-J(s)) \quad \forall r, s \in \mathbb{R} \tag{2.12}
\end{equation*}
$$

In particular we define, for any $k>0$, and any $r \in \mathbb{R}$,

$$
\begin{equation*}
\overline{T_{k}}(r)=\int_{0}^{r} T_{k}(\tau) d \tau, \quad \mathcal{T}_{k}(r)=\int_{0}^{r} T_{k}^{\prime}(\tau) \tau d \tau \tag{2.13}
\end{equation*}
$$

and we use several times a truncature used in [14]:

$$
\begin{equation*}
H_{m}(r)=\chi_{[-m, m]}(r)+\frac{2 m-|s|}{m} \chi_{m<|s| \leq 2 m}(r), \quad \overline{H_{m}}(r)=\int_{0}^{r} H_{m}(\tau) d \tau \tag{2.14}
\end{equation*}
$$

The next Lemma allows to extend the range of the test functions in (2.2).
Lemma 2.7 Let u be a R-solution of problem (1.1). Let $J \in W^{1, \infty}(\mathbb{R})$ be nondecreasing with $J(0)=0$, and \bar{J} defined by (2.11). Then,

$$
\begin{align*}
& \int_{Q} S^{\prime}(U) A(x, t, \nabla u) \cdot \nabla(\xi J(S(U)))+\int_{Q} S^{\prime \prime}(U) A(x, t, \nabla u) \cdot \nabla U \xi J(S(U)) \\
& -\int_{\Omega} \xi(0) J\left(S\left(u_{0}\right)\right) S\left(u_{0}\right) d x-\int_{Q} \xi_{t} \bar{J}(S(U)) \leq \int_{Q} S^{\prime}(U) \xi J(S(U)) d \widehat{\mu_{0}} \tag{2.15}
\end{align*}
$$

for any $S \in W^{2, \infty}(\mathbb{R})$ such that S^{\prime} has compact support on \mathbb{R} and $S(0)=0$, and for any $\xi \in C^{1}(Q) \cap$ $W^{1, \infty}(Q), \xi \geq 0$.

Proof. Let \mathcal{J} be defined by (2.11). Let $\zeta \in C_{c}^{1}([0, T))$ with values in $[0,1]$, such that $\zeta_{t} \leq 0$, and $\varphi=\zeta \xi[J(S(U))]_{l}$. Clearly, $\varphi \in X \cap L^{\infty}(Q)$; we choose the pair of functions (φ, S) as test function in (2.2). From the convergence properties of Steklov time-averages, we easily will obtain (2.15) if we prove that

$$
\lim _{l \rightarrow 0, \zeta \rightarrow 1}\left(-\int_{Q}\left(\zeta \xi[J(S(U))]_{l}\right)_{t} S(U)\right) \geq-\int_{Q} \xi_{t} \bar{J}(S(U))
$$

We can write $-\int_{Q}\left(\zeta \xi[J(S(U))]_{l}\right)_{t} S(U)=F+G$, with

$$
F=-\int_{Q}(\zeta \xi)_{t}[J(S(U))]_{l} S(U), \quad G=-\int_{Q} \zeta \xi S(U) \frac{1}{l}(J(S(U))(x, t+l)-J(S(U))(x, t))
$$

Using (2.12) and integrating by parts we have

$$
\begin{aligned}
G & \geq-\int_{Q} \zeta \xi \frac{1}{l}(\mathcal{J}(S(U))(x, t+l)-\mathcal{J}(S(U))(x, t))=-\int_{Q} \zeta \xi \frac{\partial}{\partial t}\left([\mathcal{J}(S(U))]_{l}\right) \\
& =\int_{Q}(\zeta \xi)_{t}[\mathcal{J}(S(U))]_{l}+\int_{\Omega} \zeta(0) \xi(0)[\mathcal{J}(S(U))]_{l}(0) d x \geq \int_{Q}(\zeta \xi)_{t}[\mathcal{J}(S(U))]_{l}
\end{aligned}
$$

since $\mathcal{J}(S(U)) \geq 0$. Hence,

$$
-\int_{Q}\left(\zeta \xi[J(S(U))]_{l}\right)_{t} S(U) \geq \int_{Q}(\zeta \xi)_{t}[\mathcal{J}(S(U))]_{l}+F=\int_{Q}(\zeta \xi)_{t}\left([\mathcal{J}(S(U))]_{l}-[J(S(U))]_{l} S(U)\right)
$$

Otherwise, $\mathcal{J}(S(U))$ and $J(S(U)) \in C\left([0, T] ; L^{1}(\Omega)\right)$, thus $\left\{(\zeta \xi)_{t}\left([\mathcal{J}(S(u))]_{l}-[J(S(u))]_{l} S(u)\right)\right\}$ converges to $-(\zeta \xi)_{t} \bar{J}(S(u))$ in $L^{1}(Q)$ as $l \rightarrow 0$. Therefore,

$$
\frac{\lim _{l \rightarrow 0, \zeta \rightarrow 1}}{}\left(-\int_{Q}\left(\zeta \xi[J(S(U))]_{l}\right)_{t} S(U)\right) \geq \lim _{\zeta \rightarrow 1}\left(-\int_{Q}(\zeta \xi)_{t} \bar{J}(S(U))\right) \geq-\int_{Q} \xi_{t} \bar{J}(S(U))
$$

which achieves the proof.
Next we give estimates of the function and its gradient, following the first ones of [11], inspired by the estimates of the elliptic case of [4]. In particular we extend and make more precise the a priori estimates of [22, Proposition 4] given for solutions with smooth data; see also [15, 18].

Proposition 2.8 If u is a R-solution of problem (1.1), then there exists $C_{1}=C_{1}\left(p, \Lambda_{1}, \Lambda_{2}\right)$ such that, for any $k \geq 1$ and $\ell \geq 0$,

$$
\begin{gather*}
\int_{\ell \leq|U| \leq \ell+k}|\nabla u|^{p}+\int_{\ell \leq|U| \leq \ell+k}|\nabla U|^{p} \leq C_{1} k M \tag{2.16}\\
\|U\|_{L^{\infty}\left(((0, T)) ; L^{1}(\Omega)\right)} \leq C_{1}(M+|\Omega|) \tag{2.17}
\end{gather*}
$$

where $M=\left\|u_{0}\right\|_{1, \Omega}+\left|\mu_{s}\right|(Q)+\|f\|_{1, Q}+\|g\|_{p^{\prime}, Q}^{p^{\prime}}+\|h\|_{X}^{p}+\|a\|_{p^{\prime}, Q}^{p^{\prime}}$.
As a consequence, for any $k \geq 1$,

$$
\begin{array}{ll}
\text { meas }\{|U|>k\} \leq C_{2} M_{1} k^{-p_{c}}, & \text { meas }\{|\nabla U|>k\} \leq C_{2} M_{2} k^{-m_{c}}, \\
\text { meas }\{|u|>k\} \leq C_{2} M_{2} k^{-p_{c}}, & \text { meas }\{|\nabla u|>k\} \leq C_{2} M_{2} k^{-m_{c}}, \tag{2.19}
\end{array}
$$

where $C_{2}=C_{2}\left(N, p, \Lambda_{1}, \Lambda_{2}\right)$, and $M_{1}=(M+|\Omega|)^{\frac{p}{N}} M$ and $M_{2}=M_{1}+M$.
Proof. Set for any $r \in \mathbb{R}$, and $m, k, \ell>0$,

$$
T_{k, \ell}(r)=\max \{\min \{r-\ell, k\}, 0\}+\min \{\max \{r+\ell,-k\}, 0\}
$$

For $m>k+\ell$, we can choose $(J, S, \xi)=\left(T_{k, \ell}, \overline{H_{m}}, \xi\right)$ as test functions in (2.15), where $\overline{H_{m}}$ is defined at (2.14) and $\xi \in C^{1}([0, T])$ with values in $[0,1]$, independent on x. Since $T_{k, \ell}\left(\overline{H_{m}}(r)\right)=T_{k, \ell}(r)$ for all $r \in \mathbb{R}$, we obtain

$$
\begin{aligned}
& -\int_{\Omega} \xi(0) T_{k, \ell}\left(u_{0}\right) \overline{H_{m}}\left(u_{0}\right) d x-\int_{Q} \xi_{t} \overline{T_{k, \ell}}\left(\overline{H_{m}}(U)\right) \\
& +\int_{\{\ell \leq|U|<\ell+k\}} \xi A(x, t, \nabla u) . \nabla U-\frac{k}{m} \int_{\{m \leq|U|<2 m\}} \xi A(x, t, \nabla u) . \nabla U \leq \int_{Q} H_{m}(U) \xi T_{k, \ell}(U) d \widehat{\mu_{0}} .
\end{aligned}
$$

And

$$
\int_{Q} H_{m}(U) \xi T_{k, \ell}(U) d \widehat{\mu_{0}}=\int_{Q} H_{m}(U) \xi T_{k, \ell}(U) f+\int_{\{\ell \leq|U|<\ell+k\}} \xi \nabla U \cdot g-\frac{k}{m} \int_{\{m \leq|U|<2 m\}} \xi \nabla U . g .
$$

Let $m \rightarrow \infty$; then, for any $k \geq 1$, since $U \in L^{1}(Q)$ and from (2.3), (2.4), and (2.10), we find

$$
\begin{equation*}
-\int_{Q} \xi_{t} \overline{T_{k, \ell}}(U)+\int_{\{\ell \leq|U|<\ell+k\}} \xi A(x, t, \nabla u) . \nabla U \leq \int_{\{\ell \leq|U|<\ell+k\}} \xi \nabla U \cdot g+k\left(\left\|u_{0}\right\|_{1, \Omega}+\left|\mu_{s}\right|(Q)+\|f\|_{1, Q}\right) \tag{2.20}
\end{equation*}
$$

Next, we take $\xi \equiv 1$. We verify that

$$
A(x, t, \nabla u) . \nabla U-\nabla U \cdot g \geq \frac{\Lambda_{1}}{4}\left(|\nabla u|^{p}+|\nabla U|^{p}\right)-c_{1}\left(|g|^{p^{\prime}}+|\nabla h|^{p}+|a|^{p^{\prime}}\right)
$$

for some $c_{1}=c_{1}\left(p, \Lambda_{1}, \Lambda_{2}\right)>0$. Hence (2.16) follows. Thus, from (2.20) and the Hölder inequality, we get, for any $\xi \in C^{1}([0, T])$ with values in $[0,1]$,

$$
-\int_{Q} \xi_{t} \overline{T_{k, \ell}}(U) \leq c_{2} k M
$$

for some $c_{2}=c_{2}\left(p, \Lambda_{1}, \Lambda_{2}\right)>0$.Thus $\int_{\Omega} \overline{T_{k, \ell}}(U)(t) d x \leq c_{2} k M$, for a.e. $t \in(0, T)$. We deduce (2.17) by taking $k=1, \ell=0$, since $\overline{T_{1,0}}(r)=\overline{T_{1}}(r) \geq|r|-1$, for any $r \in \mathbb{R}$.

Next, from the Gagliardo-Nirenberg embedding Theorem, see [13, Proposition 3.1], we have

$$
\int_{Q}\left|T_{k}(U)\right|^{\frac{p(N+1)}{N}} \leq c_{3}\|U\|_{L^{\infty}\left(((0, T)) ; L^{1}(\Omega)\right)}^{\frac{p}{N}} \int_{Q}\left|\nabla T_{k}(U)\right|^{p},
$$

where $c_{3}=c_{3}(N, p)$. Then, from (2.16) and (2.17), we get, for any $k \geq 1$,

$$
\text { meas }\{|U|>k\} \leq k^{-\frac{p(N+1)}{N}} \int_{Q}\left|T_{k}(U)\right|^{\frac{p(N+1)}{N}} \leq c_{3}\|U\|_{L^{\infty}\left((0, T) ; L^{1}(\Omega)\right)}^{\frac{p}{N}} k^{-\frac{p(N+1)}{N}} \int_{Q}\left|\nabla T_{k}(U)\right|^{p} \leq c_{4} M_{1} k^{-p_{c}}
$$

with $c_{4}=c_{4}\left(N, p, \Lambda_{1}, \Lambda_{2}\right)$. We obtain

$$
\begin{aligned}
\operatorname{meas}\{|\nabla U|>k\} & \leq \frac{1}{k^{p}} \int_{0}^{k^{p}} \operatorname{meas}\left(\left\{|\nabla U|^{p}>s\right\}\right) d s \\
& \leq \operatorname{meas}\left\{|U|>k^{\frac{N}{N+1}}\right\}+\frac{1}{k^{p}} \int_{0}^{k^{p}} \operatorname{meas}\left(\left\{|\nabla U|^{p}>s,|U| \leq k^{\frac{N}{N+1}}\right\}\right) d s \\
& \leq c_{4} M_{1} k^{-m_{c}}+\frac{1}{k^{p}} \int_{|U| \leq k^{\frac{N}{N+1}}}|\nabla U|^{p} \leq c_{5} M_{2} k^{-m_{c}},
\end{aligned}
$$

with $c_{5}=c_{5}\left(N, p, \Lambda_{1}, \Lambda_{2}\right)$. Furthermore, for any $k \geq 1$,

$$
\text { meas }\{|h|>k\}+\text { meas }\{|\nabla h|>k\} \leq c_{6} k^{-p}\|h\|_{X}^{p},
$$

where $c_{6}=c_{6}(N, p)$. Therefore, we easily get (2.19).
Remark 2.9 If $\mu \in L^{1}(Q)$ and $a \equiv 0$ in (1.2), then (2.16) holds for all $k>0$ and the term $|\Omega|$ in inequality (2.17) can be removed, where $M=\left\|u_{0}\right\|_{1, \Omega}+|\mu|(Q)$. Furthermore, (2.19) is stated as follows:

$$
\begin{equation*}
\text { meas }\{|u|>k\} \leq C_{2} M^{\frac{p+N}{N}} k^{-p_{c}}, \quad \text { meas }\{|\nabla u|>k\} \leq C_{2} M^{\frac{N+2}{N+1}} k^{-m_{c}}, \forall k>0 . \tag{2.21}
\end{equation*}
$$

with $C_{2}=C_{2}\left(N, p, \Lambda_{1}, \Lambda_{2}\right)$. To see last inequality, we do in the following way:

$$
\begin{aligned}
\text { meas }\{|\nabla U|>k\} & \leq \operatorname{meas}\left\{|U|>M^{\frac{1}{N+1}} k^{\frac{N}{N+1}}\right\}+\frac{1}{k^{p}} \int_{0}^{k^{p}} \operatorname{meas}\left\{|\nabla U|^{p}>s,|U| \leq M^{\frac{1}{N+1}} k^{\frac{N}{N+1}}\right\} d s \\
& \leq C_{2} M^{\frac{N+2}{N+1}} k^{-m_{c}}
\end{aligned}
$$

Proposition 2.10 Let $\left\{\mu_{n}\right\} \subset \mathcal{M}_{b}(Q)$, and $\left\{u_{0, n}\right\} \subset L^{1}(\Omega)$, such that

$$
\sup _{n}\left|\mu_{n}\right|(Q)<\infty, \text { and } \sup _{n}\left\|u_{0, n}\right\|_{1, \Omega}<\infty
$$

Let u_{n} be a R-solution of (1.1) with data $\mu_{n}=\mu_{n, 0}+\mu_{n, s}$ and $u_{0, n}$, relative to a decomposition $\left(f_{n}, g_{n}, h_{n}\right)$ of $\mu_{n, 0}$, and $U_{n}=u_{n}-h_{n}$. Assume that $\left\{f_{n}\right\}$ is bounded in $L^{1}(Q),\left\{g_{n}\right\}$ bounded in $\left(L^{p^{\prime}}(Q)\right)^{N}$ and $\left\{h_{n}\right\}$ bounded in X.

