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Abstract

In this paper we consider the Rational Large Eddy Simulation model
for turbulent flows (RLES in the sequel), introduced by Galdi and Lay-
ton [11]. We recall some analytical results regarding the RLES model and
the main result we will prove is the convergence of the strong solutions to
the RLES model to those of the Navier-Stokes (in some Sobolev spaces),
as the averaging radius goes to zero. Estimates on the rates of conver-
gence are also obtained. These results give more weight to the validity of
the method in either computational or physical experiments.

We also consider the error arising from the derivation of the model in
presence of boundaries. In particular the equations present an extra-term
involving the boundary value of the stress tensor. By using some recent
estimates on this “commutation error” we show that, with a Smagorinsky
sub-grid scale term, the kinetic energy remains bounded. bf Key words
Large Eddy Simulation, Rational Model, Strong Solutions, Consistency.

1 Introduction

We consider the Rational Large Eddy Simulation (RLES) model, introduced by
Galdi and Layton [11]:























































∂wδ

∂t
+∇qδ +∇ · (wδ ⊗ wδ)−

1

Re
∆wδ+

+∇ ·

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

= f,

∇ · wδ = 0,

wδ(x, 0) = w0δ(x).

(1)

Here, Re > 0 is the Reynolds number, while the vector field wδ : Ω×[0, T ]→ R3

is an approximation, formally of order O(δ4), of the filtered velocity w that
comes out by filtering the solution u to the Navier-Stokes equations (2), while
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Ω ⊂ R3 is a smooth bounded domain; more precisely wδ is an approximation of

w(x, t) = gδ(x) ∗ u(x, t)

where gδ(x) is a Gaussian kernel

gδ(x) =

(

6

π

)3/2
1

δ3
e−

6|x|2

δ2 ,

and ∗ denotes the usual convolution. The un-filtered velocity u is a solution to
the Navier-Stokes equations:



























∂u

∂t
+∇p+∇ · (u⊗ u)−

1

Re
∆u = f,

∇ · u = 0,

u(x, 0) = u0(x),

(2)

that are the well-known equations describing the motion of viscous, incom-
pressible fluids. (As usual the Navier-Stokes equations are studied in Ω with
homogeneous Dirichlet boundary conditions).

We point out that the system appearing in (1) is not a differential system,
due to the presence of the non-local term

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

ij

:=

:=

(

I−
δ2

24
∆

)−1
δ2

12

3
∑

l=1

∂wi
δ

∂xl

∂w
j
δ

∂xl
.

(3)

For the reader’s convenience, we recall that system (1) for the approximate
mean velocity is derived in the following way:

1. extend all the variables appearing in the Navier-
Stokes equations (2) to 0 outside the domain Ω;

2. apply the filter, that acts as a convolution with the kernel gδ;

3. assume that convolution and the linear operators
commute;

4. pass to the frequency space via the Fourier transform;

5. by using the so called (0,1) subdiagonal Padé rational approximation of
the exponential function,
write the Fourier transform of u⊗ u in terms only of the Fourier transform
of u;

6. apply the inverse Fourier Transform to get system(1).

This way of reasoning leads to the system (1) that does not contain high order
terms, with respect to δ. The terms that involve higher powers of δ are sup-
posed to be small, compared to those that are retained. For further details and
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comprehensive references on classical methods of LES, see Aldama [3] and the
recent book by Sagaut [19].

The subdiagonal approximation is used to approximate the Fourier transform
of the Gaussian kernel in a satisfactory physical consistent way. The complete
derivation of the RLES model (1), together with the physical motivation that
inspired it can be found in Reference [11].

Remark 1.1. We observe that the derivation is based on the application of the
Fourier Transform and then in presence of boundaries, the functions are simply
extended by zero outside their domain. This introduce an additional error, as
analyzed by Dunca, John, and Layton [7]; see also Section 4.

