BV -maps with values into S*:
graphs, minimal connections and optimal lifting

Domenico Mucci

The aim of this paper is to extend to the higher dimension n > 2 the results from [11] about minimal
connections and optimal lifting of maps of bounded variation with values into S'. More precisely, we first
outline the link between lifting and connections of maps in BV (B™,S'), Theorem 4.4. Secondly, we write
in an explicit way the energy of the optimal lifting of BV-maps, Theorem 4.8. Finally, we show that the
minimal connection L(u) can be seen as the distance from gradient maps, Theorem 4.9. The case of Wh1-
mappings from B" into S! has already been treated in [2] [9]. To prove our results, we will make use of
the measure theoretical geometric approach in [6] [7] [8].

1 Currents carried by graphs of BV-maps

Let B™ be the n-dimensional unit ball and S' C R? the unit sphere. Let
BV(B™,S') := {u € BV(B",R?) | |u(z)| =1 for L™a.e. x € B"}.
Also, m: B" x St — B™ and 7 : B" x S' — S! will denote the orthogonal projections onto the first and

second factor, respectively. Finally, we denote by wg: the volume 1-form on S' C R?

wer = yrdy? — > dyt .

We recall, see [5], that the space D, (B"™ x S') of n-dimensional currents in B™ x S! is the dual of
D" (B™ x S'), the space of all the compactly supported smooth n-form w in B"™ x St. Following [8], to every
function v € BV (B™,S') we associate an n-current G,, in D, (B™ x S') 7carried” by the "graph” of u
and defined as follows. We decompose G, into its absolutely continuous, Cantor, and Jump parts

Gu =G+ GS +GY.

Every n-form w € D"(B" x S') splits as w(® 4w according to the number of ”vertical” differentials.
Writing w(©® = ¢(x,y) dz for some ¢ € C§°(B™ x S'), where dx :=dz' A--- A dz", we set

G (@, y) dz) = Gy(é(z,y) dz) =0

and
Gu(¢(z,y) dz) = G(9(z,y) dz) == [ Pz, u(z))dz. (1.1)
BT’I,
Setting dot == da' A Adai=U AdzitUA A dz™, we may write
w® = ZZ )i () da A dy? (1.2)
=1 j=1
for some ¢ € C5°(B™ x S') and we set ¢/ := (¢1,...,¢J). We then define
2 2 n
Giw) = 3 [ (V). e @) dr =YY" [ @l u(e) de
j:l " j=14i=17B"
GC(wM) = Z (bj (z,u(z)) dDu’
Gl (w®) = ZZ/ (/ gbj (z,y dy)l/ dH"(z).

=1 5=1



In the previous formula, J, is the jump set of u and v, = (v} v

s -+ -5 ViY) is an unit normal to J,,. Moreover,
u™(x) and ut(x) are the one-sided limits of u at x € J,,, with respect to the orientation v, see e.g. [1] for
the notation on BV -functions. Finally, for = € J,,, we denote by [, the oriented simple arc of S! connecting
u™(x) and u*(z) and satisfying the following properties:

i) 1, is constantly the point u™(x) if u*(z) =u=(x);

iii) 1, is oriented in the counterclockwise sense if u™(x) = (—1,0), and in the clockwise sense if ™ (z) =

)
ii) I, does not contain the point (—1,0) if u*(z) # (—1,0) and u™(z) # (—1,0);
)

Notice that we have

/ Wst = p(quvui) ’ (13)

L

where p is the signed distance on S' defined in [11]. More precisely, p:S' x St —] — 7, 7] is defined by

(01,0,) := { Arelfi/62) if 01/0> # 1,
p(01,02) == Arg (0,) — Arg(6y) if 6,/0y = —1,

where Arg (0) €] — m, 7| stands for the argument of the unit complex number 6 € St C C.

V6, 0 € St, (1.4)

Remark 1.1 If v € WHH(B" S!), then G¢ = G = 0 and the current G,, agrees with the image current
(Idvaw)x[B™], where (Id < u)(z) = (z,u(x)), defined by

(Id > u)x[ B"](w) := / (Id=uw)?w, weD(B"xSh).

n

Here the pull-back makes sense in terms of the a.e. approximate differentiability of u, i.e., of the distributional
derivative of u. More precisely, since

(Id b w)#(=1)" "¢ (x,y) dai A dy? = (—1)" '@ (x,u) dz’ A du? = ¢ (z,u) Viud (x) d
we readily infer that the absolutely continuous part
Gi = (Id>=u)x[B"]. (1.5)

Remark 1.2 Notice that the mapping u — G, from BV (B",S') to D,,(B™xS') is not continuous. More
precisely, at the end of Sec. 2 we will show that there exist sequences of functions {uy} C BV (B?,S') such
that u, — u € BV (B2, S!) weakly in the BV-sense, with |Duy|(B?) — |Du|(B?), but for which G,, does
not converge to G, weakly as currents in Dy(B? x St).

