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Abstract. We consider two models for branched transport: the one introduced in Bernot et al.
(Publ Mat 49:417–451, 2005), which makes use of a functional defined on measures over the space
of Lipschitz paths, and the path functional model presented in Brancolini et al. (J Eur Math Soc
8:415–434, 2006), where one minimizes some suitable action functional defined over the space of
measure-valued Lipschitz curves, getting sort of a Riemannian metric on the space of probabilities,
favouring atomic measures, with a cost depending on the masses of each of their atoms. We prove
that modifying the latter model according to Brasco (Ann Mat Pura Appl 189:95–125, 2010), then
the two models turn out to be equivalent.

1. Introduction

The study of variational models giving rise to branched structures of transportation as optimizers
has been the object of an intensive investigation in recent times: we just cite the works of Bernot,
Caselles and Morel ([3]), Maddalena, Morel and Solimini ([14]) and Xia ([17]), which are now quite
standard references in this field, as leading examples.

The typical problem one has to face in this context is the following: one has some mass µ0

that has to be transported to a destination µ1 and wants to find the optimal way to perform this
transportation. The main difference with the classical Monge-Kantorovich mass transportation
problem (for which the reader can consult [1] or [16]) is that optimality should regard the type of
structure used to move the mass: in particular, this transportation should be optimal with respect to
some energy which has to take into account the fundamental principle that “the more you transport
mass together, the more efficient the transport is”. This is, for example, exactly what happens in
many natural systems: root systems in a tree, bronchial systems and blood vessels in a human body
and so on. Each of them solve the problem of transporting some “mass” (water, oxygen, blood or
generic fluids) from a source to a destination, avoiding separation of masses as much as possible.
This fundamental principle is translated into the energy by considering, for a mass m moving on
a distance `, a cost of the form mα`, with α < 1: since the function m 7→ mα is subadditive, i.e.
(m1 + m2)α < mα

1 + mα
2 , it is convenient to put together different masses so as to pay less. Then

the typical resulting structures are trees made of bifurcating vessels.
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In the case of finitely atomic sources and destinations, that is when µ0 and µ1 are measures with
the same mass (let’s say 1, up to a renormalization) of the form

µ0 =
m∑
k=1

akδxk
and µ1 =

n∑
j=1

bjδxj ,

Gilbert in the ’60s (see [12]) proposed to study the minimization of the energy

(1.1) Mα(g) =
∑
h

mα
hH1(eh),

where H1 is the one-dimensional Hausdorff measure and g = (eh,−→eh,mh) is a weighted oriented
graph, with eh standing for the edges of the graph, −→eh are the orientations of these edges and
the weights mh stand for the transiting mass. Then Mα is minimized over the set of admissible
weighted oriented graphs, which is given by those graphs linking µ0 to µ1 and satisfying Kirchhoff’s
Law. Observe that this can be viewed as a generalization of Steiner’s problem of finding the network
of minimal length connecting a set of given points, the latter corresponding to the choice α = 0.
This discrete model has been suitably extended to a continuous setting (i.e. when µ0 and µ1 are
general probability measures) by Xia (see [17]), thanks to a relaxation procedure. This leads to the
minimization of the energy

M∗α(Φ) =


∫

Σ
mα(x) dH1(x), if Φ = m−→τ H1xΣ,

+∞, otherwise,

over all vector measures Φ with prescribed divergence ∇ ·Φ = µ0− µ1, which is finite only on those
measures concentrated on a 1−rectifiable set Σ with a vector density m−→τ w.r.t. H1, where −→τ is an
orientation of Σ: this energy is obviously closely related to the original Gilbert-Steiner energy (1.1).
A completely different formulation has been given to this problem by Maddalena, Morel and Solimini
(the irrigation patterns model, [14], which is confined to the case of a single source µ0 = δx0) and
by Bernot, Caselles and Morel (the traffic plans model, [3]), using some tools from fluid mechanics,
such as probability measures over the set of paths: we do not discuss here these models (see Section
2), but it is remarkable to point out that in the case of µ0 = δx0 , all the studies performed in [14],
[17] and [3] lead to the same optimal structures and they all give different descriptions of the same
energy, which is exactly a Gilbert-Steiner one (see Chapter 9 of [5], for these equivalences).

Among others, the paper [8] presents a possible alternative approach to these problems: actu-
ally, the model is fairly more general, as it tries to give a unified dynamic formulation of mass
transportation problems both with congestion or branching effects, simply perturbing the geodesic
formulation of the p−Wasserstein distance. The latter is actually a geodesic distance (i.e. the space
of probability measures becomes a length space under wp) and hence it satisfies

wp(µ0, µ1) = min
{∫ 1

0
|µ′|wp dt : µ ∈ Lip, µ(0) = µ0, µ(1) = µ1

}
, µ0, µ1 ∈ Wp(Ω).

Here |µ′|wp is the metric derivative of the curve µ with respect to the p−Wasserstein distance, which
is defined by

|µ′|wp(t) = lim
h→0

wp(µ(t+ h), µp(t))
|h|

,

(see Chapter 4 of [2] for more details).
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One can perturb this minimal length formula studying weighted lengths. If suitable weight func-
tions which allow only for very concentrated measures or very diffused ones are chosen, one can
obtain models for different kind of phenomena to modelize.

For the case to study, the choice of the weight function is given by

(1.2) gα(µ) =


∑
k∈N

mα
k , if µ =

∑
k∈N

mkδyk
,

+∞, otherwise,

so that the energy under consideration in [8] is the following

(1.3) Gα,p(µ) =
∫ 1

0
gα(µ(t)) |µ′|wp(t) dt,

for every Lipschitz curve with values in Wp(Ω). Observe that the term gα is finite only on atomic
measures and reproduces the energy with the masses to the power of α which is used in the other
models. Moreover, this model is a purely dynamical one, as far as any optimal curve provides
the evolution of the branched transportation and not just the branched structure underlying the
movement: also notice that the term gα(µ(t)) is local both in space and time.

This model, despite its simple description, has not received much attention (except for the recent
paper [7] by Bianchini and Brancolini, where the so-called irrigability conditions are studied in
details), after it has been discovered that it turns out not to be equivalent with the others (in the
sense that the optimal structures they describe are not the same). Moreover, it shows some unnatural
behaviours from a modelization point of view. These are mainly two and we try to explain them in
some details, in order to provide a better understanding of the scope of this work:

(i) energetic behaviour: the term gα is a function of the whole µ, which means that if some
masses arrive at their destination and then stop, we continue to pay a cost for them until
all the process is over.

Just to clarify, we write down a basic example: suppose you want to transport µ0 = δx0

to µ1 = mδx1 + (1−m)δx2 , where |x0 − x1| = 2|x0 − x2|. A possible connecting curve could
be

µ(t) =


mδ(1−t)x0+tx1

+ (1−m)δ(1−2t)x0+2t x2
, t ∈ [0, 1/2],

mδ(1−t)x0+tx1
+ (1−m)δx2 , t ∈ [1/2, 1],

but it is easily seen that for a path like this, the energy (1.3) will let you pay a cost for the
mass (1−m) also after it is stopped.

On the contrary, it would be desirable to have an energy which takes into account only
the moving mass, which in this case is simply given by

ν(t) =
{

µ(t), t ∈ [0, 1/2],
mδ(1−t)x0+tx1

, t ∈ [1/2, 1],

the latter being no more a curve of probability measures. This is the reason why, at a first
stage, the energy (1.3) has to be modified as follows

G̃α,p(ν, µ) =
∫ 1

0
gα(ν(t)) |µ′|wp(t) dt,

where now ν is a curve of sub-probability measures, which should represent the moving mass.
The curves ν and µ are linked by the condition of being an evolution pairing: this means that
the moving part ν is always less than the total mass µ and that the mass reaching its final
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destination, given by the difference µ− ν, has to grow in time (see Section 3, Definition 1).
Obviously, this makes sense when the starting measure µ0 = δx0 (which is anyway a relevant
case, and it was the one studied in [14], as already said), so that at time 0 mass starts to
move as a whole: on the contrary, when the starting measure is a generic probability, then
one would have to take into account also the possibility that masses could start to move at
different times (it is enough to think to the previous example, just exchanging the role of
µ0 and µ1). In this case, one possibility could be that of defining an evolution pairing as a
couple (ν, µ) with the property that µ−ν must be the sum of an increasing part (the arrived
mass) and a decreasing one (the mass which is still not moving). Anyway, for the sake of
brevity, we will not pursue this direction in this paper and our investigation will be strictly
confined to the case µ0 = δx0 . We warn the reader from the beginning that this definition of
evolution pairing, despite being quite simple and intuitive, hides some subtleties and enlarges
too much the class of admissible configurations, as far as it does not take into account any
constraint on the velocity of the moving part ν. This will be made apparent at the very
beginning of Section 4 with an enlightening example (Example 4.1), in which the necessity
for a more rigid class of evolution pairings (what we called special evolution pairings, see
Definition 3) will come into play: anyway, for the ease of exposition, we have chosen to start
introducing the general concept and to see how this has to be suitably modified;

