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ABSTRACT

Various problems in continuum mechanics or artificial intelligence can be mod-
elled by integral functionals depending on second order derivatives of competing
functions and on closed sets where discontinuities for either such functions or their
first derivatives are allowed. The existence of minimizers for such functionals is
shown together with some information about their regularity.

1. Introduction

Integral functionals depending on free discontinuities and first order derivatives
have been studied recently by many authors, either in connection with contin-
uum mechanics and visual reconstruction 15,21, or from the more abstract view-
point of calculus of variations, geometric measure theory 1,10,11,12,13 and optimal
partitions 7,8,11. The interest of these functionals lies in the fact that any network
that makes decisions (i.e. that can develope or modify discontinuities) cannot be
described by an energy that is at the same time smooth and convex 2.

In the same perspective we want to discuss some minimization problems related
to functionals depending on free gradient discontinuities and possibly on second
order derivatives; the interest of this kind of functionals is originated by some models
of image segmentation 2 or in the study of deformations for elastic plastic plates 5,
rigid-plastic concrete slabs 23, or plastic yield lines in limit analysis of masonry
structures 18,24, and finally in the analysis of piecewise affine approximation.

The introduction of spaces of Special Bounded Variation 1,12 or Special Bounded
Hessian 4,25 provided the correct functional framework for the analysis of this kind
of problems.

More precisely here we discuss the minimization of functionals of the following
kind

F (K0,K1, u) =∫
Ω\(K0∪K1)

Q(D2u)dy +
∫

Ω\(K0∪K1)
R(Du)dy +

∫
K0∩Ω

ϕ(|u+ − u−|)dH1

+
∫
K1∩Ω

ψ(|Du+ −Du−|)dH1 +
∫

Ω
f(y, u)dy (1)
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where Ω ⊂ R2 is an open set, ϕ,ψ, f are given functions, Q,R are positive definite
quadratic forms with constant coefficients, H1 denotes the 1−dimensional Hausdorff
measure. The functional F will be studied either over the class of functions with
discontinuities and creases

Ad =
{

(K0,K1, u);K0,K1 ⊂ R2 closed sets, u ∈ C0(Ω \K0) ∩ C2(Ω \ (K0 ∪K1))
}

or over the class of functions with creases

Ac =
{

(K,u);K ⊂ R2 closed set, u ∈ C0(Ω) ∩ C2(Ω \K)
}
.

We get the existence of minimizers by mean of relaxed energy functionals and
regularity properties via techniques similar to 5,6, under compatibility or growth
assumptions on f, provided F is coercive with respect to the total variation of D2u
in Ω. We prove also some additional informations about partial regularity of an
essential minimizer in Ac (see Corollary 3.5), by showing that its 1−dimensional
upper density is positive, hence isolated gradient singularities are excluded.

Finally the existence of minimizers for the weak formulation of the segmentation
model by Blake & Zisserman 2 is given in Theorem 5.2.

2. Elastic perfectly plastic plate

The first example of functional depending on second derivatives and free gradi-
ent discontinuities that we consider is the functional (6), where the first three terms
represent a model formulation of the stored deformation energy for an elastic per-
fectly plastic thin plate made of mild iron and the last term represents a potential
energy.

Assume

Ω ⊂ R2 open bounded strongly Lipschitz:
∂Ω is the union of finitely many C2 curves, (2)

Q : M2 → [0,+∞) : ∃a > 0,
∑

Qijlmηijηlm ≥ a|η|2 ∀η ∈M2, (3)

where M2 denotes the symmetric 2× 2 matrices, and, either

f(y, s) = g(y)s, ∀s ∈ R, a.e. y ∈ Ω, with g ∈ Lq(Ω), q > 2,∫
Ω
gv dy = 0 for every affine displacement v

‖g‖L1(Ω) < C(Ω)(a ∧ µ) (4)

where C(Ω) is defined in Theorems 2.7,2.12,3.1 of 5, or

0 ≤ C1|s|q ≤ f(y, s) ≤ C2(1 + |s|q), 0 < C1 ≤ C2,

|f(y, s)− f(y, t)| ≤ (g(y) + |s|+ |t|) |s− t|, g ∈ Lq(Ω), q > 2,
∀s, t ∈ R, a.e. y ∈ Ω, (5)
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Here we state the existence of a solution for the following problem: find a mini-
mizing pair for the functional F1 defined by