We finally remark that if n > 2 in general the current G,, has a non zero boundary in B" x S', even if
uwe Whi(B™ S, ie., if G, = G%. Take for example n =2 and u(z) = x/|z|, so that

0G, L B? x S' = -5y x [S*],

where Jy is the unit Dirac mass at the origin. However, dG,, is null on every (n—1)-form @ in B"xS! which
has no "vertical” differentials. To this purpose, we observe that any smooth (n—1)-form @ € D"~ 1(B" x S!)
as above can be written as @ := w, An for some n € C®(S') and ¢ = (¢*,..., ") € C5(B™,R"), where
w, € D"1(B™) is given by

n

wp = Y (-1 (@) dat (L6)

i=1
so that clearly dw, = divepdz® A --- A dz™. Splitting d = d, + d,, we notice that d,&0 = dw, A1 =
div () n(y) dz, so that by (1.1)

0,Gu(®) = Cu(ds3) = Cu(divp(a) n(y) da) = / divp(z) - n(u(z)) d

n

Moreover, see [8], by the chain rule for the derivative of BV-functions we obtain:



Proposition 1.3 We have
9yGulwy A1) = Gu(dy(w, A1) = —/ divp(z) - n(u(z)) dz =: (D(nowu),¢).

This yields that 0G, (&) = 0,G (@) + 0,G.(w) = 0, as required.

2 The singular set of BV -maps

In this section, using arguments from [7, Vol. II], we introduce the (n — 2)-dimensional current P(u) in B™
that represents the singular set of a BV-map u. We then extend to higher dimension n > 2 the definition
of the distribution 7'(u) introduced in [11] in the case n = 2, see [2] and [9] for the case of Sobolev maps
u € Wh1(B",S'). We shall then show that the two definitions agree. We shall finally explain, in terms of
currents, the discontinuity property of the map w +— T'(u), as already observed in [11].

Definition 2.1 To any u € BV(B",S') we associate the (n — 2)-current P(u) € D,_2(B") given by
21 - P(u) := —7mx((0G,) L 7#ws1), so that for every & € D"~2(B")
1 1
P(u)(§) = = 5-0Gu (7 ws A7) = —Gu(Fwe AT dE). (2.1)
T 7r
If we WHi(B™,Sh), by (1.5) we readily infer

P = 5 [ b nde.

compare [9]. Moreover, P(u) is always a boundaryless current, d P(u) L B™ = 0, but in general P(u) # 0.

FORMS WITH LIPSCHITZ COEFFICIENTS. For k =0,...,n, we will denote by Lip(B", A*T'B") the
class of k-forms in B"™ with coefficients in Lip(B™). Every (n — 2)-form ¢ € Lip(B", A"~2TB") will be

written as o
> (Mdai, (2.2)
1<i<j<n

where (%7 € Lip(B™,R) and
dzid = dz' A Adzi T A deT A Aded T AdaI A A dan
If ¢ is given by (2.2), since for every i < j
do' Adzid = (—1)"'dzi and da? Adaid = (—1) dat

we have ‘ o -
dc= > ((~1)7¢ dad + (—1)7¢8 da) (2.3)
1<i<j<n '
and hence

d¢ =37 A(Q) dr'

where for every fixed 14

AQ = Y (I Y (-

1<h<i i<h<n
Denoting yT =12 and y§ =y, this yields that
wst A dC = (—1)”71(1@‘ N wgt

—n%(i}woﬁﬂA(§}4V¢@Q

j=1

_ ZZ 1)1 4;(C) yidat A dy’



Therefore, may write ws1 A d¢ = w® in (1.2) if (=1)""i¢! := (=1)""I~14;(¢)yf. Setting then Fi(() :=
(—1)"*1A;(¢), we have

$l(w,y) = (1 F(C(a)y s FUQO = Y (=M= > ()M (2.4)

1<h<i i<h<n
We finally set F(¢) := (F'((),...,F™(¢)), and notice that if n =2 and ¢ € Lip(B?R)
F(C) = VLC = (CZ27 _Cwl) .

THE SINGULAR SET AS A DISTRIBUTION. To any u € BV (B™,S!) we now associate the distribution
T(u) of order (n — 2), that is decomposed into its absolutely continuous, Cantor and Jump part

T(u) :=T%u) 4+ T (u) + T (u).
As we shall see, in the case of dimension n = 2 it agrees with the definition of T'(u) from [11].

