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The aim of this paper is to characterize the subsets of a given open set Q C R?

W

where ¢ is a generic positive one-homogeneous convex function expressing the
anisotropy, vg is the exterior unit normal to the reduced boundary 9*E and
A € Ris a given constant. When A = 0 the functional in (1) provides a notion
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Abstract

In this paper we consider the anisotropic perimeter
PAE) = [ plvm)ar!
oE

defined on subsets E C R?, where the anisotropy ¢ is a (possibly non
symmetric) norm on R? and vg is the exterior unit normal vector to OF.
We consider quasi-minimal sets E (which include sets with prescribed
curvature) and we prove that 0FE \ £(E) is locally a bi-lipschitz curve and
the singular set (E) is closed and discrete.

We then classify the global P,-minimal sets. In particular we find that
global minimal sets may have a singular point if and only if {¢p <1} is a
triangle or a quadrilateral and that sets with two singularities exist if and
only if {¢ < 1} is a triangle.

We finally show that the boundary of a subset of R* which locally min-
imizes the anisotropic perimeter plus a volume term (prescribed constant
curvature) is contained, up to a translation and a rescaling, in the bound-
ary of the Wulff shape determined by the anisotropy.

Introduction

hich minimize (locally in Q) a general anisotropic functional of the form

Ew p(vp(x)) M (z) — M E], (1)

0*ENSQ

of anisotropic perimeter in R2.
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In the isotropic case, i.e. when p(z) = |z|, this problem has been studied by
several authors in any dimension [11], [10]. In particular, it is well-known that,
given a set E C R? minimizing (1), the part of OF lying inside  is smooth and
has constant mean curvature equal to \; this implies (because we are in two
dimensions) that OF coincides, locally in Q, with the boundary of a circle of
radius 1/A.

As it is shown in [7], the isotropic version of (1) is strictly related to equilib-
rium surfaces in capillarity phenomena, like for example the problem of identi-
fying the shape of a liquid rising in a narrow tube.

When the function ¢? is smooth and uniformly convex, it is well-known [6],
[1] that problem (1) always admits minimizers which are hyper—surfaces of class
Ch out of a closed singular set of zero H™ !-measure. We point out that, in
our case, the function ¢? is not necessarily differentiable nor uniformly convex,
hence such regularity results cannot be applied. However, in two dimensions
one can still get some regularity results. Indeed, in [4] a class of functionals
more general than (1) is studied and it is proved that a minimizer has boundary
which is locally a lipschitz curve out of a closed singular set ¥ of zero H'-
measure. In this paper we improve this result by showing that ¥ is a discrete
set (see Theorem 3.4).

When ¢ is piecewise linear the anisotropy is called crystalline. In this re-
spect, another motivation for considering the functional (1) comes from the
theory of evolutions by crystalline mean curvature. Indeed, as it is shown in
[14], [5], when the starting set is an “admissible” polyhedron, during such evol-
utions some facets may break or bend. If we let Q2 be one of these facets then
the appearing fracture corresponds to the boundary of a set £ C ) which is a
minimum of (1) (see [15], [14]).

We point out that in [12] a problem strictly related to ours is considered,
that is to analyze the structure and regularity properties of two—dimensional
clusters minimizing the anisotropic perimeter, under variations which preserve
the volume.

The plan of the paper is the following: in Section 2 we introduce some
notation that we shall use throughout the paper. In Section 3 we introduce the
class of w-minimal sets, which include the minima of (1). In Theorem 3.4 we
prove that the singular points of an w-minimizer are isolated. In Theorem 3.11
we completely describe the minima of (1) for A = 0 and Q = R?. In Section 4
we prove that, given a minimizer E of (1), the connected components of 0E N
are contained, up to a translation, in §8W¢, where the Wulff shape W, is the
analogous of the unit ball in the anisotropic setting (Theorem 4.5).

2 Notations

Let ¢: R?> — R be a function such that
1. p(z) =0 z =0;
2. p(tx) = tp(z) vt > 0;
3. oz —y) <ol —2) + oz —y).

A function with these properties will be called a general norm on R2.



We define p°:R? — R as

N
#° )_57&8 (&)

where (-, ) is the usual scalar product of R?. Tt is not difficult to check that ¢°
is also a general norm on R? and that

We will call Wulff shape the set W, := {z € R*:¢°(z) < 1} and Frank
diagram the set F, := {£ € R?: p(£) < 1}. We define the duality (multivalued)
maps 7" and T° by

T(v) {E€R:0(&) = ¢°(v), (§v) = p(&)¢° (v)}
T°) = {veR:p"(v) = (&), (& v)=w()¢"(v)}.

Notice that if H is the half-space H = {z:(v,z) < 0} with exterior normal
vector vy = v then, given x € OW,,, W, — 2z C H if and only if € T°(v) (or
equivalently v € T'(z)).

We will denote with H* the k-dimensional Hausdorff measure and we let
|A] := H?(A) for A C R? be the Lebesgue measure.

Given v € R? \ {0} we say that a set S is a graph along v, if it is not possible
to find two different points x,y € S such that x —y = Av for any A € R.

The anisotropic perimeter of a set E in the open set A C R? is defined by

1
P,(E, A) := sup {W/ div () s € CLAR), 0 () <1 Vy € A} |

el JE

We let B,(z) := {y:||z — y|| < p} be the usual euclidean ball of R?, B, :=
B,(0) and we define
OE = {2z eR:V¥p>0 |ENB,(2) €]0,|B,(2)|},
E = {zeR:Vp>0 |ENB,(z)|#0}.

It holds, as usual, that E, OF are closed sets, Eis open and E = OEUE. Notice
that if |[EAF| =0 then OF = 0F (EAF := (E\ F)U (F\ E)).
3 w-minimal sets

Let w: [0,00[ = [0, 00| be an increasing function such that lim, .o w(p) = 0 and
let QO C R2 be an open set.
We say that a set E C R? is w-minimal in Q, if

Po(B, B,(x)) < Py (F, B,(x)) + w(p)/IEAF]

whenever = € OF, B,(r) € Q and EAF € B,(z) (the notation A € B means
that A is a compact subset of B).