Then, up to a subsequence, $\left\{U_{n}\right\}$ converges a.e. to a function $U \in L^{\infty}\left((0, T) ; L^{1}(\Omega)\right)$, such that $T_{k}(U) \in X$ for any $k>0$ and $U \in L^{\sigma}\left((0, T) ; W_{0}^{1, \sigma}(\Omega)\right)$ for any $\sigma \in\left[1, m_{c}\right)$. And
(i) $\left\{U_{n}\right\}$ converges to U strongly in $L^{\sigma}(Q)$ for any $\sigma \in\left[1, m_{c}\right)$, and $\sup \left\|U_{n}\right\|_{L^{\infty}\left((0, T) ; L^{1}(\Omega)\right)}<\infty$,
(ii) $\sup _{k>0} \sup _{n} \frac{1}{k+1} \int_{Q}\left|\nabla T_{k}\left(U_{n}\right)\right|^{p}<\infty$,
(iii) $\left\{T_{k}\left(U_{n}\right)\right\}$ converges to $T_{k}(U)$ weakly in X, for any $k>0$,
(iv) $\left\{A\left(x, t, \nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right)\right)\right\}$ converges to some F_{k} weakly in $\left(L^{p^{\prime}}(Q)\right)^{N}$.

Proof. Take $S \in W^{2, \infty}(\mathbb{R})$ such that S^{\prime} has compact support on \mathbb{R} and $S(0)=0$. We combine (2.6) with (2.16), and deduce that $\left\{S\left(U_{n}\right)_{t}\right\}$ is bounded in $X^{\prime}+L^{1}(Q)$ and $\left\{S\left(U_{n}\right)\right\}$ bounded in X. Hence, $\left\{S\left(U_{n}\right)\right\}$ is relatively compact in $L^{1}(Q)$. On the other hand, we choose $S=S_{k}$ such that $S_{k}(z)=z$, if $|z|<k$ and $S(z)=2 k$ sign z, if $|z|>2 k$. From (2.17), we obtain

$$
\begin{aligned}
\text { meas }\left\{\left|U_{n}-U_{m}\right|>\sigma\right\} & \leq \text { meas }\left\{\left|U_{n}\right|>k\right\}+\text { meas }\left\{\left|U_{m}\right|>k\right\}+\text { meas }\left\{\left|S_{k}\left(U_{n}\right)-S_{k}\left(U_{m}\right)\right|>\sigma\right\} \\
& \leq \frac{c}{k}+\text { meas }\left\{\left|S_{k}\left(U_{n}\right)-S_{k}\left(U_{m}\right)\right|>\sigma\right\}
\end{aligned}
$$

where c does not depend of n, m. Thus, up to a subsequence $\left\{u_{n}\right\}$ is a Cauchy sequence in measure, and converges a.e. in Q to a function u. Thus, $\left\{T_{k}\left(U_{n}\right)\right\}$ converges to $T_{k}(U)$ weakly in X, since $\sup _{n}\left\|T_{k}\left(U_{n}\right)\right\|_{X}<$ ∞ for any $k>0$. And $\left\{\left|\nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right)\right|^{p-2} \nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right)\right\}$ converges to some F_{k} weakly in $\left(L^{p^{\prime}}(Q)\right)^{N}$. Furthermore, from (2.18), $\left\{U_{n}\right\}$ strongly converges to U in $L^{\sigma}(Q)$, for any $\sigma<p_{c}$.

3 The convergence theorem

We first recall some properties of the measures, see [22, Lemma 5], [14].
Proposition 3.1 Let $\mu_{s}=\mu_{s}^{+}-\mu_{s}^{-} \in \mathcal{M}_{b}(Q)$, where μ_{s}^{+}and μ_{s}^{-}are concentrated, respectively, on two disjoint sets E^{+}and E^{-}of zero c_{p}^{Q}-capacity. Then, for any $\delta>0$, there exist two compact sets $K_{\delta}^{+} \subseteq E^{+}$ and $K_{\delta}^{-} \subseteq E^{-}$such that

$$
\mu_{s}^{+}\left(E^{+} \backslash K_{\delta}^{+}\right) \leq \delta, \quad \mu_{s}^{-}\left(E^{-} \backslash K_{\delta}^{-}\right) \leq \delta,
$$

and there exist $\psi_{\delta}^{+}, \psi_{\delta}^{-} \in C_{c}^{1}(Q)$ with values in $[0,1]$, such that $\psi_{\delta}^{+}, \psi_{\delta}^{-}=1$ respectively on $K_{\delta}^{+}, K_{\delta}^{-}$, and $\operatorname{supp}\left(\psi_{\delta}^{+}\right) \cap \operatorname{supp}\left(\psi_{\delta}^{-}\right)=\emptyset$, and

$$
\left\|\psi_{\delta}^{+}\right\|_{X}+\left\|\left(\psi_{\delta}^{+}\right)_{t}\right\|_{X^{\prime}+L^{1}(Q)} \leq \delta, \quad\left\|\psi_{\delta}^{-}\right\|_{X}+\left\|\left(\psi_{\delta}^{-}\right)_{t}\right\|_{X^{\prime}+L^{1}(Q)} \leq \delta
$$

There exist decompositions $\left(\psi_{\delta}^{+}\right)_{t}=\left(\psi_{\delta}^{+}\right)_{t}^{1}+\left(\psi_{\delta}^{+}\right)_{t}^{2}$ and $\left(\psi_{\delta}^{-}\right)_{t}=\left(\psi_{\delta}^{-}\right)_{t}^{1}+\left(\psi_{\delta}^{-}\right)_{t}^{2}$ in $X^{\prime}+L^{1}(Q)$, such that

$$
\begin{equation*}
\left\|\left(\psi_{\delta}^{+}\right)_{t}^{1}\right\|_{X^{\prime}} \leq \frac{\delta}{3}, \quad\left\|\left(\psi_{\delta}^{+}\right)_{t}^{2}\right\|_{1, Q} \leq \frac{\delta}{3}, \quad\left\|\left(\psi_{\delta}^{-}\right)_{t}^{1}\right\|_{X^{\prime}} \leq \frac{\delta}{3}, \quad\left\|\left(\psi_{\delta}^{-}\right)_{t}^{2}\right\|_{1, Q} \leq \frac{\delta}{3} \tag{3.1}
\end{equation*}
$$

Both $\left\{\psi_{\delta}^{+}\right\}$and $\left\{\psi_{\delta}^{-}\right\}$converge to 0 , weak-* in $L^{\infty}(Q)$, and strongly in $L^{1}(Q)$ and up to subsequences, a.e. in Q, as δ tends to 0 .
Moreover if ρ_{n} and η_{n} are as in Theorem 1.1, we have, for any $\delta, \delta_{1}, \delta_{2}>0$,

$$
\begin{align*}
\int_{Q} \psi_{\delta}^{-} d \rho_{n}+\int_{Q} \psi_{\delta}^{+} d \eta_{n}=\omega(n, \delta), & \int_{Q} \psi_{\delta}^{-} d \mu_{s}^{+} \leq \delta, \quad \int_{Q} \psi_{\delta}^{+} d \mu_{s}^{-} \leq \delta \tag{3.2}\\
\int_{Q}\left(1-\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}\right) d \rho_{n}=\omega\left(n, \delta_{1}, \delta_{2}\right), & \int_{Q}\left(1-\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}\right) d \mu_{s}^{+} \leq \delta_{1}+\delta_{2} \tag{3.3}\\
\int_{Q}\left(1-\psi_{\delta_{1}}^{-} \psi_{\delta_{2}}^{-}\right) d \eta_{n}=\omega\left(n, \delta_{1}, \delta_{2}\right), & \int_{Q}\left(1-\psi_{\delta_{1}}^{-} \psi_{\delta_{2}}^{-}\right) d \mu_{s}^{-} \leq \delta_{1}+\delta_{2} \tag{3.4}
\end{align*}
$$

Hereafter, if $n, \varepsilon, \ldots, \nu$ are real numbers, and a function ϕ depends on $n, \varepsilon, \ldots, \nu$ and eventual other parameters $\alpha, \beta, . ., \gamma$, and $n \rightarrow n_{0}, \varepsilon \rightarrow \varepsilon_{0}, . ., \nu \rightarrow \nu_{0}$, we write $\phi=\omega(n, \varepsilon, . ., \nu)$, then this means that, for fixed $\alpha, \beta, . ., \gamma$, there holds $\varlimsup_{\nu \rightarrow \nu_{0}} . . \varlimsup_{\varepsilon \rightarrow \varepsilon_{0}} \overline{\lim }_{n \rightarrow n_{0}}|\phi|=0$. In the same way, $\phi \leq \omega(n, \varepsilon, \delta, \ldots, \nu)$ means $\varlimsup_{\nu \rightarrow \nu_{0}} . . \varlimsup_{\varepsilon \rightarrow \varepsilon_{0}} \varlimsup_{n \rightarrow n_{0}} \phi \leq 0$, and $\phi \geq \omega(n, \varepsilon, . ., \nu)$ means $-\phi \leq \omega(n, \varepsilon, . ., \nu)$.

Remark 3.2 In the sequel we recall a convergence property still used in [14]: If $\left\{b_{1, n}\right\}$ is a sequence in $L^{1}(Q)$ converging to b_{1} weakly in $L^{1}(Q)$ and $\left\{b_{2, n}\right\}$ a bounded sequence in $L^{\infty}(Q)$ converging to b_{2}, a.e. in Q, then $\lim _{n \rightarrow \infty} \int_{Q} b_{1, n} b_{2, n}=\int_{Q} b_{1} b_{2}$.

Next we prove Thorem 1.1.
Scheme of the proof. Let $\left\{\mu_{n}\right\},\left\{u_{0, n}\right\}$ and $\left\{u_{n}\right\}$ satisfy the assumptions of Theorem 1.1. Then we can apply Proposition 2.10. Setting $U_{n}=u_{n}-h_{n}$, up to subsequences, $\left\{u_{n}\right\}$ converges a.e. in Q to some function u, and $\left\{U_{n}\right\}$ converges a.e. to $U=u-h$, such that $T_{k}(U) \in X$ for any $k>0$, and $U \in L^{\sigma}\left((0, T) ; W_{0}^{1, \sigma}(\Omega)\right) \cap L^{\infty}\left((0, T) ; L^{1}(\Omega)\right)$ for every $\sigma \in\left[1, m_{c}\right)$. And $\left\{U_{n}\right\}$ satisfies the conclusions (i) to (iv) of Proposition 2.10. We have

$$
\begin{aligned}
\mu_{n} & =\left(f_{n}-\operatorname{div} g_{n}+\left(h_{n}\right)_{t}\right)+\left(\rho_{n}^{1}-\operatorname{div} \rho_{n}^{2}\right)-\left(\eta_{n}^{1}-\operatorname{div} \eta_{n}^{2}\right)+\rho_{n, s}-\eta_{n, s} \\
& =\mu_{n, 0}+\left(\rho_{n, s}-\eta_{n, s}\right)^{+}-\left(\rho_{n, s}-\eta_{n, s}\right)^{-}
\end{aligned}
$$

where

$$
\begin{equation*}
\mu_{n, 0}=\lambda_{n, 0}+\rho_{n, 0}-\eta_{n, 0}, \quad \text { with } \lambda_{n, 0}=f_{n}-\operatorname{div} g_{n}+\left(h_{n}\right)_{t}, \quad \rho_{n, 0}=\rho_{n}^{1}-\operatorname{div} \rho_{n}^{2}, \quad \eta_{n, 0}=\eta_{n}^{1}-\operatorname{div} \eta_{n}^{2} \tag{3.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\rho_{n, 0}, \eta_{n, 0} \in \mathcal{M}_{b}^{+}(Q) \cap \mathcal{M}_{0}(Q), \quad \text { and } \quad \rho_{n} \geq \rho_{n, 0}, \quad \eta_{n} \geq \eta_{n, 0} \tag{3.6}
\end{equation*}
$$

Let E^{+}, E^{-}be the sets where, respectively, μ_{s}^{+}and μ_{s}^{-}are concentrated. For any $\delta_{1}, \delta_{2}>0$, let $\psi_{\delta_{1}}^{+}, \psi_{\delta_{2}}^{+}$and $\psi_{\delta_{1}}^{-}, \psi_{\delta_{2}}^{-}$as in Proposition 3.1 and set

$$
\Phi_{\delta_{1}, \delta_{2}}=\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}+\psi_{\delta_{1}}^{-} \psi_{\delta_{2}}^{-}
$$

Suppose that we can prove the two estimates, near E

$$
\begin{equation*}
I_{1}:=\int_{\left\{\left|U_{n}\right| \leq k\right\}} \Phi_{\delta_{1}, \delta_{2}} A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right) \leq \omega\left(n, \nu, \delta_{1}, \delta_{2}\right) \tag{3.7}
\end{equation*}
$$

and far from E,

$$
\begin{equation*}
I_{2}:=\int_{\left\{\left|U_{n}\right| \leq k\right\}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right) \leq \omega\left(n, \nu, \delta_{1}, \delta_{2}\right) \tag{3.8}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
\varlimsup_{\left\{\left|U_{n}\right| \leq k\right\}} \int_{n, \nu} A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right) \leq 0, \tag{3.9}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \int_{\left\{\left|U_{n}\right| \leq k\right\}} A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left(U_{n}-T_{k}(U)\right) \leq 0, \tag{3.10}
\end{equation*}
$$

since $\left\{\left\langle T_{k}(U)\right\rangle_{\nu}\right\}$ converges to $T_{k}(U)$ in X. On the other hand, from the weak convergence of $\left\{T_{k}\left(U_{n}\right)\right\}$ to $T_{k}(U)$ in X, we verify that

$$
\int_{\left\{\left|U_{n}\right| \leq k\right\}} A\left(x, t, \nabla\left(T_{k}(U)+h_{n}\right)\right) \cdot \nabla\left(T_{k}\left(U_{n}\right)-T_{k}(U)\right)=\omega(n) .
$$