THE ABSOLUTELY CONTINUOUS PART. For any 1 <i < j < n consider the distribution T7;(u) €
D'(B™,R) given by
(u) i= —(u X Ug, )z, + (U X Ug, ), (2.5)

where for every 1

U X Uy, 1= uluii — u2u}£i ,

ugl being the i*" component of the approximate gradient Vu", that is,

n

(T (w), ¢) = / ((ux ) G7 = (uxug;) (7 )de V(' € Lip(B™,R).
The distribution T%(u) is defined by

(T%(w),¢) == > (1) NTP(u), (™) V(e Lip(B", A" *TB"),

1<i<j<n

where ¢ is decomposed as in (2.2). Since

Z (=)™ (X ug,) €7 = (u X ug,) G ) =

1<i<j<n
n
S S e - 3 e b,
i=1 “1<h<i i<h<n

by (2.4) we obtain

.0 = |

n

(zn:(u X uwi)Fi(C)) dx V(€ Lip(B™, A" ?TB"),
i=1

and hence
(T%(u),¢) = / (ux Vu) - F(¢) dzx V(e Lip(B”,A”_QTB")7

where
UX VU= (U X Ugyy.ooy U X Uy, ).

In particular, if n =2 we get

(T%(u), ¢) :/BQ(UXVU)~VJ‘Cd:E V(¢ € Lip(B™,R).

4



THE CANTOR PART. In a similar way, let D¢u = (D“u', D¢u?), where in components
D = ((D°w)y,...,(DW),).
Let u x (D%u); == u'(D%u?); — u?(Dul); and
(u x Du) := (u x (Du)y,...,u x (Du),).
For any i < j we introduce the distribution Tzc;(u) € D'(B™,R) given by
(15 (), ¢Y) = (G d (w x (Dw))) = (G d (wx (Du)y)) V(M €Lip(B™,R).  (2:6)
The distribution 7¢(u) of order (n — 2) is then defined by

(T9(u),¢) = > (=)™ YT (u),¢™) V¢ eLip(B",A"*TB"),

1<i<j<n

where ¢ is decomposed as in (2.2). Arguing as above, we readily obtain that
(T (u),¢) = / F(¢)d(u x D%u) V¢ € Lip(B", A"~ >TB").
Notice that in the case n = 2 this yields

(T (u),¢) = - VA¢d(u x Du) V¢ € Lip(B™,R).

THE JUMP PART. As to the jump part, the distribution 7"/ (u) of order (n — 2) is defined by
T(.0 1= | plt ) w Q@™ Ve Lip(B" AT,
where F(C) is given by (2.4) and p is the signed distance on S!, see (1.4). If n =2 we thus have
(T (u),¢) := /J plut, u") v, - VECAHY V¢ € Lip(B™,R).

THE LINK BETWEEN T'(u) AND P(u). By the boundedness of the BV-norm of w, the action of the
current G, extends e.g. to forms w := 77 wg A 77#d(, where ¢ € Lip(B™, A"~2T B™). Moreover, we have:

Proposition 2.2 For every u € BV (B",S?!)
21 P(u)(¢) = (T(u),¢) V(€ Lip(B",A"*TB"),
where P(u) is the singular set of definition (2.1).

PROOF: Since by (1.5)
G (7 ws AdC) = / uws AdC,

n

and for every ¢ € Lip(B", A"2TB™) satisfying (2.2), on account of (2.3),

uFwgt Ad¢ = (uldu® —udul) AdC
S (D) (u X ug,) T (u X ug, ) CBT) dat A Ada™
1<i<j<n

we deduce that o N
Go@Fwg Antd¢) = D (1) (u), M) = (T(u), ).

1<i<j<n



Moreover, by (2.4) we have

¢l (z,u(x)) = (-1 F'(((x)) v/ (z)

whereas )
3 (174 (Du); = (u x D u);.
j=1

By the definition of G¢ we then obtain

GC (FHwgi A T#dC)

Z / (FF(Q) w dDC v
[ FQdwx D) = (1°w,¢).

Finally, again by (2.4), and by the definition of G/, we find that

Gl FHwa ATHd(C) = ZZ / ( / 17 F(C) yjdyj> vl dH™

=1 j=1

Z/ (/ Z jdgﬂ) Vi FH(C) dH™ Y

Tj 1

Since Z?Zl(fl)jyjdyj = wg1, by (1.3) we find that

GlFtwe nrtd) =3 [ plat )l FQ M = (17 ). 0)-
=1 u

In conclusion, we have shown that
2 P(u)(¢) := Gu(%#wsl A w#dg) = (T'(u), ()
for every ¢ € Lip(B™, A""2TB"), as required. O

LACK OF CONTINUITY. In [11] it is shown that T : BV(B? S') — D/(B%R) is not continuous, i.e.,
that there exists a sequence of functions {u,} C BV(B?,S) such that u, — u € BV (B?,S') weakly in
the BV-sense, with |Duy|(B?) — |Du|(B?), but for which the distribution T'(u;) does not converge to
T(u). As we shall see below, in terms of currents, G,, does not converge to G, weakly in Dy(B? x St),
see Remark 1.2. In fact, in order to have an anti-symmetric distance function p in (1.4), it turns out that
the definition of G, cannot be continuous in the above mentioned sense. Notice that this does not hold if
we restrict to Sobolev maps u € W1(B",St), compare [2] [9].

