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Abstract. Recently, the Sobolev metric was introduced to define gradient flows of
various geometric active contour energies. It was shown that the Sobolev metric
outperforms the traditional metric for the same energy in many cases such as
for tracking where the coarse scale changes of the contour are important. Some
interesting properties of Sobolev gradient flows include that they stabilize certain
unstable traditional flows, and the order of the evolution PDEs are reduced when
compared with traditional gradient flows of the same energies. In this paper, we
explore new possibilities for active contours made possible by Sobolev metrics. The
Sobolev method allows one to implement new energy-based active contour models
that were not otherwise considered because the traditional minimizing method ren-
der them ill-posed or numerically infeasible. In particular, we exploit the stabilizing
and the order reducing properties of Sobolev gradients to implement the gradient
descent of these new energies. We give examples of this class of energies, which
include some simple geometric priors and new edge-based energies. We also show
that these energies can be quite useful for segmentation and tracking. We also show
that the gradient flows using the traditional metric are either ill-posed or numerically
difficult to implement, and then show that the flows can be implemented in a stable
and numerically feasible manner using the Sobolev gradient.

Keywords: active contours, gradient flows, Sobolev norm, global flows, shape op-
timization, shape priors, ill-posed flows

1. Introduction

Active contours (Kass et al., 1987) is a popular technique for the seg-
mentation problem. Over the years there has been a progression of
active contours derived from edge-based energies (e.g., (Caselles et al.,
1993; Malladi et al., 1995; Caselles et al., 1995; Kichenassamy et al.,
1995)), to region-based energies (e.g., (Mumford and Shah, 1985; Mum-
ford and Shah, 1989; Ronfard, 1994; Zhu et al., 1995; Yezzi et al.,
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1999; Paragios and Deriche, 2000; Chan and Vese, 2001; Paragios and
Deriche, 2002)), to more recently, prior-based energies (e.g., (Leventon
et al., 2000; Tsai et al., 2001; Cremers and Schnörr, 2001; Chen et al.,
2002; Rousson and Paragios, 2002; Cremers and Soatto, 2003; Raviv
et al., 2004)) and energies incorporating complex geometrical infor-
mation (e.g., (Kim et al., 2002; Rochery et al., 2003; Nain et al.,
2004; Sundaramoorthi and Yezzi, 2005; Guyader and Vese, 2007)).
The progression from simple to more complicated energies is not only
due to a desire to segment more complicated images, but it can also
be attributed to the traditional gradient descent technique becoming
trapped by (undesirable) local minima of the energy being optimized.
Therefore there have been efforts to design optimization schemes that
can obtain the global minimum curve or at least a better local minimum
of a generic energy. For example, the minimal path technique (Cohen
and Kimmel, 1996) was designed to find the global minimal solution
of the edge-based energy considered in (Caselles et al., 1995; Kichenas-
samy et al., 1995). Another technique, called graph cuts (Boykov and
Jolly, 2001; Kolmogorov and Boykov, 2005), was designed for minimiz-
ing discrete approximations to certain active contour energies.

The limitation of these global methods is that they may be applied to
only certain types of energies, and therefore gradient descent methods
must be used in many cases. Moreover, for many applications (e.g.
object tracking), it is beneficial to incorporate the information from
an initial contour (e.g. the contour from the previous frame for object
tracking) to find the contour of interest. In such cases, typically for
speed considerations, simple energies are considered for which a global
minimum is not always desired, but rather a local minimum contour
“close” to the initial contour is desired. For such cases gradient descent
methods are ideal. Recently, (Michor and Mumford, 2003; Yezzi and
Mennucci, 2005a; Yezzi and Mennucci, 2005b; Charpiat et al., 2005)
have noticed that the gradient of an energy that is used in descent
algorithms depends on a metric chosen on the space of curves. This
fact has been ignored in previous active contour literature; indeed pre-
vious active contours were always derived from the geometric L2-type
(H0) metric. However, the work of (Michor and Mumford, 2003; Yezzi
and Mennucci, 2005a; Yezzi and Mennucci, 2005b) has shown that
the geometric L2-type metric is not a true Riemmannian metric, and
therefore unsuitable for shape analysis. Accordingly, (Sundaramoorthi
et al., 2005; Sundaramoorthi et al., 2006; Charpiat et al., 2005; Charpiat
et al., 2007) have considered new metrics in the space of curves when
deriving descent flows for active contours since it was shown by the
authors that the usual L2 gradient descent has many undesirable prop-
erties. It was shown that the metric choice affects the path taken to
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minimize an energy, and that certain local minima of an energy can
be avoided by designing an appropriate metric. In particular, Sobolev
metrics were considered. It was shown that gradient flows according
to Sobolev metrics give smooth global flows, which avoid many local
minima of energies that trap the usual L2 gradient flow. In addition, it
was shown that Sobolev metrics (unlike some other metrics considered
in (Charpiat et al., 2005; Charpiat et al., 2007)) change the notion
of “locality” in the space of curves and therefore make many local
minimum, due to noise, in the space of curves vanish (Sundaramoorthi
et al., 2006). In (Sundaramoorthi et al., 2006; Sundaramoorthi et al.,
pear), it was shown that Sobolev active contours move successively
from coarse to finer scale motions, and therefore the method is suitable
for tracking.

The main purpose of (Sundaramoorthi et al., 2005; Sundaramoorthi
et al., 2006) was to show advantages of using Sobolev active contours
over the traditional active contour based on the same energy. In con-
trast, in this paper we introduce new active contour energies that are
quite useful for various segmentation tasks, but cannot be minimized
with the traditional L2 active contour (nor other nor other gradient
descent for metrics proposed thus far), and the Sobolev active contour
must be used. We show examples of these energies, which include simple
geometric priors for active contours and new edge-based energies. These
new energies fall into two categories: one in which the resulting tradi-
tional L2 flows are not stable, and another in which the traditional L2

gradient flow results in high order PDEs that are numerically difficult
to implement using level set or particle based methods. We propose to
use Sobolev active contours, which avoid both of these problems.

This paper is meant to illustrate that energies that result in L2

unstable or high order flows can still be considered for optimization
with the Sobolev method (and these energies need not be discarded
or adjusted). Experiments in this paper show the types of behaviors
that can be obtained from the simple energies considered, and one can
obtain good results on more complex images by combining these results
with other energies.

Before we proceed, we make brief remarks on other relevant energy
minimizing approaches. The graph cut method (e.g., (Kolmogorov and
Boykov, 2005)) is often used to minimize geometric energies such as
weighted length, flux of a vector field, and weighted area. This area
of discrete optimization with techniques of this type continues to de-
velop 1 and more sophisticated energies are being shown to fall into

1 A tutorial on various discrete optimization schemes like graph cuts will be held
at ICCV 2007: http://www.csd.uoc.gr/%7Ekomod/ICCV07 tutorial/
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the feasible category of optimizable energies. For example, curvature is
being handled in certain cases (Schoenemann and Cremers, 2007b), and
simple prior shape information is now being included (Schoenemann
and Cremers, 2007a). The energies we use to exemplify the importance
of Sobolev metrics in active contours are more general, and not all
relevant energies can (yet) be handled by such graph cut types of
approaches. For very general energies of importance, steepest descent
methods are necessary, and therefore it is important to develop the
right shape metrics for defining gradient descent flows as we show in
this paper.