To compare the RLES with the most known LES methods, we recall that the
classical “gradient method” (see Leonard [17]) has been derived in the same way,
but in the above “point 5.” it is used a Taylor series expansion (with respect
of δ) of the Gaussian kernel gδ. This classical method has the drawback of a
possible increasing of the high wave-numbers. The Padé approximant are intro-
duced since they are decreasing at infinity and the corresponding approximate
equations (approximate to the order of δ4) may have a better behavior.

We also observe that the RLES model is very similar to the Lagrangian Av-
eraged Navier-Stokes (LANS) α−model (that has been derived in a completely
different way) introduced by Holm et al [9] and recently analyzed by Foiaş et
al [8] and Marsden and Shkoller [18]. From the point of view of modeling we
note that the RLES model discards all the subgrid scale terms

(u− u)⊗ (u− u)
def
= u′ ⊗ u′,

since they turn out to be (formally) of higher order, in that development. For
this reason, other high order rational LES models (HOSFS), that involve high or-
der Padé approximants, are going to be investigated, see Berselli and Iliescu [5].
Other LES models have been recently proposed; see for instance Hughes et
al [12] Katopodes et al [15] and the review in Sagaut [19].

Passing to some numerical results, we recall that the solutions to (1) show
a better behavior, with respect to other models commonly used in LES. In this
respect see the comparison of various model performed by Iliescu et al [14].

1.1 Analytical results

The analysis concerning existence of weak solution has been performed by Galdi,
Iliescu, and Layton (see Iliescu [13]) by adding an extra dissipative term of the
Smagorinsky type

(

c1 + c2|∇u+∇uT|2µ
)

(∇u+∇uT)

with c1, c2 positive constants and µ ≥ 0.1.
The existence and uniqueness of strong solutions, i.e., solutions such that

wδ ∈ L
∞(0, T ;H1) ∩ L2(0, T ;H2)

and
∂wδ

∂t
∈ L2(0, T ;L2)
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and without extra dissipative terms has been provided in Berselli et al [6]. In
that reference it is proved that given w0 ∈ H

1 and f ∈ L2(0, T ;L2), there exists
a strictly positive T ∗ = T ∗(w0, Re, f , δ) such that there exists a unique strong
solution of (1) in [0, T ∗).

Here and in the sequel Q =]0,L[3⊂ R3, while Hs will denote the Hilbert
space of periodic vector valued functions u, belonging to the Sobolev space
[Hs(Q)]3 and such that

∫

]0,L[3
u(x) dx = 0.

The functions in Hs are written as

u =
∑

k∈Z3

cke
2iπk·x

L , ck = c−k, c0 = 0

and the norm in the latter space is defined as

‖u‖2Hs =
∑

k∈Z3

|k|2s|ck|
2.

Note that the latter formula allows to consider real (and also negative) values
for s. The spaces Lp := Lp(Q), 1 ≤ p ≤ ∞ are the customary Lebesgue spaces,
which are supposed to be known. We use this particular simple setting to avoid
the big technical difficulties due to the boundary conditions. In this way we can
focus on fine properties of the solutions to (1).

2 Some preliminary results

We start by improving some results regarding the life span of smooth solutions
for the RLES model. In reference [6] it has been proved that the life-span of
strong solutions to (1) is O(δ4). Here we start by proving that in fact it is
independent of δ.

We need some preliminary results and we start by proving the following
lemma:

Lemma 2.1. Let be given f ∈ H1 then
∥

∥

∥

∥

∥

(

I−
δ2

24
∆

)−1 [
δ2

12
∇f∇fT

]

∥

∥

∥

∥

∥

L2

≤
δ2

12
‖∇f‖2L4 . (4)

Furthermore, we have
∥

∥

∥

∥

∥

(

I−
δ2

24
∆

)−1 [
δ2

12
∇f∇fT

]

∥

∥

∥

∥

∥

H2

≤
L2

2π2
‖∇f‖2L4 . (5)