Example 2.3 Take for simplicity Q =]0,27[x]0, 7[, which is bilipschitz homeomorphic to B?. Following
[11], we define for (0, ) € 2

—26 it 6€]0,7/2][, a€]0,7/2]
PR B if €|r/2,37/2], a €]0,7/2]
V(0 0) =14 (0 —2m) if 6€)3n/2,27[, o €]0,7/2]
]

0 if €10, 2n[, a €]n/2,7[,

wi=e".

Clearly u € BV(,S!), with D%u =0 and J, = {7}x]0,7[. Taking v, := (0,—1), hence u~(x) = (1,0),
it turns out that the arc I, in the definition of G; from Sec. 1 is oriented in the clockwise sense if
x € {m}x]0,7/2[U]37/2,27[, and in the counterclockwise sense if = € {w} x [r/2,37/2]. As a consequence,
OG, LOAX[S'] = (6, —d,) x [S'], where p := (7/2,7/2) and n := (7/2,37/2), so that T(u) = 27 P(u) =
27 (0p — d,,). Setting now, for € > 0 small,

—20 if 0¢€]0,(r—¢)/2[, a€]0,7/2]
i | STHE i Oclir -2 r sl acnpl o
V(0,00 =3 9(9—2m) it 6€|(3r+e)/2 2], o]0,/ ue =€,
0 if €]0,2n[, « €|r/2, 7],



and uy = u,, where g5 \, 0, clearly {uyx} C BV(Q,S!) with u; — u and |Dug|(Q) — |Du|(2). Moreover,
for every € > 0 we readily check that u. € BV (,S!), with D%u. = 0 and J,. = {7}x]0,n[. However,
taking again 1, := (0, —1), hence u (z) = (1,0), this time the arc IS corresponding to G;_ is oriented in
the clockwise sense for every x € J,_. This yields that dG,_ L Qx [S'] =0, so that T'(u.) = 27 P(u.) = 0.
On the other hand, G,, weakly converges in D,,(Q x S!) to the Cartesian current T := G, + [I] x [S*],
where [I] is the 1-current integration over the line segment I :=]x/2,37/2[x {7}, equipped with the natural
orientation e; := (1,0), so that 9[I] = J,, — J,. In particular, as noticed in [11], T'(u;) does not converge
weakly as a distribution to T'(u).

3 Minimal connections and relaxed energy

In this section we report some well-known features on minimal connections. We then collect some facts from
[7] about the class of Cartesian currentsin B™ x S'. We finally recall some results from [8] about the relazed
energy of BV-functions.

THE FLAT NORM. Let T' € Dx(B"), and suppose that T' is the boundary in B™ of a (k + 1)-current
D € Dyy1(B™), ie., (D)L B™ =T, with finite mass, M(D) < co. The flat norm of T is defined by

Fpe (L) = sup{I'(¢) | € € D*(B"), |ldg]| < 1}.
Moreover, we denote respectively by

mip»(T) = inf{M(L)| L € Rypp1(B"), (9L)LB" =T}
mypn(T) = inf{M(D)| D € D41(B"), (dD)_B" =T}

the integral and real mass of T' in B™. Also, in case m; g (I") < 0o, we say that an integer multiplicity (say
im.) rectifiable current L € Ry11(B™) is an integral minimal connection of T allowing connections to the
boundary if (OL)L B™ =T and M(L) = m; g~ (I"). We have, see Federer [4]:

Fga (D) = my.pn (D). (3.1)

Taking k = n — 2, for every u € BV (B",S') we now define the (n — 1)-current D(u) € D,,_1(B") by
27 - D(u) := 74 (G, L T#wg), so that for every v € D"~1(B")

1 ~
D7) = G (g A ).
2m
Since P(u) = 0D(u)L B™, and M(D(u)) < oo, we now define for any n > 2
L(u) := Fpn(P(u)),  we BV(B",S').

