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Abstract. Three density theorems for three suitable subspaces of SBD functions, in
the strong BD topology, are proven. The spaces are SBD, SBDp

∞, where the absolutely
continuous part of the symmetric gradient is in Lp, with p > 1, and SBDp, whose
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SBV p

∞, SBV p spaces, obtaining also more regularity for the absolutely continuous part
of the approximating functions. As application, the sharp version of two Γ-convergence
results for energies defined on SBD2 is derived.

Keywords: special functions of bounded deformation, strong approximation, Γ-convergence,
free discontinuity problems, cohesive fracture

MSC 2010: 49Q20, 26A45, 49J45, 74R99, 35Q74.

Contents

1. Introduction 1
2. Notation and preliminaries 4
3. An auxiliary density result 7
4. Proof of the main density theorem 13
5. Proof of the other density theorems 24
6. Some applications 28
References 30

1. Introduction

The study of free discontinuity functionals has required the introduction of suitable ambient
spaces, such as the Functions of Bounded Variations BV and of Bounded Deformation BD, with
corresponding subspaces and generalisations.

A L1 function u is in BV [respectively in BD] if its distributional gradient Du [resp. its distri-
butional symmetric gradient Eu = (Du + DTu)/2] is a bounded Radon measure. In particular,
a BD function is defined from a set Ω ⊂ Rn into Rn. The measure Du [Eu] is decomposed into
three parts: one absolutely continuous with respect to Ln, with density ∇u [e(u)], one supported
on the rectifiable (n−1)-dimensional jump set Ju, where u has two different approximate limits
u+, u− on the two sides of Ju with respect to an approximate normal νu ∈ Sn−1, and a Cantor
part, vanishing on Borel sets of finite Hn−1 measure. SBV [SBD] is the space of BV [BD]
functions with null Cantor part. Here we consider also, for p > 1, the subspaces

SBDp(Ω) := {u ∈ SBD(Ω): e(u) ∈ Lp(Ω;Mn×n
sym ) , Hn−1(Ju) <∞}

and
SBDp

∞(Ω) := {u ∈ SBD(Ω): e(u) ∈ Lp(Ω;Mn×n
sym )}

with analogous definitions for SBV p(Ω) and SBV p
∞ (see Section 2 for more details).

The spaces SBDp are very important in Fracture Mechanics: if u represents the displacement
of a body from its equilibrium configuration, Ju is nothing but the crack set and e(u) is the
linearised elastic strain, which is in L2 (so p = 2) if the material is linearly elastic in the bulk
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region. For many years after the introduction of SBD in [3], SBD2 has been employed to study
brittle fracture, namely the Griffith energyˆ

Ω

Ce(u) : e(u) dx+Hn−1(Ju) , (G)

C being the (fourth-order positive definite) Cauchy stress tensor, with possibly lower order terms
due to forces, and boundary conditions. Unfortunately, the corresponding compactness and lower
semicontinuity theorem [9] requires equi-integrability of displacements, which is not guaranteed
for a sequence with bounded (G) energy. Indeed, the right ambient space for (G) is GSBD2,
introduced by Dal Maso in [27], with the corresponding compactness and lower semicontinuity
theorem proven very recently in [19] (see also [36] in dimension 2).

The first density result for SBD2, due to Chambolle ([12, 13]) consists then in the approxima-
tion, with respect to the energy (G), of u ∈ SBD2 ∩ L2 by functions smooth outside their jump
set, in turn closed and included in a finite union of C1 hypersurfaces (this has been extended to
GSBDp in [38, 35, 23, 18]).

If we are given an energy controlling the amplitude of the jump [u] := u+ − u− in L1(Ju;Rn),
in contrast to Griffith energy that controls only the measure of Ju, then SBDp (for a p-growing
bulk energy) is the proper ambient space. This is the case, for p = 2, of the energyˆ

Ω

Ce(u) : e(u) dx+Hn−1(Ju) +

ˆ

Ju

∣∣[u]� νu
∣∣dHn−1 , (C)

(� being the symmetric tensor product) considered by Focardi and Iurlano in [32], and recently
in [11]. A fracture energy depending on [u], as (C), is often called cohesive, in contrast to the
brittle energy (G).

In order to deal with energies such as (C), the following approximation theorem for SBDp,
that involves also the jump part of Eu, is proven. This is the main result of the paper.

Theorem 1.1. Let Ω be an open bounded Lipschitz subset of Rn, and u ∈ SBDp(Ω), with p > 1.
Then there exist uk ∈ SBV p(Ω;Rn) ∩ L∞(Ω;Rn) such that each Juk is closed and included in a
finite union of closed connected pieces of C1 hypersurfaces, uk ∈ C∞(Ω \ Juk ;Rn) ∩Wm,∞(Ω \
Juk ;Rn) for every m ∈ N, and:

lim
k→∞

(
‖uk − u‖BD(Ω) + ‖e(uk)− e(u)‖Lp(Ω;Mn×n

sym ) +Hn−1(Juk4Ju)
)

= 0 . (1.1a)

Moreover, (if p ∈
[
1, n

n−1

]
this is trivial) there are Borel sets Ek ⊂ Ω such that

lim
k→∞

Ln(Ek) = lim
k→∞

ˆ

Ω\Ek

|uk − u|p dx = 0 . (1.1b)

The theorem above is sharp, in the sense that it provides the strongest possible approximation
of all the relevant quantities in the definition of SBDp. In particular, it improves the density
result [12, 13] since Theorem 1.1 allows even the approximation of the jump part of Eu, that is
not possible with the previous results. Moreover, differently from [12, 13] that assume u ∈ L2, it
does not require any additional integrability assumption on u, and it is valid for any p > 1 (in [23]
it is observed that the construction in [12, 13] does not work for p 6= 2). These characteristics are
in common with the sharp density result in GSBDp [18], which employs a similar construction,
here improved to deal with [u], see below.

We remark that [38] and [18] approximate also any truncation of [u], but this is not enough
to deal with energies such as (C) without assuming a priori a uniform L∞ bound. Notice also
that the assumptions on Ω could be weakened, also in the following Theorems (see Remark 4.2).

It is interesting to compare Theorem 1.1 with available density results in SBV p, where of
course there are more tools, such as the maximum principle or the coarea formula, due to
the control on all ∇u. On the one hand, Theorem 1.1 may be combined with weaker SBV p

approximations, but through functions with more regular jump set; on the other hand, our
result provides stronger properties (some weaker) with respect to the available approximations
in BV norm for SBV p, giving the possibility to improve them.
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First we consider the theorem by Cortesani and Toader, that approximates functions in SBV p∩
L∞ with respect to an energyˆ

Ω

|∇u|p dx+Hn−1(Ju) +

ˆ

Ju

φ(x, u+, u−, νu) dHn−1 , (C’)

for very general φ (cf. Theorem 6.1, see also the earlier [30] for a weaker result, and [1] for an
approximation for BV ∩ L∞ functions). The approximating functions are of class C∞ ∩Wm,∞,
for every m ∈ N, outside the jump set, in turn closed and contained in a finite union of (n−1)-
simplexes. Of course, this additional regularity on the jump set is in general in contrast to
convergence in BV -norm.

The first approximation result in BV -norm, for functions in SBV p ∩ L∞, is due to Braides
and Chiadò-Piat [10]: the approximating functions uk are C1 outside some closed rectifiable sets
Rk, such that Juk ⊂ Rk, with no information on the shape of Juk .

In the recent paper [29], De Philippis, Fusco, and Pratelli approximate SBV p functions by
means of uk in C∞(Ω \ Juk), with Juk a compact C1 manifold, up to a Hn−1-negligible set, and

lim
k→∞

(
‖uk − u‖BV (Ω;Rm) + ‖∇(uk)−∇(u)‖Lp(Ω;Mm×n) +Hn−1(Juk4Ju)

)
= 0 .

The main improvement due to Theorem 1.1, besides the fact that it holds in SBDp, is that
our uk are also in Wm,∞(Ω \ Juk), for every m ∈ N, that may be important in the applications;
for instance the “by hand constructions” for the Γ-lim sup in Theorems 6.3 and 6.5 (cf. [32, 11]),
or in [17], have to be done for functions that are Lipschitz up to the jump set (even if for these
particular applications one could use also the density in Theorem 6.1). A possible weakness of
our result is the fact that Juk is not a C1 manifold, even if, for the applications that we imagine
at the moment (also for those presented in [29]), one needs just Juk closed, or one may employ
[25] (see also Remark 5.4).

In [29] also two approximations in BV -norm, respectively for SBV and SBV p
∞, are shown.

In the spirit of this work, we prove the following approximations for SBD and SBDp
∞. As in

Theorem 1.1, we assume that Ω is open bounded Lipschitz. The crucial property is indeed that
the trace of u is integrable on ∂Ω, so one could weaken the regularity assumption on Ω.

Theorem 1.2. Let u ∈ SBD(Ω). Then there exist uk ∈ SBD(Ω)∩L∞(Ω;Rn) such that Juk is,
up to a Hn−1-negligible set, a finite union of pairwise disjoint C1 compact hypersurfaces contained
(strictly) in Ω, uk ∈ C∞(Ω \ Juk ;Rn) ∩Wm,∞(Ω \ Juk ;Rn), and

lim
k→∞

(
‖uk − u‖BD(Ω) +Hn−1(Juk4Ju)

)
= 0 . (1.2)

Theorem 1.3. Let u ∈ SBDp
∞(Ω), with p > 1. Then there exist uk ∈ SBV p(Ω;Rn)∩L∞(Ω;Rn)

such that each Juk is closed and included in a finite union of closed connected pieces of C1

hypersurfaces, uk ∈ C∞(Ω \ Juk ;Rn) ∩Wm,∞(Ω \ Juk ;Rn) for every m ∈ N, and:

lim
k→∞

(
‖uk − u‖BD(Ω) + ‖e(uk)− e(u)‖Lp(Ω;Mn×n

sym )

)
= 0 . (1.3)

We observe that in Theorem 1.2 we have also the full regularity of Juk , so this in fact generalises
[29, Theorem A] allowing us to consider SBD(Ω) and uk of class Wm,∞ outside Juk . (Indeed we
employ [29, Lemma 4.3] to pass from Juk included in, to Juk essentially equal to the finite union
of the desired C1 hypersurfaces.)

As for the approximation in SBDp
∞, we are not able to guarantee thatHn−1(Juk \Ju) vanishes.

This issue is also present in the corresponding [29, Theorem B], so Theorem 1.3 is not sharp (cf.
Remark 5.3).

In all the previous theorems, notice the strong convergence of uk to u in BD implies that (see
(2.1) and |a||b|/

√
2 ≤ |a� b| ≤ |a||b| for every a, b in Rn)ˆ

Ju∪Juk

∣∣[u]− [uk]
∣∣dHn−1 → 0 .

We conclude this introduction by briefly describing the proof strategy and possible applications
of our results.
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In all the three theorems, we assume u extended with 0 outside Ω, and we start from a
set Γ̂ ∈ C1 with Hn−1(Γ̂ \ Ju) and

´
Ju\Γ̂

∣∣[u]
∣∣dHn−1 small. In the spirit of [12], we cover

Γ̂ by hypercubes Qj split almost in two halves by this hypersurface, and we apply a rough
approximation procedure in the complement of the union of the hypercubes, and in both sides
of any cube with respect to Γ̂.

We need different rough approximations for the SBDp and SBDp
∞ case, provided by Theo-

rem 3.1 and Proposition 5.2, respectively, while for Theorem 1.2 a suitable convolution is enough.
The idea behind any rough approximation is to partition a given domain by hypercubes of side-
length Ck−1 and to detect the bad hypercubes, i.e. those where the jump energy (or, similarly,
the measure of the jump set for SBDp) is not controlled well: in these hypercubes (indeed also
in the adjacent boundary good hypercubes) one sets uk as the infinitesimal rigid motion which is
the “mean” of u, while in the remaining good hypercubes one employs either a Korn-Poincaré-
type inequality provided by [14] (cf. Proposition 2.3), or Lemma 5.1, or a convolution with a
radial kernel supported on a ball of radius k−1, in correspondence to each of the three density
results. This construction differs from that of the rough approximation in [18, Theorem 3.1],
where uk = 0 on the bad hypercubes, because we were there interested mainly in the measure of
Juk , and not to control [uk].

A fundamental point is to separate the sets on which we employ the rough approximation:
first, this requires the function to be defined in a small neighbourhood of any subset, to have
the room for convolution; the second issue is to glue all the pieces obtained from the rough
approximations in each subset. These problems could be solved by the technique in [12], at
the expense of assuming a priori u ∈ Lp, since partitions of unity are needed, or by the trick
in [18], that employs also an extension argument derived from Nitsche [42] (see Lemma 2.1).
Now there is a further delicate issue: if we glue as in [18] we are not able to control [uk] on the
intersection between ∂Qj and the zone where we extend by Lemma 2.1, even if this has small
Hn−1 measure. For this reason we have to perform a very careful approximation procedure,
keeping the reflected zone of height Ck−1, so comparable to the size of small hypercubes and of
the convolution kernels.

A key difference with respect to [29] is that the rough approximants are smooth in a neigh-
bourhood of any piece, so gluing them we keep the regularity up to the jump. This is not the
case if one employs variable convolution kernels whose size decreases close to Γ̂, as in [29].

As application, we present an improvement to the sharp version of two Γ-convergence ap-
proximations by phase-field energies à la Ambrosio-Tortorelli (cf. [5]) for the energy (C), in [32]
and [11] (we mention also some approximations for cohesive energies [20, 28, 8]). In [32] and
[11], the Γ-limsup inequality was proven just in SBD2 ∩ L∞, because this was done by hand
for the regular functions provided by the Cortesani-Toader approximation, and then extended
by [38]. Now it is enough to apply Theorem 1.1 to pass directly to SBD2, without any further
integrability assumption.

We give no direct application to Theorems 1.2 and 1.3, but we recall that [29, Theorem 6.1]
proves a representation formula for the total variation of Du for BV and SBV functions, derived
from the analogous of Theorem 1.2 in [29].