Proof. We start by observing that if we set (for smooth φ and ψ)

(

I−
δ2

24
∆

)−1
δ2

12
φ = ψ, (6)

then we have
δ2

12
φ = ψ −

δ2

24
∆ψ;
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multiplying the above equation by ψ and integrating over Q we obtain

‖ψ‖2L2 +
δ2

24
‖∇ψ‖2L2 =

δ2

12
(φ, ψ) ≤

δ2

12
‖φ‖L2‖ψ‖L2 ,

that implies

‖ψ‖L2 ≤
δ2

12
‖φ‖L2 . (7)

By recalling that in (7) ψ is the left-hand side of the inequality appearing in
(4), while φ = ∇f∇f we have finally proved (4).

The second part is easier. In fact, we can rewrite (6) as

2

(

24

δ2
I −∆

)−1

φ = ψ, (8)

and since we can write φ and ψ as

φ(x) =
∑

k∈Z3

φke
2iπk·x

L , ψ(x) =
∑

k∈Z3

ψke
2iπk·x

L ,

Eq. (8) implies immediately that

ψk = 2
1

24

δ2
+

4π2

L2
|k|2

φk.

By calculating the H2-norm of ψ we obtain

‖ψ‖2H2 =
∑

k∈Z3

4|k|4
[

24

δ2
+

4π2

L2
|k|2
]2 φ

2
k ≤

L4

4π4

∑

k∈Z3

φ2k.

The last estimate proves finally that

‖ψ‖H2 ≤
L2

2π2
‖φ‖L2

from which it follows (5).

With the above lemma we can prove the following result regarding life-
span. The following results is useful for the consistency of the method, since
it proves that for a given smooth (periodic and divergence-free) initial datum,
we can construct the solution of both the Navier-Stokes and RLES equations in
a common non-empty time interval; in the same interval we can then compare
those solutions.

Theorem 2.1. The life span of a strong solution to the RLES model depends
on ‖∇w0δ‖L2 , Re, and ν, but it is independent of δ.

Proof. First we recall that in reference [6] it has been proved that the bound-
edness of the L∞(0, T ;L2) norm of the gradient of a strong solution is enough
to employ a standard continuation argument. Then, if we are able to prove a
uniform bound for

sup
0<t<T

‖∇wδ(t)‖L2 ,
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then we can infer that the life span is bounded from below by T.
For simplicity, from now on, we may suppose that f ≡ 0. We multiply (1)

by −∆wδ and we integrate over Q to get

1

2

d

dt
‖∇wδ‖

2
L2 +

1

Re
‖∆wδ‖

2
L2 ≤

∣

∣

∣

∣

∫

Q

(wδ · ∇)wδ ∆wδ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Q

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

∇∆wδ dx

∣

∣

∣

∣

∣

.

The first term can be estimated in a standard way as follows (see for instance
Temam [20])

|((wδ · ∇)wδ,∆wδ)|≤
1

4Re
‖∆wδ‖

2
L2 + cRe3‖∇wδ‖

6
L2 , (9)

where c is a positive constant, depending only on Q.
To increase the second one we need Lemma 2.1. In fact, we obtain

∣

∣

∣

∣

∣

∫

Q

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

∇∆wδ dx

∣

∣

∣

∣

∣

≤

≤

∥

∥

∥

∥

∥

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

∥

∥

∥

∥

∥

H2

‖∇∆wδ dx‖H−2 .

