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Abstract. In this paper, we prove the Brezis-Gallouet-Wainger type inequality
involving the BMO norm, the fractional Sobolev norm, and the logarithmic norm of
C", for n € (0,1).

1 Introduction and main results

The main purpose of this paper is to established L°°-bound by means of the
BMO norm, or the critical fractional Sobolev norm with the logarithm of C" norm.
Such a L*>-estimate of this type is known as the Brezis-Gallouet-Waigner (BGW)
type inequality. Let us remind that Brezis-Gallouet [3], and Brezis-Wainger [4]
considered the relation between L, W*" and W#P, and proved that there holds

r—1

T+ flwen) s sp>n (1.1)

1l < € (1+1og

provided ||f|lyxr < 1, for kr = n. Its application is to prove the existence of
solutions of the nonlinear Schrédinger equations, see details in [3]. We also note
that an alternative proof of (1.1) was given by H. Engler [5] for any bounded set in
R™ with the cone condition. Similar embedding for vector functions v with divu = 0
was investigated by Beale-Kato-Majda:

IVulzee < C (1 + [Jrotul| Lo (14 log(1 + [luflws+1s)) + [[rotull2) (1.2)

for sp > n, see [1] (see also [10] for an improvement of (1.2) in a bounded domain).
An application of (1.2) is to prove the breakdown of smooth solutions for the 3-D
Euler equations. After that, estimate (1.2) was enhanced by Kozono and Taniuchi
[6] in that |rotu||r~ can be relaxed to ||rotu||syo:

V|| < C (1 + [frotul Baro (1 + log(1 + [Jullys+1.0))) - (1.3)

To obtain (1.3), Kozono-Taniuchi [6] proved a logarithmic Sobolev inequality in
terms of BMO norm and Sobolev norm that for any 1 < p < oo, and for s > n/p,
then there is a constant C' = C(n, p, s) such that the estimate

I £llzee < € (L+IIfllBro (1 +1og™ ([ fllwer))) (1.4)

*Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang
University, Ho Chi Minh City, Vietnam. Email address: daonguyenanh@tdt.edu.vn

tScuola Normale Superiore, Centro Ennio de Giorgi, Piazza dei Cavalieri 3, I-56100 Pisa, Italy.
Email address: quoc-hung.nguyen@sns.it




holds for all f € W*P. Obviously, (1.4) is a generalization of (1.1).

Besides, it is interesting to note that Gagliardo-Nirenberg type inequality with
critical Sobolev space directly yields BGW type inequality. For example, H. Kozono,
and H. Wadade [8] proved the Gagliardo-Nirenberg type inequalities for the critical
case and the limiting case of Sobolev space as follows:

1 P n 1-Pk
lullze < Cur'a lfull o (= A)>rull . * (1.5)

holds for allu € LPNH " with 1 < p < 00, 1 < r < 00, and for all ¢ with p < ¢ < oo

(see also Ozawa [11]).

And » r

[ullze < Cugllull {5 llull gatos (1.6)
holds for all w € LP N BMO with 1 < p < 00, and for all ¢ with p < ¢ < oo.

As a result, (1.5) implies
).

U=

Jull o~ < € (1 + (lullze + 1 (~2)Full ) (10a(1 + [(~A)3ullza))

forevery 1 <p<oo,1<r<oo,1<g<ooandn/q<s< oo.
While (1.6) yields

lullz= < € (14 (lullzr + ull saro) log(1 + [(=A)sullea)), (1)

for every 1 <p < o0, 1 < g < o0, and n/q < s < oo.

Thus, (1.7) and (1.8) may be regarded as a generalization of BGW inequality. Note
that in (1.7) and (1.8), the logarithm term only contains the semi-norm |[ul|}; ..,
Furthermore, Kozono, Ogawa, Taniuchi [7] proved the logarithmic Sobolev inequal-
ities in Besov space, generalizing the BGW inequality and the Beale-Kato-Majda
inequality.

