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Abstract. We consider two–phase metrics of the form ϕ(x, ξ) := αχBα(x) |ξ|+βχBα(x) |ξ|,
where α,β are fixed positive constants, and Bα, Bβ are disjoint Borel sets whose union is
RN , and we prove that they are dense in the class of symmetric Finsler metrics ϕ satisfying

α|ξ| ≤ ϕ(x, ξ) ≤ β|ξ| on RN × RN .

Then we study the closure Cl(Mα,β
θ ) of the class Mα,β

θ of two–phase periodic metrics with
prescribed volume fraction θ of the phase α. We have not a complete answer to this problem
at the moment: we give upper and lower bounds for the class Cl(Mα,β

θ ), and we localize
the problem, generalizing the bounds to the non–periodic setting. Finally, we apply our
results to study the closure, in terms of Γ–convergence, of two–phase gradient-constraints in
composites of the type f(x,∇u) ≤ C(x), with C(x) ∈ {α, β} for almost every x.

Contents

1. Introduction 2
2. Notation and Preliminaries on Finsler metrics 5
2.1. Finsler metrics: definition and main properties 6
2.2. Intrinsic distances 10
2.3. Homogenization of periodic Finsler metrics 12
3. Homogenization of two–phase metrics 13
3.1. The closure of Mα,β

p is N 13
3.2. Localization: the closure of Mα,β is M(RN ) 15
4. Homogenization with prescribed volume fraction 17
4.1. Some qualitative properties of Cl(Mα,β

θ ). 17
4.2. Bounds for Cl(Mα,β

θ ) 20
4.3. The localization Theorems 21
5. Applications to two–phase gradient constraint functionals 25
5.1. Two–phase gradient constraints and supremal functionals 25
5.2. Γ–closure of two–phase constraint functionals 26
5.3. The periodic case 29
Acknowledgments 30
References 30

Date: March 17, 2006.
2000 Mathematics Subject Classification. 58B20, 74Q20, 74E30.
Key words and phrases. Finsler metrics, homogenization, composites, Γ–convergence.

1



1. Introduction

A symmetric Finsler metric on RN is a Borel map ϕ : RN × RN → [0,+∞) such that
ϕ(x, ·) is a norm for every x ∈ RN . A symmetric Finsler distance on RN can be geodesically
associated with it as follows:

dϕ (x, y) := inf
{∫ 1

0
ϕ(γ, γ̇) dt : γ ∈W 1,∞ (

[0, 1]; RN
)
, γ(0) = x, γ(1) = y

}
.

Clearly, the family of Riemannian metrics is a subset of Finsler ones, which is however not
closed with respect to the Γ–convergence of the associated length functionals, or, equivalently,
with respect to the local uniform convergence of the corresponding distances. This was first
pointed out by Acerbi and Buttazzo in the case of periodic homogenization [1], where the
following example in dimension N = 2 is provided: consider a sequence of periodic coefficients
(an)n∈N of the form an(x) = a(nx), where the function a takes only two different values
β > α > 0 on the white and black squares of a chessboard, respectively. When n goes to
infinity, the distances associated with the metrics an(x)|ξ| converge to a norm φ(·). Moreover,
if the quotient β/α is sufficiently large, the unit ball Bφ := {ξ ∈ R2 : φ(ξ) ≤ 1} is a regular
octagon, so φ is non–Riemannian.

A natural question therefore arises: what kind of metrics can we obtain as limit of (con-
tinuous) Riemannian ones? The conjecture, as stated in [9], was that any symmetric Finsler
metric ϕ on RN satisfying

α|ξ| ≤ ϕ(x, ξ) ≤ β|ξ| on RN × RN , (1.1)

with α and β positive constants, can be approximated by smooth Riemannian metrics satis-
fying the same bounds; more precisely, there exists a sequence (ϕn)n of smooth Riemannian
metrics satisfying (1.1) such that ϕn ⇒ ϕ, i.e., such that the associated distances dϕn con-
verge, locally uniformly in RN × RN , to dϕ.

This issue was first considered by Braides, Buttazzo, Fragalà in [5] and partially solved
by additionally assuming ϕ lower semicontinuous. A complete answer has been subsequently
provided in [15] by one of the authors, where the same result is proved without assuming
any continuity of the metric in x. The sought sequence is obtained by approximating ϕ on a
dense subset of geodesics. These arguments have been generalized in [16] to obtain analogous
density results for non–symmetric Finsler metrics.

In this paper we prove another density result. Instead of regular Riemannian metrics, we
consider the class of two–phase metrics of the form

ϕ(x, ξ) :=
{
α|ξ| if x ∈ Bα;
β|ξ| if x ∈ Bβ,

(1.2)

where Bα and Bβ are two disjoint Borel sets whose union is RN . This class of metrics comes
out naturally in the study of composite materials, where the homogenized composite is often
obtained by a fine mixture of a finite number of homogeneous and isotropic materials. Our
main result is Theorem 3.3 which states that this class of metrics is dense in the class of
Finsler metrics satisfying (1.1).

The first result we give in this direction is the following (see Theorem 3.1). Let φ be a
norm on RN satisfying (1.1). Then there exists a sequence (ϕn)n of 1–periodic two–phase
metrics of the type (1.2) such that ϕn ⇒ φ. Moreover the metrics ϕn can be chosen upper
semicontinuous with respect to x, and this will be crucial in our applications.
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The main idea in the construction of the approximating sequence of two–phase metrics
is the following. Fix a vector ξ ∈ RN , and let γ : R → RN be a curve which satisfies the
following conditions:

i) γ is T–periodic on the N–dimensional torus;
ii) the mean direction of γ is ξ; i.e., ξ = γ(T )− γ(0);
iii) γ is a geodesic curve for the periodic metric ϕ defined by

ϕ(x, ξ) = α |ξ| on γ + ZN , ϕ(x, ξ) = β |ξ| otherwise.

Then we have
dϕ(γ(0), γ(T )) = αL,

where L > 1 is the length of γ on the torus. Therefore if L = φ(ξ)/α, by periodicity and by
iii) we obtain that

dϕ(γ(0), γ(nT )) = dφ(γ(0), γ(nT )) for every n ∈ N.

It follows that the stable norm ϕhom of ϕ obtained by homogenization (cf. formula (2.14)),
satisfies ϕhom(ξ) = φ(ξ). It is now clear that to prove the theorem it will be enough to repeat
the previous construction for an arbitrarily big number of vectors ξi: the proof reduces to
the construction of an arbitrarily big number of curves, with prescribed length and direction,
which are geodesic with respect to the two–phase metric taking the value α on their supports
and β elsewhere. The main difficulty is to check that the addition of any new curve preserves
the geodesic character of the previous ones. We will perform such construction using zig–zag
curves contained in small neighborhood of straight–lines of direction ξi. Finally a perturba-
tion argument will allow us to make these approximating metrics upper semicontinuous with
respect to x.

Once approximated a norm φ on RN , we can approximate any Finsler metric ϕ using a
localization argument as in [5], consisting in freezing the x dependence of ϕ. The conclusion
is that the class of two–phase metrics is dense in the class of Fisler ones.

This result is based on the assumption that the two–phase metrics can have arbitrarily
amount of the two different phases, while often in applications to composites the volume
fraction θ of one of the two, let us say of the phase α, is prescribed. Then a natural question is
what is the closure Cl(Mα,β

θ ) of the class Mα,β
θ of two–phase periodic metrics with prescribed

volume fraction θ. We have not a complete answer to this problem at the moment: in Theorem
4.6 we give upper and lower bounds for the set Cl(Mα,β

θ ). In Theorem 4.8 and Theorem 4.11
we localize these results, generalizing them to the non–periodic setting.

Let us now discuss some application of our results to the study of composites. Let Ω be
a bounded open subset of RN with Lipschitz continuous boundary, and consider the class of
functions u ∈W 1,∞(Ω) satisfying the following gradient constraint:

|∇u(x)| ≤ C(x) for a.e. x ∈ Ω. (1.3)

Pointwise gradient constraints of type (1.3) may occur in several different contexts, we refer for
instance to [4], [12], [25]. Assume now that Ω represents the reference configuration of a non
homogeneous body, and C(x) depends on the physical properties of the material at the point
x. The main example is given by a body made up by two different homogeneous isotropic
materials. In this case the function C(·) takes two values, α and β. If the body consists
in a fine mixture of the two materials, i.e., if the body is the result of a homogenization
process (for instance in the sense of Γ-convergence), the effect of condition (1.3) for the
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homogenized material has to be clarified. This problem was studied in [25] in the case of
periodic homogenization to model the dielectric breakdown. Here we consider the general
(non–periodic) case and we introduce some new techniques which make more general the
arguments used in [25]. Let us also mention that constraints functionals of the type (1.3)
have been largely studied in the last years in connection with problems of relaxation of
integral functionals. We refer the reader to [18],[19] and to the references therein.

The main ingredient in our approach is the connection between gradient constraints of the
type (1.3) and geodesic distances, already observed in [9], [10], [26]. The main point is that
(1.3) can be equivalently restated in the framework of supremal functionals as

F (u) := sup
Ω
f(x,∇u(x)) ≤ 1, (1.4)

where
f(x, ξ) :=

1
C(x)

|ξ|.

Let us consider the class of supremal functionals F of the form (1.4), with f(x, ξ) Carathéodory
function satisfying, for a.e x ∈ Ω,

α′|ξ| ≤ f(x, ξ) ≤ β′|ξ| for every ξ ∈ RN , (1.5)

f(x, λ ξ) = |λ|f(x, ξ) for every ξ ∈ RN and λ ∈ R, (1.6)

where α′ := 1/β, β′ := 1/α. In [26] the following fact is proved: F coincides with a difference
quotient functional of the type

RdF (u) := sup
x,y∈Ωx 6=y

u(x)− u(y)
dF (x, y)

,

where dF is a geodesic distance associated with F (see (5.5)). On the contrary, a difference
quotient functional Rd can be written in a supremal form only if the distance d is geodesic, and
satisfies the additional condition to be an intrinsic distance (see Definition 2.15). Moreover
a sequence of difference quotients Rdn Γ-converges to some Rd if and only if dn converges to
d. In particular, a sequence of supremal functionals Γ-converges up to a subsequence to some
difference quotient functional Rd, which can be written in a supremal form if and only if d is
intrinsic. The class of difference quotient functionals is then the closure under Γ–convergence
of supremal functionals, and it strictly contains supremal functionals, as geodesic distances
strictly contain intrinsic distances (cf. [16], [26]).

In our applications we specialize these results to the case of two–phase supremal functionals,
or, equivalently, of two–phase constraints. The problem of the closure under Γ–convergence
of two–phase constraints is then reduced to the problem of the closure of two–phase intrinsic
distances. The property to be intrinsic of a distance d associated with a metric ϕ is guaranteed
by the upper semicontinuity of ϕ; this is why in our main results we require the approximating
sequence of metrics to be upper semicontinuous. In view of our density results on two–
phase metrics, we deduce (see Theorem 5.4 and Theorem 5.5) that the closure of two–phase
constraint of the type (1.3), with C(x) ∈ {α, β}, is given by the class of the constraints of
the type Rd(u) ≤ 1, where d varies in the class of geodesic distances associated with the
Finsler metrics satisfying (1.1). This class contains, in particular, any constraint of the type
ess supΩ f(x,∇u(x)) ≤ 1, where f varies on the class of Charatéodory functions satisfying
(1.5) and (1.6).