(ii) scaling behaviour: another problem is the choice of the exponent p, which influences the
energy Gα,p(µ) through the term |µ′|wp . It seems that the right choice should be p = +∞,
for two reasons mainly: the first is that if you rescale a curve µ to be a curve with mass m,
we get

Gα,p(mµ) = m
α+ 1

pGα,p(µ),
so that the energy rescales as the power α+ 1/p, with respect to the mass. Taking p = +∞
clearly settles this behaviour, giving the same scaling as a Gilbert-Steiner energy. The second
reason is that the term |µ′|wp should play the role of the velocity of the particles, so that
it is expected to be mass-independent: on the contrary, in the case p < +∞ in general you
would have

|µ′|wp '
(∑

m`p
) 1

p
,

which roughly speaking means that metric velocity is a mass-weighted sum of the velocities
of the particles, which strengthen the feeling that p = +∞ should be the right exponent, in
order to be able to compare the path functional energy with a Gilbert-Steiner one.

All in all, one is lead to the study of the modified energy given by

G̃α,∞(ν, µ) =
∫ 1

0
gα(ν(t)) |µ′|w∞ dt,

but then we have to pay attention to another detail: observe that thanks to the subadditivy of gα,
in the standard path functional model we have

gα(µ(t)) ≥ 1,

because gα is evaluated on probability measures: then the existence of a Lipschitz curve minimizing
(1.3) under a constraint on the endpoints, is almost straightforward (see [8], Theorem 2.1), thanks
to the fact that every minimizing sequence with bounded energy has equi-bounded lengths.

On the contrary, in the modified path functional energy you only have

gα(ν(t)) ≥ |ν(t)|(Ω)α,
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and the last quantity can go to zero (the moving mass could decrease until it disappears). This fact
completely destroys the coercivity of the energy on the space of Lipschitz curves: this means that
it could be the case that the transportation process requires an infinite speed (then breaking the
Lipschitz constraint), in order to bring all the mass from x0 to µ1 in a finite time, or equivalently,
that if you want your curves to stay Lipschitz (i.e. you have an upper bound on the velocities), then
you could need an infinite amount of time to complete the transportation. In other words, it may
happen that you do not have an upper bound on the length of the paths that particles have to run,
because of branching. Curiously enough, this fact is not a drawback, as it is in perfect accordance
with the other models, where the existence of an upper bound on the lengths covered by the particles
(also for optimal structures) in not known! Indeed, this is still an open problem up to some special
cases (see in particular [5], Problem 15.13). We stress the fact that the only case where the answer
is known - and it is yes - is when the irrigated measure satisfies an Ahlfors regularity property, i.e.
when its density w.r.t. Hs is bounded from below for a certain s ∈ [0, N ] (N being the dimension
of the ambient space): in this case, this result is just a consequence of the Hölder continuity of the
so called landscape function proven in [15] for s = N and then considerably extended in [9].

So in the end, one has to relax the requirement on the finiteness of the time interval and to take
advantage of the reparametrization invariance of these weighted length functionals: to keep some
compactness one can introduce a bound on the velocities (which does not affect the functional, due
to reparametrization). It turns out that the kind of energy we are really interested in, as a good
candidate to be equivalent to a Gilbert-Steiner energy, is of the form

(1.4) Lα(ν, µ) :=
∫ ∞

0
gα(ν(t)) |µ′|w∞(t) dt,

defined for all curves µ which are W∞(Ω)−valued and Lipschitz, with a given Lipschitz constant
(let us say 1, for example). It is also clear that keeping the velocity term |µ′|w∞ will not be crucial,
since if one withdraws it, but keeps the bound |µ′|w∞ ≤ 1, the only effect will be that of selecting
those minimizers which move at maximal speed.

The plan of the paper is as follows: first of all (Section 2), we start recalling the basic facts about
the traffic plan model of Bernot, Caselles and Morel and some of its (equivalent) variants. Then in
Section 3 we introduce the concept of evolution pairing, its main features and we give an existence
result for the minimization of functional (1.4) over the set of evolution pairings with prescribed
endpoints. Section 4 is devoted to a deeper insight into evolution pairings, providing properties and
examples which lead us to isolate a good subset (the aforementioned special evolution pairings) for
which a complete characterization (Section 5) can be given, in terms of the Lipschitz curves of the
base space. This characterization is one of the corner-stones of the paper, which finally permits us to
compare, in Section 6, our energy with a Gilbert-Steiner or Bernot-Caselles-Morel one and to show
equivalence between our modified path functional model and the other models, in the irrigation
case.

2. A quick overview over traffic plans

Let Ω ⊂ RN be a compact convex set and let us indicate I = [0,∞). Moreover, as far as we are
interested in studying the branched transport problem with a single Dirac mass as starting measure,
in the sequel we will always refer to this configuration and in particular with µ0 we will indicate a
Dirac mass centered in some point of Ω, that is we set µ0 = δx0 , for some x0 ∈ Ω.

We consider the space Lip1(I; Ω) of all 1−Lipschitz curves over Ω, equipped with the topology of
the uniform convergence on compact sets, and we call traffic plan every probability measure on this
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space. We denote with T (σ) the stopping time of a curve σ, defined as

T (σ) = inf{t ∈ [0,∞) : σ is constant on [t,∞)},
and we recall that T : Lip1(I; Ω) → R ∪ {+∞} is a lower semicontinuous function (see [3], Lemma
4.2). We then define the set of traffic plans with prescribed initial and final measures

TP (µ0, µ1) = {Q ∈P(Lip1(I; Ω)) : Q({T =+∞}) = 0, (e0)#Q = µ0, (e∞)#Q = µ1},
where for every t ∈ I, the function et is defined as

et : Lip1(I; Ω) → Ω
σ 7→ σ(t);

and the application e∞ is defined on the set {σ : T (σ) < +∞} through e∞(σ) = σ(T (σ)). As
the reader may easily see, e∞ will be always applied when the space Lip1(I; Ω) is endowed with a
measure Q such that Q({T = +∞}) = 0. The fact that the space of these measures is not closed
should not worry, since the functional we will consider has coercivity properties so as to provide
suitable compactness.

Given a traffic plan Q ∈ P(Lip1(I; Ω)), the multiplicity of Q at a point x ∈ Ω and time instant
t ∈ I is the quantity

|(x, t)|Q = Q({σ ∈ Lip1(I; Ω) : x = σ(t)}),
which represents the quantity of mass passing from a point x at time t. Then, for any α ∈ (0, 1) we
define the α-energy of a traffic plan as

Eα(Q) =
∫

Lip1(I;Ω)

∫ T (σ)

0
|(σ(t), t)|α−1

Q dt dQ(σ).

In order to avoid possible confusions, something has to be precised on the energy Eα. The reader
has maybe noticed that the same energy is sometimes defined integrating |(σ(t), t)|α−1

Q |σ′(t)|, thus
getting a functional which is invariant under time reparametrization. Yet if one withdraws the
derivative term but only considers curves which are 1−Lipschitz, then the minimization will give
the same result but selecting one precise minimizer, the one which moves at maximal speed.