Now by using the definition of negative norm of a
Sobolev space, Lemma 2.1, and the Young inequality we obtain

∣

∣

∣

∣

∣

∫

Q

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

∇∆wδ dx

∣

∣

∣

∣

∣

≤

≤
1

4Re
‖∆wδ‖

2
L2 +

1

210Re3
‖∇wδ‖

6
L2 .

This finally implies the following estimate:

1

2

d

dt
‖∇wδ‖

2
L2 +

1

2Re
‖∆wδ‖

2
L2 ≤ c‖∇wδ‖

6
L2 , (10)

where c is a positive constant independent of δ. Then the basic theory of dif-
ferential inequalities, applied to (10) implies that ‖∇wδ‖ is bounded in some
interval [0, T ∗), where T ∗ is independent of δ. If f 6≡ 0, but

f ∈ L2(0, T ∗;L2),

then an analogous result may be achieved by following the same lines of the
previous one.

We now quote the following result that has been proved in [4]:
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Theorem 2.2. Let wδ be a strong solution to (1) in [0, T ∗[. If f ∈ C∞, then

wδ ∈ C
∞(]0, T ∗[×]0,L[3).

The proof of this result is based on a boot strap argument, together with
classical regularity results for the Stokes operator. Full details can be found
in [4].

The full regularity is not needed for our result. As we will see, what is really
needed is just the first step of regularity, i.e., we need the result that if wδ is a
strong solution in [0, T ∗), then

wδ ∈ L
∞(0, T ∗;H2) ∩ L2(0, T ∗;H3). (11)

The results of Theorem 2.2 will be used to prove convergence of the solution
wδ to the solution of the Navier-Stokes equations, as the averaging parameter
δ → 0. It seems that it is not possible to prove the consistency result (just
in the L2-norm) if the additional regularity results on the solution were not
been previously proved. The results of Theorem 2.2 is then important in this
respect, but it is also interesting itself, because the philosophy of the Large Eddy
Simulation supposes the underlying “mean velocity” to be a smooth function.

3 Proof of the consistency result

In this section we prove the main result of this paper, namely that wδ converges,
as δ goes to zero, to a strong solution to the Navier-Stokes equations. We
recall that in general such kind of results have been proved only for very few
models. In particular, similar results have been proved for the α-model studied
in reference [8]. We recall that the α-model is obtained through the so-called
Kelvin filtering, i.e., integrating the Navier-Stokes equations around a loop that
moves with a spatially filtered Eulerian flow.

Regarding other LES models (that are more similar to the RLES) the only
one for which the consistency is known is the so called “LES scale similarity
model” studied in Layton [16]. This model consists in finding (w, q) that satisfy
∇ · w = 0 and

∂w

∂t
+∇ · (ww) +∇ · (w(w − w) + (w − w)w)+

−∇ · (νT (δ, w)
�
(w)) +∇q −

1

Re
∆w −A(δ)w = f.

(12)

The operators appearing in (12) are defined as follows:
�
(f) = (∇f + ∇fT ),

for each vector field f ; furthermore,

(A(δ)w, v) = −(νF (δ)
�
(w − w),

�
(v − v)),

where νF (δ) → 0 as δ → 0. The “turbulent viscosity” must satisfy νT (δ, w) =
νT (δ) → 0 as δ → 0. The hypotheses cover also the case in which νT (δ, w)
is the usual Smagorinsky dissipative term. For the model (12) it has been
proved a result of L∞(0, T ;L2) and L2(0, T ;H1) convergence, provided that
both solutions are strong. (These condition may slightly be relaxed, see [16]).

In this paper we prove a stronger result for the RLES model, since we show
the convergence in L∞(0, T ;H1).We can now state the main result of this paper:
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Theorem 3.1. Let wδ be a strong solution to (1), while let w be a solution to
the Navier-Stokes equations, in the common time interval [0, T ]. Let us suppose
that both the initial data are smooth (say wδ(x, 0) and w(x, 0) belong also to
H2) and that

∃ c1 > 0 : ‖wδ(x, 0)− w(x, 0)‖L2 ≤ c1δ
2.

Then we have, for some c2 > 0,

sup
t∈[0,T ]

‖wδ(x, t)− w(x, t)‖L2 ≤ c2 δ
2.

