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Abstract. In this note, we give a new characterization of SobolevW 1,1 functions among
BV functions via Hardy–Littlewood maximal function. Exploiting some ideas coming
from the proof of this result, we are also able to give a new characterization of absolutely
continuous measures via a weakened version of Hardy–Littlewood maximal function.
Finally, we show that the approach adopted in [3,8] to establish existence and uniqueness
of regular Lagrangian flows associated to Sobolev vector fields cannot be further extended
to the case of BV vector fields.

1. Introduction

Let µ be a Borel measure in Rd. We let

Mµ(x) := sup
r>0

|µ|(B(x, r))

L d(B(x, r))
∈ [0,+∞] (1.1)

be the (Hardy–Littlewood) maximal function of µ at x ∈ Rd, see [9, Chapter 1]. If the
measure µ is absolutely continuous with respect to the Lebesgue measure with density
f ∈ L1

loc(Rd), then we can rewrite (1.1) as

Mf(x) := sup
r>0
−
∫
B(x,r)

|f(y)| dy ∈ [0,+∞] (1.2)

for all x ∈ Rd. It is well known that if f ∈ Lp(Rd) for some 1 < p ≤ +∞, then the
maximal function in (1.2) satisfies the following strong (p, p)-type estimate

‖Mf‖Lp(Rd) .d ‖f‖Lp(Rd). (1.3)

Here and in the following, given two quantities A and B, we write A .d B (resp. A &d B)
if there exists a dimensional constant C > 0 such that A ≤ CB (resp. A ≥ CB). If
f ∈ L1(Rd), then the maximal function in (1.2) satisfies the following weak (1, 1)-type
estimate

sup
λ>0

λL d(
{
x ∈ Rd : Mf(x) > λ

}
) .d ‖f‖L1(Rd). (1.4)
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For a proof of inequalities (1.3) and (1.4), we refer the interested reader to [9, Theorem 1].
Actually, if f ∈ L1(Rd), writing f = fχ{|f |>λ

2}+fχ{|f |≤λ2} and combining (1.3) and (1.4),
we can improve (1.4) as

λL d(
{
x ∈ Rd : Mf(x) > λ

}
) .d

∫
|f |>λ

2

|f(y)| dy,

so that
lim sup
λ→+∞

λL d(
{
x ∈ Rd : Mf(x) > λ

}
) = 0.

With a similar reasoning, we also get that

lim sup
λ→+∞

λL d({x ∈ Rd : Mµ(x) > λ} .d |µs|(Rd), (1.5)

for all finite Borel measures µ (see [7, Section 2] for more details). Here and in the
following, µs denotes the singular part of the measure µ with respect to the Lebesgue
measure in Rd.

As remarked in [6, Problem 3.5], it is also possible to establish a reverse version of
inequality (1.5), see Proposition 1.1 below.

Proposition 1.1. Let µ be a finite Borel measure in Rd. Then

inf
λ>0

λL d(
{
x ∈ Rd : Mµ(x) > λ

}
) &d |µs|(Rd). (1.6)

More in general, given a cube Q ⊂ Rd, it holds

inf
{
λL d({x ∈ Q : Mµ(x) > λ}) : λ > |µ|(Q)

L d(Q)

}
&d |µs|(Q). (1.7)

For the reader’s convenience, we give a proof of Proposition 1.1 in Appendix A.
Combining inequalities (1.5) and (1.6), we immediately deduce the following character-

ization of absolutely continuous measures in Rd.

Corollary 1.2. Let µ be a finite Borel measure in Rd. Then µ� L d if and only if

lim
λ→+∞

λL d(
{
x ∈ Rd : Mµ(x) > λ

}
) = 0. (1.8)

Inspired by Corollary 1.2, we give a new characterization of Sobolev W 1,1 among BV
functions in term of the behaviour of a suitable maximal function. For f ∈ L1

loc(Rd), we
define

Af(x) := sup
r>0

1

r
−
∫
B(x,r)

|f − (f)x,r| dy ∈ [0,+∞] (1.9)

for all x ∈ Rd, where (f)x,r = −
∫
B(x,r)

f dy. Note that, by Poincaré’s inequality and by
inequality (1.5) applied to the measure µ = Df , we have that

lim sup
λ→+∞

λL d
({
x ∈ Rd : Af(x) > λ

})
.d |Dsf |(Rd).

Our main result is the following, see Section 3 for the proof.