Thus we get

$$
\int_{\left\{\left|U_{n}\right| \leq k\right\}}\left(A\left(x, t, \nabla u_{n}\right)-A\left(x, t, \nabla\left(T_{k}(U)+h_{n}\right)\right)\right) \cdot \nabla\left(u_{n}-\left(T_{k}(U)+h_{n}\right)\right)=\omega(n) .
$$

Then, it is easy to show that, up to a subsequence,

$$
\begin{equation*}
\left\{\nabla u_{n}\right\} \text { converges to } \nabla u, \quad \text { a.e. in } Q . \tag{3.11}
\end{equation*}
$$

Therefore, $\left\{A\left(x, t, \nabla u_{n}\right)\right\}$ converges to $A(x, t, \nabla u)$ weakly in $\left(L^{p^{\prime}}(Q)\right)^{N}$; and from (3.10) we find

$$
\varlimsup_{n \rightarrow \infty} \int_{Q} A\left(x, t, \nabla u_{n}\right) \cdot \nabla T_{k}\left(U_{n}\right) \leq \int_{Q} A(x, t, \nabla u) \nabla T_{k}(U)
$$

Otherwise, $\left\{A\left(x, t, \nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right)\right)\right\}$ converges weakly in $\left(L^{p^{\prime}}(Q)\right)^{N}$ to some F_{k}, from Proposition 2.10, and we obtain that $F_{k}=A\left(x, t, \nabla\left(T_{k}(U)+h\right)\right)$. Hence

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty} \int_{Q} A\left(x, t, \nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right)\right) \cdot \nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right) \\
& \leq \varlimsup_{n \rightarrow \infty} \int_{Q} A\left(x, t, \nabla u_{n}\right) \cdot \nabla T_{k}\left(U_{n}\right)+\varlimsup_{n \rightarrow \infty} \int_{Q} A\left(x, t, \nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right)\right) \cdot \nabla h_{n} \\
& \leq \int_{Q} A\left(x, t, \nabla\left(T_{k}(U)+h\right)\right) \cdot \nabla\left(T_{k}(U)+h\right)
\end{aligned}
$$

As a consequence

$$
\begin{equation*}
\left\{T_{k}\left(U_{n}\right)\right\} \text { converges to } T_{k}(U), \text { strongly in } X, \quad \forall k>0 \tag{3.12}
\end{equation*}
$$

Then to finish the proof we have to check that u is a solution of (1.1).
In order to prove (3.7) we need a first Lemma, inspired of [14, Lemma 6.1]. It extends the results of [22, Lemma 6 and Lemma 7] relative to sequences of solutions with smooth data:

Lemma 3.3 Let $\psi_{1, \delta}, \psi_{2, \delta} \in C^{1}(Q)$ be uniformly bounded in $W^{1, \infty}(Q)$ with values in $[0,1]$, and such that $\int_{Q} \psi_{1, \delta} d \mu_{s}^{-} \leq \delta$ and $\int_{Q} \psi_{2, \delta} d \mu_{s}^{+} \leq \delta$. Let $\left\{u_{n}\right\}$ satisfying the assumptions of Theorem 1.1, and $U_{n}=u_{n}-h_{n}$. Then

$$
\begin{array}{r}
\frac{1}{m} \int_{\left\{m \leq U_{n}<2 m\right\}}\left|\nabla u_{n}\right|^{p} \psi_{2, \delta}=\omega(n, m, \delta), \quad \frac{1}{m} \int_{\left\{m \leq U_{n}<2 m\right\}}\left|\nabla U_{n}\right|^{p} \psi_{2, \delta}=\omega(n, m, \delta), \\
\frac{1}{m} \int_{-2 m<U_{n} \leq-m}\left|\nabla u_{n}\right|^{p} \psi_{1, \delta}=\omega(n, m, \delta), \quad \frac{1}{m} \int_{-2 m<U_{n} \leq-m}\left|\nabla U_{n}\right|^{p} \psi_{1, \delta}=\omega(n, m, \delta), \tag{3.14}
\end{array}
$$

and for any $k>0$,

$$
\begin{equation*}
\int_{\left\{m \leq U_{n}<m+k\right\}}\left|\nabla u_{n}\right|^{p} \psi_{2, \delta}=\omega(n, m, \delta), \quad \int_{\left\{m \leq U_{n}<m+k\right\}}\left|\nabla U_{n}\right|^{p} \psi_{2, \delta}=\omega(n, m, \delta), \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\left\{-m-k<U_{n} \leq-m\right\}}\left|\nabla u_{n}\right|^{p} \psi_{1, \delta}=\omega(n, m, \delta), \quad \int_{\left\{-m-k<U_{n} \leq-m\right\}}\left|\nabla U_{n}\right|^{p} \psi_{1, \delta}=\omega(n, m, \delta) . \tag{3.16}
\end{equation*}
$$

Proof. (i) Proof of (3.13), (3.14). Set for any $r \in \mathbb{R}$ and any $m, \ell \geq 1$

$$
\begin{gathered}
S_{m, \ell}(r)=\int_{0}^{r}\left(\frac{-m+\tau}{m} \chi_{[m, 2 m]}(\tau)+\chi_{(2 m, 2 m+\ell]}(\tau)+\frac{4 m+2 h-\tau}{2 m+\ell} \chi_{(2 m+\ell, 4 m+2 h]}(\tau)\right) d \tau \\
S_{m}(r)=\int_{0}^{r}\left(\frac{-m+\tau}{m} \chi_{[m, 2 m]}(\tau)+\chi_{(2 m, \infty)}(\tau)\right) d \tau
\end{gathered}
$$

Note that $S_{m, \ell}^{\prime \prime}=\chi_{[m, 2 m]} / m-\chi_{[2 m+\ell, 2(2 m+\ell)]} /(2 m+\ell)$. We choose $(\xi, J, S)=\left(\psi_{2, \delta}, T_{1}, S_{m, \ell}\right)$ as test functions in (2.15) for u_{n}, and observe that, from (3.5),

$$
\begin{equation*}
\widehat{\mu_{n, 0}}=\mu_{n, 0}-\left(h_{n}\right)_{t}=\widehat{\lambda_{n, 0}}+\rho_{n, 0}-\eta_{n, 0}=f_{n}-\operatorname{div} g_{n}+\rho_{n, 0}-\eta_{n, 0} . \tag{3.17}
\end{equation*}
$$

Thus we can write $\sum_{i=1}^{6} A_{i} \leq \sum_{i=7}^{12} A_{i}$, where

$$
\begin{aligned}
& A_{1}=-\int_{\Omega} \psi_{2, \delta}(0) T_{1}\left(S_{m, \ell}\left(u_{0, n}\right)\right) S_{m, \ell}\left(u_{0, n}\right) d x, \quad A_{2}=-\int_{Q}\left(\psi_{2, \delta}\right)_{t} \overline{T_{1}}\left(S_{m, \ell}\left(U_{n}\right)\right), \\
& A_{3}=\int_{Q} S_{m, \ell}^{\prime}\left(U_{n}\right) T_{1}\left(S_{m, \ell}\left(U_{n}\right)\right) A\left(x, t, \nabla u_{n}\right) \nabla \psi_{2, \delta}, \quad A_{4}=\int_{Q}\left(S_{m, \ell}^{\prime}\left(U_{n}\right)\right)^{2} \psi_{2, \delta} T_{1}^{\prime}\left(S_{m, \ell}\left(U_{n}\right)\right) A\left(x, t, \nabla u_{n}\right) \nabla U_{n}, \\
& A_{5}=\frac{1}{m} \int_{\left\{m \leq U_{n} \leq 2 m\right\}} \psi_{2, \delta} T_{1}\left(S_{m, \ell}\left(U_{n}\right)\right) A\left(x, t, \nabla u_{n}\right) \nabla U_{n}, \\
& A_{6}=-\frac{1}{2 m+\ell} \int_{\left\{2 m+\ell \leq U_{n}<2(2 m+\ell)\right\}} \psi_{2, \delta} A\left(x, t, \nabla u_{n}\right) \nabla U_{n}, \\
& A_{7}=\int_{Q} S_{m, \ell}^{\prime}\left(U_{n}\right) T_{1}\left(S_{m, \ell}\left(U_{n}\right)\right) \psi_{2, \delta} f_{n}, \quad A_{8}=\int_{Q} S_{m, \ell}^{\prime}\left(U_{n}\right) T_{1}\left(S_{m, \ell}\left(U_{n}\right)\right) g_{n} . \nabla \psi_{2, \delta}, \\
& A_{9}=\int_{Q}\left(S_{m, \ell}^{\prime}\left(U_{n}\right)\right)^{2} T_{1}^{\prime}\left(S_{m, \ell}\left(U_{n}\right)\right) \psi_{2, \delta} g_{n} . \nabla U_{n}, A_{10}=\frac{1}{m} \int_{m \leq U_{n} \leq 2 m} T_{1}\left(S_{m, \ell}\left(U_{n}\right)\right) \psi_{2, \delta} g_{n} . \nabla U_{n}, \\
& A_{11}=-\frac{1}{2 m+\ell} \psi_{\left\{2 m+\ell \leq U_{n}<2(2 m+\ell)\right\}}
\end{aligned}
$$

Since $\left\|S_{m, \ell}\left(u_{0, n}\right)\right\|_{1, \Omega} \leq \int_{\left\{m \leq u_{0, n}\right\}} u_{0, n} d x$, we find $A_{1}=\omega(\ell, n, m)$. Otherwise

$$
\left|A_{2}\right| \leq\left\|\psi_{2, \delta}\right\|_{W^{1, \infty}(Q)} \int_{\left\{m \leq U_{n}\right\}} U_{n}, \quad\left|A_{3}\right| \leq\left\|\psi_{2, \delta}\right\|_{W^{1, \infty}(Q)} \int_{\left\{m \leq U_{n}\right\}}\left(|a|+\Lambda_{2}\left|\nabla u_{n}\right|^{p-1}\right)
$$

which imply $A_{2}=\omega(\ell, n, m)$ and $A_{3}=\omega(\ell, n, m)$. Using (2.3) for u_{n}, we have

$$
A_{6}=-\int_{Q} \psi_{2, \delta} d\left(\rho_{n, s}-\eta_{n, s}\right)^{+}+\omega(\ell)=\omega(\ell, n, m, \delta)
$$

Hence $A_{6}=\omega(\ell, n, m, \delta)$, since $\left(\rho_{n, s}-\eta_{n, s}\right)^{+}$converges to μ_{s}^{+}as $n \rightarrow \infty$ in the narrow topology, and $\int_{Q} \psi_{2, \delta} d \mu_{s}^{+} \leq \delta$. We also obtain $A_{11}=\omega(\ell)$ from (2.10).
Now $\left\{S_{m, \ell}^{\prime}\left(U_{n}\right) T_{1}\left(S_{m, \ell}\left(U_{n}\right)\right)\right\}_{\ell}$ converges to $S_{m}^{\prime}\left(U_{n}\right) T_{1}\left(S_{m}\left(U_{n}\right)\right),\left\{S_{m}^{\prime}\left(U_{n}\right) T_{1}\left(S_{m}\left(U_{n}\right)\right)\right\}_{n}$ converges to $S_{m}^{\prime}(U)$ $T_{1}\left(S_{m}(U)\right),\left\{S_{m}^{\prime}(U) T_{1}\left(S_{m}(U)\right)\right\}_{m}$ converges to 0 , weak-* in $L^{\infty}(Q)$ and $\left\{f_{n}\right\}$ converges to f weakly in $L^{1}(Q)$, $\left\{g_{n}\right\}$ converges to g strongly in $\left(L^{p^{\prime}}(Q)\right)^{N}$. From Remark 3.2, we obtain

$$
\begin{aligned}
& A_{7}=\int_{Q} S_{m}^{\prime}\left(U_{n}\right) T_{1}\left(S_{m}\left(U_{n}\right)\right) \psi_{2, \delta} f_{n}+\omega(\ell)=\int_{Q} S_{m}^{\prime}(U) T_{1}\left(S_{m}(U)\right) \psi_{2, \delta} f+\omega(\ell, n)=\omega(\ell, n, m), \\
& A_{8}=\int_{Q} S_{m}^{\prime}\left(U_{n}\right) T_{1}\left(S_{m}\left(U_{n}\right)\right) g_{n} \cdot \nabla \psi_{2, \delta}+\omega(\ell)=\int_{Q} S_{m}^{\prime}(U) T_{1}\left(S_{m}(U)\right) g \nabla \psi_{2, \delta}+\omega(\ell, n)=\omega(\ell, n, m) .
\end{aligned}
$$

Otherwise, $A_{12} \leq \int_{Q} \psi_{2, \delta} d \rho_{n}$, and $\left\{\int_{Q} \psi_{2, \delta} d \rho_{n}\right\}$ converges to $\int_{Q} \psi_{2, \delta} d \mu_{s}^{+}$, thus $A_{12} \leq \omega(\ell, n, m, \delta)$.
Using Holder inequality and the condition (1.2), we have

$$
g_{n} \cdot \nabla U_{n}-A\left(x, t, \nabla u_{n}\right) \nabla U_{n} \leq c_{1}\left(\left|g_{n}\right|^{p^{\prime}}+\left|\nabla h_{n}\right|^{p}+|a|^{p^{\prime}}\right)
$$

with $c_{1}=c_{1}\left(p, \Lambda_{1}, \Lambda_{2}\right)$, which implies

$$
A_{9}-A_{4} \leq c_{1} \int_{Q}\left(S_{m, \ell}^{\prime}\left(U_{n}\right)\right)^{2} T_{1}^{\prime}\left(S_{m, \ell}\left(U_{n}\right)\right) \psi_{2, \delta}\left(\left|g_{n}\right|^{p^{\prime}}+\left|h_{n}\right|^{p}+|a|^{p^{\prime}}\right)=\omega(\ell, n, m) .
$$

Similarly we also show that $A_{10}-A_{5} / 2 \leq \omega(\ell, n, m)$. Combining the estimates, we get $A_{5} / 2 \leq \omega(\ell, n, m, \delta)$. Using Holder inequality we have

$$
A\left(x, t, \nabla u_{n}\right) \nabla U_{n} \geq \frac{\Lambda_{1}}{2}\left|\nabla u_{n}\right|^{p}-c_{2}\left(|a|^{p^{\prime}}+\left|\nabla h_{n}\right|^{p}\right) .
$$

with $c_{2}=c_{2}\left(p, \Lambda_{1}, \Lambda_{2}\right)$, which implies

$$
\frac{1}{m} \int_{\left\{m \leq U_{n}<2 m\right\}}\left|\nabla u_{n}\right|^{p} \psi_{2, \delta} T_{1}\left(S_{m, \ell}\left(U_{n}\right)\right)=\omega(\ell, n, m, \delta) .
$$

Note that for all $m>4, S_{m, \ell}(r) \geq 1$ for any $r \in\left[\frac{3}{2} m, 2 m\right]$; hence $T_{1}\left(S_{m, \ell}(r)\right)=1$. So,

$$
\frac{1}{m} \int_{\left\{\frac{3}{2} m \leq U_{n}<2 m\right\}}\left|\nabla u_{n}\right|^{p} \psi_{2, \delta}=\omega(\ell, n, m, \delta) .
$$