In general, the result presented could be abstract tools useful to extend a variety of Γ-
convergence approximations for e.g. suitable cohesive-type energies, that might be for instance
in terms of finite elasticity or non-local energies, see respectively [33] and [40, 41] for the case of
Griffith energy.

The plan of the paper is the following. In Section 2 we fix the notation and recall some
technical lemmas, in Section 3 we present the rough approximation for Theorem 1.1, which is
completely proven in Section 4. Section 5 is devoted to prove the other two density results, and
the applications are contained in Section 6.

2. Notation and preliminaries

We denote by Ln and Hk the n-dimensional Lebesgue measure and the k-dimensional Haus-
dorff measure. For any locally compact subset B of Rn, the space of bounded Rm-valued Radon
measures on B is indicated as Mb(B;Rm). For m = 1 we write Mb(B) for Mb(B;R) and
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M+
b (B) for the subspace of positive measures of Mb(B). For every µ ∈ Mb(B;Rm), |µ|(B)

stands for its total variation. We use the notation: χE for the indicator function of any E ⊂ Rn,
which is 1 on E and 0 otherwise; B%(x) for the open ball with center x and radius %; x · y, |x| for
the scalar product and the norm in Rn; p∗ for np/(n−p), n being the space dimension; diam(E)
for the diameter of E.

BV and BD functions. For U ⊂ Rn open, a function v ∈ L1(U) is a function of bounded varia-
tion on U , denoted by v ∈ BV (U), if Div ∈Mb(U) for i = 1, . . . , n, where Dv = (D1v, . . . ,Dnv)
is its distributional gradient. A vector-valued function v : U → Rm is BV (U ;Rm) if vj ∈ BV (U)
for every j = 1, . . . ,m.

The space of functions of bounded deformation on U is

BD(U) := {v ∈ L1(U ;Rn) : Ev ∈Mb(U ;Mn×n
sym )} ,

where Ev is the distributional symmetric gradient of v. It is well known (see [3, 43]) that BD(U)
is a Banach space with the norm

‖v‖BD(U) = ‖v‖L1(U ;Rn) + |Ev|(U) ,

and that, for v ∈ BD(U), the jump set Jv, defined as the set of points x ∈ U where v has
two different one sided Lebesgue limits v+(x) and v−(x) with respect to a suitable direction
νv(x) ∈ Sn−1, is countably (Hn−1, n− 1) rectifiable (see, e.g. [31, 3.2.14]), and that

Ev = Eav + Ecv + Ejv ,

where Eav is absolutely continuous with respect to Ln, Ecv is singular with respect to Ln and
such that |Ecv|(B) = 0 if Hn−1(B) <∞, while

Ejv = [v]� νvHn−1 Jv . (2.1)

In the above expression of Ejv, [v] denotes the jump of v at any x ∈ Jv and is defined by
[v](x) := (v+ − v−)(x), the symbols � and stands for the symmetric tensor product and the
restriction of a measure to a set, respectively. Since |a � b| ≥ |a||b|/

√
2 for every a, b in Rn, it

holds [v] ∈ L1(Jv;Rn). The density of Eav with respect to Ln is denoted by e(v), and we have
that (see [3, Theorem 4.3]) for Ln-a.e. x ∈ U

lim
%→0+

1

%n

ˆ

B%(x)

(
v(y)− v(x)− e(v)(x)(y − x)

)
· (y − x)

|y − x|2 dy = 0 .

The space SBD(U) is the subspace of all functions v ∈ BD(U) such that Ecv = 0, while for
p ∈ (1,∞)

SBDp(U) := {v ∈ SBD(U) : e(v) ∈ Lp(U ;Mn×n
sym ), Hn−1(Jv) <∞} .

Analogous properties hold for BV , as the countable rectifiability of the jump set and the de-
composition of Dv. Similarly, SBV (U ;Rm) is the space of BV (U ;Rm) with null Cantor part
and

SBV p(U ;Rm) := {v ∈ SBV (U ;Rm) : ∇v ∈ Lp(U ;Mm×n), Hn−1(Jv) <∞} ,
∇v denoting the density of Dav, the absolutely continuous part of Dv, with respect to Ln.
Consider also the space (for this notation see e.g. [29])

SBV p
∞(U ;Rm) := {v ∈ SBV (U ;Rm) : ∇v ∈ Lp(U ;Mm×n)} ,

and its analogue
SBDp

∞(U) := {v ∈ SBD(U) : e(v) ∈ Lp(U ;Mn×n
sym )} .

For more details on the spaces BV , SBV and BD, SBD we refer to [4] and to [3, 9, 7, 43],
respectively. Below we recall some other properties that will be useful in the following.

We start with an extension lemma derived from [42, Lemma 1]. The result is employed in
dimension 2 in [21, Lemma 3.4], and formulated in the more general setting of the space GSBDp

in [36, Lemma 5.2] and in [18, Lemma 2.8], to which we refer for more details of the proof.



6 VITO CRISMALE

Lemma 2.1. Let R ⊂ Rn be an open hyperrectangle (in dimension n) , R′ be the reflection of
R with respect to one face F of R, and R̂ be the union of R, R′, and F . Let p ∈ (1,∞) and
v ∈ SBDp(R). Then v may be extended by a function v̂ ∈ SBDp(R̂) such that

Hn−1(Jv̂ ∩ F ) = 0 , (2.2a)
‖v̂‖

L1(R̂)
≤ c‖v‖L1(R) (2.2b)

Hn−1(Jv̂) ≤ cHn−1(Jv) , (2.2c)ˆ

Jv̂

|[v̂]| dHn−1 ≤ c
ˆ

Jv

|[v]| dHn−1 , (2.2d)

ˆ

R̂

|e(v̂)|p dx ≤ c
ˆ

R

|e(v)|p dx , (2.2e)

for a suitable c > 0 independent of R and v. Moreover, the result is still true if v ∈ SBD(R),
with p = 1 in (2.2e), or if v ∈ SBDp

∞(R) (when Hn−1(Jv) = ∞, (2.2c) says nothing) with
extensions v̂ in SBD(R̂) or in SBDp

∞(R̂), respectively.

Proof. We may follow [18, Lemma 2.8], stated for v ∈ GSBDp(R). We assume that F ⊂
{(x′, xn) ∈ Rn−1 × R : xn = 0} and R ⊂ {(x′, xn) ∈ Rn−1 × R : xn < 0}, fix any µ, ν such that
0 < µ < ν < 1, and let q := 1+ν

ν−µ . Then

v̂ :=

{
v in R ,

v′ in R′ ,

for v′ defined on R′ by
v′ := q vAµ + (1− q)vAν ,

with Aµ = diag (1, . . . , 1,−µ), Aν = diag (1, . . . , 1,−ν), and for any u ∈ SBDp(Ω), A ∈Mn×n

uA(x) := ATu(Ax) . (2.3)

Following [18, Lemma 2.8], it is immediate to verify that if v ∈ SBDp(R) then v̂ ∈ SBDp(R′)
and (2.2a), (2.2b), (2.2c), (2.2e) hold (and the analogous properties if v is in SBD(R) or in
SBDp

∞(R)). In order to show (2.2d) we notice that, for uA as in (2.3), JuA = A−1(Ju) and

[uA](A−1x) = AT [u](x)

for any x ∈ Ju. This gives the further property corresponding to [18, Lemma 2.7] that allows us
to repeat the argument of [18, Lemma 2.8] for the amplitude of the jump. �

We now recall the so called Korn-Poincaré inequality in BD (cf. [39, 43]). Notice that in the
case of W 1,p functions, with p > 1, one obtains an analogous control for the Lp∗ norm of u − a
by combining the classical Korn and Poincaré inequalities.

Proposition 2.2. Let U ⊂ Rn be a bounded, connected, Lipschitz domain. Then there exists
c > 0 depending only on U and invariant under rescaling of the domain, such that for every
u ∈ BD(U) there exists an affine function a : Rn → Rn with e(a) = 0 such that

‖u− a‖L1∗ (U ;Rn) ≤ c |Eu|(U) .

In particular, for any cube Qr of sidelength r, Hölder inequality gives that

‖u− a‖L1(Qr;Rn) ≤ c(Q1) r |Eu|(Qr) . (2.4)

Different Korn-Poincaré-type inequalities have been proven recently in the context of SBDp.
In [21, 34, 35] also Korn-type inequalities have been considered. We recall here a result, in [14],
due to Chambolle, Conti, Francfort, which is used also in [15, 16, 18, 19].



ON THE APPROXIMATION OF SBD FUNCTIONS AND APPLICATIONS 7

Proposition 2.3. Let Q = (−r, r)n, Q′ = (−r/2, r/2)n, u ∈ SBDp(Q), p ∈ [1,∞), Hn−1(Ju) <
∞ if u ∈ SBD(Q). Then there exist a Borel set ω ⊂ Q′ and an affine function a : Rn → Rn with
e(a) = 0 such that Ln(ω) ≤ crHn−1(Ju) and

ˆ

Q′\ω

(|u− a|p)1∗ dx ≤ cr(p−1)1∗

(ˆ
Q

|e(u)|p dx

)1∗

. (2.5)

If additionally p > 1, then there is q > 0 (depending on p and n) such that, for a given mollifier
ϕr ∈ C∞c (Br/4) , ϕr(x) = r−nϕ1(x/r), the function v = uχQ′\ω + aχω obeys

ˆ

Q′′

|e(v ∗ ϕr)− e(u) ∗ ϕr|p dx ≤ c
(Hn−1(Ju)

rn−1

)q ˆ
Q

|e(u)|p dx , (2.6)

where Q′′ = (−r/4, r/4)n. The constant in (i) depends only on p and n, the one in (ii) also on
ϕ1.

Remark 2.4. By Hölder inequality and (2.5) it follows that

‖u− a‖Lp(Q′\ω;Rn) ≤ cr‖e(u)‖Lp(Q;Mn×n
sym ) . (2.7)

Moreover, looking at the proof of Proposition 2.3 (take g = |e(w)|χQ instead of g = |e(w)|pχQ
and p = 1 in the last part of [14, Proposition 2]) one may see that for a as in Proposition 2.3 it
holds also

‖u− a‖L1(Q′\ω;Rn) ≤ cr‖e(u)‖L1(Q;Mn×n
sym ) (2.8)

even if p > 1, that is we have both (2.7) (for p > 1) and (2.8) for the same infinitesimal rigid
motion a (cf. (3.8) and (3.9)).

In the following Ω will be a bounded open Lipschitz subset of Rn. We recall a lemma ([22,
Lemma 4.3], there stated for balls) on the affine functions that we use in the following.

Lemma 2.5. Let R be a hyperrectangle (in dimension n), ω ⊂ R with Ln(ω)
Ln(R) ≤ C0, and let

ϕ : Rn → Rn be an affine function. Then

Ln(R)‖ϕ‖L∞(R;Rn) ≤ c0‖ϕ‖L1(R\ω;Rn) ,

where the constant c0 depends only on n, on C0, and on the shape of R.

We will denote by C a generic positive constant depending only (at most) on n and p, using
c only when we recall for the first time Lemma 2.1, Proposition 2.2 or Proposition 2.3.

3. An auxiliary density result

In this section we state and prove an intermediate approximation result, which is employed for
the proof of Theorem 1.1. Given u ∈ SBDp, p > 1, for every k we construct an approximating
function uk smooth outside its jump set, made of boundary of hypercubes of sidelength of order
k−1. In order to perform our construction, we need u in SBD on a small neighbourhood (of the
order k−1) of the set Ω where we derive the estimates.

The approximation does not increase (in the limit as k → ∞) the Lp norm of e(u), but may
increase the contribution due to the jump by a multiplicative factor, both in Hn−1-measure and
in the L1 norm of the jump amplitude [u]. This is not a problem in order to prove Theorem 1.1,
since in that proof we employ the following result in zones where the contribution of the jump
(both in Hn−1-measure and in the L1 norm of [u]) is very small.

This strategy is inspired by [12], and it is employed also in the GSBDp approximation result
[18]. Here we state the intermediate approximation in a more precise form, namely we quantify
explicitly the error for the k-th approximating function, and highlight the dependence of the
estimates on u, which is useful to localize the estimates. This is done since in Theorem 1.1 we
use a refined construction with respect to [18].
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Theorem 3.1. Let Ω be an bounded open subset of Rn, k ∈ N with k−1 much smaller than
diam(Ω), p ∈ (1,∞), θ ∈ (0, 1

2c) for c as in Proposition 2.3. Set Ω̃ := Ω+(−16
√
nk−1, 16

√
nk−1)n

and let u ∈ SBDp(Ω̃). Then there exists uk ∈ SBV p(Ω;Rn) ∩ L∞(Ω;Rn) such that Juk is in-
cluded in a finite union of (n − 1)–dimensional closed hypercubes and uk ∈ C∞(Ω \ Juk ;Rn) ∩
Wm,∞(Ω \ Juk ;Rn) for every m ∈ N, and there exist Borel sets E1,Ω

k , E2,Ω
k ⊂ Ω̃ with

Ln(E1,Ω
k ) ≤ C θ−1 k−1Hn−1(Ju) , Ln(E2,Ω

k ) ≤ C k− 1
2 Hn−1(Ju) (3.1a)

such thatˆ

Ω

|e(uk)|p dx ≤ (1 + C k−q)

ˆ

Ω̃

|e(u)|p dx+ C θq
ˆ

E2,Ω
k

|e(u)|p dx , (3.1b)

Hn−1(Juk ∩ Ω) ≤ C θ−1Hn−1(Ju) , (3.1c)ˆ

Juk

∣∣[uk]∣∣dHn−1 ≤ C
ˆ

Ju

∣∣[u]
∣∣dHn−1 + C

ˆ

E1,Ω
k

|e(u)|dx , (3.1d)

ˆ

Ω

|u− uk|dx ≤ C k−1̂

Ω̃

|e(u)|dx+ C k−1|Eu|(E1,Ω
k ) + C θ

ˆ

E2,Ω
k

|u| dx+ C k−
1
2

ˆ

Ω̃

|u|dx , (3.1e)

for suitable C > 0 and q > 0 depending only on p and n. Moreover, there are Borel sets E3,Ω
k ⊂ Ω̃

with E1,Ω
k ⊂ E3,Ω

k such that

Ln(E3,Ω
k ) ≤ C θ−1 k−1Hn−1(Ju) and

ˆ

Ω\E3,Ω
k

|uk − u|p dx ≤ C k−p
ˆ

Ω̃

|e(u)|p dx . (3.1f)

In particular

uk
∗
⇀ u in BD(Ω) , (3.1g)

e(uk)→ e(u) in Lp(Ω;Mn×n
sym ) . (3.1h)

Remark 3.2. In the proof of Theorem 1.1, we employ Theorem 3.1 for a fixed θ, let us say
θ = 1

4c , so one could absorb it in the constant C in the statement of Theorem 3.1. We keep the
explicit dependence on θ since in the proof it is very useful to express the estimates in terms of
θ anyway.

