Pointwise estimates and existence of solutions of porous medium
and p-Laplace evolution equations with absorption and measure
data
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Abstract

Let Q be a bounded domain of R (N > 2). We obtain a necessary and a sufficient condition, expressed
in terms of capacities, for existence of a solution to the porous medium equation with absorption

g — A(lu|™ M) + |u|?ru = p in Q x (0,T),
u=0 ondQ x (0,7),
u(0) = o,

N—2

where ¢ and p are bounded Radon measures, ¢ > max(m, 1), m > =5=. We also obtain a sufficient

condition for existence of a solution to the p-Laplace evolution equation

g — Apu + [u|T 'y = p in Q x (0,7),
u=0 on o x (0,7),
u(0) =o.

where ¢ > p—1 and p > 2.
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1 Introduction and main results

Let Q be a bounded domain of RN, N > 2 and T > 0, and Qp = Q x (0,7). In this paper we study the
existence of solutions to the following two types of evolution problems: the porous medium problem with
absorption

up — A(Ju]™ ) + [u|?tu = p in Qr,

u=0 ondQx(0,T), (1.1)

u(0) = o,

where m > % and ¢ > max(1,m), and the p-Laplace evolution problem with absorption

up — Apu+ |u|u = p in Qp,
u=0 ondQx(0,T), (1.2)
u(0) = o,

where ¢ > p—1 > 1, and p and o are bounded Radon measures respectively on Qr and . In the sequel,
for any bounded domain O of R!(I > 1), we denote by M,(O) the set of bounded Radon measures in O,
and by M, (O) its positive cone. For any v € M;(0), we denote by v+ and v~ respectively its positive and
negative part.

When m = 1,p = 2 and ¢ > 1 the problem has been studied by Brezis and Friedman [8] with u = 0. It
is shown that in the subcritical case ¢ < 1+ 2/N, the problem can be solved for any o € M(€2), and it has
no solution when ¢ > 14 2/N and o is a Dirac mass. The general case has been solved by Baras and Pierre



[2] and their results are expressed in terms of capacities. For s > 1, > 0, the capacity Capg,, s of a Borel

set E C RV, defined by

Capg,, (E) = inf{||g]

S

Temny 9 € LL(RY), Gy xg>1on E},
where G, is the Bessel kernel of order « and the capacity Cap, ; ; of a compact set K C RN is defined by
Cap, ; (K) = inf{HgoH;Vz,l(RNH) cp € S(RVT1) » > 1 in a neighborhood of K} )

where

L.@(RN+1) t LS(RN+1) LS(RN+1) Tixj L‘S(RN+1)'
+ llpell +HVell + [lpza;

ij=1,2,... N

lellwz @neny = llgl

The capacity Cap,; ; is extended to Borel sets by the usual method. Note the relation between the two
capacities:
C~! Capg, , +(E) < Capy, (B x {0}) < CCapg,_, .(E)

s s

for any Borel set E C RY, see [19, Corollary 4.21]. In particular, for any w € My(RY) and a € R, the
measure W ® dy—q} in RN is absolutely continuous with respect to the capacity Capy 1 ¢ (in RYN*1) if and

only if w is absolutely continuous with respect to the capacity CaLpG2 s (in RY). We recall that a measure

1 is absolutely continuous with respect to the capacity Cap if, for anys Borel set F,

Cap(E) = 0 = [u[(E) = 0.

From [2], the problem
up — Au A+ |u|97u = in Qp,
u=0 ondQdx(0,T),
u(0) = o,

has a solution if and only if the measures p and o are absolutely continuous with respect to Capy; . in

Q7 and CapG%yq, in Q respectively, where ¢’ = qﬁ—l.

In Section 2 we study problem (1.1).

For m > 1, Chasseigne [10] has extended the results of [8] for u = 0 in the new subcritical range
m<qg<m-+ % The supercritical case ¢ > m + % with ¢ = 0 and o is positive is studied in [9]. He has
essentially proved that if problem (1.1) has a solution, then o ® dr;—g; is absolutely continuous with respect
to the capacity Caps g defined for any compact set K C RV*1 by

q—

—q
Cap2717#7q,(K) = inf {||g@ ;V’Q’f% RN cp € S(RY), ¢ > 1 in a neighborhood of K} ,
qg—m’
where
||<PHW2'; L (RNHY) = ||¢‘|Lﬁ(RN+1) + ||90tHLq’(RN+1) +11 Vel HLﬁ(RNH) + Z ||<mej||Lﬁ(RN+1)-

a i,j=1,2,...,N



In this section, we first give necessary conditions on the measures p and o for existence, which cover the
results mentioned above.

Theorem 1.1 Let ¢ > max(1,m) and p € Mp(Qr) and o € Mp(Q). If problem (1.1) has a very weak
solution then p and o ® d(—gy are absolutely continuous with respect to Capy; o _a

vq—mg—1
Remark 1.2 The capacity Capy  _a a_ is absolutely continuous with respect to Capg 4 R since
= m o g — »7 g—max{m,
||<PHW2'}1 J(RN+1) < C(|supp(@))] |2 . (RN+1)s Vo e CSO(RN+1)-
=m q—max{m,1}
Therefore p and o @ dyy—oy are absolutely continuous with respect to Caps R In particular o is
’7Y g—max{m,

absolutely continuous with respect to Capg, oty CH—
maxqm, ’g—max{m,
q

The main result of this section is the following sufficient condition for existence, where we use the notion
of R-truncated Riesz parabolic potential Iy on RN*! of a measure p € M; (Q7), defined by

5[] (z,t) = /R M(Qpigf’t))@ for any (x,t) € RV*L
0 P P

with R € (0,00], and Q,(x,t) = B,(z) x (t — p*,t + p?).

Theorem 1.3 Let m > 822 ¢ > max(1,m), p € My(Qr) and 0 € My(Q).

i. Ifm >1 and p and o are absolutely continuous with respect to Capy ;o in Qr and Capg, o in €2, then

there exists a very weak solution u of (1.1), satisfying for a.e.(x,t) € Qrp

o) < ¢ (O T o1(0) + (@) +1 4+ B0 0 5oy + i), (1)

where C' = C(N,m) >0 and

(N +2)(2mN +1)
m(mN + 2)(1+ 2N)’

d = diam(Q) + T%/2,

m; =

ii. If % <m < 1, and p and o are absolutely continuous with respect to Cap, 2¢ in Qr
YOG FN(I—m)

and CapG%N(km) in Q, there exists a very weak solution w of (1.1), such that for

2q
’2(¢g—1)+N(1-m)

a.e.(z,t) € QTq

lu(z,t)| <C (<|"(Q);N|"|(QT)) : + 1+ (I2%o] ® 60y + ;L|](1:,t))2‘”(21"”>) , (1.4)

where C = C(N,m) > 0 and

IN(N +2)(m +1)
2+ Nm)2—N1-m)2+N(+m))

Mo =



Moreover we give existence results in the subecritical case, for any pu € My(Qr) and o € My(Q), see
Theorem 2.9.

We also give other types of sufficient conditions for measures which are good in time, that means such
that
ceL'(Q) and |y <f+w®F, where fe LL(Qr),F € LL((0,T)),w e M (Q), (1.5)

see Theorem 2.10. The proof is based on estimates for the stationary problem in terms of elliptic Riesz
potential.
In Section 3, we consider problem (1.2). Let us recall some former results about it.