The definition of multiplicity also needs some clarifications. The one that we have chosen here is
that of the so-called synchronized traffic plan model of Bernot and Figalli (see [6]). Other definitions
are possible: the first one which had been introduced, which is only suitable for the case where µ0 is
a Dirac mass, is the multiplicity of the irrigation pattern model of Maddalena, Morel and Solimini,
defined as (in the language of traffic plans)

[σ]t,Q = Q({η ∈ Lip1(I; Ω) : η(s) = σ(s),∀s ∈ [0, t]}).
The most general and widespread one, on the other hand, is the one chosen by Bernot, Caselles and
Morel in [3], which reads

|x|Q = Q({σ ∈ Lip1(I; Ω) : x ∈ σ(I)}).
Actually, the three multiplicities coincide on “single path” traffic plans (i.e. measures Q avoiding
properly defined cycles) and in particular on optimal traffic plans and the optimization problem for
Eα does not change if one changes the definition of the multiplicity. For the sake of our result, the
synchronized one is the most practical and this justifies our choice. Anyway, we need to stress the
following clarifying result (see for instance [15], Section 2.3):

Lemma 2.1. If Q is an optimal traffic plan minimizing Eα on TP (µ0, µ1), then Q is concentrated
on curves σ which are parametrized by arc length (i.e. |σ′(t)| = 1 a.e. on [0, T (σ)]) and such that,
for all times t < T (σ), the equality [σ]t,Q = |(σ(t), t)|Q holds.
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Remark 2.2. We recall that by means of the one-dimensional area formula (see [2], Theorem 3.4.2,
for this formula, and [4], Proposition 4.8, for Equation (2.1) below), it is easy to see that Eα is
strictly related to a Gilbert-Steiner energy: indeed,

(2.1)
∫

Lip1(I;Ω)

∫ T (σ)

0
|σ(t)|α−1

Q |σ′(t)|Q dtdQ(σ) ≥
∫

Ω
|x|α dH1(x),

and we have equality as soon as Q in concentrated on injective curves.

3. A path functional model

We recall here the basic concepts about the space W∞(Ω), i.e. the set of all Borel probability
measures over Ω, endowed with the ∞-Wasserstein distance defined by

w∞(µ1, µ2) = min
γ∈Π(µ1,µ2)

sup
{
|x− y| : (x, y) ∈ spt(γ)

}
,

where Π(µ1, µ2) is the set of all probability measures over the product space Ω × Ω, having fixed
marginals µ1 and µ2. The space W∞(Ω) is a Polish (i.e. complete and separable) metric space,
which is nor compact nor locally compact.

We also considerM+
1 (Ω) the space of all positive Radon measures over Ω, with mass smaller than

or equal to 1, metrized according to a distance inducing the ∗−weak topology, for instance

d(ν1, ν2) =
∑
k∈N

1
2kαk

∣∣∣∣∫
Ω
ϕk(x) d(ν1(x)− ν2(x))

∣∣∣∣ , ν1, ν2 ∈M+
1 (Ω),

where every function ϕk is αk-Lipschitz and the sequence {ϕk}k∈N is dense in

{ϕ ∈ C(Ω) : ϕ ≥ 0, ||ϕ||L∞(Ω) ≤ 1},

Let us then define the space Lip1,d(I;W∞(Ω)) of all 1-Lipschitz curves in the ∞-Wasserstein
space W∞(Ω), equipped with the d−uniform convergence on compact subsets, i.e., indicating with
the symbol ud→ this convergence, we have

µn
ud→ µ⇐⇒ max

t∈[0,k]
d(µn(t), µ(t))→ 0, for every k ∈ N.

Remark 3.1. We remark that the use of this convergence is due to the lack of any kind of compact-
ness of the space W∞(Ω). Moreover, we recall that the topology induced by w∞ is strictly stronger
than the ∗−weak topology and we have d ≤ w∞. What is worthwhile to point out here and crucial
for our discussion is that w∞ is lower semicontinuous with respect to d, that is

d(µn1 , µ1)→ 0

d(µn2 , µ2)→ 0

 =⇒ w∞(µ1, µ2) ≤ lim inf
n→∞

w∞(µ1
n, µ

2
n).

We also define

L0(I;M+
1 (Ω)) := {ν : I →M+

1 (Ω) : ν is Borel measurable},

and on this space we will always consider the pointwise L 1−a.e. convergence. Then in the sequel,
when referring to the convergence on the product space L0(I;M+

1 (Ω))× Lip1,d(I;W∞(Ω)), we will
always mean pointwise L 1−a.e. convergence in the first variable and d−uniform in the second.
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We want to consider the following energy defined on L0(I;M+
1 (Ω))× Lip1,d(I;W∞(Ω))

(3.1) Lα(ν, µ) =
∫ ∞

0
gα(ν(t))|µ′|w∞(t) dt,

where gα :M+
1 (Ω)→ R ∪ {+∞} is the lower semicontinuous function defined in (1.2). For the rest

of the paper, the exponent α will always be considered as belonging to the open interval (0, 1).

Lemma 3.2. The functional Lα defined by (3.1) is lower semicontinuous on the product space
L0(I;M+

1 (Ω))× Lip1,d(I;W∞(Ω)).

Proof. The functional under consideration can be written as

Lα(ν, µ) = sup
k∈N

Lkα(ν, µ) := sup
k∈N

∫ k

0
gα(ν(t))|µ′|w∞(t) dt,

and thanks to the semicontinuity of gα and of w∞ with respect to d, we get that each Lkα is lower
semicontinuous with respect to the desired convergence, by means of Theorem 7 of [10]. It is only
left to observe that the supremum of a sequence of lower semicontinuous functions is still a lower
semicontinuous function. �

We now need to formalize the idea that the curves ν that we want actually to consider, should
represent the moving mass. In order to do this, we recall the concept of evolution pairing, introduced
in [10].

Definition 1. Let (ν, µ) ∈ L0(I;M+
1 (Ω))× Lip1,d(I;W∞(Ω)) be two curves of measures, such that

the following are satisfied:
(E1) ν(t) ≤ µ(t), for every t ∈ I;
(E2) ρ(t) := µ(t)− ν(t) is monotone non-decreasing and d−left continuous, that is:

ρ(s) ≤ ρ(t), for every s, t ∈ I, with s < t and lim
s↗t

d(ρ(s), ρ(t)) = 0;

Then we say that (ν, µ) is an evolution pairing and we write ν � µ.

Notice that, being ρ non-decreasing, the condition of left continuity is non-crucial, since one can
always modify ρ(t) for t in a negligible set of times and get a left-continuous curve. It is mainly
imposed to give a precise and unambiguous pointwise meaning to ρ(t) for every t, and also to get
more easily some of our proofs. Moreover, as far as µ is Lipschitz and ρ is left-continuous, we get
that, up to modify also ν for a L 1−negligible set of times, ν can be thought as being left-continuous
and defined pointwisely.

Remark 3.3. Observe that property (E2) above implies that the quantity

t 7→ |ν(t)|(Ω),

is non-increasing, while it does not imply that ν has a monotone decreasing (in the sense of measures)
behaviour.

Given two Borel probability measures µ0 and µ1 over Ω, we define the set of admissible evolution
pairings

EP (µ0, µ1) = {ν � µ : µ(0) = µ0, µ(∞) = µ1},
where the condition µ(∞) = µ1 has to be intended in the sense lim

t→+∞
d(µ(t), µ1) = 0, or equivalently,

µ(t) ⇀ µ1 as t goes to +∞.
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Definition 2. An evolution pairing (ν, µ) ∈ EP (µ0, µ1) is said to be normal if the following condi-
tions hold:

(i) |µ′|w∞(t) = 1, for a.e. t ∈ [0, T (µ)];
(ii) ν(t) = 0, for t ∈ (T (µ),+∞), where if T (µ) = +∞ this condition must intended in the

strong sense that lim
t→∞
|ν(t)|(Ω) = 0.

In the sequel, with the term cutting at time T , we will simply mean the operation that to every
ν assigns the product ν · 1[0,T ] of ν for the characteristic function of some time interval [0, T ].

We have the following basic result:

Lemma 3.4. Every (ν, µ) ∈ EP (µ0, µ1) with Lα(ν, µ) < +∞ is normal, up to a reparametrization
of µ and a cutting of ν at the stopping time of µ.

Proof. Let us take an evolution pairing (ν, µ) ∈ EP (µ0, µ1) and reparametrize the 1−Lipschitz curve
µ by arc-length, that is we take ϕ : [0,+∞)→ [0,+∞) given by

(3.2) t(s) = inf
{
τ ∈ I : s =

∫ τ

0
|µ′|w∞(%) d%

}
, s ∈ I,

and we set µ̃ = µ ◦ ϕ, then this is a reparametrization of µ (see [2], Theorem 4.2.1) and

|µ̃′|w∞(t) = 1, t ∈ I.
Moreover, setting ν̃ = ν ◦ ϕ, we clearly get that (ν̃, µ̃) is still an evolution pairing contained in
EP (µ0, µ1), for which

Lα(ν̃, µ̃) =
∫ ∞

0
gα(ν̃(t)) dt =

∫ ∞
0

gα(ν(t)) |µ′|w∞(t) dt < +∞.