Theorem 1.3. Let f ∈ BV (Rd). Then

lim inf
λ→+∞

λL d
({
x ∈ Rd : Af(x) > λ

})
&d |Dsf |(Rd).
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In particular, f ∈ W 1,1(Rd) if and only if

lim inf
λ→+∞

λL d
({
x ∈ Rd : Af(x) > λ

})
= 0.

Exploiting some ideas coming from the proof of the aforementioned Theorem 1.3, we are
able to improve Proposition 1.1 as follows. For a finite Borel measure µ on Rd (possibly
with sign), we define

Mµ(x) := sup
r>0

|µ(B(x, r))|
L d(B(x, r))

∈ [0,+∞] (1.10)

for all x ∈ Rd. Note that the maximal function defined in (1.10) is weaker than the one
recalled in (1.1), in the sense that Mµ(x) ≤ Mµ(x) for all x ∈ Rd. Then the following
result holds, see Section 2 for the proof.

Theorem 1.4. Let µ be a finite Borel measure on Rd (possibly with sign). Then

lim inf
λ→+∞

λL d({x ∈ Rd : Mµ(x) > λ}) &d |µs|(Rd). (1.11)

Hence Corollary 1.2 still holds for any (possibly signed) finite Borel measure µ in Rd

with (1.8) replaced by

lim inf
λ→+∞

λL d(
{
x ∈ Rd : Mµ(x) > λ

}
) = 0.

The last goal of this note — which was our starting motivation for the study of inequal-
ity (1.6) — comes from the theory of ordinary differential equations (ODEs) with weakly
differentiable vector fields.

The study of this theory was started by DiPerna and Lions in their seminal paper [4],
in which they proved existence and uniqueness of solutions of ODEs with Sobolev vector
fields. The extension of the results obtained in [4] to vector fields with BV regularity
was established by Ambrosio in the groundbreaking paper [1], where the notion of regular
Lagrangian flow was introduced as a generalization of the classical definition of flow
(see [3, Definition 1.1] for a precise definition). More in detail, the main result of [1] reads
as follows. For a time T ∈ (0,+∞], let b : (0, T )×Rd → Rd be a bounded time-dependent
vector field such that

b ∈ L1((0, T );BV (Rd;Rd)), div b ∈ L1((0, T );L∞(Rd;Rd)). (1.12)

Consider the associated Cauchy problem
dXt

dt
(x) = bt(Xt(x)), (t, x) ∈ (0, T )× Rd,

X0(x) = x ∈ Rd.

(1.13)

Then there exists a unique regular Lagrangian flow X : [0, T )× Rd → Rd solving (1.13).
Both the results by DiPerna–Lions and Ambrosio rely on the so-called Eulerian ap-

proach, meaning that the problem (1.13) is studied indirectly via the closely linked trans-
port equation. A more direct approach, the so-called Lagrangian approach, was proposed
by Crippa and De Lellis in [3], where simple a priori estimates were exploited in order to
get existence, uniqueness, compactness and even mild regularity properties of the regular
Lagrangian flow associated to a Sobolev W 1,p vector field for every p > 1. Their approach
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has been extended to the case p = 1 by Jabin in [8], where it was observed that if the
quantity

Q(B; δ) := | log δ|−1
∫ T

0

∫
B

min
{
δ−1,M|Dbt|(x)

}
dx dt (1.14)

satisfies the decay property
lim sup
δ→0+

Q(B; δ) = 0 (1.15)

for all balls B ⊂ Rd, then there exists a unique regular Lagrangian flow associated to b
(for a more detailed exposition of these results, see [7, Section 1]).

Using Proposition 1.1, we can prove that (1.15) holds true if and only if

b ∈ L1((0, T );W 1,1
loc (R

d;Rd)),

so that the approach by Crippa–De Lellis and Jabin cannot be further extended to the
case of BV vector fields. Our result reads as follows, see Section 4 for the proof.

Proposition 1.5. Let b : (0, T )× Rd → Rd be a vector field satisfying (1.12). Then∫ T

0

|Dsbt|(B) dt .d lim inf
δ→0+

Q(B; δ) ≤ lim sup
δ→0+

Q(B; δ) .d

∫ T

0

|Dsbt|(B) dt (1.16)

for all balls B ⊂ Rd, where Q(B; δ) is as in (1.14). In particular, the decay property (1.15)
is satisfied if and only if b ∈ L1((0, T );W 1,1

loc (Rd;Rd)).

2. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Write µ = η|µ|, where η : Rd → R satisfies
|η(x)| = 1 for |µ|-a.e. x ∈ Rd. For each ε > 0 let ηε ∈ Lip(Rd) be a Lipschitz function
with Lipschitz constant Cε > 0 such that∫

Rd
|η(x)− ηε(x)| d|µ|(x) < ε. (2.1)

We claim that
1

ωdrd

∣∣∣∣∫
B(x,r)

ηε d|µ|
∣∣∣∣+ 2CεrM|µ|(x) ≥

1

ωdrd

∫
B(x,r)

|ηε| d|µ|, (2.2)

for all x ∈ Rd and all r > 0. Indeed, we can estimate∣∣∣∣∫
B(x,r)

ηε(y) d|µ|(y)
∣∣∣∣ ≥ ∣∣∣∣∫

B(x,r)

ηε(x) d|µ|(y)
∣∣∣∣− ∫

B(x,r)

|ηε(y)− ηε(x)| d|µ|(y)

≥
∫
B(x,r)

|ηε(x)| d|µ|(y)− Cεr
∫
B(x,r)

d|µ|(y)

≥
∫
B(x,r)

|ηε(y)| d|µ|(y)−
∫
B(x,r)

||ηε(y)| − |ηε(x)|| d|µ|(y)− Cεr
∫
B(x,r)

d|µ|(y)

≥
∫
B(x,r)

|ηε(y)| d|µ|(y)− 2Cεr

∫
B(x,r)

d|µ|(y)

for all r > 0, from which (2.2) follows.
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Let us now consider the measures νε := |η − ηε| |µ| for ε > 0. We claim that

1

ωdrd

∣∣∣∣∫
B(x,r)

η d|µ|
∣∣∣∣+ 2CεrMµ(x) + 2Mνε(x) ≥

1

ωdrd

∫
B(x,r)

|η| d|µ| (2.3)

for all x ∈ Rd and all r > 0. Indeed, assuming Mµ(x) < +∞ and Mνε(x) < +∞ without
loss of generality, by (2.2) we can estimate

1

ωdrd

∣∣∣∣∫
B(x,r)

η d|µ|
∣∣∣∣ ≥ 1

ωdrd

∣∣∣∣∫
B(x,r)

ηε d|µ|
∣∣∣∣−Mνε(x)

≥ 1

ωdrd

∫
B(x,r)

|ηε| d|µ| − 2CεrMµ(x)−Mνε(x)

≥ 1

ωdrd

∫
B(x,r)

|η| d|µ| − 2CεrMµ(x)− 2Mνε(x).

For τ > 0 define

Mτµ(x) := sup
0<r<τ

|µ|(B(x, r))

L d(B(x, r))
∈ [0,+∞], (2.4)

and similarly

M
τ
µ(x) := sup

0<r<τ

|µ(B(x, r))|
L d(B(x, r))

∈ [0,+∞],

for all x ∈ Rd. Taking the supremum with respect to r ∈ (0, τ) in (2.3), we find

M
τ
µ(x) + 2CετMµ(x) + 2Mνε(x) ≥ Mτµ(x), (2.5)

for all x ∈ Rd.
We claim that

lim inf
λ→+∞

λL d({x ∈ Rd : Mµ(x) > λ}) + Cετ |µs|(Rd) + ε &d |µs|(Rd), (2.6)

for all ε > 0 and τ > 0. Indeed, since |µ|(Rd) < +∞, given τ > 0, for all λ > 0 sufficiently
large it holds

{x ∈ Rd : Mτµ(x) > λ} = {x ∈ Rd : Mµ(x) > λ}. (2.7)
Thus, on the one hand, by (1.6), we have

lim inf
λ→+∞

λL d({x ∈ Rd : Mτµ(x) > λ})

= lim inf
λ→+∞

λL d({x ∈ Rd : Mµ(x) > λ}) &d |µs|(Rd).