Since $\left|\nabla U_{n}\right|^{p} \leq 2^{p-1}\left|\nabla u_{n}\right|^{p}+2^{p-1}\left|\nabla h_{n}\right|^{p}$, there also holds

$$
\frac{1}{m} \int_{\left\{\frac{3}{2} m \leq U_{n}<2 m\right\}}\left|\nabla U_{n}\right|^{p} \psi_{2, \delta}=\omega(\ell, n, m, \delta) .
$$

We deduce (3.13) by summing on each set $\left\{\left(\frac{4}{3}\right)^{i} m \leq U_{n} \leq\left(\frac{4}{3}\right)^{i+1} m\right\}$ for $i=0,1,2$. Similarly, we can choose $(\xi, \psi, S)=\left(\psi_{1, \delta}, T_{1}, \tilde{S}_{m, \ell}\right)$ as test functions in (2.15) for u_{n}, where $\tilde{S}_{m, \ell}(r)=S_{m, \ell}(-r)$, and we obtain (3.14).
(ii) Proof of (3.15), (3.16). We set, for any $k, m, \ell \geq 1$,

$$
S_{k, m, \ell}(r)=\int_{0}^{r}\left(T_{k}\left(\tau-T_{m}(\tau)\right) \chi_{[m, k+m+\ell]}+k \frac{2(k+\ell+m)-\tau}{k+m+\ell} \chi_{(k+m+\ell, 2(k+m+\ell)]}\right) d \tau
$$

$$
S_{k, m}(r)=\int_{0}^{r} T_{k}\left(\tau-T_{m}(\tau)\right) \chi_{[m, \infty)} d \tau
$$

We choose $(\xi, \psi, S)=\left(\psi_{2, \delta}, T_{1}, S_{k, m, \ell}\right)$ as test functions in (2.15) for u_{n}. In the same way we also obtain

$$
\int_{\left\{m \leq U_{n}<m+k\right\}}\left|\nabla u_{n}\right|^{p} \psi_{2, \delta} T_{1}\left(S_{k, m, \ell}\left(U_{n}\right)\right)=\omega(\ell, n, m, \delta)
$$

Note that $T_{1}\left(S_{k, m, \ell}(r)\right)=1$ for any $r \geq m+1$, thus $\int_{\left\{m+1 \leq U_{n}<m+k\right\}}\left|\nabla u_{n}\right|^{p} \psi_{2, \delta}=\omega(n, m, \delta)$, which implies (3.15) by changing m into $m-1$. Similarly, we obtain (3.16).

Next we look at the behaviour near E.
Lemma 3.4 Estimate (3.7) holds.
Proof. There holds

$$
I_{1}=\int_{Q} \Phi_{\delta_{1}, \delta_{2}} A\left(x, t, \nabla u_{n}\right) \cdot \nabla T_{k}\left(U_{n}\right)-\int_{\left\{\left|U_{n}\right| \leq k\right\}} \Phi_{\delta_{1}, \delta_{2}} A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left\langle T_{k}(U)\right\rangle_{\nu}
$$

From Proposition 2.10, (iv), $\left\{A\left(x, t, \nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right)\right) . \nabla\left\langle T_{k}(U)\right\rangle_{\nu}\right\}$ converges weakly in $L^{1}(Q)$ to $F_{k} \nabla\left\langle T_{k}(U)\right\rangle_{\nu}$. And $\left\{\chi_{\left\{\left|U_{n}\right| \leq k\right\}}\right\}$ converges to $\chi_{|U| \leq k}$, a.e. in Q, and $\Phi_{\delta_{1}, \delta_{2}}$ converges to 0 a.e. in Q as $\delta_{1} \rightarrow 0$, and $\Phi_{\delta_{1}, \delta_{2}}$ takes its values in $[0,1]$. From Remark 3.2, we have

$$
\begin{aligned}
& \quad \int_{\left\{\left|U_{n}\right| \leq k\right\}} \Phi_{\delta_{1}, \delta_{2}} A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left\langle T_{k}(U)\right\rangle_{\nu}=\int_{Q} \chi_{\left\{\left|U_{n}\right| \leq k\right\}} \Phi_{\delta_{1}, \delta_{2}} A\left(x, t, \nabla\left(T_{k}\left(U_{n}\right)+h_{n}\right)\right) \cdot \nabla\left\langle T_{k}(U)\right\rangle_{\nu} \\
& =\int_{Q} \chi_{|U| \leq k} \Phi_{\delta_{1}, \delta_{2}} F_{k} \cdot \nabla\left\langle T_{k}(U)\right\rangle_{\nu}+\omega(n)=\omega\left(n, \nu, \delta_{1}\right)
\end{aligned}
$$

Therefore, if we prove that

$$
\begin{equation*}
\int_{Q} \Phi_{\delta_{1}, \delta_{2}} A\left(x, t, \nabla u_{n}\right) \cdot \nabla T_{k}\left(U_{n}\right) \leq \omega\left(n, \delta_{1}, \delta_{2}\right) \tag{3.18}
\end{equation*}
$$

then we deduce (3.7). As noticed in [14, 22], it is precisely for this estimate that we need the double cut $\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}$. To do this, we set, for any $m>k>0$, and any $r \in \mathbb{R}$,

$$
\hat{S}_{k, m}(r)=\int_{0}^{r}\left(k-T_{k}(\tau)\right) H_{m}(\tau) d \tau
$$

where H_{m} is defined at (2.14). Hence supp $\hat{S}_{k, m} \subset[-2 m, k]$; and $\hat{S}_{k, m}^{\prime \prime}=-\chi_{[-k, k]}+\frac{2 k}{m} \chi_{[-2 m,-m]}$. We choose $(\varphi, S)=\left(\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}, \hat{S}_{k, m}\right)$ as test functions in (2.2). From (3.17), we can write

$$
A_{1}+A_{2}-A_{3}+A_{4}+A_{5}+A_{6}=0
$$

where

$$
\begin{gathered}
A_{1}=-\int_{Q}\left(\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}\right)_{t} \hat{S}_{k, m}\left(U_{n}\right), \quad A_{2}=\int_{Q}\left(k-T_{k}\left(U_{n}\right)\right) H_{m}\left(U_{n}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left(\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}\right) \\
A_{3}=\int_{Q} \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+} A\left(x, t, \nabla u_{n}\right) \cdot \nabla T_{k}\left(U_{n}\right), \quad A_{4}=\frac{2 k}{m} \int_{\left\{-2 m<U_{n} \leq-m\right\}} \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+} A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n} \\
A_{5}=-\int_{Q}\left(k-T_{k}\left(U_{n}\right)\right) H_{m}\left(U_{n}\right) \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+} d \widehat{\lambda_{n, 0}}, \quad A_{6}=\int_{Q}\left(k-T_{k}\left(U_{n}\right)\right) H_{m}\left(U_{n}\right) \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+} d\left(\eta_{n, 0}-\rho_{n, 0}\right) .
\end{gathered}
$$

We first estimate A_{3}. As in [22, p.585], since $\left\{\hat{S}_{k, m}\left(U_{n}\right)\right\}$ converges to $\hat{S}_{k, m}(U)$ weakly in X, and $\hat{S}_{k, m}(U) \in L^{\infty}(Q)$, using (3.1), we find

$$
A_{1}=-\int_{Q}\left(\psi_{\delta_{1}}^{+}\right)_{t} \psi_{\delta_{2}}^{+} \hat{S}_{k, m}(U)-\int_{Q} \psi_{\delta_{1}}^{+}\left(\psi_{\delta_{2}}^{+}\right)_{t} \hat{S}_{k, m}(U)+\omega(n)=\omega\left(n, \delta_{1}\right) .
$$

Next consider A_{2}. Notice that $U_{n}=T_{2 m}\left(U_{n}\right)$ on supp $\left(H_{m}\left(U_{n}\right)\right)$. From Proposition 2.10, (iv), the sequence $\left\{A\left(x, t, \nabla\left(T_{2 m}\left(U_{n}\right)+h_{n}\right)\right) \cdot \nabla\left(\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}\right)\right\}$converges to $F_{2 m} \cdot \nabla\left(\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}\right)$weakly in $L^{1}(Q)$. From Remark 3.2 and the convergence of $\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}$in X to 0 as δ_{1} tends to 0 , we find

$$
A_{2}=\int_{Q}\left(k-T_{k}(U)\right) H_{m}(U) F_{2 m} \cdot \nabla\left(\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}\right)+\omega(n)=\omega\left(n, \delta_{1}\right) .
$$

Then consider A_{4}. Then for some $c_{1}=c_{1}\left(p, \Lambda_{2}\right)$,

$$
\left|A_{4}\right| \leq c_{1} \frac{2 k}{m} \int_{\left\{-2 m<U_{n} \leq-m\right\}}\left(\left|\nabla u_{n}\right|^{p}+\left|\nabla U_{n}\right|^{p}+|a|^{p^{\prime}}\right) \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+} .
$$

Since $\psi_{\delta_{1}}^{+}$takes its values in [0, 1] , from Lemma 3.3, we get in particular $A_{4}=\omega\left(n, \delta_{1}, m, \delta_{2}\right)$.
Now we estimate A_{5}. The sequence $\left\{\left(k-T_{k}\left(U_{n}\right)\right) H_{m}\left(U_{n}\right) \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}\right\}$converges to $\left(k-T_{k}(U)\right) H_{m}(U) \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}$, weakly in X, and $\left\{\left(k-T_{k}\left(U_{n}\right)\right) H_{m}\left(U_{n}\right)\right\}$ converges to $\left(k-T_{k}(U)\right) H_{m}(U)$, weak-* in $L^{\infty}(Q)$ and a.e. in Q. Otherwise $\left\{f_{n}\right\}$ converges to f weakly in $L^{1}(Q)$ and $\left\{g_{n}\right\}$ converges to g strongly in $\left(L^{p^{\prime}}(Q)\right)^{N}$. From Remark 3.2 and the convergence of $\psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+}$to 0 in X and a.e. in Q as $\delta_{1} \rightarrow 0$, we deduce that

$$
A_{5}=-\int_{Q}\left(k-T_{k}\left(U_{n}\right)\right) H_{m}(U) \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+} d \widehat{\nu_{0}}+\omega(n)=\omega\left(n, \delta_{1}\right),
$$

where $\widehat{\nu_{0}}=f-\operatorname{div} g$.
Finally $A_{6} \leq 2 k \int_{Q} \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+} d \eta_{n}$; using (3.2) we also find $A_{6} \leq \omega\left(n, \delta_{1}, m, \delta_{2}\right)$. By addition, since A_{3} does not depend on m, we obtain

$$
A_{3}=\int_{Q} \psi_{\delta_{1}}^{+} \psi_{\delta_{2}}^{+} A\left(x, t, \nabla u_{n}\right) \nabla T_{k}\left(U_{n}\right) \leq \omega\left(n, \delta_{1}, \delta_{2}\right) .
$$

Arguying as before with $\left(\psi_{\delta_{1}}^{-} \psi_{\delta_{2}}^{-}, \check{S}_{k, m}\right)$ as test function in (2.2), where $\check{S}_{k, m}(r)=-\hat{S}_{k, m}(-r)$, we get in the same way

$$
\int_{Q} \psi_{\delta_{1}}^{-} \psi_{\delta_{2}}^{-} A\left(x, t, \nabla u_{n}\right) \nabla T_{k}\left(U_{n}\right) \leq \omega\left(n, \delta_{1}, \delta_{2}\right) .
$$

Then, (3.18) holds.
Next we look at the behaviour far from E.
Lemma 3.5 . Estimate (3.8) holds.
Proof. Here we estimate I_{2}; we can write

$$
I_{2}=\int_{\left\{\left|U_{n}\right| \leq k\right\}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) A\left(x, t, \nabla u_{n}\right) \nabla\left(T_{k}\left(U_{n}\right)-\left\langle T_{k}(U)\right\rangle_{\nu}\right) .
$$

Following the ideas of [25], used also in [22], we define, for any $r \in \mathbb{R}$ and $\ell>2 k>0$,

$$
R_{n, \nu, \ell}=T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)-T_{\ell-k}\left(U_{n}-T_{k}\left(U_{n}\right)\right)
$$

Recall that $\left\|\left\langle T_{k}(U)\right\rangle_{\nu}\right\|_{\infty, Q} \leq k$, and observe that

$$
\begin{array}{cl}
R_{n, \nu, \ell}=2 k \operatorname{sign}\left(U_{n}\right) \quad \text { in }\left\{\left|U_{n}\right| \geq \ell+2 k\right\}, \quad\left|R_{n, \nu, \ell}\right| \leq 4 k, & R_{n, \nu, \ell}=\omega(n, \nu, \ell) \text { a.e. in } Q \\
\lim _{n \rightarrow \infty} R_{n, \nu, \ell}=T_{\ell+k}\left(U-\left\langle T_{k}(U)\right\rangle_{\nu}\right)-T_{\ell-k}\left(U-T_{k}(U)\right), \quad \text { a.e. in } Q, \text { and weakly in } X . \tag{3.20}
\end{array}
$$

Next consider $\xi_{1, n_{1}} \in C_{c}^{\infty}([0, T)), \xi_{2, n_{2}} \in C_{c}^{\infty}((0, T])$ with values in $[0,1]$, such that $\left(\xi_{1, n_{1}}\right)_{t} \leq 0$ and $\left(\xi_{2, n_{2}}\right)_{t}$ ≥ 0; and $\left\{\xi_{1, n_{1}}(t)\right\}$ (resp. $\left\{\xi_{1, n_{2}}(t)\right\}$) converges to 1 , for any $t \in[0, T)$ (resp. $t \in(0, T]$); and moreover, for any $a \in C\left([0, T] ; L^{1}(\Omega)\right),\left\{\int_{Q} a\left(\xi_{1, n_{1}}\right)_{t}\right\}$ and $\int_{Q} a\left(\xi_{2, n_{2}}\right)_{t}$ converge respectively to $-\int_{\Omega} a(., T) d x$ and $\int_{\Omega} a(., 0) d x$. We set

$$
\varphi=\varphi_{n, n_{1}, n_{2}, l_{1}, l_{2}, \ell}=\xi_{1, n_{1}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\right]_{l_{1}}-\xi_{2, n_{2}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[T_{\ell-k}\left(U_{n}-T_{k}\left(U_{n}\right)\right)\right]_{-l_{2}}
$$

We observe that

$$
\begin{equation*}
\varphi-\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) R_{n, \nu, \ell}=\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right) \quad \text { in norm in } X \text { and a.e. in } Q . \tag{3.21}
\end{equation*}
$$