Finally we consider the periodic case: if the volume fraction θ is not prescribed, then the
closure with respect to periodic homogenization of two–phase constraints is given (see Remark

4



5.10) by the class of all constraints of the type supRN f(∇u(x)) ≤ 1, where f varies on the
class of norms defined on RN satisfying (1.5).

In the case of prescribed volume fraction θ, we get the additional condition f∗ ∈ Mα,β
θ ,

where the function f∗ is defined by duality in (2.10). The upper and lower bounds for the
class Cl(Mα,β

θ ) improve the ones obtained in [25], and make more general that approach.
Finally let us mention that our density results can be used to model line–energies for

composites. A relevant case is that of Griffith’s surface energy associated with a crack in a
planar hyper–elastic body. Given a one dimensional crack in the body, the associated surface
energy in the Griffith’s theory is essentially proportional to the length of the crack. If the
body is made by two different materials, then it is natural to consider a two–phase surface
energy. Therefore our density results can be involved to approach the problem of the G–
closure of two–phase Griffith’s energies in composites. The analogous problem concerning
the G–closure of two–phase bulk energies is by now classic, and was completely solved in the
linear case by Lurie and Cherkaev in [27], and by Tartar in [28].

The paper is organized as follows. In Section 2 we introduce the notion of Finsler metric
and we recall its main properties. In Section 3 we give our density results of two–phase
metrics. In Section 4 we consider the problem of periodic Finsler metrics with prescribed
volume fraction, then we localize the analysis to the non–periodic case. In Section 5 we apply
our results to study the asymptotic behavior of two–phase constraint functionals.

2. Notation and Preliminaries on Finsler metrics

We write below a list of symbols used throughout the paper.

N an integer number
Br(x) the open ball in RN of radius r centered at x
Br the open ball in RN of radius r centered at 0
SN−1 the (N − 1)–dimensional unitary sphere of RN

Q the unitary cube [0, 1]N in RN

Hk k–dimensional Hausdorff measure
|u| Euclidean norm of the vector u ∈ Rk

χE the characteristic function of the set E

Given a subset U of Rk, we denote by U its closure. We furthermore say that U is well
contained in a subset V of Rk if U is compact and contained in V . If E is a Lebesgue
measurable subset of Rk, we denote by |E| its k–dimensional Lebesgue measure, and we say
that E is negligible whenever |E| = 0. We say that a property holds almost everywhere (a.e.
for short) on Rk if it holds up to a negligible subset of Rk. Given an integrable function
f : Rk → R, the notation

∫
−Ef dx stands for 1

|E|
∫
E f dx.

An open and connected subset of RN will be referred as domain in the sequel. Throughout
the paper, α and β will always denote two fixed positive constants with β > α.

We recall the notion of Γ–convergence (we refer the reader to [14] for an exhaustive treat-
ment of this topic). Given a metric space X, we will say that a sequence of functionals
Fn : X → R ∪ {±∞} Γ–converge to a functional F on X if

F (x) = Γ− lim inf
n

Fn(x) = Γ− lim sup
n

Fn(x) for every x ∈ X,

5



where

Γ− lim inf
n

Fn(x) = inf {lim inf
n

Fn(xn) : xn → x }

Γ− lim sup
n

Fn(x) = inf {lim sup
n

Fn(xn) : xn → x }.

If Fn Γ–converge to F on X, then F is lower semicontinuous, and is coercive too provided
the functionals Fn are equi–coercive. In this case we have the crucial property of the Γ–
convergence, that is, the sequence infX Fn converges to the minimum of F on X.

2.1. Finsler metrics: definition and main properties. We collect in this section the
main definitions and properties of Finsler metrics we shall need in the sequel. For a more
detailed presentation of this material, we refer to [17].

Let Ω be a domain in RN with Lipschitz boundary and denote by M either Ω or its closure
Ω. We will denote by Γ(M) the family of all Lipschitz curves from [0, 1] to M , and we will
always assume that such curves are parametrized with constant velocity. The space Γ(M) is
equipped with the metric given by the uniform convergence, namely we say that the sequence
(γn)n converges to γ to mean that supt∈I |γn(t)− γ(t)| tends to zero as n goes to infinity. We
will denote by Γx,y(M) the subset of curves in Γ(M) joining x to y; i.e., such that γ(0) = x
and γ(1) = y. Throughout the paper, we will adopt the concise notation H1(γ) to denote the
Euclidean length H1

(
γ([0, 1])

)
of a curve γ ∈ Γ(M).

Let us set
|x− y|M := inf

{
H1(γ) : γ ∈ Γx,y(M)

}
for every x, y ∈M . Since ∂Ω is Lipschitz, there exists a constant C > 0 such that

|x− y| ≤ |x− y|M ≤ C|x− y| for all x, y ∈M.

Let d be a distance on M . The d–length of a curve γ ∈ Γ(M) is defined as the supremum of
the d–lengths of inscribed polygonal curves, namely as

Ld(γ) := sup
{m−1∑

i=0

d
(
γ(ti), γ(ti+1)

)
: 0 = t0 < t1 < .. < tm = 1, m ∈ N

}
. (2.1)

We will say that d is a geodesic distance on M if

d(x, y) = inf {Ld(γ) : γ ∈ Γx,y(M)} for every x, y ∈M.

Let us now fix two positive constants α and β. We denote by D(M) the family of geodesic
distances on M satisfying

α|x− y|M ≤ d(x, y) ≤ β|x− y|M for all x, y ∈M. (2.2)

We endow D(M) with the metric given by the uniform convergence on compact subsets of
M ×M . The convergence of a sequence (dn)n to d in D(M) will be hereafter denoted by
dn ⇒ d (in M ×M). We have (cf. [9, Theorem 3.1]):

Theorem 2.1. When M is closed, D(M) is a compact metric space.

Any distance in D(M) induces on M a topology which is equivalent to the Euclidean one.
Therefore the following proposition holds (cf. [3, Busemann–Theorem 4.3.1]).
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Theorem 2.2. Let d ∈ D(M). The length functional Ld is lower semicontinuous on Γ(M)
with respect to the uniform convergence of paths; i.e., if (γn)n converges to γ, then

Ld(γ) ≤ lim inf
n

Ld(γn).

When M is closed, we have in particular that, for every pair of points x, y in M ,

d(x, y) = Ld(γ) for some γ ∈ Γx,y(M).

Any path of minimal d–length joying two points x,y ∈M will be referred as geodesic.
Let us now introduce the notion of symmetric Finsler metric.

Definition 2.3. A symmetric Finsler metric on M is a Borel–measurable function ϕ : M ×
RN → [0,+∞) such that

i) ϕ(x, λ ξ) = λϕ(x, ξ) for every (x, ξ) ∈M × RN , and for every λ ≥ 0;
ii) ϕ(x, ·) is convex on RN , for a.e. x ∈M ;
iii) for every curve γ ∈ Γ(M)

ϕ(γ(t), γ̇(t)) = ϕ(γ(t),−γ̇(t)) for a.e. t ∈ [0, 1].

We set

M(M) :=
{
ϕ symmetric Finsler metrics on M : α|ξ| ≤ ϕ(x, ξ) ≤ β|ξ| on M × RN

}
.

To any ϕ ∈M(M), we can associate a distance dϕ ∈ D(M) through the formula

dϕ (x, y) := inf {Lϕ (γ) : γ ∈ Γx,y(M) } , (2.3)

where the length functional Lϕ is defined as

Lϕ(γ) :=
∫ 1

0
ϕ(γ(t), γ̇(t)) dt, γ ∈ Γ(M). (2.4)

When ϕ(x, ξ) := a(x)|ξ| for some Borel coefficient a : M → [α, β], the related distance dϕ
will be denoted by da.

The following holds (cf. [20, Theorem 4.3]):

Proposition 2.4. Let ϕ ∈M(M). Then Ldϕ is the relaxed functional of Lϕ on Γ(M); i.e.,

Ldϕ(γ) = inf
{

lim inf
n→+∞

Lϕ(γn) : (γn)n converges to γ in Γ(M)
}

for any γ ∈ Γ(M).

Remark 2.5. The functional Ld agrees with Lϕ whenever the latter is lower semicontinuous
on Γ(M). This happens, for instance, when ϕ is lower semicontinuous on M ×RN and ϕ(x, ·)
is convex on RN for every x ∈M (cf. [11, Theorem 4.1.1]).

Conversely, to any geodesic distance d ∈ D(M), we can associate a symmetric Finsler
metric ϕd ∈M(M) in the following way: for every (x, ξ) ∈M × RN , set

ϕd (x, ξ) := lim sup
h→0+

d (γ(0), γ(h))
h
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if there exists a Lipschitz curve γ : (−ε, ε) →M such that (γ(0), γ̇(0)) = (x, ξ), and

ϕd (x, ξ) := β |ξ| otherwise.

Since d is locally equivalent to the Euclidean distance, this definition makes sense, that is,
ϕd(x, ξ) does not depend on the choice of the curve γ.

When M = Ω, the above definition agrees with the following (see [23, Section 2]):

ϕd (x, ξ) := lim sup
h→0+

d (x, x+ hξ)
h

for every (x, ξ) ∈ Ω× RN . (2.5)

The following integral representation result holds (cf. [23, Theorem 2.5]):

Proposition 2.6. Let d ∈ D(M). Then

Ld(γ) =
∫ 1

0
ϕd(γ(t), γ̇(t)) dt for every γ ∈ Γ(M).

In particular, d = dϕd
.

Remark 2.7. Proposition 2.6 implies that the map M(M) 3 ϕ 7→ dϕ ∈ D(M) is surjective.
It is not injective, however. In fact, the inequality Ldϕ(γ) ≤ Lϕ(γ), which holds true for any
γ ∈ Γ(M), yields

ϕdϕ(x, ξ) ≤ ϕ(x, ξ) for every (x, ξ) ∈M × RN ,

and this inequality can be strict when ϕ is not continuous, as easy examples show.

In the sequel, we will write ϕn ⇒ ϕ in M(M) to mean that dϕn ⇒ dϕ in D(M). Next
proposition gives sufficient conditions for the convergence of metrics in M(M).

Proposition 2.8. Assume M closed, and let ϕ, ϕn ∈M(M). Then ϕn ⇒ ϕ in the following
cases:

i) (ϕn) converges uniformly to ϕ on compact subsets of M ×M ;
ii) the metrics ϕn are lower semicontinuous and converge increasingly to ϕ pointwise on

M × RN ;
iii) (ϕn) converges decreasingly to ϕ pointwise on M × RN .

The following proposition establishes the equivalence between the convergence of distances
in D(M), and the Γ-convergence of the associated length functionals.

Proposition 2.9. Assume M closed. Let ϕn and ϕ be in M(M), and denote by dn and d
the associated distances in D(M). The following facts are equivalent.

i) dn ⇒ d;
ii) dn → d pointwise in M ×M ;
iii) The functionals Lϕn Γ-converge to the relaxation Ld of Lϕ, with respect to the uniform

convergence in Γ(M).

The following density result has been been established in [15]
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Theorem 2.10. Assume M closed. Then continuous metrics are dense in M(M). More
precisely, for every ϕ ∈M(M) there exists a sequence of continuous functions an : M → [α, β]
such that

dan ⇒ dϕ in D(M).