We denote by M,,(€) the family of all w-minimal sets in €. Notice that this
class of w-minimal sets is contained in the one considered in [4]. In particular
we have a lower and upper density estimates 6p < H'(0E N B,(x)) < Op for
every ¢ € OF and for all p smaller than a constant p,, depending only on w. We
also have H! (OF \ 0*E) = 0 where 0*E is the usual reduced boundary, i.e. the
set of points z € OF where the euclidean external normal vector vg(z) can be
defined. Moreover a representation formula is available:

Po(E, A) = /8 (@) a (o).

3.1 Regularity results for w-minimal sets

For E € M, () we define the singular set X(E) as the set of all points z €
OFENS such that it is not possible to find a neighborhood U of x and a bilipschitz
curve 7:]0,1[—= OENU. Clearly ¥(E) is relatively closed in 2. In [4] it has been
proven! that for E € M,,(Q) there holds H!(Z(E)) = 0 Given a set E € M,,(2)
it is not difficult to show that if ¥(E) has an accumulation point then (by a blow-
up argument) there exists a minimal set Ey € M, with at least two singular
points. Unfortunately we will see that a minimal set with two singular points
does exist when W, is a triangle. To include also this case we are going to use
a slighty different tecnique to get a regularity result for E € M,,(Q) (Theorem
3.4). Instead of proving a “decay of excess” result, we rely on [2] where the
structure of general sets with finite perimeter is investigated.

We will be interested in the study of connected components of 2\ E for
E € M, (). First of all notice that if E € M (Q) then, clearly, —(R? \ E) €
M., (—=9). Moreover if A is a connected component of 2N E by [2, Theorem 2]
we know that P,(E,B) = P,(A,B) + P,(E \ A, B) for all open sets B C Q.
We want to prove that A € M, (). Given A’ such that A’/AA € B,(z) we let

"U(E\ A). Then we have EAE' C AAA' so, as needed,

Po(E,By(x)) — Po(E\ A, B,(x))
(E', By(x)) = Po(E\ A, By(7)) + w(p)V |[EAE|
(4, By(z)) + w(p)V|IEAE|
(4, By(2)) + w(p)V/|AAA].

So every connected component of {2 \ OF, which is either a component of
QNE or a component of O\ E has the property H!L(QNJA) = HLL(QNH* A).

For a Jordan curve v we denote by int(y) the open set bounded by v and
by ext(y) = R? \ int(y).

Py(A, B,(x))

INIA A
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Lemma 3.1 Let y:[—1,1] — R? be a lipschitz parameterization of a closed
Jordan curve. Suppose that E = int(y) € My (Q) where Q C R? is an open
set, ¥(0) € Q. Then there exists € > 0 such that v .: |—¢,e[ = y(]—¢,¢]) is
bi-lipschitz.

L Actually in [4] a different notion of X(E) is given (let us call it '(FE)). Since a regularity
result was obtained for 0E \ ¥'(E) we get that X(E) C X/(E). On the other hand in the
following section we will classify all singular global minima, and it is easily seen that for such
sets ¥ and X' coincide. The identification can be then extended to all w-minimal sets by a
blow-up argument.



Proof:

Let L be the lipschitz constant for v and let M > 0 be such that M ~!||¢]| <
0(€) < M||€|| for all ¢ € R%. Choose r > 0 so that By, (7(0)) € Q, w(r) <
(4y/mM)~" and choose ¢ > 0 small enough so that ¢ < r/(5L) and v(]—¢,¢[) C
B,.(v(0)). For simplicity we also suppose that v(—1) = (1) &€ B,.(y(0)). Let
s,t € |—¢,¢[ be given, S := [y(s), y(t)] be the segment between ~y(s) and ~(t),
p = 28up e l7(7) —v(s)|| and B := B,(y(s)). Notice that p < 2L[s —#| <
4Le.

Define V. = y~!(B) and let F be the family of the connected compon-
ents of V. Clearly every I € F is an open interval I = sy, t;[ C ]—e,¢]
and ~(sr),y(tr) € 0B. If v(Isr,t1[) NS # 0 we may define s} := inf{r €
[sr,tr]:v(T) € S} and ¢} := sup{r € [sr,tr]:v(r) € S}. Hence we define a new
curve a: [—1,1] = R? by

t—s t—t , ifaIE.'F:tE]S[,t[[
7 W( )+ 7=t

O[(t) — I1—°1 and ’y(]S[,t[[)ﬁS;é@
~(t) otherwise

Notice that v([-1,1])Aa([-1,1]) @ B hence there exists n < p such that
v([-1,1))Aa([-1,1]) € B' = B,(v(s)). Consider now the family G of all
connected components of B \ a([-1,1]) and define E' = E\ BU |J{4 €
G:A\ B' C E}. Clearly EAE' C B' € B. Moreover OE'N B C «(V) and
alt) € B\ S = vi(a(t) = vie(1(1).
Suppose now that the curve v (and hence «) is counter-clockwise oriented
and define ¢+ to be the 7/2 clockwise rotation of ¢ so that

»(E, B) Z/

IeF

Let now I be the component of F which contains s and ¢. By the minimality
of E, we get

P,(E,B) < P,(E,B)+uw(pVip < Y / Lydr

TeF\{T}

+ / P ()1) dr -+ p((Ey) = A(s5) +w(p)V/p
I\[s}.t]
< P,(E,B) —/[ t]‘p('YI(T)L)dT“"p('Y(tI[‘) —(s%)) + wlp)Vrp.

Let now L be the lipschitz constant of v and M > 0 be such that
M7THE <€) < Mgl VEe R,

Notice also that s < s <t < t7 and [y(s5),7(t7)] C [v(s),7(t)] so that

o
IN

_/[’ ,7]('0(71(T)L)d7—+<‘0(7(tlf)_'Y(SII‘))+w(p)\/7_rp

s = 1)+ M)~ (8)| + 2L~ s

IN



whence we obtain the lipschitz inequality for v~—1:

0=l < 22010 — Gl

a
We recall the following theorem which can be found in [13, Theorem 2.1].

Theorem 3.2 Let A C R? be a bounded open and simply connected set such
that there exists a continuous surjective curve v:0By — OA. Then there exists
a continuous surjective mapping ®: By — A such that ®|p, is bijective.