Using the subadditivity of gα, the previous in turn implies that the integral∫ ∞
0

(|ν̃(t)|(Ω))α dt,

must be finite: as far as we are integrating a positive non-increasing function over [0,∞), we obtain
that the integrand must tend to 0, as t tends to ∞.

If T (µ̃) = +∞ we have already obtained a normal evolution pairing, otherwise it is sufficient to
cut ν̃ at the time t = T (µ̃). �

The following lemma is useful for proving the closedness of the set EP (µ0, µ1) of evolution pairings
joining two given measures, but we will state it in the case where the second measure is not fixed,
so as to use it later on in its generality.

Lemma 3.5. Let {(νn, µn)} ⊂ EP (µ0, µ
n
1 ) be a sequence of normal evolution pairings such that

(νn, µn)→ (ν, µ) in L0(I;M+
1 (Ω))× Lip1,d(I;W∞(Ω)). Suppose moreover that µn1 ⇀ µ1 and that

sup
n∈N

Lα(νn, µn) < +∞.

Then, up to changing the representant of ν on a negligible set of times t ∈ I, (ν, µ) ∈ EP (µ0, µ1).

Proof. We first show that (ν, µ) is an evolution pairing and that µ ∈ Lip1,d(I;W∞(Ω)): this can
be done as in Lemma 13 of [10], since (E1) and (E2) easily pass to limit. Moreover, observe that
if {νn}n∈N converges to ν L 1−a.e., the same is true for ρn to ρ := µ − ν. In particular, the
nondecreasing behaviour of ρn easily passes to the limit, up to the negligible set of non-convergence.
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Up to replacing ρ with its left-continuous representant (which means that we only change ρ(t) on a
negligible set of times), we get a function which is both monotone and left-continuous.

It remains to show that (ν, µ) still verifies the conditions on the endpoints: the fact that µ(0) = µ0

is trivial, so that the only thing to verify is the condition on the final point, that is µ(∞) = µ1 in
the sense precised before.

In the case that

(3.3) sup
n∈N

T (µn) = T < +∞,

then we have also T (µ) ≤ T , using the lower semicontinuity of T . It is now sufficient to use the
uniform converge of {µn}n∈N on the interval [0, T ] to obtain that

µ(T ) = µ1,

which proves the thesis, under the additional hypothesis (3.3), by means of the fact that T (µ) ≤ T .

We now remove assumption (3.3), exploiting the concept of evolution pairing. First observe that
using property (E2) we have that

ρn(t) ≤ ρn(s) ≤ µn(s), for every t, s ∈ I, with t < s,

and using the fact that µn(∞) = µn1 we obtain

(3.4) ρn(t) ≤ µn1 ,

and, at the limit as n → ∞, we easily deduce from (3.4) that we have ρ(t) ≤ µ1. Moreover, the
curve ρ is non-decreasing and

|ρ(t)|(Ω) = 1− |ν(t)|(Ω), for t ∈ I,

so that, if we are able to prove that |ν(t)|(Ω)→ 0 as t→∞, we can conclude

lim
t→∞
|ρ(t)− µ1|(Ω) = 0, and hence µ(∞) = ρ(∞) + ν(∞) = µ1,

giving the thesis. At this end we observe that∫ ∞
0

gα(ν(t)) dt ≤ lim inf
n→∞

∫ ∞
0

gα(νn(t)) dt = lim inf
n→∞

Lα(νn, µn) < +∞,

where the first inequality is just a consequence of Fatou Lemma, while the equality right after is a
consequence of the normality of each (νn, µn), so that

∫∞
0 gα(νn(t)) dt =

∫∞
0 gα(νn(t))|µ′|w∞(t) dt =

Lα(νn, µn). Using again gα(ν(t)) ≥ |ν(t)|(Ω)α and the monotone behaviour of |ν(t)|(Ω) as in Lemma
3.4, the latter implies that

lim
t→∞
|ν(t)|(Ω) = 0,

which concludes the proof. �

We are now ready to state and prove a result, about the existence of a minimal evolution pairing
connecting two given measures.

Proposition 3.6. The minimization problem

(3.5) inf
(ν,µ)∈EP (µ0,µ1)

Lα(ν, µ),

admits a solution, provided that there exists an admissible evolution pairing (ν, µ) having finite Lα.
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Proof. Let Lα(ν, µ) = L and let us take a minimizing sequence {(νn, µn)}n∈N ⊂ EP (µ0, µ1), we can
assume that

sup
n∈N

Lα(νn, µn) ≤ L+ 1.

Observe that thanks to Lemma 3.4, we can think of every (νn, µn) as being normal. It is straight-
forward to see that (up to a subsequence) this minimizing sequence converges in L0(I;M+

1 (Ω)) ×
Lip1,d(I;W∞(Ω)) to an evolution pairing (ν, µ): the convergence of {µn}n∈N is just a consequence
of the compactness of the space Lip1,d(I;W∞(Ω)), while the convergence of {νn}n∈N follows with a
slight modification of the argument in [10], Theorem 12.

Moreover (ν, µ) is still admissible, thanks to Lemma 3.5, and the thesis follows straightforwardly
using the semicontinuity of Lα (Lemma 3.2). �

4. Further properties of evolution pairings

We start this section with a counter-example, which shows that the class EP (µ0, µ1) is not the
right one in which problem (3.5) has to be posed, in order to obtain equivalence with Xia, Bernot-
Caselles-Morel and Maddalena-Morel-Solimini models.

Example 4.1. Let µ0 = δ0 and µ1 = L 1x[−1/2, 1/2], we define an evolution pairing (ν, µ) as
follows:

µ(t) =

{
L 1x[−t, t] + (1− 2t)δt, t ∈ [0, 1/2],
L 1x

[
−1

2 ,
1
2

]
, t ∈ (1/2,+∞)

ν(t) =

{
(1− 2t)δt, t ∈ [0, 1/2],
0, t ∈ (1/2,+∞).

Observe that (ν, µ) is normal and it connects µ0 to µ1. Computing its energy, we have that

Lα(ν, µ) =
∫ 1

2

0
gα(ν(t))|µ′|w∞(t) dt =

∫ 1
2

0
(1− 2t)α dt =

1
2(α+ 1)

,

while the minimal Eα energy is given by

2
∫ 1

2

0

(
1
2
− t
)α

dt =
1

2α(α+ 1)
,

which is strictly greater than the previous one. We observe that the latter is realized by the traffic
plan given by the image measure

Q = (Ψ)#µ1,

of µ1 through the application Ψ that sends every x ∈ [−1/2, 1/2] to the 1−Lipschitz curve Ψx

defined by (if x ≥ 0)

Ψx(t) =
{

t, t ∈ [0, x],
x, t ∈ (x,∞),

and by (if x < 0)

Ψx(t) =
{
−t, t ∈ [0,−x],
x, t ∈ (−x,∞).

Observe that the movement induced by Q is the following: the mass starts to move from the center
of the segment, instantaneously splitting in two branches, one going on the right, the other going on
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the left and continuously disseminating particles on the segment, in an uniform way. This is better
visualized by looking at the corresponding evolution pairing, given by

µ̃(t) = (et)#Q =

{
L 1x[−t, t] + 1−2t

2 δ−t + 1−2t
2 δt, t ∈ [0, 1/2],

L 1x
[
−1

2 ,
1
2

]
, t ∈ (1/2,+∞),

ν̃(t) =

{
1−2t

2 δ−t + 1−2t
2 δt, t ∈ [0, 1/2],

0, t ∈ (1/2,+∞),

for which Eα(Q) = Lα(ν̃, µ̃) > Lα(ν, µ).

The previous example tells us that in general the elements of EP (µ0, µ1) (even the minimizers of
Lα, actually) can have strange properties, which has little to do with real physical phenomena of
branched transportation: in fact, in Example 4.1 what seems to go wrong is the fact that ν, which is
supposed to represent the moving mass, operates a sort of teleport from an endpoint of the segment
[−t, t] to the opposite.

Then we have to restrict the class of admissible evolution pairings, isolating those with some good
traveling properties. In order to do this, we start investigating a property which holds true for a
curve having a fixed atomic part. This is a sort of Lipschitz-invariance under mass subtraction,
which tells us that once some mass is stopped, then this is no more involved in the transportation
process.

Lemma 4.2. Let µ ∈ Lip(I;W∞(Ω)) be given and suppose that there exists an atomic measure
ρ0 =

∑∞
i=1miδxi and t0 ∈ I such that

ρ0 ≤ µ(t), for every t ∈ [t0,∞).