F1(K,u) =
∫

Ω\K
Q(D2u) dy+λH1(K∩Ω)+µ

∫
K∩Ω

|[Du]| dH1 +
∫

Ω
f(y, u) dy (6)

over (K,u) ∈ Ac, where |[Du]| denotes the jump of Du across K.
The free gradient discontinuity set K describes the contribution of internal vari-

ables on the “a priori” unknown set where the plastic deformation occurs 5. We
notice that 1-dimensional plasticity set occurs when testing thin metallic plates,
contrarily to the case of 3-dimensional deformable bodies where the plasticity set is
allowed to have Hausdorff dimension bigger than two 17.

Theorem 2.1 - Assume (2), (3) and either (4) or (5). Then there exists a
minimizing pair (Z, z) for the functional F1 defined by (6) for every (K,u) ∈ Ac.
Moreover Z is (H1, 1) rectifiable.

The study of functional F1 contains the case considered in 6, the difference is due
to the quadratic form Q and possibly to the last term when assumption (5) holds.
To find minimizers of F1, following the argument of 4, we introduce the space of
functions with Special Bounded Hessian (SBH(Ω)). We recall first some definitions
from 12.

Let v : Ω → Rk be a Borel function; for x ∈ Ω and z ∈ R̃k = Rk ∪ {∞} (the
one point compactification of Rk) we say that z is the approximate limit of v at x,
and we write z = ap lim

y→x
v(y), if

g(z) = lim
ρ→0

∫
Bρ(x) g(v(y))dy

|Bρ|

for every g ∈ C0(R̃k) (by |E| we denote the Lebesgue measure of the set E). The
set

Sv = {x ∈ Ω; ap lim
y→x

v(y) does not exist }

is a Borel set, of negligible Lebesgue measure; for brevity’s sake we denote by
ṽ : Ω \ Sv → R̃k the function

ṽ(x) = ap lim
y→x

v(y).

Let x ∈ Ω \ Sv be such that ṽ(x) ∈ Rk; we say that v is approximately differen-
tiable at x if there exists a k × 2 matrix ∇v(x) such that

ap lim
y→x

|v(y)− ṽ(x)−∇v(x)(y − x)|
|y − x|

= 0.
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If v is a smooth function then ∇v is the jacobian matrix.
We recall the definition of the space of functions of bounded variation in Ω with

values in Rk:

BV (Ω,Rk) = {v ∈ L1(Ω,Rk); Dv bounded variation vector measure }

where Dv denotes the distributional derivatives of v.

In recent papers 11,12,4,25, for studying free discontinuity problems, some classes
of functions with special bounded variation have been considered.

Definition 2.2 - SBV (Ω,Rk) denotes the class of all functions v ∈ BV (Ω,Rk)
such that

|Dv|T =
∫

Ω
|∇v| dy +

∫
Sv

|v+ − v−| dH1,

where | · |T denotes the total variation of a measure.

Definition 2.3 - SBH(Ω) denotes the class of all functions v ∈ L1(Ω) such that
Dv ∈ SBV (Ω,R2).

At the end of the present section we have collected some simple examples and
remarks about functions either in SBV (Ω) or in SBH(Ω).

On SBH(Ω) we have the following weak formulation of (6):

F1(v) =
∫

Ω
Q(∇2v) dy + λH1(SDv) + µ

∫
SDv

|[Dv]| dH1 +
∫

Ω
f(y, v) dy

:= E(v, λ, µ,Ω) +
∫

Ω
f(y, v) dy, (7)

where ∇2v is the absolutely continuous part of the distributional hessian of v with
respect to the Lebesgue measure and SDv is the discontinuity set of Dv. Under
the natural conditions (4) on f, we proved in 5 the existence of minimizers of F1
submitted to various boundary or unilateral conditions (see 5 Theorems 3.1,4.1,5.3).
By the same arguments we can prove the following statement.

Theorem 2.4 - Assume (2), (3) and either (4) or (5). Then there is v0 ∈ SBH(Ω)
with

F1(v0) = min{F1(v) : v ∈ SBH(Ω)}.