On the other hand, by (1.5), (2.1) and (2.5) we can estimate

lim inf
λ→+∞

λL d({x ∈ Rd : Mτµ(x) > λ})

≤ lim inf
λ→+∞

λL d({x ∈ Rd : M
τ
µ(x) + 2CετMµ(x) + 2Mνε(x) > λ})

.d lim inf
λ→+∞

λL d({x ∈ Rd : M
τ
µ(x) > λ})

+ Cετ lim sup
λ→+∞

λL d({x ∈ Rd : Mµ(x) > λ})

+ lim sup
λ→+∞

λL d({x ∈ Rd : Mνε(x) > λ})
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≤ lim inf
λ→+∞

λL d({x ∈ Rd : M
τ
µ(x) > λ}) + Cετ |µs|(Rd) +

∫
Rd
|η − ηε| d|µ|

≤ lim inf
λ→+∞

λL d({x ∈ Rd : M
τ
µ(x) > λ}) + Cετ |µs|(Rd) + ε

= lim inf
λ→+∞

λL d({x ∈ Rd : Mµ(x) > λ}) + Cετ |µs|(Rd) + ε,

for all ε > 0 and τ > 0. Inequality (2.6) thus follows. Therefore, passing to the limit
in (2.6) first as τ → 0 and then as ε→ 0, we get (1.11). This concludes the proof.

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. The idea of the proof is to estimate the quan-
tity Af defined in (1.9) from below with the integral average of |Df |, in the spirit of the
reverse Poincaré’s inequality. Obviously, it is not possible to get such an estimate for
arbitrary BV functions (with a constant that does not depend on the function itself).

However, it is simple to see that a reverse Poincaré’s inequality is true for one-variable
monotone functions, so that one would expect that a sort of reverse Poincaré’s inequality
may hold for arbitrary BV functions if first one specifies a direction ν ∈ Rd, |ν| = 1, and
then adds a suitable correction term measuring how far is f from being dependent only
on the direction ν and monotone.

Lemma 3.1. There exist two dimensional constants C1, C2 > 0 such that

1

r

∫
B(x,C2r)

|f − (f)x,C2r| dy +
∫
B(x,C2r)

(1− 〈ν, η〉) d|Df | ≥ C1

∫
B(x,r)

d|Df | (3.1)

for all ν ∈ Rd with |ν| = 1, x ∈ Rd, r > 0 and f ∈ BV (Rd), where η : Rd → Rd satisfies
Df = η |Df | and |η| = 1 |Df |-a.e. in Rd.

Proof. We claim that there exist two dimensional constants C1, C2 > 0 such that

1

r

∫
B(x,C2r)

|f − (f)x,C2r| dy +
∫
B(x,C2r)

(|∇f | − 〈ν,∇f〉) dy ≥ C1

∫
B(x,r)

|∇f | dy (3.2)

for all ν ∈ Rd with |ν| = 1, x ∈ Rd, r > 0 and f ∈ C∞(Rd). By a standard rescaling
argument, we just need to prove that there exists a dimensional constant C > 0 such that∫

2Q

|f − (f)2Q| dx+
∫
2Q

(|∇f | − 〈e1,∇f〉) dy ≥ C

∫
Q

|∇f | dy (3.3)

for all f ∈ C∞(Rd), where Q = [−1, 1]d and (f)2Q := −
∫
2Q
f dy. We prove (3.3) by

contradiction. For all n ∈ N, assume there exists fn ∈ C∞(Rd) such that∫
Q

|∇fn| dy = 1, (fn)2Q = 0,

∫
2Q

|fn| dy +
∫
2Q

(|∇fn| − 〈e1,∇fn〉) dy <
1

n
.

Then consider gn : 2I → R, I = [−1, 1], defined as

gn(t) :=

∫
[−1,1]d−1

gn(t, y
′) dy′, t ∈ 2I.
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For all s ∈ [0, 1], we have
1

n
≥
∫
2Q

(|∇fn| − 〈e1,∇fn〉) dy

≥
∫ 1+s

−1−s

∫
[−1,1]d−1

|∇fn(y1, y′)| − 〈e1,∇fn(y1, y′)〉 dy′ dy1

≥ 1−
∫ 1+s

−1−s
g′n(y1) dy1 = 1−

(
gn(1 + s)− gn(−1− s)

)
,

so that
gn(1 + s)− gn(−1− s) ≥ 1− 1

n
, n ∈ N.

