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Abstract. We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic

energies having matrix of coefficients in a Sobolev space W 1,p, p > n, and provide an application
to the corresponding free boundary analysis for the related classical obstacle problems.

1. Introduction

The aim of this short note is to extend the range of validity of Weiss’ and Monneau’s type quasi-
monotonicity formulas to classical obstacle problems involving quadratic forms having matrix of
coefficients in a Sobolev space W 1,p, with p > n. Such results are instrumental to pursue the
variational approach for the analysis of the corresponding free boundaries in classical obstacle
problems. More precisely, we consider the functional E : W 1,2(Ω)→ R given by

E(v) :=

ˆ
Ω

(
〈A(x)∇v(x),∇v(x)〉+ 2h(x)v(x)

)
dx, (1.1)

and study regularity issues related to its unique minimizer w on the set

Kψ,g :=
{
v ∈W 1,2(Ω) : v ≥ ψ Ln a.e. on Ω, Tr(v) = g on ∂Ω

}
.

Here Ω ⊂ Rn is a bounded open set, n ≥ 2, ψ ∈ C1,1
loc (Ω) and g ∈ H1/2(∂Ω), are such that ψ ≤ g

Hn−1-a.e on ∂Ω, A : Ω→ Rn×n is a matrix-valued field and f : Ω→ R is a function satisfying:

(H1) A ∈W 1,p(Ω;Rn×n) with p > n;
(H2) A(x) = (aij(x))i,j=1,...,n symmetric, continuous and coercive, that is aij = aji in Ω for all

i, j ∈ {1, . . . , n}, and for some Λ ≥ 1

Λ−1|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 (1.2)

for all x ∈ Ω, ξ ∈ Rn;
(H3) f := h− div (A∇ψ) > c0 Ln a.e. Ω, for some c0 > 0, and f is Dini-continuous, namelyˆ 1

0

ωf (t)

t
dt <∞, (1.3)

where ωf (t) := supx,y∈Ω, |x−y|≤t |f(x)− f(y)|.
In some instances in place of (H3) we will require the stronger condition

(H4) f > c0 Ln a.e. Ω, for some c0 > 0, and f is double-Dini continuous, that isˆ 1

0

ωf (r)

r
| log r|a dr <∞, (1.4)

for some a ≥ 1.

Note that for the zero obstacle problem, i.e. ψ = 0, assumptions (H3) and (H4) involve only the
lower order term h in the integrand and not the matrix field A.

Given the assumptions introduced above we provide a full free boundary stratification result.
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Theorem 1.1. Assume (H1)-(H4) to hold, and let w be the (unique) minimizer of E in (1.1) on
Kψ,g.

Then, w is W 2,p
loc ∩C

1,1−n/p
loc (Ω), and the free boundary decomposes as ∂{w = ψ}∩Ω = Reg(w)∪

Sing(w), where Reg(w) and Sing(w) are called its regular and singular part, respectively. Moreover,
Reg(w) ∩ Sing(w) = ∅ and

(i) if a > 2 in (H4), then Reg(w) is relatively open in ∂{w = ψ} and, for every point
x0 ∈ Reg(w), there exist r = r(x0) > 0 such that ∂{w = ψ} ∩ Br(x) is a C1 (n − 1)-
dimensional manifold with normal vector absolutely continuous.

In particular if f is Hölder continuous there exists r > 0 such that ∂{w = ψ} ∩ Br(x)
is a C1,β (n− 1)-dimensional manifold for some exponent β ∈ (0, 1).

(ii) if a ≥ 1 in (H4), then Sing(w) = ∪n−1
k=0Sk, with Sk contained in the union of at most

countably many submanifolds of dimension k and class C1.

Theorem 1.1 has been proved by Caffarelli for suitably regular matrix fields, and it is the resume
of his long term program on the subject (cf. for instance [2, 3, 4, 5] and the books [15, 6, 19]
for more details and references also on related problems). Let us also remark that very recently
the fine structure of the set of singular points for the Dirichlet energy has been unveiled in the
papers by Colombo, Spolaor and Velichkov [7] and Figalli and Serra [8] by means of a logarithmic
epiperimetric inequality and new monotonicity formulas, respectively.