For ¢ > p — 1 > 0, Pettitta, Ponce and Porretta [21] have proved that it admits a (unique renormalized)
solution provided o € L*(Q)) and pu € My(Qr) is a diffuse measure, i.e. absolutely continuous with respect
to the Cp-capacity in Qr, defined on a compact set K C Qr by

Cp(K,Qr) =inf {||¢|lw : ¢ € C(Qr)p >1on K}, (1.6)

where
W ={z:z € LP(0,T, WS P(Q) N L2(Q)), 2 € L¥ (0, T, W1 (Q) + L*(Q))}.

In the recent work [4], we have proved a stability result for the p-Laplace parabolic equation, see Theorem

3.5 below, for p > 2JJ\>'++11. As a first consequence, in the new subcritical range

p
<p—1+—,

qg<p + N
problem (1.2) admits a renormalized solution for any measures p € My(Qr) and o € L'(Q). Moreover, we
have obtained sufficient conditions for existence, for measures that have a good behavior in time, of the
form (1.5). It is shown that (1.2) has a renormalized solution if w € M/ () is absolutely continuous with
respect to Came - The proof is based on estimates of [5] for the stationary problem which involve

a—p

Wolff potentials.

Here we give new sufficient conditions when p > 2. Our second main result is the following;:

Theorem 1.4 Let ¢ >p—1>1 and p € My(Qr) and o € Myp(Q). If p and o are absolutely continuous
with respect to Capy ;o i Qr and Capg, o i ), then there exists a distribution solution of problem (1.2)
q

which satisfies the pointwise estimate

lu(z,t)] < C <1 + D+ (W) ) + 137 [lo] ® Sgimo0y + |1l] (amt)) (1.7)

for a.e (z,t) € Qr with C = C(N,p) and

(N+p)(A+1(p-1)
(=N +p)(1+Ap—1))’

Moreover, if o € L*(Q), u is a renormalized solution.

ms = A=min{l/(p—1),1/N}, D= diam(Q)+T". (1.8



2 Porous medium equation

For k > 0 and s € R we set Ty (s) = max{min{s, k}, —k}.

2.1 Weak solutions

The solutions of (1.1) are considered in a weak sense:

Definition 2.1 Let u € My(Q7) and 0 € Mp(Q2) and g € C(R).
i. A function u is a weak solution of problem

ue = A(Ju™ " u) + g(u) = in Qr,
u=0 ondQx(0,T), (2.1)
u(0) =0 in Q.

if ue C([0,7); L*(Q)), |ul™ € L2((0,T); H(Q)) and g(u) € L} (), and for any ¢ € C2L(Q x [0,T)),

g(u)pdrdt = /

Qr

—/ wprdzrdt + V(|u|m_1u).chdmdt+/ cpdu—i—/ ©(0)do.
Qrp Qr Q

Qr
ii. A function u is a very weak solution of (2.1) if u € L™>1™ 1N (Qr) and g(u) € L' (Qr), and for any
p € C2HQX[0,T)),

—/ uaptdmdt—/ |u|m_1uA<pdxdt+/ g(u)godxdt:/ (pdu—&—/go(O)da.
Qr Qr Qp Qr Q

2.2 Necessary conditions for existence
Next we show the necessary conditions given at Theorem 1.1.

Proof of Theorem 1.1. As in [2, Proof of Proposition 3.1], it is enough to claim that, for any
compact K C Q x [0,T) such that g~ (K) = 0 and (0~ ® d—0})(K) = 0 and Capy ;o o (K) =0,
there holds p™(K) = 0 and (0" ® dp4—0})(K) = 0. Let € > 0 and choose an open set O such that
(Il + o] @ 0=} )(O\K) < e and K C O C Q x (=T,T). One can find a sequence {¢,} C C*(O)
which satisfies 0 < ¢, <1, @n|, =1 and @, — 0in W24 (R¥+!) and almost everywhere in O (see [2,

:q’
Proposition 2.2]). We get

/ gondqu/ gan(())da:—/ u((pn)tdzdt—/ |u|m71uA<pndxdt+/ |u|9  up, drdt
QT Q QT QT QT

< (llull sy + el [Fo@r)llenllwzs . gy + /Q [ul? g dadt.
qg—m’q—1 T

m’q—

Note that

/Q ond + / on(0)do > it (K) + (07 ® (o) () — (1] + o] @ S(1—op) (O\K)

> 5t (K) + (0 @ 10y () — .



This implies

pHE) + (07" @ 0p=0p) (K) < (llullpagary + [[ullZaap)llenl w2

q

As n — oo, we get u(K) + (61 ® dyy—0y)(K) < €. Therefore, u*(K) = (67 ® dy4—0y)(K) = 0. [

1 (RN+1)+/ |ul?pndadt + €.
TSy Qr

2.3 Estimates on the porous media equation without absorption

The proof of existence results for problem 1.1 is highly dependent on estimates for the equation of porous
media without absorption. We begin by simple a priori estimates:

Proposition 2.2 Let u € L®(Qr) with |u|™ € L*((0,T); H}(Q)) be a weak solution of problem
ug — A(Jul™ ) = p in Qr,
u=0 ondQx(0,T), (2.2)
u(0) =0 in Q,

with o € Cp(Q) and p € Cp(Qr). Then,

[[ull Lo (0,7);21 (@) < [01(Q) + |pl(Q7), (2.3)
N42
[ul[pmt2/n.00 07y < Cr(lo[() + |p|(Qr)) =542, (2.4)
— m(N4+1)+1
1V (Jul lu)|||L;3g¢§,w(QT) < Co(|o(Q) + |p|(Qr)) iz, (2.5)

where C; = C1(N,m),Cy = C3(N, m).

Proof of Proposition 2.2. By using Steklov averages, we can take Ty (|u|™ 1u),k > 0 as a test
function. Setting Hy(a) = foa Ty (|y|™ty)dy, we find for any 7 € (0,T)

/ (Hp(uw))edzdt + / VT (|u|™ ) Pddt = / T (|u|™ tu)dp(z, t).
Q. Q. Q.
This leads to

[ 19Tt Pdsds < kol () + (@) and (2.6
[ (#0)(7)de < k(ol() + (@), Vr € (0.7).
Since Hy(a) > k(|a| — k) for any a and k > 0, we find

/Q (lul(r) - k% )dz < |o](Q) + |ul(@r), V7 € (0,T).

Letting k — 0, we get (2.3).



Next we prove (2.4). By the Gagliardo-Nirenberg embedding Theorem, there holds

[ o)

Qr

2(N

+1) m—1_12/N m—
~ dzdt < C1||Tk(|u] 1u)|\L/w((07T);L1(Q)) /Q VT (Ju|™ tu) [P dedt
T

2(m—1) 2 /N —
< Cikmmw HUHL/OC((O,T);Ll(Q))/Q VT (|u™ ) [Pdadt.
T
Thus, from (2.6) and (2.3) we get

2(N+1) 2(N 2(m—1) N2

_ +1)
B [{lu]™ > k3 S/ T (ful™ )| T dxdt < eik ™ (|0 [(Q) + || (),
Qr

which implies (2.4). Finally, we prove (2.5). Thanks to (2.6) and (2.4) we have for k, kg > 0

m— 1 kz m—
IV (ul™ ) > kY < = [ IV (lu™ )| > £}|de
k 0
1
<Nl > ko)l + 5 [ (9Tl ) Pade
Qp
< Crky ™ N (|o(Q) + (7)™ + kok 2 (|o]() + 1] (Qr)).