Motivated by these above results, in this paper, we study BGW type inequality
by means of the BMO norm, the fractional Sobolev norm and the C"” norm, for
n € (0,1). Then, our first result is as follows:

Theorem 1.1 Let n € (0,1), and o € (0,n). Then, there exists a constant C =
C(n,n) > 0 such that the estimate

Il <€+ Clilavo (14106 [sup [ O oy yp )} 1)

holds for all f € C"N BMO. We accept the notation logT s = logs if s > 1, and
logt s =0 if s € (0,1).

Remark 1.2 [t is clear that (Sup / |f(y)|dy> is finite if f € L'. On
zern Jrn (|2 =yl + 1)
the other hand, if f € L", r > 1, then for any a € (%,n), we have

/()]
sup | o~ o dy < Cllflcr,
z€Rn /Rn (|z —y| + 1) 11z

where the constant C' is independent of f.



Remark 1.3 Ifsupp f C B, then (1.9) implies
[l < C+CllflBmo (1 +1og™ [R"F" + || fllga]) - (1.10)

Remark 1.4 Note that if f € WP with sp > n, then (1.9) is stronger than (1.4)

since WP < CO" C C", with n = %.

Concerning the BGW type inequality involving the fractional Sobolev space, we
have the following result:

Theorem 1.5 Let s > 0,p > 1 be such that sp = n. Let « > 0, n € (0,1). Then,
there exists a constant C = C(n,s,p,n,«) > 0 such that the estimate

| R ) | ))
£l < C 4 Cll s (1 + (g (sup [ ULy,
(1.11)

holds for all f € CT'OAWSP, where WP is the homogeneous fractional Sobolev space,
see its definition below.

Remark 1.6 As Remark 1.4, we can see that (1.11) is stronger then (1.1). Fur-
thermore, if supp f C Br, then (1.9) implies

p—1
P

[fllzee < C+ Cl| fllyisn (1 + (log™ [R"™ + | fll¢a]) ) : (1.12)

Remark 1.7 We consider fs(x) = —log(|z| + &) (|x]), where ¢ € CL([0,00)), 0 <
Y <1, 9(z|) =1 if |z < 1, and § > 0 is small enough. It is not hard to see that
for any 6 > 0 small enough

1
HféHLOO(Rd) ~ [log(d)], ||f6||BMO(Rd) ~ 1, ||f6||W%,p ~ |log(d)|>,

and
| fs(y)] 1
sup/ 2 dy ~ 1, | fsllnmny SO
O P ollencer)
Therefore, the power 1 and 2=2 of the term logs (sup / Mdy + Hchn>
P zern Jrn (|2 —y[+1)*

in (1.9) and (1.11) respectively are sharp that there are no such estimates of the form:

:
il < 0+ Cllilawo (1+ (1ogf (sup [ Lyt 14l ) ) ).

zeR™ Z_y|+1

and

|f2(y)] T
w<C+C u (14 (log* / 2(y d . >> ")
[f2llze < O+ Cllfall ;2. ( +<0g <ZS£L L Te— g+ 1) y+ [ f2llen

hold for all fi € BMONC", fo € CT'OWSP, for some vy € (0,1).



Before closing this section, let us introduce some functional spaces that we use
through this paper. First of all, we recall C", n € (0, 1), as the homogeneous Holder
continuous of order 7, endowed with the semi-norm:

1 fllon = sup D =T WL

£y |:L' - y|77

Next, if s € (0,1), then we recall W*P the homogeneous fractional Sobolev space,
endowed with the semi-norm:

1
P\
s = ([ [ S0 ey

When s > 1, and s is not an integer, we denote W*? as the homogeneous fractional
Sobolev space endowed with the semi-norm:

1 lirso = D 11D fllyire—iora-
jo1=1s]

If s is an integer, then

£ llirsw = > 1D fllzo-

|o|=[s]
We refer to [9] for details on the fractional Sobolev space.
1
After that, we accept the notation (f)q := ][ f= |Q|/ f(x)dx for any Borel set
Q Q

Q. Finally, C is always denoted as a constant which can change from line to line.
And C(k,n,l) means that this constant merely depends on k,n, .