In the last years Theorem 1.1 has been extended to the case in which A either is Lipschitz
continuous in [9] or belongs to a fractional Sobolev space W 1+s,p in [11], with s, p and n suitably
related, and also in some nonlinear cases [10]. The last papers follow the variational approach to
free boundary analysis developed remarkably by Weiss [21] and by Monneau [18]. The extensions
of Weiss’ and Monneau’s quasi-monotonicity formulas obtained in the papers [9, 11] hinge upon a
generalization of the Rellich and Nečas’ inequality due to Payne and Weinberger (cf. [16]). On a
technical side they involve the derivation of the matrix field A. The main difference contained in
the present note with respect to the papers [9, 11] concerns the monotone quantity itself. Indeed,
rather than considering the natural quadratic energy associated to the obstacle problem under
study, we establish quasi-monotonicity for a related constant coefficient quadratic form. The
latter result is obtained thanks to a freezing argument inspired by some computations of Monneau
(cf. [18, Section 6]) in combination with the well-known quadratic lower bound on the growth
of solutions from free boundary points (see Section 3 for more details). Such an insight, though
elementary, has been overlooked in the literature and enables us to obtain Weiss’ and Monneau’s
quasi-monotonicity formulas under the milder assumptions (H1) and (H3) (the latter having no
role if ψ = 0), since the matrix field A is not differentiated along the derivation process of the
quasi-monotonicity formulas.

To conclude this introduction we briefly resume the structure of the paper: standard prelimi-
naries for the classical obstacle problem are collected in Section 2. The mentioned generalizations
of Weiss’ and Monneau’s quasi-monotonicity formulas are dealt with in Section 3, finally Section 4
contains the applications to the free boundary stratification for quadratic problems.

2. Preliminaries

Throughout the section we use the notation introduced in Section 1 and adopt Einstein’ sum-
mation convention.

We first reduce ourselves to the zero obstacle problem. Let w be the unique minimizer of E
over Kψ,g, and define u := w − ψ. Then, u is the unique minimizer of

E (v) :=

ˆ
Ω

(
〈A(x)∇v(x),∇v(x)〉+ 2f(x)v(x)

)
dx, (2.1)

over

Kψ,g :=
{
v ∈W 1,2(Ω) : v ≥ 0 Ln a.e. on Ω, Tr(v) = g − ψ on ∂Ω

}
,

where f = h− div (A∇ψ). Clearly, ∂{w = ψ} ∩Ω = ∂{u = 0} ∩Ω, therefore we shall establish all
the results in Theorem 1.1 for u (notice that assumptions (H3) and (H4) are formulated exactly
in terms of f).
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Note that u satisfies a PDE both in the distributional sense and a.e. on Ω, elliptic regularity
then applies to u itself to establish its smoothness. The next result had been established by
Ural’tseva in [20] with a different proof.

Proposition 2.1. Let u be the minimum of E on Kψ,g. Then

div(A∇u) = fχ{u>0} (2.2)

Ln-a.e. on Ω and in D′(Ω). Moreover, u ∈W 2,p
loc ∩ C

1,1−n
p

loc (Ω).

Proof. For the validity of (2.2) we refer to [10, Proposition 3.2] where the result is proven in the
broader context of variational inequalities (see also [9, Proposition 2.2]).

From this, by taking into account that A ∈ C0,1−n/p
loc (Ω,Rn×n) in view of Morrey embedding

theorem, Schauder estimates then yields u ∈ C1,1−n/p
loc (Ω) (cf. [14, Theorem 3.13]).