We can choose $(\varphi, S)=\left(\varphi_{n, n_{1}, n_{2}, l_{1}, l_{2}, \ell}, \overline{H_{m}}\right)$ as test functions in (2.7) for u_{n}, where $\overline{H_{m}}$ is defined at (2.14), with $m>\ell+2 k$. We obtain

$$
A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=A_{6}+A_{7}
$$

with

$$
\begin{aligned}
& A_{1}=\int_{\Omega} \varphi(T) \overline{H_{m}}\left(U_{n}(T)\right) d x, \quad A_{2}=-\int_{\Omega} \varphi(0) \overline{H_{m}}\left(u_{0, n}\right) d x, \quad A_{3}=-\int_{Q} \varphi_{t} \overline{H_{m}}\left(U_{n}\right), \\
& A_{4}=\int_{Q} H_{m}\left(U_{n}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla \varphi, \quad A_{5}=\int_{Q} \varphi H_{m}^{\prime}\left(U_{n}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n}, \\
& A_{6}=\int_{Q} H_{m}\left(U_{n}\right) \varphi d \widehat{\lambda_{n, 0}}, \quad A_{7}=\int_{Q} H_{m}\left(U_{n}\right) \varphi d\left(\rho_{n, 0}-\eta_{n, 0}\right) .
\end{aligned}
$$

Estimate of A_{4}. This term allows to study I_{2}. Indeed, $\left\{H_{m}\left(U_{n}\right)\right\}$ converges to 1, a.e. in Q; From (3.21), (3.19) (3.20), we have

$$
\begin{aligned}
A_{4} & =\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla R_{n, \nu, \ell}-\int_{Q} R_{n, \nu, \ell} A\left(x, t, \nabla u_{n}\right) \cdot \nabla \Phi_{\delta_{1}, \delta_{2}}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right) \\
& =\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla R_{n, \nu, \ell}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell\right) \\
& =I_{2}+\int_{\left\{\left|U_{n}\right|>k\right\}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla R_{n, \nu, \ell}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell\right) \\
& =I_{2}+B_{1}+B_{2}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& B_{1}=\int_{\left\{\left|U_{n}\right|>k\right\}}\left(1-\Phi_{\delta, \eta}\right)\left(\chi_{\left|U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right| \leq \ell+k}-\chi_{\left|\left|U_{n}\right|-k\right| \leq \ell-k}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n}, \\
& B_{2}=-\int_{\left\{\left|U_{n}\right|>k\right\}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) \chi_{\left|U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right| \leq \ell+k} A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left\langle T_{k}(U)\right\rangle_{\nu} .
\end{aligned}
$$

Now $\left\{A\left(x, t, \nabla\left(T_{\ell+2 k}\left(U_{n}\right)+h_{n}\right)\right) . \nabla\left\langle T_{k}(U)\right\rangle_{\nu}\right\}$ converges to $F_{\ell+2 k} \nabla\left\langle T_{k}(U)\right\rangle_{\nu}$, weakly in $L^{1}(Q)$. Otherwise $\left\{\chi_{\left|U_{n}\right|>k} \chi_{\left|U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right| \leq \ell+k}\right\}$ converges to $\chi_{|U|>k} \chi_{\left|U-\left\langle T_{k}(U)\right\rangle_{\nu}\right| \leq \ell+k}$, a.e. in Q. And $\left\{\left\langle T_{k}(U)\right\rangle_{\nu}\right\}$ converges to $T_{k}(U)$ strongly in X. From Remark 3.2 we get

$$
\begin{aligned}
B_{2} & =-\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) \chi_{|U|>k} \chi_{\left|U-\left\langle T_{k}(U)\right\rangle_{\nu}\right| \leq \ell+k} F_{\ell+2 k} . \nabla\left\langle T_{k}(U)\right\rangle_{\nu}+\omega(n) \\
& =-\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) \chi_{|U|>k} \chi_{\left|U-T_{k}(U)\right| \leq \ell+k} F_{\ell+2 k} . \nabla T_{k}(U)+\omega(n, \nu)=\omega(n, \nu)
\end{aligned}
$$

since $\nabla T_{k}(U) \chi_{|U|>k}=0$. Besides, we see that, for some $c_{1}=c_{1}\left(p, \Lambda_{2}\right)$,

$$
\left|B_{1}\right| \leq c_{1} \int_{\left\{\ell-2 k \leq\left|U_{n}\right|<\ell+2 k\right\}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left(\left|\nabla u_{n}\right|^{p}+\left|\nabla U_{n}\right|^{p}+|a|^{p^{\prime}}\right)
$$

Using (3.3) and (3.4) and applying (3.15) and (3.16) to $1-\Phi_{\delta_{1}, \delta_{2}}$, we obtain, for $k>0$,

$$
\begin{equation*}
\int_{\left\{m \leq\left|U_{n}\right|<m+4 k\right\}}\left(\left|\nabla u_{n}\right|^{p}+\left|\nabla U_{n}\right|^{p}\right)\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)=\omega\left(n, m, \delta_{1}, \delta_{2}\right) . \tag{3.22}
\end{equation*}
$$

Thus, $B_{1}=\omega\left(n, \nu, \ell, \delta_{1}, \delta_{2}\right)$, hence $B_{1}+B_{2}=\omega\left(n, \nu, \ell, \delta_{1}, \delta_{2}\right)$. Then

$$
\begin{equation*}
A_{4}=I_{2}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell, \delta_{1}, \delta_{2}\right) \tag{3.23}
\end{equation*}
$$

Estimate of A_{5}. For $m>\ell+2 k$, since $|\varphi| \leq 2 \ell$, and (3.21) holds, we get, from the dominated convergence Theorem,

$$
\begin{aligned}
A_{5} & =\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) R_{n, \nu, \ell} H_{m}^{\prime}\left(U_{n}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right) \\
& =-\frac{2 k}{m} \int_{\left\{m \leq\left|U_{n}\right|<2 m\right\}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right)
\end{aligned}
$$

here, the final equality followed from the relation, since $m>\ell+2 k$,

$$
\begin{equation*}
R_{n, \nu, \ell} H_{m}^{\prime}\left(U_{n}\right)=-\frac{2 k}{m} \chi_{m \leq\left|U_{n}\right| \leq 2 m}, \quad \text { a.e. in } Q \tag{3.24}
\end{equation*}
$$

Next we go to the limit in m, by using (2.3), (2.4) for u_{n}, with $\phi=\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)$. There holds

$$
A_{5}=-2 k \int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) d\left(\left(\rho_{n, s}-\eta_{n, s}\right)^{+}+\left(\rho_{n, s}-\eta_{n, s}\right)^{-}\right)+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right)
$$

Then, from (3.3) and (3.4), we get $A_{5}=\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell, \delta_{1}, \delta_{2}\right)$.
Estimate of A_{6}. Again, from (3.21),

$$
\begin{aligned}
A_{6} & =\int_{Q} H_{m}\left(U_{n}\right) \varphi f_{n}+\int_{Q} g_{n} \cdot \nabla\left(H_{m}\left(U_{n}\right) \varphi\right) \\
& =\int_{Q} H_{m}\left(U_{n}\right)\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) R_{n, \nu, \ell} f_{n}+\int_{Q} g_{n} . \nabla\left(H_{m}\left(U_{n}\right)\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) R_{n, \nu, \ell}\right)+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right)
\end{aligned}
$$

Thus we can write $A_{6}=D_{1}+D_{2}+D_{3}+D_{4}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right)$, where

$$
\begin{gathered}
D_{1}=\int_{Q} H_{m}\left(U_{n}\right)\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) R_{n, \nu, \ell} f_{n}, \quad D_{2}=\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) R_{n, \nu, \ell} H_{m}^{\prime}\left(U_{n}\right) g_{n} \cdot \nabla U_{n} \\
D_{3}=\int_{Q} H_{m}\left(U_{n}\right)\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) g_{n} . \nabla R_{n, \nu, \ell}, \quad D_{4}=-\int_{Q} H_{m}\left(U_{n}\right) R_{n, \nu, \ell} g_{n} . \nabla \Phi_{\delta_{1}, \delta_{2}}
\end{gathered}
$$

Since $\left\{f_{n}\right\}$ converges to f weakly in $L^{1}(Q)$, and (3.19)-(3.20) hold, we get, from Remark 3.2,

$$
D_{1}=\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left(T_{\ell+k}\left(U-\left\langle T_{k}(U)\right\rangle_{\nu}\right)-T_{\ell-k}\left(U-T_{k}(U)\right)\right) f+\omega(m, n)=\omega(m, n, \nu, \ell)
$$

We deduce from (2.10) that $D_{2}=\omega(m)$. Next consider D_{3}. Note that $H_{m}\left(U_{n}\right)=1+\omega(m)$, and (3.20) holds, and $\left\{g_{n}\right\}$ converges to g strongly in $\left(L^{p^{\prime}}(Q)\right)^{N}$, and $\left\langle T_{k}(U)\right\rangle_{\nu}$ converges to $T_{k}(U)$ strongly in X. Then we obtain successively that

$$
\begin{aligned}
D_{3} & =\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) g \cdot \nabla\left(T_{\ell+k}\left(U-\left\langle T_{k}(U)\right\rangle_{\nu}\right)-T_{\ell-k}\left(U-T_{k}(U)\right)\right)+\omega(m, n) \\
& =\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) g \cdot \nabla\left(T_{\ell+k}\left(U-T_{k}(U)\right)-T_{\ell-k}\left(U-T_{k}(U)\right)\right)+\omega(m, n, \nu) \\
& =\omega(m, n, \nu, \ell)
\end{aligned}
$$

Similarly we also get $D_{4}=\omega(m, n, \nu, \ell)$. Thus $A_{6}=\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell, \delta_{1}, \delta_{2}\right)$.
Estimate of A_{7}. We have

$$
\begin{aligned}
\left|A_{7}\right| & =\left|\int_{Q} S_{m}^{\prime}\left(U_{n}\right)\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) R_{n, \nu, \ell} d\left(\rho_{n, 0}-\eta_{n, 0}\right)\right|+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right) \\
& \leq 4 k \int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) d\left(\rho_{n}+\eta_{n}\right)+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right)
\end{aligned}
$$

From (3.3) and (3.4) we get $A_{7}=\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell, \delta_{1}, \delta_{2}\right)$.
Estimate of $A_{1}+A_{2}+A_{3}$. We set

$$
J(r)=T_{\ell-k}\left(r-T_{k}(r)\right), \quad \forall r \in \mathbb{R}
$$

and use the notations $\bar{J} \operatorname{and} \mathcal{J}$ of (2.11). From the definitions of $\xi_{1, n_{1}}, \xi_{1, n_{2}}$, we can see that

$$
\begin{align*}
A_{1}+A_{2} & =-\int_{\Omega} J\left(U_{n}(T)\right) \overline{H_{m}}\left(U_{n}(T)\right) d x-\int_{\Omega} T_{\ell+k}\left(u_{0, n}-z_{\nu}\right) \overline{H_{m}}\left(u_{0, n}\right) d x+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right) \\
& =-\int_{\Omega} J\left(U_{n}(T)\right) U_{n}(T) d x-\int_{\Omega} T_{\ell+k}\left(u_{0, n}-z_{\nu}\right) u_{0, n} d x+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right) \tag{3.25}
\end{align*}
$$

where $z_{\nu}=\left\langle T_{k}(U)\right\rangle_{\nu}(0)$. We can write $A_{3}=F_{1}+F_{2}$, where

$$
\begin{aligned}
& F_{1}=-\int_{Q}\left(\xi_{n_{1}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\right]_{l_{1}}\right)_{t} \overline{H_{m}}\left(U_{n}\right) \\
& \left.F_{2}=\int_{Q}\left(\xi_{n_{2}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[T_{\ell-k}\left(U_{n}-T_{k}\left(U_{n}\right)\right)\right)\right]_{-l_{2}}\right)_{t} \overline{H_{m}}\left(U_{n}\right)
\end{aligned}
$$

Estimate of F_{2}. We write $F_{2}=G_{1}+G_{2}+G_{3}$, with

$$
\begin{aligned}
G_{1} & =-\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t} \xi_{n_{2}}\left[T_{\ell-k}\left(U_{n}-T_{k}\left(U_{n}\right)\right)\right]_{-l_{2}} \overline{H_{m}}\left(U_{n}\right) \\
G_{2} & =\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left(\xi_{n_{2}}\right)_{t}\left[T_{\ell-k}\left(U_{n}-T_{k}\left(U_{n}\right)\right)\right]_{-l_{2}} \overline{H_{m}}\left(U_{n}\right) \\
G_{3} & =\int_{Q} \xi_{n_{2}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left(\left[T_{\ell-k}\left(U_{n}-T_{k}\left(U_{n}\right)\right)\right]_{-l_{2}}\right)_{t} \overline{H_{m}}\left(U_{n}\right) .
\end{aligned}
$$

We find easily that

$$
\begin{gathered}
G_{1}=-\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t} J\left(U_{n}\right) U_{n}+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right) \\
G_{2}=\int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left(\xi_{n_{2}}\right)_{t} J\left(U_{n}\right) \overline{H_{m}}\left(U_{n}\right)+\omega\left(l_{1}, l_{2}\right)=\int_{\Omega} J\left(u_{0, n}\right) u_{0, n} d x+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right) .
\end{gathered}
$$

Next consider G_{3}. Setting $b=\overline{H_{m}}\left(U_{n}\right)$, there holds from (2.13) and (2.12),

$$
\left(\left([J(b)]_{-l_{2}}\right)_{t} b\right)(., t)=\frac{b(., t)}{l_{2}}\left(J(b)(., t)-J(b)\left(., t-l_{2}\right)\right)
$$

Hence

$$
\left(\left[T_{\ell-k}\left(U_{n}-T_{k}\left(U_{n}\right)\right)\right]_{-l_{2}}\right)_{t} \overline{H_{m}}\left(U_{n}\right) \geq\left(\left[\mathcal{J}\left(\overline{H_{m}}\left(U_{n}\right)\right)\right]_{-l_{2}}\right)_{t}=\left(\left[\mathcal{J}\left(U_{n}\right)\right]_{-l_{2}}\right)_{t}
$$

since \mathcal{J} is constant in $\{|r| \geq m+\ell+2 k\}$. Integrating by parts in G_{3}, we find

$$
\begin{aligned}
G_{3} & \geq \int_{Q} \xi_{2, n_{2}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left(\left[\mathcal{J}\left(U_{n}\right)\right]_{-l_{2}}\right)_{t}=-\int_{Q}\left(\xi_{2, n_{2}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\right)_{t}\left[\mathcal{J}\left(U_{n}\right)\right]_{-l_{2}}+\int_{\Omega} \xi_{2, n_{2}}(T)\left[\mathcal{J}\left(U_{n}\right)\right]_{-l_{2}}(T) d x \\
& =-\int_{Q}\left(\xi_{2, n_{2}}\right)_{t}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) \mathcal{J}\left(U_{n}\right)+\int_{Q} \xi_{2, n_{2}}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t} \mathcal{J}\left(U_{n}\right)+\int_{\Omega} \xi_{2, n_{2}}(T) \mathcal{J}\left(U_{n}(T)\right) d x+\omega\left(l_{1}, l_{2}\right) \\
& =-\int_{\Omega} \mathcal{J}\left(u_{0, n}\right) d x+\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t} \mathcal{J}\left(U_{n}\right)+\int_{\Omega} \mathcal{J}\left(U_{n}(T)\right) d x+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right)
\end{aligned}
$$