The next theorem is, as a matter of fact, a kind of regularity result for the
boundary of a connected component A of our minimizer E. Roughly speaking
it says that every point on OA can be joined with some (and hence all) internal
points of A. The result is achieved showing that A locally contains a continuous
image of a disk.

Lemma 3.3 Let o € R?, p > 0, E € M, (B2,(z0)) and let A be a connected
component of Bs,(xo) \ OF such that AN B,(xo) # 0. Then, given x € AN
B,(z0), y € A there ezists a continuous curve v:[0,1] — R* such that v(0) = z,
v(1) =y and ¥(]0,1]) C A.

Proof:

By [2, Theorem 4] we know that there exists a family {T'y: k € I C Z} of Jordan
curves such that Ty C 94, H'(T; NT;) = 0, int(T;), int(T';) are either disjoint
or one is contained in the other (i # j) and H'(9A\ U, Tx) = 0 (recall that 0A
is closed and 9A D OM A D §* A where M A is the boundary considered in [2]).

Notice that I'; N T'; (with ¢ # j) contains at most one point. Otherwise
R? \ (T; UT;) would have at least 4 connected components of which only one
cointains A. This is a contradiction since I'; UTy C 0A.

Let now J be the set of k € I such that T'yNB,(x) # 0. fT,NIBs,(xo) # 0
then H'(T'y) > p. Otherwise I'y, € By, (o) so that int(I'y) contains a connected
component F of R? \ 0E. By [4, Lemma 6.11] there exist € €]0, p[ (which does
not depend on k) such that diam(F) > & and hence H!(T'y) > &.

So J is a finite set since e#.J < 3, o, H' (Ty) < H'(OE N Byy(x0)) < 0.

Finally we consider a point € 0E N B,(zo). Suppose I',... ,['x are the
Jordan curves containing = and suppose they are ordered in such a way that
(for some 1 < M < N)

int(I'y) C ... Cint(Tar) Cext(Tary1) C ... Cext(Cn).

Let U be a neighborhood of x such that (T4 U...UTN)NU C JANU. Then
either A" = int(T'y) or A" = int(Ty) \ int(T"1) is such that A’NU C A. In any
case (by Jordan theorem or by Theorem 3.2) there exists a continuous surjective
mapping ®: B; — A’

Clearly there exists a continuous curve 7;:[0,1] — By such that v(0) =
and v(]0,1]) € ®~1(4’ N U) (notice that ®~!(A’ N U) is a neighborhood of
®~'(x) in B;). On the other hand, since 4 is open and connected, given y € A,
there exists a coninuous curve 7, joining y with ®(vy;(1)). Joining the two curves
®(7y,) and 2 we get the curve v we were looking for. O




Theorem 3.4 Let E € M, (Q). Then L(E)NQ is a discrete set. Moreover, if
W, is neither a triangle nor a quadrilateral then X(E) = ().

Proof:

Let Bay(zo) C Q and let F be the family of the connected components of
Bs,(20) \ OF which meet B,(x9). As in the previous lemma it is easily seen
that F is finite, in fact, for every component A € F either ANJBs,(xo) # 0 or
A € Bsp(x0) and in any case P,(A, Bs,)(x0) > €.

Consider now the map A:X(E) N B,(z0) — P(F) (P(F) is the family of
subsets of F) defined by A(z) = {A € F:z € 0A}. We are going to prove that
given o € P(F) then A\~!(a) contains at most two points. Since F is a finite
set, this is enough to conclude that (E) N B,(zo) is finite.

Choose a € P(F). First of all we claim that if o has less than three elements
then A~!(a) is empty. In fact suppose z € Z(E) N B,(z) and A(z) = . Since
z € OF it is clear that @ = A(z) contains at least one component of E N
B, (7o) and one component of B, (7o) \ E. If a contains exactly two components
then reasoning as in the proof of Lemma 3.3 we can prove that there exists a
neighborhood U of x and a jordan curve I" such that 0ENU D T'NU. Actually
we have JENU = I'NU since I is such that H(OENU) = HY(T' NU) and
given a point y € OE\ T’ we could find & > 0 such that B.(y) N\T" = § and hence,
by the lower density estimate for w-minimal sets, H'(OE N B (y)) > 0. So there
exists a (possibly smaller) neighborhood U of x such that TNU = dENU. By
means of an chord-arc reparameterization we can suppose that v is lipschitz and
by Lemma 3.1 we get that Yy —1(T) is bi-lipschitz and the claim is proved.

So we may suppose that « has at least three elements. Suppose by contradic-
tion that A~!(«) has three or more elements. Then there exists A1, A», A3 € F
such that ﬂle 0A; D {x1,z2,23}. Choose a point a; € A; (i = 1,2,3).
Given i,j € {1,2,3}, by Lemma 3.3 it is possible to find a continuous curve
7i5:10,1] = R? such that 7;;(0) = z;, vi;(1) = a; and ~;;(]0,1]) C A4;. Notice
that the supports +;;(]0, 1) are disjoint, and this leads to a contradiction since
the graph having vertices x1, ¥, x3, a1, a2, a3 and edges 7;; cannot be planar.

If W, is neither a triangle nor a quadrilateral, then X(E) = @) by [4, Theorem
6.18]. This result can also be obtained by a blow-up argument from Theorem
3.8 below. |

3.2 Classification of global minimal sets

In this section we aim at the classification of all global minimal sets i.e. we are
going to characterize all sets E € Mg = My (R?).
We recall the following elementary lemma.

Lemma 3.5 Let C C R? be closed and convex. For k > 2, let x1,...,x; be
extremal points of C' with x; # x; for i # j. Let also 0 < a; < m be the angle
defined by C' in x;. Then there holds

k
> ai>(k-2)m,
i=1

and the equality holds if and only if C' is the “k-agon” (possibly degenerate)
spanned by x1,...,%}.



Proposition 3.6 (calibration) Let I C N, A; CRF (i € I) be sets of locally
finite perimeter, J;c; Ai = RF, A;iNA; =0 fori # j. Let n; C R* and let
n:RF — R¥ be defined by n(z) = >, nixa,;(x). Let also E C R* be a set of
finite perimeter.