2 Proof of the Theorems

We first prove Theorem 1.1.

Proof of Theorem 1.1 . It is enough to prove that

()
101 = C+ o (141058 ([ A ay+1a1e)). )

Let mg € N, set B, := B,(0), we have,

(f fw Nef,

—mo(n—a) |f(y)|

2 Jj=—mg Bymg

mol

FO) = | £(0) - ]fg

2~ Jj=—mgo

—mo(n— /()]
< " £ llondy + 2moll f + 2 m(n a>/ L gy
]iQ_mor "1 endy + 2mol £ aro R
—mo min{n—a,n} |f( )|
<0 T+ £l ) + Cmoll llaao.
SRS
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Choosing

([ ) |
oct ([, aap s+ V)

min{n — a, n}

mo = +17

we get (2.1). The proof is complete.

Next, we prove Theorem 1.5.

Proof of Theorem 1.5. To prove it, we need the following lemmas:

Lemma 2.1 Letay =1, and let (ag,aq,...,ax+1) € RF*2 for any k > 1, be a unique

solution of the following system:

k+1 4
> a2t =0, VI=0,..k

Then, we have

Mw

—Jj+1)a; #0.
J=0

Moreover, for any m > 1, and for b,b; € R, | = —m, ..., m, we have

m—1 | k+1 k+m k+1 k—m |l4+m

S DOLTI 0 Sl I SR RS ity SIS

l=—m | 7=0 l=m |j=l-m+1 l=—m | j=0
As a result, we obtain

k+1 k—m m—1 [k+1 k+1 k4+m

|b|§|1| S lal| 3 J- by+ Z Z% ]+z+ [ lasl| 22 Il

7=0 l=—m —-m 7=0 l=m
Proof. First of all, we note that a; # 0, for j =0,...,k + 1. Set

k+1

x) = Z a;al.
j=0

Then,
k+1

= Zjaj.
j=1

On the other hand, by (2.2), we have Q(2!) = 0, for [ = 0, ..., k. Thus,

k k
x) = Q41 H(x—2l), and Q'(1 H (1—2h
1=0 =1

(2.2)

(2.3)

(2.4)

(2.5)



This implies
k+1 k

Zja] [Ja-2H#o. (2.6)

J=1

Next, we observe that

k+1 k+1

0:(k+1)2aj:a+2jaj:0.
j=0 J=1

k
The last equation and (2.6) yield a = — H(l —2h #£0.
j=1
Now, we prove (2.4). We denote LHS (resp. RHS) is the left hand side (resp.
the right hand side) side of (2.4). It is not difficult to verify that

k—m |l4+m
Z Z aj| b= ab.
l=—m | 7=0

Then, a direct computation shows

RHS = agb_,, + (ao + al)blfm + ...+ (ao + ...+ ak)bk_m

k—m
+ (a1 4 oo + ags1)bm + (a2 + ... + ags1)bmt1 + - + @10k 1m = ao Z b
l=—m
m+k—1 m+k

(Z bl+zbl> .—i—ak(Z bp—m + Z bl>+ak+1<zbl>-

l=1-m l m

k+1 m—1

Note that Zaj Z by = 0. Thus,
=0 I=k+1-m
k+1 m—1
RHS=RHS+ | a; | > b
7=0 I=k+1—m

k+1 j+m—1
=2 4| 2 b

7=0 l=j—m

k+m k+1 m—1 k+1 k—m [l4+m
(2w & (Sa)ue X (S

l=m \j=l-m+1 l=k+1-m = l=—m \ j=0

k+m k+1 k—m [l4+m
SS ) (S

l=m \j=l-m+1 l=—m \ j=0
=LHS

Or, we get (2.4).
Finally, (2.5) follows from (2.4) by using the triangle inequality. In other words, we



get Lemma 2.1. [

Next, we have

Lemma 2.2 Assume ag,ai, ...,a1 as in Lemma 2.1. Let j = Byj+1\By;, where
B, := B,(0) for any p > 0. Then, there holds

k+1

0 fecf
j=0 Q; B,k+3\By-1

For any |l € R, we set Ej = Bgk+i+3\Bgi-1. As a consequence of (2.7), we obtain

dy. (2.7)