In (Charpiat et al., 2005) (see also (Mansouri et al., 2004)), the au-
thors consider various different metrics resulting in ‘coherent’ gradient
flows; indeed they construct flows that favor certain group motions
such as affine motions. In the case of the affine group (others are
analogous), the flow is formed by re-weighting the affine component
of the traditional gradient higher and the component orthogonal (ac-
cording to the L2 inner product) lower. Therefore, these metrics are
topologically equivalent to the traditional L2 metric and are not true
Riemannian metrics. Moreover, for the class of energies that we wish
to explore in this paper, the metrics proposed by (Charpiat et al.,
2005) based on group motions also suffer from the same problems as
the traditional L2 metric; namely, these flows are either not stable
or are high order PDEs and are difficult to implement numerically.
The Gaussian smoothing approach that is considered by the authors,
although theoretically stabilizes some of the flows that we consider,
when numerically implemented, instabilities arise due to the fact that
numerically smoothing an ill-posed flow does not perfectly annihilate
all the high frequency components in the flow causing the instabilities
(see Section 6.1 for more details). This exemplifies the need for analyt-
ical expressions for the smoothed flow, which the Sobolev metrics we
consider provide, where the instabilities are perfectly annihilated. Still,
for many other relevant problems such flows considered by (Charpiat
et al., 2005) are shown to be critical (see also (Eckstein et al., 2007)).

2. Review of Sobolev Metrics and Gradients

Sobolev active contours were introduced in (Sundaramoorthi et al.,
2005; Sundaramoorthi et al., 2007). We now present an overview. LetM
denote the set of immersed curves in Rd (d ≥ 2), which is a differentiable
manifold. For a curve c ∈M , we denote by TcM the tangent space of M
at c, which is isomorphic to the set of smooth perturbations of the form
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h : S1 → Rd, where S1 denotes the circle. We denote by E : M → R
an energy functional on M .

Definition 2.1. Let E : M → R.
If c ∈ M and h ∈ TcM , then the variation of E is dE(c) · h =

d
dtE(c+ th)

∣∣
t=0

, where (c+ th)(θ) := c(θ) + th(θ) and θ ∈ S1.
Assume 〈·, ·〉c is an inner product on TcM . The gradient of E is a

vector field ∇E(c) ∈ TcM that satisfies dE(c) · h = 〈h,∇E(c)〉c for all
h ∈ TcM .

One can interpret the gradient as the most efficient perturbation;
that is, the gradient maximizes the change in energy per cost of per-
turbing the curve. The following proposition justifies the previous state-
ment.

Proposition 2.1. Let ‖·‖c be the norm induced from the inner product
〈·, ·〉c on TcM . Suppose dE(c) 6= 0, and ∇E(c) exists; then the problem

sup
{h∈TcM,‖h‖c=1}

dE(c) · h = sup
{k∈TcM,k 6=0}

dE(c) · k
‖k‖c

has a unique solution up to a multiplicative constant, k = ∇E(c) ∈
TcM,h = k/‖k‖.

The traditional inner product used to define active contours is the
geometric L2-type inner product:

Definition 2.2. Let c ∈M , L be the length of c, and h, k ∈ TcM . We
assume h and k are parameterized by the arc-length parameter, s, of c.
We define

〈h, k〉L2, c :=
1

L

∫

c
h(s) · k(s) ds.

In (Sundaramoorthi et al., 2007), we have explored the idea of chang-
ing the inner product above (i.e., changing the Riemannian metric on
the space of curves) by looking a Sobolev-type inner products, which we
review in the next section. Changing in this way the Riemannian metric
associated with the space of curves regularizes the minimizing flows
associated with active contour energies without requiring the addition
of regularization penalties in the original active contour energies. The
change of metric does not affect the global minima of the energy, but
it completely changes the notions of gradient and “neighborhood
of a curve”. As a result of the change of “locality,” Sobolev active
contours are much more robust to the local minima that strongly in-
fluence standard active contours, e.g., local minima due to noise (see
(Sundaramoorthi et al., pear) for more details).
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2.1. Sobolev Metrics on Closed Curves

We now present the definition of geometric Sobolev-type metrics used
in this paper:

Definition 2.3. Let c ∈M , L be the length of c, and h, k ∈ TcM . We
assume h and k are parameterized by the arc-length parameter, s, of c.
Let λ > 0. Define

h :=
1

L

∫

c
h(s) ds,

and
〈h, k〉Sobolev, c := h · k + λL2n

〈
h(n), k(n)

〉
L2,c

,

where h(n) is the nth derivative of h with respect to arc-length.

Our choice of the definition of the Sobolev-type inner product above
has two advantages over the usual definition of Sobolev inner products
as the sum of all lower order derivatives: the corresponding formulas
for gradient flows are much simpler, and the computational complexity
to solve for the Sobolev metrics above is linear in the number of sample
points of curve, whereas it is quadratic for the usual Sobolev definition.
Moreover, the two Sobolev-type norms are topologically equivalent, and
the corresponding gradient flows have the same qualitative behavior in
many cases (see (Sundaramoorthi et al., 2007; Sundaramoorthi et al.,
pear)).

We now review the details for calculating the Sobolev gradient in
terms of the L2 metric. In this paper we are interested in first order
Sobolev gradients (n = 1) to illustrate our concepts, and thus we give
the formulas for computing the first order Sobolev gradient. It can be
shown (Sundaramoorthi et al., 2007) that if E is an energy on the space
of curves and g = ∇

Sobolev
E and f = ∇L2E, then

f(s) = f − λL2g′′(s) where s ∈ [0, L] (1)

and we have periodic boundary conditions. This yields the solution

g(s) = g(0) + sg′(0)− 1

λL2

∫ s

0
(s− ŝ)(f(ŝ)− f) dŝ (2)

g′(s) = g′(0)− 1

λL2

∫ s

0
(f(ŝ)− f) dŝ (3)

g′(0) = − 1

λL3

∫ L

0
s(f(s)− f) ds (4)

g(0) =

∫ L

0
f(s)K(s) ds (5)
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where

K(s) =
1

L

(
1 +

(s/L)2 − (s/L) + 1/6

2λ

)
, s ∈ [0, L]. (6)

We see that g and g′ may also be written as a convolution:

g(s) =

∫

c
K(ŝ− s)f(ŝ) dŝ =: (K ∗ f)(s), (7)

g′(s) = −(K ′ ∗ f)(s) (8)

and we have the important relation that will be quite useful for calcu-
lations below:

K ′′(s) =
1

λL2

(
1

L
− δ(s)

)
, s ∈ [0, L). (9)

It should be noted that for numerical purposes, one never uses the
convolution formulas (7), (8), rather one uses the equivalent formu-
las (2), (3), which is linear in the sample points of the curve versus
quadratic for (7), (8).