We now study the relation between D(Ω) and D(Ω). Any distance belonging to D(Ω) is
Lipschitz continuous, so it can be uniquely extended by continuity to Ω × Ω. The following
result holds.

Proposition 2.11. Given ϕ ∈M(Ω), denote by ϕ the extension of ϕ to Ω×RN obtained by
setting ϕ(x, ·) := β | · | on ∂Ω. Then

dϕ(x, y) := inf
γ∈Γx,y(Ω)

∫ 1

0
ϕ(γ(t), γ̇(t)) dt = inf

γ∈Γx,y(Ω)

∫ 1

0
ϕ(γ(t), γ̇(t)) dt (2.6)

for every x, y ∈ Ω. In particular, the continuous extension of dϕ to Ω× Ω is the distance dϕ
defined as

dϕ(x, y) = inf
{∫ 1

0
ϕ(γ(t), γ̇(t)) dt : γ ∈ Γx,y(Ω)

}
for every x, y ∈ Ω. (2.7)

Proof. For every n ∈ N, let

ϕn(x, ξ) :=

{
β|ξ| if x ∈ An
ϕ(x, ξ) elsewere,

where An := {x ∈ Ω : dist(x,RN \Ω) < 1/n }, and let dϕn
be the distance on Ω×Ω defined

according to (2.7). Since the ϕn are continuous on An × RN , it is easy to see that

dϕn
(x, y) = inf

{∫ 1

0
ϕn(γ(t), γ̇(t)) dt : γ ∈ Γx,y(Ω)

}
for every x, y ∈ Ω.

As ϕ = ϕ ≤ ϕn on Ω× RN , we deduce that

dϕ(x, y) ≤ dϕ(x, y) ≤ dϕn
(x, y) for every x, y ∈ Ω.

Since ϕn(x, ξ) converges decreasingly to ϕ(x, ξ) on Ω×Ω, the assertion follows by Proposition
2.8. �

Remark 2.12. We can define a continuous immersion i : D(Ω) ↪→ D(Ω) by identifying any
element of D(Ω) with its unique continuous extension to Ω × Ω. By Proposition 2.11 we
deduce {

dϕ : ϕ ∈M(Ω), ϕ(x, ·)|∂Ω = β| · |
}
⊆ i (D(Ω)) . (2.8)

Moreover i (D(Ω)) is dense in D(Ω), since the set{
dϕ : ϕ ∈M(Ω), ϕ continuous on Ω× RN

}
(2.9)

is dense in D(Ω) by Theorem 2.10, and is clearly contained in i (D(Ω)) (cf. Proposition 2.18).
In general i (D(Ω)) is a strict subset of D(Ω), in particular D(Ω) is not closed. The example
is easy: take Ω := (0, 1)N and consider the distance d ∈ D(Ω) associated through (2.3) to the
isotropic metric a(·) identically equal to β on Ω and to α on ∂Ω. Since ϕd(x, ξ) = β|ξ| for
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every x ∈ Ω, it is clear that d cannot belong to i (D(Ω)).

We conclude this paragraph by proving an auxiliary lemma that will be required in Section
5.

Lemma 2.13. Let Ω be a convex subset of RN , and ϕ ∈ M(Ω). Extend ϕ to a metric
ϕ ∈M(RN ) by setting ϕ(x, ·) := β | · | outside Ω, and denote by dϕ ∈ D(Ω) and dϕ ∈ D(RN )
the distances associated through (2.3) to ϕ and ϕ, respectively. Then

dϕ(x, y) = dϕ(x, y) for every x, y ∈ Ω.

Remark 2.14. In the definition of dϕ(x, y) the minimization is made among curves constraint
to stay in Ω. Hence dϕ(x, y) ≥ dϕ(x, y) for x, y ∈ Ω, in general, and the inequality can be
strict for non–convex domains, as easy examples show.

Proof. It is enough to prove that

dϕ(x, y) = inf
{∫ 1

0
ϕ(γ(t), γ̇(t))dt : γ ∈ Γx,y(Ω)

}
for every x, y ∈ Ω,

for the right–hand side term coincides with dϕ(x, y) by Proposition 2.11. Let γ be any
admissible curve in Γx,y(RN ), and let ξ(t) := π(γ(t)) for every t ∈ [0, 1], where π : RN → Ω
denotes the projection on the convex set Ω. Since ξ ∈ Γx,y(Ω), it suffices to prove that∫ 1

0
ϕ(ξ(t), ξ̇(t)) dt ≤

∫ 1

0
ϕ(γ(t), γ̇(t)) dt.

But this easily follows from the fact that the inequality |ξ̇(t)| ≤ |γ̇(t)| for a.e. t ∈ [0, 1], which
holds true for π is 1–Lipschitz continuous, implies that ϕ(ξ(t), ξ̇(t)) ≤ ϕ(γ(t), γ̇(t)) for a.e.
t ∈ [0, 1]. �

2.2. Intrinsic distances. We recall here the definition of intrinsic distance introduced by
De Cecco and Palmieri and its main properties (for details see [20], [21], [22], [23]).

Definition 2.15. We say that a distance d ∈ D(M) is intrinsic if

d(x, y) = sup
|E|=0

{
inf

{ ∫ 1

0
ϕd(γ, γ̇) dt : γ ∈ ΓEx,y(M)

}}
,

where ΓEx,y(M) denotes the set of all Lipschitz curves in Γx,y(M) which are transversal to E;
i.e., such that

|{t ∈ [0, 1] : γ(t) ∈ E }| = 0.

To any Finsler metric ϕ ∈M(M) we associate an intrinsic distance dϕ on M in the following
way. We define the dual metric of ϕ on M × RN as

ϕ∗(x, η) := sup
|ξ|=1

{ ξ · η
ϕ(x, ξ)

}
. (2.10)

Clearly, ϕ∗ enjoys
1
β
|η| ≤ ϕ∗(x, η) ≤ 1

α
|η| for all (x, η) ∈M × RN .

10



The intrinsic distance dϕ is defined by

dϕ(x, y) := sup
{
u(y)− u(x) : ess sup

M
ϕ∗(x,∇u(x)) ≤ 1

}
(2.11)

for every x, y ∈M . It is known that the above definition is equivalent to the following:

dϕ(x, y) = sup
|E|=0

{
inf

{ ∫ 1

0
ϕ(γ, γ̇) dt : γ ∈ ΓEx,y(M)

}}
.

Moreover we have (see [22, Theorem 2.10] and [8, Theorem 3.1]):

Theorem 2.16. Let ϕ ∈ M(M) and dϕ as above. Then there exists a metric ϕ̃ ∈ M(M)
with ϕ̃(x, ·) = ϕ(x, ·) for almost every x ∈M such that dϕ = dϕ̃. In particular, dϕ belongs to
D(M).

Remark 2.17. In fact, ϕ̃ can be taken of the form ϕ(x, ξ)χM\F (x)+β|ξ|χF (x) for a suitable
negligible Borel–measurable subset F of M .

Given ϕ ∈ M(M), the intrinsic distance dϕ is in general different from dϕ. The following
result however holds (see Theorem 4.5 in [23], or Proposition 3.6 in [8]).

Proposition 2.18. Let ϕ ∈M(M) be upper semicontinuous on M × RN . Then dϕ = dϕ.

We now state a proposition that will be required later. It could be deduced by the results
in [13]. A more direct proof is provided below for the reader’s convenience.

Proposition 2.19. Let ϕ ∈ M(RN ) be such that dϕ = dϕ. For each n ∈ N, let ϕn be the
metric in M(RN ) defined as

ϕn(x, ξ) := (ρn ∗ ϕ)(x, ξ) =
∫

RN

ρn(x− y)ϕ(y, ξ) dy for every (x, ξ) ∈ RN × RN ,

where (ρn)n is a sequence of standard mollifiers. Then ϕn ⇒ ϕ in M(RN ).

Proof. We want to show that every convergent subsequence of (dϕn)n has dϕ as limit, which
is enough to prove the statement by the compactness of D(RN ) .

Let us then consider such a subsequence (not relabelled to ease notations) and call δ its
limit distance. We start by showing that

δ(x, y) ≤ dϕ(x, y) for every x, y ∈ RN . (2.12)

We already know that

ϕ(x, ξ) = lim
n→+∞

ϕn(x, ξ) for every (x, ξ) ∈
(
RN \ E

)
× RN

for some negligible subset E of RN . The equality dϕ = dϕ implies that dϕ is not affected by
modification of the metric on negligible subsets of RN with respect to x, hence, up to setting
ϕ(x, ξ) := β|ξ| on E × RN , we can assume as well that

ϕ(x, ξ) ≥ lim sup
n→+∞

ϕn(x, ξ) for every (x, ξ) ∈ RN × RN .

Now, by Fatou’s Lemma, for every curve γ ∈ Γ(RN ) we get∫ 1

0
ϕ(γ, γ̇) dt ≥ lim sup

n→+∞

∫ 1

0
ϕn(γ, γ̇) dt ≥ lim sup

n→+∞
dϕn(γ(0), γ(1)),

so (2.12) follows by letting γ vary in Γx,y(RN ), for any fixed x, y ∈ RN .
11



Let us pass to the proof of the converse inequality

δ(x, y) ≥ dϕ(x, y) for every x, y ∈ RN . (2.13)

Let u be a Lipschitz function on RN such that ϕ∗(x,∇u(x)) ≤ 1 for almost every x ∈ RN .
For each n ∈ N, set un := ρn ∗ u. We claim that ϕ∗n(x,∇un(x)) ≤ 1 for every x ∈ RN ; i.e.

∇un(x) · η ≤ ϕn(x, η) for every x, η ∈ RN .

By the fact that ∇un = ρn ∗ ∇u, we indeed have:

∇un(x) · η = 〈
∫

RN

ρn(x− y)∇u(y) dy, η〉 =
∫

RN

ρn(x− y) 〈∇u(y), η〉dy

≤
∫

RN

ρn(x− y)ϕ(y, η) dy = ϕn(x, η)

for every x, η ∈ RN , as claimed. Now each ϕn is continuous, hence, by Proposition 2.18, we
deduce that

dϕn(x, y) = dϕn(x, y) ≥ un(y)− un(x)
for every x, y ∈ RN , hence, letting n→ +∞, we get

δ(x, y) ≥ u(y)− u(x).

Since dϕ = dϕ, (2.13) follows taking the supremum of the right–hand side term in the previous
inequality over all functions u such that ϕ∗(x,∇u(x)) ≤ 1 almost everywhere on RN . �

2.3. Homogenization of periodic Finsler metrics. A Finsler metric ϕ on RN will be
called 1–periodic if ϕ(x, ·) = ϕ(x+ z, ·) for every x ∈ RN and z ∈ ZN . We will denote by Mp

the family of 1–periodic Finsler metrics ϕ ∈ M(RN ), and by N the space of norms on RN

belonging to M(RN ). For any φ ∈ N we set

‖φ‖ := max
|ξ|=1

|φ(ξ)|.

Given ϕ ∈ Mp, let us set ϕε(x, ξ) := ϕ(x/ε, ξ) on RN × RN for every ε > 0. Next
proposition establishes a Γ–convergence result for the functionals Lϕε defined by (2.4) (see
[2]).