Moreover we have

F1(v0) ≤ inf{F1(K,u) : (K,u) ∈ Ac }.
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Proof of Theorem 2.1 - In case (4) with Q(η) = |η|2 the statement has been
proved in 6. For the sake of completeness, here we describe the argument and
sketch the main modifications for the general case.

The energy (6) is meaningful for admissible pairs, see 6 Lemmas 2.6,2.8. The
existence of a minimizing pair (Z, z) for the functional (6) is obtained by arguing on
a minimizer of (7). Namely, let v0 be a minimizer for the functional (7) on SBH(Ω)
and set

Ω0 =
{
x ∈ Ω; lim

ρ→0
ρ−1E(v0, λ, µ,Bρ(x)) = 0

}
where E is defined in (7) and Bρ(x) = {y ∈ R2; |y − x| < ρ}. The main point is
showing that Ω0 is an open set and SDv0 ∩ Ω0 = ∅; then we choose Z = SDv0 ,
z = v0 and we prove that z ∈ C0(Ω) ∩ C2(Ω \ Z), F1(Z, z) = F1(v0) so that, by
Theorem 2.4, the pair (Z, z) is a minimizing pair for F1.

The set Ω0 is open since we have that ρ−1E(v0, λ, µ,Bρ(x)) decays like a positive
power of ρ as ρ→ 0 near x ∈ Ω0.

The proof is obtained arguing by contradiction and involves the study of a
sequence (uh) of local minimizers of F1 for which ρ−1E(uh, λ, µ,Bρ(x)) do not
decay fast enough and the consideration of their rescaled versions vh on a unit ball.
The presence in E of three terms with different kind of homogeneity under rescaling,
causes a loss of compactness in the L2 space both for the functions vh and for their
gradients. This is amended by the use of a Poincaré–Wirtinger inequality in SBV
(Theorem 3.1 of 6): we obtain that a subsequence of the blown–up sequence (vh)
converges a.e. to a function w with convergence a.e. of the gradients to Dw. Next
we prove that w is solution of a strongly elliptic p.d.e. of fourth order with constant
coefficients (see (8) below), hence ρ−1E(w, λ, µ,Bρ(x)) decays like ρ as ρ→ 0, and
we transfer the decay estimates back on uh, to obtain a contradiction. This is
obtained by comparison of vh with a solution of a suitable Dirichlet problem for the
elliptic operator associated to Q. Here is used a trace theorem for SBH(Ω) (see the
Polar Slicing Theorem 4.4 of 6).
The main differences with respect to the argument of 6 are the following two lemmas.

Lemma 2.5 - Let Br ⊂ Rm and let b ∈ H
3
2 (∂Br), l ∈ H

1
2 (∂Br) and let

L be the fourth order differential operator associated to the quadratic form Q :
L =

∑
ijhk DijQijhkDhk .

Then there is a unique v ∈ H2(Br) solution of the Dirichlet problem


Lv = 0 in Br,

v = b on ∂Br,

∂v

∂ν
= l on ∂Br;

(8)
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moreover the following inequality holds:∫
Bρ

|D2v|2dy ≤ cm
(ρ
r

)m ∫
Br

|D2v|2dy ∀ρ < r,

where cm is an absolute constant depending only on the dimension and the coeffi-
cients of Q. The Green operator Er : H

3
2 (∂Br) ×H

1
2 (∂Br) → H2(Br) defined by

Er(b, l) = v is continuous 16,20.

We set the following definitions. For λ, µ > 0, for every relatively closed set
C ⊆ Ω and v ∈ SBH(Ω) we define

E(v, λ, µ, C) =
∫
C

Q(∇2v)dy + λH1(SDv ∩ C) + µ

∫
SDv∩C

|[Dv]|dH1,

Ψ(v, λ, µ, C) = E(v, λ, µ, C)− inf {E(u, λ, µ, C); u ∈ SBH(Ω), u = v in Ω \ C } .

The functional Ψ is called the excess of v in C.