2.2. Sobolev Metrics on Open Curves With Fixed
Endpoints

For some applications, e.g. using the elastic energy for curve interpola-
tion (Horn, 1983; Bruckstein and Netravali, 1990; Mio et al., 2004) (see
Section 3) or even segmentation tasks where curves hit the boundary
of the image domain, it is necessary to look at metrics on open curves.

Definition 2.4. Let c : [0, 1] → Rd such that c(0) = p0, c(1) = p1

where p0, p1 ∈ Rd are fixed. Let h, k : [0, 1] → Rd be perturbations of
c (i.e., h(0) = h(1) = k(0) = k(1) = 0), then we define the following
inner products:

〈h, k〉L2, c :=
1

L

∫

c
h(s) · k(s) ds

〈h, k〉Sobolev, c := L2n
〈
h(n), k(n)

〉
L2, c

,

where h(n) is the nth derivative of h with respect to arc-length.

Note that we no longer need the zero order term in the definition of
Sobolev inner products since translations are no longer possible (with
fixed endpoints). The computations become easier without the zero-
order term, and moreover, the corresponding norms are equivalent to
the norms that include the zero order term.
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We now compute the Sobolev gradient in terms of the L2 gradient
for order one (n = 1). Suppose E is an energy on c, and g = ∇

Sobolev
E

and f = ∇L2E, then

−L2g′′ = f, with g(0) = g(L) = 0.

This yields a solution of

g(s) = sg′(0)− 1

L2

∫ s

0
(s− ŝ)f(ŝ) dŝ, (10)

g′(s) = g′(0) +
1

L2

∫ s

0
f(ŝ) dŝ, (11)

g′(0) =
1

L3

∫ L

0
(L− ŝ)f(ŝ) dŝ, (12)

and a similar formula can be obtained for g = ∇L2E, in particular the
solution is obtained in linear time. In terms of a kernel, we have that

g(s) = K̂(f) =

∫ L

0
K̂(s, ŝ)f(ŝ) dŝ, (13)

where

K̂(s, ŝ) =
1

L

{
ŝ
L(1− s

L) 0 ≤ ŝ ≤ s
s
L(1− ŝ

L) s ≤ ŝ ≤ L , (14)

and we have the relation

−L2∂ssK̂(s, ŝ) = δ(s− ŝ).

Notice that (13) is no longer a convolution as in the closed curve case,
but more generally a symmetric linear operator.

3. Some Useful Energies Precluded by L2

In this section, we introduce three geometric “energies”, which can be
used as building blocks to produce a variety of other useful energies (to
be described in subsequent sections). We then derive the L2 gradient
and show that the gradient descent flow is either ill-posed or very
difficult to implement numerically. We then derive the Sobolev gradient
flows, and justify that they are well-posed and numerically feasible to
implement.
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In this and subsequent sections, consider plane curves. We use the
notation that if c is a plane curve, then

cs = unit tangent vector to c

css = second derivative of c wrt s

N = unit inward normal of c

κ = css · N
∂s = derivative wrt s.

The first “energy” that we introduce is the following generalization
of average weighted length:

E(c) =
1

L

∫

c
φ(c(s)) ds = φ, (15)

where φ : R2 → Rk where k ≥ 1. The L2 gradient of this energy (see
Appendix A.1) is

∇L2E(c) = N [N T (Dφ)T − κ(φ− φ)T ], (16)

where T denotes transpose, and D denotes derivative. Since φ − φ
is not strictly positive, the gradient descent flow has a component
that is reverse heat flow on roughly half of the contour, and there-
fore the L2 gradient descent is ill-posed. Note that the reverse heat
component attempts to increase the length of certain portions of the
contour. Since the ill-posedness of the L2 flow only arises from the
length increasing effect, we expect the Sobolev gradient flow to be
well-posed. This is because increasing the length of the contour is a well-
posed process using the Sobolev gradient; indeed, the Sobolev gradient
ascent for length is simply a rescaling of the contour (Sundaramoorthi
et al., 2005). Computing the Sobolev gradient of (15) we have that (see
Appendix A.1)

∇
Sobolev

E(c) = −c− c
λL2

φ
T

+K ∗ (Dφ)T +K ′ ∗ (csφ
T ) (17)

Notice that the component, NφTκ, of the L2 gradient that caused
the ill-posedness has been converted to the first term of the Sobolev
gradient (17), which is a stable rescaling of the contour.

Next, we introduce a scaled version of the weighted area, given by
the energy

E(c) =
1

L2

∫

R
φ(x) dA(x) =

Aφ
L2
, (18)

where φ : R2 → R, R is the region enclosed by c, and dA is the area
measure in R2. Similar to the previous energy, the ill-posedness of the
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L2 gradient descent flow of (18) is due to the scale factor of L−2, which
causes a length increasing component in the gradients, and is ill-posed
with respect to L2. Indeed, calculating the gradient, we have

∇E(c) =
L2∇Aφ − 2AφL∇L

L4
=
Aφ
L2

[∇Aφ
Aφ

− 2
∇L
L

]
.

Therefore, we see that

∇
Sobolev

E(c) = −Aφ
L2

[
L
K ∗ (φN )

Aφ
+ 2

c− c
λL2

]
, (19)

which leads to a well-posed descent (and ascent).
Lastly, we introduce the following generalization of the elastic en-

ergy:

E(c) = L

∫

c
φ(c(s))κ2(s) ds, (20)

where φ : R2 → R, and κ is the signed curvature of c. The factor of L
multiplying the integral makes the energy scale-invariant when φ is a
constant. Note that without the factor of L, one can make the elastic
energy arbitrarily small by scaling a contour large enough. We will also
consider the scale-varying elastic energy without the L for segmenta-
tion applications. These energies have been used in the past for the
“curve completion” problem, which is a curve interpolation problem
between two points (Horn, 1983; Bruckstein and Netravali, 1990). In
(Bruckstein and Netravali, 1990), for the numerical implementation, a
discrete version of the energy is minimized with a “shooting” method.
One can show that the L2 gradient of (20) (see Appendix A.2) is

∇L2E(c) = −Ecss + 2L2∂ss(φcss) + 3L2∂s(φκ
2cs) + L2κ2∇φ (21)

We note the result of (Polden, 1996), which considers the L2 gradient
descent flow of an energy similar to (20). The author considers the L2

gradient descent flow of the energy

E(c) =

∫

c
(κ2(s) + α) ds,

where α > 0. It is proven that an immersed/regular curve evolving
under this fourth-order flow stays immersed/regular, and a solution
exists for all time. In the case when φ is a constant, the flow (21) is
similar to the flow that is considered in (Polden, 1996), except that
α is time varying in (21). For numerical implementation, the fourth
order flow (21) is difficult to implement with marker particle methods
because of numerical artifacts arising from fourth order differences,
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and it is even more problematic (e.g. (Droske and Rumpf, 2004)) to
implement with level set methods because the flow is not known to
have a maximum principle and because of numerical artifacts. This
motivates us to consider the Sobolev gradient flow (see Appendix A.2):

∇
Sobolev

E = − E

λL2
(c−c)+ 2

λ
((φcss)−φcss)−3L2K ′∗(φκ2cs)+L

2K∗(κ2∇φ).