Proposition 2.20. Let ϕ be in Mp. The length functionals Lϕε Γ–converge to Lϕhom in
Γ(RN ) as ε→ 0, where ϕhom ∈ N is defined by

ϕhom(ξ) = lim
ε→0+

dϕε(0, ξ) = lim
t→+∞

1
t
dϕ(0, tξ). (2.14)

By Proposition 2.9 this implies dϕε ⇒ dϕhom in D(RN ), or, equivalently, ϕε ⇒ ϕhom in
M(RN ). The norm ϕhom is called the stable or asymptotic norm of the metric ϕ.

We conclude this section by proving a lemma that will be crucial in the sequel. Let us
denote by Y := [−1/2, 1/2]N the closed unit cube centered at 0.

Lemma 2.21. Let ϕ1, ϕ2 ∈ Mp. Then there exists a positive constant C > 0, depending on
α and β only, such that, for every x, y ∈ RN ,

|dϕ1(x, y)− dϕ1(x, y)| ≤ C(1 + |x− y|) ‖dϕ1 − dϕ2‖L∞(2Y×2Y ). (2.15)

In particular if ϕn ⇒ ϕ in Mp, then ϕhomn ⇒ ϕhom in N .
12



Proof. Let x, y in RN and let γ be a geodesic curve for x, y with respect to the distance dϕ1 .
Let m :=

[
2H1(γ)

]
+ 1 and set ti := i/m for each i ∈ {0, . . . ,m}. Then 0 = t0 < t1 < · · · <

tm = 1 is a partition of [0, 1] such that

γ([ti, ti+1]) ⊂ γ(ti) + Y for each i = 0, . . . ,m− 1.

By 1-periodicity of ϕi, together with the fact that m ≤ C(1 + |x− y|) for a positive constant
C depending on α and β only, we deduce

dϕ2(x, y) ≤
∑
i

dϕ2(γ(ti), γ(ti+1))

≤
∑
i

dϕ1(γ(ti), γ(ti+1)) +m ‖dϕ1 − dϕ2‖L∞(2Y×2Y )

≤ dϕ1(x, y) + C(1 + |x− y|) ‖dϕ1 − dϕ2‖L∞(2Y×2Y ),

and (2.15) follows by interchanging the roles of ϕ1 and ϕ2.
The last assertion is an easy consequence of (2.15) and of the homogenization formula

(2.14). �

3. Homogenization of two–phase metrics

In this section we consider the problem of finding the closure (i.e. all possible limits) of
two–phase metrics. We call two–phase metric every metric ϕ ∈M(RN ) of the form

ϕ(x, ξ) :=
{
α|ξ| if x ∈ Bα;
β|ξ| if x ∈ Bβ,

(3.1)

where Bα and Bβ are two disjoint Borel sets whose union is RN . We denote by Mα,β the
subset of M(RN ) given by two–phase metrics, and by Mα,β

p the class of 1-periodic metrics of
type (3.1); namely, with Bα (and Bβ) 1-periodic.

3.1. The closure of Mα,β
p is N . In this paragraph we will prove (see Theorem 3.1) that

every norm φ ∈ N can be approximated by a sequence ϕn in Mα,β
p . Moreover (see Theorem

3.3) φ is approximated also by the stable norms ϕhomn obtained through (2.14).

Theorem 3.1. Let φ ∈ N . There exists a sequence ϕn ∈Mα,β
p such that ϕn ⇒ φ.

Proof. Let (ξ)i∈N be a sequence of unit vectors with rational directions, and dense in SN−1.
For each i let us denote by Ri the straight line of direction ξi passing through the origin. We
now replicate Ri by 1–periodicity: for each z ∈ ZN , set Rzi := Ri + z. For every positive
integer M let us consider the Finsler metric φM ∈M(RN ) defined by

φM (x, ξ) :=
{
φ(ξi) |ξ| if x ∈ Rzi for some i ≤M, z ∈ ZN ;
β|ξ| otherwise. (3.2)

By construction, for every i ≤M we have

dφM
(0, tξi) = |t|φ(ξi) for every t ∈ R.

By the homogenization formula (2.14) we deduce φhomM (ξi) = φ(ξi) for every i ≤ M , which
yields φhomM ⇒ φ in N for M → +∞. Using a diagonal argument, the proof of the theorem
reduces to approximate every φM with metrics in Mα,β

p . Namely, we have to construct a
sequence of periodic Borel functions an : RN → {α, β} such that dan ⇒ dφM

.
13



Given δ > 0, we denote by Rzi (δ) the closed tubular neighborhood of Rzi of width δ; i.e.,

Rzi (δ) := {x ∈ RN : dist(x,Rzi ) ≤ δ }

for each 1 ≤ i ≤ M and z ∈ ZN , and we define a zig–zag polygonal curve Zzi (δ) contained
in Rzi (δ) as follows: each Zzi (δ) lives in a 2–dimensional plane containing the straight line Rzi
(whose choice plays no role in our construction). The angle θi that the segment lines of Zzi (δ)
form with the straight line Rzi is chosen in such a way that

α = φ(ξi) cos θi. (3.3)

Finally we can assume that every Zzi (δ) is 1-periodic. Let

aδ(x) :=
{
α if x ∈ Zzi (δ), for some 1 ≤ i ≤M and z ∈ ZN ;
β elsewhere. (3.4)

The map aδ is 1–periodic and lower semicontinuous on RN . We want to show that every
convergent subsequence (daδn

)n with δn ↓ 0 has dφM
as limit, which implies that the whole

sequence converges to dφM
, by compactness of D(RN ).

Let us then fix such a sequence, denoted by (dn)n to ease notations, and let d be its limit.
In order to prove that d = dφM

, we will actually show that∫ 1

0
ϕd(γ, γ̇) dt =

∫ 1

0
φM (γ, γ̇) dt for every curve γ ∈ Γ(RN ). (3.5)

Let us set L := ∪Mi=1 ∪z∈ZN Rzi . To prove (3.5) it will be enough to show that

ϕd(x, ξ) = β|ξ| = φM (x, ξ) on
(
RN \ L

)
× RN , (3.6)

ϕd(x, ξi) = φM (x, ξi) for H1–a.e. x ∈
⋃
z∈ZN

Rzi , 1 ≤ i ≤M. (3.7)

To prove (3.6), note that if x ∈ RN \ L then there exist nx ∈ N and hx > 0 such that

dn(x, x+ hξ)
h

= β|ξ| for all n ≥ nx, ξ ∈ SN−1 and h ∈ (0, hx).

Let us pass to the proof of (3.7). Let Σ be the H1–negligible subset of L containing all points
belonging to (at least) two distinct straight lines. Pick up a point x ∈ L \ Σ. Then x ∈ Rzi
for some 1 ≤ i ≤M and z ∈ ZN . We want to show that there exists hx > 0 such that

lim
n→∞

dn(x, x+ hξi)
h

= φ(ξi) for all h ∈ (0, hx). (3.8)

This immediately implies (3.7) by letting h→ 0.
To this end, let us choose hx suitably small in such a way that B(x, βα hx) does not intersect

any other straight line Rz
′
j different from Rzi . Then there exists a suitably large integer nx

such that for every n ≥ nx we have

B(x,
β

α
hx) ∩ Zz

′
j (δn) = ∅ if either j 6= i or z′ 6= z.

Fix n ≥ nx and h ∈ (0, hx). Let γn be an optimal curve for dn(x, x + hξi) (which does exist
as aδn is lower semicontinuous, cf. Theorem 2.2 and Remark 2.5). As

αH1(γn) ≤ dn(x, x+ hξi) ≤ β hx,
14



the curve γn is contained in B(x, βα hx), hence Zzi (δn) is the only zig–zag polygonal curve it
can intersect. Let us set

I1 := {t ∈ [0, 1] : γn(t) ∈ Zzi (δn)}, I2 := [0, 1] \ I1.

Finally let us set

v1 :=
∫
I1

γ̇n dt, v2 :=
∫
I2

γ̇n dt.

By (3.3), we have∫
I1

aδn(γn)|γ̇n|dt = φ(ξi)
∫
I1

cos(θi)|γ̇n|dt ≥ φ(ξi)
∫
I1

γ̇n · ξi dt = φ(ξi) v1 · ξi.

Moreover, by construction,∫
I2

aδn(γn)|γ̇n|dt ≥ β|v2| ≥ φ(ξi) v2 · ξi.

We deduce that

dn(x, x+ hξi) =
∫ 1

0
aδn(γn)|γ̇n|dt ≥ (v1 + v2) · ξi φ(ξi) = hφ(ξi),

and that proves that (3.8) holds with an inequality. The inverse inequality is easier, and
follows directly by setting

h := min{t ∈ [0, h] : x+ tξi ∈ Zzi (δn)}, h := max{t ∈ [0, h] : x+ tξi ∈ Zzi (δn)},

and choosing as competitor curve in (2.4) the curve γn joining x to x+hξi, obtained by gluing
the polygonal curve which moves along Zzi (δn) from x+hξi to x+hξi with the two segments
having x, x+ hξi and x+ hξi, x+ hξi as end–points, respectively. �

Remark 3.2. In Theorem 3.1 we can also require the sequence ϕn to be upper semicontinuous
with respect to x. This can be done by a suitable modification of the metric aδ defined in
(3.4). More precisely, for every ρ > 0 we consider the open ρ-neighborhood (Zzi (δ))

ρ of Zzi (δ),
and define aδ,ρ by

aδ,ρ(x) :=
{
α if x ∈ (Zzi (δ))

ρ, for some 1 ≤ i ≤M and z ∈ ZN
β elsewhere.

It is easy to see that aδ,ρ and its lower semicontinuous envelope aδ,ρ induce the same distance.
Since aδ = supρ>0 aδ,ρ, we get aδ,ρ ⇒ aδ as ρ→ 0 in view of Proposition 2.8. The conclusion
follows by a diagonal argument.

Thanks to Lemma 2.21 and Theorem 3.1 we immediately deduce the following result.

Theorem 3.3. Let φ in N . Then there exists a sequence ϕn ∈Mα,β
p such that ϕhomn ⇒ φ.

3.2. Localization: the closure of Mα,β is M(RN ). Here we show that Theorem 3.1 can be
localized, leading to a density result of (non periodic) two–phase Finsler metrics in M(RN ).
As in [5], the strategy is to freeze the dependence on the x variable.

Theorem 3.4. Let ϕ ∈ M(RN ). Then there exists a sequence of upper semicontinuous
metrics ϕn ∈Mα,β such that ϕn ⇒ ϕ.
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Proof. Thanks to Theorem 2.10, we already know that continuous metrics are dense in
M(RN ). It is then enough to prove the statement when ϕ is continuous. The assertion
in the general case follows via a diagonal argument.