Choosing ko = k™37 (|o|(Q) + |u|(Qr)) 7T, we get (2.5).

The crucial result used to establish Theorem 1.3 is the following a priori estimates, due to of Liskevich

and Skrypnik [17] for m > 1 and Bogelein, Duzaar and Gianazza [7] for m < 1.

Theorem 2.3 Let m > 82 and p € (Co(Qr))t. Let u € LT (Qr) with u™ € L*(0,T, HY () be a weak

solution to equation
ug — A(u™) =p in Qp.

Then there exists C' = C(N,m) such that, for almost all (y,7) € Qp and any cylinder Q,(y, ) CC Qg there

holds
inifm>1
2N
1 ) 142N o
u(y,7) < C (W/Q . |U|m+wd$dt> A l[ull oo (r—r2 r4r2);01 (B, (y))) + 1+ 15" [0 (v, 7) |
r\Y,T
Woifm <1,

2N (m+1)
E=N{I—m) 2+ N({1Fm))
Qr(y,s)

1 21571J1rmN)
upr) <C (o [ 1l ¥ o

As a consequence we get a new a priori estimate for the porous medium equation:

14 (1 [y, ) T



Corollary 2.4 Let m > Y22 and p € Cy(Qr). Let u € L=®(Qr) with [u|™ € L*(0,T, H}(Q)) be the weak

solution of problem
ug — A(Jul™ ) = p in Qr,
u=0 ondQx(0,T),
w(0)=0 in Q.

Then there exists C = C(N,m) such that, for a.e. (y,7) € Qr,

i ifm>1,
< 0 ((PR2) @) + 14 Bl ). (2.7

i, ifm <1,

il < € ((BT2) ™ 1 (88 ) ) (28)

where my1,my and d are defined in Theorem 1.3.

Proof. Let 7y € Q, and Q = Bag(wo) x (—(2d)?, (2d)?). Consider the function U € (Cy(Q))*, with
U™ € LP((—(2d)?, (2d)?); H} (Baa(wo))) such that U is weak solution of

{ Uy — AU™) = xarlul  in Baa(wo) x (—(2d)*, (2d)?),
U=0 on dBag(z0) % (—(2d)?, (2d)?), (2.9)
U(—(Qd)z) =0 in Bgd(l‘o).

From Theorem 2.3, we get, for a.e. (y,7) € Qr,

2N

1 1 RN
Uly,7) <1 (W/@ - U™t ew dxdt) F U poo ((r—d2,r+d2);20 (Ba(yy)) + 1+ 32l (y, 7)
d\y,T
if m > 1; and
1 ) O e aa tee=r )
Uy, 7)< C (dlm/@ . |u| M dxdt> + 14 (I3 [k (y, 7)) 2 V=™
d\y,s

if m < 1. By Proposition 2.2, we have

Ul Loo ((r—d2 7 +d2);L1 (Ba(w))) < [0l(27),

24N 2

{IU] > &} < co(lpl(Qr)) ¥ 77 7™, V> 0.

Thus, for any £g > 0,

1 1 o0 1
[ umdsdt = mo+ o) [ e s
o 2N’ J,
= ( +i) éoﬁm+ﬁ‘1|{U>€}|d€+( +i)/w€’"+ﬁ‘1l{U>€}ld€
AN, "TaN’ ),

24N

X (ul(Qr)

m+ sk L
< esdN TR0 TN ey 03N



N2

Choosing ¢y = (M(gifvh)) mNH, we get

(N+2)(2mN+1)

/ UMDED dadt < c5dN (W(QT)) PN
< 5
Q

Thus, for a.e (y,7) € Qr,

Ut) < o (LU + @) + 1+ Bl )

if m > 1. Similarly, we also obtain for a.e (y,7) € Qr,

Uwﬂéw(C%ﬁﬂym+u(@WMMJD”*”j.

if m < 1. By the comparison principle we get |u| < U in Qr, and (2.7)-(2.8) follow. ]

2.4  Sufficient conditions for existence

In this section we prove Theorem 1.3 % by following several steps of approximation.

2.4.1 Case of bounded nonlinearity and zero initial data

First, we show that the existence of solution to equations

ur — A(Ju|™ ) + g(u) = p in Qr,
u=0 ondQx(0,T), (2.10)
w(0)=0 in Q.

when g : R — R is a nondecreasing continuous and bounded function, such that g(0) = 0, and pu € M;(Q7r).
We first consider the case where i is continuous and bounded.

Lemma 2.5 Let g € Cp(R) be nondecreasing with g(0) = 0, and p € Cp(Qr). There exists a weak solution
u € L®(Qr) with [u|™ € L*(0,T, HL(Q)) of problem (2.10).

Moreover, the comparison principle holds for these solutions: if uy,us are weak solutions of (2.10) when
(1, g) is replaced by (p1,91) and (pz2,g2), where py,p2 € Co(Qr) with p1 > po and g1, ga have the same
properties as g with gy < go in R then uy > us in Qr.

As a consequence, if ;> 0 then u > 0.

Proof of Lemma 2.5. Set a,(s) = m|s|™ ! if 1/n < |s| < n and a,(s) = m|n|™1 if |s| > n,
an(s) = m(1/n)™"1if |s| < 1/n. Also Ay(7) = [y an(s)ds. Then one can find u, being a weak solution of
the following equation:

(un)t — div(an (un)Vuy) + g(un) = p in Qp,
up, =0 on 9N x (0,7T), (2.11)
up(0) =0 in Q.

10



It is easy to see that |un(x,t)| < t|[u||L(q,) for all (z,t) € Qr. Thus, choosing A, (uy) as a test function,
(2.12)

we obtain
| Aot < Tl
T
Now set @, (7) = [; |An(s)|ds. Choosing |A,(un)|¢ as a test function in (2.11), where ¢ € C31(Qr), we

get the relation
(Pn(un))e — div(|Ap(un)|VAn(un)) + VAn(un). VA (un)| + | An(un)|g(un) = [An (un)|p

in D'(Q2r). Hence,
1@ (un))ell L2 @)+ 220,10y < [1An (un) VAn (un)l]22(07) + IV AR (un)llIZ2 ()

+ ||An(un)g(un)||L1(QT) + ||An(un)M||L1(QT)'

Combining this with (2.12) and the estimate |A,(un)| < Co(T, ||| (), We deduce that

Sup |‘((I)n(un))t||L1(QT)+L2(O,T,H*1(Q)) < Q.