Next consider the equation

aij
∂2v

∂xi∂xj
= fχ{u>0} − divAj

∂u

∂xj
=: ϕ, (2.3)

where Aj denotes the j-column of A. Since ∇u ∈ L∞loc(Ω,Rn) and divAj ∈ Lp(Ω) for all j ∈
{1, . . . , n}, then ϕ ∈ Lploc(Ω). [13, Corollary 9.18] implies the uniqueness of a solution v ∈W 2,p

loc (Ω)

to (2.3). By taking into account the identity Tr(A∇2v) = div(A∇v)− divAj ∂v∂xj
, (2.3) rewrites as

div(A∇v)− divAj
∂v

∂xj
= ϕ, (2.4)

we have that u and v are two solutions. Then by [17, Theorem 1.I] we obtain u = v. �

We recall next the standard notations for the coincidence set and for the free boundary

Λu = {x ∈ Ω : u(x) = 0} , Γu = ∂Λu ∩ Ω. (2.5)

For any point x0 ∈ Γu, we introduce the family of rescaled functions

ux0,r(x) :=
u(x0 + rx)

r2
(2.6)

for x ∈ 1
r (Ω − {x0}). The existence of C1,α-limits as r ↓ 0 of the latter family is standard by

noting that the rescaled functions satisfy an appropriate PDE and then uniform W 2,p estimates.

Proposition 2.2 ([11, Proposition 4.1]). Let u be the unique minimizer of E over Kψ,g, and
K ⊂ Ω a compact set. Then for every x0 ∈ K ∩ Γu, for every R > 0 there exists a constant
C = C(n, p,Λ, R,K, ‖f‖L∞ , ‖A‖W 1,p) > 0 such that, for every r ∈ (0, 1

4Rdist(K, ∂Ω))

‖ux0,r‖W 2,p(BR) ≤ C. (2.7)

In particular, (ux0,r)r is equibounded in C1,γ
loc for γ ∈ (0, 1− n/p].

The functions arising in this limit process are called blow-up limits.

Corollary 2.3 (Existence of blow-ups). Let u be the unique minimizer of E over Kψ,g, and let
x0 ∈ Γu. Then, for every sequence rk ↓ 0 there exists a subsequence (rkj )j ⊂ (rk)k such that the

rescaled functions (ux0,rkj
)j converge in C1,γ

loc , γ ∈ (0, 1− n/p).

Elementary growth conditions of the solution from free boundary points are easily deduced from
Proposition 2.2 and the condition p > n. In turn, such properties will be crucial in the derivation
of the quasi-monotonicity formulas.

Proposition 2.4. Let u be the unique minimizer of E over Kψ,g. Then for all compact sets
K ⊂ Ω there exists a constant C = C(n, p,Λ,K, ‖f‖L∞ , ‖A‖W 1,p) > 0 such that for all points
x0 ∈ Γu ∩K, and for all r ∈

(
0, 1

2dist(K, ∂Ω)
)

it holds

‖u‖L∞(Br(x0)) ≤ C r2 , ‖∇u‖L∞(Br(x0),Rn) ≤ C r. (2.8)

and
‖∇2u‖Lp(Br(x0),Rn×n) ≤ C r

n/p. (2.9)
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Finally, we recall the fundamental quadratic detachment property from free boundary points
that entails non triviality of blow up limits. It has been established by Blank and Hao in [1,
Theorem 3.9] under the sole VMO regularity of A, an assumption weaker than (H1).

Lemma 2.5. There exists a constant ϑ = ϑ(n,Λ, c0, ‖f‖L∞) > 0 such that, for every x0 ∈ Γu and
r ∈ (0, 1

2dist(x0, ∂Ω)), it holds

sup
x∈∂Br(x0)

u(x) ≥ ϑ r2.

3. Quasi-monotonicity formulas

In this section we establish Weiss’ and Monneau’s type quasi-monotonicity formulas for the
quadratic problem. As pointed out in Section 1 the main difference with the existing literature
concerns the monotone quantity itself. Indeed, rather than considering the natural quadratic
energy E associated to the obstacle problem under study, we may consider the classical Dirichlet
energy thanks to a normalization. In doing this we have been inspired by Monneau [18, Section 6].
The advantage of this formulation is that the matrix field A is not differentiated in deriving the
quasi-monotonicity formulas contrary to [10, 11]. Our additional insight is elementary but crucial:
we further exploit the quadratic growth of solutions from free boundary points in Proposition 2.4
to establish quasi-monotonicity.