On account of Proposition 2.2 we obtain

L(w) = 5 sup{(T(), ¢} | € € Lip(B" A"*TB"), V(] <1},

which is the length of the minimal connection of the singularities, see [11] [2] [9]. Since m;(P(u)) < oo, see
Proposition 3.2 below, by Hardt-Pitt’s result [10] in any dimension n > 2 we have

my gn (P(w)) = m; gn (P(w)) Yu € BV (B™,SY).
Therefore, by (3.1) we obtain that
L(u) = m; pn(P(u)) = min{M(L) | L € R,,—1(B"), (0L)LB" =(-1)"P(u)}. (3.2)

CARTESIAN CURRENTS. Following [7], the class of Cartesian currents cart(B" xS') can be characterized
by the class of the i.m. rectifiable currents T € R, (B™ x S') with finite mass, M(T) < oo, no interior
boundary, 0T =0 in B™ x S', and that can be decomposed as

T:GuT +LTX[[Sl]]7 (33)



where G, is the current defined as in Sec. 1 in correspondence of a function ur € BV (B™,S!). Moreover,
Ly is an (n—1)-dimensional i.m. rectifiable current in R,,—1(B™). The null-boundary condition yields that

ALt B" = (-1)"P(ur),
where P(ur) € D,,_2(B") is given by (2.1). Set now
T, = {T € cart(B" x S") |ur =u in (3.3)}, u € BV(B™,S"). (3.4)
From [6], see also [7], we have:
Proposition 3.1 For every u € BV (B™,S') the class T, is non-empty.
By the definition of integral mass this yields:

Proposition 3.2 For every u € BV (B",S'), the current P(u) is an (n—2)-dimensional integral flat chain,
i.e., m; pn(P(u)) < co.

Remark 3.3 In the case n = 2 Proposition 3.2 corresponds to [11, Thm. 1]. In fact, a 0-dimensional
integral flat chain A in B? is a distribution in D’(B?) given by the at most countable sum of unit Dirac
masses A =Y, (0,, — 0y, ) for some sequences {py}, {nr} C B? such that Y, |px — nk| < co. On account
of Proposition 2.2, we thus infer that for every u € BV (B2,S!)

T(u) :2772(61% _57Lk)’ {pk}a {nk} CB27 Z|pk_nk| < 00.
k k

THE BV-ENERGY OF CARTESIAN CURRENTS. Following [8], the BV -energy £1.1(T) of a current
T € cart(B™ x S) is defined by

£1(T) = / Vur| dz + [DCur|(B™) + Ejo(T),
B'n.

provided that T is decomposed as in (3.3). The jump-concentration energy term FE;.(T) takes into account
of both the jump part G;{T and of the concentration part Lz x [S'], and in general

EJC(T)</J H (1) dH™ (z) + 27 M(L7) .

More precisely, we may write
T=Go +G +T7,  T7°:=Gl +Lrx[S'].
It turns out that
T7°(p(z,y)dz) =0 Ve CF(B" xS

and if w = w® is given by (1.2), we have

T =303 / . (f KL i ) v ).

i=1 j=1

In the above formula, J.(T) is the countably H™ !-rectifiable set of B™ given by the union of the jump
set Jy, and of the (n — 1)-rectifiable set L of positive density of Lp. Moreover, v = (v1,...,v,) is an
extension to J.(T) of the unit normal v,, to J,,. Finally, for z € J.(T), I, is an oriented arc of S
connecting uy(z) and uf(z), in such a way that [T, ] is an i.m. rectifiable current in D;(S') satisfying
IT.] = Out (@) = Ouz (o)

Notice that 'y = I, if @ € Ly, and that O[T, ] =0 if © & Jy., i.e., 'y is an integral 1-cycle. Therefore,
by Federer’s decomposition theorem we may write

[To]l =17l +k()-[S'],  M(Te]) = L) +2r k@), k()€ Z,



where L(v;) is the length of an oriented simple arc v, in S!, satisfying 9[v.] = 6u¥(x) -6, - and

ug ()’
k: J.(T) — Z is an integer-valued H"~! L J.(T)-summable function, with k(z) = 0 if x ¢ Lr. With the
above notation we have

Eyo(T) = /J L(ve) dH"\(z) + 27 /£ ()| dHP 1 (2) (3.5)

T

RELAXED ENERGY. Let now

é:(u) := inf {lihminf/ |Duy| dz = {up} c CY(B™,SY, wup —u a.e.} .
— 00 Bn
From the density of smooth maps [6], see also [8], we have:
Proposition 3.4 For every u € BV (B",S!) the relaved energy is finite, a/l(u) < 00. Moreover,
E1a(u) = inf{&(T) | T € T,.} .
From Proposition 3.4 we then obtain:

Proposition 3.5 Let n > 2. For every u € BV (B",S') we have
Era(u) = / |Vu|dz 4 |Du|(B™) + inf{E,;.(T) | T € T,.},

where Ej.(T) is given by (3.5) and T, by (3.4).

ENERGY ESTIMATE. Finally, let
lsvs = [ 1Vulde+10%uBY) + [ dtart ) are
B Ju

where dg1 stands for the geodesic distance in S'. In [8] it is proved:

Proposition 3.6 Let n > 2. For every u € BV (B",S!) we have g;(u) < 2ulpyst.