On the other hand, since |A, (un)| < |tn|an(un) < T||pl|ro @)@n(un), there holds

|V<I>n(un)|2dxdt:/ |An(un)|2\Vun|2dJ:dt§T||u\|Loo(Q)/ | (un)|?| Vi, |2dzdt
Qr

/S;T QT
< Tl o () /Q |V Ay (ug)[Pdadt < C5(T, ||pl| o< (02))-

T
Therefore, ®,,(u,) is relatively compact in L' (7). Note that
L <|s] <n.

m(%)m|s|2sign(s) if |s| S%
(Ist 2 = ()" ) sign(s) 6 £ <

Pn(s) = N 1\m 1Y g 1
(m—=1)(2)" (Is| = ) sign(s) + 757
So, for every ni,nz > n and |s1], [s2]| < T||u||Le(q),

1 m 1 "
s = el sal < Calm Tlullieco) (5) 001 (51) = B (o)

Hence, for any € > 0,

1
m+1

||uﬂ1‘mun1 - |un2|mun2‘ > 25}’ < | {|(bn1 (uTLl) - (I)nz(unz)‘ > 8} ‘7
for all ny, ny > (C’4(m, T||p| |Lw(Q))/€)1/m. Thus, up to a subsequence {u,, } converges a.e in Q7 to a function

u. From (2.11) we can write

—/‘%wMﬁ— MMMMﬁ=/ edp,
Qr Qr

Ay (un) Apdzdt + /
Qr Qr

11



for any ¢ € C21(Qr). Thanks to the dominated convergence Theorem we deduce that

7/ ugptdxdtf/ \u|m*1uAcpdwdt+/ g(u)cpdxdt:/ wdji.
Qr Qr Qr

T

By the Fatou Lemma and (2.12) we also get |u|™ € L%((0,T); H}(Q)).

Furthermore, from the classical maximum principle, see [15, Theorem 9.7], if {a,} is a sequence of
solutions to equations (2.11) where (g, i) is replaced by (h,v) such that v € Cy(Qr) with v > p and h has
the same properties as g, satisfying h < ¢ in R, then u,, < 4,. As n — oo, we get u < @. This achieves the
proof. [

Next we come to the general case where p is a bounded measure:

Lemma 2.6 Let m > Y22 and g € Cy(R), such that g is nondecreasing and g(0) = 0, and let 1 € My(Q7).
There exists a very weak solution u of equation (2.10) which satisfies (2.7)-(2.8) and

N+42
/Q lg(w)|dzdt < |pu[(Qr), |[ul|pm+z/ve @y < C(pl(Qr))™7+2. (2.13)

where C' = C(m, N) > 0.

Moreover, the comparison principle holds for these solutions: if ui,us are very weak solutions of (2.10)
when (u, g) is replaced by (p1,91) and (p2,g2), where py, pe € My(Qr) with py > s and g1,9> have the
same properties as g with g1 < go in R then uy > ug in Qp.

Proof. Let {u,} be a sequence in C°(2r) converging to p in Myp(Qr), such that |u,| < ¢p, * |p| and
ltn|(Q7) < |u|(Qr) for any n € N where {p,} is a sequence of mollifiers in RV*!. By Lemma 2.5 there
exists a very weak solution w,, of problem

(un)e — A(Jun™ tup) + g(un) = pn, in Q7
up, =0 on 9N x (0,7T),
up(0) =0 in £,

which satisfies for a.e (y,7) € Qr,

Q m .
ot <€ (PR b i@+ 14 0 s Blm)) it
Q m2 NGy .
7 < € (LA™ 1+ (B I 0im) ) it ms
and
/ VT4 (|un ™) Pdadt < k|p|(Q7),  VE >0, (2.14)
Qr
{lun| > O < CLFTuf(Qr) N, V>0, (2.15)

/ g |dedt < [ul(Qr).
Qr
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For | > 0, we consider S; € C2(R) such that
Si(a) = |a|™a, for |a| <1, and Sj(a) = (21)™sign(a), for |a| > 2I.
Then we find the relation
(Si(un))e — div (Sl/(un)v(lunlm_lun)) +mfun | Vg [2S] (un) + g(un)Si(un) = Si(un) pin
in D'(Qr). It leads to
1St an)el 3@y 22011 ) < 1SH )V (" ) | (600 + 0l [V 28 () 1)
+ Hg(un)sll(un)HLl(QT) + HSl/(un)MnHLl(QT)'

Since |S](un)] < Cax(—21,20)(un) and |S] (un)| < Cslun ™ X [— 21,21 (tn), we obtain

(S (un))el| 1 @)+ L2 0,110 < Ca ([IVT(atym ([unl™  un) |l 2@y + gl Lo @) (7] + ] (1)) -
From (2.14) we deduce that {(S;(uy))¢} is bounded in L'(Q7) + L2((0,T); H=*(Q2)) and for any n € N,

181 Ctm)ell 2 @y 220 mysm- 0y < Ca (™2l @) M2 + Nl ey |91 + 1l (@) )

Moreover, {S;(u,)} is bounded in L?(0,T, H}(£2)). Hence, {S;(u,)} is relatively compact in L!(Qr) for any
[ > 0. Thanks to (2.15) we find
{llwny " uny = fun, [ uny | > ] < Kluny | > B+ K, | > B+ {151(un,) = Si(un, )| > £}]
< 2050 F 7 () N 4 [{ISi(un) — Silun,)| > 3]

Thus, up to a subsequence {u,} converges a.e in Q7 to a function u. Consequently, u is a very weak solution
of equation (2.10) and satisfies (2.13) and (2.7)-(2.8). The other conclusions follow in the same way. ]

Remark 2.7 If supp(u) C Qx[a, T] for a > 0, then the solution u in Lemma 2.6 satisfies u = 0 in Q% [0,a).

2.4.2 Proof of Theorem 1.3
Now we recall the important approximation property of Radon measures which was proved in [3] and [19].

Proposition 2.8 Let s > 1 and u € MZF(QT). If p is absolutely continuous with respect to Capy y o in Qr,

there exists a nondecreasing sequence {jn} C M;‘(QT), with compact support in Qp which converges to
weakly in My(Qr) and satisfies 12[u,) € L;, (RN*L) for any R > 0.

loc

Now, we are ready to prove Theorem 1.3. We reduce to the case of zero initial data by considering the
problem on (=7, T) with the measure % ® dyy—} + p in Q x (=7, 7).

Proof of Theorem 1.3. First suppose m > 1. Assume that p, o are absolutely continuous with respect
to Cap, ; o in Q7 and Capg, o in 2. Then ot ®@0d11=0} +ut, o~ ®0d1¢—0y +p~ are absolutely continuous with

q
respect to Capy ; , in Q x (=T, T). Applying Proposition 2.8 to ot ® dfi=o0y + utom® df¢=0y + p~, there
exist two nondecreasing sequences {v1 ,} and {vs,,} of positive bounded measures with compact support in
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Q x (=T, T) which converge respectively to o+ ® dg—o} +ut and 0~ ® dy—gy + = in My(Q x (=7, 7)) and
such that 3% [vy ], 2% [vg,,,] € LI(Q x (=T, T)) for all n € N.

Step 1. For any ni,no € N, we show that there exists a very weak solution "2 := u of equation

ue — A(Ju|™ ) + |u|i7 e = vy, — V2, in Qx (=T,T),
u=0 ondQx (-T,7T), (2.16)
u(=T)=0 in .