Proof. The proof is a refinement of [18, Theorem 3.1], which was the intermediate approximation
result for the density in GSBDp. The difference in the approximating functions (3.17) is just
that we put different infinitesimal rigid motions ãz in place of 0, that was the choice in [18].
Indeed, with this new definition the jump set could be larger than that one in [18] (because now
there could be jumps between different ãz, while before all these were 0), but the L1 norm of
[uk] on Juk is now well controlled (and the measure of the jump set does not increase too much),
differently from what we would have with the choice 0 from [18, Theorem 3.1].

The notation is kept similar to that one in [18, Theorem 3.1]. In fact, once proved the prop-
erties (3.1c) and (3.1d) concerning the jump, we take advantage of suitable estimates already
shown in [18, Theorem 3.1]. In the following we omit to write the target spaces Rn or Mn×n

sym from
the notation for the Lp norm, to ease the reading, and we employ always the symbol C to denote
a generic constant depending only on n and p, which could in fact vary from line to line. Let
ϕ be a smooth radial function with compact support in the unit ball B1, and let ϕk(x) = knϕ(kx).

Good and bad nodes. For any z ∈ (2k−1)Zn ∩ Ω consider the hypercubes of center z

qkz := z + (−k−1, k−1)n , q̃kz := z + (−2k−1, 2k−1)n ,

Qkz := z + (−4k−1, 4k−1)n , Q̃kz := z + (−8k−1, 8k−1)n .

The “good” and the “bad” nodes are defined as

Gk := {z ∈ (2k−1)Zn ∩ Ω : Hn−1(Ju ∩Qkz) ≤ θk−(n−1)} , Bk := (2k−1)Zn ∩ Ω \Gk , (3.2)
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to which correspond the subsets of Ω̃

Ωk
g :=

⋃
z∈Gk

qkz , Ω̃k
b :=

⋃
z∈Bk

Qkz . (3.3)

Notice that
Ω ∩ Ω̃k

b = Ω ∩
(

Ω̃ \ Ωk
g + (−3k−1, 3k−1)n

)
, (3.4)

so that a row (and a half) of “boundary” hypercubes of Ωk
g belongs to Ω̃k

b (see Figure 1).

⌦

1

1

Figure 1. On the left, the family of hypercubes qkz with sidelength 2k−1 that
covers Ω. On the right, the zoom on the rectangular subset of Ω in the picture:
the continuous line is the boundary of Ωk

g (this set is on the opposite side with
respect to the main part of Ju), while the dashed one is the boundary of Ω̃k

b
(which is on the same side of the main part of Ju). In this theorem we put a
different rigid motion on each qkz intersecting Ω̃k

b , while in [18, Theorem 3.1] we
put 0 in all Ω̃k

b .

By (3.2)
#Bk ≤ CHn−1(Ju) kn−1θ−1 , (3.5)

(the presence of constant C is due to the fact that the hypercubes Qkz may overlap, at most 4n

times, as z varies in Bk) and then

Ln
(

Ω̃k
b

)
≤ CHn−1(Ju) k−1 θ−1 . (3.6)

Let us apply Proposition 2.3 for any z ∈ Gk taking Qkz as Q therein (see also Remark 2.4). Then
there exist ωz ⊂ q̃kz and az : Rn → Rn affine with e(az) = 0, such that (we recall directly only
the condition corresponding to (2.7), weaker than (2.5), and (2.8))

Ln(ωz) ≤ ck−1Hn−1(Ju ∩Qkz) ≤ cθk−n , (3.7)

‖u− az‖Lp(q̃kz \ωz) ≤ ck−1‖e(u)‖Lp(Qkz ) (3.8)

‖u− az‖L1(q̃kz \ωz) ≤ ck−1‖e(u)‖L1(Qkz ) (3.9)
and̂

qkz

|e(vz ∗ ϕk)− e(u) ∗ ϕk|p dx ≤ c
(
Hn−1(Ju ∩Qkz) kn−1

)q ˆ
Qkz

|e(u)|p dx ≤ c θq
ˆ

Qkz

|e(u)|p dx ,

(3.10)

for vz := uχq̃kz \ωz + azχωz and a suitable q > 0 depending on p and n.
We define

ωk :=
⋃
z∈Gk

ωz . (3.11)

By (3.7) we have

Ln(ωk) ≤ ck−1
∑
z∈Gk

Hn−1(Ju ∩Qkz) ≤ cHn−1(Ju) k−1 . (3.12)
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For every z ∈ (2k−1)Zn ∩ Ω we employ Proposition 2.2 and let ãz : Rn → Rn be the affine
function with e(ãz) = 0 such that (also here we recall directly (2.4))

‖u− ãz‖L1(q̃kz ) ≤ Ck−1|Eu|(q̃kz ) . (3.13)

We remark that for every z ∈ Gk

Ln(q̃kz )‖az − ãz‖L∞(q̃kz ) ≤ Ck−1
(
|Eu|(q̃kz ) + ‖e(u)‖L1(Qkz )

)
. (3.14)

Indeed, by (3.9) and (3.13) we get

‖az − ãz‖L1(q̃kz \ωz) ≤ Ck−1
(
|Eu|(q̃kz ) + ‖e(u)‖L1(Qkz )

)
, (3.15)

and then we deduce (3.14) because

Ln(q̃kz )‖az − ãz‖L∞(q̃kz ) ≤ C‖az − ãz‖L1(q̃kz \ωz) ,

which follows from Lemma 2.5, since az − ãz is affine and Ln(ωz) ≤ Ln(q̃kz )/4 because, by
assumption, θ < 1

2c (see also (3.7)).

The approximating functions. Let Gk = (zj)j∈J , so that we order (arbitrarily) the ele-
ments of Gk, and define

ũk :=

{
u in Ω̃ \ ωk ,
azj in ωzj \

⋃
i<j ωzi ,

(3.16)

and

uk :=

{
ũk ∗ ϕk in Ω \ Ω̃k

b ,

ãz in qkz ∩ Ω̃k
b ∩ Ω ,

(3.17)

where z ∈ {(2k−1)Zn : qkz ∩ Ω̃k
b 6= ∅} for ãz in (3.17). It is immediate that uk ∈ SBV p(Ω;Rn) ∩

L∞(Ω;Rn), since u ∈ BD(Ω) ⊂ L1(Ω;Rn), and that uk ∈ C∞(Ω \ Juk ;Rn)∩Wm,∞(Ω \ Juk ;Rn)

for every m ∈ N, since ũk ∗ ϕk is smooth in a neighbourhood of Ω \ Ω̃k
b . Moreover Juk is closed

and included in a finite union of boundaries of n-dimensional hypercubes qkz .

Proof of (3.1c). We have that

Juk ⊂ Ω̃k
b ,

so the definition (3.3) of Ω̃k
b gives

Juk ⊂
⋃
z∈Bk

(Juk ∩Q
k
z) . (3.18)

Notice that for every ẑ ∈ Bk (cf. Figure 1)

Juk ∩Q
k
ẑ ⊂ ∂Qkẑ ∪

⋃
qkz⊂Qkẑ

∂qkz ,

and then
Hn−1(Juk ∩Q

k
ẑ) ≤ Ck−(n−1) . (3.19)

for C depending only on n. Together with (3.5) and (3.18), (3.19) implies (3.1c).

Proof of (3.1d). In order to prove (3.1d) we estimate the amplitude of the jump in two
different sets: the common boundaries between hypercubes of sidelength 2k−1 included in Ω̃k

b

(which give the jump of uk included in the interior of Ω̃k
b ) and ∂Ω̃k

b , which is essentially (up to
a Hn−1-negligible set) contained in the interior of suitable hypercubes of sidelength 2k−1, recall
(3.4) and see Figure 1.

Let qkz and qkz′ be included in Ω̃k
b , with Hn−1(∂qkz ∩ ∂qkz′) > 0. Then (3.13) gives

‖ãz − ãz′‖L1(q̃kz∩q̃kz′ )
≤ ‖u− ãz‖L1(q̃kz∩q̃kz′ )

+ ‖u− ãz′‖L1(q̃kz∩q̃kz′ )
≤ Ck−1|Eu|(q̃kz ∪ q̃kz′) . (3.20)
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Being ãz − ãz′ affine, we have that (recall Lemma 2.5)
4n

2
k−n‖ãz − ãz′‖L∞(q̃kz∩q̃kz′ )

= Ln(q̃kz ∩ q̃kz′)‖ãz − ãz′‖L∞(q̃kz∩q̃kz′ )
≤ C‖ãz − ãz′‖L1(q̃kz∩q̃kz′ )

,

and together with (3.20) this givesˆ

∂qkz∩∂qkz′

∣∣[uk]∣∣ dHn−1 =

ˆ

∂qkz∩∂qkz′

|ãz − ãz′ |dHn−1 ≤ 2n−1k−(n−1)‖ãz − ãz′‖L∞(q̃kz∩q̃kz′ )

≤ C |Eu|(q̃kz ∪ q̃kz′) .
We put together all these contributions, observing that the hypercubes q̃kz are finitely overlapping
and q̃kz ⊂ Ω̃k

b if qkz ⊂ Ω̃k
b (cf. Figure 1). We therefore obtain thatˆ

(Ω̃kb )
o

∣∣[uk]∣∣ dHn−1 ≤ C |Eu|(Ω̃k
b ) . (3.21)

Let us now consider a node z such that qkz ∩ ∂Ω̃k
b 6= ∅. By definition of Ω̃k

b we have that
z ∈ Gk ∩ ∂Ω̃k

b . We claim that

‖ũk − az‖L1(q̃kz ) ≤ Ck−1‖e(u)‖
L1(Q̃kz )

. (3.22)

Indeed (3.9) and the fact that ωz ⊂ ωk implies that (recall that ũk = u in q̃kz \ ωk by definition)

‖ũk − az‖L1(q̃kz \ωk) ≤ Ck−1‖e(u)‖L1(Qkz ) ,

and it is proven in [18, equation (3.21)] (the definition of ũk is the same, take in [18, equation
(3.21)] the version with p = 1) that

‖ũk − az‖L1(q̃kz∩ωk) ≤ C θk−1‖e(u)‖
L1(Q̃kz )

,

thus (3.22) is proven.
We now combine (3.22) with (3.14), giving

‖az − ãz‖L1(q̃kz ) ≤ Ck−1
(
|Eu|(q̃kz ) + ‖e(u)‖L1(Qkz )

)
,

to get
‖ũk − ãz‖L1(q̃kz ) ≤ Ck−1

(
|Eu|(q̃kz ) + ‖e(u)‖

L1(Q̃kz )

)
. (3.23)

It follows that for every x ∈ ∂Ω̃k
b ∩ qkz∣∣[uk]∣∣(x) = |uk − ãz|(x) ≤ C‖ϕ‖L∞(B1)k

n‖ũk − ãz‖L1(Bk−1 (x))

≤ Ckn‖ũk − ãz‖L1(q̃kz ) ≤ Ckn−1
(
|Eu|(q̃kz ) + ‖e(u)‖

L1(Q̃kz )

)
,

where we used the fact that ϕk ∗ ãz = ãz, being ϕ radial and ãz affine. We then concludeˆ

∂Ω̃kb∩qkz

∣∣[uk]∣∣ dHn−1 ≤ C
(
|Eu|(q̃kz ) + ‖e(u)‖

L1(Q̃kz )

)
. (3.24)

Let us sum up over z ∈ Gk such that Hn−1(∂Ω̃k
b ∩ qkz ) > 0, namely over z ∈ Gk ∩ ∂Ω̃k

b . For

E1,Ω
k :=

⋃
z′∈Bk

z′ + (−12k−1, 12k−1)n , (3.25)

we have that Ω̃k
b ⊂ E

1,Ω
k and that (arguing as done for (3.6))

Ln(E1,Ω
k ) ≤ C θ−1 k−1Hn−1(Ju) . (3.26)

Moreover, ⋃
z∈Gk∩∂Ω̃kb

q̃kz ⊂
⋃

z′∈Bk
z′ + (−6k−1, 6k−1)n ,

⋃
z∈Gk∩∂Ω̃kb

Q̃kz ⊂ E1,Ω
k .
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Since the hypercubes q̃kz , Q̃kz are finitely overlapping, by (3.24) we deduce thatˆ

∂Ω̃kb

∣∣[uk]∣∣ dHn−1 ≤ C
ˆ

Ju

∣∣[u]
∣∣dHn−1 + C

ˆ

E1,Ω
k

|e(u)| dx . (3.27)

Collecting (3.21) and (3.27) we get (3.1d) (recall the definition of uk and the fact that Ω̃k
b ⊂ E

1,Ω
k ).

Proof of the remaining properties. We notice that our definition of uk differs form that
one in [18, Theorem 3.1] only in Ω̃k

b , since there the approximating functions were set equal
to 0. In particular we may employ properties referring to hypercubes in Ω \ Ω̃k

b proven in [18,
Theorem 3.1].