Suppose moreover that

(i) for H*='-a.e x € 9*A; N 0* A it holds (n;,va,(z)) + (nj,va,(z)) = 0;
(ii) ¢°(n;) <1 forallie€I;
(ii) lim, . (ve(z),n(y)) = ¢(ve(z)) for H*'-a.e. z € O*E
Then E € Mo(RF).

Proof:
First of all we prove that divn = 0 in the sense of distributions. We recall [3,
Ch. 4.4] that

k! ({x e JoAs#licheecd A} # 2}) = 0.
i€l

In fact, given ¢ € C°(R"),

(divn,y) = _/<n($),D¢($))dx = —Z(ni,/XAi(x)le(ﬂf) dz)

iel

Z ) ni,va, (x)) d,Hkil(x)

iel
= ng,va, (T ni,va. (T k=1(z) = 0.
- Z/@H (13,0, (0)) + 13,20, )) H 1 (0) = 0

Consider now a ball B and a set of finite perimeter F' such that EAF € B;
consider also a family of mollifiers p. € C2°(R™). We recall that div (n * p.) =
(divn) * p. = 0 so that

0 = /dw n % pe) (@) (ur (@) — (@) d = (Dxs — Dxr),ms pe)
= ((Dxg—Dxr)LB,nxp.) =(DxgLB,n*p.) — (DxrLB,n*p.).
Since by hypothesis, for #*~1-a.e. z € 0*FE

lim |(vg(2), n(z +y)) — ¢(ve(z))] =0

y—0
we get

lim [ [(vg (2),n(z + y)) = ¢(ve(r))] p-(y) dy = 0

e—0t
that is lim.(vg(z), (n * p:)(x)) = ( g(z)). Hence we have lim.(DxgL B, n *
pe) = [pelve(z)dH(z) = (E B). On the other hand, notice that
@°(n % p(7)) < supyere ¢°(n(y)) <1 hence

(DxrLB,nx*p.) = (vr(z),n * p-(z)) d?—[kfl(x) < P,(F,B)
8*FNB



and we obtain, as desired
0< P,(E,B) - P,(F,B).
O

Definition 3.7 Given a set E C R?, which is a cone over the origin, we say
that E is p-flat if for any connected component A of E (resp. B2 \ E) there
exists x € OW,, such that W, — x (resp. x — W) is contained in A.

Notice that, if E is a ¢-flat cone, both E and R2 \ E have a finite number
of connected components.
In the following theorem we characterize the minimal cones E € M (R2).

Theorem 3.8 Let E C R? be a cone centered in the origin. Then E € My(R?)
if and only if E is p-flat. In particular, one of the following conditions hold
(see Figures 1,2,3):

(i) OF is the union of two half-lines and there exists x € OW, such that
W,—2CFE andz— W, C R\ E;

(i) Wy, is o quadrilateral and OF is the union of four half-lines parallel to the
edges of W, and having the same exterior normal vector;

(iii) Wy, is a triangle and OF is the union of siz half-lines parallel to the edges
of W, and having the same exterior normal vector;

(iv) W, is a triangle and OF is the union of four half-lines, three of which are
parallel to an edge of W, and have the same exterior normal vector.

Proof:

Let E € Mg be a cone on the origin. Every connected component A of E is
minimal. Notice that A is simply the union of two half-lines. By cutting from
A a small triangle with vertex in the origin it is easily seen that for A to be
minimal there must exist x € OW,, such that W, —x C A. This is true for every
connected component A of E and the analogous result is obtained for —A when
A is a connected component of R? \ E. This implies that E is o-flat.

We now prove the other implication. Let E C R? be a ¢-flat cone and
let Aj,...,Asn be the connected components of R? \ 0F, enumerated in such
a way that A; is consecutive to A;1. Letting I = {1,3,...,2N —1},J =
{2,4,... ,2N} suppose also that A; C E fori € I and A; C R\ E fori € J.

Let z; € 0W,, be such that W, —x; C A;ifi € I, and z; — W, C A4; if ¢ € J;
let o; be the angle of 4; in 0 and ; be the angle of W, in ;.

We are going to construct a function n: R?> — R? which satisfies the hypo-
thesis of Proposition 3.6.

First of all we claim that N < 3. Suppose that >, ;a; < >, ;a; (the
other case being similar) and notice that the points z; for 7 € I are all different.
So, by Lemma 3.5 we get

T2y @ >Y Bi>(N-2)n
el icel

that is N < 3.
So we consider the three cases.



Figure 1: There may be infinite many minimal cones with one component. If
W, has no vertices then these cones are half-planes. In this and in the following
pictures translations of W, are filled with dark gray while translations of =W,

are filled with light gray.
&

\
'VV

Figure 2: On the left a minimal cone with two components when W, is a
quadrilateral. The only other minimal cone is its complementary set. On the
right one of infinitely many minimal cones with two components when W, is a

triangle.
N

Figure 3: A minimal cone with three components when W, is a triangle. The
only other minimal cone is the complementary set.
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(i) Assume that N = 1. This implies that 4, = E and 4, = R2 \ E are
connected, and one of them is convex. Assuming that A; is convex we
have 1 — W, C As. Then it is easy to prove that n(z) = z; satisfies
the hypothesis of Proposition 3.6. Notice that if W, has angles there are
infinitely many cones E of this kind otherwise E is an half-plane.

(ii) Assume that N = 2. If the points 1 ...z4 are all distinct, then we have
(by Lemma 3.5)

27r=a1+...+a4ZB1+...+B42271'

which implies that W, is the convex hull of 1, ... ,z4 (i.e. a quadrilateral
or a triangle) and that a; = 8; (i = 1,...,4). Again it is not difficult to
show that n(z) = z; for € A; is a calibration of E.

Suppose now that z; = z; for some ¢ # j. Since ¢,j cannot have the
same parity, we can safely assume that i = 1,j = 2. So we have z; = z»,
B1 = fBa. Since W, —z1 C Ay and 1 — W, C Ay we get a1 + a2 > 7+ 1
so that (again by Lemma 3.5)

2r=a1+...+ag>m+ 1+ B3+ P>+

which means that W, is the triangle spanned by z, 23,24 and that a; +
as = B + 7, ag = fB3, ag = B4. Again we define n(z) = z; for z € A;.
This is a calibration since it is constant on A; U Ay and a3 = 83, ay = B4.
Notice moreover that there are infinitely many cones F of this kind.