Then the curve [t0,∞) 3 t 7→ µ(t) − ρ0 has the same metric derivative of the curve µ and hence
satisfies the following Lipschitz estimate

(4.1) w∞(µ(t)− ρ0, µ(t+ h)− ρ0) ≤
∫ t+h

t
|µ′|w∞(s) ds, for every h ≥ 0.

Proof. The proof may be achieved if one thinks at the characterization of absolutely continuous
curves in Wasserstein spaces in terms of solutions of the continuity equation. It is well known (see
for instance [1], Theorem 8.3.1) that if µ is a Lipschitz curve defined on a time interval [0, T ] and
valued in the space Wp(Ω), then there exists a Borel vector field v : (x, t) 7→ vt(x) such that

(4.2) vt ∈ Lp(µ(t)), ‖vt‖Lp(µ(t)) = |µ′|wp(t), for L 1−a.e. t ∈ I,
and such that the continuity equation holds

(4.3)
∂µ

∂t
+∇ · (vtµ(t)) = 0.

This result is true for any p ∈ (1,∞] (the case p =∞ is less studied, but one can easily get it as a
limit as p→∞).

Another important point is the so called superposition principle or probabilistic representation
(see [1], Theorem 8.2.1), which says that any absolutely continuous curve t 7→ µ(t) solving (4.3) may
be obtained as (et)#Q, for a probability measure Q on the space of absolutely continuous curves
which is concentrated on the solutions of the equation σ′(t) = vt(σ(t)), in the sense that∫

C

∣∣∣∣σ(t)− σ(0)−
∫ t

0
vs(σ(s)) ds

∣∣∣∣ dQ(σ) = 0, for every t.
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For this representation to hold, some integrability conditions on v is needed, but (4.2) is widely
sufficient.

In our case, since µ is Lipschitz in the w∞−distance, one knows the existence of a vector field
v such that for almost any t the inequality |vt(x)| ≤ 1 is satisfied (actually, it would be satisfied
µ(t)−a.e. but one can choose a representant which is everywhere smaller than 1). This implies
that the solutions σ of the ODE are Lipschitz continuous curves: as a consequence, they are regular
enough to say that, thanks to the one-dimensional area formula, if S is a countable set, then σ′

vanishes almost everywhere on the set σ−1(S). This implies

Q⊗L 1
(
{(σ, t) : σ(t) ∈ S, σ′(t) exists and σ′(t) 6= 0}

)
= 0.

and since the curves are solutions of σ′(t) = vt(σ(t)), using the fact that µ(t) = (et)#Q, this means∫ T

0
µt(S ∩ {vt 6= 0})dt = Q⊗L 1

(
{(σ, t) : σ(t) ∈ S, vt(σ(t)) 6= 0}

)
= 0.

If one chooses as S the set of atoms of ρ0, the previous implies that ρ0−a.e. we have vt = 0, at least
for almost any time. Now observe that the continuity equation may obviously be rewritten as

∂(µ− ρ0)
∂t

+∇ · (vt(µ(t)− ρ0)) +∇ · (vtρ0) = 0.

and the last term vanishes as a consequence of vtρ0 = 0: hence one gets that µ − ρ0 is a solution
of the continuity equation with the same velocity field vt. In particular, since |vt| ≤ |µ′|w∞(t),
one gets that µ − ρ0 is Lipschitz according to the w∞−distance (the latter being easily adapted
to the framework of measures with the same mass, instead of probability measures) and its metric
derivative with respect to the distance w∞ does not exceed that of µ. Since it is a straightforward
fact to see that there holds

w∞(µ(t)− ρ0, µ(t+ h)− ρ0) ≥ w∞(µ(t), µ(t+ h)),

one can also see the opposite inequality and conclude

|(µ− ρ0)′|w∞(t) = |µ′|w∞(t), for L 1−a. e. t ∈ I,

which gives the thesis. �

Remark 4.3. It is not difficult to see that the same conclusions of the previous Lemma hold, if we
take ρ0 to be a positive Borel measure concentrated on some H1−negligible Borel set S.

The properties proved in the previous Lemma roughly says that, in certain cases, the speed of a
curve µ coincides with the speed of its moving part. This seems a general fact, but we will check that
the evolution pairing in Example 4.1 is far from satisfying this property. We want hence to introduce
a new class of evolution pairings. Thanks to the reparametrization invariance of the functional Lα,
we are more interested in the case where the evolution pairings are normal, i.e. when |µ′|w∞ = 1
and we give the following definition.

Definition 3. Let (ν, µ) ∈ EP (µ0, µ1) be an evolution pairing. If there holds

(4.4) w∞(µ(t)− ρ(t), µ(t+ h)− ρ(t)) ≤ h, for t ∈ I, h > 0,

then we say that (ν, µ) is a special evolution pairing and we denote by SEP (µ0, µ1) the set of all
special evolution pairings contained in EP (µ0, µ1).
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The intuitive idea behind evolution pairings is that, in going from µ(t) to µ(t + h), the mass
which is moving is (or should be) essentially that given by ν(t), which distributes over the difference
between the total mass at the time t+h and the mass which was already arrived at time t: property
(4.4) expresses exactly the requirement that it is this mass that must move at most with unitary
speed. Roughly speaking, this means that we can think of the quantity

lim
h→0+

w∞(µ(t)− ρ(t), µ(t+ h)− ρ(t))
h

, t ∈ I,

as a kind of velocity of the moving mass ν: the elements of SEP (µ0, µ1) are exactly those for which
ν is 1−Lipschitz, in this sense.

What is remarkable is that, thanks to Lemma 4.2, we can assure that the class SEP (µ0, µ1) is
large enough to contain all the finitely atomic curves. Even more, it is sufficient that µ1 is atomic
to ensure it. Indeed, we have the following:

Proposition 4.4. Let us take (ν, µ) ∈ EP (µ0, µ1), with µ1 atomic. Then (ν, µ) ∈ SEP (µ0, µ1).

Proof. It is enough to apply, for any given t, the estimate (4.1) with ρ0 = ρ(t). Since ρ(t) ≤ µ1 and
µ1 is atomic, the same is true for ρ0 and hence we get

w∞(µ(t)− ρ(t), µ(t+ h)− ρ(t)) ≤
∫ t+h

t
|µ′|w∞(s) ds ≤ h, for every h ≥ 0. �

Example 4.5. Let us go back to the evolution pairing (ν, µ) given by Example 4.1. It is easily seen
that this is not an element of SEP (µ0, µ1): indeed, taking t < 1/2 we have for every 0 < h < 1/2− t

µ(t+ h)− ρ(t) = L 1x[−t+ h,−t] + L 1x[t, t+ h] + (1− 2t− 2h)δt+h,

so it is not difficult to see that Π(µ(t)− ρ(t), µ(t+ h)− ρ(t)) contains only one element and

w∞(µ(t)− ρ(t), µ(t+ h)− ρ(t))
h

=
t2t+ h

h
,

which goes to +∞ as h approaches to 0, while |µ′|w∞ ≡ 1.

If we see the previous example from the point of view of the continuity equation, we may observe
that the problem is that the velocity field vt associated to this curve does not vanish on the part of
µ(t) which is supposed to be at rest, i.e. on ρ(t). This is what allows for the teleport phenomenon
and this is why the moving measure ν does not satisfy the same Lipschitz estimate as µ. We can
also provide another example, that we will not develop in details, where the vector field vt actually
vanishes outside the support of νt, but its L∞ norm is not the same if we consider µ or µ − ρ in
the continuity equation, so that the Lipschitz constant increases (without blowing-up) while passing
from µ to ν.

Example 4.6. Consider the measures ρ0 = 9
10L 1x[0, 1] and ν(t) = 9

10L 1x[t, t+1/9] for t ∈ [0, 8/9].
Set µ(t) = ρ0 + ν(t) and then consider the vector field

vt(x) = −→e1 · 1[t,t+ 9
10

](x),

which at every time t moves rightwards the particles of the interval [t, t+ 9/10]. We have

∂ν

∂t
+∇ · (vtν(t)) = 0,
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and it is quite easy to see that ‖vt‖L∞(νt) = 1 = |ν ′|w∞(t). On the other hand one can see that µ is
a solution of the continuity equation with velocity field given by 1/2 vt(x), that is we have

∂µ

∂t
+∇ ·

(
1
2
vtµ(t)

)
= 0,

as a consequence of vtν(t) = 1/2 vtµ(t). This shows that |µ′|w∞(t) ≤ ‖1/2 vt‖L∞(µt) = 1/2, i.e. the
speed of the two curves µ and ν is finite in both cases but different.