We set
E3,Ω
k := E1,Ω

k ∪ ωk . (3.28)
Then, by (3.11), (3.12), and (3.26), we get immediately that

Ln(E3,Ω
k ) ≤ C θ−1 k−1Hn−1(Ju) . (3.29)

Combining [18, equations (3.15), (3.16), (3.17), (3.21)] we have directly

‖u− uk‖Lp((Ω\Ω̃kb )\ωk)
≤ Ck−1‖e(u)‖

Lp(Ω̃)
. (3.30)

which implies (3.1f). We may also obtain the above estimate for p = 1, employing (3.9) in place
of (3.8).

Moreover we may follow exactly the argument to prove property (3.1d) in [18], with ψ = | · |
and p = 1 therein (that satisfy (HPψ) therein). Replacing ψ = | · | and p = 1 in [18, equation
below (3.25)] and summing over j (that is, over the good nodes) gives, with the notation of [18],

‖u− uk‖L1((Ω\Ω̃kb )∩ωk)
≤ Ck−1‖e(u)‖

L1(Ω̃)
+ Cθ‖u‖

L1(Ω̃kg,2)
+ Ck−1/2‖u‖

L1(Ω̃)
. (3.31)

The set Ω̃k
g,2 above is defined (as in [18]) as follows: we set Gk1 as the good nodes for which the

condition on Ju is satisfied for k−
1
2 in place of θ

Gk1 := {z ∈ Gk : Hn−1(Ju ∩Qkz) ≤ k−(n− 1
2

)} , Gk2 := Gk \Gk1 .
and the set G̃k1 of the nodes adjacent to nodes in Gk1

G̃k1 := {z ∈ Gk : z ∈ Gk1 for each z ∈ (2k−1)Zn with ‖z − z‖∞ = 2k−1} ,
G̃k2 := {z ∈ Gk : there exists z ∈ Gk2 with ‖z − z‖∞ = 2k−1} ,

and then
Ω̃k
g,2 :=

⋃
zj∈G̃k2

Q̃zj .

We get that #G2
k ≤ Hn−1(Ju) kn−

1
2 , so

#G̃k2 ≤ (3n − 1)Hn−1(Ju) kn−
1
2 . (3.32)

In order to uniform the notation of the present work, we set

E2,Ω
k := Ω̃k

g,2 .

By (3.32) we readily have
Ln(E2,Ω

k ) ≤ C k− 1
2 Hn−1(Ju) . (3.33)

Furthermore, the definition (3.17) of uk and (3.13) give

‖u− uk‖L1(Ω̃kb )
≤ Ck−1|Eu|

(
Ω̃k
b + (−2k−1, 2k−1)n

)
. (3.34)

Collecting (3.30) for p = 1, (3.31), and (3.34), and recalling the definition of E1,Ω
k (3.25), we

obtain (3.1e).
Since it is still true (as in [18]) that e(uk) = 0 on Ω̃k

b because e(ãz) = 0, we get for free (3.1b),
that corresponds exactly to [18, eqs. (3.34), (3.35)] summed over j (that is over the good nodes).
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We have proven in particular that uk is bounded in BD(Ω), so the L1 convergence of uk to
u (guaranteed by (3.1e)) implies (3.1g), and (3.1h) follows immediately from (3.1b) (recall [9,
Theorem 1.1]). This concludes the proof. �

4. Proof of the main density theorem

Proof of Theorem 1.1. The proof is quite long and technical, and it is divided in steps for the
reader’s convenience.

In the first step we construct a suitable partition of Ω (up to a negligible set), made by sets
whose internal part contains a small jump of u. The main part of Ju lies on the boundary of
some of these subdomains, and is an almost flat interface.

In the second step we define the approximating functions uk, starting from the application
of Theorem 3.1 in each subdomain; to do so, we have first to extend a little bit outside the
restriction of u (indeed Theorem 3.1 requires the original function defined in an enlarged set Ω̃),
controlling the quantity to approximate (then we employ Lemma 2.1).

The third step is devoted to verify the properties of the approximation. By Theorem 3.1 we
deduce directly the estimates on uk outside a set Γ̂, which is the main part of Ju. Then we have
to carefully deal with uk on Γ̂, in order to show that the jump part of uk is there close to the
jump part of u.

Let us fix k ∈ N large enough (the precise conditions will be imposed during the proof).

Step 1. A suitable partition of Ω.

Substep 1.1. Approximation of Ju and ∂Ω and almost covering by hypercubes. We
now recall the covering obtained in the first part of [18, Theorem 1.1], referring to that theorem
for details. For every ε > 0, there exist a finite family of pairwise disjoint closed hypercubes
(Qj)


j=1 ⊂ Ω with

Qj = Q(xj , %j) for xj ∈ Ju and one face of Qj normal to νu(xj) ,

νu(xj) denoting the normal to Ju at xj , and C1 hypersurfaces (Γj)

j=1 with xj ∈ Γj such that

Hn−1
(
Ju \

⋃
j=1

Qj

)
< ε , (4.1a)

Hn−1
(
(Ju4Γj)∩Qj

)
< ε(2%j)

n−1 <
ε

1− εH
n−1(Ju ∩Qj) , (4.1b)

Γj is a C1 graph with respect to νu(xj) with Lipschitz constant less than ε/2 . (4.1c)

In particular, (4.1c) gives

Γj ⊂
{
xj +

n−1∑
i=1

yi bj,i + yn νu(xj) : yi ∈ (−%j , %j), yn ∈
(
− ε%j

2
,+

ε%j
2

)}
,

where (bj,i)
n−1
i=1 is an orthonormal basis of νu(xj)

⊥.
Arguing similarly for ∂Ω in place of Ju, there exist a finite family of closed hypercubes (Q

0
h)hh=1

of centers x0
h ∈ ∂Ω and sidelength 2%0

h, with one face normal to νΩ(x0
h) (the outer normal to Ω at

x0
h), pairwise disjoint and with empty intersection with any Qj , and C1 hypersurfaces (Γ0

h)hh=1

with x0
h ∈ Γ0

h, such that

Hn−1
(
∂Ω \

h⋃
h=1

Q0
h

)
< ε , (4.2a)

Hn−1
(
(∂Ω4Γ0

h) ∩Q0
h

)
< ε(2%0

h)n−1 <
ε

1− εH
n−1(∂Ω ∩Q0

h) , (4.2b)

Γ0
h is a C

1 graph with respect to νΩ(x0
h) with Lipschitz constant less than ε/2 . (4.2c)
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Notice that we may assume that conditions (4.1) and (4.2) hold also for the enlarged hypercubes

Qj + (−16
√
nk−1, 16

√
nk−1)n , Q

0
h + (−16

√
nk−1, 16

√
nk−1)n ,

for k such that k−1 is much smaller than ε and minj,h{%j , %0
h}.

We denote

Γ̂ :=

⋃
j=1

(Qj ∩ Γj) , Γ̂∂Ω :=

h⋃
h=1

(Q0
h ∩ Γ0

h) . (4.3)

From (4.1a), (4.1b), and (4.2a), (4.2b) it follows that

Hn−1(Ju4Γ̂) < C εHn−1(Ju) , Hn−1(∂Ω4Γ̂∂Ω) < C εHn−1(∂Ω) . (4.4)

Let
ηε := ε ∨

( ˆ
Ju\Γ̂

∣∣[u]
∣∣dHn−1 +

ˆ

∂Ω\Γ̂∂Ω

|trΩu| dHn−1
)1/(n−1)

. (4.5)

Then limε→0 ηε = 0, since [u] ∈ L1(Ju;Rn) and trΩu ∈ L1(∂Ω;Rn), being Ω Lipschitz and
u ∈ SBD(Ω). Moreover, we set

B0 := Ω \
( ⋃
j=1

Qj ∪
h⋃
h=0

Q
0
h

)
. (4.6)

Substep 1.2. Partition of the hypercubes, almost covering Ju and ∂Ω, into (almost)
hyperrectangles. We fix a single cube in the collection (Qj)


j=1 or (Q

0
h)hh=1, we denote it by

Q = Q(x, %) and we call Γ the corresponding hypersurface that splits Q in two (almost) half
hypercubes Q+ and Q−, to ease the reading (Γ is either close to Ju or to ∂Ω). We also assume
that x = 0 and ν(x) = en in order to describe the partition of Q that we are going to define.

⌦
Q�

m

Q�
m+ei

Qj

1

Figure 2. The hypercubes Qj covering almost all Ju, the relative (almost) hy-
perrectangles Q±m, and the small hypercubes qkz partitioning Ω. The (n−1)-
dimensional hypercube which is the “basis” of Q−m is denoted Fm. The circle
represents the zone which is zoomed in Figure 3.

Remark 4.1 (Motivation for the partition). As in the case of the rough approximation in The-
orem 3.1, also now a construction finer than the corresponding one in [18] is needed. In [18] one
constructs an auxiliary function in a neighbourhood of both the half hypercubes in a single step,
employing a unique extension for each half cube: in the strip of height ε% containing the jump
the original function u was replaced employing values of u in the strip of the same size which is
immediately below (for Q−) or above (for Q+). The argument in [18, Theorem 1.1] continues
by applying the rough approximation to the auxiliary functions in both the half hypercubes and in
B0 and gluing simply by characteristic functions. In this way one introduced a further jump, in
correspondence to any Q, in any intersection between ∂Q and the strip of height ε% containing
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z
qz

q̃z

Qz

mnk�1

J 0
m

Q�
m Q�

m+ei

�

Ju \ �

1

Figure 3. The zoom on the circle in Figure 2: we see the zone between two
adjacent (almost) hyperrectangles for a cube Qj , oriented with νu(xj). Notice
the different orientation of the hypercubes qkz , q̃kz , Qkz with sidelength of order
k−1, and the fact that the jump between Q−m and Q−m+ei

is included in J ′m, in
turn included in the circle of Figure 2.

Γ: even if its Hn−1-measure is Cε%n−1 (so the total surface of the union of these jumps is less
than CεHn−1(Ju)), its amplitude is unfortunately not controlled. The idea is now to modify the
original function on a strip of height k−1 around Γ in order to construct the approximation uk in
each half cube, since this works well with convolution with kernels supported on B(0, k−1). One
has to choose carefully the zone where the function is extended from the two sides of Γ, in order
to control the Hn−1-measure of the new jump set.

In order to treat, in the subsequent construction at Step 2, also the hypercubes (Q0
h)± (and

after for B0), that are possibly not included in Ω, we extend u outside Ω with the value 0.
Let k ∈ N be much larger than (ηε%)−1, and assume to fix the notation that ηεk% ∈ N (this

is always possible, up to slightly modify the sidelengths %, keeping the same properties on the
hypercubes, in such a way that ηε% ∈ Q, and then considering a suitable k ∈ N). Let us fix the
(almost) half cube Q− and partition Q− into the union of (almost) hyperrectangles, that will be
denoted by Q−m in the following (defined in (4.11) below). Analogously, Q+ could be partitioned
in (almost) hyperrectangles Q+

m. We denote

Fm :=
{

(y1, . . . , yn−1) ∈ Rn−1 : yi ∈ (ηεk)−1mi +
(
0, (ηεk)−1)

}
F ′m := Fm + (−32

√
nk−1, 32

√
nk−1)n−1 ,

(the choice of the letter F in Fm refers to the fact that we consider a “face” of an n-dimensional
cube), for

m = (m1, . . . ,mn−1) ∈ {−ηεk%,−ηεk%+ 1, . . . , 0, . . . , ηεk%− 1}n−1 ⊂ Nn−1 . (4.7)

Since Γ is the graph of a ε/2-Lipschitz function with respect to en and ηε ≥ ε, there exists
mn ∈ R, depending on m, such that

Γ ∩
(
F ′m×(−%, (ε%)/2)

)
⊂ F ′m×(mn,mn + 1/2)k−1 , (4.8)

where (mn,mn + 1/2)k−1 = (mnk
−1, (mn + 1/2)k−1) ⊂ R (indeed every side of Fm has length

η−1
ε k−1 ≤ ε−1k−1). Let us set

u−m :=

{
u in F ′m×(−%− 16

√
nk−1,mnk

−1)

û in F ′m×
(
(mn,mn + 25

√
n)k−1

)
,

(4.9)

where û is obtained by Lemma 2.1 taking F ′m×{mnk
−1},

Rm := F ′m×
(
(mn − 25

√
n,mn)k−1

)
, R′m := F ′m×

(
(mn,mn + 25

√
n)k−1

)
(4.10)
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as F , R, R′ therein, respectively. We introduce (see figures at page 14)

Q−m := Q− ∩ (Fm×R) , (Q−m)′ :=
(
Q−m + (−16

√
nk−1, 16

√
nk−1)n

)
∩ (F ′m×R) , (4.11)

and

Q+
m := Q+ ∩ (Fm×R) , (Q+

m)′ :=
(
Q+

m + (−16
√
nk−1, 16

√
nk−1)n

)
∩ (F ′m×R) . (4.12)

Notice that Qm := Q−m ∪Q+
m is a hyperrectangle, that coincides with Q ∩ (Fm×R).

Step 2. Definition of the approximating functions.

Substep 2.1. Definition in the (almost) hyperrectangles. We now construct a func-
tion (uk)

−
m that approximates u−m in the (almost) hyperrectangle Q−m, following the procedure

in Theorem 3.1. The set (Q−m)′ has for Q−m the same role that Ω̃ has for Ω in Theorem 3.1 (in
the following Ω is the reference set for Theorem 1.1). We now recall briefly the notation and the
construction employed in the proof of Theorem 3.1, for the reader’s convenience.