Dkf(y) - (D*f)

Bor+3\By—1

k+1
Saif s|<cf f |prs) - 0| avy. (25)
]ZD Qj+l E; JE;
Moreover, by the triangle inequality we get from (2.8)
k+1
Sarf gjsc2f D) a (29)
]:O Qj+l El

Proof. Assume a contradiction that (2.7) is not true. There exists then a sequence
(fm)m>1 C WE(Bykss\By-1) such that

1
D" funly) = (DF im) dy < —, (2.10)
/32k+3\321 " " Bok+3\By-1 m
and
k+1
Zaj][ fm| =1, ¥Ym > 1.
§=0 Q;
Let us put

k
fn(@) = fm(x) = Prom(x), with Pom(z) =D > cpmlan, .., an)zfiag?.
=0 a1+...+an=l

and ¢ i m(o1, ..., ) is a constant such that
D! ~m) —0,Vi=0,..k 2.11
(P'3n) o m (211)

By a sake of brief, we denote ¢, = ¢ pm (a1, ..., ). Since Py, is a polynomial of
at most k-degree, then D* P, ,, = const. This fact, (2.10), and (2.11) imply

3|

/ D" futoldy = [ D ) — (D) ay <
Byky3\By—1 Bor+3\By—1 Bok+3\By-1

Qn
n

9



It follows form the compact embeddings that there exists a subsequence of ( fm)mzl
(still denoted as (fin)m>1) such that that f,, — f strongly in L'(Bgrss\By-1), and

DEf =0, in Bgiis\By-1.
This implies that f is a polynomial of at most (k — 1)-degree, i.e:

k—1
f(z) = Z Z o, .y an)zftas? . ay™, Vo € Byers\By-1.
=0 ar1+...4an=l

On the other hand, we observe that for any [ =0, ..., k

E aj][ g clag, .., ap)afted?. aondrydes.. . doy,

j=0 Q; a1+...+an=l
=>» aj ][ Z clag, .o, on)(2721) (2 20)*2..(2 ) dy diy...dxy
: Q

k+1
:][ E claq, ..., ap) E aj2]l et eg? . xom deydry...dr, = 0,
iy ar1+..4ap=l Jj=0

by (2.2). This implies

Zaj][ f=o, (2.12)
i=0 7%
and
k+1 _ k+1
Soaif Fu| =0 f fu| =1
j=0 7% j=0 7%

Or, we complete the proof of (2.7).

The proof of (2.8) (resp. (2.9)) is trivial then we leave it to the reader. This puts
an end to the proof of Lemma 2.2. [

Now, we are ready to prove Theorem 1.5.
It is enough to show that

p—1

| ) N
101 C+ Cles (141088 ([ APyt )) 7 a9

Set s1 = s —k, s1 € [0,1). Then, we divide our study into the two cases:



i) Case: s1 € (0,1):
We apply Lemma 2.1 with b = f(0), b; = ][ f. Then, for any mg > 1, there is a
Q;
constant C' = C(k) > 0 such that ’

][f f@ ‘ ’]élf‘ . (2.14)

Concerning the first term on the right hand side of (2.14), we have

f - 10 < Zf ISUE Zf o7l

k— mo mo 1 |k+1 k+m0

Z%][

l=—myg |j=0

F(O)<C

l=—my

Thus,
k—m k—m
> I f—f(O)‘ < 3 2V f < COp B2 (2.15)
l=—m l l=—m

Next, we use (2.8) in Lemma 2.2 to obtain

ml k+1

Za]][ < Cl:i;zk’][ ][El (D’f Rr) dydz,  (2.16)