We then turn our attention to the functional

Lα(ν, µ) =
∫ ∞

0
gα(ν(t)) dt, (ν, µ) ∈ SEP (µ0, µ1),

for which the following existence result is almost straightforward. As we said, to give a cleaner
definition of the class SEP and of the functional, we decided to stick to the case where the velocity
|µ′|w∞ (nor, in any sense, |ν ′|) does not appear explicitly in the criterion to be minimized, but only
in the constraints.

Theorem 4.7. The minimization problem

(4.5) inf
(ν,µ)∈SEP (µ0,µ1)

Lα(ν, µ),

admits a solution, provided that there exists an admissible special evolution pairing (ν, µ) having
finite Lα.

Proof. It should be clear that it is enough to show that SEP (µ0, µ1) is closed: then one has to
simply reproduce step by step the proof of Proposition 3.6, taking into account the fact that every
special evolution pairing (ν, µ) having finite Lα, has to satisfy

lim
t→∞
|ν(t)|(Ω) = 0.

Concerning the closedness of SEP (µ0, µ1), it is enough to use the fact that the distance w∞ is lower
semicontinuous with respect to the ∗−weak convergence of measures, as already pointed out, so that
property (4.4) easily pass to the limit. �

Remark 4.8. If one wants Theorem 4.7 to be interesting, one has to provide conditions for the
existence of special evolution pairings with finite energy. The idea is the following: suppose that µ1

is a probability measure which is irrigable in the sense of Xia, Solimini et al. This means (see the
Introduction)

min{M∗α(Φ) : ∇ · Φ = µ0 − µ1} < +∞

and thanks to the relaxed definition by Xia, there exists a sequence of finite graphs gn, corresponding
to traffic plans Qn, such that supnEα(Qn) < +∞ and (e∞)#Qn = µn1 ⇀ µ1, where the measures
µn1 are atomic. Then one uses the results of Section 6 to see that these traffic plans give raise to
some evolution pairings (νn, µn) which are actually special evolution pairings in SEP (µ0, µ

n
1 ) and

whose energy is the same as Eα(Qn). Up to subsequences, thanks to the semicontinuity of Lα and
to the closedness result of Lemma 3.5, one can get (νn, µn)→ (ν, µ) with (ν, µ) ∈ SEP (µ0, µ1) and
Lα(ν, µ) < +∞.
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5. Characterization of SEP (µ0, µ1)

The main tool in order to compare the energy Lα with a Gilbert-Steiner energy, will be a complete
characterization of the special evolution pairings, in terms of the Lipschitz curves of the base space.
So our aim now is to give a refinement to the case of SEP of a result by Lisini (see [13], Theorems
4 and 5), characterizing p−absolutely continuous curves in the Wasserstein space Wp(Ω) in terms
of the p−absolutely continuous curves of the ambient space Ω: the main difference (apart from the
fact that we explicitly refer to the case p = +∞) is the characterization of the moving part ν in
terms of the 1−Lipschitz curves in Ω which at every fixed time t are still moving.

In order to achieve our scope, we have to start with a couple of technical Lemmas: they are
nothing but ad hoc adaptations of the Gluing Lemma (see [16], Lemma 7.6). First of all we prove
the existence of the composition of two transport plans, that takes into account the fact that the mass
which arrives at destination must stay in place: at this level, this sentence could sound mysterious,
but in the proof of Theorem 5.4 it should become clearer. We point out that in the following, given
two positive Borel measures ν1, ν2 ∈ M+(Ω) with the same mass, by Π(ν1, ν2) we will denote the
set of all positive Borel measures over the product space Ω× Ω, having fixed marginals ν1 and ν2.

Lemma 5.1 (Modified Gluing Lemma). Let (µ1, µ2, µ3) ∈ P(Ω) and (ν1, ν2, ν3) ∈ M+
1 (Ω) such

that
νi ≤ µi, i = 1, 2, 3,

and suppose that, setting ρi = µi − νi, we have ρ1 ≤ ρ2 ≤ ρ3. For every γ1,2 ∈ Π(µ1 − ρ1, µ2 − ρ1)
and γ2,3 ∈ Π(µ2 − ρ2, µ3 − ρ2), there exists γ ∈P(Ω× Ω× Ω) with the following properties:

(i) (πi,i+1)#γ = γi,i+1 + (Id× Id)#(ρi), for i = 1, 2;
(ii) (πi)#(γ1Si) ≥ ρi, for i = 1, 2, where the set Si is given by

Si = {(x1, x2, x3) ∈ Ω× Ω× Ω : xj = xi, for j ≥ i}.

Proof. We will use the so called Disintegration Theorem (see [11], Chapter III). First of all, we define

γ̃1,2 = γ1,2 + γ0
1,2 = γ1,2 + (Id× Id)#(ρ1),

and
γ̃2,3 = γ2,3 + γ0

2,3 = γ2,3 + (Id× Id)#(ρ2),

which are actually elements of Π(µ1, µ2) and Π(µ2, µ3), respectively. Then we disintegrate γ1,2 with
respect to the x2 variable, that is

γ1,2 =
∫
ξ1
x2
d(µ2 − ρ1)(x2) =

∫
ξ1
x2
d(µ2 − ρ2)(x2) +

∫
ξ1
x2
d(ρ2 − ρ1)(x2),

where for (µ2 − ρ1)−a.e. x2 ∈ Ω, ξ1
x2

is a Borel probability measure on Ω and equally for γ0
1,2, thus

obtaining

γ0
1,2 =

∫
η1
x2
dρ1(x2).

On the other hand, we disintegrate γ2,3 and γ0
2,3 with respect to the x1 variable, that is

γ2,3 =
∫
ξ3
x2
d(µ2 − ρ2)(x2),

γ0
2,3 =

∫
η3
x2
dρ2(x2) =

∫
η3
x2
d(ρ2 − ρ1)(x2) +

∫
η3
x2
ρ1(x2).
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Observe that actually, by construction we have

(5.1) η1
x2

= δx2 , for ρ1−a.e. x2 ∈ Ω,

and

(5.2) η3
x2

= δx2 , for ρ2−a.e. x2 ∈ Ω,

We can rewrite everything as follows

γ̃1,2 =
∫
ξ1
x2
d(µ2 − ρ2)(x2) +

∫
ξ1
x2
d(ρ2 − ρ1)(x2) +

∫
η1
x2
dρ1(x2),

γ̃2,3 =
∫
ξ3
x2
d(µ2 − ρ2)(x2) +

∫
η3
x2
d(ρ2 − ρ1)(x2) +

∫
η3
x2
dρ1(x2),

that is we have “piecewise” disintegrated with respect to their common marginals our transport
plans. Then it is natural to glue this two decompositions as follows

(5.3) γ =
∫
ξ1
x2
⊗ ξ3

x2
d(µ2 − ρ2)(x2) +

∫
ξ1
x2
⊗ η3

x2
(ρ2 − ρ1)(x2) +

∫
η1
x2
⊗ η3

x2
dρ1(x2),

and it is straightforward to verify that γ has the desired properties: (i) is trivially satisfied, while
concerning (ii) let us observe that for every Borel set A ⊂ Ω, we have

(π1)#(γ1S1)(A) = γ ({(a, a, a) : a ∈ A}) ≥
∫
A
η1
x2

({x2})η3
x2

({x2}) dρ1(x2)

=
∫
A
dρ1(x2) = ρ1(A),

where we have used (5.1) and (5.2) and the fact that ρ1 ≤ ρ2. In the end, we have proved property
(ii) for i = 1, while for i = 2 the proof is straightforward. �

Remark 5.2. Observe that the probability measure γ given by (5.3) can also be written (with the
convention ρ0 = 0) as

(5.4) γ =
∫
ξx3 d(µ3 − ρ3)(x3) +

3∑
i=1

∫
ηix3

d(ρi − ρi−1)(x3),

for suitable Borel families of probability measures on Ω × Ω {ξx3}x3∈Ω and {ηix3
}x3∈Ω such that

η3
x3

= ξx3 for ρ3−a.e. x ∈ Ω and

η1
x3

= δ(x3, x3), for ρ1-a.e. x3 ∈ Ω,

and
(π2)#η

2
x3

= δx3 , for ρ2-a.e. x3 ∈ Ω.