We introduce for any z ∈ (2k−1)Zn ∩ Ω the hypercubes qkz , q̃kz , Qkz , Q̃kz with “center” z and
sidelength 2k−1, 4k−1, 8k−1, 16k−1, respectively. We stress that the nodes are fixed once for
all in Ω, regardless of the orientation of the cube Q and of Q±m; we have assumed before that
Q is “centered” in 0 and oriented in the vertical direction only to describe the construction of
Q±m. In order to keep the same notation for Q, in the following we fix a reference frame in
correspondence to Q: then we have that in this reference frame the nodes are not anymore in the
positions (2k−1)Zn (see Figure 3). Notice that the presence of

√
n in the sets in (4.10), (4.11) is

exactly due to the different orientation between the cube Q and the hypercubes qkz , q̃kz , Qkz , Q̃kz .
We look to the (almost) hyperrectangle Q−m (and (Q−m)′) and divide the nodes z inside Q−m into

good ones and bad ones, with respect to u−m (in particular with respect to the measure of Ju−m in
each Qkz). We then obtain two families (Gk)−m and (Bk)−m, of good and bad nodes with respect
to u−m. We consider an enumeration (Gk)−m = (zj)j∈J−m for (Gk)−m, and for each good node zj
we employ Proposition 2.3 giving us an infinitesimal rigid motion (azj )

−
m and an exceptional set

(ωzj )
−
m, such that a Korn-Poincaré Inequality holds in q̃kzj \ (ωzj )

−
m (cf. (3.7)–(3.10)). Moreover,

for any node z (good or bad) let (ãz)
−
m be the infinitesimal rigid motion provided by the BD

Korn-Poincaré Inequality recalled in Proposition 2.2.
Notice that the same node z such that Qkz intersects two adjacent (almost) hyperrectangles

Q−m and Q−m+ei
could be at the same time good for u−m and bad for u−m+ei

, or viceversa. We
denote

(Ω̃k
b )
−
m :=

⋃
z∈(Bk)−m

Qkz , (ωk)−m :=
⋃

z∈(Gk)−m

(ωz)
−
m , (4.13)

and then we set

(ũk)
−
m :=

{
u−m in (Q−m)′ \ (ωk)−m ,

(azj )
−
m in (ωzj )

−
m \

⋃
i<j(ωzi)

−
m ,

(4.14)

and

(uk)
−
m :=

{
(ũk)

−
m ∗ ϕk in Q−m \ (Ω̃k

b )
−
m ,

(ãz)
−
m in qkz ∩ (Ω̃k

b )
−
m ∩Q−m ,

(4.15)

We set
(Eik)

−
m := Ei,Q

−
m

k , for i ∈ {1, 2, 3} , (4.16)

where Ei,Q
−
m

k ⊂ (Q−m)′ are the exceptional sets provided by Theorem 3.1.

Substep 2.2. Definition in the hypercubes Q. We define (assuming that (uk)
−
m is ex-

tended arbitrarily outside Q−m, otherwise there is a slight abuse of notation in the definition
below)

(uk)Q− :=
∑
m
χQ−m(uk)

−
m , (4.17)
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We do the analogous construction on Q+ to get (uk)Q+ in Q+ (and all the other objects, such
as (uk)

+
m or (Eik)

+
m, denoted by an apex + in place of −), and then we define the approximating

function in Q as (also here, we could assume that (uk)Q± are defined arbitrarily in Q±, to avoid
an abuse of notation)

(uk)Q := χQ− (uk)Q− + χQ+ (uk)Q+ . (4.18)
We define

(Eik)
±
Q :=

⋃
m

(Eik)
±
m , for i ∈ {1, 2, 3} , (4.19)

and eventually, (Eik)Q := (Eik)
+
Q ∪ (Eik)

−
Q.

Substep 2.3. Definition of the approximating functions in Ω. We consider B̃0 :=
B0 + (−16

√
nk−1, 16

√
nk−1)n and we denote (uk)B0 the k-th approximating function for u given

by Theorem 3.1 (arguing as described before for Q−m) in correspondence to B0, starting from
the extension of u with value 0 outside Ω, in B̃0. Then we define the global k-th approximating
function

uk := χB0(uk)B0 +

∑
j=1

χQj (uk)Qj +

h∑
h=1

χQ0
h∩Ω(uk)Q0

h
. (4.20)

We denote
Eik := Ei,B0

k ∪
⋃
Q

(Eik)Q , for i ∈ {1, 2, 3} ,

where Ei,B0

k are the exceptional sets by Theorem 3.1 for B0. It is easy to see (recall (3.1a) and
(3.1f) and notice that after the extension process of Lemma 2.1 the measure of the exceptional
sets is still controlled) that

Ln(E1
k) + Ln(E3

k) ≤ C k−1 , Ln(E2
k) ≤ C k− 1

2 . (4.21)

Step 3. Properties of the approximating functions.

Substep 3.1. Direct consequences of Theorem 3.1. We observe that, by Theo-
rem 3.1, J(uk)±m

is closed and included in a finite union of boundaries of n-dimensional hy-
percubes (the bad hypercubes and the boundary good hypercubes), and (uk)

±
m is smooth outside

its jump set up to the boundary of Q±m. Therefore, by (4.18), J(uk)Q is closed and included in⋃
m(J(uk)m ∪ ∂Q−m ∪ ∂Q+

m) (we will see below that it is enough to take Γ and the small sets J ′m,
see (4.29), instead of the union of all ∂Q±m).

Moreover, (uk)Q ∈ SBV (Q;Rn)∩C∞(Q\J(uk)Q ;Rn)∩Wm,∞(Q\J(uk)Q ;Rn) for every m ∈ N,
since this holds separately for each (uk)

±
m up to the boundary of Q±m.

In the same way, looking at (4.20), uk ∈ SBV (Ω;Rn)∩C∞(Ω \ Juk ;Rn)∩Wm,∞(Ω \ Juk ;Rn)
for every m ∈ N, Juk is closed and

Juk ⊂ J(uk)B0
∪
⋃
Q

(J(uk)Q ∪ ∂Q)

(where Q stands for all the Qj and Q0
h) which is a finite union of C1 hypersurfaces (we will see

below that it is enough to take just a little part of ∂Q, see (4.34)).

For any m, Lemma 2.1 gives (as usual we omit the target sets Rn and Mn×n
sym in the notation for

the L1 norm of u and e(u), and we argue to fix the ideas in Q−m)

‖u−m‖L1(R′m) ≤ C‖u‖L1(Rm) , (4.22a)

‖e(u−m)‖Lp(R′m) ≤ C‖e(u)‖Lp(Rm) , (4.22b)

Hn−1(Ju−m ∩R
′
m) ≤ CHn−1(Ju ∩Rm) , (4.22c)ˆ

R′m

∣∣[u−m]
∣∣dHn−1 ≤ C

ˆ

Rm

∣∣[u]
∣∣dHn−1 . (4.22d)
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We now employ the properties stated in Theorem 3.1 (we take θ fixed, so we absorb it in C).
By (3.1b) we have thatˆ

Q−m

|e((uk)−m)|p dx ≤ (1 + C k−q)

ˆ

(Q−m)′

|e(u−m)|p dx+ C

ˆ

(E2
k)−m

|e(u−m)|p dx

≤ (1 + C k−q)

ˆ

(Q−m)′\R′m

|e(u)|p dx+ C

ˆ

(E2
k)−m\R′m

|e(u)|p dx ,

where in the last inequality we have employed (4.22). We can argue analogously for Q+
m, employ

(3.1b) for B0, and sum all the inequalities, to getˆ

Ω

|e(uk)|p dx ≤ (1 + C k−q)

ˆ

Ω

|e(u)|p dx+ C

ˆ

E2
k

|e(u)|p dx+ C

ˆ

E4
k

|e(u)|p dx , (4.23a)

where
E4
k :=

⋃
m

(∂Q−m ∪ ∂Q+
m) + (−16

√
nk−1, 16

√
nk−1)n .

Notice that the contribution on E4
k comes from the fact that in the right hand side of the estimates

we have the enlarged set (Q−m)′, then we have superposition of (at most two) adjacent elements
of the partition of Ω. Moreover, we have that

Ln(E4
k) ≤ C k−1 . (4.23b)

We can argue exactly in the same way employing (3.1e) in place of (3.1b). In Q−m we obtainˆ

Q−m

|u−m − (uk)
−
m|dx ≤ C k−1

ˆ

(Q−m)′

|e(u−m)| dx+ C k−1|Eu−m|((E1
k)−m) + C

ˆ

(E2
k)−m

|u−m|dx

+ C k−
1
2

ˆ

(Q−m)′

|u−m|dx

≤ C k−1

ˆ

(Q−m)′\R′m

|e(u)|dx+ C k−1|Eu|((E1
k)−m \R′m) + C

ˆ

(E2
k)−m\R′m

|u| dx

+ C k−
1
2

ˆ

(Q−m)′\R′m

|u| dx ,

and summing over all the contributions we getˆ

Ω

|u− uk|dx ≤ C k−1

ˆ

Ω

|e(u)| dx+ C k−1|Eu|(E1
k \ (Γ̂ ∪ Γ̂∂Ω)) + C

ˆ

E2
k

|u| dx

+ Ck−
1
2

ˆ

Ω

|u| dx+ Ck−
1
2

ˆ

E4
k

(|u|+ |e(u)|) dx

(4.24)

Furthermore, starting from (3.1f) in Q−m, with a similar procedure we find thatˆ

Ω\E3
k

|u− uk|p dx ≤ C k−p
ˆ

Ω

|e(u)|p dx . (4.25)

Let us now employ (3.1c) and (3.1d), the two estimates in Theorem 3.1 concerning the jump
of the approximating sequences. In any Q−m these give (always recalling (4.22))

Hn−1(J(uk)−m
∩Q−m) ≤ CHn−1(Jum ∩ (Q−m)′) ≤ CHn−1(Ju ∩ (Q−m)′ \R′m) , (4.26a)
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and ˆ

J
(uk)−m

∩Q−m

∣∣[(uk)−m]
∣∣ dHn−1 ≤ C

ˆ

J
u−m
∩(Q−m)′

∣∣[u−m]
∣∣ dHn−1 + C

ˆ

(E1
k)−m

|e(u−m)|dx

≤ C
ˆ

Ju∩(Q−m)′\R′m

∣∣[u]
∣∣dHn−1 + C

ˆ

(E1
k)−m\R′m

|e(u)|dx .
(4.26b)

Notice that for the (almost) half hypercubes (Q0
h)± we have to consider also the possible jump

due to the fact that we have extended u outside Ω with 0, so we could have created jump on
∂Ω \ Γ0

h. So the two estimates above include also in the right hand sides the two terms

CHn−1(((Q0
h)−m)′ ∩ ∂Ω \ Γ0

h) , and C

ˆ

((Q0
h)−m)′∩∂Ω\Γ0

h

|trΩu|dHn−1 ,

respectively. Summing over all the contributions, we estimate (recall (4.1b), (4.4), and (4.5))

Hn−1(Juk \Hk) ≤ CHn−1(Ju \ Γ̂) + CHn−1(∂Ω \ Γ̂∂Ω) ≤ Cε
(
Hn−1(Ju) +Hn−1(∂Ω)

)
(4.27a)

and ˆ

Juk\Hk

∣∣[uk]∣∣ dHn−1 ≤ C
ˆ

Ju\Γ̂

∣∣[u]
∣∣ dHn−1 + C

ˆ

∂Ω\Γ̂∂Ω

|trΩu|dHn−1 ≤ Cηn−1
ε , (4.27b)

where
Hk :=

⋃
Q

⋃
m

(∂Q−m ∪ ∂Q+
m) .

Substep 3.2. Estimate of the jump part.

Substep 3.2.1. Estimate of Hn−1(Juk) outside Γ̂ ∪ Γ̂∂Ω. Let us examine the jump for
(uk)Q− created on the common boundaries between two sets Q−m, Q−m′ , namely between two sets
Q−m and Q−m±ei for i = 1, . . . , n− 1, both inside Q−. To fix the ideas let us take m and consider
Q−m and Q−m+ei

. Notice that

|mn(m)−mn(m + ei)| ≤ 1/2 ,

where mn(m)k−1 and mn(m + ei)k
−1 are the “heights” corresponding to Q−m and Q−m+ei

, see
(4.8). This means that, for mn = mn(m),

u−m = u in F ′m×(−%− 16
√
nk−1, (mn − 1/2)k−1) ,

u−m+ei
= u in F ′m+ei×(−%− 16

√
nk−1, (mn − 1/2)k−1) .

By construction of (uk)
−
m (see (4.14) and (4.15)) we have that

(ũk)
−
m = (ũk)

−
m+ei

in (F ′m ∩ F ′m+ei)×(−%− 16
√
nk−1, (mn − (4

√
n+ 1/2)k−1) , (4.28)

and

(uk)
−
m = (uk)

−
m+ei

in (F ′m ∩ F ′m+ei)×(−%− 16
√
nk−1, (mn − (8

√
n+ 1/2)k−1) ,

since, if x ∈ qkz , (ũk)
−
m(x) and (uk)

−
m(x) depend only on u−m in q̃kz and Qkz , respectively (see figure

on the right at page 14).
Setting

J(uk)Q−
∩ ∂Q−m ∩ ∂Q−m+ei

=: J ′m , (4.29)
it follows that

J ′m ⊂ (∂Fm ∩ ∂Fm+ei)×
(
(mn − (8

√
n+ 1/2),mn + 1)k−1

)
(4.30)

and thus
Hn−1(J ′m) ≤ Cη−(n−2)

ε k−(n−1) . (4.31)
Summing up over all the faces of Q−m in the directions e1, . . . , en−1 we get

Hn−1(J(uk)Q−
∩ ∂Q−m) ≤ Cη−(n−2)

ε k−(n−1) ; (4.32)
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summing up over m gives (see (4.7))

Hn−1
(
J(uk)Q−

∩
⋃
m
∂Q−m \ ∂Q−

)
≤ Cηε%n−1 . (4.33)

In the very same way we get

Hn−1(Juk ∩ ∂Qj) ≤ Cη−(n−2)
ε k−(n−1) , Hn−1(Juk ∩ ∂Q0

h ∩ Ω) ≤ Cη−(n−2)
ε k−(n−1) . (4.34)

Now we sum (4.33) and (4.34) over Q = Qj or Q = Q0
h, recalling (4.1b), and add (4.27a): we get

Hn−1
(
Juk \ (Γ̂ ∪ Γ̂∂Ω)) ≤ C

(
Hn−1(Ju \ Γ̂) +Hn−1(∂Ω \ Γ̂∂Ω)

)
+ C

(
Hn−1(Ju) +Hn−1(∂Ω)

)
ηε .