Therefore, since $\mathcal{J}\left(U_{n}\right)-J\left(U_{n}\right) U_{n}=-\bar{J}\left(U_{n}\right)$ and $\bar{J}\left(u_{0, n}\right)=J\left(u_{0, n}\right) u_{0, n}-\mathcal{J}\left(u_{0, n}\right)$, we obtain

$$
\begin{equation*}
F_{2} \geq \int_{\Omega} \bar{J}\left(u_{0, n}\right) d x-\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t} \bar{J}\left(U_{n}\right)+\int_{\Omega} \mathcal{J}\left(U_{n}(T)\right) d x+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right) \tag{3.26}
\end{equation*}
$$

Estimate of F_{1}. Since $m>\ell+2 k$, there holds $T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)=T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)$ on $\operatorname{supp} \overline{H_{m}}\left(U_{n}\right)$. Hence we can write $F_{1}=L_{1}+L_{2}$, with

$$
\begin{aligned}
L_{1} & =-\int_{Q}\left(\xi_{1, n_{1}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)\right]_{l_{1}}\right)_{t}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right\rangle_{\nu}\right)\right. \\
L_{2} & =-\int_{Q}\left(\xi_{1, n_{1}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)\right]_{l_{1}}\right)_{t}\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}
\end{aligned}
$$

Integrating by parts we have, by definition of the Landes-time approximation,

$$
\begin{align*}
L_{2} & =\int_{Q} \xi_{1, n_{1}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)\right]_{l_{1}}\left(\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)_{t} \\
& +\int_{\Omega} \xi_{1, n_{1}}(0)\left[T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)\right]_{l_{1}}(0)\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}(0) d x \\
& =\nu \int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\left(T_{k}(U)-\left\langle T_{k}(U)\right\rangle_{\nu}\right)+\int_{\Omega} T_{\ell+k}\left(u_{0, n}-z_{\nu}\right) z_{\nu} d x+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right) \tag{3.27}
\end{align*}
$$

We decompose L_{1} into $L_{1}=K_{1}+K_{2}+K_{3}$, where

$$
\begin{aligned}
K_{1} & =-\int_{Q}\left(\xi_{1, n_{1}}\right)_{t}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)\right]_{l_{1}}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right) \\
K_{2} & =\int_{Q} \xi_{1, n_{1}}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t}\left[T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)\right]_{l_{1}}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right) \\
K_{3} & =-\int_{Q} \xi_{1, n_{1}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left(\left[T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)\right]_{l_{1}}\right)_{t}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right\rangle_{\nu}\right) .\right.
\end{aligned}
$$

Then we check easily that

$$
\begin{aligned}
K_{1} & =\int_{\Omega} T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)(T)\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)(T) d x+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right) \\
K_{2} & =\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t} T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right)
\end{aligned}
$$

Next consider K_{3}. Here we use the function \mathcal{T}_{k} defined at (2.13). We set $b=\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}$. Hence from (2.12),

$$
\begin{aligned}
\left(\left(\left[T_{\ell+k}(b)\right]_{l_{1}}\right)_{t} b\right)(., t) & =\frac{b(., t)}{l_{1}}\left(T_{\ell+k}(b)\left(., t+l_{1}\right)-T_{\ell+k}(b)(., t)\right) \\
& \leq \frac{1}{l_{1}}\left(\mathcal{T}_{\ell+k}(b)\left(\left(., t+l_{1}\right)\right)-\mathcal{T}_{\ell+k}(b)(., t)\right)=\left(\left[\mathcal{T}_{\ell+k}(b)\right]_{l_{1}}\right)_{t}
\end{aligned}
$$

Thus

$$
\left(\left[T_{\ell+k}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right)\right]_{l_{1}}\right)_{t}\left(\overline{H_{m}}\left(U_{n}\right)-\left\langle T_{k}\left(\overline{H_{m}}(U)\right)\right\rangle_{\nu}\right) \leq\left(\left[\mathcal{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right]_{l_{1}}\right)_{t}\right.
$$

Then

$$
\begin{aligned}
K_{3} & \geq-\int_{Q} \xi_{1, n_{1}}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left(\left[\mathcal{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\right]_{l_{1}}\right)_{t} \\
& =\int_{Q}\left(\xi_{1, n_{1}}\right)_{t}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right)\left[\mathcal{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\right]_{l_{1}}-\int_{Q} \xi_{1, n_{1}}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t}\left[\mathcal{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\right]_{l_{1}} \\
& +\int_{\Omega} \xi_{1, n_{1}}(0)\left[\mathcal{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\right]_{l_{1}}(0) d x \\
& =-\int_{\Omega} \mathcal{T}_{\ell+k}\left(U_{n}(T)-\left\langle T_{k}(U)\right\rangle_{\nu}(T)\right) d x-\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t} \mathcal{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right) \\
& +\int_{\Omega} \mathcal{T}_{\ell+k}\left(u_{0, n}-z_{\nu}\right) d x+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}\right) .
\end{aligned}
$$

We find by addition, since $T_{\ell+k}(r)-\mathcal{T}_{\ell+k}(r)=\bar{T}_{\ell+k}(r)$ for any $r \in \mathbb{R}$,

$$
\begin{align*}
L_{1} & \geq \int_{\Omega} \mathcal{T}_{\ell+k}\left(u_{0, n}-z_{\nu}\right) d x+\int_{\Omega} \bar{T}_{\ell+k}\left(U_{n}(T)-\left\langle T_{k}(U)\right\rangle_{\nu}(T)\right) d x \\
& +\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t} \bar{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right) \tag{3.28}
\end{align*}
$$

We deduce from (3.28), (3.27), (3.26),

$$
\begin{align*}
A_{3} & \geq \int_{\Omega} \bar{J}\left(u_{0, n}\right) d x+\int_{\Omega} \mathcal{T}_{\ell+k}\left(u_{0, n}-z_{\nu}\right) d x+\int_{\Omega} T_{\ell+k}\left(u_{0, n}-z_{\nu}\right) z_{\nu} d x \tag{3.29}\\
& +\int_{\Omega} \bar{T}_{\ell+k}\left(U_{n}(T)-\left\langle T_{k}(U)\right\rangle_{\nu}(T)\right) d x+\int_{\Omega} \mathcal{J}\left(U_{n}(T)\right) d x+\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t}\left(\bar{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)-\bar{J}\left(U_{n}\right)\right) \\
& +\nu \int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\left(T_{k}(U)-\left\langle T_{k}(U)\right\rangle_{\nu}\right)+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right)
\end{align*}
$$

Next we add (3.25) and (3.29). Note that $\mathcal{J}\left(U_{n}(T)\right)-J\left(U_{n}(T)\right) U_{n}(T)=-\bar{J}\left(U_{n}(T)\right)$, and also

$$
\mathcal{T}_{\ell+k}\left(u_{0, n}-z_{\nu}\right)-T_{\ell+k}\left(u_{0, n}-z_{\nu}\right)\left(z_{\nu}-u_{0, n}\right)=-\bar{T}_{\ell+k}\left(u_{0, n}-z_{\nu}\right)
$$

Then we find

$$
\begin{aligned}
A_{1}+A_{2}+A_{3} & \geq \int_{\Omega}\left(\bar{J}\left(u_{0, n}\right)-\bar{T}_{\ell+k}\left(u_{0, n}-z_{\nu}\right)\right) d x+\int_{\Omega}\left(\bar{T}_{\ell+k}\left(U_{n}(T)-\left\langle T_{k}(U)\right\rangle_{\nu}(T)\right)-\bar{J}\left(U_{n}(T)\right)\right) d x \\
& +\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t}\left(\bar{T}_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)-\bar{J}\left(U_{n}\right)\right) \\
& +\nu \int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) T_{\ell+k}\left(U_{n}-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\left(T_{k}(U)-\left\langle T_{k}(U)\right\rangle_{\nu}\right)+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m\right)
\end{aligned}
$$

Notice that $\bar{T}_{\ell+k}(r-s)-\bar{J}(r) \geq 0$ for any $r, s \in \mathbb{R}$ such that $|s| \leq k$; thus

$$
\int_{\Omega}\left(\bar{T}_{\ell+k}\left(U_{n}(T)-\left\langle T_{k}(U)\right\rangle_{\nu}(T)\right)-\bar{J}\left(U_{n}(T)\right)\right) d x \geq 0
$$

And $\left\{u_{0, n}\right\}$ converges to u_{0} in $L^{1}(\Omega)$ and $\left\{U_{n}\right\}$ converges to U in $L^{1}(Q)$ from Proposition 2.10. Thus we obtain

$$
\begin{aligned}
A_{1}+ & A_{2}+A_{3} \geq \int_{\Omega}\left(\bar{J}\left(u_{0}\right)-\bar{T}_{\ell+k}\left(u_{0}-z_{\nu}\right)\right) d x+\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t}\left(\bar{T}_{\ell+k}\left(U-\left\langle T_{k}(U)\right\rangle_{\nu}\right)-\bar{J}(U)\right) \\
& +\nu \int_{Q}\left(1-\Phi_{\delta_{1}, \delta_{2}}\right) T_{\ell+k}\left(U-\left\langle T_{k}(U)\right\rangle_{\nu}\right)\left(T_{k}(U)-\left\langle T_{k}(U)\right\rangle_{\nu}\right)+\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n\right)
\end{aligned}
$$

Moreover $T_{\ell+k}(r-s)\left(T_{k}(r)-s\right) \geq 0$ for any $r, s \in \mathbb{R}$ such that $|s| \leq k$, hence

$$
\begin{aligned}
A_{1}+A_{2}+A_{3} & \geq \int_{\Omega}\left(\bar{J}\left(u_{0}\right)-\bar{T}_{\ell+k}\left(u_{0}-z_{\nu}\right)\right) d x+\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t}\left(\bar{T}_{\ell+k}\left(U-\left\langle T_{k}(U)\right\rangle_{\nu}\right)-\bar{J}(U)\right) \\
& +\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n\right)
\end{aligned}
$$

As $\nu \rightarrow \infty,\left\{z_{\nu}\right\}$ converges to $T_{k}\left(u_{0}\right)$, a.e. in Ω, thus we get

$$
\begin{aligned}
A_{1}+A_{2}+A_{3} & \geq \int_{\Omega}\left(\bar{J}\left(u_{0}\right)-\bar{T}_{\ell+k}\left(u_{0}-T_{k}\left(u_{0}\right)\right)\right) d x+\int_{Q}\left(\Phi_{\delta_{1}, \delta_{2}}\right)_{t}\left(\bar{T}_{\ell+k}\left(U-T_{k}(U)\right)-\bar{J}(U)\right) \\
& +\omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu\right)
\end{aligned}
$$

Finally $\left|\bar{T}_{\ell+k}\left(r-T_{k}(r)\right)-\bar{J}(r)\right| \leq 2 k|r| \chi_{\{|r| \geq \ell\}}$ for any $r \in \mathbb{R}$, thus

$$
A_{1}+A_{2}+A_{3} \geq \omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell\right)
$$

Combining all the estimates, we obtain $I_{2} \leq \omega\left(l_{1}, l_{2}, n_{1}, n_{2}, m, n, \nu, \ell, \delta_{1}, \delta_{2}\right)$, which implies (3.8), since I_{2} does not depend on $l_{1}, l_{2}, n_{1}, n_{2}, m, \ell$.

Next we conclude the proof of Theorem 1.1:
Lemma 3.6 The function u is a R-solution of (1.1).
Proof. (i) First show that u satisfies (2.2). Here we proceed as in [22]. Let $\varphi \in X \cap L^{\infty}(Q)$ such $\varphi_{t} \in X^{\prime}+L^{1}(Q), \varphi(., T)=0$, and $S \in W^{2, \infty}(\mathbb{R})$, such that S^{\prime} has compact support on $\mathbb{R}, S(0)=0$. Let $M>0$ such that $\operatorname{supp} S^{\prime} \subset[-M, M]$. Taking successively (φ, S) and $\left(\varphi \psi_{\delta}^{ \pm}, S\right)$ as test functions in (2.2) applied to u_{n}, we can write

$$
A_{1}+A_{2}+A_{3}+A_{4}=A_{5}+A_{6}+A_{7}, \quad A_{2, \delta, \pm}+A_{3, \delta, \pm}+A_{4, \delta, \pm}=A_{5, \delta, \pm}+A_{6, \delta, \pm}+A_{7, \delta, \pm}
$$

where

$$
\begin{gathered}
A_{1}=-\int_{\Omega} \varphi(0) S\left(u_{0, n}\right) d x, \quad A_{2}=-\int_{Q} \varphi_{t} S\left(U_{n}\right), \quad A_{2, \delta, \pm}=-\int_{Q}\left(\varphi \psi_{\delta}^{ \pm}\right)_{t} S\left(U_{n}\right) \\
A_{3}=\int_{Q} S^{\prime}\left(U_{n}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla \varphi, \quad A_{3, \delta, \pm}=\int_{Q} S^{\prime}\left(U_{n}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left(\varphi \psi_{\delta}^{ \pm}\right) \\
A_{4}= \\
\int_{Q} S^{\prime \prime}\left(U_{n}\right) \varphi A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n}, \quad A_{4, \delta, \pm}=\int_{Q} S^{\prime \prime}\left(U_{n}\right) \varphi \psi_{\delta}^{ \pm} A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n} \\
A_{5}= \\
\int_{Q} S^{\prime}\left(U_{n}\right) \varphi d \widehat{\lambda_{n, 0}}, \quad A_{6}=\int_{Q} S^{\prime}\left(U_{n}\right) \varphi d \rho_{n, 0}, \quad A_{7}=-\int_{Q} S^{\prime}\left(U_{n}\right) \varphi d \eta_{n, 0} \\
A_{5, \delta, \pm}= \\
\int_{Q} S^{\prime}\left(U_{n}\right) \varphi \psi_{\delta}^{ \pm} d \widehat{\lambda_{n, 0}}, \quad A_{6, \delta, \pm}=\int_{Q} S^{\prime}\left(U_{n}\right) \varphi \psi_{\delta}^{ \pm} d \rho_{n, 0}, \quad A_{7, \delta, \pm}=-\int_{Q} S^{\prime}\left(U_{n}\right) \varphi \psi_{\delta}^{ \pm} d \eta_{n, 0}
\end{gathered}
$$

Since $\left\{u_{0, n}\right\}$ converges to u_{0} in $L^{1}(\Omega)$, and $\left\{S\left(U_{n}\right)\right\}$ converges to $S(U)$, strongly in X and weak-* in $L^{\infty}(Q)$, there holds, from (3.2),

$$
A_{1}=-\int_{\Omega} \varphi(0) S\left(u_{0}\right) d x+\omega(n), \quad A_{2}=-\int_{Q} \varphi_{t} S(U)+\omega(n), \quad A_{2, \delta, \psi_{\delta}^{ \pm}}=\omega(n, \delta)
$$