Indeed, it is sufficient to observe that by construction

(π3)#

(∫
ξ1
x2
⊗ ξ3

x2
d(µ2 − ρ2)(x2)

)
= (µ3 − ρ3) + (ρ3 − ρ2),

then we can disintegrate this measure with respect to the x3 variable, thus obtaining the existence
of a Borel family of probability measures {ξx3}x3∈Ω on the product space Ω× Ω such that∫

Ω
ξ1
x2
⊗ ξ3

x2
d(µ2 − ρ2)(x2) =

∫
Ω
ξx3 d(µ3 − ρ3)(x3) +

∫
Ω
ξx3 d(ρ3 − ρ2)(x3).
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Equally, taking into account

(π3)#

(∫
ξ1
x2
⊗ η3

x2
d(ρ2 − ρ1)(x2)

)
= ρ2 − ρ1,

(π3)#

(∫
η1
x2
⊗ η3

x2
dρ1(x2)

)
= ρ1,

and disintegrating with respect to the x3 variable, we obtain the desired representation (5.4), keeping
in mind (5.1) and (5.2).

The Modified Gluing Lemma can be easily generalized to every n-uple of probability measures.
More precisely, we have the following:

Lemma 5.3. For n ≥ 3, let {µi}ni=1 ⊂P(Ω) and {νi}ni=1 ⊂M
+
1 (Ω) be such that

νi ≤ µi, for every i = 1, . . . , n,

and suppose that, setting ρi = µi − νi, we have ρi ≤ ρi+1. For every γi,i+1 ∈ Π(νi, µi+1 − ρi), with
i = 1, . . . , n− 1, there exists γ ∈P(Ωn) with the following properties:

(i) (πi,i+1)#γ = γi,i+1 + (Id× Id)#(ρi), for i = 1, . . . , n− 1;
(ii) (πi)#(γ1Si) ≥ ρi, for i = 1, . . . , n− 1, where the set Si is given by

Si = {(x1, . . . , xn) ∈ Ωn : xj = xi, for j ≥ i}.
Moreover γ can be written as

(5.5) γ =
∫
ξxn d(µn − ρn)(xn) +

n∑
i=1

∫
ηixn

d(ρi − ρi−1)(xn),

where ξxn , η
i
xn
∈P(Ωn−1) and every ηixn

is such that

(5.6) (πi,...,n−1)#η
i
xn

= δ(xn,...,xn), for ρi-a.e. xn ∈ Ω,

the function πi,...,n−1 being the projection on the (xi, . . . , xn−1) coordinates.

Proof. We proceed by induction on n, the thesis being true for n = 3 thanks to Lemma 5.1 and
Remark 5.2.

Suppose now that the assertion is true for n, that is there exists a probability measure γ ∈P(Ωn)
with the required properties and consider the case n + 1. As in the proof of Lemma 5.1, we can
define

γ̃n,n+1 = γn,n+1 + γ0
n,n+1 = γn,n+1 + (Id× Id)#ρn,

and then we disintegrate γn,n+1 and γ0
n,n+1 with respect to xn, thus getting

γ̃n,n+1 =
∫
ξn+1
xn

d(µn − ρn)(xn) +
∫
ηn+1
xn

dρn(xn)

=
∫
ξn+1
xn

d(µn − ρn)(xn) +
n∑
i=1

∫
ηn+1
xn

d(ρi − ρi−1)(xn)

where ηn+1
xn

= δxn for ρn-a.e. xn ∈ Ω. Then using the decomposition (5.5) for γ, we can define

γ̂ =
∫
ξxn ⊗ ξn+1

xn
d(µn − ρn)(xn) +

n∑
i=1

∫
ηixn
⊗ ηn+1

xn
d(ρi − ρi−1)(xn),
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which is an element of P(Ωn+1). It is straightforward to see that γ̂ satisfies property (i), so let us
show that also (ii) holds true: for every Borel subset A ⊂ Ω we get

(πj)#(γ̂1Sj )(A) = γ̂({(x1, . . . , xj−1, a . . . , a) : x1, . . . , xj−1 ∈ Ω, a ∈ A})

≥
j∑
i=1

∫
A

(πj,...,n−1)#η
i
xn

({(xn, . . . , xn)})ηn+1
xn

({xn}) d(ρi − ρi−1)(xn)

=
j∑
i=1

(ρi − ρi−1)(A) = ρj(A), for every j = 1, . . . , n,

where we have used property (5.6). To conclude the proof, it remains to show that γ̂ can be
decomposed as in (5.5): observe that by construction we have

(πn+1)#

(∫
ξxn ⊗ ξn+1

xn
d(µn − ρn)(xn)

)
= µn+1 − ρn = (µn+1 − ρn+1) + (ρn+1 − ρn),

so that as in Remark 5.2 we can disintegrate
∫
ξxN ⊗ ξN+1

xn
d(µn − ρn) with respect to the xn+1

variable, thus obtaining∫
ξxn ⊗ ξn+1

xn
d(µn − ρn)(xn) =

∫
ξxn+1 d(µn+1 − ρn+1)(xn+1) +

∫
ξxn+1 d(ρn+1 − ρn)(xn+1),

where for (µn+1 − ρn)−a.e. xn+1 ∈ Ω, ξxn+1 is a Borel probability measure over the space Ωn. The
same can be done for each term ∫

ηixn
⊗ ηn+1

xn
d(ρi − ρi−1)(xn),

then taking into account that ηn+1
xn

= δxn for ρn−a.e. x ∈ Ω and that ηixn
satisfies (5.6) by hypothesis,

we can conclude. �

We now have all the elements in order to prove the first main result of this section.

Theorem 5.4. Let (ν, µ) ∈ SEP (µ0, µ1). Then there exists Q ∈P(Lip1(I; Ω)) such that

(et)#Q = µ(t), (et)#Q
t ≤ ν(t), t ∈ I,

where Qt = Qx{σ ∈ Lip1(I; Ω) : T (σ) ≥ t}.

Proof. We fix M ∈ N and then for every n ∈ N we take a dyadic partition

ti,n =
M

2n
i, i = 0, 1, . . . , 2n,

of the interval [0,M ]. Indicating as always

ρ(t) := µ(t)− ν(t),

we take γ̃i,i+1 ∈ Π(ν(ti,n), µ(ti+1,n)− ρ(ti,n)) to be optimal for w∞, that is

w∞(ν(ti,n), µ(ti+1,n)− ρ(ti,n)) = sup{|x− y| : (x, y) ∈ spt(γ̃i,i+1)} ≤ M

2n
,

and we define γi,i+1 ∈ Π(µ(ti,n), µ(ti+1,n)) by

γi,i+1 = γ̃i,i+1 + (Id× Id)#ρ(ti,n).

Let γnM ∈P(Ω2n+1) be the multi-transport plan given by Lemma 5.3 such that:
(i) (πi,i+1)#γ

n
M = γi,i+1;

(ii) (πi)#(γnM1Si) ≥ ρ(ti,n), where Si = {x = (x0, . . . , x2n) ∈ Ω2n+1 : xj = xi, for j ≥ i}.
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We now define the application

Θn : Ω2n+1 → Lip([0,M ]; Ω)
x 7→ Θn

x,

where for every x = (x0, . . . , x2n) ∈ Ω2n+1, the curve Θn
x is given by

Θn
x(t) =

ti+1,n − t
ti+1,n − ti,n

xi +
t− ti,n

ti+1,n − ti,n
xi+1, t ∈ [ti,n, ti+1,n], i ∈ {0, . . . , 2n − 1},

and we further set
QnM = (Θn)]γnM ∈P(C([0,M ]; Ω)).

By construction, it is almost straightforward to see that every QnM is concentrated on Lip1([0,M ]; Ω),
the latter being a compact space. This in turn implies that the sequence {QnM}n∈N narrowly con-
verges (up to subsequences) to an element QM of P(Lip1([0,M ]; Ω)), by means of Prokhorov The-
orem (see [11], Chapter III).

We now show that (et)#QM = µ(t) for every t ∈ [0,M ]: first observe that by its very definition,
the sequence {QnM}n∈N satisfies

µ(ti,n) = (eti,n)#Q
n
M , i = 0, 1, . . . , 2n.

On the other hand, thanks to the fact that we are considering dyadic partitions of [0,M ], we have
for every k < n

{tj,k}2
k

j=0 ⊂ {ti,n}2
n

i=0,

so that for every k < n

µ(ti,k) = (eti,k)#Q
n
M , i = 0, 1, . . . , 2k.