Let x0 ∈ Γu be any point of the free boundary, then the affine change of variables

x 7→ x0 + f−
1/2(x0)A1/2(x0)x =: x0 + L(x0)x

leads to

E (u) = f1−n
2 (x0) det(A1/2(x0)) EL(x0)(uL(x0)), (3.1)

where ΩL(x0) := L−1(x0) (Ω− x0), and we have set

EL(x0)(v) :=

ˆ
ΩL(x0)

(
〈Cx0∇v,∇v〉+ 2

fL(x0)

f(x0)
v

)
dx, (3.2)

with

uL(x0)(x) := u
(
x0 + L(x0)x

)
, (3.3)

fL(x0)(x) := f
(
x0 + L(x0)x

)
,

Cx0
(x) := A−1/2(x0)A(x0 + L(x0)x)A−1/2(x0).

Note that fL(x0)(0) = f(x0) and Cx0(0) = Id. Moreover, the free boundary is transformed under
this map into

ΓuL(x0)
= L−1(x0)(Γu − x0),

and the energy E in (1.1) is minimized by u if and only if EL(x0) in (3.2) is minimized by the
function uL(x0) in (3.3).

In addition, rewriting the Euler-Lagrange equation for uL(x0) in non-divergence form we get on
ΩL(x0):

cij(x)
∂2uL(x0)

∂xi∂xj
+ divAi(x)

∂uL(x0)

∂xi
=
fL(x0)(x)

f(x0)
χ{uL(x0)>0} .

(using again Einstein’s convention) with Cx0
= (cij)i,j=1,...,n. Moreover, we may further rewrite

the latter equation on ΩL(x0) as

∆uL(x0) = 1 +
(fL(x0)(x)

f(x0)
χ{uL(x0)>0} − 1−

(
cij(x)− δij

)∂2uL(x0)

∂xi∂xj
− divCix0

(x)
∂uL(x0)

∂xi

)
=: 1 + fx0(x) .

(3.4)

We are now ready to establish Weiss’ and Monneau’s quasi-monotonicity formulas for u by using
equality (3.4) and Proposition 2.4.
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3.1. Weiss’ quasi-monotonicity formula. In this section we consider the Weiss’ energy

Φu(x0, r) :=
1

rn+2

ˆ
Br

(
|∇uL(x0)|2 + 2uL(x0)

)
dx− 2

rn+3

ˆ
∂Br

u2
L(x0) dH

n−1 , (3.5)

x0 ∈ Γu, and prove its quasi-monotonicity.

Theorem 3.1 (Weiss’ quasi-monotonicity formula). Under assumptions (H1)-(H3), if K ⊂ Ω
is a compact set, there is a constant C = C(n, p,Λ, c0,K, ‖f‖L∞ , ‖A‖W 1,p) > 0 such that for all
x0 ∈ K ∩ Γu

d

dr

(
Φu(x0, r) + C

ˆ r

0

ω(t)

t
dt
)
≥ 2

rn+4

ˆ
∂Br

(〈∇uL(x0), x〉 − 2uL(x0))
2dHn−1, (3.6)

for L1 a.e. r ∈ (0, 1
2dist(K, ∂Ω)), where ω(r) := ωf (r) + r1−n

p .

In particular, Φu(x0, ·) has finite right limit Φu(x0, 0
+) in zero, and for all r ∈ (0, 1

2dist(K, ∂Ω)),

Φu(x0, r)− Φu(x0, 0
+) ≥ −C

ˆ r

0

ω(t)

t
dt. (3.7)

Proof of Theorem 3.1. We analyse separately the volume and the boundary terms appearing in
the definition of the Weiss energy in (3.5). For the sake of notational simplicity we write ux0

in
place of uL(x0). In what follows C = C(n, p,Λ, c0,K, ‖f‖L∞ , ‖A‖W 1,p) > 0 denotes a constant that
may vary from line to line.