Given k ∈ N and λ ∈ (0, 1], we define an upper semicontinuous metric ϕλk ∈ M(RN ) by
setting

ϕλk(x, ξ) :=
{
ϕ(xki , ξ) if x ∈ xki + (− λ

2k ,
λ
2k )N for xki ∈ ZN/k, i ∈ N

β|ξ| elsewhere.
(3.9)

The metrics ϕ1
k converge to ϕ locally uniformly on

(
RN \ E

)
× RN , where E is a negligible

subset of RN . That easily implies dϕ
1
k ⇒ dϕ in RN ×RN , hence ϕ1

k ⇒ ϕ by Proposition 2.18.
Moreover, for each k ∈ N,

ϕ1
k(x, ξ) = inf

λ∈(0,1)
ϕλk(x, ξ) for every (x, ξ) ∈ RN × RN ,

so Proposition 2.8 yields ϕλk ⇒ ϕ1
k as λ → 1−. Therefore, using a diagonal argument, the

proof reduces to approximate each ϕλk using metrics in Mα,β, for every k ∈ N and λ ∈ (0, 1).
So, let us fix k ∈ N and λ ∈ (0, 1). To ease notations, we will write Qi in place of

xki +
(
− λ/(2k), (λ/(2k)

)N . By Theorem 3.1, for every i there exists a sequence φin ∈ Mα,β

such that
φin ⇒ ϕ(xki , ·) in M(RN ) for n→ +∞. (3.10)

Let us define the metric ϕn in Mα,β as follows:

ϕn(x, ξ) :=
{
φin(x, ξ) if x ∈ Qi for some i ∈ N
β|ξ| elsewhere. (3.11)

In order to conclude the proof, by the compactness of D(RN ) it suffices to show that every
convergent subsequence of

(
dϕn

)
n

has dϕλ
k

as limit.
Let us then fix such a subsequence, denoted by (dn) to ease notations, and let d be its

limit. In this case, the metric length functional (2.1) associated with dϕλ
k

agrees on Γ(RN )
with Lϕλ

k
, where ϕλ

k
denotes the lower semicontinuous envelope of ϕλk . Thus, to prove that

d = dϕλ
k
, it suffices to show that∫ 1

0
ϕd(γ, γ̇) dt =

∫ 1

0
ϕλ
k
(γ, γ̇) dt for every γ ∈ Γ(RN ). (3.12)

Let x ∈ Qi for some i ∈ N. Then, for a sufficiently small hx > 0, all minimal curves for Ldn

with end–points within B(x, hx) are entirely contained in Qi, for each n ∈ N. By (3.10), we
deduce that

ϕd(x, ξ) = ϕ(xki , ξ) = ϕλ
k
(x, ξ) on Qi × RN , for any i ∈ N. (3.13)

It is furthermore easy to see that ϕd(x, ξ) = β|ξ| = ϕλ
k
(x, ξ) for every ξ ∈ RN when x 6∈⋃

i∈NQi. Now, pick up a point x belonging to ∂Qi for some i ∈ N, and let ξ be a vector in
RN tangential to ∂Qi at x (which exists whenever x is not a vertex of Qi, hence at H1–almost
every x). Then there exists a sequence of points xn ∈ Qi and hx > 0 such that xn → x, and
xn + hξ ∈ Qi for every h ∈ [0, hx] and n ∈ N. By (3.13) we get

d(x, x+ hξ) = lim
n→+∞

d(xn, xn + hξ) ≤ ϕ(xki , hξ) for every h ∈ [0, hx],
16



from which we infer ϕd(x, ξ) ≤ ϕ(xki , ξ). To prove the opposite inequality, we note that by
(3.11) ϕn ≥ φin in a tubular neighborhood of Qi × RN , so, for hx small enough, we have

d(x, x+ hξ) = lim
n→+∞

dn(x, x+ hξ) ≥ lim
n→+∞

dφi
n
(x, x+ hξ) = ϕ(xki , hξ)

for every h ∈ [0, hx]. We conclude that, for H1–a.e. x ∈ ∂Qi and for each i ∈ N,

ϕd(x, ξ) = ϕ(xki , ξ) = ϕλ
k
(x, ξ) for every ξ ∈ RN tangential to ∂Qi at x. (3.14)

We are now ready to prove (3.12). Let γ ∈ Γ(RN ). Set

Ii := {t ∈ [0, 1] : γ(t) ∈ ∂Qi}, J := [0, 1] \ ∪i∈NIi.

For a.e. t ∈ Ii, the curve γ(t) is tangent to ∂Qi. In particular, by (3.14) we get

ϕd(γ, γ̇) = ϕλ
k
(γ, γ̇) a.e. on Ii

for each i ∈ N. Since an analogous equality holds on J too, (3.12) follows and the proof is
complete. �

4. Homogenization with prescribed volume fraction

An interesting problem in view of applications to composites is the study of the asymptotic
behavior of two–phase metrics with prescribed volume fraction of its phases. More precisely,
for a fixed 0 ≤ θ ≤ 1 we will denote by Mα,β

θ the class of metrics ϕ ∈ Mα,β
p defined on the

unit cube Q by

ϕ(x, ξ) :=
{
α|ξ| if x ∈ Eα;
β|ξ| if x ∈ Eβ,

with |Eα| = θ. Let us set

Cl(Mα,β
θ ) := {φ ∈ N : there exists ϕn ∈Mα,β

θ with ϕn ⇒ φ}.

4.1. Some qualitative properties of Cl(Mα,β
θ ).

Lemma 4.1. The set Cl(Mα,β
θ ) coincides with the class of all φ ∈ N such that there exists

a sequence ϕn ∈Mα,β
θn

with θn → θ such that ϕn ⇒ φ.

Proof. We have to prove that if θn → θ, ϕn ∈ Mα,β
θn

and ϕn ⇒ φ for some φ ∈ N , then
φ ∈ Cl(Mα,β

θ ). Let us consider for simplicity the case of θn increasing, the general case being
very similar. By Theorem 3.3, and using a diagonal argument, we can find a sequence εn → 0
such that, denoted by ψn(x, ·) := ϕn( xεn

, ·), we have ψn ⇒ φ. Moreover we can assume that
1/εn ∈ N for every n, so that ψn are 1-periodic. Therefore on the unit cube Q the metric ψn
is of the type

ψn(x, ξ) :=
{
α|ξ| if x ∈ Enα;
β|ξ| if x ∈ Enβ .

We have to suitably modify the sequence ψn in order to achieve the right volume fraction θ.
By construction for every open subset U of Q we have that

(|Enβ ∩ U |)/|U | → 1− θ as n→∞.
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Therefore, we can find a sequence of concentric balls Bn with vanishing radius, and a sequence
of measurable sets Fn ⊂ Bn ∩ Enβ such that (for n big enough) |Fn| = θ − θn. Then we set

ψ̃n(x, ξ) :=
{
α|ξ| if x ∈ Enα ∪ Fn;
β|ξ| if x ∈ Enβ \ Fn,

and we extend it by periodicity on RN . It is easily seen that dψn − dψ̃n
uniformly converges

to 0 on compact subsets of RN × RN , therefore ψ̃n ⇒ φ as claimed. �

For every φ1, φ2 in N , we will write φ1 ≤ φ2 if φ1(ξ) ≤ φ2(ξ) for every ξ ∈ RN .

Lemma 4.2. Let φ ∈ Cl(Mα,β
θ ). Then Cl(Mα,β

θ ) contains every norm φ̃ ∈ N such that
φ̃ ≤ φ. In particular if 0 ≤ θ1 ≤ θ2 ≤ 1 then Cl(Mα,β

θ2
) ⊆ Cl(Mα,β

θ1
).

Proof. The first part of the Lemma will be proved if, for every ε > 0, we exhibit a norm
ϕ ∈ Cl(Mα,β

θε ) such that

|θε − θ| < ε and |ϕ(ξ)− φ̃(ξ)| < Cε for every ξ ∈ SN−1, (4.1)

for some constant C independent of ε. To this end, take a sequence (ξi)i∈N of unit vectors
with rational directions and dense in SN−1, and let φM be the metric defined in (3.2) with φ̃
in place of φ, with M ∈ N large enough so that

inf
1≤i≤M

|ξ − ξi| < ε for any ξ ∈ SN−1.

For every k ∈ N, let

ak(x) :=
{
α if x ∈ Zzi (1/k), for some 1 ≤ i ≤M and z ∈ ZN
β elsewhere,

where Zzi (1/k) are the zig–zag polygonal curves introduced in the proof of Theorem 3.1.
Arguing as in that proof, we get that ak ⇒ φM as k → +∞, in particular ahomk ⇒ φhomM
by Lemma 2.21. Via a diagonal argument we infer that there exists a diverging sequence of
integer numbers (mk)k such that ak(mkx) ⇒ φhomM . We recall that, by construction,

φhomM ≥ φ̃ and φhomM (ξi) = φ̃(ξi) for each 1 ≤ i ≤M . (4.2)

Now pick up a sequence (ϕn)n in Mα,β
θ such that ϕn ⇒ φ. For each i let us denote by Rzi (δ)

the δ−neighborhood of the sets Rzi introduced in the proof of Theorem 3.1. For every k ∈ N,
let

νδk(x, ξ) :=
{
ak(mkx)|ξ| if x ∈ Rzi (δ), for some 1 ≤ i ≤M and z ∈ ZN
ϕk(x, ξ) elsewhere.

By construction, νδk ∈ M
α,β

θδ
k

with θδk → θδ as k → +∞ for some θδ satisfying |θδ − θ| → 0 as

δ → 0. Furthermore, νδk ⇒ νδ for k → +∞, where

νδ(x, ξ) :=
{
φhomM (ξ) if x ∈ Rzi (δ), for some 1 ≤ i ≤M and z ∈ ZN
φ(ξ) elsewhere.

In particular, by Lemma 4.1 and Lemma 2.21 we derive that
(
νδ

)hom ∈ Cl(Mα,β
θδ ). Moreover,

by (4.2) and from the fact that φ ≥ φ̃ we infer that(
νδ

)hom(ξi) = φ̃(ξi) for each 1 ≤ i ≤M ,
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so
inf

1≤i≤M

∣∣(νδ)hom(ξ)− φ̃(ξ)
∣∣ ≤ inf

1≤i≤M

{
|
(
νδ

)hom(ξ − ξi)|+ |φ̃(ξi − ξ)|
}
< 2β ε

for every ξ ∈ Sn−1. This immediately implies (4.1) with ϕ := (νδ)hom for a suitably small
δ > 0.

The second part of the assertion is an easy consequence of the first one. Let in fact
φ̃ ∈ Cl(Mα,β

θ2
). Then there exists a sequence ϕ̃n ∈ Mα,β

θ2
such that ϕ̃n ⇒ φ̃. It is now very

easy to construct a sequence ϕn ∈ Cl(Mα,β
θ1

) with ϕn ≥ ϕ̃n for every n (simply by switching
enough phase α to phase β for each ϕn). Up to a subsequence we have that ϕn ⇒ φ for some
φ which by construction belongs to Cl(Mα,β

θ1
) and satisfies φ ≥ φ̃. We deduce that also φ̃

belongs to Cl(Mα,β
θ1

). �

The next Proposition clarifies the dependence of Cl(Mα,β
θ ) on θ.

Proposition 4.3. The following properties hold.
i) Cl(Mα,β

θ ) =
⋂
s<θ Cl(M

α,β
s ) for every 0 < θ ≤ 1;

ii) Cl(Mα,β
θ ) =

⋃
s>θ Cl(M

α,β
s ) for every 0 ≤ θ < 1.

Proof. Let us prove property i). By Proposition 4.2 we have Cl(Mα,β
θ ) ⊂ Cl(Mα,β

s ) for every
s < θ, so that

Cl(Mα,β
θ ) ⊆

⋂
s<θ

Cl(Mα,β
s ).

To prove the opposite inclusion let φ ∈
⋂
s<θ Cl(M

α,β
s ). Using a diagonal argument we can

find a sequence ϕk ∈ Mα,β
sk , with sk → θ, such that ϕk ⇒ φ. By Lemma 4.1 we deduce that

φ ∈Mα,β
θ , and this concludes the proof of i).

Let us pass to the proof of ii). By Proposition 4.2 we deduce that Cl(Mα,β
s ) ⊆ Cl(Mα,β

θ )
for every s > θ, so that ⋃

s>θ

Cl(Mα,β
s ) ⊆ Cl(Mα,β

θ ).