4 Optimal lifting

This section contains new results. Firstly, we outline the link between liftings and connections of maps
in BV(B",S!), Theorem 4.4. Secondly, we write in an explicit way the energy of the optimal lifting of
BV-maps, Theorem 4.8. Finally, we show that the minimal connection L(u) can be seen as the distance
from gradient maps, Theorem 4.9. These results have been proved in [11] in the case n = 2, see [2] and [9]
for the case W11(B™ S1). Analogous results for BV-maps with prescribed boundary data can be obtained
in a similar way. For the sake of clearness, we postpone the proofs to the next section.

CONNECTIONS AS TRIPLETS. Using the notation from Sec. 3, if w € BV(B",S!) and T € 7,, we have
T=G,+Lr x[S']

where G, € D, (B" x S') is the current carried by the graph of u, see Sec. 1, and Lt € R,_1(B") satisfies

OLrL B" = (—1)"P(u). (4.1)

Since Ly € R,_1(B"), following [5] we may also write Ly = 7(Lr, O, 5_7:), where Lr is an (n—1)-rectifiable
set of B", O : L7 — N1 is a positive integer-valued H"~! L Lp-summable function, the multiplicity, and
—

& L — A, 1R™ is an ‘H" ! Lp-measurable map with values in the space of the (n — 1)-vectors of R,



— —
such that |&7p| =1 and &p(z) provides an orientation to the approximate tangent (n — 1)-space at H" !-a.e.
point z € L. This means that

LT(w):/E Or (w, &) dH™™ ' Ywe D Y(B").

Let now vr : L7 — S™! be such that vr(z) defines the unit normal to L7 at x, oriented in such a

way that vr A E—T) =e; A---Aey, for H* tae. x € L7, where (ey,...,e,) is the canonical basis in R”.
Also, let fr : L7 — 27 NT be given by fr(z) := 27 0r(x). We have:

Proposition 4.1 Let Lt € R,_2(B™) be such that (4.1) holds true. For every ¢ € Lip(B", A"~2TB")

(T'(u),¢) = (=1)" ; fr(F (), vr) dH" ™ (4.2)

provided that ¢ is decomposed as in (2.2) and F(C) is the vector field associated to ¢, see (2.4).
Conversely, let (L, f,v) be any triplet such that:
i) £ C B™ is (n — 1)-rectifiable;
ii) f: L7 — 27Nt is H*1 L L-summable;

iii) v: £ — S"1 is H"~! L Ly-measurable with v(x) orthogonal to the approximate tangent (n—1)-space
at H" l-a.e. point x € L.

To (L, f,v) it corresponds the i.m. rectifiable (n — 1)-current L € R, _1(B"™) such that, writing L =

T(Z,@, ?), then £ = L, 0 = f/2n and v A ? = e; A --- A e,. Therefore, in the sequel the following
identification will be assumed:

Rp—1(B™) ~{(L, f,v) | 1), il) and iii) hold true }.
These facts lead us to give the following;:

Definition 4.2 To any u € BV (B™,S') we associate the set J(T(u)) of triplets (L, f,v) satisfying the
properties i), ii) and iii) above and such that for every ¢ € Lip(B™, A"~2TB")

(T(u),¢) = (~1)" /L FUF(Q), vy !

provided that ¢ is decomposed as in (2.2) and F(C) is the vector field associated to (, see (2.4).

Remark 4.3 By the proof of Proposition 4.1, on account of Proposition 2.2, we readily infer that (4.2)
implies (4.1). Therefore, we obtain that

J(T(u) = {L € Ry_1(B") | OLL B" = (~1)" B(u)}.

This yields that J(T(u)) identifies the Cartesian currents T € cart(B™ x S') with underlying function
ur = u, i.e., the class 7, in (3.4).

THE LINK BETWEEN CONNECTIONS AND LIFTINGS. We have:

Theorem 4.4 Let n > 2 and u € BV (B",S'). For every triplet (L, f,v) € J(T(u)) there exists a lifting
Y € BV(B™,R) of u such that

Dip = (ux Vu)dz +d (ux Du) + put,u” ) vy, H" L Jy + (D) L f v H L L. (4.3)

Conversely, for every lifting v € BV (B™,R) of u there exists a triplet (L, f,v) € J(T(u)) such that (4.3)
holds true.