(iii) Assume N = 3. In this case, by Lemma 3.5 we find that o; = 3; for i € T
and W, is the triangle spanned by z1,23,25. So av+ou+as =7, a; = 5;
fori € J and x1 = x4, T2 = 5, 3 = 6. S0 N(T) = x; for x € A; is again
a calibration for E.

O

If W, is a triangle we are going to show that there exist sets E, E' € M (R?)
such that E,E' are not cones, £(E) contains two distinct points and X(E')
contains one point.

Suppose W, is the triangle spanned by the points z,xs,z3 € R?. Define
Ci =U,s0 p(Wy—2i), Cf = U, 50 p(xi—W,) and choose two points y1,ys € R?
such that y» € R% \ (y1 + (C3 U CY)).

We choose E with three components: E = FE; UFE>U Ej3. In particular, Fy =
y2+Cs, E3 = y1 +C5 and E; can be any set such that £y D (y1 +C1)U(y2+C1),
R2 \E1 C (y1+(C’éUC’3UC{)))U(yg—}—(CéUC’QUC’{)) and such that VE, (ZL”) S T(iEl)
for every x € OFE; (see Figure 4).

We define also E' by E' = E; U E} where E} is any set such that E{ D
(y1 +C1), R \ E] D y; + C] and such that vg (z) € T(x,) for every = € OE].

Proposition 3.9 The sets E, E' described before are global minima of P, (i.e.
E,E" € My(R?)).

Proof:

Consider n: R? — R? defined by n(z) = z for z € (y1+C5)U(y2+Cs), n(z) = x3
for z € (y1 + C3) U (y2 + C%) and n(z) = x; otherwise. The construction of E

11



Figure 4: A global minimum with two singular points.

guarantees that Proposition 3.6 can be applied. The same proof applies to E’
with a similar calibration. m|

From Proposition 3.6 we know that any set E C R? such that there exists
n € R? with vg(z) € T(n) for almost every z € OF is a global minimum. In
the following theorem we show that the converse is also true, when the Wulff
Shape is neither a triangle nor a quadrilateral. We also characterize all singular
global minima of the anisotropic perimeter.

We say that a Caccioppoli set E is a @-flat global lipschitz subgraph if there
exists n € R? such that vg(z) € T(n) for almost every z € OF and given y € R?
there exist exactly one x € JF such that y — z = An for some X € R.

Lemma 3.10 Let E € M, (R?) and let S be a connected component of OF.
Then there exist a set G € M, (R?) such that G = S and vg(z) = va(x) for
Hl-a.e. z €S.

Proof:

Let F be the union of E and all the connected components C' of R? \ E such
that C NS = 0. Clearly S is a connected component of OF too. Let now G be
the set F' minus the union of all the connected components C' of F such that
C'NS =0. As noted in Section 3.1, by cutting components from an w-minimal
set the w-minimality is preserved hence G € M,,(R?).

Moreover it is easily seen that every connected component C' of R? \ G
has the property C NS # (). We now prove that G = S. Indeed, if T is a
connected component of 0G, by the regularity results for G we know that T
splits the plane R? in, at least, two connected components. If T were different
from S, then any connected component of R? \ T which does not contain S
would contain a component of E (or of R? \ E) which does not meet S.

To complete the proof notice that the normal vector to F in a point x € S
is preserved in each operation. a

Theorem 3.11 (singular global minima) Let E € My(R?) (see Figure 5).

1. If W,, is neither a triangle nor a quadrilateral then ©(E) = () and E is a
p-flat global lipschitz subgraph.

12
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Figure 5: The global minimal sets as classified in Theorem 3.11

2. If W, is a quadrilateral then one of the following is true:

(a) X(E) = ) and OF has at most two connected components, each of
which is the boundary of a p-flat global lipschitz subgraph;

(b) X(E) is composed by a single point, say 0, and E is one of the cones
described in Theorem 3.8.

3. If W, is a triangle then one of the following is true:

(a) X(E) = 0 and OE has at most three connected components each of
which is the boundary of a p-flat global lipschitz subgraph;

(b) 2(E) is composed by a single point and OF has two connected com-
ponents, one of which is the boundary of a p-flat global lipschitz sub-
graph whereas the other coincides with the boundary of one of the sets
described in Proposition 3.9;

(¢c) E is one of the sets described in Proposition 3.9.

Proof:
We divide the proof into three steps.

Step 1. Assume that OF is connected and X(E) = (). By [4, Proposition 6.2]
we know that the excess of E is zero on every ball. This means that there exists
n € R? such that vg(z) € T(n) for H'-a.e. € OF, which implies that FE is a
p-flat global lipschitz subgraph.

Step 2. Assume that OF is connected and 0 € X(E). In the proof of [4,
Theorem 6.17] it has been proved that it is possible to find a neighbourhood
U = pW, of 0 and a set F' such that EAF C U, FNU is a cone centred in 0
and P,(E,U) = P,(F,U). Clearly (by a blow-up argument) the cone FNU is
the restriction in U of a global singular minimal cone.

Suppose that this minimal cone is of type (ii) or (iii) in the classification
given in Theorem 3.8. We claim that, in this case, E is itself a global minimal
cone. Notice that vp(z) is an extremal point of F, for all z € OF N pW,, so

13
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Figure 6: How to lessen the perimeter of E in the proof of Theorem 3.11

4

equality must hold in [4, (14)] and by Jensens’s inequality we get ENU = FNU.
By the regularity results of the previous section we know that the connected
components of 0E\ X(E) are lipschitz curves and that £(E) is discrete. Consider
one of the curves starting from 0. If it were not straight, it would be possible to
replace it with a segment and we would obtain a minimal cone (in U) which has
not the right normal vectors, and this is impossible by Theorem 3.8. Therefore,
all the curves starting from 0 are straight lines. If one of these curves met
another singular point then it could be possible to decrease perimeter with a
suitable variation (see Figure 6). So there is only one singular point and the set
is a minimal cone.

Suppose now that the cone F N U is of type (iv). Reasoning as before we
obtain that all but one of the curves of JF starting from 0 are straight lines
and do not meet other singular points. Consider the curve that does not need
to be straight. This curve may either go to infinity or meet another singular
point y;. In any case, the normal vector to the curve has to lie in T'(n) for some
fixed n € R2. These properties guarantee that E is one of the sets considered
in Proposition 3.9.