—m |7=0

where Ej = Bor+i+3\Bgi—1. It follows from Holder’s inequality

mo—1
3 ok f F 1D 1) = D)y <
l=—myo Ey
mo—1 k k 1 p—1
D D p
Z 2kl|E|—2 (/ |ID"f(y) — +f( z)| dde)P </ |y—z| pdydz) P .
= Zmo B JE |ly — z|ntsip B JE

Since y,z € Ej, we have |y — 2| < |y| + |z| < 25T+ Thus, the right hand side of
the indicated inequality is less than

1
(n 51p) _, Mol k — Dk p P
Z E JE

ly — 2

l=—myg

Note that n.= sp = (k+ s1)p, and |E| 7 < C(n,p, k)2 7.
Then, there is a constant C' = C(k, s,n) > 0 such that

mo—1 mo—1 k k L
D D p P
> 2“][ |D¥ f(y)—DF f(2)|dydz < C Z </ D%/ (y n+sf( 2 dydz>
1= o E JE ly — z[nts1p
(2.17)
Thanks to the inequality
1
mo—1 4 i mo—1 p
dooer<@mo)r | > | (2.18)
j=—mg Jj=—mo



we have

mol

D*f(y) = DR >37
</Ez /Ez ly — z[nFsip dydz

l=—mo
1 (2.19)
mo 1 k k P
p=1 D - D p
<o (S [ IDH6) = D, .
2 ol pasae
400
Moreover, we observe that Z XExE (W1,y2) < k+4, forall (y1,y2) € R” x R™.
l=—00
Thus,
DFf( |DF f(y) — D¥ P
/ D" fy +f<)|ddz< k+4// Iy +f()| dydz.
£ JE Iy—ZI" o1p n Jrn !y—ZI” s1p
(2.20)
Combining (2.17), (2.19) and (2.20) yields
mo— 1 p—1
> 2 f f D8 - Dy < COksmmg” Il (220)
l=—my

It remains to treat the last term. Then, it is not difficult to see that for any a > 0

k+mg

2

l=mg

f‘ <cemzmn [y
. Bapmo (2.22)

—mp(n—a) ’f( )|d37
< C(k,n,a)2 (zl = D°°

B2kz+m0

Inserting (2.15), (2.21), and (2.22) into (2.14) yields

] < camomnteen ([ gy 7, ) Cmg” Ul 229

([ i) |
ot (f, G+ Vler)

= 1
o min{n — o, n} +h

By choosing

we obtain (2.13).

ii) Case: s; =0 (s =k):
The proof is similar to the one of the case s; € (0,1). There is just a difference of
estimating the second term on the right hand side of (2.14) as follows:

Use (2.9), we get

’mo 1 |k+1 mo—1

Za]][ <C > o |Dkf|. (2.24)

l=—m l=—myo

10



Applying Hélder’s inequality, we have

mo—1 mo—1 1/p
A f DEf < 3 oM ( / ID’“fI”>
l=—myg l*—m
mO 1 1/p
< Cn ( / !D’“f!p>
l* —mg
oy [mo—1 1/p
<Cmy” | Y |Dkf|7’ . (2.25)
l=—mgo

We utilize the fact Z XE (y) < k+4, Vy € R" again in order to get

l=—00

ol i 1/p

> [pkr) <t ([ otsr) (2.26)

l=—myg R™

From (2.26), (2.25), and (2.24), we get

mo—1 |k+1
> Y i@ . (297
I=—mg [j=0 7%+

Thus, we obtain another version of (2.23) as follows:

) < camamnteen ([ gy, ) Cmg” Ul (225)

By the same argument as above (after (2.23)), we get the proof of the case s; = 0.
This completes the proof of Theorem 1.5. ]
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