Lemma 2.6 - (Excess estimate) Under the assumptions of Theorem 2.4, fix a
minimizer v0 of F1 in SBH(Ω). There exists a constant c = c(v0, λ, µ, g,Ω) such
that, for every Bρ(x) ⊂ Ω the following estimate holds (uniformly in x ∈ Ω)

Ψ(v0, λ, µ,Bρ(x)) ≤ cρ2− 2
q .

Proof - Assume (4) and x = 0, Bρ = Bρ(0) ⊂ Ω and let v ∈ SBH(Ω) such that
v = v0 in Ω \Bρ. Taking into account Theorem 2.6 of 5 we have

E(v0, λ, µ,Bρ) = F1(v0, Bρ) +
∫
Bρ

gv0 dy

≤ F1(v,Bρ) +
∫
Bρ

gv0 dy = E(v, λ, µ,Bρ)−
∫
Bρ

g(v − v0) dy

≤ E(v, λ, µ,Bρ) + ‖g‖Lq‖v − v0‖L∞ |Bρ|1−
1
q

≤ E(v, λ, µ,Bρ) + c′|D2(v − v0)|T ρ2− 2
q

≤ E(v, λ, µ,Bρ) + c′(|D2v|T + |D2v0|T )ρ2− 2
q ,

where F1(·, Bρ) is the functional F1(·) localized on Bρ. By choosing v such that
Ψ(v, λ, µ,Bρ) = 0, by the estimate in 6 Remark 4.2 and by the minimality of v we
achieve the thesis.
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Assuming (5), the argument is the same, taking into account the estimate∫
Bρ

|f(y, v)−f(y, v0)| dy ≤
(
‖g‖Lq(Ω) + ‖v‖Lq(Ω) + ‖v0‖Lq(Ω)

)
‖v−v0‖L∞ |Bρ|1−

1
q .

Remark 2.7 - We notice that there are functions v ∈ BV (Ω) such that the
singular set Sv does not coincide with spt(Dv)s (the support of the singular part of
Dv); moreover there are w ∈ BH(Ω) such that SDw 6= spt(D2w)s. Actually either of
the inclusions may fail, as shown by the examples below, where Ω = (−1, 1)2 ⊂ R2.
When derivatives are “special measures” we have additional informations:

spt(Dv)s ⊂ Sv ∀v ∈ SBV (Ω),

spt(D2w)s ⊂ SDw ∀w ∈ SBH(Ω),

but the inclusions can still be strict.
Ex.1 : v(x1, x2) = c(x1) where c is the odd extension of the Cantor function. We
have v ∈ BV (Ω) but v 6∈ SBV (Ω). Since v is continuous, then Sv = ∅, spt(Dv) =
spt(Dv)s.
Ex.2 : w(x1, x2) =

∫ x1

0 v(t, x2)dt is a function with bounded hessian, say w ∈
BH(Ω), SDw = ∅, spt(D2w)s 6= ∅.
Ex.3 : z(x) = x/|x| is a function in SBV (Ω,R2), Sz = {0}, spt(Dz)s = ∅ since
Dz ∈ L1.
Ex.4 : η(x) = |x| is a function in SBH(Ω), Dη = z; we notice that since ∇2η =
D2η 6∈ L2(Ω) then η does not belong to domF1.

Ex.5 : ϕ(x1, x2) =
√
x4

1 + x2
2 is a function in SBH(Ω), SDϕ = {0}, spt(D2ϕ)s = ∅.

Remark 2.8 - The notion of singular set is unstable with respect to the trace
operators as shown by the following examples. More precisely (see 1,6) there exist
bounded linear maps

γt : BV (Ω)→ L1(−1, 1)

γt1 : BH(Ω)→ L1((−1, 1),R2)

such that
γt(v)(s) = v(t, s) ∀v ∈ C1(Ω)

γt1(v)(s) = ∇v(t, s) ∀v ∈ C2(Ω),

moreover, by the slicing theorems in 1,6, for a.e. t we have only ṽ(t, s) = γ̃t(v)(s),(
∂v
∂s

)̃
(t, s) = γt1(v)̃(s) · e2 for a.e. s, where ˜ denotes the approximate limit.