If, in addition,

∃ c3 > 0 : ‖wδ(x, 0)− w(x, 0)‖H1 ≤ c3 δ, (13)

then we have, for some c4 > 0,

sup
t∈[0,T ]

‖wδ(x, t)− w(x, t)‖H1 ≤ c4δ.

To prove the above theorem we need the first part of estimate (11). In the
following lemma we propose, for the reader convenience, a sketch of the proof.
The lemma below is then a subcase of Theorem 2.2.

Lemma 3.1. Let wδ(x, 0) ∈ H2 and ∇ · wδ(x, 0) = 0. Then a strong solution
in the time interval [0, T ] satisfies also

wδ ∈ L
∞(0, T ;H2),

and the bound is independent of δ.

Proof. To prove the lemma we use standard techniques. As usual A denotes the
Stokes operator associated to the periodic boundary conditions. Recall that on
D(Aα) the norm ‖Aαu‖L2 is equivalent to ‖u‖H2α , for details see Temam [21].
We multiply Eq. (1) by A2wδ and perform suitable integration by parts. Some
calculations are formal, but can be completely justified through a Galerkin ap-
proximation; see for instance Temam [20].

Let us start by estimating the additional nonlinear term appearing in the
RLES model, all the other are estimated in the classical way of the theory of
the Navier-Stokes equations. We have

∣

∣

∣

∣

∣

(

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

,∇A2wδ

)∣

∣

∣

∣

∣

≤

≤

∥

∥

∥

∥

∥

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

∥

∥

∥

∥

∥

H2

‖∇A2wδ‖H−2

and, by using Lemma 2.1, we obtain the following (note that the constant c
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does not depend on δ)

∣

∣

∣

∣

∣

(

(

I−
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

,∇A2wδ

)∣

∣

∣

∣

∣

≤

≤ c‖∇wδ‖
2
L4 ‖wδ‖H3

and, by inequality (15),

≤ c1‖∇wδ‖
1/2
L2 ‖wδ‖

3/2
H2 ‖wδ‖H3 .

With the standard estimates and by using that wδ ∈ L
∞(0, T ∗;H1) we finally

obtain
d

dt
‖Awδ‖

2
L2 +

1

Re
‖wδ‖

2
H3 ≤ c(‖Awδ‖

3 + ‖Awδ‖
4).

By using the Gronwall inequality (recall that since wδ is a strong solution in
[0, T ∗[ we have wδ ∈ L

2(0, T ∗;H2)) we finally obtain that

wδ ∈ L
∞(0, T ∗;H2).

We can now prove the main result.

of Theorem 3.1. To prove the theorem we start by considering wδ a strong solu-
tion to (1), while w is a strong solution to (2). We subtract the equation satisfied
by w to that satisfied by wδ and we multiply the difference by U = wδ −w. We
integrate over Q and we use suitable integration by parts to obtain

1

2

d

dt
‖U‖2L2 +

1

Re
‖∇U‖2L2 ≤ |((U · ∇)w,U)|+

+

∣

∣

∣

∣

∣

(

(

I −
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

,∇U

)∣

∣

∣

∣

∣

.

(14)

We also used the standard fact that
∫

Q

(u · ∇)v v dx = 0,

if ∇ · u = 0 and v is periodic (or v = 0 on ∂Q).
By using the first part of Lemma 2.1 we obtain that the last term on the

right hand side of (14) can be bounded by

δ2

12
‖∇wδ‖

2
L4‖∇U‖L2 .

The other one can be bounded with the usual Hölder inequality

|((U · ∇)w,U)| ≤ ‖U‖2L4‖∇w‖L2 .
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We now use the interpolation inequality

‖f‖L4 ≤ c‖f‖1/4‖∇f‖3/4, ∀ f ∈ H1, (15)

together with the Young’s inequality to obtain

d

dt
‖U‖2 +

1

Re
‖∇U‖2 ≤

≤ c(δ4‖∇wδ‖‖∆wδ‖
3 + ‖U‖2‖∇w‖2).