Step 8. Assume that OF is not connected. By Lemma 3.10 and the previous
steps each connected component C' of OF is either the boundary of a p-flat global
lipschitz subgraph or one of the sets described in Proposition 3.9. In any case
C can be split into one, two or three global lipschitz graphs, two of which can
only meet (without crossing) in one singular point. Let {S%};cr, I C Z, be such
global lipschitz graphs. We have that 0E = (J,c; S* and Uiz SinSi =%(E).
We can also suppose that the curves S* are oriented so that the set F lies on
the left of such curves.

Let E := E/k. By the volume density estimates and the compactness
result for w-minimizers [4, Proposition 3.3, Proposition 3.4] we know that a
subsequence of Ej converges in Li (R?), to a set Es, € Mo(R?) and if x;, €

loc

14



OFEy, x, — z for some x € R?, then z € OE,, (in particular 0 € E,,). This
means that S?/k converges® to a global lipschitz graph S?_ containing 0 and
OB = UieI Sk ) )

We now claim that S’ N S, = {0} for all i # j. Suppose by contradiction
that there exists z € Si, NS4, z # 0 and let z}, € S* and z}, € S be two
sequences such that =% /k — z and xi/k — . We can assume that the curves
S and S7 lie in the boundary of the same connected component of E or of
R? \ E because if not there would exist another curve S! between S* and S’
such that z € S’ (so that we could replace S® or S7 with S?).

Choose now two points 7' € S%, #/ € S7. For each k we can construct a set
F, which has the same boundary of E but with the curves between ! and z’

and between ZJ, and z] replaced with the segments [#%,7/] and [z, z]].

The condition P,(E, Bg) < P,(Fy, Br) (for R large enought) then reads as
C(lzy =zl + |2 = @) > ||z}, — &[] + [l — 27|
where C' > 0 is a suitable constant depending only on ¢. Thus we get

|z} — 2l

k

| R [

|
¢ k k k k k

>
and letting k& — oo we obtain

2
> =l >0,

lim inf
imin Z 5

k—o0

i i
Tk _ Tk
k k

which contradicts the hypothesis ||zt /k — mfc /k|| = 0. We have proved that
E is connected and X(Ey,) = {0}. From Theorem 3.4 it follows that W, is a
triangle or a quadrilateral.

If W, is a quadrilateral, by Step 2 we conclude that E is a minimal singular
cone. Then necessarily #I = 2, S (i € I) are regular® (otherwise E would
not be connected) and X(E) = 0.

If W, is a triangle, by the previous step we conclude that F., is either a
singular minimal cone with three components or one of the sets E’ described in
Proposition 3.9. In the first case #I = 3, T = {i1,i2,i3} and either X(E) = 0
and S® (i € I) are all disjoint or S% is regular while S U S% is the boundary
of one of the sets E' described in Proposition 3.9. In the second case (E, is
one of the sets E' described in Proposition 3.9) we have #I = 2, which implies
Y(E) = 0 and S, S are both regular. |

4 Sets with prescribed constant curvature

Given H € L'(R?) and Q C R? we consider the functional Fir(E), defined on
sets E with locally finite perimeter:

Fu(B) = Po(EB,0) = | M. 2)

2here and in the following the convergences are always meant to be “up to a subsequence”
3in this proof by “S is regular” we mean S N X(E) = 0
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If E is a local minimizer of (2), that is, E C R? is a set such that for every
set B’ with EAE' € Q we have Fg(F) < Fg(E'), then, we say that E is a set
with curvature H in Q. The family of all these sets will be denoted by N (Q).
As a matter of fact, when ¢(§) = |||, then H(z) is the curvature of the curve
OF in z.

In the following we are going to consider the case H = A where A is a given
constant.

We recall the following fundamental result (see [9], [8]).

Theorem 4.1 (isoperimetric inequality) Let E C R? be such that |E| < oo
and P,(E,R?) = P,(W,,R?). Then |E| < |W,| and equality holds if and only
if E =W, + h for some h € R?.

Notice that if 0 = ]a,b[ x R C R? and E N is the subgraph of a function
u € H}([a,b]), then

b
Fi(E) = / o~ (y), 1) — u(y) dy.

For u € H}([a,b]) we define as Ty, := {(z,y):x € [a,b],y = u(x)} the graph
of u.

Lemma 4.2 Let a,b € R and let F: H}([a,b]) = R be defined as

Let I be the set of all positive numbers r for which there exists a function u, €
Hl(la,b]) such that T, is contained, up to a translation, in the boundary of
rW,. Then I =0 or I = [F,+oo[ for some 7 > 0; moreover, if ¥ < 1, u, is a
minimum of F if and only if u, = uy.

Proof:

Assume I # (). Notice that the function u, € Hj([a,b]) is uniquely determined
by r € I. Moreover, if r € I, then 7’ € I for all ¥ > r. Indeed, let & € [a,b]
such that u, attains its maximum at Z. For all A > 1, there exist ¢y € R and
x) € [a,b] such that, defining

ua(z) == ex + Auy (ab\—}—m;w) A>1,

we have vy € H}([a,b]), which implies Ar € I with uy, = vx. Reasoning in a
similar way, it is easy to prove that the set I is closed, hence I = [F, +oo[ for
some 7 > 0.

Assume now 7 < 1. First of all, let us suppose that F, is smooth and
uniformly convex and let ¢ = p(&,&), (£1,&) € R2. In this case we can
compute the Euler equation associated to the functional F":

0 (8(,0

o (Feuwin) =1 0
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which is equivalent to g—é(—u’(y),l)) = y + ¢ for some ¢ € R Since the
functional F is strictly convex in H}([a,b]), if we prove that u; is a solution
of (3), then u; is the unique minimizer of F' in H{ ([a, b]).

By assumption, there exists a point 7 = (¥, z) € R? such that I',,, C OW,+7Z.

Letting vy (y) := (—u;.(y), 1)/¢(—u;(y), 1), we have
Vo(-ui(y),1) =T°(wr(y) = (w1 (y)) =T = (y — F,us(y) — 2).

which implies (3) with ¢ = —7.