To prove the opposite inclusion we will use a perturbation argument similar to that used in
the proof of Lemma 4.1. Let φ ∈ Cl(Mα,β

θ ), and let ϕk be a sequence in Mα,β
θ such that

ϕk ⇒ φ. We can find a sequence of balls Brk(xk) with vanishing radius such that the metrics
ϕ̃k defined by

ϕ̃k(x, ξ) :=

{
α|ξ| if x ∈ Brk(xk) + ZN ;
ϕk(x, ξ) elsewhere,

are in Mα,β
sk , with sk > θ, and sk → θ. It is very easy to see that ϕ̃k ⇒ φ, and this concludes

the proof of the proposition. �

Remark 4.4. Proposition 4.3 implies in particular that the multifunction θ 7→ Cl(Mα,β
θ )

is continuous with respect to the Hausdorff convergence of compact subsets of N (see for
instance [24]).

We conclude the paragraph with a lemma which cannot be derived directly from Proposition
4.3, and which will be used in the proofs of our next results.
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Lemma 4.5. Let 0 ≤ θ̃ < θ ≤ 1, and let φ ∈ Cl(Mα,β
θ ). Then φ is internal to Cl(Mα,β

θ̃
);

i.e., there exists r > 0 such that

{ψ ∈ N : ‖ψ − φ‖ < r} ⊂ Cl(Mα,β

θ̃
).

Proof. Let ϕk ∈ Mα,β
θ with ϕk ⇒ φ. Let moreover U be an open neighborhood of ∂Q with

respect to the relative topology of Q, such that 0 < |U | < 1− θ̃/θ. Let Mk →∞, and let us
denote by ϕ̃k the metrics in Mα,β

p defined on Q by

ϕ̃k(x, ξ) :=

{
β|ξ| if x ∈ U ;
ϕk(Mkx, ξ) elsewhere.

Up to a subsequence, we have that ϕ̃k ⇒ ϕ̃ for some ϕ̃ ∈Mp satisfying

ϕ̃(x, ξ) = β|ξ| if x ∈ U ;
ϕ̃(x, ξ) = φ(ξ) if x ∈ Q \ U ;
ϕ̃(x, ξ) ≥ φ(ξ) if x ∈ ∂U.

Moreover by construction, the volume fraction relative to the metric ϕ̃k is definitively big-
ger then θ̃. Therefore ϕ̃hom ∈ Cl(Mα,β

θ̃
). Applying the homogenization formula (2.14) we

immediately deduce that
ϕ̃hom(ξ) > φ(ξ) + r|ξ|,

for some r depending on U . In view of Lemma 4.2 the proof is now complete. �

4.2. Bounds for Cl(Mα,β
θ ). Here we provide upper and lower bounds for the set Cl(Mα,β

θ ).

Theorem 4.6. The following bounds for Cl(Mα,β
θ ) hold for every 0 ≤ θ ≤ 1.

i) The class Cl(Mα,β
θ ) contains every norm φ ∈ N satisfying

φ(ξ) ≤ (θ1/Nα+ (1− θ1/N )β)|ξ| for every ξ ∈ RN ;

ii) every norm φ ∈ Cl(Mα,β
θ ) satisfies

φ(ξ) ≤ (θα+ (1− θ)β)|ξ| for every ξ ∈ RN .

Proof. Let us start by proving i). In view of Lemma 4.2, it is enough to exhibit a geometry
(Eα, Eβ) with volume fraction θ, such that the norm ϕhom ∈ N associated with the metric

ϕ(x, ξ) :=
{
α|ξ| if x ∈ Eα;
β|ξ| if x ∈ Eβ,

satisfies the following inequality.

ϕ(ξ) ≥
(
θ1/Nα+ (1− θ1/N )β

)
|ξ| for every ξ ∈ RN . (4.3)

To this aim, let Bi be a family of disjoint balls in the unit cube Q, with center xi and radius ri,
which cover Q in measure (i.e. such that Q\∪iBi has zero Lebesgue measure). For every i we
denote by Bα

i the ball contained in Bi, with the same center xi and with radius rαi := θ1/Nri.

We set Eα := ∪iBα
i , and Eβ := Q \ Eα. By the fact that rα

i
ri

= θ1/N it easily follows that the
volume fraction of the phase Eα is equal to θ.
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To prove (4.3) let us fix p, q ∈ RN , and let γε be the geodesic curve joining p and q with
respect to the metric ϕε(x, ξ) := ϕ(x/ε, ξ). Using the rough idea that the curve γε has to
pass through β to achieve the α phase, it is easy to prove that

lim
ε→0+

H1
(
γε ([0, 1]) ∩ Eα

)
H1(γε)

≤ θ1/N ,

from which, in view of the homogenization formula (2.14), we deduce (4.3).
Now let us pass to the proof of ii). We have to prove that any norm φ ∈Mα,β

p is less than
or equal to θα + (1 − θ)β times the Euclidean norm. This inequality can be easily deduced
from Theorem 4.2 in [5] with Ω := RN and F (x, s) := χQ(x)s. For the reader’s convenience,
we give a proof in our setting. In view of Theorem 3.3 it is enough to prove that for every
ξ ∈ SN−1 with rational direction, and for every ϕ ∈ Cl(Mα,β

θ ) we have

ϕhom(ξ) ≤
(
θα+ (1− θ)β

)
|ξ|. (4.4)

By Fubini’s Theorem there exists a vector η orthogonal to ξ such that

lim
L→∞

H1
(
{lξ + η : l ∈ [−L,L]} ∩

(
Eα + ZN

) )
L

≥ θ.

Applying the homogenization formula (2.14), we immediately deduce that (4.4) holds, and
this concludes the proof of the theorem. �

4.3. The localization Theorems. For every ϕ ∈ M(RN ) we denote by θϕ : RN → [0, 1]
the function defined as

θϕ(x) := max {θ ∈ [0, 1] : ϕ(x, ·) ∈ Cl(Mα,β
θ )} for every x ∈ RN .

When ϕ ∈Mα,β, θϕ(·) = χBα
(·), where, we recall, Bα := {x ∈ RN : ϕ(x, ·) = α| · | }. We will

identify θφ with its constant value whenever φ belongs to N .

Lemma 4.7. The following properties hold.

i) If φn → φ in N , then θφn → θφ.
ii) If ϕ ∈M is continuous, then θϕ is a continuous function from RN to [0, 1].
iii) Let ϕ,ϕn ∈ M be such that ϕn(x, ·) converge pointwise to ϕ(x, ·) for a.e. x ∈ RN .

Then θϕn converge to θϕ almost everywhere on RN .
iv) For every ϕ ∈M, the function θϕ is measurable.

Proof. Let us prove property i). Up to a subsequence, we have θφn → θ̃ for some θ̃ ∈ [0, 1]. By
Proposition 4.3 we have that φ ∈ Cl(Mα,β

θ̃
), so that θ̃ ≤ θφ. Let us assume by contradiction

that θ̃ < θ < θφ for some θ ∈ (0, 1). By Lemma 4.5, there exists a neighborhood of φ contained
in Cl(Mα,β

θ ). Therefore, for n big enough, we deduce that φn belong to Cl(Mα,β
θ ), hence

θ ≤ θφn , which is in contradiction with θφn → θ̃.
Properties ii) and iii) are a direct consequence of (i). To prove (iv), it is enough to observe

that the metrics ϕn := ρn ∗ ϕ, where ρn is a sequence of convolution kernels, are continuous
and converge to ϕ, almost everywhere with respect to x. In view of property iii), we deduce
that θϕ is a.e. limit of a sequence of continuous functions, so it is measurable. �
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The weak–star convergence in L∞(RN ) of a sequence of measurable functions θn : RN →
[0, 1] to θ will be hereafter denoted by θn

∗
⇀ θ.

Now we are in a position to give our main localization theorems.

Theorem 4.8. Let ϕ ∈M(RN ) such that ϕ(x, ·) ∈Mα,β
θ(x) for a.e. x ∈ RN , for some measur-

able function θ : RN → [0, 1]. Then there exists a sequence of upper semicontinuous metrics
ϕn ∈Mα,β such that ϕn ⇒ ϕ and θϕn

∗
⇀ θ.

Proof. The proof is divided in three steps.

Step 1: ϕ is continuous and θ = θϕ.
The result is achieved by suitably modifying the contruction provided in the proof of Theorem
3.4. For each k ∈ N and λ ∈ (0, 1), let ϕλk be the upper semicontinuous metric in M defined
as in (3.9). We notice that

θϕλ
k
(x) =

{
θϕ(xki ) if x ∈ xki + (− λ

2k ,
λ
2k )N for some i ∈ N

β otherwise.

Thanks to the continuity of θϕ (cf. Lemma 4.7), we have that ϕλn
kn

⇒ ϕ and θ
ϕλn

kn

∗
⇀ θϕ as

kn → +∞ and λn ↗ 1. On the other hand, any metric ϕλk can be approximated by a sequence
of upper semicontinuous metrics ψn ∈ Mα,β such that ψn ⇒ ϕλk and θψn

∗
⇀ θϕλ

k
: it suffices

to define each ψn as in (3.11) for some ψin ∈ M
α,β

θϕ(xk
i )

satisfying (3.10), for each i ∈ N. The
assertion now follows via a diagonal argument.

Step 2: dϕ = dϕ and θ = θϕ.
Let (ρn)n be a sequence of standard mollifiers, and set ϕn := ρn ∗ ϕ for each n ∈ N. As
ϕn(x, ·) converge pointwise to ϕ(x, ·) for a.e. x ∈ RN , by Lemma 4.7 θϕn converge to θϕ
almost everywhere on RN , in particular θϕn

∗
⇀ θϕ. Furthermore, ϕn ⇒ ϕ by Proposition

2.19. Since each ϕn is continuous, the assertion follows from Step 1 via a diagonal argument.

Step 3: the general case.
Pick up a metric ϕ̃ ∈ M(RN ) with ϕ̃(x, ·) = ϕ(x, ·) for almost every x ∈ RN such to satisfy
dϕ̃ = dϕ̃ (which does exist in force of Theorem 3.1 in [8]). By Step 2, there exists a sequence
of upper semicontinuous metrics ϕ̃n ∈Mα,β such that ϕ̃n ⇒ ϕ̃ and θϕ̃n

∗
⇀ θϕ̃ = θϕ. Since by

definition θ ≤ θϕ̃ = θϕ, we can modify the sequence ϕ̃n by suitably adding phase β somewhere,
obtaining a new sequence ηn ∈Mα,β converging (up to a subsequence) to some metric η ≥ ϕ̃,
such that θηn

∗
⇀ θ. We want now to modify the metrics ηn in order to get convergence to the

metric ϕ, keeping the convergence of the volume fractions. As in [15], the idea is to modify
the metric along geodesics for the distance d.