(4.35)
Substep 3.2.2. Estimate of [uk]L1(Juk ) outside Γ̂ ∪ Γ̂∂Ω. We now estimate the L1 norm
of jump amplitude on J ′m, that is on the common boundary between any Q−m and Q−m+ei

, by
(4.29). For every x ∈ J ′m we may have four cases, depending if x ∈ (Ω̃k

b )
−
m, x ∈ (Ω̃k

b )
−
m+ei

, or
not, where (Ω̃k

b )
−
m is the set of (neighbourhoods of) bad hypercubes corresponding to (Q−m)′, see

(4.13).
Case 1. Estimate for the points not in (Ω̃k

b )
−
m ∪ (Ω̃k

b )
−
m+ei

. By construction of (uk)
−
m it

follows that

[(uk)Q− ] = ϕk ∗
(
(ũk)

−
m − (ũk)

−
m+ei

)
in J ′m \

(
(Ω̃k

b )
−
m ∪ (Ω̃k

b )
−
m+ei

)
,

so, for every x in the set above,∣∣[(uk)Q− ]
∣∣ ≤ ‖ϕ‖L∞(B1)k

n‖(ũk)−m − (ũk)
−
m+ei

‖L1(J ′m+B(0,k−1)) . (4.36)

We claim that (see (4.10) for the definition of Rm)

‖(ũk)−m − (ũk)
−
m+ei

‖L1(J ′m+B(0,k−1)) ≤ Ck−1|Eu|(Rm ∩Rm+ei) . (4.37)

We have

‖(ũk)−m − (ũk)
−
m+ei

‖L1(J ′m+B(0,k−1)) ≤
∑

qkz∩(J ′m+B(0,k−1)) 6=∅

‖(ũk)−m − (ũk)
−
m+ei

‖L1(qkz )

≤
∑

qkz∩(J ′m+B(0,k−1))6=∅

‖(ãz)−m − (ãz)
−
m+ei

‖L1(qkz ) + Ck−1
∑

qkz∩(J ′m+B(0,k−1)) 6=∅

(|E(u−m)|(Q̃kz) + |E(u−m+ei
)|(Q̃kz))

(4.38)

where (ãz)
−
m is affine with e((ãz)−m) = 0 and

‖u−m − (ãz)
−
m‖L1(q̃kz ) ≤ Ck−1|Eu−m|(q̃kz ) .

The second inequality in (4.38) comes from (recall (4.13))

‖(ũk)−m − (ãz)
−
m‖L1(qj\(ωk)−m) = ‖u−m − (ãz)

−
m‖L1(qkz \(ωk)−m) ≤ Ck−1|E(u−m)|(q̃kz ) ,

and the fact that, recalling (3.23),

‖(ũk)−m − (ãz)
−
m‖L1(qkz∩(ωk)−m) ≤ Ck−1

(
|E(u−m)|(qkz ) + ‖e(u−m)‖

L1(Q̃kz )

)
,

the same being true for m + ei in place of m.
We now estimate ‖(ãz)−m− (ãz)

−
m+ei

‖L1(qkz ) for qkz ∩ (J ′m +B(0, k−1)) 6= ∅ in (4.38). We remark
that

Ln(q̃kz ∩Rm ∩Rm+ei)/Ln(q̃kz ) ≥ C0 > 0 ,

with C0 depending only on n. Thus

‖(ãz)−m − (ãz)
−
m+ei

‖L1(qkz ) ≤ C‖(ãz)−m − (ãz)
−
m+ei

‖L1(q̃kz∩Rm∩Rm+ei )

≤ Ck−1(|E(u−m)|(Q̃kz) + |E(u−m+ei
)|(Q̃kz)) ,

(4.39)

since (ãz)
−
m − (ãz)

−
m+ei

is an affine function (see Lemma 2.5, in particular the constant in the
first inequality above depends on C0) and u−m = u−m+ei

= u in Rm ∩Rm+ei . Therefore (4.37) is
proven, recalling also (4.22).
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Cases 2,3. Points in (Ω̃k
b )
−
m \ (Ω̃k

b )
−
m+ei

or in (Ω̃k
b )
−
m+ei

\ (Ω̃k
b )
−
m. Consider now the case when

x ∈ J ′m ∩ (Ω̃k
b )
−
m. To fix the ideas assume that x ∈ qkz (in the open cube). So (recall (4.15))

(uk)
−
m(x) = (ãz)

−
m(x) , with ‖u−m − (ãz)

−
m‖L1(q̃kz ) ≤ Ck−1|E(u−m)|(q̃kz ) .

If x /∈ (Ω̃k
b )
−
m+ei

, (uk)
−
m+ei

(x) = ϕk ∗ (ũk)
−
m+ei

, so

[(uk)Q− ](x) = ϕk ∗
(
(ũk)

−
m+ei

− (ãz)
−
m
)
(x) .

Now
‖(ũk)−m+ei

− (ãz)
−
m‖L1(B(x,k−1)) ≤ ‖(ũk)−m+ei

− (ãz)
−
m‖L1(q̃kz )

≤ ‖(ãz)−m+ei
− (ãz)

−
m‖L1(q̃kz ) + Ck−1|E(u−m+ei

)|(q̃kz ) ≤ Ck−1(|E(u−m)|(Q̃kz) + |E(u−m+ei
)|(Q̃kz)) ,

arguing as done for (4.38) and (4.39). In the same way one deals with the case x ∈ J ′m ∩
(Ω̃k

b )
−
m+ei

\ (Ω̃k
b )
−
m.

Case 4. Points in (Ω̃k
b )
−
m∩(Ω̃k

b )
−
m+ei

. The last case is x ∈ J ′m∩(Ω̃k
b )
−
m+ei

∩(Ω̃k
b )
−
m: now directly

[(uk)Q− ](x) = |(ãz)−m+ei
− (ãz)

−
m|(x) .

We now put together the different cases, deducing that∣∣[(uk)Q− ]
∣∣ ≤ Ckn−1|Eu|(Rm ∩Rm+ei) in J ′m ,

so that (4.31) gives, integrating over J ′m, thatˆ

J ′m

∣∣[(uk)Q− ]
∣∣dHn−1 ≤ Cη−(n−2)

ε |Eu|(Rm ∩Rm+ei) . (4.40)

We remark that since in the estimates are employed the hypercubes Q̃kz , with sidelength 16k−1,
we look possibly at height 16

√
nk−1 below J ′m, which is distant less than 9

√
nk−1 from Γ. This

motivates the choice of the constant 25 in the definition of Rm.
Summing up over all the faces of Q−m in the directions e1, . . . , en−1 and over m (observe that

Rm ∩Rm±ei overlap each other at most 2 times, over i and m) we deduceˆ

J(uk)
Q−
∩
⋃

m ∂Q−m\∂Q−

∣∣[(uk)Q− ]
∣∣dHn−1 ≤ Cη−(n−2)

ε |Eu|({d(·,Γ) < 25
√
nk−1} \Q+) . (4.41)

In lasts to estimate the amplitude of Juk on
⋃
j ∂Qj ∪

⋃
h(∂Q0

h ∩Ω). To do so, we may closely
follow what done for the jump on ∂Q−m: the only difference is that now we have in B0 the rough
approximation of u, without any extension in the spirit of Lemma 2.1. Then, the situation is
analogous to have two (almost) hyperrectangles Q−m ⊂ Q and Q−m+ei

∩ B0 6= ∅, so that we
consider in (4.8)

um+ei = u in F ′m+ei×(−%− 16
√
nk−1, (mn + 25

√
n)k−1) . (4.42)

Differently from before, now |E(um)|(Q̃j) + |E(um+ei)|(Q̃j), entering for instance in (4.38), is
estimated by |Eu|(Rm ∪ (Rm+ei ∪R′m+ei)), see (4.10) for the definition of R′m. For this reason,
for the analogue of (4.40) we getˆ

Juk∩∂Qj

∣∣[uk]∣∣ dHn−1 ≤ Cη−(n−2)
ε

[
|Eu|

(
(Qj + (−16

√
nk−1, 16

√
nk−1)n) ∩ B̃0 ∩ {d(·,Γj) < 25

√
nk−1} \ Γj

)
+ |Eu|(Γj ∩ {d(·, ∂Qj) < 32

√
nk−1})

]
,

(4.43)

and the same for Q0
h, Γ0

h in place of Qj , Γj . Notice that we have an additional term with respect
to (4.40), which vanishes as k tends to∞, since |Eju| is evaluated on a subset of Γj whose Hn−1

measure vanishes in k.
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The combination of (4.27b), (4.29), (4.41), and (4.43) givesˆ

Juk\(Γ̂∪Γ̂∂Ω)

∣∣[uk]∣∣dHn−1 ≤ C
(
1 + η−(n−2)

ε

)ˆ
(Ju\Γ̂)∪Γ̂k

∣∣[u]
∣∣dHn−1 + C η−(n−2)

ε ‖e(u)‖
L1({d(·,Γ̂∪∂Ω)<25

√
nk−1})

≤ C ηε + C η−(n−2)
ε

(
‖e(u)‖

L1({d(·,Γ̂∪∂Ω)<25
√
nk−1}) +

ˆ

Γ̂k

∣∣[u]
∣∣ dHn−1

)
,

(4.44)

letting Γ̂k :=
⋃
j(Γj ∩ {d(·, ∂Qj) < Ck−1}) ∪ ⋃h(Γ0

h ∩ {d(·, ∂Q0
h) < Ck−1}), and recalling the

definition (4.5) of ηε. Notice that in the first inequality in (4.44) we should have written all the
term in (4.5), which is nothing but the jump part of the extension of u with 0 outside Ω (see
also the remark below (4.26)).

Substep 3.2.3. Estimate of [uk]L1(Juk ) in Γ̂ ∪ Γ̂∂Ω. Let us now consider the jump of
(uk)Q on Γ, by looking separately at the traces of u − (uk)Q± on the two sides of Γ. We have
(tr− denotes the trace on Γ from Q−)ˆ

Γ∩Q−

tr−(u− (uk)Q−) dHn−1 =

ˆ

Γ∩Q−

tr−(u− ûQ−) dHn−1 +

ˆ

Γ∩Q−

tr−((ûQ−)− (uk)Q−) dHn−1

where
ûQ− :=

∑
m
χQ−mu

−
m .

In order to estimate the traces we can argue as in [7, Theorem 3.2, Steps 1 and 4] (see also
the proof of [18, Theorem 1.1, property (1.1d)]): by definition (4.9) of u−m (in particular since
u−m = u in (Q−m)′ \R′m) one hasˆ

Γ∩Q−m

|tr−(u− u−m)|dHn−1 ≤ C|E(u− u−m)|(F ′m×{d(·,Γ) < 2k−1}) ≤ C|Eu|(Rm) ,

where C depends on the Lipschitz constant of Γ ∩Q−m seen as a graph of a function defined on
Fm, and this Lipschitz constant is uniformly bounded (and small) in m. Summing up over m,
we get thatˆ

Γ∩Q−

tr−(u−ûQ−) dHn−1 ≤ C|Eu|
(
(Q−+(−16

√
nk−1, 16

√
nk−1)n)∩{d(·,Γ) < 25

√
nk−1}\Q+

)
.

(4.45)
Moreover, arguing as before (we use again [7, Theorem 3.2, Steps 1 and 4]), we get that for any
t much larger than k−1 and much smaller than εˆ

Γ∩Q−

|tr−((ûQ−)−(uk)Q−)|dHn−1 ≤ C

t
‖(ûQ−)− (uk)Q−‖L1((Q−+(−t,t)n)\Q+)

+ C|E
(
(ûQ−)− (uk)Q−

)
|((Q− + (−t, t)n) ∩ {d(·,Γ) < t} \Q+) .

(4.46)

Collecting (4.45) and (4.46) we estimate tr−(u− (uk)Q−) on Γ ∩Q−. Arguing in the same way
for the positive trace (namely, that corresponding to Q+) and adding the two, we obtainˆ

Γ∩Q

∣∣[u]− [(uk)Q]
∣∣dHn−1 ≤ C|Eu|

(
(Q+ (−t, t)n) ∩ {d(·,Γ) < t} \ Γ

)
+
C

t
‖ûQ − (uk)Q‖L1(Q+(−t,t)n) ,

(4.47)

setting ûQ := χQ− ûQ− +χQ+ ûQ+ (and ûQ+ defined in analogy to ûQ−). If we are in a boundary
cube Q0

h, we consider u extended with 0 outside Ω, so that on ∂Ω we replace [u] with trΩu also
in the right hand side of (4.47), in the evaluation of |Eu|.



ON THE APPROXIMATION OF SBD FUNCTIONS AND APPLICATIONS 23

We sum up (4.47) for Q = Qj and employ (4.24) to getˆ

Γ̂

∣∣[u]− [uk]
∣∣ dHn−1 ≤ C ‖e(u)‖

L1({d(·,Γ̂)<t}) + C

ˆ

Ju\Γ̂

∣∣[u]
∣∣ dHn−1

+
C

t

(
k−1|Eu|(Ω \ Γ̂) + k−1/2‖u‖L1(Ω) + ‖u‖L1(E2

k)

)
.

(4.48)

We can also obtain an analogous estimate for Γ̂∂Ω in place of Γ̂.

Substep 3.3. Conclusion.
We now collect the estimates proven so far, considering their limit as k → +∞. By (4.24) we
get that

uk → u in L1(Ω;Rn) , (4.49)
and (4.21), (4.25) give (1.1b), with the choice Ek = E3

k . Moreover, (4.23) implies that

lim sup
k→∞

‖e(uk)‖Lp(Ω;Mn×n
sym ) ≤ ‖e(u)‖Lp(Ω;Mn×n

sym ) . (4.50)

Let us now consider the jump part. We have

Juk ⊂ (Juk ∩B0) ∪
⋃

j=1

(Juk ∩Qj \ Γj) ∪ Γ̂ ∪
h⋃
h=1

(Juk ∩Q
0
h ∩ Ω) .