Moreover $T_{M}\left(U_{n}\right)$ converges to $T_{M}(U)$, then $T_{M}\left(U_{n}\right)+h_{n}$ converges to $T_{k}(U)+h$ strongly in X, thus

$$
\begin{aligned}
A_{3} & =\int_{Q} S^{\prime}\left(U_{n}\right) A\left(x, t, \nabla\left(T_{M}\left(U_{n}\right)+h_{n}\right)\right) \cdot \nabla \varphi=\int_{Q} S^{\prime}(U) A\left(x, t, \nabla\left(T_{M}(U)+h\right)\right) \cdot \nabla \varphi+\omega(n) \\
& =\int_{Q} S^{\prime}(U) A(x, t, \nabla u) \cdot \nabla \varphi+\omega(n)
\end{aligned}
$$

and

$$
\begin{aligned}
A_{4} & =\int_{Q} S^{\prime \prime}\left(U_{n}\right) \varphi A\left(x, t, \nabla\left(T_{M}\left(U_{n}\right)+h_{n}\right)\right) \cdot \nabla T_{M}\left(U_{n}\right) \\
& =\int_{Q} S^{\prime \prime}(U) \varphi A\left(x, t, \nabla\left(T_{M}(U)+h\right)\right) \cdot \nabla T_{M}(U)+\omega(n)=\int_{Q} S^{\prime \prime}(U) \varphi A(x, t, \nabla u) \cdot \nabla U+\omega(n)
\end{aligned}
$$

In the same way, since $\psi_{\delta}^{ \pm}$converges to 0 in X,

$$
\begin{aligned}
& A_{3, \delta, \pm}=\int_{Q} S^{\prime}(U) A(x, t, \nabla u) \cdot \nabla\left(\varphi \psi_{\delta}^{ \pm}\right)+\omega(n)=\omega(n, \delta) \\
& A_{4, \delta, \pm}=\int_{Q} S^{\prime \prime}(U) \varphi \psi_{\delta}^{ \pm} A(x, t, \nabla u) \cdot \nabla U+\omega(n)=\omega(n, \delta)
\end{aligned}
$$

And $\left\{g_{n}\right\}$ strongly converges to g in $\left(L^{p^{\prime}}(\Omega)\right)^{N}$, thus

$$
\begin{aligned}
A_{5} & =\int_{Q} S^{\prime}\left(U_{n}\right) \varphi f_{n}+\int_{Q} S^{\prime}\left(U_{n}\right) g_{n} \cdot \nabla \varphi+\int_{Q} S^{\prime \prime}\left(U_{n}\right) \varphi g_{n} \cdot \nabla T_{M}\left(U_{n}\right) \\
& =\int_{Q} S^{\prime}(U) \varphi f+\int_{Q} S^{\prime}(U) g \cdot \nabla \varphi+\int_{Q} S^{\prime \prime}(U) \varphi g \cdot \nabla T_{M}(U)+\omega(n) \\
& =\int_{Q} S^{\prime}(U) \varphi d \widehat{\mu_{0}}+\omega(n)
\end{aligned}
$$

Now $A_{5, \delta, \pm}=\int_{Q} S^{\prime}(U) \varphi \psi_{\delta}^{ \pm} d \widehat{\lambda_{n, 0}}+\omega(n)=\omega(n, \delta)$. Then $A_{6, \delta, \pm}+A_{7, \delta, \pm}=\omega(n, \delta)$. From (3.2) we verify that $A_{7, \delta,+}=\omega(n, \delta)$ and $A_{6, \delta,-}=\omega(n, \delta)$. Moreover, from (3.6) and (3.2), we find

$$
\left|A_{6}-A_{6, \delta,+}\right| \leq \int_{Q}\left|S^{\prime}\left(U_{n}\right) \varphi\right|\left(1-\psi_{\delta}^{+}\right) d \rho_{n, 0} \leq\|S\|_{W^{2, \infty}(\mathbb{R})}\|\varphi\|_{L^{\infty}(Q)} \int_{Q}\left(1-\psi_{\delta}^{+}\right) d \rho_{n}=\omega(n, \delta)
$$

Similarly we also have $\left|A_{7}-A_{7, \delta,-}\right| \leq \omega(n, \delta)$. Hence $A_{6}=\omega(n)$ and $A_{7}=\omega(n)$. Therefore, we finally obtain (2.2):

$$
\begin{equation*}
-\int_{\Omega} \varphi(0) S\left(u_{0}\right) d x-\int_{Q} \varphi_{t} S(U)+\int_{Q} S^{\prime}(U) A(x, t, \nabla u) . \nabla \varphi+\int_{Q} S^{\prime \prime}(U) \varphi A(x, t, \nabla u) . \nabla U=\int_{Q} S^{\prime}(U) \varphi d \widehat{\mu_{0}} \tag{3.30}
\end{equation*}
$$

(ii) Next, we prove (2.3) and (2.4). We take $\varphi \in C_{c}^{\infty}(Q)$ and take $\left(\left(1-\psi_{\delta}^{-}\right) \varphi, \overline{H_{m}}\right)$ as test functions in (3.30), with $\overline{H_{m}}$ as in (2.14). We can write $D_{1, m}+D_{2, m}=D_{3, m}+D_{4, m}+D_{5, m}$, where

$$
\begin{align*}
& D_{1, m}=-\int_{Q}\left(\left(1-\psi_{\delta}^{-}\right) \varphi\right)_{t} \overline{H_{m}}(U), \quad D_{2, m}=\int_{Q} H_{m}(U) A(x, t, \nabla u) \cdot \nabla\left(\left(1-\psi_{\delta}^{-}\right) \varphi\right) \\
& D_{3, m}=\int_{Q} H_{m}(U)\left(1-\psi_{\delta}^{-}\right) \varphi d \widehat{\mu_{0}}, \quad D_{4, m}=\frac{1}{m} \int_{m \leq U \leq 2 m}\left(1-\psi_{\delta}^{-}\right) \varphi A(x, t, \nabla u) . \nabla U \tag{3.31}\\
& D_{5, m}=-\frac{1}{m} \int_{-2 m \leq U \leq-m}\left(1-\psi_{\delta}^{-}\right) \varphi A(x, t, \nabla u) \nabla U
\end{align*}
$$

Taking the same test functions in (2.2) applied to u_{n}, there holds $D_{1, m}^{n}+D_{2, m}^{n}=D_{3, m}^{n}+D_{4, m}^{n}+D_{5, m}^{n}$, where

$$
\begin{align*}
& D_{1, m}^{n}=-\int_{Q}\left(\left(1-\psi_{\delta}^{-}\right) \varphi\right)_{t} \overline{H_{m}}\left(U_{n}\right), \quad D_{2, m}^{n}=\int_{Q} H_{m}\left(U_{n}\right) A\left(x, t, \nabla u_{n}\right) \cdot \nabla\left(\left(1-\psi_{\delta}^{-}\right) \varphi\right), \\
& D_{3, m}^{n}=\int_{Q} H_{m}\left(U_{n}\right)\left(1-\psi_{\delta}^{-}\right) \varphi d\left(\widehat{\lambda_{n, 0}}+\rho_{n, 0}-\eta_{n, 0}\right), \quad D_{4, m}^{n}=\frac{1}{m} \int_{m \leq U \leq 2 m}\left(1-\psi_{\delta}^{-}\right) \varphi A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n}, \\
& D_{5, m}^{n}=-\frac{1}{m} \int_{-2 m \leq U_{n} \leq-m}\left(1-\psi_{\delta}^{-}\right) \varphi A\left(x, t, \nabla u_{n}\right) \cdot \nabla U_{n} \tag{3.32}
\end{align*}
$$

In (3.32), we go to the limit as $m \rightarrow \infty$. Since $\left\{\bar{H}_{m}\left(U_{n}\right)\right\}$ converges to U_{n} and $\left\{H_{m}\left(U_{n}\right)\right\}$ converges to 1, a.e. in Q, and $\left\{\nabla H_{m}\left(U_{n}\right)\right\}$ converges to 0 , weakly in $\left(L^{p}(Q)\right)^{N}$, we obtain the relation $D_{1}^{n}+D_{2}^{n}=D_{3}^{n}+D^{n}$, where

$$
\begin{aligned}
D_{1}^{n} & =-\int_{Q}\left(\left(1-\psi_{\delta}^{-}\right) \varphi\right)_{t} U_{n}, \quad D_{2}^{n}=\int_{Q} A\left(x, t, \nabla u_{n}\right) \nabla\left(\left(1-\psi_{\delta}^{-}\right) \varphi\right), \quad D_{3}^{n}=\int_{Q}\left(1-\psi_{\delta}^{-}\right) \varphi d \widehat{\lambda_{n, 0}} \\
D^{n} & =\int_{Q}\left(1-\psi_{\delta}^{-}\right) \varphi d\left(\rho_{n, 0}-\eta_{n, 0}\right)+\int_{Q}\left(1-\psi_{\delta}^{-}\right) \varphi d\left(\left(\rho_{n, s}-\eta_{n, s}\right)^{+}-\left(\rho_{n, s}-\eta_{n, s}\right)^{-}\right) \\
& =\int_{Q}\left(1-\psi_{\delta}^{-}\right) \varphi d\left(\rho_{n}-\eta_{n}\right)
\end{aligned}
$$

Clearly, $D_{i, m}-D_{i}^{n}=\omega(n, m)$ for $i=1,2,3$. From Lemma (3.3) and (3.2)-(3.4), we obtain $D_{5, m}=\omega(n, m, \delta)$, and

$$
\frac{1}{m} \int_{\{m \leq U<2 m\}} \psi_{\delta}^{-} \varphi A(x, t, \nabla u) \cdot \nabla U=\omega(n, m, \delta),
$$

thus,

$$
D_{4, m}=\frac{1}{m} \int_{\{m \leq U<2 m\}} \varphi A(x, t, \nabla u) . \nabla U+\omega(n, m, \delta) .
$$

Since $\left|\int_{Q}\left(1-\psi_{\delta}^{-}\right) \varphi d \eta_{n}\right| \leq\|\varphi\|_{L^{\infty}} \int_{Q}\left(1-\psi_{\delta}^{-}\right) d \eta_{n}$, it follows that $\int_{Q}\left(1-\psi_{\delta}^{-}\right) \varphi d \eta_{n}=\omega(n, m, \delta)$ from (3.4). And $\left|\int_{Q} \psi_{\delta}^{-} \varphi d \rho_{n}\right| \leq\|\varphi\|_{L^{\infty}} \int_{Q} \psi_{\delta}^{-} d \rho_{n}$, thus, from (3.2), $\int_{Q}\left(1-\psi_{\delta}^{-}\right) \varphi d \rho_{n}=\int_{Q} \varphi d \mu_{s}^{+}+\omega(n, m, \delta)$. Then $D^{n}=\int_{Q} \varphi d \mu_{s}^{+}+\omega(n, m, \delta)$. Therefore by subtraction, we get successively

$$
\begin{gather*}
\frac{1}{m} \int_{\{m \leq U<2 m\}} \varphi A(x, t, \nabla u) \cdot \nabla U=\int_{Q} \varphi d \mu_{s}^{+}+\omega(n, m, \delta), \\
\lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{m \leq U<2 m\}} \varphi A(x, t, \nabla u) \cdot \nabla U=\int_{Q} \varphi d \mu_{s}^{+} \tag{3.33}
\end{gather*}
$$

which proves (2.3) when $\varphi \in C_{c}^{\infty}(Q)$. Next assume only $\varphi \in C^{\infty}(\bar{Q})$. Then

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{m \leq U<2 m\}} \varphi A(x, t, \nabla u) . \nabla U \\
& =\lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{m \leq U<2 m\}} \varphi \psi_{\delta}^{+} A(x, t, \nabla u) \nabla U+\lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{m \leq U<2 m\}} \varphi\left(1-\psi_{\delta}^{+}\right) A(x, t, \nabla u) . \nabla U \\
& =\int_{Q} \varphi \psi_{\delta}^{+} d \mu_{s}^{+}+\lim _{m \rightarrow \infty} \frac{1}{m} \int_{\{m \leq U<2 m\}} \varphi\left(1-\psi_{\delta}^{+}\right) A(x, t, \nabla u) . \nabla U=\int_{Q} \varphi d \mu_{s}^{+}+D,
\end{aligned}
$$

where

$$
D=\int_{Q} \varphi\left(1-\psi_{\delta}^{+}\right) d \mu_{s}^{+}+\lim _{n \rightarrow \infty} \frac{1}{m} \int_{\{m \leq U<2 m\}} \varphi\left(1-\psi_{\delta}^{+}\right) A(x, t, \nabla u) . \nabla U=\omega(\delta) .
$$

Therefore, (3.33) still holds for $\varphi \in C^{\infty}(\bar{Q})$, and we deduce (2.3) by density, and similarly, (2.4). This completes the proof of Theorem 1.1.