(22)
The Sobolev flow is second order, although it is an integral PDE. We
can bypass the question about a maximum principle for this flow since
the local terms have a maximum principle, and we perform extensions
in the level set implementation for global terms.

4. Geometric Priors for Active Contours

In this section, we introduce some simple geometric shape priors for use
in active contour segmentation. As these energies are formed from the
energies presented in the previous section, they cannot be minimized
with the usual L2 gradient descent.

4.1. Length and Smoothness Priors

In many active contour models, a curvature term, i.e., ακN (where
α > 0 is a weight), is added to a data-based curve evolution. The
resulting flow will inherit regularizing properties such as smoothing
the curve from the addition of this term. If the active contour model
is based on minimizing an energy, then adding a curvature term is
equivalent to adding a length penalty to the original energy, that is, if
Edata is the original energy then the new energy being optimized (w.r.t
the traditional L2 metric) is

E(c) = Edata(c) + αL(c). (23)

This may be considered as a simple prior in which we assume that
the length of the curve is to be shrunk. In general segmentation situ-
ations, this assumption may not be applicable. A more general energy
incorporating length information, when such prior length information
is known, is

E(c) = Edata(c) + α(L(c)− L0)2, (24)

in which it is assumed that length of the target curve is near L0. Note
that this prior allows for increasing or decreasing the length of the curve
based on the current length of the curve and the value of L0. The L2

gradient is

∇L2E(c) = ∇L2Edata(c)− 2α(L− L0)κN ,
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which leads to an unstable flow if L−L0 < 0. The Sobolev gradient is

∇
Sobolev

E(c) = ∇
Sobolev

Edata(c) + 2α(L− L0)
c− c
λL

,

which is stable if the data term is stable.
One can also consider flows that preserve the length of curves rather

than penalizing deviations from a target length. See (Sapiro and Tan-
nenbaum, 1995) (and references within) for related flows where the
length of the curve is preserved. To derive length preserving flows that
minimize an energy, one can calculate the gradient flow and project
it onto the subspace of length preserving perturbations. Traditionally,
one has an L2 gradient, i.e., ∇L2E(c), and an L2 projection is done onto
the subspace of length preserving perturbations:

πL(∇L2E(c)) = ∇L2E(c)−
〈∇L2E(c),∇L2L(c)〉

H0

〈∇L2L(c),∇L2L(c)〉
H0

∇L2L(c).

Note ∇L2L(c) = css = κN . Thus,

πL(∇L2E(c)) = ∇L2E(c)−
〈∇L2E(c), κN〉

H0∫
c κ

2 ds
κN ,

and the flow corresponding to the above will decrease the energy of
interest while preserving the length of the curve. Depending on the sign
of the inner product above, the flow may be ill-posed. For example, if
we look at the simple Chan-Vese or Mumford-Shah L2 flows then the
inner product may give a negative sign and result in backward heat flow.
The Sobolev projection for preserving the length results in a well-posed
process provided the original gradient descent is well-posed:

πL(∇
Sobolev

E(c)) = ∇
Sobolev

E(c)−
〈
∇

Sobolev
E(c), c−c

λL2

〉
Sobolev

1
λL4

∫
c |c− c|2 ds

c− c
λL2

.

In active contour works, the goal of adding the usual length penalty
may have been mainly for obtaining the regularizing properties of the
resulting flow, even though the energy itself does not favor more regular
curves. It is evident that the Sobolev length descent does not regularize
the active contour since the flow is a rescaling of the curve. Thus, to
introduce smoothness into the Sobolev active contour (and even the L2

active contour), we introduce the smoothness prior given by the energy,

E(c) = Edata(c) + αL(c)

∫

c
κ2(s) ds. (25)

The energy itself favors smoother contours, and we are not relying on
the properties of a particular metric for regularity; it is inherent in
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the energy itself. The factor of L is for scale-invariance (unlike the
length descent, this regularizer does not favor shrinking the length of
the contour). Using the scale-varying and scale-invariant elastic ener-
gies as smoothness measures for active contours is mentioned but not
implemented in (Delingette, 2001; Brook et al., 2005).

4.2. Centroid and Isoperimetric Priors

We now consider incorporating prior information on the centroid, length,
and area of a curve into active contour segmentation. We consider the
energy

E(c) = Edata(c) + α‖c− v‖2 + β(L− L0)2 + γ(A− A0)2, (26)

where α, β, γ ≥ 0 are weights, c is the centroid of the curve c, v ∈ R2 is
the centroid known a-priori (see Section 6.3 for an example of how this
may be obtained), L0 and A0 are the prior values for the length and
area. If detailed information is not known about the length and area,
then that part of the energy may be replaced by the energy

E(c) = Edata(c) + α‖c− v‖2 + β(ρ(c)− ρ0)2, (27)

where

ρ(c) =
A(c)

L2(c)
(28)

is the isoperimetric ratio, which is a geometric measure of the rela-
tive relation between the length and area of a curve. Note that ρ is
scale-invariant. It is a well known fact that the isoperimetric ratio is
maximized by circles, and the maximum ratio is 1/(4π). Thus, the prior
ratio must be constrained so that ρ0 ≤ 1/(4π). Note that a low (near
zero) isoperimetric ratio can be obtained by a snake-like shape, and a
high ratio implies a shape that looks close to a circle. The isoperimetric
ratio is mentioned to be used as a smoothness measure in (Delingette,
2001), but this idea is not pursued.

Note that both the L2 gradient descents for the centroid constraint
and the isoperimetric penalties are ill-posed. The isoperimetric ratio
is a special case of (18) (when φ = 1), and the constraint gives a
gradient of (ρ − ρ0)∇ρ, which gives an unstable L2 gradient descent
flow when ρ > ρ0. Note that the centroid is a special case of (15)
(when φ : R2 → R2 is φ(x) = x). The gradient of the centroid penalty
is ∇(c)(c− v), which gives an L2 gradient of

[(c− v) · N − (c− c) · (c− v)κ]N
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using (16). The gradient descent is unstable when (c− c) · (c− v) < 0.
The Sobolev gradient using (17) is

(c̄− v) +K ′ ∗ [cs(c− c) · (c− v)].

One possible use for (26) and (27) is in tracking applications (see
Section 6.3).