Moreover, we may assume that Γ̂ ⊂ Juk , since there are arbitrarily small a > 0 with Hn−1(Γ̂ ∩
{[uk] = a}) = 0, and then we can add to uk a perturbation with arbitrarily small W 1,∞(Ω \ Γ̂)

norm, having jump of class C1 on Γ̂ and equal to a on an arbitrarily large subset of Γ̂ (see also
[29, Lemmas 4.1, 4.3]). Therefore we may assume that

Juk4Ju ⊂ (Juk \ Γ̂) ∪ (Ju4Γ̂) . (4.51)

By (4.4) it then follows that
Hn−1(Juk4Ju) ≤ C ε+ C ηε . (4.52)

We now start from the estimateˆ

Ju∪Juk

∣∣[u]− [uk]
∣∣ dHn−1 ≤

ˆ

Γ̂

∣∣[u]− [uk]
∣∣dHn−1 +

ˆ

Juk\Γ̂

∣∣[uk]∣∣ dHn−1 +

ˆ

Ju\Γ̂

∣∣[u]
∣∣dHn−1 ,

and consider (4.44) and (4.48); moreover, by the analogue of (4.48) for Γ̂∂Ω we have that [uk] ∈
L1(Γ̂∂Ω), and then the L1 norm of [uk] on Γ̂∂Ω \ ∂Ω vanishes as ε → 0, by (4.4). Then we
conclude that

lim
k→∞

ˆ

Ju∪Juk

∣∣[u]− [uk]
∣∣ dHn−1 = 0 . (4.53)

sending k →∞, t→ 0, and ε→ 0, in this order. Then

lim
k→∞

|Ej(u− uk)|(Ω) = 0 ,

and, by (4.52), sending k →∞, t→ 0, and ε→ 0,

lim
k→∞

Hn−1(Ju4Juk) = 0 .

At this stage we can say that uk is a sequence bounded in BD(Ω), converging to u in L1(Ω;Rn)
(see (4.49)). Therefore, by [9, Theorem 1.1] and recalling (4.50), this gives

lim
k→∞

‖e(uk)− e(u)‖Lp(Ω;Mn×n
sym ) = 0 .

The proof is then concluded. �

Remark 4.2. Looking at the proof of Theorem 1.1, one needs just that Ω is a set of finite
perimeter, that there is a suitable notion of trace on ∂Ω, and that the function u considered has
trace integrable on ∂Ω. This would permit to weaken the assumption that Ω is a bounded Lipschitz
domain. This remark is valid also for Theorems 1.2 and 1.3.
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5. Proof of the other density theorems

In this section we discuss two further density results for functions in SBD(Ω) and in SBDp
∞(Ω)

in the spirit of [29]. The space SBDp
∞(Ω) consists of all functions u ∈ SBD(Ω) with e(u) ∈

Lp(Ω;Mn×n
sym ), and without any constraint onHn−1(Ju) (see Section 2). These results are obtained

by corresponding modifications of the rough approximation result Theorem 3.1, that permit then
to follow the strategy of Theorem 1.1.

We assume that Ω ⊂ Rn is a Lipschitz domain. As above, this may be avoided by requiring
that Ω has finite perimeter, that there is a suitable notion of trace on ∂Ω, and that the function
u considered has trace integrable on ∂Ω.

The first part of the proof is common for the two results. Since now Hn−1(Ju) may be infinite,
but we are interested in the approximation in energy, we consider for a fixed ε > 0 a set Γ̃ε ⊂ Ju,
with Hn−1(Γ̃ε) <∞, such that ˆ

Ju\Γ̃ε

∣∣[u]
∣∣dHn−1 < ε . (5.1)

This follows from the fact that [u] ∈ L1(Ju;Rn). Then we employ the approximation procedure
at the beginning of proof of Theorem 1.1 to Γ̃ε in place of Ju (and to ∂Ω as before), obtaining a
finite family of pairwise disjoint closed hypercubes (Qj)


j=1 ⊂ Ω satisfying the same properties

as before (we keep the same notation), with Ju replaced by Γ̃ε (also in (4.4)). In particular

lim
ε→0

ˆ

Ju\Γ̂

∣∣[u]
∣∣ dHn−1 = 0 . (5.2)

The definition of ηε in (4.5) remains the same, and ηε is still vanishing as ε → 0 thanks to
(5.1). Notice that we keep the same notation of Theorem 1.1, for instance for the (almost)
hyperrectangles Q−m and for the convolution kernel ϕk.

Proof of Theorem 1.2. Since we are now proving an estimate which is linear both in e(u) and
in Eju, the construction for Theorem 3.1 may be replaced simply by the convolution with ϕk.
Indeed for every v ∈ SBD(Ũ) with U ⊂ Ũ we have that, for k large enough, vk := v ∗ ϕk is in
C∞(U ;Rn) and satisfies ˆ

U

|e(vk)| dx ≤ |Ev|(U +B(0, k−1)) . (5.3)

So we keep all as in Theorem 1.1 except for the definition of (uk)
−
m in Q−m, given in (4.15): now

(uk)
−
m := u−m ∗ ϕk , (5.4)

where u−m is still defined as in (4.9) and (4.10) (notice that now we could have taken also Rm of
height

√
nk−1 instead of 25

√
nk−1, but we prefer to keep the same notation).

Similarly to before, we have that

‖u−m − (uk)
−
m‖L1(Q−m) ≤ Ck−1|Eu|

(
(Q−m)′ \R′m

)
, (5.5)

and (4.23a) holds with p = 1.
Since now we have not distinguished the hypercubes in bad and good ones, we have no jump

in (the open set) Q−m, so (4.26) are useless, and in order to estimate [uk] on J ′m (see (4.29)) we
have only one case, corresponding to the estimate (4.37), which is still true. Also (4.47) holds as
before.

The approximating functions uk are defined as in (4.20), with (uk)B0 still obtained by convo-
lution between ϕk and the function u in B̃0, extended with 0 outside Ω.

Now (4.49) and (4.50) (with the norm L1 instead of Lp) follow from (5.5) and the analogue of
(4.23a) with p = 1 respectively, employing also (5.2).

By (the anologues of) (4.41) and (4.43) we deduce (4.44), recalling also the definition of ηε
(4.5).

Putting together (4.33) and (4.34) (that hold also in the present setting) we obtain

Hn−1(Juk \ Γ̂) ≤ C
(
Hn−1(Ju) +Hn−1(∂Ω)

)
ηε . (5.6)
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Moreover, (4.53) follows as before from (4.44), that still holds, and (4.48), which is slightly
modified since now combines (4.47) and (5.5) (instead of the estimate before (4.24)). Since uk is
bounded in BD(Ω), then (4.49), (4.50), (4.53), and (5.6) give (1.2).

It lasts only to prove that Juk is, up to a negligible set, a finite union of pairwise disjoint
compact C1 hypersurfaces contained in Ω. To do so, notice that

Juk ⊂ Γ̂ ∪
⋃
Q

⋃
m
J ′m ⊂⊂ Ω , (5.7)

because there is not the jump due to bad hypercubes and boundary good hypercubes in any Q−m
and in B0. Since J ′m are in a finite number and transversal to Γ̂, we have that Γ̂ ∩⋃Q

⋃
m J ′m

consists in a finite number of n−2 dimensional manifolds, with finite Hn−2 measure. Therefore
we may follow the capacitary argument by Cortesani in [24, Corollary 3.11], replacing the jump
in a small neighbourhood of Γ̂ ∩⋃Q

⋃
m J ′m by an H1 transition with arbitrary small H1 norm

(this is possible since the capacitary argument is applied to uk ∈ L∞(Ω;Rn) and since the 2-
capacity of Γ̂∩⋃Q

⋃
m J ′m is 0, because it has finite Hn−2 measure). In this way we separate the

C1 hypersurfaces one from each other. Now Juk is included in a finite union of pairwise disjoint
compact C1 hypersurfaces contained in Ω. It is then enough to apply [29, Lemma 4.3] to get a
slight modification of uk such that Juk indeed coincides with the finite union of C1 hypersurfaces
above. Therefore the proof is concluded. �

We now start the proof of Theorem 1.3. The following Lemma is employed in Proposition 5.2,
which is the counterpart of Theorem 3.1 in the proof of Theorem 1.3.

Lemma 5.1. Let Q = (−2r, 2r)n, Q′ = (−r, r)n, v ∈ SBDp
∞(Qr), and ϕr(x) := r−nϕ1(x/r),

with ϕ1 ∈ C∞c (B1). Then (recall that Ejv is the jump part of the measure Ev, see (2.1))ˆ

Q′

|e(v ∗ ϕr)− e(v) ∗ ϕr|p dx ≤ ‖ϕ1‖pLp(B1) r
−n(p−1)

(
|Ejv|(Q)

)p
. (5.8)

Proof. From the standard approximation argument by Anzellotti and Giaquinta (cf. e.g. [6,
Theorem 5.2]) there exist vh ∈ C∞(Q;Rn)∩BD(Q) such that vk → v in L1(Q;Rn), there is the
convergence in mass ‖e(vk)‖L1(Q) → |Ev|(Q), and

‖e(vk − v)‖L1(Q) → |Ejv|(Q) . (5.9)

For any k ∈ N we have that

‖e(vk ∗ ϕr)− e(v) ∗ ϕr‖Lp(Q′) = ‖e(vk − v) ∗ ϕr‖Lp(Q′) ≤ ‖ϕr‖Lp(Br)‖e(vk − v)‖L1(Q) . (5.10)

Moreover vk ∗ ϕr → v ∗ ϕr uniformly in Q, since vk → v in L1(Q;Rn), and then (5.10) implies
that e(vk ∗ ϕr) is bounded in Lp with respect to k, so that

e(vk ∗ ϕr) ⇀ e(v ∗ ϕr) in Lp(Q′;Mn×n
sym ) .

We employ the convergence above to pass to the limit in the left hand side of (5.10), while for
the right hand side we use (5.9), so

‖e(v ∗ ϕr)− e(v) ∗ ϕr‖Lp(Q′) ≤ ‖ϕr‖Lp(Br)|Ejv|(Q) .

Now (5.8) follows raising to the p and observing thatˆ

Br

|ϕr|p dx = r−np
ˆ

Br

|ϕ1(x/r)|p dx = r−n(p−1)

ˆ

B1

|ϕ1|p dy .

�

Proposition 5.2. Let Ω ⊂ Rn be bounded open, k ∈ N with k−1 much smaller than diam(Ω),
p > 1, and let u ∈ SBDp

∞(Ω̃), for Ω̃ := Ω + (−8
√
nk−1, 8

√
nk−1)n. Then there exists uk ∈



26 VITO CRISMALE

SBV p(Ω;Rn) ∩ L∞(Ω;Rn) such that Juk is included in a finite union of (n − 1)–dimensional
closed hypercubes, uk ∈ C∞(Ω \ Juk ;Rn) ∩Wm,∞(Ω \ Juk ;Rn) for every m ∈ N, and:

‖uk − u‖L1(Ω;Rn) ≤ Ck−1|Eu|(Ω̃) , (5.11a)ˆ

Ω

|e(uk)|p dx ≤
ˆ

Ω

|e(u)|p dx+ C|Eju|(Ω̃) , (5.11b)

Hn−1(Juk) ≤ k|Eju|(Ω̃) , (5.11c)

lim sup
k→∞

ˆ

Juk

∣∣[uk]∣∣ dHn−1 ≤ C
ˆ

Ju

∣∣[u]
∣∣ dHn−1 + C

ˆ

Ω̂1

|e(u)|p dx , (5.11d)

with Ln(Ω̂1) ≤ C|Eju|(Ω̃), and C > 0 independent of k.

Proof. As in Theorem 3.1, let ϕ ∈ C∞c (B1) radial, ϕk(x) = knϕ(kx), and consider for any
z ∈ (2k−1)Zn ∩ Ω the hypercubes

qkz := z + (−k−1, k−1)n , q̃kz := z + (−2k−1, 2k−1)n .

We take the “good” and “bad” nodes

Ĝk := {z ∈ (2k−1)Zn ∩ Ω: |Eju|(q̃kz ) ≤ k−n} , B̂k := z ∈ (2k−1)Zn ∩ Ω \ Ĝk , (5.12)

and the corresponding sets
Ω̂k
g :=

⋃
z∈Ĝk

qkz , Ω̂k
b :=

⋃
z∈B̂k

q̃kz , (5.13)

so Ω̂k
b = Ω̃ \ Ω̂k

g + (−k−1, k−1)n. We have (recall that q̃kz are finitely overlapping)

#B̂k ≤ C|Eju|(Ω̃) kn , (5.14)

so that
Ln(Ω̂k

b ) ≤ C|Eju|(Ω̃) .

By Lemma 5.1 and (5.12), for every z ∈ Ĝkˆ

qkz

|e(u ∗ ϕk)− e(u) ∗ ϕk|p dx ≤ C|Eju|(q̃kz ) . (5.15)

Notice that here this plays the same role of (3.10) for Theorem 3.1. We then define the approx-
imating functions as

uk :=

{
u ∗ ϕk in Ω \ Ω̂k

b ,

ãz in qkz ∩ Ω̂k
b ,

(5.16)

where ãz : Rn → Rn is affine with e(ãz) = 0 such that (cf. (3.13))

‖u− ãz‖L1(q̃kz ) ≤ Ck−1|Eu|(q̃kz ) .