4 Approximations of measures

Corollary 1.2 is a direct consequence of Theorem 1.1 and the following approximation property:
Proposition 4.1 Let $\mu=\mu_{0}+\mu_{s} \in \mathcal{M}_{b}^{+}(Q)$ with $\mu_{0} \in \mathcal{M}_{0}^{+}(Q)$ and $\mu_{s} \in \mathcal{M}_{s}^{+}(Q)$.
(i) Then, we can find a decomposition $\mu_{0}=(f, g, h)$ with $f \in L^{1}(Q), g \in\left(L^{p^{\prime}}(Q)\right)^{N}, h \in X$ such that

$$
\begin{equation*}
\|f\|_{1, Q}+\|g\|_{p^{\prime}, Q}+\|h\|_{X}+\mu_{s}(\Omega) \leq 2 \mu(Q) \tag{4.1}
\end{equation*}
$$

(ii) Furthermore, there exists sequences of measures $\mu_{0, n}=\left(f_{n}, g_{n}, h_{n}\right), \mu_{s, n}$ such that $f_{n}, g_{n}, h_{n} \in C_{c}^{\infty}(Q)$ strongly converge to f, g, h in $L^{1}(Q),\left(L^{p^{\prime}}(Q)\right)^{N}$ and X respectively, and $\mu_{s, n} \in\left(C_{c}^{\infty}(Q)\right)^{+}$converges to μ_{s} and $\mu_{n}:=\mu_{0, n}+\mu_{s, n}$ converges to μ in the narrow topology, and satisfying $\left|\mu_{n}\right|(Q) \leq \mu(Q)$,

$$
\begin{equation*}
\left\|f_{n}\right\|_{1, Q}+\left\|g_{n}\right\|_{p^{\prime}, Q}+\left\|h_{n}\right\|_{X}+\mu_{s, n}(Q) \leq 2 \mu(Q) \tag{4.2}
\end{equation*}
$$

Proof. (i) Step 1. Case where μ has a compact support in Q. By [15], we can find a decomposition $\mu_{0}=(f, g, h)$ with f, g, h have a compact support in Q. Let $\left\{\varphi_{n}\right\}$ be sequence of mollifiers in \mathbb{R}^{N+1}. Then $\mu_{0, n}=\varphi_{n} * \mu_{0} \in C_{c}^{\infty}(Q)$ for n large enough. We see that $\mu_{0, n}(Q)=\mu_{0}(Q)$ and $\mu_{0, n}$ admits the decomposition $\mu_{0, n}=\left(f_{n}, g_{n}, h_{n}\right)=\left(\varphi_{n} * f, \varphi_{n} * g, \varphi_{n} * h\right)$. Since $\left\{f_{n}\right\},\left\{g_{n}\right\},\left\{h_{n}\right\}$ strongly converge to f, g, h in $L^{1}(Q),\left(L^{p^{\prime}}(Q)\right)^{N}$ and X respectively, we have for n_{0} large enough,

$$
\left\|f-f_{n_{0}}\right\|_{1, Q}+\left\|g-g_{n_{0}}\right\|_{p^{\prime}, Q}+\left\|h-h_{n_{0}}\right\|_{L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega)\right)} \leq \frac{1}{2} \mu_{0}(Q)
$$

Then we obtain a decomposition $\mu=(\hat{f}, \hat{g}, \hat{h})=\left(\mu_{n_{0}}+f-f_{n_{0}}, g-g_{n_{0}}, h-h_{n_{0}}\right)$, such that

$$
\begin{equation*}
\|\hat{f}\|_{1, Q}+\|\hat{g}\|_{p^{\prime}, Q}+\|\hat{h}\|_{X}+\mu_{s}(Q) \leq \frac{3}{2} \mu(Q) \tag{4.3}
\end{equation*}
$$

Step 2. General case. Let $\left\{\theta_{n}\right\}$ be a nonnegative, nondecreasing sequence in $C_{c}^{\infty}(Q)$ which converges to 1 , a.e. in Q. Set $\tilde{\mu}_{0}=\theta_{0} \mu$, and $\tilde{\mu}_{n}=\left(\theta_{n}-\theta_{n-1}\right) \mu$, for any $n \geq 1$. Since $\tilde{\mu}_{n}=\tilde{\mu}_{0, n}+\tilde{\mu}_{s, n} \in \mathcal{M}_{0}(Q) \cap \mathcal{M}_{b}^{+}(Q)$ has compact support with $\tilde{\mu}_{0, n} \in \mathcal{M}_{0}(Q), \tilde{\mu}_{s, n} \in \mathcal{M}_{s}(Q)$, by Step 1 , we can find a decomposition $\tilde{\mu}_{0, n}=$ $\left(\tilde{f}_{n}, \tilde{g}_{n}, \tilde{h}_{n}\right)$ such that

$$
\left\|\tilde{f}_{n}\right\|_{1, Q}+\left\|\tilde{g}_{n}\right\|_{p^{\prime}, Q}+\left\|\tilde{h}_{n}\right\|_{X}+\tilde{\mu}_{s, n}(\Omega) \leq \frac{3}{2} \tilde{\mu}_{n}(Q) .
$$

Let $\bar{f}_{n}=\sum_{k=0}^{n} \tilde{f}_{k}, \bar{g}_{n}=\sum_{k=0}^{n} \tilde{g}_{k}, \bar{h}_{n}=\sum_{k=0}^{n} \tilde{h}_{k}$ and $\bar{\mu}_{s, n}=\sum_{k=0}^{n} \tilde{\mu}_{s, k}$. Clearly, $\theta_{n} \mu_{0}=\left(\bar{f}_{n}, \bar{g}_{n}, \bar{h}_{n}\right), \theta_{n} \mu_{s}=\bar{\mu}_{s, n}$ and $\left\{\bar{f}_{n}\right\},\left\{\bar{g}_{n}\right\},\left\{\bar{h}_{n}\right\}$ and $\left\{\bar{\mu}_{s, n}\right\}$ converge strongly to some f, g, h, and μ_{s} respectively in $L^{1}(Q),\left(L^{p^{\prime}}(Q)\right)^{N}$, X and $\mathcal{M}_{b}^{+}(Q)$, and

$$
\left\|\bar{f}_{n}\right\|_{1, Q}+\left\|\bar{g}_{n}\right\|_{p^{\prime}, Q}+\left\|\bar{h}_{n}\right\|_{X}+\bar{\mu}_{s, n}(Q) \leq \frac{3}{2} \mu(Q) .
$$

Therefore, $\mu_{0}=(f, g, h)$, and (4.1) holds.
(ii) We take a sequence $\left\{m_{n}\right\}$ in \mathbb{N} such that $f_{n}=\varphi_{m_{n}} * \bar{f}_{n}, g_{n}=\varphi_{m_{n}} * \bar{g}_{n}, h_{n}=\varphi_{m_{n}} * \bar{h}_{n}, \varphi_{m_{n}} * \bar{\mu}_{s, n} \in$ $\left(C_{c}^{\infty}(Q)\right)^{+}, \int_{Q} \varphi_{m_{n}} * \bar{\mu}_{s, n} d x d t=\bar{\mu}_{s, n}(Q)$ and

$$
\left\|f_{n}-\bar{f}_{n}\right\|_{1, Q}+\left\|g_{n}-\bar{g}_{n}\right\|_{p^{\prime}, Q}+\left\|h_{n}-\bar{h}_{n}\right\|_{X} \leq \frac{1}{n+2} \mu(Q) .
$$

Let $\mu_{0, n}=\varphi_{m_{n}} *\left(\theta_{n} \mu_{0}\right)=\left(f_{n}, g_{n}, h_{n}\right), \mu_{s, n}=\varphi_{m_{n}} * \bar{\mu}_{s, n}$ and $\mu_{n}=\mu_{0, n}+\mu_{s, n}$. Therefore, $\left\{f_{n}\right\},\left\{g_{n}\right\},\left\{h_{n}\right\}$ strongly converge to f, g, h in $L^{1}(Q),\left(L^{p^{\prime}}(Q)\right)^{N}$ and X respectively. And (4.2) holds. Furthermore, $\left\{\mu_{s, n}\right\},\left\{\mu_{n}\right\}$ converge to μ_{s}, μ in the weak topology of measures, and $\mu_{s, n}(Q)=\int_{Q} \theta_{n} d \mu_{s}, \mu_{n}(Q)=\int_{Q} \theta_{n} d \mu$ converges to $\mu_{s}(Q), \mu(Q)$, thus $\left\{\mu_{s, n}\right\},\left\{\mu_{n}\right\}$ converges to μ_{s}, μ in the narrow topology and $\left|\mu_{n}\right|(Q) \leq \mu(Q)$.

Observe that part (i) of Proposition 4.1 was used in [22], even if there was no explicit proof. Otherwise part (ii) is a key point for finding applications to the stability Theorem. Note also a very useful consequence for approximations by nondecreasing sequences:

Proposition 4.2 Let $\mu \in \mathcal{M}_{b}^{+}(Q)$ and $\varepsilon>0$. Let $\left\{\mu_{n}\right\}$ be a nondecreasing sequence in $\mathcal{M}_{b}^{+}(Q)$ converging to μ in $\mathcal{M}_{b}(Q)$. Then, there exist $f_{n}, f \in L^{1}(Q), g_{n}, g \in\left(L^{p^{\prime}}(Q)\right)^{N}$ and $h_{n}, h \in X, \mu_{n, s}, \mu_{s} \in \mathcal{M}_{s}^{+}(Q)$ such that

$$
\mu=f-\operatorname{div} g+h_{t}+\mu_{s}, \quad \mu_{n}=f_{n}-\operatorname{div} g_{n}+\left(h_{n}\right)_{t}+\mu_{n, s},
$$

and $\left\{f_{n}\right\},\left\{g_{n}\right\},\left\{h_{n}\right\}$ strongly converge to f, g, h in $L^{1}(Q),\left(L^{p^{\prime}}(Q)\right)^{N}$ and X respectively, and $\left\{\mu_{n, s}\right\}$ converges to μ_{s} (strongly) in $\mathcal{M}_{b}(Q)$ and

$$
\begin{equation*}
\left\|f_{n}\right\|_{1, Q}+\left\|g_{n}\right\|_{p^{\prime}, Q}+\left\|h_{n}\right\|_{X}+\mu_{n, s}(\Omega) \leq 2 \mu(Q) . \tag{4.4}
\end{equation*}
$$

Proof. Since $\left\{\mu_{n}\right\}$ is nondecreasing, then $\left\{\mu_{n, 0}\right\},\left\{\mu_{n, s}\right\}$ are nondecreasing too. Clearly, $\left\|\mu-\mu_{n}\right\|_{\mathcal{M}_{b}(Q)}=$ $\left\|\mu_{0}-\mu_{n, 0}\right\|_{\mathcal{M}_{b}(Q)}+\left\|\mu_{s}-\mu_{n, s}\right\|_{\mathcal{M}_{b}(Q)}$. Hence, $\left\{\mu_{n, s}\right\}$ converges to μ_{s} and $\left\{\mu_{n, 0}\right\}$ converges to μ_{0} (strongly) in $\mathcal{M}_{b}(Q)$. Set $\widetilde{\mu}_{0,0}=\mu_{0,0}$, and $\widetilde{\mu}_{n, 0}=\mu_{n, 0}-\mu_{n-1,0}$ for any $n \geq 1$. By Proposition 4.1, (i), we can find $\tilde{f}_{n} \in L^{1}(Q), \tilde{g}_{n} \in\left(L^{p^{\prime}}(Q)\right)^{N}$ and $\tilde{h}_{n} \in X$ such that $\tilde{\mu}_{n, 0}=\left(\tilde{f}_{n}, \tilde{g}_{n}, \tilde{h}_{n}\right)$ and

$$
\left\|\tilde{f}_{n}\right\|_{1, Q}+\left\|\tilde{g}_{n}\right\|_{p^{\prime}, Q}+\left\|\tilde{h}_{n}\right\|_{X} \leq 2 \tilde{\mu}_{n, 0}(Q)
$$

Let $f_{n}=\sum_{k=0}^{n} \tilde{f}_{k}, G_{n}=\sum_{k=0}^{n} \tilde{g}_{k}$ and $h_{n}=\sum_{k=0}^{n} \tilde{h}_{k}$. Clearly, $\mu_{n, 0}=\left(f_{n}, g_{n}, h_{n}\right)$ and the convergence properties hold with (4.4), since

$$
\left\|f_{n}\right\|_{1, Q}+\left\|g_{n}\right\|_{p^{\prime}, Q}+\left\|h_{n}\right\|_{X} \leq 2 \mu_{0}(Q) .
$$

References

[1] Baras P. and Pierre M., Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), 111-149.
[2] Bidaut-Véron M.F. and Nguyen-Quoc H., Evolution equations of p-Laplace type with absorption or source terms and measure data, Arxiv...
[3] Bidaut-Véron M.F. and Nguyen-Quoc H., Pointwise estimates and existence of solutions of porous medium and p-Laplace evolution equations with absorption and measure data, Arxiv 1407-2218.
[4] Benilan P., Boccardo L., Gallouet T., Gariepy R., Pierre M. and Vázquez J., An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241-273.
[5] Blanchard D. and Murat F., Renormalized solutions of nonlinear parabolic equation with L^{1} data: existence and uniqueness, Proc. Roy. Soc. Edinburgh 127A (1997), 1153-1179.
[6] Blanchard D., Petitta F. and Redwane H., Renormalized solutions of nonlinear parabolic equations with diffuse measure data, Manuscripta Math. 141 (2013), 601-635.
[7] Blanchard D. and Porretta A., Stefan problems with nonlinear diffusion and convection, J. Diff. Equ. 210 (2005), 383-428.
[8] Blanchard D. and Porretta A., Nonlinear parabolic equations with natural growth terms and measure initial data, Ann. Scuola Norm. Sup. Pisa, 30 (2001), 583-622.
[9] Boccardo L. and Gallouet T., Nonlinear elliptic and parabolic equations involving measure data, J Funct. Anal. 87 (1989), 149-169.
[10] Boccardo L. and Gallouet T., Nonlinear elliptic equations with right-hand side measures, Comm. Partial Diff. Equ. 17 (1992), 641-655.
[11] Boccardo L., Dall'Aglio A., Gallouet T. and Orsina L., Nonlinear parabolic equations with measure data, J. Funct. Anal. 147 (1997), 237-258.
[12] Dall'Aglio A. and Orsina L., Existence results for some nonlinear parabolic equations with nonregular data, Diff. Int. Equ. 5 (1992), 1335-1354.
[13] Di Benedetto E., Degenerate parabolic equations, Springer-Verlag (1993).
[14] Dal Maso G., Murat F., Orsina L., and Prignet A., Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa, 28 (1999), 741-808.
[15] Droniou J., Porretta A. and Prignet A., Parabolic capacity and soft measures for nonlinear equations, Potential Anal. 19 (2003), 99-161.
[16] Droniou J. and Prignet A., Equivalence between entropy and renormalized solutions for parabolic equations with smooth data, Nonlinear Diff Eq. Appl. 14 (2007), 181-205.
[17] Landes, R., On the existence of weak solutions for quasilinear parabolic initial boundary-value problems, Proc. Royal Soc. Edinburg Sect A, 89(1981), 217-237.
[18] Leonori T. and Petitta F., Local estimates for parabolic equations with nonlinear gradient terms, Calc. Var. Partial Diff. Equ. 42 (2011), 153-187.
[19] Lions J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthiers-Villars (1969).
[20] Nguyen-Quoc H., Potential estimates and quasilinear parabolic equations with measure data, Arxiv 14052587.
[21] Petitta F., Asymptotic behavior of solutions for linear parabolic equations with general measure data, C. R. Acad. Sci. Paris, Ser. I 344 (2007) 571-576.
[22] Petitta F., Renormalized solutions of nonlinear parabolic equations with general measure data, Ann. Math. Pura Appl. 187 (2008), 563-604.
[23] Petitta F., Ponce A. and Porretta A., Diffuse measures and nonlinear parabolic equations, J. Evol. Equ. 11 (2011), 861-905.
[24] Pierre M., Parabolic capacity and Sobolev spaces, Siam J. Math. Anal. 14 (1983), 522-533.
[25] Porretta A., Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Apll. 177 (1999), 143-172.
[26] Prignet A., Existence and uniqueness of "entropy" solutions of parabolic problems with L^{1} data, Nonlinear Anal. TMA 28 (1997), 1943-1954.
[27] Xu, X., On the initial boundary-value-problem for $u_{t}-\operatorname{div}\left(|\nabla u|^{p-2}|\nabla u|\right)=0$, Arch. Rat. Mech. Anal. 127 (1994), 319-335.

[^0]: *Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 7350, Faculté des Sciences, 37200 Tours France. E-mail: veronmf@univ-tours.fr
 ${ }^{\dagger}$ Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 7350, Faculté des Sciences, 37200 Tours France. E-mail: Hung.Nguyen-Quoc@lmpt.univ-tours.fr