4.3. Shape Priors Based on Moments

In this section, we consider prior-based segmentation based on moments
of prior shapes. In traditional prior-based image segmentation, one has
a database of likely shapes, and a principal component analysis (PCA)
or related statistics are computed on shapes in this database. In many
papers on incorporating prior shape knowledge (e.g., (Leventon et al.,
2000; Tsai et al., 2001; Rousson and Paragios, 2002)), a “shape” is
represented by its signed distance function and the PCA is done on
aligned versions of these signed distance functions. An active contour
energy is optimized on the subspace of “shapes” spanned by the first few
modes of the PCA in order to segment an image incorporating the prior
known set of likely shapes. Although PCA on signed distance functions
is not well-founded since the space of signed distance functions is not
a vector space, the method works well experimentally in many cases.

Other ways of incorporating prior shape information into the seg-
mentation (e.g. (Chen et al., 2002; Cremers and Soatto, 2003; Raviv
et al., 2004)) is by considering an energy of the form

E(c, T ) = Eimage(c) + d(c, T ◦ cprior) (29)

where d would ideally be a metric on curves and cprior is the prior
known shape. The parameter T is a pose transformation, which is used
so that posed transformed versions of the shape of interest may also be
segmented. In many works, d is a similarity score between the curves,
and usually not a true metric since a good metric on the space of curves
is not easy to define. To obtain cprior one may compute the average with
respect to d of shapes in a database, i.e., one can compute the shape
that minimizes the sum squared distance d to shapes in the database.
The advantage of this approach over the approach of (Leventon et al.,
2000; Tsai et al., 2001) is that the shape has more freedom to deform
to shapes not represented in the database since this model does not
restrict the shape to be a linear combination of principal components.

We look at the latter approach for prior-based segmentation and
take d to be a similarity score between shape descriptors based on
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moments. Indeed, we consider the descriptors

σn,m =
1

L

∫

c

(
c1(s)− c1

σx

)n(c2(s)− c2

σy

)m
ds (30)

=
1

L

∫

c
φ(c(s), c, σ(c)) ds, n,m ≥ 3, (31)

where σ(c) = (σx(c), σy(c)). The above are scale and translation invari-
ant descriptors. Note that we can give similar definitions of moments
that are rotation and affine invariant, but we look at the simple case of
scale and translation invariance to demonstrate the principle. There-
fore, the alignment of shapes in the prior database (as in (Leventon
et al., 2000; Tsai et al., 2001; Rousson and Paragios, 2002)) is no longer
necessary. The explicit update of pose parameters that is necessary to
obtain Euclidean and scale invariance of the prior based model (as in
(29)) is also no longer necessary. One can do a PCA on shapes in the
prior database, which are represented by up to order N of the moments
in (30). Note of course that simple algebraic operations on moments
do not guarantee that the resulting moment correspond to a shape in
the considered class. One can then formulate an energy that penalizes
deviations from the PCA to form d in (29). In the simplest case, we
have that

dprior(c) =
1

2

n+m≤N∑

n,m

wn,m(σn.m(c)− σn,m(cprior))
2 (32)

where σn,m(cprior) is the (n,m) moment of a shape in the database.
The L2 gradient descent of (32) is ill-posed as σn,m it is a gener-

alization of average weighted length (15). Therefore, we consider the
Sobolev gradient (see Appendix A.3), which yields

∇
Sobolev

σn,m = −
[
σn,m +

1

2
σ∇σφ

]
c− c
λL2

+K ∗
[
∇xφ+

c− c
σ
· ∇σφ

]

+K ′ ∗
[
φcs − (c− c) · ∇xφcs +

1

2

(c− c)2

σ
· ∇σφcs

]
−∇σφ,

(33)

where ∇xφ denotes the derivative with respect to the first argument of
φ and we have used the following notation:

c− c
σ

:=

(
c1 − c1

σx
,
c2 − c2

σy

)
,
c− c
σ
∇σφ :=

(
c1 − c1

σx
∇σxφ,

c2 − c2

σy
∇σyφ

)
.

Note that a similar approach of prior-based image segmentation
based on moments has been considered in (Foulonneau et al., 2006),
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however, the moments are area-based moments:

σn,m =
1

A(n+m)/2+1

∫

R
(x− x)m(y − y)n dxdy,

where x and y are the standard coordinate area-based means. The
authors go on to consider affine-invariant moments. A reason for using
length-based moments over area-based moments is that the length-
based moments are much more sensitive to and therefore better at
discriminating protrusions and fine-scale details of the curve. Therefore,
it is easier to detect finer details of the prior curve with length-based
moments with smaller order moments compared to the region-based
case (see Section 6.4 for an experiment).

5. New Edge-Based Active Contour Models

The energy for the traditional edge-based technique (Caselles et al.,
1995; Kichenassamy et al., 1995) (called geodesic active contours) is

E(c) =

∫

c
φ(c(s)) ds, (34)

where φ : R2 → R is chosen low near edges (a common example is
φ = 1/(1 + ‖∇(G ∗ I)‖) where G is a Gaussian smoothing filter). There
are several undesirable features of this model (even if a perfect edge-
map φ is chosen). The energy has trivial (undesirable) minima and even
minima that are not at the edges of the image (see for example (Ma and
Tagare, 1999)). This is in part due to the bias that the model has in
preferring shorter length contours, which may not always be beneficial.
Therefore, we propose new edge-based models.

5.1. Non-Shrinking Edge-Based Model

We propose to minimize the following non-length shrinking edge-based
energy:

E(c) =

∫

c
φ(c(s))

(
L−1 + αLκ2(s)

)
ds, (35)

where α ≥ 0, which we claim alleviates some of the undesirable prop-
erties of (34). An energy, which is similar to (35) (except for the factor
of L on the curvature term), is considered by (Fua and Leclerc, 1990),
but a discrete version of the energy is used for implementation. The
first term, 1

L

∫
c φds (i.e., (35) when α = 0), is the same as the energy

used for the geodesic active contour model, but there is a scale factor of
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1/L. This removes the length shrinking effect of (34) in descent flows;
in particular if there are no edges (φ is constant), then a descent flow
will not shrink the contour. The L2 gradient of the first term (when
α = 0 in (35)) as noted in (16) is

−L(φ− φ)κN + L(∇φ · N )N ,

which is zero when the contour is aligned on true edges of the image
(note that this may not be the case with the geodesic active contour
model). The flow is stable with respect to the Sobolev metric, but not
with respect to L2.

Dividing the energy (34) by L, as in the first term of (35), loses reg-
ularizing effects of the original flow, and it is possible that the contour
can become non-smooth from irrelevant noise. This observation is the
reason for the second term of (35). The second term, L

∫
c φκ

2 ds, is an
image dependent version of the scale-invariant elastic energy. This term
favors smooth contours, but smoothness is relaxed in the presence of
edges, which are determined by φ. The factor of L makes the energy
scale-invariant when φ is constant; therefore, a descent flow will not in-
crease or decrease the length of the contour unless these behaviors make
the curvature smaller or make the contour align along the edges. The
reason for not considering this term alone is for the following. Suppose
we are considering open curves with two endpoints fixed. Regardless
of the φ that is chosen, the minimum of this term is always zero, and
it is minimized by a straight line (the curvature is zero). For closed
contours, we have observed in the numerical implementation that the
contour sticks to isolated points where there is an edge of the image,
and the converged contour is a straight line between these points (even
if there is no edge along the line). Thus, the contour looks polygon-
like. Even though the κ = +∞ at vertices of polygons, this is not true
numerically where κ is finite. Therefore, in a numerical implementation,
the second term of (35) is not useful by itself.