10



EXISTENCE OF LIFTINGS. The proof of Theorem 4.4 relies on the following result from [6] stating
the existence of a lifting of currents in cart(B™ x S!). We recall, see [7], that the current subgraph of an
L!-function ¢ € L'(B",R) is the (n + 1)-dimensional current in D,,11(B"™ x R) defined by

P(z)
Sy (6(w, t)dar A dt) = / n < /0 bz, 1) dt> de, ¢eC®(B"xR). (4.4)

Notice that the boundary current 9SG, has finite mass in B™ x R if and only if 3 belongs to the class
BV (B™,R). Finally, in the sequel we will denote by i : B" x R — B™ x S! the map

i(z,t) := (x,cost,sint),

and by Gy, the current in D, (B" x S') integration over the graph of the constant map qo(z) = (1,0).
The following existence result was proved in [6], see also [7, Vol. II, Sec. 6.2.2].

Proposition 4.5 Let T € cart(B™ x S'). The following facts hold:
i) There exists a current ¥ € D, 1(B"™ x S') such that
T — Gy = (—1)"0X.
ii) There exists a function ¢ € BV(B",R) such that ¥ = ixSGy, i.e.,
T — Gy = (—1)"ix05Gy, . (4.5)

iii) If up € BV(B™,S') is the BV -function corresponding to T, then
up = e L"-a.e. on B™.
Remark 4.6 From Theorem 4.4 we readily infer that the converse of Proposition 4.5 holds true: for every

u € BV (B™,SY) and every lifting y» € BV (B™,R) of u there exists a current T € cart(B™ x S') such that
ur = u, i.e., T €T, and (4.5) holds true.

OPTIMAL LIFTING. Following [2] [11], we consider for every u € BV (B",S!) the energy
11 (u) := inf{ |DY|(B™) | 1 € BV(B™,R), u= ¢ a.e. on B"}.
Since B™ is simply connected, arguing as in [2, Prop. 2], see also [11, Rmk. 4], we obtain that
Ei1(u)=E1(u)  Yue BV(B"SY.

Remark 4.7 Arguing as in [11], we also infer that the infimum in the above formula is achieved. Moreover,
by Proposition 3.6 we immediately obtain that

Ei1(w) <2fulpver  YueBV(B"S"),
compare [3] for the case n = 2.

Denoting by xa the characteristic function of a set A, we have:

Theorem 4.8 Let n > 2. For every u € BV (B",S!)

&1 (u :/ Vu|dz + |DCu|(B") + min {/ vxe + (=) put,uT) vy, d’H"_l}.
= [ vuldr 100+ e e+ (1 ) v

MINIMAL CONNECTION AS A DISTANCE. As a consequence of Proposition 4.5, we finally prove in
any dimension n > 2 the following:

Theorem 4.9 For any u € BV (B™,S') we have

L) = 5 s [ Vu)de o d (ux D)+ plart u) v dH Ly = DU|(BY).
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5 Proofs

PROOF OF PROPOSITION 4.1: By Proposition 2.2 and (4.1) we know that
(T'(u),¢) = (=1)"2m Ly (dC) .

Moreover, since Ly = 7(Lr, O, 5:), we have
Le() = [ orldc. &y,
Lt

From Sec. 1 we also know that

d¢ = Z 1)1 F(¢) dat .

—
Now, since vp ANépr =e1 A--- ANe, and |§T| = 1, writing

n
— o R
ET:Z(—l)z—l ie, Gii=mer A ANei_1ANeg1 A Neg,
i=1

we infer that vy = Y7, £%€;, so that for H" '-a.e. x € L1 we obtain
- i i
(d¢,ér) = FH(Q) & = (F(C),vr)

and hence the assertion. O

PROOF OF THEOREM 4.4: Let (L, f,v) € J(T(u)). By Remark 4.3, there exists a current T € 7,, such that
T=Gy,+Lrx[S'] and Ly € R,,—1(B™) corresponds to (L, f,v), according to Sec. 4. By Proposition 4.5,
in correspondence to T € 7, there exists a function ¥y € BV(B™,R) such that

Gu+ Ly x[S'] - Gy = (—1)"i40SGy,  on D" (B" xSh). (5.1)
In the sequel we omit to write the action of the projection maps 7 and 7. For any ¢ € C°(B™,R"),
let w, € D" }(B") be given by (1.6), so that

n
wp ANuffwg = Z(—l)i_lcpidxi A (utdu?® — uPdut)

=1

= ”1290 (u X ug,) dx

By (1.5) we thus have

wp A uFwg = (—1)"_1/ (u x Vu, ) dz. (5.2)

n

GZ(CU@ /\wg1) = /

Moreover, since
n g 2 _ n 2 o
o s = (L ) (1 ) = 3301 o
=1 Jj=1 i=1 j=1

we may write wy, A wgt = w) € DM(B™ x SY) in (1.2) by taking ¢ := (=1)""*ipiyl, so that

> ¢ (2,u) dDW = (—1)" ' Y (=1)7u dDu! = (—1)" "L pd(u x D u).

j=1 j=1
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By the definition of G¢ we then infer