By Lemma 2.6, there exists a sequence {ug, ,} of of weak solution of the problems

(ks ko )t — Aty g ™ Mty k) + Ty ((Ui,;@)q)

— Tk2((u;17k2)q) =UVin, —U2n, inQx(=T,T),
Ukq ke = 0 on 00 x (—T, T),
ukh;@(fT) =0 in Q,

which satisfy

o sal < € (OO ioy@) 4 @) +14 B, +020al) . 21D

and

/’nﬁw;w%Mﬁ+/’nxw@@%mmsmwh»
QT QT

Moreover, for any nq € N, ko > 0, {ug, &, }x, 1S non-increasing and for any ne € N, k1 > 0, {up, &, }ky 1S
non-decreasing. Therefore, thanks to the fact that I3% [v1.,], I3 [va.,,] € LI( x (=T, T)) and from (2.17)

and the dominated convergence Theorem, v = lim lim wy, x, is a very weak solution of (2.16).
k}l — 00 k}z — 00

Step 2. We show that w = lim lim ™™ is a very weak solution of (1.1). By Lemma 2.6, {u"*"2},,
N —>00 N —+00
is non-increasing, {u™"2},,, is non-decreasing and (2.17) is true when ug, r, is replaced by u™"2, and

/ |un17n2‘dedt S |,Uz|(QT) A ni,Ng € N.
Qr

From the monotone convergence Theorem we obtain that w = lim lim wy, , is a very weak solution of
Ng—00 N1 —00

up — Au[™ " u) + [u]" u = 0 @ =0y + Xopp 0 Qx (=T,7T),
u=0 ondQx (-T,7T),
u(=T)=0 in ©Q,
which © = 0 in Q x (=7,0) and w satisfies (1.3). Clearly, u is a very weak solution of equation (1.1).

Next suppose m < 1. The proof is similar, with the new capacitary assumptions, and (1.3) is replaced
by (1.4). ]
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2.4.3 The subcritical case

We also obtain the description of the subcritical case.

Theorem 2.9 Let m > % and 0 < g < m+ % Then problem (1.1) has a very weak solution for any
w € My(Qr) and o € Mp(Q).

Proof. As the proof of Theorem 1.3, we can reduce to the case ¢ = 0. By Lemma 2.6, there exists a
very weak solution ug, 5, of

(ukl,kg)t - A(|uk1,k2|m71uk1,k2) + Tkl((uzl,]@)q) - Tk2((ul;,k,2)q) =K in QT?
un, =0 on 00 x (0,7T),
un(0) =0 in Q.

such that {ug, g, 1k, and {uk, k, }k, are monotone sequences and

N2
ks ko || Lmt2rvo (07) < Ol (1)) 7572

In particular, {ug, r,} is a uniformly bounded in L*(Q7) for any 0 < s < m + 2.

Therefore, we get that w = lim lim wy, , is a very weak solution of (1.1). This completes the proof. m
ko—00 k1—00

2.4.4 Existence for good measures in time

Next, from an idea of [4, Theorem 2.3], we obtain an existence result for measures which present a good
behaviour in time:

Theorem 2.10 Let m > 822, g > max(1,m) and f € L*(Qr), p € My(Qr), such that
| <w®F  for some w € My (Q) and F € LL((0,T)).

If w is absolutely continuous with respect to Capg, _a_ in Y, then there exists a very weak solution of problem
g

g — A(lu|™ ) + |[ultu = f+p in Qr,
u=0 ondQx(0,T), (2.18)
u(0) = 0.

Proof. For R € (0,00], we define the R-truncated Riesz elliptic potential of a measure v € M (Q) by

R _ [ u(By(2) dp
L[v|(z) = /0 Az, Vo € Q.

By [5, Theorem 2.6],there exists sequence {w,} C MZF(Q) with compact support in 2 which converges to w
in My(2) and such that I;dlam(m [wn] € L9/™(Q) for any n € N. We can write

frp=p—pa, pm=f"+put,  pe=f+p,
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and pt,p” Sw® F. We set
Hin = Tn(f+) + inf{,qu)wn & Tn(F)}a H2.n = Tn(f7) =+ inf{u,f’wn & Tn(F)}

Then {1 n}, {#2,n} are nondecreasing sequences converging to p1, pe respectively in Mp(Qrp) and gy p, p2,n <

Wn @ X(0,1), With @, = n(xq + w,) and Igdiam(ﬂ) [@n] € LI™(Q). As in the proof of Theorem 1.3, there

exists a sequence of weak solution {, n, &, .k, } Of equations

(unl,’ﬂz,kh]%)t - A(lun17n27k1;k2 |m_1un1,n2~,k1,k2) + Tkl ((uil,nQ,kl,kQ)q)
- Tkz((ugl,ng,kl,kz)q) = Hiny — H2,n, in Qr, (219)

Uny gy ke =0 on 9Q x (0,T),
Uny,ng,ki1,ks (O) =0 in Q.
Using the comparison principle as in [4], we can assume that
~1
—Un, < |un17n27k1,k2|m Uny,na,ki,ko < Uny s

where for any n € N, v, is a nonnegative weak solution of

{ —Av, =&, inQ,

U, =0 on 09,
such that ‘
v, < cllgdlam(ﬂ) [©n] VneN.
Hence, utilizing the arguments in the proof of Theorem 1.3, it is easy to obtain the result as desired. ]

3 p—Laplacian evolution equation

Here we consider solutions in the week sense of distributions, or in the renormalized sense,.

3.1 Distribution and renormalized solutions

We first consider weak solutions in the sense of distributions:

Definition 3.1 Let pn € Myp(Qr), 0 € Mp(Q2) and B € C(R). A measurable function u is a distribution
solution of problem
u — Apu+ B(u) = p in Qr,
u=0 on 00 x (0,T), (3.1)
u(0) =0 in Q,

ifue L*(0,T,Wy*(2)) for any s € [l,p - NLH> , and B(u) € LY(Qr), such that
—/ uprdxdt +/ |Vu|P~2Vu.Vpdadt Jr/ B(u)pdxdt = / wdp +/ »(0)do,
QT T QT QT Q

for every ¢ € CH(Q x [0,T)).
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Remark 3.2 Let o' € My(Q) and o' € (0,T), set w = pp+ 0’ ® 0(y—q}. Let u be a distribution solution of
problem (3.1) with data w and o = 0, such that supp(u) C Q x [a’,T), and u = 0, B(u) = 0 in Q x (0,a’).
Then @ := ulgy (o 7y 1 a distribution solution of problem (3.1) in Q x (a',T) with data pu and 0.

As it is well known, when p # 2, this notion is not well adapted to the quasilinear problem. The notion of
renormalized solution is stronger. It was first introduced by Blanchard and Murat [6] to obtain uniqueness
results for the p-Laplace evolution problem for L! data u and o, and developed by Petitta [20] for measure
data p. It requires a decomposition of the measure u, that we recall now.

Let M(Qr) be the space of Radon measures in Q7 which are absolutely continuous with respect to the
C)-capacity, defined at (1.6), and M(Q2r) be the space of measures in Qp with support on a set of zero
C)-capacity. Classically, any p € M;(€Qr) can be written in a unique way under the form p = po + ps where
o € Mo(Q7) N Mp(Qr) and ps € M(Qr). In turn pg can be decomposed under the form

po = f—divg + he,

where f € L'(Qr), g € (LP (Q7))N and h € LP(0,T; Wy (Q)), see [12]; and we say that (f,g,h) is a
decomposition of pg. We say that a sequence of {u,} in My(Q2r) converges to p € My(2r) in the narrow
topology of measures if

n— o0

lim od, = / pdu Yo e C(Qr)NL>(Qr).
Qr Qr

We recall that if u is a measurable function defined and finite a.e. in Qp, such that Ty (u) € LP(0,T, W, " (€))

for any k > 0, there exists a measurable function v : Qp — RY such that VTi(u) = X|u|<kV a.e. in Qr and
for all £ > 0. We define the gradient Vu of u by v = Vu.