Due to the regularity results of Theorem 2.2 (more specifically the bound of
∆wδ in L∞(0, T ;L2) of Lemma 3.1) and the classical ones for the Navier-Stokes
equations, we obtain

d

dt
‖U‖2 +

1

Re
‖∇U‖2 ≤ c(δ4 + ‖U‖2), ∀ t ∈ [0, T ]. (16)

A simple integration with respect to t, together with the hypothesis on the
initial data, implies that

‖U(t)‖ ≤ Cδ2, ∀ t ∈ [0, T ].

Now, we look for high order estimates. By following the same guide-lines of the
previous result, we subtract the two equations (satisfied by wδ and w, respec-
tively), we multiply by AU = A(wδ − w), and integrate over Q. We obtain

1

2

d

dt
‖∇U‖2 +

1

Re
‖AU‖2 ≤

≤

∣

∣

∣

∣

∣

(

(

I −
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

,∇AU

)∣

∣

∣

∣

∣

+

+ |(U · ∇)wδ, AU)|+ |(w · ∇)U,AU)| .

(17)

We recall that we can write H1 as an interpolation space (namely H1 =
[L2, H2]1/2) and by using Lemma 2.1 we obtain:

∥

∥

∥

∥

∥

(

I−
δ2

24
∆

)−1 [
δ2

12
∇f∇f

]

∥

∥

∥

∥

∥

H1

≤ cδ‖∇f‖2L4 .

With the last inequality we get
∣

∣

∣

∣

∣

(

(

I −
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

,∇AU

)∣

∣

∣

∣

∣

≤

≤

∥

∥

∥

∥

∥

(

I −
δ2

24
∆

)−1 [
δ2

12
∇wδ∇w

T
δ

]

∥

∥

∥

∥

∥

H1

‖∇AU‖H−1

≤ cδ‖∇wδ‖
2
L4‖AU‖ ≤

1

4Re
‖AU‖2 + cδ2‖∇wδ‖

4
L4 .
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To bound the usual nonlinear terms (appearing also in the Navier-Stokes) we
use the classical inequality

|((u · ∇) v, w)| ≤ c‖∇u‖‖∇v‖1/2‖Av‖1/2‖w‖,

that holds for ∀u ∈ V, ∀ v ∈ D(A), ∀w ∈ H (see for instance Temam [20]) and
we easily obtain

|(U · ∇)wδ, AU)|+ |(w · ∇)U,AU)| ≤

≤
1

4Re
‖AU‖2 + c(‖∇wδ‖

2 + ‖∇w‖2)‖∇U‖2.

Collecting all the inequalities we finally get

d

dt
‖∇U‖2 +

1

Re
‖AU‖2 ≤c(‖∇wδ‖

2 + ‖∇w‖2)‖∇U‖2

+ cδ2‖∇wδ‖
4
L4 .

(18)

The differential inequality (18), together with the Gronwall lemma, implies that
there exists a positive constant C, independent of δ, such that

‖∇U(t)‖ ≤ Cδ, ∀ t ∈ [0, T ].

All the consistency results are going to be validated also from the numerical
point of view, see [4].

4 On error bounds

As remarked in the introduction, the presence of the boundaries introduces some
terms that are generally disregarded, even if they are not zero. The effect of
boundary terms has been recently pointed out in Reference [7] together with
the way to handle the additional terms in a reasonable functional setting.

In this section we consider the space averaged equations in a bounded smooth
domain Ω. We extend the velocity, the pressure, and the external force as zero
outside Ω (recall “point 1.” in the derivation of the model)

u = 0, u0 = 0, p = 0, f = 0 if x 6∈ Ω.