By Theorem 3.1 in 1 for every v ∈ BV (Ω) we have

γt(v) ∈ BV (−1, 1), Sγt(v) = Sv ∩ {x1 = t} for a.e. t ∈ (−1, 1).
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The property given above for a.e. t is sharp, since the two singular sets may be
different for some values of t.
Ex.6 : Let H be the Heaviside function and set ψ(x1, x2) = H(x1 − x2

2). Then
Sγ0(ψ) = ∅ but Sψ ∩ {x1 = 0} = {0}.
Ex.7 : Set ξ(x1, x2) = H(x2 −

√
|x1|). Then Sγ(ξ) = {0} but Sξ ∩ {x1 = 0} = ∅.

Notice that Sξ ⊂6= spt(Dξ)s.

3. Additional information on regularity

In this section we deduce some further information about the regularity of the
singular set Z of an essential minimizing pair for the functional (6) which follows
by the arguments in 6. For brevity’s sake in this section we consider only the case
Q(η) = |η|2. The main result is contained in Theorem 3.4.

We set the following definitions. Let B be an open disk in R2; for every mea-
surable function v : B → R we define the least median of v in B as

med(v,B) = inf{ t ∈ R; |{u < t} ∩B| ≥ 1
2
|B|}.

In case v is vector-valued, the med operator acts componentwise. If B = Br(x)
and u ∈ SBH(B), we set (Mxu)(y) = med(Du,B) · (y − x) and we define the affine
function

(Pu)(y) = (Mxu)(y) + med(u−Mxu,B) ∀y ∈ R2.

Lemma 3.1 - (Blow-up equation) Let Br(x) ⊂ Ω ⊂ R2, (vh) ⊂ SBH(Ω),
(λh) and (µh) two sequences of positive numbers and let w ∈ H2(Br(x)). Assume

(i) lim
h
H1(SDvh) = 0,

(ii) lim
h
E(vh, λh, µh, Bρ(x)) = α(ρ) < +∞ for almost all ρ < r,

(iii) lim
h

Ψ(vh, λh, µh, Bρ(x)) = 0 for every ρ < r,

(iv) lim
h

(
vh − Pvh

)
= w a.e. on Br(x).

Then w is biharmonic in Br(x) and

α(ρ) =
∫
Bρ(x)

|D2w|2dy for almost all ρ < r.

Proof - Let ch = λh ∨
(
H1(SDvh) + 1

h

)− 1
2 . Then lim

h
E(vh, ch, µh, Bρ(x)) =

α(ρ) < +∞ for almost all ρ < r, and lim
h

Ψ(vh, ch, µh, Bρ(x)) = 0 for every

ρ < r. By 6 Theorem 4.7 the thesis follows.
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Lemma 3.2 - (Decay) For every α, β ∈]0, 1[, such that αβ < c−1
2 (c2 is given

by Lemma 2.5), and for every λ, µ > 0, there exist two positive constants ε and ϑ,
depending only on λ, µ, α and β, such that if Ω ⊂ R2 is open, ρ > 0, Bρ(x) ⊂ Ω
and if u ∈ SBH(Ω) with

H1(SDu ∩Bρ(x)) ≤ ερ

and
Ψ(u, λ, µ,Bρ(x)) ≤ ϑE(u, λ, µ,Bρ(x)),

then
E(u, λ, µ,Bαρ(x)) ≤ α2−βE(u, λ, µ,Bρ(x)).

Proof - Suppose the lemma is not true. Then there exist α ∈]0, 1[, β ∈]0, 1[, such
that αβ < c−1

2 , λ, µ > 0, two sequences (εh), (ϑh) such that limh εh = limh ϑh = 0,
a sequence (uh) in SBH(Ω) and a sequence of disks Bρh(xh) ⊂ Ω, such that

H1(SDuh ∩Bρh(xh)) = εhρh

Ψ(uh, λ, µ,Bρh(xh)) ≤ ϑhE(uh, λ, µ,Bρh(xh))

and
E(uh, λ, µ,Bαρh(xh)) > α2−βE(uh, λ, µ,Bρh(xh)).

For each h, setting σh = ρ−1
h E(uh, λ, µ,Bρh(xh)), we define

vh(x) =
1√
σhρ3

h

uh(xh + ρhx) x ∈ B1,

and setting λh = λ
σh

and µh = µ
√

ρh
σh

, we have

E(vh, λh, µh, B1) = 1,

Ψ(vh, λh, µh, B1) ≤ ϑh

and
E(vh, λh, µh, Bα) > α2−β .