We start off with the bulk term. The Coarea Formula implies for L1-a.e. r ∈ (0,dist(K, ∂Ω))

d

dr

( 1

rn+2

ˆ
Br

(
|∇ux0

|2 + 2ux0

)
dx
)

=

− n+ 2

rn+3

ˆ
Br

(
|∇ux0 |2 + 2ux0

)
dx+

1

rn+2

ˆ
∂Br

(
|∇ux0 |2 + 2ux0

)
dx. (3.8)

We use the Divergence Theorem together with the following identities

|∇ux0 |2 =
1

2
div (∇(u2

x0
))− ux0

∆ux0
,

div
(
|∇ux0

|2 x
r

)
=
n− 2

r
|∇ux0

|2 − 2∆ux0
〈∇ux0

,
x

r
〉+ 2 div

(
〈∇ux0

,
x

r
〉∇ux0

)
,

div
(
ux0

x

r

)
= ux0

n

r
+ 〈∇ux0

,
x

r
〉,

to deal with the first, third and fourth addend in (3.8), respectively. Hence, we can rewrite the
right hand side of equality (3.8) as follows

d

dr

( 1

rn+2

ˆ
Br

(
|∇ux0 |2 + 2ux0

)
dx
)

=
2

rn+2

ˆ
Br

(∆ux0 − 1)
(

2
ux0

r
− 〈∇ux0 ,

x

r
〉
)
dx

+
2

rn+2

ˆ
∂Br

〈∇ux0 ,
x

r
〉2dHn−1 − 4

rn+2

ˆ
∂Br

ux0

r
〈∇ux0 ,

x

r
〉dHn−1 . (3.9)

We consider next the boundary term in the expression of Φu. By scaling and a direct calculation
we get

d

dr

( 2

rn+3

ˆ
∂Br

u2
x0
dHn−1

)
x=ry

= 2

ˆ
∂B1

d

dr

(
ux0

(ry)

r2

)2

dHn−1

= 4

ˆ
∂B1

ux0
(ry)

r4

(
〈∇ux0

(ry), y〉 − 2
ux0

(ry)

r

)
dHn−1

x=ry
=

4

rn+2

ˆ
∂Br

ux0

r
〈∇ux0

,
x

r
〉 dHn−1 − 8

rn+2

ˆ
∂Br

u2
x0

r2
dHn−1 .

(3.10)
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Then by combining together the equations (3.9) and (3.10) and recalling equation (3.4) we obtain

Φ′u(x0, r) =
2

rn+2

ˆ
Br

fx0

(
2
ux0

r
− 〈∇ux0 ,

x

r
〉
)
dx+

2

rn+2

ˆ
∂Br

(
〈∇ux0 ,

x

r
〉 − 2

ux0

r

)2

dHn−1

=
2

rn+2

ˆ
Br\Λux0

fx0

(
2
ux0

r
− 〈∇ux0

,
x

r
〉
)
dx+

2

rn+2

ˆ
∂Br

(
〈∇ux0

,
x

r
〉 − 2

ux0

r

)2

dHn−1,

where in the last equality we used the unilateral obstacle condition to deduce that Λux0
⊆ {∇ux0 =

0}. Therefore, by the growth of u and ∇u from x0 in (2.8) we obtain

Φ′u(x0, r) ≥ −
C

rn+1

ˆ
Br\Λux0

|fx0
| dx+

2

rn+2

ˆ
∂Br

(
〈∇ux0

,
x

r
〉 − 2

ux0

r

)2

dHn−1 . (3.11)

Next note that by (H1), (H3), and by the very definition of fx0
in (3.4) it follows that

1

rn+1

ˆ
Br\Λux0

|fx0 | dx ≤
ωf (r)

c0 r
+

C

rn(1+ 1
p )

ˆ
Br

|∇2ux0 | dx+
C

rn

ˆ
Br

|divCx0 | dx . (3.12)

By (2.9) we estimate the second addend on the right hand side of the last inequality as follows

1

rn(1+ 1
p )