In this way the extended velocity belongs to H1
0 (R

3), but u does not necessarily
belong to H2(R3), even if it belongs to H2(Ω). Convolving the first equation
in (2) (with a filter function gδ) we obtain the following momentum averaged
equation for u = gδ ∗ u :

∂u

∂t
− 2

1

Re
∇ ·

�
(u) +∇ · (u⊗ u) +∇p = f+

+

∫

∂Ω

gδ(x− s) [2ν
�
(u)(s)n(s)− p(s)n(s)] ds,

(19)

11



where n(s) is the exterior normal vector. We observe that, in addition to the
usual terms appearing in the classical LES models, in the right-hand side there
is an additional commutation error.

Definition 4.1. The commutation error Aδ( � (u, p)) in
the space averaged Navier-Stokes equations is defined to be

Aδ( � (u, p)) def
=

∫

∂Ω

gδ(x− y) � (u, p)(y) dy,

where � is the stress tensor, given by

� (u, p) def
=

1

Re

(

∇u+∇uT
)

− p �

being � the identity tensor.

Remark 4.1. The commutation error depends on the normal stress on ∂Ω of
the un-filtered variables (u, p) and it does not depend on the filtered variables
(u, p).

Together with the usual “closure”approximation, needed to model u⊗ u,
it is necessary to take into account the commutation error appearing on the
right-hand side.

4.1 Estimates on the commutation error

To handle the commutation error in Reference [7] some estimates are obtained.
The following propositions can be proved with the usual techniques of Sobolev
spaces together with some some technical lemmas of geometric measure theory.
The proof of the Propositions below can be found in Sections 4–6 of [7].

Proposition 4.1. Let ψ ∈ Lp(∂Ω), 1 ≤ p ≤ ∞. Then

lim
δ→0

∥

∥

∥

∥

∫

∂Ω

gδ(x− y)ψ(y) dy

∥

∥

∥

∥

Lp(R3)

= 0

if and only if ψ(y) vanishes almost everywhere on ∂Ω.

Proposition 4.2. Let ψ(s) ∈ L2(∂Ω), then there exists a positive constant
C = C(Ω) such that, ∀ δ > 0

∥

∥

∥

∥

∫

∂Ω

gδ(x− s)ψ(s) ds

∥

∥

∥

∥

H−1(Ω)

≤ Cδ1/2‖ψ‖L2(∂Ω).

Finally, we recall a result that derives from the previous ones and that will
be used in the sequel.

Proposition 4.3. Let v ∈ H1(R3) such that v|Ω, its restriction to Ω, belongs to

H1
0 (Ω)∩H

2(Ω) and v vanishes identically outside Ω. Furthermore, let ψ belong
to Lp(∂Ω), for some p ∈ [1,∞]. Then, if v = gδ ∗ v we have:

lim
δ→0+

∫

R3

v(x)

(
∫

∂Ω

gδ(x− s)ψ(s) ds

)

dx = 0.
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Remark 4.2. We are assuming that ψ belongs to Lp since for strong solution to
the Navier-Stokes equations it is possible to prove (see for instance Galdi [10])
that

ψ = � (u, p) belongs to Lp(∂Ω), 1 ≤ p ≤ 4.

The first question to be answered regarding the influence of such commuta-
tion terms in the study of LES models regards the effect of the commutation
error on the kinetic energy. By using the above proposition in Reference [7] it
is shown that this term does not affects the usual energy estimates for several
LES models, namely:

• the classical Smagorinsky model;

• the gradient (or Taylor) model plus a Smagorinsky dissipative term;

• a variant of the Rational LES model (the so-called “RLES model without
additional problem”) plus a Smagorinsky dissipative term.

Remark 4.3. The RLES model without additional problem is a slightly different
model, in which the additional (turbulent) stress tensor (3) is replaced by the
simpler

gδ ∗

[

δ2

12
∇wδ∇w

T
δ

]

ij

:= gδ ∗

(

δ2

12

3
∑

l=1

∂wi
δ

∂xl

∂w
j
δ

∂xl

)

.