Definition 3.3 Let p > 2]<,le1 and 1 = po + ps € Mp(Q7), 0 € LY(Q) and B € C(R). A measurable

function u is a renormalized solution of (3.1) if there exists a decomposition (f,g,h) of po such that
v=u—h¢ LS((O,T);WOl,S(Q)) NL=((0,T); LY (), Vs € [1,p - N+1> ,
Ty (v) € LP((0,T); Wy P () Vk > 0, B(u) € L' (Qr), (3.2)

and:
(i) for any S € W2°°(R) such that S' has compact support on R, and S(0) = 0,
— / S(o)p(0)dr — / o S(v)dxdt + S’ (v)|VulP~2VuV pdadt
Q Qp Qr

S’ (v)pB(u)dzdt :/ (fS"(v)p + 9.V (S (v)p)dzdt  (3.3)

+/ S (v)|VulP~2VuVudzdt +
QT QT

Qr

for any @ € LP((0,T); Wy P(Q)) N L=(Qr) such that o, € LP ((0,T); W12 (Q)) + L' () and (., T) = 0;
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(ii) for any ¢ € C(Qr),

1
lim — / ¢|Vul|P*VuVuvdrdt = pdut  and (3.4)
m—0o0 1M, Qr
{m<v<2m}
1
lim — / B|Vu|P 2 VuVodrdt = / pduy . (3.5)
m—o0 M Qr

{—m>v>-2m}
We first mention a convergence result of [4].

Proposition 3.4 Let {u,} be bounded in My(Qr) and {o,} be bounded in L'(Q2), and B = 0. Let u,, be
a renormalized solution of (3.1) with data pn, = pino + tn,s relative to a decomposition (fr, gn,hn) of tin.o
and initial data o,.

If {f,} is bounded in L*(Qr), {gn} bounded in (L* (Q7))N and {h,} convergent in LP(0,T, W, (52)),
then, up to a subsequence, {u,} converges to a function u in L'(Qr). Moreover, if {u,} is bounded in
LY Q) then {u,} is convergent in L*(0,T, Wy*(Q)) for any s € [1,p - NLH .

Next we recall the fundamental stability result of [4].

Theorem 3.5 Suppose that p > 2]%21 and B=0. Let o € L*(Q) and

p=f—divg+ hy + pi — pg € My(Qr),
with f € LY(Qr),g € (LY (Qr)N, h € LP((0,T); Wy P(Q)) and uf, uy € MF(Qr). Let 0, € LY(Q) and
fin = frn = divgn + (hn)t + pn — 1 € M(Qr),
with fn, € LYQ7), gn € (P (Qr )N, hy € LP((0,T); Wy P(Q)), and pn,n, € My (Qr), such that
pn = pp, — APl + pnss T =1y — AV + s,

with p'}m 7771L € Ll(QT)a p?m 7772L € (LPI(QT))N and Pr,s>Tn,s € Mj(QT)

Assume that {p,} is bounded in My(Qr), {on}, {fn},{gn}, {hn} converge to o, f,g,h in L*(Q), weakly
in LM(Qr), in (LP Q7)Y in LP(0, T, Wy P (Q)) respectively and {pn}, {1} converge to ut, us in the narrow
topology of measures; and {pL},{n:} are bounded in L*(Qr), and {p2},{n2} bounded in (LY (Qp))N.

Let {u,} be a sequence of renormalized solutions of
(un)t — Aptty, = oy, in Qr,
Up =0 on 9Q x (0,7, (3.6)
un(0) =0y, in Q,

relative to the decomposition (fn + ph — N5, Gn + Po — 12, hn) Of in0. Let vy =ty — hy,.

Then up to a subsequence, {un} converges a.e. in Qr to a renormalized solution u of (3.1), and {v,}
converges a.e. in Qp to v = u — h. Moreover, {Vuv,} converge to Vv a.e in Qp, and {Ti(v,)} converges to
Ti(v) strongly in LP(0,T, Wy *(Q)) for any k > 0.
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In order to apply this result, we need some the following properties concerning approximate measures of
w € M (Q7), see also [4].

Proposition 3.6 Let u = pg+ps € MZ‘(QT), o € MO(QT)HM;(QT) and ps € Mg(Qr). Let {o1,n},{p2.n}
be sequences of mollifiers in RN R respectively.

There exists a sequence of measures fn.0 = (fn, gn, hn), such that fn, gn, hn, pin,s € CZ(Qr) and strongly
converge to f,g,h in L*(Qr), (LP (Qr))N and LP((0,T); Wy P(Q)) respectively, pin s converges to p, €
ME(Qr), and py, = pin,0+pin,s converges to p, in the narrow topology, and satisfying 0 < pn, < (P1,0P2,n)* W,
and

fnllr@r) + 1gnll Lo @ppyy + hnll Lo 7 wir @) + #ns(Qr) < 2u(Qr) for any n € N.

Proposition 3.7 Let 1 = puo + fbs, fn = tn,0 + tn,s € MZF(QT) with po, fn,0 € Mo(2r) N M;(QT) and
sy ths € MT(Qr) such that {u,} is nondecreasing and converges to p in My(27).

Then, {pn,s} is nondecreasing and converging to (s i My(Qr); and there exist decompositions (f, g, h)

of 1105 (frs Gns hn) Of pino such that {fu},{gn},{hn} strongly converge to f,g,h in L*(Qr), (Lp/(QT))N and
L*((0,T); Wol’p(Q)) respectively, satisfying

[ fnllLr@r) + ”gn”(Lp’(QT))N + ‘|hn”Lp((o,T);W(}=P(Q)) + s (1) < 20(Qr)  for any n €N,

3.2 Estimates on the p-Laplace equation without absorption

Here the crucial point for proving existence results for problem (1.2) is a result of Liskevich, Skrypnik and
Sobol [16] for the p-Laplace evolution problem without absorption:
(0,7, W'P(Q)) is a distribution

loc

Theorem 3.8 Let p > 2, and u € My(Qr). If u € C([0,T]; L7 .(Q)) N LY
solution to equation

u — Apu=p in Qp, (3.7)
then there exists C' = C'(N,p) such that, for every Lebesque point (z,t) € Qr of u and any p > 0 such that
Qppr(x,t) := B,(z) x (t — pP,t + pP) C Qr one has

1 B 1+%(1p*1)
lu(z, )] < C ”(;MJ/Q ( )\ul““)(” ”) +Polul(z,t) |, (3.8)
p.oP (T,

where A = min{1/(p —1),1/N} and

Prlul(x,t) = Z Dy(pi)(w, 1),

1 [1l(Qp 7 pr (1))
2(p — 1Pt P ’
with p; =27 p, Qprpr(x,t) = By(z) X (t — TpP, t + TpP).

D,(pi)(x,t) = i‘;% {(p _ 2)7-*ﬁ N

As a consequence, we deduce the following estimate:
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Proposition 3.9 Let u be a distribution solution of problem

ur — Apu = pin Qp,
u=20 on 90 x (0,T),
w(0) =0 in Q,

with data p € Cy(Qr). Then there exists C = C(N,p) such that for a.e. (z,t) € Qr,

Q s
uol<c (10 (M) + B ulen) (39
where mg and D are defined at (1.8).