ˆ
Br

|∇2ux0
| dx ≤ C

rn(1+ 1
p )
‖∇2ux0

‖Lp(Br,Rn×n)(ωnr
n)1− 1

p ≤ C r−
n
p , (3.13)

by Hölder inequality we get for the third addend

1

rn

ˆ
Br

|divCx0 | dx ≤
1

rn
‖divCx0‖Lp(Br,Rn) (ωnr

n)1− 1
p ≤ C r−

n
p . (3.14)

Therefore, we conclude from (3.11)-(3.14)

Φ′u(x0, r) ≥ −C
ω(r)

r
+

2

rn+2

ˆ
∂Br

(
〈∇ux0 ,

x

r
〉 − 2

ux0

r

)2

dHn−1 ,

where ω(r) := ωf (r) + r1−n
p . �

Remark 3.2. Recalling that f is Dini-continuous by (H3), the modulus of continuity ω provided
by Theorem 3.1 is in turn Dini-continuous.

Remark 3.3. More generally, the argument in Theorem 3.1 works for solutions to second order
elliptic PDEs in nondivergence form of the type

aij(x)uij + bi(x)ui + c(x)u = f(x)χ{u>0} ,

the only difference with the statement of Theorem 3.1 being that in this framework ω(r) :=

ωf (r) + r1−n
p + r2 supBr

c.

3.2. Monneau’s quasi-monotonicity formula. Let v be a positive 2-homogeneus polynomial
solution of

∆v = 1 on Rn. (3.15)

Then by 2-homogeneity, elementary calculations lead to

Φv(0, r) = Φv(0, 1) =

ˆ
B1

v dy, (3.16)

for all r > 0. We prove next a quasi-monotonicity formula for solutions of the obstacle problem
in case x0 ∈ Γu is a singular point of the free boundary, namely it is such that

Φu(x0, 0
+) = Φv(0, 1) (3.17)

for some v 2-homogeneous solution of (3.15).
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Theorem 3.4 (Monneau’s quasi-monotonicity formula). Under hypotheses (H1), (H2), (H4) with
a = 1, if K ⊂ Ω is a compact set and (3.16) holds for x0 ∈ K ∩ Γu then there exists a constant
C = C(n, p,Λ, c0,K, ‖f‖L∞ , ‖A‖W 1,p) > 0 such that the function

(
0,

1

2
dist(K, ∂Ω)

)
3 r 7−→ 1

rn+3

ˆ
∂Br

(uL(x0) − v)2 dx+ C

ˆ r

0

dt

t

ˆ t

0

ω(s)

s
ds (3.18)

is nondecreasing, where v is any 2-homogeneus polynomial solution of (3.15), and ω is the modulus
of continuity provided by Theorem 3.1.

Proof of Theorem 3.4. As in the proof of Theorem 3.1 for the sake of notational simplicity we
write ux0 rather than uL(x0).

Set w := ux0
− v, then arguing as in (3.10) and by applying the Divergence Theorem we get

d

dr

(
1

rn+3

ˆ
∂Br

w2 dHn−1

)
=

2

rn+3

ˆ
∂Br

w
(
〈∇w, x

r
〉 − 2

w

r

)
dHn−1

=
2

rn+3

ˆ
Br

div (w∇w) dx− 4

rn+4

ˆ
∂Br

w2 dHn−1

=
2

rn+3

ˆ
Br

w∆w dx+
2

rn+3

ˆ
Br

|∇w|2 dx− 4

rn+4

ˆ
∂Br

w2 dHn−1

(3.19)

For what concerns the first term on the right hand side of (3.19) recall that u ∈W 2,p
loc (Ω), thus by

locality of the weak derivatives Ln
(
{∇ux0 = 0} \ {∇2ux0

= 0}
)

= 0. Being Λux0
⊆ {∇ux0

= 0},
we conclude that ∆ux0

= 0 Ln-a.e. in Λux0
, and therefore in view of (3.4) we infer

w∆w = (ux0
− v)(∆ux0

− 1) =

{
(ux0 − v) fx0 Ln-a.e. Ω \ Λux0

v Ln-a.e. Λux0
.