Let S := {(xi, yi)}i∈N be a dense subset of RN × RN . For each i ∈ N, let γi be a geodesic
for ϕd connecting xi with yi (which does exist by Theorem 2.2 and Proposition 2.6) and set
Γi := γi([0, 1]). For every δ > 0 and M ∈ N, let

T δM := {x ∈ RN : dist
(
x,∪Mi=1Γi

)
< δ }.
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Clearly, limδ→0+ |T δM | = 0 for any fixed M ∈ N. For each M ∈ N, let δ = δ(M) be such that
|T 2δ(M)
M | < 1/M and define a sequence of upper semicontinuous metrics (ϕMn )n as

ϕMn (x, ξ) :=


ψn(x, ξ) if x ∈ T δ(M)

M

β|ξ| if x ∈ T 2δ(M)
M \ T δ(M)

M

ηn(x, ξ) elsewhere,

where ψn is a sequence of upper semicontinuous metrics in Mα,β such that ψn ⇒ ϕd, chosen
according to Theorem 3.4. Up to subsequences, we have that

θϕM
n

∗
⇀ θM as n→ +∞ (4.5)

for some measurable function θM : RN → [0, 1], and since lim
M→+∞

|T 2δ(M)
M | = 0, it is easy to

see that
θM

∗
⇀ θ when M → +∞. (4.6)

We now claim that there is a diverging sequence (kn)n such that ϕnkn
⇒ ϕ, which is enough

to conclude in view of (4.5) and (4.6). In fact, let dM be an accumulation point for (dϕM
n

)n.
It is fairly easy to show that

ϕdM (x, ·) = ϕd(x, ·) for every x ∈ T δ(M)
M ,

ϕdM (x, ·) ≥ ϕd(x, ·) elsewhere,

hence dM ≥ d. On the other hand, we have that

dM (xi, yi) ≤ d(xi, yi) for every i ≤M,

which is apparent by choosing as a competitor curve for dM (xi, yi) the d–geodesic γi connecting
xi to yi. We derive

lim
M→+∞

dM (xi, yi) = d(xi, yi) for every (xi, yi) ∈ S,

which in fact yields dM ⇒ d since D(RN ) is compact and S is dense in RN × RN . The
conclusion follows via a diagonal argument. �

Remark 4.9. By Theorem 4.8 we deduce in particular that, given a metric ϕ ∈ M(RN ),
there exists a sequence of upper semicontinuous metrics ϕn ∈ Mα,β such that ϕn ⇒ ϕ and
θϕn

∗
⇀ θϕ.

We record for later use:

Remark 4.10. Let ϕ ∈ M(RN ) be such that dϕ is intrinsic and θ = θϕ. If ϕ is constantly
equal to β | · | outside an open subset Ω of RN , the approximating metrics ϕn ∈Mα,β in the
statement of Theorem 4.8 can be taken of the same form.

Indeed, let Ωk := {x ∈ RN : dist(x,RN \ Ω) > 1/k } for each k ∈ N and set

ψk(x, ξ) = χΩk
(x)ϕ(x, ξ) + χRN\Ωk

(x)β|ξ| for any (x, ξ) ∈ RN × RN .

Then by Proposition 2.8ψk(x, ·) ∈ Mα,β
θ(x) for a.e. x ∈ RN , and ψk ⇒ ϕ; so it is suffices to

prove the assertion for each ψk. Let (ρh)h be a sequence of standard mollifiers. Then the
metrics ρh ∗ ψk ⇒ ψk in M(RN ), and each ρh ∗ ψk is continuous and constantly equal to
β| · | outside Ωk(h) for some k(h) > k. Looking back at the proof of Theorem 4.8, it is now
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easy to see that, for each ρh ∗ ψk, the approximating metrics (ϕk,hn )n ⊂ Mα,β can be chosen
identically equal to β| · | outside Ω. The assertion last follows via a diagonal argument.

Theorem 4.11. Let (ϕk) ⊂ Mα,β such that dϕk
⇒ d for some d ∈ D(RN ) and θϕk

∗
⇀ θ for

some θ ∈ L∞(RN ). Then the norm ϕd(x, ·) belongs to Cl(Mα,β
θ(x)) for a.e. x ∈ RN .

Proof. Let (ξ)i∈N be a sequence of unit vectors with rational direction, and dense in SN−1.
We denote by E the set of Lebesgue points shared by θ and by the functions ϕ(·, ξi), and
we assume without loss of generality that this functions take their Lebesgue value at each
Lebesgue point; i.e.,

lim
r→0+

∫
−
Br(x)

θ(y) dy = θ(x) for every x ∈ E, (4.7)

lim
r→0+

∫
−
Br(x)

ϕ(y, ξi) dy = ϕ(x, ξi) for every x ∈ E and i ∈ N. (4.8)

Since RN \ E is negligible, the theorem will be proved if for every fixed x ∈ E we show that
ϕd(x, ·) belongs to Cl(Mα,β

θ(x)).
Let us fix such x̄ ∈ E. For every ε, δ > 0, in view of (4.7), (4.8) there exist a radius

r = r(ε, δ) and an open set A = Aε,δ, with |A| ≤ δ rN , such that

ϕd(y, ξ) > ϕd(x̄, ξ)− ε|ξ| for every y ∈ Qr(x̄) \A and ξ ∈ SN−1, (4.9)

where Qr(x̄) denotes the closed square of center x̄ and side r. Let U be an open neighborhood
of ∂Qr(x̄) with respect to the relative topology of Qr(x̄), such that 0 < |U | < δ rN . Let us
consider the metrics ϕε,δk , defined on Qr(x̄) by

ϕε,δk (x, ξ) :=
{
β|ξ| if x ∈ A ∪ U
ϕk(x, ξ) otherwise in Qr(x̄),

(4.10)

and replicate them by r–periodicity on the whole RN . Without loss of generality, we can also
assume they are 1–periodic. Denoting by θε,δk the volume fraction associated with ϕε,δk , we
have that (up to a subsequence) θε,δk → θε,δ, for some θε,δ satisfying

|θε,δ − θ(x̄)| → 0 as δ → 0, uniformly with respect to ε. (4.11)

Up to a subsequence, we have that the distances dk associated with ϕε,δk converge to a distance
d̃ whose derivative, denoted by ϕε,δ, satisfies the following inequality, in view of (4.9), (4.10):

ϕε,δ(x, ξ) ≥ ϕd(x̄, ξ)− ε|ξ| for every x, ξ ∈ RN .

We deduce the following inequality for the stable norm (ϕε,δ)hom associated with ϕε,δ:

(ϕε,δ)hom(ξ) ≥ max{ϕd(x̄, ξ)− ε|ξ|, α|ξ|} for every ξ ∈ RN .

By Lemma 4.2 we have that the norm ξ 7→ max{ϕd(x̄, ξ) − ε|ξ|, α|ξ|} belongs to Cl(Mα,β
θε,δ).

Letting ε, δ → 0, by (4.11) and by Lemma 4.1 we conclude via a diagonal argument that
ϕd(x̄, ·) ∈ Cl(Mα,β

θ(x̄)). �
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Remark 4.12. Consider a sequence (ϕk)k of metrics in Mα,β with θϕk

∗
⇀ θ for some θ ∈

L∞(RN ), and ϕk ⇒ ϕ for some ϕ ∈ Mα,β. In general, if ϕ 6= ϕdϕ , we can not conclude
that ϕ(x, ·) ∈ Cl(Mα,β

θ(x)) for a.e. x ∈ RN . In fact, let us consider the constant sequence
ϕk(x, ξ) := α|ξ|, and let ϕ be a metric defined by

ϕ(x, ξ) :=

{
α|ξ| if x ∈ Σ
β|ξ| elsewhere,

(4.12)

where Σ is the (countable) union of segments whose extreme points belong to QN . It is clear
that ϕ induces the same distance as each ϕk. On the other hand ϕ(x, ·) 6∈ Mα,β

1 for a.e.
x ∈ RN .

Let us also observe that, in general, θ can be strictly lower than θϕd
. In fact, let ϕk be

the constant sequence defined as in (4.12). In this case ϕd is identically equal to α|ξ|, so that
θϕd

= 1, while θϕk

∗
⇀ 0.

5. Applications to two–phase gradient constraint functionals

In this section we give an application of our results to the problem of the Γ–convergence of
two–phase gradient constraint functionals. In what follows, Ω will denote a bounded domain
in RN with Lipschitz boundary. The space W 1,∞(Ω) is endowed with the metric of uniform
convergence in Ω, and Γ–convergence of functionals on W 1,∞(Ω) will be always meant with
respect to this topology.

5.1. Two–phase gradient constraints and supremal functionals. Let C : Ω → R be a
two–phase function of the form

C(x) :=
{
α if x ∈ Bα
β if x ∈ Bβ,

(5.1)

where Bα, Bα are disjoint Borel sets whose union is Ω. The constraint functional associated
with C(·) is the functional G : W 1,∞(Ω) → R defined by

G(u) :=

{
0 if |∇u(x)| ≤ C(x) for a.e. x ∈ Ω;
+∞ otherwise.

(5.2)

To any such C(·) we can associate the supremal functional

F (u) := ess sup
Ω

1
C(x)

|∇u(x)| for every u ∈W 1,∞(Ω). (5.3)

The relation between G and F is the following:

G(u) = 0 if and only if F (u) ≤ 1. (5.4)

The following fact is a trivial consequence of our definitions:

Proposition 5.1. Let (Cn)n be a sequence of functions of the type (5.1), and let Gn and Fn
be the corresponding functionals defined by (5.2) and (5.4), respectively. If Fn Γ-converge in
W 1,∞(Ω) to some functional F , then Gn Γ-converge in W 1,∞(Ω) to the functional G defined
by
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G(u) :=

{
0 if F (u) ≤ 1;
+∞ otherwise.

Therefore the asymptotic behavior of constraint functionals can be studied in the equivalent
setting of Γ-convergence of supremal functionals.

To every supremal functional F of the kind considered above we can associate the distance
dF ∈ D(Ω) defined as

dF (x, y) := sup{u(y)− u(x) : u ∈W 1,∞(Ω), F (u) ≤ 1} (5.5)

for every x, y ∈ Ω. The distance dF is an intrinsic distance on Ω, according to Definition 2.15.
Indeed, dF is nothing but the distance dϕ given by (2.11), where ϕ(x, ξ) := C(x)|ξ|.

To study the asymptotic behavior of supremal functionals it is convenient to use an alter-
native representation in terms of difference quotient functionals given in [25]: any supremal
functional F of the type (5.3) coincides with the difference quotient functional RdF defined
by

RdF (u) := sup
x, y∈Ω, x 6=y

u(y)− u(x)
dF (x, y)

for every u ∈W 1,∞(Ω). (5.6)

On the other hand, if d ∈ D(Ω) and ϕd is its derivative obtained through (2.5), the quotient
functional Rd can be expressed in a supremal form whenever d is intrinsic. More precisely we
have

Rd(u) = ess sup
Ω

ϕ∗d(x,∇u(x)) for every u ∈W 1,∞(Ω), (5.7)

where ϕ∗d is the metric associated to ϕd by duality according to (2.10).

Remark 5.2. Note that, for every ϕ ∈Mα,β(Ω), the function ϕ∗ is given by

ϕ∗(x, ξ) :=
{
β′ |ξ| if x ∈ Bα;
α′ |ξ| if x ∈ Bβ,

where β′ = 1/α and α′ = 1/β.

The following proposition is a particular case of [26, Proposition 4.1].

Proposition 5.3. Let Fn be a sequence of two–phase supremal functionals of the kind (5.3),
and let dFn be the associated distances, defined via (5.5). If dFn converge to some d ∈ D(Ω),
the functionals Fn Γ-converge in W 1,∞(Ω) to the difference quotient functional Rd defined
according to (5.6).