Let us consider the general case. We can find a sequence of general norms
¢ which converge uniformly on compact subsets of R? to ¢ and such that F,,
are smooth and uniformly convex. Let F}, and 7 be defined as F and 7 with ¢
replaced by ¢y,. Notice that the sequence of functionals Fj converges uniformly
to F on bounded subsets of H}([a,b]), for k — co. Moreover, since 7y — 7 we
can assume 7 < 1 for any k. Therefore, letting u¥ be the unique minimizer of
Fy,, since u¥ — uy in H{ ([a,b]) for k — oo, it follows that u; is a minimum of
F.

Suppose now that u, is another minimum of F' for some r # 1, and assume
for simplicity » > 1 (the case r < 1 can be treated in a similar way). Let us
consider the function v(y) := (u1(y)+u,(y))/2. By the convexity of F it follows
that v is also a minimum of F'. Let s € [1,r] be such that

[ " waly) dy = / o) dy.

We claim that us = v. Indeed, since I, C x5 + sOW,, for some z, € R?, we
can compare sW,, with the set

B := ((acs +sWo)N{(y,2): 2 < 0}) U {(y,z) 1y €[a,b],0< 2 < U(y)}

Then, since sW,, and B have same volume and (anisotropic) perimeter, by
Theorem 4.1 we get B = sW,,, which implies u; = v.

On the other hand, from the convexity of F' and the minimality of u, u,
and us; we get

b ) + u! U1 + Uy
Fu1) + F(ur) ’ e(—u1(y),1) + p(=uy(y), 1) ui(y) +ur(y)
2 / 2 2 dy-

Since ¢ is convex, for all y € [a,b] in which u, and u; (hence us) are differenti-
able, we have

. (_u'l(y) +u;,(y),1> < #u®),1) +e(-uy),1)

2

and by (4) the equality must hold in (5). This implies that v,.(y) and v (y)
belong to the same edge of F,. It follows that either vi(y) = vr(y) or vs(y)
is an interior point of an edge of F,, but the last possibility cannot hold since
vs(y) is a vertex of F, for a.e. y € [a,b], hence u, = us. O

17



Figure 7: The construction used in Lemma 4.4.

Lemma 4.3 Let A be an open cone centered in 0. Then
P,(W,,A) =2|W, N A
Proof:

Notice that for z € OW,, we have p(vw, (z)) = (vw, (), ), while for z € 9A
we have (v4(z),z) = 0. So we get

Po(W,, A) = /8 el @) @)

_ / (z, vw,, () AH (z)
B(W,NA)

/ divedz = 2|W, N AJ.
W,nA
a

Lemma 4.4 Let s be an edge of W, of length | and let v be the exterior normal
vector to W, at s. Fore >0 let F. = {x € W,:(z,v) < p(v) —e}. Then

PSO(WQO:]R2) _PLP(FS:]R2) = 5l+0(5)'

Proof:

First of all notice that ¢(v) is the distance of the straight line passing through
s from the origin. Let z1, 22 be the edges of s and let y;,y2 be the points of
O0W,, such that (y;,v) = ¢(v) —e (i € {1,2}). Consider also the points 21, 22
determined by the intersection of the line containing s respectively with the
lines through y; and y» parallel to v. Let now Xi, X2 be the intersection of
W, with the triangles with vertices respectively 0,z1,21 and 0,22, 22, Y7,Y5
be the intersection of W, with the triangles with vertices 0, z1,y; and 0, 22, y»
and Zy,Z, be the quadrilaterals with vertices 0,21, 21,y1 and 0,2, 22,y (see
Figure 7).

Notice that Z; \ (X; UY;) is contained in a rectangle of sides |z; — y;| = ¢
and |z; —z;| = o(1) (for € — 0). Let also §; be equal to 0 if the point z; belongs
to s and equal to 1 otherwise.

Since the two triangles Y7, Y5 have base with length |y; — 2z;| = ¢ and the
sum of the heights is |y1 — y2| =1 + o(1), we get 2(|Y1| + |Y2]) = el + o(e).
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Using Lemma Lemma 4.3 we obtain

Py(Wy,R?) = Py(F,R?) = 2(|Z1] + | Z2| — 61| X1| — 02| Xa)
2([Y1] + [Y2]) + o(e) = el + o(e).

O

Theorem 4.5 Let Q C R? be an open set, X\ # 0 constant and E € Ny(9).
Then, every connected component of OE N Q is contained, up to a translation,
in 3 OW,.

Proof:
Notice that if A > 0 we have

P,(AE,\Q) — INEN XY = A[P,(E, Q) — \|[ENQ[]
so that E € N\(Q) = AE € N1 (\Q). In a similar way* we get (again for A > 0)

Py (R?\ (-AE), =AQ) = |(R* \ (=AE)) N (=AQ)]
= A[P,(E,Q) + A\ [ENQ|] — 3?9

so that
EeN A(Q) =R\ (-AE) € N1(-)\Q).

So it is enough to prove the theorem for A = 1.
We divide the proof into three steps.

Step 1. Fix zp € (OE N Q) \ £(F). We will prove that for some p > 0 the set
EN (zg + pW,) is equal to (z1 +0W,) N (21 + pW,,) for some z1,21 € R2.

By [4, Lemma 6.1 and Proposition 4.6] we can find a convex open neigh-
borhood U of zy such that OF N QU consist of exactly two points and
ENOU is connected. We notice that ENU is convex, otherwise letting E’
be the convex hull of ENU the set F := E U E' verifies FAE C U, and
P,(F,Q) —|FNQ| < P,(E,Q) —|ENQ|. Choose now p €]0,1[ such that,
letting B = zo + pW,, we have B C U. Being ENU convex, possibly
reducing p, we can assume that 0B N OF consists of exactly two points
and OE N B is a graph along some direction.

For t € [0, 1] we can find z(t) € R?* and n(t) € [p, +oo[ such that

(i) (0) = 2o, n(0) = p;
(ii) =(t), n(t) are continuous and lim;_,;- n(t) = +o0;
(iii) z(t) +n(t)W, NOB = EN OB, for all t > 0.