Then it is not difficult to see that (5.11a).
As done for (3.18) and (3.19), we have that

Juk ⊂
⋃
z∈B̂k

(Juk ∩ q̃kz ) and, for z ∈ B̂k, Hn−1(Juk ∩ q̃kz ) ≤ C kn−1 ,

therefore (5.11c) follows from (5.14). Similarly to (3.21) it follows thatˆ

(Ω̂kb )
o

∣∣[uk]∣∣dHn−1 ≤ C |Eu|(Ω̂k
b ) ,

while for every x ∈ ∂Ω̂k
b ∩ qkz∣∣[uk]∣∣(x) = |(u− ãz) ∗ ϕk|(x) ≤ Ckn‖u− ãz‖L1(q̃kz ) ≤ Ckn−1|Eu|(q̃kz ) .
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Integrating the above inequality we deduceˆ

∂Ω̂kb∩qkz

∣∣[uk]∣∣ dHn−1 ≤ C|Eu|(q̃kz )

and, since the hypercubes q̃kz are finitely overlapping and Juk ⊂ Ω̂k
b ,ˆ

Juk

∣∣[uk]∣∣ dHn−1 ≤ C
ˆ

Ju∩Ω̃

∣∣[u]
∣∣dHn−1 + C

ˆ

Ω̂kb,1

|e(u)|dx ,

where Ω̂k
b,1 := Ω̂k

b + (−k−1, k−1)n. This gives (5.11d) with Ω̂1 = Ω̂k
b , since e(u) ∈ Lp(Ω;Mn×n

sym ).
We prove (5.11b) by summing up (5.15) over z ∈ Ĝk (we use again that q̃kz are finitely

overlapping) and recalling that e(uk) = 0 in Ω̂k
b , see (5.16). This concludes the proof. �

Proof of Theorem 1.3. As in Theorem 1.2 we follow the proof of Theorem 1.1, replacing the
definition of (uk)

−
m in (4.15) by

(uk)
−
m := k-th approximating function for u−m on Q−m, by Proposition 5.2 , (5.17)

and the definition of (uk)B0 with Proposition 5.2 in place of Theorem 3.1.
By (5.11a) and our construction we deduce

‖uk − u‖L1(Ω) ≤ C k−1|Eu|(Ω \ Γ̂) . (5.18)

On the other hand, by (5.11b) we obtain that

lim sup
k→∞

‖e(uk)‖pLp(Ω;Mn×n
sym )

≤ ‖e(u)‖p
Lp(Ω;Mn×n

sym )
+ C|Eju|(Ω \ Γ̂) , (5.19)

and the last term goes to 0 as ε→ 0 by (5.2).
Let us now consider [uk]. In comparison to (4.26b), (5.11d) gives also an additional term

C

ˆ

Ω̂−1,m

|e(u)|p dx ,

with Ln(Ω̂−1,m) ≤ C|Eju|(Q−m). Summing up on m this entails in (4.44) an additional term

C

ˆ

Ω̂1

|e(u)|p dx ,

with Ln(Ω̂1) ≤ C|Eju|(Ω \ Γ̂), that goes to 0 in ε by (5.2).
The estimate of [uk] on J ′m is done as in (4.40), distinguishing four cases according to the fact

that each cube intersecting J ′m is good or bad with respect to Q−m or Q−m+ei
. The difference is in

the definition of (uk)
−
m: now there are no exceptional sets in the good hypercubes, but [u] enters

also if a cube is good regarded both in Q−m and in Q−m+ei
(we employ (5.15) in place of (3.10)).

The final estimate is anyway the same of (4.40), and this holds also for (4.43). Then we obtain
as in (4.44) that (take always ε→ 0 more slowly than k−1)

lim
k→∞

ˆ

Juk\Γ̂

∣∣[uk]∣∣dHn−1 = 0 .

In the same way also the estimate (4.47) is still true, and combined with (5.18) this impliesˆ

Γ̂

∣∣[u]− [uk]
∣∣dHn−1 ≤ C ‖e(u)‖

L1({d(·,Γ̂)<t}) + C |Eju|(Ω \ Γ̂) +
C

t
k−1|Eu|(Ω \ Γ̂) ,

for t much smaller than ε and much larger than k−1.
Then, in particular, |Ej(u− uk)|(Ω)→ 0, and (5.11a), (5.19) give uk bounded in BD(Ω) and

thus (1.3) by [9, Theorem 1.1]. The proof is then concluded. �



28 VITO CRISMALE

Remark 5.3. As in [29, Theorem B], that deals with SBV p
∞ functions, we are not able to ensure

that Hn−1(Juk\Ju)→ 0 in Theorem 1.3. This comes from (5.11c), which in turn is a consequence
of (5.8) in Lemma 5.1. Improving this estimate could then give a control on the measure of the
jump created in the approximation procedure.

Remark 5.4. In Theorems 1.1 and 1.3 the jump of the approximating functions is contained
in a finite union of C1 hypersurfaces, which are not necessarily pairwise disjoint. Indeed, a
major issue comes from the intersections of Γ̂ with the bad (and the boundary good) hypercubes
coming from the construction in Theorem 3.1 and Proposition 5.2 in any Q−m: this might consist
of countable many pairwise disjoint sets of dimension n−2, e.g. if Γ̂ is locally the graph of
x sin(1/x) near 0 with respect to en (notice that on the contrary any J ′m is transversal to Γ̂, so
we have a finite number of (n−2)-dimensional pairwise disjoint pieces as intersection, and also
any two hypercubes intersect each other only on some of their faces). A delicate use of the area
formula for Lipschitz graph (Γ̂ is a finite union of pairwise disjoint C1 curves) should permit to
infer that one can choose the hypercubes of sidelength k−1 in such a way that the grid intersects
Γ̂ (and Γ̂∂Ω) in a finite number of pairwise disjoint components of finite Hn−2-measure. At this
point one could use the capacitary argument in [24, Corollary 3.11] if p ∈ (1, 2] to replace the
jump on this (n−2)-dimensional set by a smooth transition, so separating the hypersurfaces. For
p > 2 the situation is more delicate since one can apply [29, Lemma 5.2] only if Ju ⊂⊂ Ω and
u ∈ C1(Ω\Ju). On the other hand, one could argue as in Theorem C of [29], in Part B–Steps II,
III (see Remark 6.2) to separate Ju from ∂Ω, but losing u ∈ C1 near ∂Ω. Here we choose to avoid
this possible refinement due to these technicalities and since in the applications considered (also
in [29]) one needs just Ju closed or one passes through the approximation in [25], that permits to
separate the components.

6. Some applications

The theorems of this paper on SBD functions may be employed in combination with other den-
sity result in SBV , such as those in [10], [25], or [29]. In particular, Cortesani and Toader approx-
imate functions in SBV p(Ω;Rn) ∩ L∞(Ω;Rn) by so-called “piecewise smooth” SBV -functions,
denoted W(Ω;Rn), namely

u ∈ W(Ω;Rn) if


u ∈ SBV (Ω;Rn) ∩Wm,∞(Ω \ Ju;Rn) for every m ∈ N ,
Hn−1(Ju \ Ju) = 0 ,

Ju is the intersection of Ω with a finite union of (n−1)-dimensional simplexes .

We report below the result by Cortesani and Toader, in a slightly less general version.

Theorem 6.1 ([25], Theorem 3.1). Let Ω be an open bounded Lipschitz set. For every u ∈
SBV p(Ω;Rn) ∩ L∞(Ω;Rn) there exist uk ∈ W(Ω;Rn) such that

lim
k→∞

(
‖uk − u‖L1(Ω;Rn) + ‖∇uk −∇u‖Lp(Ω;Mn×n)

)
= 0 ,

lim
k→∞

ˆ

Juk∩A

φ(x, u+
k , u

−
k , νuk) dHn−1 =

ˆ

Ju∩A

φ(x, u+, u−, νu) dHn−1 ,

for every A ⊂ Ω, Hn−1(∂A ∩ Ju) = 0, and every φ strictly positive, continuous, and BV -elliptic
(see e.g. [2] or [25, equation (2.4)] for the notion of BV -ellipticity).

Remark 6.2. During the proof of Theorem C of [29], in Part B–Steps II, III, it is shown that
for every ε > 0 and u ∈ SBV p(Ω;Rn) ∩ W 1,∞(Ω \ Ju;Rn) with Ju closed, there is a v with
the same regularity, such that Jv ⊂⊂ Ω and

(
‖u− v‖BV + ‖∇(u− v)‖Lp +Hn−1(Ju4Jv)

)
< ε.

Moreover, by the procedure of [25, Theorem 3.1], the function v may be approximated in the sense
of Theorem 6.1 by vk ∈ W(Ω;Rn) such that also Jvk ⊂⊂ Ω. Then by a diagonal argument we
may assume that Juk ⊂⊂ Ω in Theorem 6.1.

Theorems 1.1 and 6.1 are, in particular, very useful tools to prove Γ-convergence approxima-
tions for energies including a bulk part depending on e(u) and a surface part depending on the
measure of the jump set and on the amplitude of the jump. These energies are then formulated
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in the space SBDp and arise in particular in Fracture Mechanics. Indeed, the jump set may
represent the set where a material is cracked, so that the surface part is usually interpreted as
a dissipative part. In the present context we consider the case where the dissipation actually
depends on the amplitude of the jump. If the dissipation depends only on the measure of the
jump set the fracture is said “brittle”, in the other cases it is often called “cohesive”.

The use of Theorems 1.1 and 6.1 permits to prove the Γ-limsup inequality just for W(Ω;Rn)
functions: one may approximate any u ∈ SBDp by ûk ∈ W(Ω;Rn), and, if one knows how to
construct a recovery sequence for functions in W(Ω;Rn), a diagonal argument is sufficient to
conclude.

As an application of this strategy, we extend the following two results, for which the corre-
sponding Γ-limsup inequality is proven inW(Ω;Rn) (and then extended to SBDp(Ω)∩L∞(Ω;Rn)
by [38]). We notice that when the bulk energy depends on e(u) it is not natural to assume that
the minimisers are bounded, even if the boundary datum is bounded. Indeed, the functional is
not only non decreasing by truncation, but it is not even true that a truncation of a BD function
is still in BD (see also [26] for a brief discussion about).

The first result is shown by Focardi and Iurlano in [32, Theorem 3.2]. Its generalisation is the
following. (We formulate the result in a slightly less general setting to simplify the notation.)

Theorem 6.3. Let Ω be an open bounded Lipschitz set, let p > 1, p′ := p/(p − 1), and ψ ∈
C([0, 1]) decreasing with ψ(1) = 0. Then the functionals Fε : L1(Ω;Rn)×L1(Ω) defined as

Fε(u, v) :=


ˆ

Ω

(
v |e(u)|2 +

ψ(v)

ε
+ εp−1|∇v|p

)
dx if (u, v) ∈ H1(Ω;Rn)×W 1,p(Ω; [ε, 1]) ,

+∞ otherwise,

Γ-converge, as ε→ 0, in L1(Ω;Rn)×L1(Ω) to

F (u, v) :=


ˆ

Ω

|e(u)|2 dx+ aHn−1(Ju) + b

ˆ

Ju

∣∣[u]� νu
∣∣ dHn−1 if u ∈ SBD2(Ω), v = 1 ,

+∞ otherwise,

where a := 2p1/pp′1/p
′ ´ 1

0 ψ
1/p(s) ds and b := 2ψ1/2(0) .

Remark 6.4. In [32, Remark 4.5] the authors explain why it was possible to prove the Γ-limsup
inequality only with an a priori L∞ bound on u. Here we improve also the desired result in [32,
Remark 4.5], since we not only show it for u ∈ SBD2(Ω)∩L2(Ω;Rn), but directly in SBD2(Ω),
without any additional integrability assumption. Notice that Theorem 3.1 would give a density
result in SBDp(Ω)∩Lp(Ω;Rn) with the approximation technique in [12, 38] based on gluing rough
approximations by means of a partition of unity. The work done in Section 4 is devoted to remove
even the a priori Lp bound.

We consider now a result proven very recently by Caroccia and Van Goethem, that enrichs
[32, Theorem 3.2] with the presence of a low order potential P , controlled from above and below
by two linear functionals in e(u). This is related to the simulation of models for fluid-driven
fracture (e.g. fracking and hydraulic fracture in porous media), and goes in the direction of the
treatment of non-interpenetration or Tresca-type conditions for plastic slips. The result is [11,
Theorem 2.3], and the Γ-limsup inequality is still proven for u ∈ W(Ω;Rn). We state below
directly the generalised result simplifying some notation, as done for Theorem 6.3.

Theorem 6.5. Let Ω be an open bounded Lipschitz set, ψ ∈ C([0, 1]) decreasing with ψ(1) = 0,
P : Ω×Mn×n

sym → R continuous in the first argument, convex in the second, with −σ|M | ≤
P (x,M) ≤ l|M | for any l > 0 and a suitable 0 < σ < 2ψ1/2(0). Then the functionals
Gε : L1(Ω;Rn)×L1(Ω) defined as

Gε(u, v) :=


ˆ

Ω

(
v |e(u)|2 +

ψ(v)

ε
+ P (x, e(u))

)
dx if (u, v) ∈ H1(Ω;Rn)×Vε ,

+∞ otherwise,



30 VITO CRISMALE

where
Vε := {v ∈W 1,∞(Ω; [ε, 1]) : |∇v| ≤ 1/ε} ,

Γ-converge, as ε→ 0, in L1(Ω;Rn)×L1(Ω) to G(u, v) given by
ˆ

Ω

(
|e(u)|2 + P (x, e(u))

)
dx+

ˆ

Ju

(
a′ + b′

∣∣[u]� νu
∣∣+ P∞(·, [u]� νu)

)
dHn−1 in SBD2(Ω)×{v = 1},

+∞ otherwise,

where a′ := 2
´ 1

0 ψ(s) ds, b′ := 2ψ1/2(0), and P∞(x,M) := limt→+∞
P (x,tM)−P (x,0)

t .

We conclude noticing that with our result it is possible to deal with bulk energies having growth
p > 1 in e(u), and not necessarily quadratic. As observed in [23], the constructions by [12] and
[38] do not provide approximations in (G)SBDp but only in (G)SBD2. From a mechanical
point of view the p-growth of the bulk energy is connected with elasto-plastic materials (see for
instance [37, Sections 10 and 11] and reference therein) and interesting also in a purely elastic
framework (see [23, Section 2]).

In this respect, we notice that density result presented is very useful also in [17], where we
investigate functionals with non quadratic bulk energy and dissipated energy depending only on
the deviatoric part of the matrix-valued function [u]� νu.
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