This contradicts the fact that gn → 0 in L1(2I), since ‖gn‖L1(2I) ≤ ‖fn‖L1(2Q) ≤ 1
n
. This

concludes the proof of (3.3) and thus inequality (3.2) follows.
We can now conclude the proof by a standard approximation argument. Given f ∈

BV (Rd), by [2, Theorem 3.9 and Proposition 3.13] we can find fn ∈ BV (Rd) ∩ C∞(Rd)

such that fn → f in L1(Rd), ‖∇fn‖L1(Rd) → |Df |(Rd) and |∇fn|L d ∗
⇀ |Df | in Rd

as n → +∞. Therefore, inequality (3.1) follows by Reshetnyak’s continuity Theorem,
see [2, Theorem 2.39]. �

Remark 3.2. We must have C2 > 1 in Lemma 3.1, as the following example shows. For
n ∈ N, consider fn : I → R, I = [−1, 1], defined as

fn(x) =


nx+ n− 1 −1 ≤ x < −

(
1− 1

n

)
0 −

(
1− 1

n

)
≤ x ≤ 1− 1

n

nx+ 1− n 1− 1
n
< x ≤ 1.

Then (fn) = 0, ‖fn‖L1(I) =
1
n
and ‖f ′n‖L1(I) = 2, so that inequality (3.6) with C2 = 1,

v = 1, x = 0 and r = 1 would imply C1 ≥ 2n, a contradiction.

We will not apply Lemma 3.1 directly, but we will use the following easy consequence
of it. There exist two dimensional constants C1, C2 > 0 such that

1

r

∫
B(x,C2r)

|f − (f)x,C2r| dy + 2

∫
B(x,C2r)

|η − v| d|Df | ≥ C1

∫
B(x,r)

d|Df | (3.4)

for all v ∈ Rd, x ∈ Rd, r > 0 and f ∈ BV (Rd), where η : Rd → Rd is as in Lemma 3.1. The
proof of (3.4) is immediate. Indeed, since we can assume v 6= 0 without loss of generality,
we just need to notice that

2|η − v| ≥ 1−
〈
v

|v|
, η

〉
|Df |-a.e. in Rd,

and apply Lemma 3.1 with ν = v/|v|.
Having inequality (3.4) at our disposal, we are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Fix f ∈ BV (Rd) and write Df = η |Df |, where η : Rd → Rd is as
in Lemma 3.1. For each ε > 0, let ηε ∈ Lip(Rd) be a Lipschitz function with Lipschitz
constant Cε > 0 such that the measure νε := |η − ηε| |Df | satisfies

νε(Rd) =

∫
Rd
|η − ηε| d|Df | < ε. (3.5)
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Now fix x ∈ Rd. Applying Lemma 3.1 with v = ηε(x), we get

1

r

∫
B(x,C2r)

|f(y)− (f)x,C2r| dy + 2

∫
B(x,C2r)

|η(y)− ηε(x)| d|Df |(y) ≥ C1

∫
B(x,r)

d|Df |(y).

(3.6)
Note that∫

B(x,C2r)

|η(y)− ηε(x)| d|Df |(y)

≤
∫
B(x,C2r)

|η(y)− ηε(y)| d|Df |(y) +
∫
B(x,C2r)

|ηε(y)− ηε(x)| d|Df |(y)

≤
∫
B(x,C2r)

dνε(y) + C2Cεr

∫
B(x,C2r)

d|Df |(y).

(3.7)

Combining (3.6) and (3.7), we get that

Af(x) +Mνε(x) +
Cεr

ωd(C2r)d

∫
B(x,C2r)

d|Df | &d
1

ωdrd

∫
B(x,r)

d|Df |, (3.8)

for all x ∈ Rd and r > 0, where Af is the function defined in (1.9).
Now fix τ > 0. Taking the supremum for r ∈ (0, τ) in (3.8) and recalling the definition

in (2.4), we get that

Af(x) +Mνε(x) + Cετ M
C2τ (Df)(x) &d M

τ (Df)(x).

Thus, by the observation made in (2.7), inequalities (3.5), (1.5) and Proposition 1.1, we
conclude that

|Dsf |(Rd) .d lim inf
λ→+∞

λL d(
{
x ∈ Rd : M(Df)(x) > λ

}
)

= lim inf
λ→+∞

λL d(
{
x ∈ Rd : Mτ (Df)(x) > λ

}
)

.d lim inf
λ→+∞

λL d(
{
x ∈ Rd : Af(x) > λ

}
)

+ lim sup
λ→+∞

λL d(
{
x ∈ Rd : Mνε(x) > λ

}
)

+ Cετ lim sup
λ→+∞

λL d(
{
x ∈ Rd : MC2τ (Df)(x) > λ

}
)

.d lim inf
λ→+∞

λL d(
{
x ∈ Rd : Af(x) > λ

}
) + νε(Rd) + Cετ |Dsf |(Rd)

.d lim inf
λ→+∞

λL d(
{
x ∈ Rd : Af(x) > λ

}
) + ε+ Cετ |Dsf |(Rd),

for all ε > 0 and τ > 0. Passing to the limit first as τ → 0 and then as ε→ 0, we get

lim inf
λ→+∞

λL d(
{
x ∈ Rd : Af(x) > λ

}
) &d |Dsf |(Rd).