By Theorem 3.2 in 6, there exist a subsequence of (vh), still denoted by (vh), and
a function w ∈ H2(B1) such that (assuming, without loss of generality, Pvh = 0)
lim
h
vh = w a.e. in B1. By Lemma 3.1, we argue that the function w is biharmonic

in B1 and that

lim sup
h
E(vh, λh, µh, Bα) =

∫
Bα

|D2w|2 dy .
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By Lemmas 3.1, 2.5 and by the assumption on α, β, we have∫
Bα

|D2w|2dy ≤ c2α2
∫
B1

|D2w|2dy = c2α
2 < α2−β ,

whereas by the assumptions on (uh) we have∫
Bα

|D2w|2dy ≥ α2−β .

Lemma 3.3 - Let α, β, ε, ϑ be as in Lemma 3.2. If v0 is a minimizer of the
functional F1 in SBH(Ω) under the assumptions (2)-(4) (or (2), (3), (5)), then for
every x ∈ SDv0 ∩ Ω

E(v0, λ, µ,Bρ(x)) > ερ

for every ρ < dist(x, ∂Ω) ∧
(
ϑεαc−1

) q
q−2 , where c is given by Lemma 2.6.

Proof - Assume that E(v0, λ, µ,Bρ(x)) ≤ ερ for some ρ < dist(x, ∂Ω)∧
(
ϑεαc−1

) q
q−2 .

Then, by Lemma 2.6, we have

Ψ(v0, λ, µ,Bρ(x)) ≤ cρ2− 2
q ≤ εϑαρ,

hence, by Lemma 4.12 in 6, we get x ∈ SDv0 ∩Ω0 and this contradicts the property
SDv0 ∩ Ω0 = ∅ (see 6, Lemma 4.11 and Theorem 4.13).

Theorem 3.4 - If v0 is a minimizer of the functional

F1(v) =
∫

Ω
|∇2v|2 dy + λH1(SDv) + µ

∫
SDv

|[Dv]| dH1 +
∫

Ω
f(y, v) dy,

in SBH(Ω), then for every x ∈ SDv0

lim sup
ρ→0

H1(SDv0 ∩Bρ(x))
ρ

≥ ε.

Proof - Let α, β, ε, ϑ be as in Lemma 3.2. Assume by contradiction that there is
x ∈ SDv0 and r > 0 such that ρ−1H1(SDv0 ∩Bρ(x)) < ε for every ρ ≤ r and also
that cr1− 2

q ≤ ϑε, where c is given by Lemma 2.5. By Lemma 3.2, we obtain for
every h ∈ N

E(u, λ, µ,Bαhr(x)) ≤ α(2−β)hE(u, λ, µ,Br(x)),
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and, for h large enough, this contradicts Lemma 3.3.

Corollary 3.5 - If (Z, z) ∈ Ac is a minimizing pair for the functional F1, then
there exists a minimizing pair (Z ′, z′) ∈ Ac such that Z ′ ⊂ Z and for every x ∈ Z ′
we have

lim sup
ρ→0

H1(Z ′ ∩Bρ(x))
ρ

≥ ε1.

Proof - If (Z, z) ∈ Ac is a minimizing pair for the functional F1, then z is a
minimizer of the functional F1 in SBH(Ω). Setting Z ′ = SDz and z′ = z, by
Theorem 3.4 the thesis follows immediately.

A pair (Z ′, z′) like the one defined in the previous proof is called essential min-
imizing pair. A consequence of Corollary 3.5 is the following statement.

Corollary 3.6 - Any essential minimizing pair of F1 in Ac cannot have isolated
gradient discontinuities.

4. Rigid perfectly plastic slab

Concrete slabs undergoing small deformations under transverse loads, are some-
times described as thin plates. Actually the elastic deformation turns out to be
irrelevant if compared to the plastic flow occurring along “a priori” unknown plas-
tic yield lines, so that it is natural to couple rigid deformations with plastic hinges
along an unknown pattern of lines; on these lines the deformation is still continuous
but the gradients may undergo jump discontinuities of rank 1.