G (wy Awst) = (—1)”_1/ od(u x D). (5.3)

n

Also, by the definition of G, on account of (1.3) we have

Gllwp ) = (~1) 122/ (/ ) d? ) i) 0 o)

=1 j5=1

) 12/ (/ WSl) (@) vl (2) dH" () (5.4)

(—1)"71/ p(ut, u") @ v, dH L.
T

On the other hand, we have
LT X [[Sl ]](w¢ A (.USl) = LT(LU@) . [[gl ]](wsl) = 27'[' LT(W¢) (55)

— —
where, we recall, Ly = 7(L, f/2m, £) with vA £ =e1 A---Aep, so that, as in the proof of Proposition 4.1,

21 Ly (wy,) = /f%, YdH" ! = /fgo, YdH™ !

whereas clearly
Ggo(wp ANws1) =0. (5.6)

Finally, since dw, = divpdzr and
i d(wy Awst) =i (dwy A wst) = i (divp do Awgt) = divpde A dt,
on account of (4.4) we have

i#aSGwT (ww AN W§1) = SGwT (i#d(ww N wst ))
= SGy, (dive(z)dx A dt)

| divg(w) (e () = 0)de = ~{Dir. ).

In conclusion, by (5.1) we have obtained for any ¢ € C°(B™,R"™)

Ovr.) = [ wxVugdns [ edux D+ [ gty vare w7 [ pemaret

n J“
and hence (4.3). To prove the converse, arguing as in [11], for every lifting ¢ of u we have
Vipdr = (ux Vu)dz,  dD =d(ux D).

Moreover, the jump set J, C Jy and, possibly changing the orientation of the unit normal vy to Jy, we
may assume that H" -a.e. on J,

Vyp = Vy e“ﬁ = u+, eV =u~
Therefore, we have
YT —¢~ =puT,u”) (mod 27) H" l-ae. in J,
Yt —9Yp~ =0 (mod 2m) H" l-ae. in Jy \ Jy,

whence there exists an H" ™! L Jy-integrable function fy : J, — 27 Z such that

Dy = (u x Vu)dz +d (ux Du) + plu™,u™) v, H* P Ty + (=) Ly v H L, (5.8)
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Setting

Ly :=A{z e Jy| fp(z) # 0},
we clearly have H”fl([,w) < 00, hence Ly is (n—1)-rectifiable. Moreover, possibly changing the orientation
of vy, we may and do assume that fy Lﬁw takes values in 27 NT. Set now Ly := 7(Ly, by, &/,) where

= fy/2m and {w is such that vy A §¢ =e A+ Aey for H' lae. z € Ly It turns out that
L,/, € R,—1(B™) whereas, by the property (5.8) and by the same computation as in the first part of the proof,
we infer that (5.1) holds true, with ¢y = ¢ and Ly = Ly. Since (5.1) yields that 9(Gy + Ly x [S']) =0
on D"1(B™ x S'), we readily obtain that dL, = (—1)" P(u). By Proposition 4.1 we finally conclude that
(Ly, fo,vy) belongs to J(T'(u)), see Definition 4.2, whereas (4.3) is given by (5.8). O

PrROOF OF THEOREM 4.8: By Theorem 4.4, for every (L, f,v) € J(T(u)) there exists a lifting ¢ €
BV (B™,R) of u such that (4.3) holds true. This clearly yields the inequality ”<”, as the measures (u X
Vu)dz, d(ux Du), and p(ut,u”)v, H* 1L J, + (=1)" 1 fvH" ! L £ are mutually singular. Moreover,
since by Remark 4.7 there exists a lifting ¢ € BV (B™,R) of u such that g;(u) = |Dv|(B™), the equality
follows again by Theorem 4.4, and the minimum is achieved. O

PROOF OF THEOREM 4.9: From Sec. 3 we know that for any u € BV (B",S!) the integral mass
mi gn (P(u)) = inf{M(L7) | Gy, + L7 x [S'] € 7.} . (5.9)

By Proposition 4.5, to any T € 7,, it corresponds a function ¢y € BV (B™,R) such that (5.1) holds true.
Moreover, Remark 4.6 yields that the converse holds true. We then apply (5.1) to w € D*(B™ x S!) given
by w = nw, A T#ws, where w, € D""1(B") is defined by (1.6). On account of (5.2), (5.3), (5.4), (5.5),
(5.6), and (5.7) we readily infer that

(=1)" 27 Lp(w,) = /n<u x Vu, @) dx +/n @ d(u x Du) —|—/J p(ut,u™) o - vdH" ! — (Diyr, ).

u

This yields

M(Ly) = SIIIP{LT(%) [l¢lloe < 1}
= §|(u x Vu) dx + d(u x Du) + p(u™,u”)vdH" "' L J, — Dip|(B").

In conclusion, by (5.9) and (3.2) we obtain the assertion. O
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