This concludes the proof. �



A MAXIMAL FUNCTION CHARACTERIZATION 9

4. Proof of Proposition 1.5

In this section, we prove Proposition 1.5. Let b : (0, T ) × Rd → Rd be a vector field
satisfying (1.12). By [7, Remark 10], the quantity

Q(B; δ) = | log δ|−1
∫ T

0

∫
B

min
{
δ−1,M|Dbt|(x)

}
dx dt

defined in (1.14) satisfies

lim sup
δ→0+

Q(B; δ) .d

∫ T

0

|Dsbt|(B) dt

for all balls B ⊂ Rd. This proves the second part of (1.16). To prove the first part
of (1.16), fix a ball B = Br ⊂ Rd of radius r > 0. We claim that

lim inf
δ→0+

| log δ|−1
∫
B

min
{
δ−1,M|Dbt|(x)

}
dx &d |Dsbt|(Br) (4.1)

holds for a.e. t ∈ (0, T ), so that the conclusion follows by Fatou’s Lemma. Indeed, for
any ε ∈ (0, r/2) and for a.e. t ∈ (0, T ), we can estimate∫

Br

min
{
δ−1,M|Dbt|(x)

}
dx ≥

∫ δ−1

δ−1/2

L d
({
x ∈ Br : M

(
1Br−ε|Dbt|

)
(x) > λ

})
dλ.

Note that M
(
1Br−ε|Dbt|

)
(x) .d |Dbt|(Br)ε

−d for every x ∈ Rd \Br and for a.e. t ∈ (0, T ).
Indeed, if |x| > r then Br−ε ∩B(x, s) = ∅ for all s ∈ [0, ε], so that

M
(
1Br−ε|Dbt|

)
(x) = sup

s>0

|Dbt|(Br−ε ∩B(x, s))

L d(B(x, s))
≤ |Dbt|(Br−ε)

L d(B(x, ε))
.d |Dbt|(Br)ε

−d.

Now, using the decomposition

L d
({
x ∈ Br : M

(
1Br−ε|Dbt|

)
(x) > λ

})
=L d

({
x ∈ Rd : M

(
1Br−ε|Dbt|

)
(x) > λ

})
−L d

({
x ∈ Rd \Br : M

(
1Br−ε |Dbt|

)
(x) > λ

})
and Proposition 1.1, we get that

inf
λ∈(δ−1/2,δ−1)

λL d
({
x ∈ Br : M

(
1Br−ε|Dbt|

)
(x) > λ

})
&d |Dsbt|(Br−ε)

for all δ .d |Dbt|(Br)
−1/2εd/2 and for a.e. t ∈ (0, T ). Hence, for δ > 0 sufficiently small,

we obtain that

| log δ|−1
∫
Br

min
{
δ−1,M|Dbt|(x)

}
dx &d | log δ|−1

∫ δ−1

δ−1/2

|Dsbt|(Br−ε)
dλ

λ
&d |Dsbt|(Br−ε).

Therefore

lim inf
δ→0+

| log δ|−1
∫
B

min
{
δ−1,M|Dbt|(x)

}
dx &d |Dsbt|(Br−ε),

so that claim (4.1) follows by letting ε→ 0+.
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Appendix A. Proof of Proposition 1.1

In this section, we prove Proposition 1.1. The main ingredient of the argument is the
following well-known reverse weak (1, 1)-type inequality for the maximal function in (1.2).
For the proof, which uses Calderon–Zygmund decomposition, we refer to [9, Chapter 1,
Section 5].

Lemma A.1. There exists a dimensional constant C > 0 such that

tL d(
{
x ∈ Rd :Mf(x) > Ct

}
) &d

∫
{f>t}

f dL d (A.1)

for all t > 0 and all non-negative f ∈ L1(Rd). More in general, there exists a dimensional
constant C > 0 such that

tL d({x ∈ Q :Mf(x) > Ct}) &d
∫
{f>t}∩Q

f dL d (A.2)

for all cube Q ⊂ Rd, for all t > −
∫
Q
f dL d and all non-negative f ∈ L1

loc(Rd).