Actually finding the yield lines patterns associated to prescribed clamped edges
or supporting columns by energy minimization, does not correspond to finding
quasi-static equilibria 23,24, but can provide a way of computing safety criteria for
admissible transversal loads by limit analysis.

For the sake of simplicity here we assume isotropy, which actually fails in “real
life” slabs due to the presence of steel reinforcements.

We confine our attention to the following “rigid-plastic” energy

F2(K,u) = λH1(K ∩ Ω) + µ

∫
K∩Ω

|[Du]| dH1 +
∫

Ω
gu dy (9)

over the class of piecewise affine functions with creases

A = {(K,u); K ⊂ R2 closed set, u ∈ C0(Ω),

u affine on the connected components of Ω \K} .
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Theorem 4.1 - Assume (2) and g ∈ Lq(Ω) with q > 2, with∫
Ω
gv dy = 0 for every affine displacement v,

‖g‖L1(Ω) < C(Ω)µ,

where C(Ω) is defined in 5 Theorems 2.7, 2.12, 3.1. Then there is a minimizing pair
of (9) over A.

The proof of Theorem 4.1 can be obtained suitably adapting the proof of Theo-
rem 2.1. We prove here the main steps. The weak formulation of (9) is

F2(v) =λH1(SDv) + µ

∫
SDv

|[Dv]| dH1 +
∫

Ω
gv dy

:= U(v, λ, µ,Ω) +
∫

Ω
gv dy, (10)

over the set of almost everywhere affine functions

A =
{
v ∈ SBH(Ω) : ∇2v ≡ 0 in Ω

}
We notice that Dv = ∇v in SBH(Ω), hence F2 is coercive on A since it provides a
bound on |D2v|T .

Theorem 4.2 - If {vh}h∈N is a minimizing sequence for F2, there exists v ∈
SBH(Ω) such that, possibly extracting a subsequence,

vh → v strongly W 1,1(Ω),

∇2vh ⇀ ∇2v weakly in L2(Ω),

D2vh −∇2vhdy = Dvh ⊗ ν dH1 SDvh converges weakly∗ in the sense of

matrix valued measures to D2v −∇2vdy = Dv ⊗ ν dH1 SDv ,

∇2v = 0 a.e. in Ω and v ∈ A.

Proof - By Theorem 2.17 of 5 we get the semicontinuity of F2 in A with respect
to the W 1,1 strong convergence. Hence ∇2v = 0 a.e. in Ω and v ∈ A.

Remark 4.3 - Existence theorems analogous to 4.2 may be proved for concen-
trated loads, clamped plate or obstacle constraints, (see Remark 3.2 and Theorems
3.4, 3.5, 4.1, 5.3 of 5).
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A useful consequence of Poincaré-Wirtinger inequality in 6 is the following state-
ment.

Theorem 4.4 - (Compactness) Let B ⊂ R2 be an open ball centered at
x ∈ R2, (uh) ⊂ SBH(B), and let

∇2uh = 0 a.e. in Ω,

lim
h
H1(SDuh) = 0.

Then a subsequence (uhi) and an affine function w exist such that

lim
i

(
uhi − Puhi

)
= w, lim

i

(
Duhi −med(Duhi , B)

)
= Dw a.e. on B.

Proof - As like as in the first part of the proof of Th 3.2 of 6 one gets the existence
of w ∈ H2(B) and the convergence properties. The semicontinuity inequality for
the functional F2 gives∫

B

|D2w|2dy ≤ lim inf
i

∫
B

|∇2uhi |2dy

hence w ∈ A and w is affine.

Theorem 4.5 - (Decay) For every α ∈]0, 1[, and for every λ, µ > 0, there exist
two positive constants ε and ϑ, depending only on λ, µ, and α, such that if Ω ⊂ R2

is open, ρ > 0, Bρ(x) ⊂ Ω and if u ∈ A with

U(u, λ, µ,Bρ(x)) ≤ ερ

and
Ψ(u, λ, µ,Bρ(x)) ≤ ϑU(u, λ, µ,Bρ(x)),

then
U(u, λ, µ,Bαρ(x)) ≤ α2U(u, λ, µ,Bρ(x)).