Instead, estimating the second and third terms on the right hand side of (3.19) thanks to (3.15)
yields

1

rn+3

ˆ
Br

|∇w|2 dx− 2

rn+4

ˆ
∂Br

w2 dHn−1 =
1

rn+3

ˆ
Br

(
|∇ux0

|2 + |∇v|2
)
dx

− 2

rn+3

ˆ
Br

div (ux0
∇v) dx+

2

rn+3

ˆ
Br

ux0
dx− 2

rn+4

ˆ
∂Br

w2 dHn−1

(3.16)
=

1

r

(
Φux0

(x0, r)− Φv(x0, r)
)
− 2

rn+4

ˆ
∂Br

ux0

(
〈∇v, x

r
〉 − 2v

)
dx

(3.17)
=

1

r

(
Φux0

(x0, r)− Φux0
(x0, 0

+)
)
.

Then, (3.19) rewrites as

d

dr

(
1

rn+3

ˆ
∂Br

w2 dHn−1

)
=

2

r

(
Φu(x0, r)− Φu(x0, 0

+)
)

+
2

rn+3

ˆ
Br\Λux0

(ux0
− v)fx0

dx+
2

rn+3

ˆ
Br∩Λux0

v dx.

Inequality (3.7) in Theorem 3.1, the growth of the solution u from free boundary points in (2.8),
the 2-homogeneity and positivity of v yield the conclusion (cf. (3.12)-(3.14)):

d

dr

(
1

rn+3

ˆ
∂Br

w2 dHn−1

)
≥ −C

r

ˆ r

0

ω(t)

t
dt− C

rn+1

ˆ
Br\Λux0

|fx0
| dx = −C

r

ˆ r

0

ω(t)

t
dt

for some C = C(n, p,Λ, c0,K, ‖f‖L∞ , ‖A‖W 1,p) > 0. �
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4. Free boundary analysis

Weiss’ and Monneau’s quasi-monotonicity formulas proved in the Section 3 are important tools
to deduce regularity of free boundaries for classical obstacle problems for variational energies both
in the quadratic and in the nonlinear setting (see [9, 11, 10, 18, 19, 21]). In this section we improve
[9, Theorems 4.12 and 4.14] in the quadratic case weakening the regularity of the coefficients of
the relevant energies. This is possible thanks to the above mentioned new quasi-monotonicity
formulas.

In the ensuing proof we will highlight only the substantial changes since the arguments are
essentially those given in [9, 11]. In particular, we remark again that in the quadratic case the
main differences concern the quasi-monotonicity formulas established for the quantity Φu rather
than for the natural candidate related to E .

We follow the approach by Weiss [21] and Monneau [18] for the free boundary analysis in
Theorem 1.1.

Proof of Theorem 1.1. First recall that we may establish the conclusions for the function u = w−ψ
introduced in Section 2. Given this, the only minor change to be done to the arguments in [9,
Section 4] is related to the freezing of the energy where the regularity of the coefficients plays a
substantial role. More precisely, in the current framework for all v ∈W 1,2(B1) we have∣∣∣∣ˆ

B1

(
A(rx)∇v,∇v〉+ 2f(rx)v

)
dx−

ˆ
B1

(
|∇v|2 + 2v

)
dx

∣∣∣∣ ≤ (r1−n
p + ωf (r))

ˆ
B1

(
|∇v|2 + 2v

)
dx.

We then describe shortly the route to the conclusion. To begin with recall that the quasi-
monotonicity formulas established in [9, Section 3] are to be substituted by those in Section 3.
Then the 2-homogeneity of blow up limits in [9, Proposition 4.2] now follows from Theorem 3.1.
The quadratic growth of solutions from free boundary points contained in [9, Lemma 4.3], that
implies non degeneracy of blow up limits, is contained in Lemma 2.5. The classification of blow
up limits is performed exactly as in [9, Proposition 4.5]. The conclusions of [9, Lemma 4.8], a
result instrumental for the uniqueness of blow up limits at regular points, can be obtained with
essentially no difference. The proofs of [9, Propositions 4.10, 4.11, Theorems 4.12, 4.14] remain
unchanged. The theses then follow at once. �
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