We are now ready to prove Proposition 1.1.

Proof of Proposition 1.1. Without loss of generality, we can assume that µ is non-negative
and singular with respect to L d.

For all ε > 0 define fε ∈ L1(Rd) as

fε(x) :=
µ(B(x, ε))

L d(B(x, ε))
=
µ(B(x, ε))

ωd εd
, x ∈ Rd,

where ωd = L d(B(0, 1)).
We claim that (fε)ε>0 satisfies the following almost semigroup property : for all r > 0

and x ∈ Rd, it holds

(fε)x,r := −
∫
B(x,r)

fε dy .d fr+ε(x). (A.3)

Indeed, fix x ∈ Rd and r > 0. By Tonelli’s Theorem, we can write

(fε)x,r =
1

ωdεd
1

ωdrd

∫
Rd

L d
(
B(x, r) ∩B(y, ε)

)
dµ(y).

Since
L d
(
B(x, r) ∩B(y, ε)

)
≤ 1B(x,r+ε)(y) min{ωdεd, ωdrd},

for all y ∈ Rd, we deduce that

(fε)x,r ≤
µ(B(x, r + ε))

ωd(r + ε)d
ωd(r + ε)dmin{ωdεd, ωdrd}

ωdεd ωdrd
≤ 2dfr+ε(x).

This concludes the proof of (A.3).
Thanks to (A.3), we easily get

Mfε(x) .d Mµ(x),

for all x ∈ Rd. Thus, by Lemma A.1, we conclude that

tL d(
{
x ∈ Rd : Mµ(x) > Cdt

}
) &d

∫
{fε>t}

fε dx, (A.4)
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for all t > 0 and all ε > 0, where Cd > 0 is a dimensional constant.
We now claim that

lim sup
ε→0+

∫
{fε>t}

fε dx &d µ(Rd), (A.5)

for all t > 0, so that (1.6) follows immediately combining (A.4) and (A.5). Indeed, by
Tonelli’s Theorem we have∫

{fε>t}
fε dx =

∫
Rd

L d({fε > t} ∩B(x, ε))

ωdεd
dµ(x), (A.6)

for all ε > 0. Hence, by Fatou’s Lemma, we get that

lim sup
ε→0+

∫
{fε>t}

fε dx ≥
∫
Rd

lim inf
ε→0+

L d({fε > t} ∩B(x, ε))

ωdεd
dµ(x).

We now claim that
L d({fε > t} ∩B(x, ε)) ≥ 1

2d
ωdε

d, (A.7)

for µ-a.e. x ∈ Rd and all ε > 0. To prove (A.7), we need to observe two preliminary facts.
First, notice that, given ε > 0 and t > 0, we have

fε/2(x) > 2dt =⇒ B(x, ε/2) ⊂ {x ∈ Rd : fε(x) > t}. (A.8)

Implication (A.8) follows from the trivial inclusion B(x, ε/2) ⊂ B(y, ε) for all y ∈
B(x, ε/2).

Second, notice that
lim
ε→0+

fε(x) = +∞, (A.9)

for µ-a.e. x ∈ Rd. Indeed, we have{
x ∈ Rd : lim inf

ε→0+
fε(x) < +∞

}
⊂
⋃
n∈N

An, (A.10)

where

An :=

{
x ∈ Rd : lim inf

ε→0+

µ(B(x, ε))

ωdεd
≤ n

}
.

By a standard covering argument (for instance apply Vitali’s covering Lemma, see [9,
Section 1.6]), one can prove that

µ(E) ≤ nL d(E) for all Borel sets E ⊂ An.

Since µ is singular with respect to L d, we must have that µ(An) = 0 for all n ∈ N and
thus, by (A.10), we conclude that

µ

({
x ∈ Rd : lim inf

ε→0+
fε(x) < +∞

})
= 0.

We can now prove (A.7). Fix x ∈ Rd such that (A.8) holds true. Then there exists
εx > 0 such that fε/2(x) > 2dt for all ε < εx. Hence B(x, ε/2) ⊂ {fε > t} and so

L d({µε > t} ∩B(x, ε)) ≥ 1

2d
ωdε

d

for all ε < εx. Thus (A.7) follows and the proof of (1.6) is complete.
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The proof of the local inequality (1.7) similarly follows from (A.2) and is left to the
reader. �
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