Proof - Suppose the lemma is not true. Then there exist α ∈]0, 1[, λ, µ > 0, two
sequences (εh), (ϑh) such that limh εh = limh ϑh = 0, a sequence (uh) in SBH(Ω)
and a sequence of disks Bρh(xh) ⊂ Ω, such that

U(uh, λ, µ,Bρh(xh)) = εhρh,

Ψ(uh, λ, µ,Bρh(xh)) ≤ ϑhU(uh, λ, µ,Bρh(xh))

and
U(uh, λ, µ,Bαρh(xh)) > α2U(uh, λ, µ,Bρh(xh)).
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For each h, translating xh into the origin and blowing up, i.e. setting

vh(x) =
uh(xh + ρhx)√

εhρ3
h

x ∈ B1,

and setting λh = λ
εh

and µh = µ
√

ρh
εh

, we have, by using Lemma 4.5 in 6,

U(vh, λh, µh, B1) = 1,

Ψ(vh, λh, µh, B1) ≤ ϑh
and

U(vh, λh, µh, Bα) > α2. (11)

By Theorem 3.2 of 6, there exist a subsequence of (vh), still denoted by (vh), and
a function w ∈ H2(B1) such that (assuming, without loss of generality, Pvh = 0)
limh vh = w a. e. in B1. Then we deduce that the function w is affine in B1 and,
arguing as in Theorem 4.7 of 6, we get

lim sup
h

U(vh, λh, µh, Bα) =
∫
Bα

|D2w|2 dy , (12)

whereas by (11) and (12) we would have

0 < α2 ≤
∫

Ω
|D2w|2dy = 0.

Finally we may use the previous Decay Theorem to achieve the proof of Theo-
rem 4.1 as like as in the proof of Theorem 2.1.

Remark 4.6 - We remark that the previous theorem holds with α2 replaced by
αn for any n ∈ N, n > 2, but in such case ε and ϑ depend also on n.

5. Blake-Zisserman model of image segmentation.

In this section we state two theorems about some functionals defined over spaces
of functions allowing both discontinuities and creases. Since we want to consider
functionals which do not give a bound on the first order derivatives of an admissible
function, we recall the following definition from 12.

Definition 5.1 - We define for Ω ⊂ Rm

GSBV (Ω,Rk) = {v :Ω→ Rk Borel function;

ϕ◦v ∈ SBVloc(Ω) ∀ϕ ∈ C1(Rk) with spt(Dϕ) compact
}
.
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Then we may define the following function space:

X(Ω) =
{
v : Ω→ R : v ∈ L2(Ω), v ∈ GSBV (Ω,R), ∇v ∈ GSBV (Ω,R2)

}
We stress the fact that Dv 6= ∇v since admissible functions may be discontinuous,
and in addition X(Ω) 6⊂ BV (Ω).

Given g ∈ L2(Ω), set

F3 : X(Ω)→ [0,+∞]

F3(v) =
∫

Ω
|∇2v|2 dy + αH1(Sv) + βH1(S∇v \ Sv) +

∫
Ω
|v − g|2dy (13)

Theorem 5.2 - Assume g ∈ L2(Ω) and 0 < β ≤ α ≤ 2β. Then there is
v0 ∈ X(Ω) such that

F3(v0) ≤ F3(v) ∀v ∈ X(Ω).

F3 is a weak form of a functional proposed by Blake & Zisserman 2 in computer
vision theory with the aim of detecting both discontinuities and creases of a given
digital image g. For the proof of Theorem 5.2 we refer to a paper by the authors in
preparation.

Another functional considered in 2 is the following

F4(K0,K1, u) =
∫

Ω\(K0∪K1)
(|∇2u|2 + |∇u|2)dy+

αH1(K0) + βH1(K1 \K0) +
∫

Ω
|u− g|2dy (14)

defined for every (K0,K1, u) ∈ Ad. In the following theorem we give the existence
of a minimizer for a weak formulation of F4.

Theorem 5.3 - Given g ∈ L2(Ω) and 0 < β ≤ α, the following functional

F4(v) =
∫

Ω
(|∇2v|2 + |∇v|2)dy + αH1(Sv) + βH1(S∇v \ Sv) +

∫
Ω
|v − g|2dy

achieves a minimum over X(Ω).
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