By using essentially the classical techniques and the
above propositions 1-3 of [7], we prove in a straightforward manner the fol-
lowing bound for the kinetic energy for the RLES model (1).

Theorem 4.1. Let (u, p) be a strong solution to (2) in [0, T ]. Let wδ be a
solution, in R3, to the problem:



























































∂wδ

∂t
+∇qδ +∇ · (wδ ⊗ wδ)−∇ · (cs|∇wδ|∇wδ)+

−
1

Re
∇·

�
(wδ) +∇·

(

I −
δ2

24
∆

)−1(
δ2

12
∇wδ∇w

T
δ

)

=

= f +

∫

∂Ω

gδ(x− s) � (u, p)n(s) ds in R
3 × (0, T )

∇ · wδ = 0 in R
3 × (0, T )

wδ(x, 0) = w0δ(x) in R
3,

(20)

where |∇wδ| =

(

∑

ij

(∂iw
j
δ)
2

)1/2

and gδ is the Gaussian kernel. Then, if cs is

large enough, it results the following bound for the kinetic energy:

‖wδ(t)‖
2
L2 ≤ et

(

‖w0δ‖
2
L2 +

∫ t

0

e−τ
[

‖f(τ)‖2L2 + εδ(τ)
]

dτ

)

where lim
δ→0+

εδ(τ) = 0 for every τ ≥ 0.
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Proof. The proof is based on classical Sobolev tech-
niques. Let us multiply equation (20) by wδ and integrate over the whole space
R3. Using standard arguments we obtain that

∫

R3

∇qδwδ dx = 0

and
∫

R3

∇ · (wδ ⊗ wδ) · wδ dx = 0

Moreover,

−
1

Re

∫

R3

∇ ·
�
(wδ) · wδ dx =

1

Re
‖∇wδ‖

2
L2 ≥ 0.

Let us now estimate the following term:

∣

∣

∣

∣

∣

∫

R3

∇

(

I −
δ2

24
∆

)−1(
δ2

12
∇wδ∇w

T
δ

)

· wδ dx

∣

∣

∣

∣

∣

≤

≤

∥

∥

∥

∥

∥

(

I −
δ2

24
∆

)−1(
δ2

12
∇wδ∇w

T
δ

)

∥

∥

∥

∥

∥

H1

‖∇wδ‖H−1 ≤

≤ c

∥

∥

∥

∥

∥

(

I −
δ2

24
∆

)−1(
δ2

12
∇wδ∇w

T
δ

)

∥

∥

∥

∥

∥

W 2,3/2

‖∇wδ‖2 ≤

≤ c‖∇wδ∇w
T
δ ‖3/2‖∇wδ‖3 ≤ c‖∇wδ‖

3
3

(we used the regularity theory for elliptic PDEs, see Agmon, Douglis, and Niren-
berg [2] and the Sobolev embedding W 2,3/2(R3) ↪→ W 1,2(R3); see [1]). In the
end we obtain, using Schwartz and Minkowski inequalities to estimate

∫

fwδ dx,

1

2

d

dt
‖wδ‖

2
L2 ≤

‖wδ‖
2
L2

2
+
‖f‖2L2

2
+ (c− cs)‖∇wδ‖

3
L3+

+

∫

R3

wδ

(
∫

∂Ω

gδ(x− s) � (u, p)n(s) ds
)

dx.

Using Gronwall lemma, if cs > c, we obtain:

‖wδ(t)‖
2
L2 ≤ et

(

‖w0δ‖
2
L2 +

∫ t

0

e−τ
(

‖f(τ)‖2L2+

+2

∫

R3

wδ

∫

∂Ω

gδ(x− s) � (u, p)n(s) dsdx
)

dτ

)

hence, by setting

εδ(τ) = 2

∫

R3

wδ

∫

∂Ω

gδ(x− s) � (u, p)n(s) dsdx

Proposition 3 gives the requested bound for the kinetic energy.
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