Proof. Let xy € Q and Q = Byp(20) x (—(2D)?, (2D)?). Let U € LP((—(2D)?, (2D)?); Wy *(Bap (o))
with U € C(Q) be the distribution solution of

U= AU = xaglil 0 Q,
u=0 on 0Bap(xg) X (—(2D)?, (2D)P), (3.10)
uw(=(2D)?) =0 in Bsyp(xo),

where for zg € Q. Thus, by Theorem 3.8 we have, for any (z,t) € Qr,

1 1+X(1p*1)
Ulz,t)<e |1+ (DN+p/ |U|(>\+1)(p1)> +P£’[u](m7t) , (3.11)
Qp,pr(z,t)

where Qp pr(x,t) = Bp(z) x (t — DP,t + DP).
According to Proposition 4.8 and Remark 4.9 of [4], there exists a constant Cy > 0 such that

p+N

{IU] > &} < eo(|pl(Qr)) ¥

A anint Ve > 0.

Thus, for any ¢y > 0,

/ |U|A+HDC=D dpdt = (A +1)(p — 1)/ (OFDE-D=11077) > g de
Q 0

60 (oo}
— D= RN > glde+ [0 0] > 0y
0 Lo

P+ N
N .

< CBDN+p€(()>\+1)(P—1) +C4€é>\+1)(p—1)—p+1—w(M(QT))

DR
Choosing ¢y = (%#ﬂ) ! " we get

(N+p)(A+1)(p—1)

Q (pP—T)N+p
/Q|U|(’\+1)(pl)dxdt < ¢sDN TP (W) : (3.12)
Next we show that
P2 {u)(x,t) < (p— 2)D + cel5” [|ul] (x, t). (3.13)
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Indeed, we have 5
1 [1l(Qp (2, 1))
-t Y

where p; = 27'D. Thus,

IR (e E))
PDlul(z,t) < (p—2)D + 2(p — 1)p—1 ;0 Y

| (@y(w,) dp

s<p—2>D+c5/ LU

0 P
So from (3.12), (3.13) and (3.11) we get, for any (z,t) € Qr,

|U(z,t)] < C (1 +D+ (W)ma +H§D[|u|](x,t)) .

By the comparison principle we get |u| < U in Qp, thus (3.9) follows. ]
As a consequence we obtain a new existence result for equation (3.7):
Proposition 3.10 Let p > 2, and p € Mp(Q2r), 0 € My(R). There exists a distribution solution u of

problem
ur — Apu =y in Qrp,

u=0 ondQx(0,7), (3.14)
u(0) = o,
which satisfies for any (x,t) € Qrp
a| () + || (Qr)\ ™
lu(z, t)] < C (1 + D+ ('K)DW) + 137 [lo] ® Sgimoy + 1] (a:,t)) , (3.15)

where C = C(N,p). Moreover, if o € L*(), u is a renormalized solution.

Proof. Let {¢1.,}, {¢2.n} be sequences of standard mollifiers in RY and R. Let pu = pg + p1s € Myp(Q7),
with pg € Mo(2r), ps € Ms(Qr).

By Lemma 3.6, there exist sequences of nonnegative measures fin,0,; = (fn,i, gn,is Pn,i) and p, s ; such that
Friir O hi € C°(Q) and strongly converge to some fi, g;, by in L' (Qr), (LP (Q7))N and LP((0,T); Wy (Q))
respectively, and fin, 1, fn,2, fns,15 fin,s,2 € C2°(Q7) converge to put, =, ut, py in the narrow topology, with
Hn,i = Pn,0, + fin,s,i, for i = 1,2, and satisfying

g = (f1,91,h), 15 = (f2,92,h2) and 0 < 1 < (©1m@2n) ¥ 17,0 < pino < (©1nP2n) * 1

Let 01,02, € C2°(Q), converging to o+ and o~ in the narrow topology, and in L'(Q2) if o € L*(Q), such
that
0<01m <@rn*0",0< 020 <@ra*o .
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Set g, = Hn,1 — Hn,2 and o, = O1,n —02,n-
Let u,, be solution of the approximate problem

(Un)t - Apun = HUn in QTa
un, =0 on 0Q x (0,7), (3.16)
U, (0) =0, on L.

Let gnm(x,t) = on(x) ffT w2,m(s)ds. ((can you develop the idea, since your paper still has not been
accepted? HUNG: I cant explain more because it is very clear))% ¥ By Theorem 3.5, we can see that there
exists a sequence {up m }m of solutions of the problem

(Un,m)t — Aplin,1,m = (gn,m)t + XQrtn in Qx (=T,T),

Un,1,m =0 ondQx (=T,T), (3.17)

Un,m(—T) =0 on Q,

which converges to u, in 2 x (0,7"). By Proposition 3.9, there holds, for any (z,t) € Qr,

|U,n,m(5€,t)| <C <1 +D+ (|/Ln|(QT) + (|Un| ®‘p2,m)(9 X (_T,T))) 3 _|_]I%D[|,Un| + |Un| ®<,027m]($,t)) )

DN

Therefore

(2, 8)] < C (1 D4 (Iuﬂ(QT) + (|0n] ® go.m)(Q % (=T, T))>m3>

DN
+ C(‘ﬁl,n‘p?,m) * HgDHM' + Ial ® 6{t:0}](x7t)'

Letting m — oo, we get

untort) < € (14 D4 (LARD LN T i) (B2 Ll 4101 o )0

Therefore, by Proposition 3.4 and Theorem 3.5, up to a subsequence, {u,} converges to a distribution
solution u of (3.14) (a renormalized solution if o € L}(Q)), and satisfying (3.15). ]

3.3 Sufficient conditions for existence
In this part we prove Theorem 1.4.

Proof of Theorem 1.4. Step 1. First, assume that o € L'(2). Since u is absolutely continuous
with respect to Cap, ; ,, the same happens for u* and p~. Applying Proposition 2.8 to u*, ™, there exist
two nondecreasing sequences {1} and {2 ,,} of positive bounded measures with compact support in Qyp
which converge to p and p~ in M, (Q7) respectively and such that 132 [ug ], I3P [pa,n] € L4(Qr) for all
n € N.