5.2. Increasing Weighted Length

Instead of a non-shrinking edge-based model, if we have prior informa-
tion that the length of the curve should increase, e.g., the initial curve
is within the object of interest, then one may want to maximize the
following energy:

E(c) =

∫

c
φ(c(s)) ds− α

∫

c
κ2(s) ds, (36)

where α ≥ 0, and φ, contrary to the geodesic active contour model, is
designed to be large near edges (one example is choosing φ = ‖∇I‖).
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The first term of the energy is a weighted length, and therefore this
term favors increasing the length of the curve while stopping near edges.
Considering only the first term ((36) when α = 0), since the length of
the curve is being increased, it is likely that when the curve has con-
verged on a coarse scale, fine details due to noise become detected and
the curve becomes rough, thereby further increasing length. Therefore,
we add a regularizer, which is the second term of (36), to the weighted
length. Note that we propose to use the scale-varying elastic energy,
which in addition to regularity, gives an effect of increasing the length
of the curve, which is beneficial based on the prior assumption.

The L2 gradient ascent of the weighted length term results in one
term that is −φκN , which makes the length of the curve increase and
is unstable. If α > 0, then the L2 flow of (36) may become well-posed
since this results in higher order regularity terms, but the elastic energy
has its own problems using the L2 gradient flow. Therefore, we use the
Sobolev flow.

6. Experiments

6.1. Stability of Length Increasing Flow

In this first experiment, we consider simple flows to increase the length
of an initial curve. First, we consider the Gaussian smoothing approach
of (Charpiat et al., 2005), that is, we consider numerically implementing
the flow ct = −Sδ(css) where Sδ is a Gaussian smoothing operator.
Note that since Sδ is the solution of the heat equation on the circle,
one cannot obtain a closed form solution for Sδ as a convolution ker-
nel as in the case of the Sobolev metric. Therefore, one is forced to
numerically implement the smoothing process. In Fig. 1, we show that
while theoretically the Gaussian smoothed flow is stable, the numer-
ical implementation gives many irregularities, which may be signs of
instabilities. This is probably because the numerical smoothing does
not annihilate exactly all of the high frequency components causing
the instabilities of the original flow. On the other hand, the Sobolev
gradient ascent is numerically stable as we have a closed form solution
for its gradient (Fig. 1).

6.2. Regularity of Sobolev Active Contour

In this experiment, we show a case when the scale-invariant elastic
regularity term (25) is more beneficial than the using the traditional
length penalty (23). Note that the elastic regularizer does not generally
have a length shrinking effect, but keeps the contour regular. This
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Figure 1. Flows increasing the length of the curve. Left to right: initial contour,
after 100 and 400 iterations of smoothed backward heat flow (10 smoothing itera-
tions), after 250 and 1000 iterations of smoothed backward heat flow (100 smoothing
iterations), Sobolev gradient flow after 100 and 400 iterations (this is independent
of λ). Notice that the Gaussian smoothed flow builds up irregularities numerically,
and smoothing more helps delay the build up of the irregularities.

Figure 2. L2 regularization (top two rows). Left to right: α = 1000, α = 1000
followed by curvature smoothing to remove the noise (least number of iterations
to remove noise), α = 10000, 50000, 90000. The image-based term is Chan-Vese.
Sobolev elastic regularization (bottom two rows). Left to right: α = 0, 0.1, 5, 10, 25.
The second and fourth row show the same result as the row above them, but the
image is removed for visibility.

length shrinking effect may have a detrimental effect as shown in Fig. 2.
Note that the length penalty restricts the curve from moving into the
groves between the fingers. The elastic regularity term, on the other
hand, has no such restriction, and makes the curve more smooth and
rounded.
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Figure 3. Tracking a man through an occlusion. Bottom row shows the results
of using a prediction (filtering) on the centroid and the isoperimetric ratio, and
then penalizing deviations of the contour away from predicted parameters by (27)
(α = 50000, β = 100). The top row gives the result with no such penalty using usual
L2, and the middle row is using Sobolev active contours with no prior.

6.3. Tracking with Centroid/ Isoperimetric Prior

In this experiment, we illustrate one possible application of the energy
(27) in tracking a man through an occlusion. For the data-based term
in (27), we use the Mumford-Shah energy (Mumford and Shah, 1989).
The prior information on the centroid and isoperimetric ratio can be
obtained through a filtering process (indeed, we assume a constant
acceleration model of both quantities). We use the tracking framework
of (Jackson et al., 2004) for both simulations in Fig. 3. The top row
shows the result using the framework of (Jackson et al., 2004) without
the use of prior centroid and isoperimetric information; the bottom
row incorporates this prior information. Notice that the prior informa-
tion on the centroid keeps the contour moving through the occlusion,
while the isoperimetric ratio (and because we are using Sobolev active
contours) keeps the shape constrained.

6.4. Prior Shape Segmentation With Moments

We now show results of using simple shape priors based on moments
for image segmentation. In the first experiment (Fig. 4), we show the
usefulness of incorporating a covariance prior for object tracking. In
this experiment, we segment frame-wise using the energy

E(c) = Ecv(c) + ‖Σ(c)− Σ(c0)‖2,
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Figure 4. Tracking of a sea creature using a covariance prior from the initial frame.
The top row shows the tracking using a simple Chan-Vese detection energy with
Sobolev active contours. The bottom row shows the result when adding a simple
covariance prior obtained from the initial frame, which can only be optimized with
Sobolev active contours.

where Ecv is the Chan-Vese energy (Chan and Vese, 2001), and

Σ(c) =

(
σ2,0(c) σ1,1(c)
σ1,1(c) σ0,2(c)

)
, and σij(c) =

1

L

∫

c
(c1(s)−c1)i(c2(s)−c2)j ds,

and c0 is the initial curve in the first frame. Note that we are considering
scale-varying variances since we would like to place a prior on the scale
of the object. Fig. 4 shows that without such a variance prior even with
Sobolev active contours, the contour expands to the background since
this portion of the background resembles the object more closely than
the dark area. However, when adding a prior on the covariance obtained
from the initial contour in the initial frame, the curve is restricted from
bleeding into the background.