Let also V' (t) = |(z(t) +n(t)W,)NB| (t € [0,1]) and V(1) = lim; ;- V (¢).
We claim that there exists ¢ € [0, 1] such that V() = |[ENB|. Clearly V (¢)
is continuous and V(0) > |E N B|. Notice that z(t) + n(¢t)W, converges,
for ¢ =+ 17 to the tangent cone to W,, in the direction defined by the
line through 0E N 0B. Since this tangent cone is a minimal surface by

4notice that P,(E,Q) = Py(—(R?\ E), —Q)
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Step 2.

Step 3.

Theorem 3.8, being E a minimum for F}, we get V(1) < |E N BJ. So the
claim is proved.

Let 1 = x(t) and = n(t). From Theorem 4.1 it follows that P,(E, B) >
P,(z1 +nW,, B), hence from the minimality of E we get EN B = 1 +
nW, N B.

Since EN B is a graph along some direction, we can consider a change of
coordinates A: R? — R2? which preserves the Lebesgue measure and such
that A(OENOB) is contained in the z-axis and A(OENB) is a graph along
the y-axis. Then we can apply Lemma 4.2 with ¢ replaced by ¢ -A~! and
conclude that n = 1.

Let us prove that each connected component of (OENQ)\X(E) is contained
(up to a translation) in OW,,.

Let us consider a covering of a connected component of (OEN Q) \ £(E)
given by the open sets defined in Step 1. Observe that given two sets
Ui, Us of this covering, it 0OENU; = (z; + OW,) NU;, i € {1,2} and
OENU; NUs # (b, then either z; = 25 or OE N U; N Us is a segment
(parallel to an edge of W,,). So it is enough to check that each segment of
OFE N Q, parallel to an edge of W, and having the same exterior normal,
is not longer than the corresponding edge of W, and is equal when the
extremes of the segment are both contained in 2\ (FE).

Let [x1,22] be an edge of E parallel to an edge s of W, with length [ and
having the same exterior normal vector v.

If the length of [z1,22] is ' > [, for €, > 0 sufficiently small it is possible
to find 21, 2o € R? such that |27 — 22| = and {z € z; + Wy: (x — z;,v) =
p(v) —e} C [z1,22]. We consider the set E. which is equal to E out of
a neighbourhood W of [z1,22] and which coincides with EU (21 + W,,) U
(20 + W,) in W. If § is sufficiently small and F. is the set defined in
Lemma 4.4 we obtain that

Py(E-,Q) — P,(E,Q) = P,(W,,R?) — P,(F.,R?) = el + o(e).

Moreover, it is easy to check that |E. N Q| —|ENQ| =|E.\E| = (I +
d)e + o(e). Therefore, for € sufficiently small the set E. contradicts the
minimality of E.

Suppose now that I’ < I. Consider the set E. := {x € E:dist(x,r) > €},
where r is the straight line passing through x;, 2. Since E is locally equal
to W, again by Lemma 4.4 we find that

P,(E,Q) — P,(E.,Q) = P,(W,,R?) — P,(F.,R?) = el + o(e).

As above, since |E- N Q| — |[ENQ| = |E\ E:| = l'e + o(e), we get a
contradiction.

We claim that £(E) = (. When W, is neither a triangle nor a quadrilat-
eral, the statement follows by Theorem 3.4.

Notice that, by Step 2, every connected component of (OEN Q) \ X(E) is
a polygonal curve which has a finite number of vertices (no more than the
number of vertices of W,,).

20



N N

Figure 8: How to add area to a minimal cone.

E 7E
7 2/

Figure 9: How to increase the volume of E by adding a small square ball.

Let 2o € ¥(E) N Q. By Theorem 3.4, we can find p > 0 such that
B,(z9) C Q and X(E) N B,(x9) = {z0}. Moreover, we can assume that
the number of connected components of OF \ £(E) which intersect B, (o)
is finite, otherwise this would imply that P,(E, B,(xo)) = co. Therefore,
possibly reducing p, we can suppose that OE N B,(z) is a cone over .
By Step 1 we know that E is “locally equal” to W, so that E N B,(zo)
turns out to be a minimal cone (since W,, is a polygonal set).

Then, recalling Theorem 3.11, we reach a contradiction if we modify the set
E in B,(zg), by adding suitable triangles in such a way that the perimeter
does not change and the volume strictly increases, as in Figure 8.

O
Given a set E C X we say that F is locally convex (resp. concave) in Q C X
if for any = € Q there exists p > 0 such that E N B,(z) (resp. X \ EN B,(x))
is convex.
If E is locally convex or locally concave in Q then OF is the graph of a
lipschitz function in a neighborhood of any = € 9E N ().

Theorem 4.6 Let E € Ng(Q) and assume H > X\ > 0 (resp. H < u < 0).
Then, E is locally convex (resp. concave) in Q. Moreover, ¥(E) = ().

Proof:

Suppose for simplicity A > 1. Reasoning as in Theorem 4.5, Step 1, we get
that E is locally convex in Q \ £(E). Suppose now that W, is a triangle or
a quadrilateral (otherwise ¥(E) = () by Theorem 3.4). We claim that for any
z € (OENQ)\ X(E) such that OF is differentiable in z, vg(z) is a vertex of Fi,.
Indeed, if not we can add to E a small ball with center in z in such a way that
the perimeter does not change and the volume increases (see Figure 9). This
property, together with the local convexity of E, assures that E is locally equal
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to W, in (OEN Q) \ ¥(E), i.e. for any z € (OEN Q) \ £(E) there exists p > 0

and Z € OW,, such that (£ —z) N B, = (W, — %) N B,. This implies that for

any zo € X(FE) there exists p > 0 such that ENB,(x¢) coincides in B,(x) with

a singular cone on xy which is minimal for the perimeter. We can now conclude

as in Theorem 4.5, Step 3. a
From Theorem 4.6 we easily get the following result.

Corollary 4.7 Let E € Ny(Q) and assume H € C°(Q). Then, ¥(E) C {z €
O: H(x) = 0}. Moreover, OF is the graph of a lipschitz function in a neighbor-
hood of any x € OE N {x € O: H(z) # 0}.

Notice that, by Theorem 4.6 and Corollary 4.7, if E is a minimizer of (2)
and H € C°(Q) is such that H!'(0{zx € Q: H(z) = 0}) = 0 then JF is the graph
of a lipschitz function in a neighborhood of almost every € 9FE N .
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