For i = 1,2, set fi;;1 = pui,1 and fiz,; = pii,j — ptij—1 > 0, 80 pin = >0 fii ;. We write

Min = Min,0 + Min,s, Bij = fij,0 + figs, WIith [ .0, im0 € Mo(Q7), lin,ss flin,s € Ms(Q7).
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Let {¢m} be a sequence of mollifiers in RV, As in the proof of Proposition 3.10, for any j € N and
i = 1,2, there exist sequences of nonnegative measures fim 0 = (fm,ijsIm,i,js om,i,;) and fim i j,s such
that foijs 9m,ijsPmi; € Co°(Sdr) strongly converge to some f; ;,9;;,hi; in Ll(QT),(Lp/(QT))N and
L*(0,T, Wol’p(Q)) respectively; and fim i i, fim,i,j,s € Co2(Qr) converge to fi; ;, fli j,s in the narrow topol-
ogy With fim,ij = fn,ij,0 + fm,i,j.s, Which satisfy fi; j o0 = (fi.j, 9i,3, hij), and

0 < fim,i; < P * fli s fomin; () < fi i (Qr),

Hfm,i,j”Ll(QT) + ||gm7i,j||(Lp’(QT))N + |‘hm,i,j”m(o,T,W(}vP(Q)) + Nm,i,j,s(QT) < 2:&2}]’ (QT) (3'18)
Note that, for any n,m € N,

n

> (i + fim.2.5) < @ * (1 + p2n) and Y (i1, (Qr) + fim 2,(Qr)) < [p](Q).
j=1 j=1

Step 1l.a For any n,k € N, we show that there exist renormalized solutions w, i := w,vn % = v to
equations
U — AP’U, + Tk(|u\‘1_1u) = U1,n — H2n in QT,
u=0 on 90 x (0,T), (3.19)
w(0)=T,(c")—Ty(c™) on Q,

relative to the decomposition (E?:l fl,j —E?Zl fg,j, E?:l 91,5 _Z;‘Lzl 92,5, Z?:1 th _Z;‘Lzl hgd‘) of H1n,0—
H2.n,0 and
vy — Apv + T (v?) = p1p + pon in Qp,
v=20 on 002 x (0,7, (3.20)
v(0) = T, (lo|) on Q.

relative to the decomposition (3°7_; f1+>20_1 fajs 2 oy—1 91,5+ 2 j—1 92,45 2i—q haj+25—1 haj) of p1 no+
12.n,0, Tespectively and

ol o< (140 (LEEONE L 50 (1,0 & 510 ) + OB s+l (320)
and
/Q Ty (09)dzdt < |l () + 0] (). (3.22)

Indeed, for any m € N, let up gk m 1= Um, Vn k,m := Um € W be solutions of problems

(um)e = Dptim + Ti([um |7 ) = Z?:l(/lm,l’j = fm,2,5) in Qr,
U, =0 on 90 x (0,T),
um(0) =T, (c7) = T(c™) on ©Q,

and
(m)e = Bpvm + T (vh) = 2201 (fim,1,5 + fim,2,5) in Qr,
U, =0 on 90 x (0,7T),
vm(0) = Th(lo]) on Q.
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By the comparison principle and Proposition 3.9 we have

Q Qr)\™
U | < v < €1 (1 + D+ ("’()];WT)) + 1P [T.(o]) ® 5{t_0}])

+ C1¥m * H%D [Ml,n + /1*2,71] .

Moreover,
| Tulet)dadt < Jul(@) + o)
Qp

From Proposition 3.4, up to subsequences, {um }m,{Vm }m converge to some u, v a.e in Qr. Then, applying
Theorem 3.5 to data (327, (fim,1,j — fim,2,5) = Te([tm|* ), Tn(0) =T (o)) and (327, (fim,1,5+Fim,2,5) —
Ti(v1),Tn(Jo])), up to subsequences, {um, }m convergesyk to a renormalized solutions u of problem (3.19)
and {vy, }m convergesyk to a solution v of (3.20). Clearly, v and v satisfy (3.21) and (3.22).

Step 1.b For any n € N, we show that there exist renormalized solutions u" := u,v™ := v to equations

ur — Apu+ |u|Tu = py g — pi2, in Qr,
u=0 on 02 x (0,7, (3.23)
w(0) =Ty (0T) —Ty(c™) on £,

relative to the decomposition (3°7_; f1,;—> 01 fa,js 2ojm1 91,5 = 2o jm1 92,55 Dy M1 — 2 ig h2,j) Of p1 0~
H2,n,0 and
U — Apv +v? = p1p + pon in Qr,
v=0 on 09 x (0,T), (3.24)
v(0) =T, (|lo]) on €.

relative to the decomposition (3°7_; f1+>27_1 fajs > oy—1 91,5+ 2 j—1 92,45 2i—q haj+ 25—y haj) of p1 no+
H2.n,0, respectively and w, v satisfies (3.21) and

/Q vidadt < |ul(Qr) + |o](Q). (3.25)

Indeed, for any k € N, by Step l.a, there exist renormalized solutions wy, k, v of equations (3.19) and
(3.20), respectively, which satisfy (3.21) and (3.22) with u = wy, k, v = vy .

Thanks to Proposition 3.4, up to subsequences, {un i}k, {vnr}r converge to some u™, v"™ a.e in Qrp.
Then, {Ty(|un k" un i) }i, {Th(v) )} e converge to some [u[?" u™, (v")7 in L'(Qr), respectively, from
(3.21) %and dominated convergence Theorem, since I3°[uy , + pi2.n] € L9(Qr) for any n € N. Thus, by
Theorem 3.5, up to a subsequence, {un i }x {vnx}r converge to renormalized solutions u™,v™ of problems
(3.23) and (3.24) which still satisfy (3.21) with u = «™,v = v™ and (3.25).

Moreover, we can see that the sequence {v"},, is increasing. Note that from (3.18) we have

||fi,j||L1(QT) + ||g’i7j||(LP'(QT))N + Hhi,j |Lp(0,T,W01~P(Q)) < 2/1i’j(QT)a

which implies

I fisllr@n 1> giill i @epn + 1D hijll oo wie ) < 20in(Qr) < 2|p|(Qr). (3.26)

j=1 j=1 j=1
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Step 1.c We show that up to subsequence, {u"},, {v™}, converge to a renormalized solutions u, v of
problem
u — Apu+ |u|?tu=p in Qp,
u=0 on 002 x (0,T), (3.27)
u(0) =0 in Q,

relative to the decomposition (372 f1j — D272 fo,j5 2501 91,5 = De1 92,45 2o gy P1,j — 2ogey haj) of po.
And
v —Apu+v?=|py| in Qp,
v=0 on 02 x (0,T), (3.28)
v(0) =]o| in Q,

relative to the decomposition (3572, f1,; + 22721 fajs 2oje1 91,5 + 2ojey 92,55 2geq P + 2250 haj) of |
respectively; and

Q + Q ms3
luf <v<C (1 + D+ (W) + 137 [lo] ® Sgpm0y + Iul]) . (3.29)

Indeed, by Proposition 3.4, up to subsequences, {u"},, {v"}, converges to some u, v a.e in Q7. Then, thanks
to (3.25) with v = v™, the fact that {v™},, is increasing and the monotone convergence Theorem, we deduce
that u™, v™ converge to u,v in LI(Qr).

Therefore, thanks to (3.26), we can apply Theorem 3.5 to obtain that, up to subsequences, {u™},, {v"},
converge to a renormalized solutions u, v of problems (3.27) and (3.28) which satisfies (3.29).

Note that, if ¢ = 0 and supp(u) C Q2 x [a,T], a > 0, then u = v =0 in Q x (0,a), since uy, yp = vy =0
in 2 x (0,a).

Step 2. We consider any o € M;(Q2) such that o is absolutely continuous with respect to Capg, , in €.

q
So, p1+0 ® dg4—0y is absolutely continuous with respect to Capy ; ., in Q x (=7, T). As above, we verify that
there exists a renormalized solution u of

uy — Apu+ [u|9 u = xop i+ 0 @ p—gy in Qx (=T,T),
u=0 on 0Q x (=T,T),
u(-T)=0 on Q,

satisfying u = 0 in Q x (=T,0) and (1.7). Finally, we get the result from Remark 3.2, achieving the proof. m
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