In the experiment in Fig. 5, we perform a prior-based segmentation
on a image that is both occluded and distorted by Gaussian noise (mean
0 and variance 0.6). We segment using the energy

E(c) = Ecv(c) + dprior(c),

where d is defined in (32), and we use up to 5th order moments. The
figure shows that without the moment-based priors, the segmentation
captures the (unwanted) rectangle and cannot expand to capture the
tail of the plane due to the high level of noise. The segmentation with
area-based moments does much better and avoids the rectangular bar,
but cannot expand in to capture the tail. The length-based moment
prior segmentation avoids the rectangular bar and easily expands to
capture the tail of the plane. This is because protrusions with large
length and small area are much easier to capture with length-based
moments. One could capture the tail with area-based moments, but
one would need to use much higher moments, for example, in (Foulon-
neau et al., 2006) the authors use around 40th order moments for their
segmentation.
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Figure 5. Prior-based image segmentation based on moments. Top row: the first
image is the prior shape from which 5th order moments are extracted, the second
image is the image to be segmented, and the last image is the image to be segmented
with the initial contour. Bottom row: final L2 active contour with no prior, Sobolev
active contour with no prior, Sobolev active contour with area-based moment prior,
and Sobolev active contour with length-based moment prior.

Figure 6. Segmentation of concave object. Standard L2 geodesic active contour
(top); the Sobolev active contour is similar, and using the first term of the
non-shrinking model with Sobolev active contours (bottom).

6.5. Edge Detection with Non-Shrinking Model

We first show an experiment (Fig. 6) to illustrate the behavior of the
first term of the non-shrinking edge-based model (35). Because the
standard edge-based energy prefers to shrink the curve in the absence
of edge information, the corresponding flow (either in the H0 or the
Sobolev metrics) is not suitable for capturing concavities, where it is
desirable to increase the length of the curve. Since the average value
of the standard geodesic energy is not preferential to shrinking nor
increasing the length of the curve and it is solely influenced by the edge
information, this model has a better ability to capture concavities.

In this experiment, we demonstrate that the traditional edge-based
geodesic active contour model has an arbitrary length shrinking effect
that causes the contour to pass over some meaningful edges. We show

ijcv.tex; 30/09/2007; 16:02; p.22



23

Figure 7. Segmentation of cyst image with three different initializations (first image
in each row). Converged results for the (34) and L2 active contour (second image),
(34) with the Sobolev active contour (third image), and the energy (35) (last image).

that the non-shrinking edge-based model (35) can help correct this
behavior. We use the edge-map, 1/(1 + φ), where

φ(x) =
1

|Br|

∫

Br(x)
(I(y)− Ir(x))2 dA(y), (37)

Ir(x) =
1

|Br|

∫

Br(x)
I(y) dA(y), (38)

Br(x) = {y ∈ R2 : ‖y − x‖ ≤ r}, and |Br| denotes the area of Br.
In Fig. 7, we segment a cyst image using various initializations.

Notice that the contour with the traditional edge-based energy (using
the L2 or the Sobolev descents) consistently passes over the edge on the
right side of the cyst. The non-shrinking model consistently captures
the correct segmentation.

6.6. Edge Detection by Increasing Weighted Length

In this experiment, we apply the weighted length increasing energy (36)
to vessel segmentation. We show the results of using the traditional
edge-based technique with a balloon; that is, we show results of using
the L2 gradient descent for the energy

E(c) =

∫

c
φ(c(s)) ds− α

∫

R
φdA. (39)

We use (37) as the edge-map for the weighted length increasing flow.
The edge-map for (39) is 1/(1 + φ) where φ is given in (37).
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Figure 8. Left to right: initial contour, minimizing (39) α = 0.2, 0.25, 0.4 using L2,
and increasing weighted (36) α = 0.1 using Sobolev (all images show converged
contour). The contour expands to enclose the entire image (fifth image).

In the case of vessel segmentation, it is beneficial to increase the
length of the initial contour more so than area. Since a vessel is charac-
terized as a long, thin structure, a balloon term will fail to capture the
global geometry of the vessel. This is demonstrated in Fig. 8: a small
weight on the balloon term results in the flow capturing local features
close to the initial contour; larger weights on the balloon makes the
contour balloon out to capture the entire image. Note the weighted
length maximizing flow does not pass the walls of the vessel since that
does not increase the length (although it does increase area) of the
contour, and is therefore able to capture the vessel.

7. Conclusion

We have demonstrated that the Sobolev gradient method allows one to
consider active contour energies that were not considered in the past
because the gradient method using the traditional metric cannot be
used. In particular, we have given examples of energies that result in
L2 gradients that are ill-posed or lead to high order PDEs (and hence
numerically difficult to implement). These energies, as we have shown,
result in Sobolev gradient flows that are both well-posed and numeri-
cally simple to implement. The experiments have shown potential uses
for some energies introduced in segmentation and tracking applications.

Appendix
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A. Derivation of Sobolev Gradient Flows

Note that in this appendix, all Sobolev gradients are computed with
respect to the first order (n = 1) Sobolev metric (2.3), and therefore,
the expressions are in terms of the kernel, K, defined in (6). We recall
the notation that if L is the length of a curve c and f : [0, L] → Rd
(d ≥ 2) then

f :=
1

L

∫

c
f(s) ds.

Moreover, recall the notation presented in Section 3.

A.1. Average Weighted Length

Let

E(c) =
1

L

∫

c
φ(c(s)) ds,

where φ : R2 → Rk where k ≥ 1. We now compute the L2 gradient for
k = 1:

∇L2E(c) = −∇L2L

L
E(c) +

1

L
∇L2(LE(c))

= EκN + (∇φ · N )N − φκN
= (∇φ · N )N − (φ− E)κN . (40)

For the general case of k, we find

∇L2E(c) = N [N T (Dφ)T − κ(φ− E)T ]

where T denotes transpose. We now compute the Sobolev gradient for
k = 1:

∇
Sobolev

E(c) = −∇Sobolev
L

L
E(c) +

1

L
∇

Sobolev
(LE(c))

= −Ec− c
λL2

+K ∗ ∇φ+K ′ ∗ (φcs) (41)

= −Ec− c
λL2

+
φc− φc
λL2

− (φsc) ∗K ′ +∇φ ∗K, (42)

where φs = d/dsφ(c(s)). For the general case of k, we find

∇
Sobolev

E(c) = −c− c
λL2

ET +K ∗ (Dφ)T +K ′ ∗ (csφ
T )

= −c− c
λL2

ET +
cφT − cφT

λL2
− (cφTs ) ∗K ′ + (Dφ)T ∗K.
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A.2. Scale-Invariant-Type Elastic Energy

Let

E(c) = L

∫

c
φ(c(s))κ2(s) ds.

We denote C : S1 × [0, 1] → Rd (C(p, t) ∈ Rd) to be a time varying
family of curves, and we will write E(t) := E(C(·, t)). First note that

Csst = Ctss − (Ctss · Cs + Cts · Css)Cs − 2(Cts · Cs)Css,

and since Cs · Css = 0, we have that

∂

∂t
(Css · Css) = 2Csst · Css2(Ctss · Css)− 4(Cts ·Cs)(Css ·Css). (43)

Next we find that

∂

∂t
(φ(C)|Cp|) = ∇φ · Ct|Cp|+ φ

Ctp · Cp
|Cp|

= (Ct · ∇φ+ φ(Cts · Cs))|Cp|. (44)

Now,

E′(t) =
d

dt

(
L

∫ 1

0
φ(C)(Css · Css)|Cp|dp

)

=
E

L
Lt + L

∫ 1

0

∂

∂t
(φ(C)|Cp|)Css · Css dp+ L

∫

C
φ(C)

∂

∂t
(Css · Css) ds.