5.2. Γ–closure of two–phase constraint functionals. In this paragraph we study the Γ–
closure of two–phase constraint functionals. For a function C(·) of the type (5.1) we denote
by θC(·) := χBα

(·). The first result we give in this direction is a consequence of Proposition
5.1, Proposition 5.3 and Theorem 4.11.

Theorem 5.4. Let (Cn)n be a sequence of functions of the kind (5.1), and denote by Gn the
associated constraint functionals defined via (5.2), and dCn the distances defined via (5.3),
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(5.5). Assume that dCn converge to some d ∈ D(Ω). Then the functionals Gn Γ-converge in
W 1,∞(Ω) to the functional G defined by

G(u) :=

{
0 if Rd(u) ≤ 1;
+∞ otherwise,

where Rd is the difference quotient functional defined according to (5.6).
Moreover, if θCn

∗
⇀ θ, then ϕd(x, ·) ∈ Cl(Mα,β

θ(x)) for a.e. x ∈ Ω.

Proof. The Γ-convergence of Gn to G follows immediately from Proposition 5.1 and Proposi-
tion 5.3. To prove that ϕd(x, ·) ∈ Cl(Mα,β

θ(x)), note that up to modifying Cn on a negligible sub-
set of Ω, we can always assume that dCn = dCn in D(Ω) for each n ∈ N (cf. Theorem 2.16 and
Remark 2.17). Next we extend each Cn to RN by setting Cn(x) = Cn(x)χΩ(x)+β χRN\Ω(x)

for every x ∈ RN . Clearly θCn

∗
⇀ θχΩ in L∞(RN ). Up to subsequences, the associated

distances dCn
∈ D(RN ) converge to some δ ∈ D(RN ), hence, by Theorem 4.11,

ϕδ(x, ·) ∈ Cl(Mα,β
θ(x)) for a.e. x ∈ Ω. (5.8)

Now note that δ locally coincides with d in Ω; i.e., for every x0 ∈ Ω there exists r > 0 such
that

d(x, y) = δ(x, y) for every x, y ∈ Br(x0).
That follows by the fact that, for r suitably small, any minimizing sequence of curves for δ(x, y)
is definitively contained in Ω, where Cn and Cn agree. We infer that ϕd(x, ·) = ϕδ(x, ·) for
every x ∈ Ω, and we conclude by (5.8). �

The converse is established in the following theorem.

Theorem 5.5. Let d ∈ D(Ω) and let Rd be the associated different quotient functional given
by (5.6). Then there exists a sequence (Cn)n of functions of the kind (5.1) such that the
associated two–phase constraint functionals Gn Γ-converge in W 1,∞(Ω) to the functional G
defined as

G(u) :=

{
0 if Rd(u) ≤ 1;
+∞ otherwise.

(5.9)

Remark 5.6. Theorem 5.4 and Theorem 5.5 yields that the closure in terms of Γ-convergence
of two–phase constrain functionals of the form (5.2) is given by the class of functional of the
type (5.9), where d varies into the class D(Ω). In particular the Γ-closure contains any
functional G of the form

G(u) :=

{
0 if ess supΩ f(x,∇u(x)) ≤ 1;
+∞ otherwise,

were f : Ω× RN → R is any Caratéodory function satisfying

α′|ξ| ≤ f(x, ξ) ≤ β′|ξ| for every ξ ∈ RN (5.10)

f(x, λ ξ) = |λ| f(x, ξ) for every ξ ∈ RN and λ ∈ R, (5.11)

for a.e. x ∈ Ω. In fact, any such G corresponds to a functional of the form (5.9) with
d = df

∗ ∈ D(Ω) intrinsic (cf. [26]).
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Proof. In view of Theorem 2.10 and of (2.9), there exists a sequence of continuous metrics
ϕn ∈ M(Ω) such that dϕn ⇒ d in D(Ω). Therefore, by a diagonal argument, we can assume
ϕ ∈M(Ω) continuous.

Denote by d the distance in D(Ω) associated to ϕ through (2.3), and let (Ωk)k be an
increasing sequence of open sets well contained in Ω such that |Ω \ Ωk| ↘ 0 for k → +∞.
Moreover we assume that each Ωk consists of a finite disjoint union of closed balls. The
metrics ψk ∈M(Ω) defined as

ψk(x, ξ) := ϕ(x, ξ)χΩk
(x) + β|ξ|χΩ\Ωk

(x) for every (x, ξ) ∈ Ω× RN

are such that ϕ = infk ψk on
(
Ω \ F ) × RN , where F is a negligible subset of Ω, so the

associated distances dψk ∈ D(Ω) defined according to (2.3) satisfy

d(x, y) = inf
k
dψk(x, y) for every x, y ∈ Ω

as d is intrinsic, and the convergence is in fact uniform on Ω×Ω for the dψk are equi–Lipschitz.
By a diagonal argument, it is enough to prove the statement for each ψk. Fix k ∈ N and set
ϕ := ψk. We extend it to a metric ϕ on RN defined as

ϕ(x, ξ) := ϕ(x, ξ)χΩk
(x) + β|ξ|χRN\Ωk

(x) for every (x, ξ) ∈ RN × RN .

We denote by dϕ ∈ D(RN ) and dϕ ∈ D(Ω) the distances associated trough (2.3) to ϕ and ϕ,
respectively. Hereafter dϕ will be identified with its unique continuous extension to Ω × Ω,
according to Proposition 2.11. By Theorem 4.8 there exists a sequence of upper semicontin-
uous metrics ϕn ∈ Mα,β, namely of the form ϕn(x, ξ) = Cn(x) |ξ|, such that dϕn

⇒ dϕ in
RN × RN . We also assume that ϕn(x, ·) = β| · | when x 6∈ Ωk, by Remark 4.10. Denote by
Cn the restriction of Cn to Ω, and by dCn and dCn the distances in D(Ω) associated with Cn
through (2.11) and (2.3), respectively. Note that dCn = dCn by upper semicontinuity of Cn,
in view of Proposition 2.18. We claim that

Cn ⇒ ϕ in M(Ω),

which is all we need to conclude in view of Remark 2.12 and Theorem 5.4.
To this aim, denote by ϕn the restriction of ϕn to Ω×RN . The sequence of distances (dn)n

in D(Ω) accordingly associated through (2.7) is precompact, hence uniformly converges along
a subsequence (not relabelled) to a distance δ ∈ D(Ω). We want to show that δ = dϕ on Ω×Ω,
which in particular implies that the whole sequence (dn)n converges to dϕ, by compactness
of D(Ω).

Indeed, it is easy to see that ϕδ agrees with ϕ in
(
Ω\∂Ωk

)
×RN . Now pick up a point x in

∂Ωk and chose r > 0 small enough such that Br(x) intersects only one connected component
of Ωk. All quasi–minimal curves for dn(y, z) are definitively contained in Bρ(x) for any
y, z ∈ Bρ(x) whenever ρ < r α/(3β). Since Ωk ∩ Br(x) is convex, we can apply Lemma 2.13
to infer that

dn(y, z) = dϕn
(y, z) for any y, z ∈ Ωk ∩Bρ(x), n ∈ N,

and sending n to +∞ we get δ(y, z) = d(y, z) for any y, z ∈ Ωk ∩ Bρ(x). We derive that
ϕδ(x, ξ) = ϕ(x, ξ) for every vector ξ tangent to ∂Ωk at x, hence

Lϕδ
(γ) = Lϕ(γ) for every γ ∈ Γ(Ω).
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This gives δ = dϕ in D(Ω), and dϕn ⇒ dϕ in Ω×Ω. Now note that each ϕn(x, ·) is equal to β|·|
on ∂Ω, hence by (2.8) we infer that ϕn|Ω ⇒ ϕ in M(Ω), where ϕn|Ω denotes the restriction of
ϕn to Ω× RN . The claim follows since ϕn(x, ξ) = Cn(x)|ξ| on Ω× RN by construction. �

Remark 5.7. Up to subsequences, we can always assume that θCn

∗
⇀ θ for some θ ∈ L∞(Ω),

by compactness of weak–star convergence, so, by Theorem 5.4, we conclude that ϕd(x, ·) ∈
Cl(Mα,β

θ(x)) for a.e. x ∈ Ω. A natural question is whether we can choose (Cn)n such that

θCn

∗
⇀ θϕd

. This fact can be easily proved if d ∈ D(Ω) is intrinsic. However we believe that
this is always true, for instance by extending the results of Section 4.3 to the case when RN

is replaced by Ω, but for this it seems necessary to carry out a specific analysis.

5.3. The periodic case. Here we consider the problem of Γ–convergence of two–phase pe-
riodic constraints on W 1,∞(RN ), endowed with the metric induced by the local uniform
convergence on RN . More precisely, let C : Rn → {α, β} be a two–phase periodic function,
defined on the unit cube Q by

C(x) :=
{
α if x ∈ Bα
β if x ∈ Bβ,

where Bα is a Borel subset of Q, and Bβ = Q \ Bα. We set θ := |Bα|. For every n ∈ N,
consider the function Cn : Ω → R defined by Cn(x) := C(nx) for every x ∈ Ω, and denote by
Gn and dCn the constraint functional and distance function associated with Cn through (5.2)
and (5.5), respectively. By periodicity, we have that dCn ⇒ dφ, where φ ∈ N is the stable
norm of the metric C(x) |ξ|. The dual norm φ∗ clearly satisfies (5.10) and (5.11). We have:

Theorem 5.8. The functionals Gn Γ-converge in W 1,∞(RN ) to the functional Ghom defined
by

Ghom(u) :=

{
0 if ess supRN φ∗(∇u(x)) ≤ 1
+∞ otherwise.

Moreover φ ∈ Cl(Mα,β
θ ) and its dual norm satisfies the following bounds:

φ∗(ξ) ≥ α′β′

θα′ + (1− θ)β′
for every ξ ∈ SN−1. (5.12)

Proof. The Γ-convergence result is a then a consequence of Theorem 5.4 and of (5.7). In-
equality (5.12) comes directly from Theorem 4.6–(ii). �

In next theorem a sort of converse of the previous result is established.

Theorem 5.9. Let f : RN → R be a function satisfying (5.10), (5.11), and assume that
f∗ ∈ Cl(Mα,β

θ ) for some θ ∈ (0, 1). Then there exists a sequence of 1-periodic functions Cn :
RN → {α, β}, with volume fraction θCn ≡ θ, such that the associated constraint functionals
Gn Γ-converge in W 1,∞(RN ) to the functional Ghom defined by

Ghom(u) :=

{
0 if ess supRN f(∇u) ≤ 1;
+∞ otherwise.

(5.13)
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In particular this holds whenever f : RN → R satisfies conditions (5.10), (5.11) and

f(ξ) ≥ α′β′

θ
1
N α′ + (1− θ

1
N )β′

for every ξ ∈ SN−1. (5.14)

Proof. The Γ-convergence result is a consequence of Theorem 5.5. Moreover by Theorem 4.6
we have that inequality (5.14) implies f∗ ∈ Cl(Mα,β

θ ), and this concludes the proof. �

Remark 5.10. Note that any function f : RN → R satisfying (5.10), (5.11), satisfies also
(5.12) and (5.14) for suitable θ1, θ2 ∈ [0, 1]. We deduce that the class of functionals Ghom

associated through (5.13) to such functions f is the closure, in terms of Γ-convergence in
W 1,∞(RN ), of two–phase periodic constraint functionals with arbitrary volume fraction.
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