By substituting (43) and (44) into the last expression above, we have
that

E′(t) =

∫

C
Ct ·

(
−E
L
Css + L(Css ·Css)∇φ

)
ds

+ L

∫

C
(2φ(Ctss · Css)− 3φ(Cts · Cs)(Css · Css)) ds.

Integrating by parts, we find that

E′(t) =
1

L
×

∫

C
Ct·
(
−ECss + 2L2∂ss(φCss) + 3L2∂s(φ(Css ·Css)Cs) + L2(Css · Css)∇φ

)
ds.

Hence,

∇L2E(c) = −Ecss+2L2∂ss(φcss)+3L2∂s(φ(css ·css)cs)+L2(css ·css)∇φ.
(45)
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This form will be useful in computing the Sobolev gradient, but we
simplify the expression (45) to understand the L2 flow in the planar
case:

∂ss(φcss) = ∂ss(φκN )(φssκ+2φsκs+φκss−φκ3)N−(2φsκ
2+3φκκs)cs;

also,

∂s(φ(css · css)cs) = ∂s(φκ
2cs) = (φsκ

2 + 2φκκs)cs + φκ3N .

Therefore,

2∂ss(φcss) + 3∂s(φ(css · css)cs) =

(2φssκ+ 4φsκs + 2φκss + φκ3)N − φsκ2cs,

and finally,

∇L2E(c) = L2

(
− E
L2
κ+ 2φssκ+ 4φsκs + 2φκss + φκ3 + κ2∇φ · N

)
N .

(46)
Computing the Sobolev gradient from (45), we have that

∇
Sobolev

E = K ∗ ∇L2E

= −EK ′′ ∗ c+ 2L2K ′′ ∗ (φcss)− 3L2K ′ ∗ (φ(css · css)cs)
+ L2K ∗ ((css · css)∇φ).

Hence,

∇
Sobolev

E = − E

λL2
(c− c)+

2

λ
((φcss)− φcss)− 3L2K ′ ∗ (φκ2cs) + L2K ∗ (κ2∇φ). (47)

A.3. Moments

We calculate the gradients of the moments defined by

σn,m =
1

L

∫

c

(
c1(s)− c1

σx

)n(c2(s)− c2

σy

)m
ds =

1

L

∫

c
φ(c(s), c, σx, σy) ds

where n,m ≥ 3 and

σ2
x =

1

L

∫

c
(c1(s)− c1)2 ds, and σ2

y =
1

L

∫

c
(c2(s)− c2)2 ds.

ijcv.tex; 30/09/2007; 16:02; p.27



28

We will denote ∇x, Dσx, Dσy to be the derivative wrt the first, third
and fourth argument of φ. Then

d

dt
σn,m(C(t)) =

1

L

∫

C
Ct ·

[
ECss +∇xφ− (φCs)s −∇L2(C)∇xφ

]
ds

+
1

L

∫

C

(
Dσxφ ·

d

dt
σx +Dσyφ ·

d

dt
σy

)
ds

=
1

L

∫

C
Ct ·

[
ECss +∇xφ− (φCs)s −∇L2(C)∇xφ

]
ds

+
1

L

∫

C
Ct · [(Dσxφ)∇L2σx] ds+

1

L

∫

C
Ct · [(Dσyφ)∇L2σy)] ds

=
1

L

∫

C
Ct ·

[
ECss +∇xφ− (φCs)s −∇L2(C)∇xφ+∇L2σxDσxφ+∇L2σyDσyφ

]
ds,

and therefore,

∇
Sobolev

σn,m = −Ec− c
λL2

+K ∗ ∇xφ+K ′ ∗ (φcs)−∇Sobolev
(c)∇xφ

+∇
Sobolev

σxDσxφ+∇
Sobolev

σyDσyφ.

Note that

∇
Sobolev

σx =
1

2σx

[
−c− c
λL2

σ2
x + 2K ∗ (c1 − c1) +K ′ ∗ (cs(c1 − c1)2)

]
,

and so setting σ = (σx, σy) and ∇σφ = (Dσxφ,Dσyφ), we have

∇
Sobolev

σ∇σφ = − c− c
2λL2

(σ · ∇σφ) +K ∗
[
(
c1 − c1

σx
,
c2 − c2

σy
) · ∇σφ

]

+
1

2
K ′ ∗

[
cs(

(c1 − c1)2

σx
,

(c2 − c2)2

σy
) · ∇σφ

]

= − c− c
2λL2

(σ · ∇σφ) +K ∗
[
c− c
σ
∇σφ

]
+

1

2
K ′ ∗

[
cs

(c− c)2

σ
· ∇σφ

]
,

where

c− c
σ

:=

(
c1 − c1

σx
,
c2 − c2

σy

)
,
c− c
σ
∇σφ :=

(
c1 − c1

σx
Dσxφ,

c2 − c2

σy
Dσyφ

)
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Therefore,

∇
Sobolev

σn,m = −Ec− c
λL2

+K ∗ ∇xφ+K ′ ∗ (φcs)−∇xφ−K ′ ∗ [cs(c− c)∇xφ]

− c− c
2λL2

(σ · ∇σφ) +K ∗
[
c− c
σ
∇σφ

]
+

1

2
K ′ ∗

[
cs

(c− c)2

σ
· ∇σφ

]

= −
[
σn,m +

1

2
σ · ∇σφ

]
c− c
λL2

+K ∗
[
∇xφ+

c− c
σ
∇σφ

]

+K ′ ∗
[
φcs − [(c− c) · ∇xφ]cs +

1

2
[
(c− c)2

σ
· ∇σφ]cs

]
−∇σφ.

Note that

φ(x, y, σx, σy) =

(
x− x
σx

)n(y − y
σy

)m
,

and

∇xφ =





(
n[(x− x)σ−1

x ]n−1[(y − y)σ−1
y ]m, m[(x− x)σ−1

x ]n[(y − y)σ−1
y ]m−1

)
n,m 6= 0(

0, m[(y − y)σ−1
y ]m−1

)
n = 0(

n[(x− x)σ−1
x ]n−1, 0

)
m = 0

and

∇σφ = −





(
nσ−1

x [(x− x)σ−1
x ]n[(y − y)σ−1

y ]m, mσ−1
y [(x− x)σ−1

x ]n[(y − y)σ−1
y ]m

)
n,m 6= 0(

0, mσ−1
y [(y − y)σ−1

y ]m
)

n = 0(
nσ−1

x [(x− x)σ−1
x ]m, 0

)
n = 0
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