Letting n go to ∞, we then obtain, for every k, the following equalities

µ(ti,k) = (eti,k)#QM , i = 0, 1, . . . , 2k.

We have proven that the two uniformly continuous functions µ(·) and (e(·))#QM coincide on the
points {tj,k}2

k

j=0, for every k ∈ N, thus giving the equality on [0,M ] of these functions.

Before going on, we define the following subset of [0,M ]

N :=
{
t ∈ [0,M ] : either QM (T−1({t})) > 0 or there exists n such that QnM (T−1({t})) > 0

}
,

that is N is the set of times such that {σ ∈ Lip1([0,M ]; Ω) : T (σ) = t} is charged by at least one
of the measures QM or QnM . Due to the fact that as t varies in [0,M ] these sets T−1({t}) constitute
a partition of the whole space, we observe that N must be at most countable. We now set

QtM = QMx{σ : T (σ) ≥ t}, Qn,tM = QnMx{σ : T (σ) ≥ t}, n ∈ N,

and we first notice that if t 6∈ N , we have lim infn→∞Q
n,t
M ≥ QtM , in the sense that for every

continuous and positive test function ϕ there holds

lim inf
n→∞

∫
ϕdQn,tM ≥

∫
ϕdQtM .

This is the same as saying that any possible limit measure Q̃ of a subsequence of Qn,tM must be larger
than QtM . To prove such a property, it is sufficient to notice that this is true if Qn,tM and QtM are
replaced with 1{T>t} ·QnM and 1{T>t} ·QM , respectively, since the function 1{T>t} is l.s.c. and this
modification may be performed for free if the set T−1(t) is negligible for all these measures.
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In order to prove that (et)#Q
t
M ≤ ν(t), we first observe that using property (ii) of {γnM} we get

that

(5.7) (eti,n)#Q
n,ti,n
M ≤ ν(ti,n).

Let us give a brief justification of (5.7): indeed, we have∫
C([0,M ];Ω)

ϕ(σ(ti,n)) dQn,ti,nM (σ) ≥
∫
C([0,M ];Ω)

ϕ(σ(ti,n)) dQnM (σ)

−
∫
{σ :T (σ)≤ti,n}

ϕ(σ(ti,n)) dQnM (σ),

and the first integral in the right-hand side is just the integral of ϕ with respect to the measure
µ(ti,n), while for the second we observe that∫

{σ :T (σ)≤ti,n}
ϕ(σ(ti,n)) dQnM (σ) =

∫
{x :xj=xi, for j≥i}

ϕ(Θn
x(ti,n)) dγnM (x)

≥
∫

Ω
ϕ(x) dρ(ti,n)(x),

having used the definition of Θn and property (ii) in the last inequality. In conclusion, using
ν(ti,n) = µ(ti,n)− ρ(ti,n) we have shown the validity of (5.7).

Observe moreover that we have Qn,tM ≤ Q
n,ti,n
M for every t ≥ ti,n, and using again the fact that the

partition under consideration is dyadic, in the end we get

(eti,k)#Q
n,t
M ≤ ν(ti,k), for every t ≥ ti,k,

for every k < n. Taking the limit as n goes to ∞, and using the “semicontinuity” we addressed
before, i.e. the fact lim infn→∞Q

n,t
M ≥ QtM , which is true for t /∈ N , we get for every i and k

(eti,k)#Q
t
M ≤ ν(ti,k), for every t /∈ N , t ≥ ti,k.

The condition t /∈ N may be withdrawn, if for t > ti,k one takes s ∈ (ti,k, t) \ N and uses the
inequality QtM ≤ QsM , which gives

(eti,k)#Q
t
M ≤ (eti,k)#Q

s
M ≤ ν(ti,k), for every t > ti,k.

It is then sufficient to consider a sequence of dyadic numbers ti,k converging to t from the left: we
then have ν(ti,k)→ ν(t) because of the assumption of left continuity of ν and (eti,k)#Q

t
M → (et)#Q

t
M

because QtM is a fixed measure on Lip1([0,M ]; Ω) and the maps eti,k converge uniformly to et on
this set. Actually, we can also say

w∞((eti,k)#Q
t
M , (et)#Q

t
M ) ≤ |ti,k − t|,

thanks to the Lipschitz property of the curves in Lip1([0,M ]; Ω). This gives

(5.8) (et)#Q
t
M ≤ ν(t), for every t ∈ [0,M ].

Finally, we have to take the limit as M → +∞: defining the continuous mapping

ΦM : Lip1([0,M ]; Ω)→ Lip1(I; Ω),

such that for every σ ∈ Lip1([0,M ]; Ω), the curve ΦM (σ) is given by

ΦM (σ)(t) =
{

σ(t), if t ≤M,
σ(M), if t > M,
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we set Q̃M = (ΦM )#QM ∈ Lip1(I; Ω); then the sequence {QM}M∈N is narrowly converging (up to
subsequences), again thanks to the compactness of the space Lip1(I; Ω). If we call Q its limit, it is
not difficult to see that we have (et)#Q̃M = µ(t) on [0,M ] and passing to the limit, we obtain that
the same holds true for Q on I. Moreover, if Q̃tM = Q̃Mx{σ : T (σ) ≥ t}, then using the fact

(et)#Q̃
t
M ≤ ν(t), for t ∈ [0,M ],

which is actually equivalent to (5.8), and taking again the limit as M goes to +∞, we can show that

(et)#Q
t ≤ ν(t), for t ∈ I \ Ñ ,

where the negligible set Ñ where the inequality could not hold is, as before, the countable set of
times such that T−1({t}) is charged by at least one of the measures Q̃M or Q. After that, we
consider a general t and s < t with s /∈ Ñ : we have

(es)#Q
t ≤ (es)#Q

s ≤ ν(s).

Taking the limit s↗ t we get, as before, (et)#Q
t ≤ ν(t), which concludes the proof. �

The next result of this section states that the previous Theorem can be reverted, thus giving a
nice correspondence between SEP (µ0, µ1) and the 1−Lipschitz curves of Ω: this has to be compared
with Theorem 4 of [13].

Theorem 5.5. Let Q ∈ TP (µ0, µ1) be a traffic plan. For every t ∈ I, we set Qt = Qx{T (σ) ≥ t}
and we define

µ(t) = (et)#Q, ν(t) = (et)#Q
t,

then (ν, µ) ∈ SEP (µ0, µ1).

Proof. The fact that µ ∈ Lip1(I;W∞(Ω)) is straightforward, since for every (t, s) the measure
(et, es)#Q is a transport plan between µ(t) and µ(s), providing a cost smaller than |t − s|. It is
interesting to compare with Theorem 4 of [13], where the case of Wq(Ω) with q < ∞ is treated in
connection with ACq curves (absolutely continuous curves having q−summable metric derivative).

We then observe that the set

{σ ∈ Lip1(I; Ω) : T (σ) ≥ t},

is Borel measurable for every t ∈ I, thanks to the lower semicontinuity of T , so that ν is well-defined.
We have to show that ρ(t) = µ(t) − ν(t) = (et)# (Qx{σ ∈ Lip1(I; Ω) : T (σ) < t}) is nondecreasing
and left continuous. To see the monotonicity property, consider a positive test function ϕ ∈ C(Ω)
and s ≤ t: ∫

Ω
ϕ(x) dρ(s)(x) =

∫
{σ : T (σ)<s}

ϕ(σ(s)) dQ(σ)

=
∫
{σ :T (σ)<s}

ϕ(σ(t)) dQ(σ)

≤
∫
{σ :T (σ)<t}

ϕ(σ(t)) dQ(σ) =
∫

Ω
ϕ(x) dρ(t)(x).

Once one has the monotonicity, weak continuity is the same as strong continuity and we can turn to
prove that lims↗t |ρ(s) − ρ(t)|(Ω) = lims↗t |ρ(t)|(Ω) − |ρ(s)|(Ω) = 0. It is hence sufficient to prove
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that the mass of ρ is left continuous, which is the same as looking at the mass of Qx{σ ∈ Lip1(I; Ω) :
T (σ) < t}. This corresponds to saying that

{σ ∈ Lip1(I; Ω) : T (σ) < t} =
⋃
s<t

{σ ∈ Lip1(I; Ω) : T (σ) < s},

which is evident.

In order to check that ν � µ we notice that property (E1) is evidently verified, since Qt ≤ Q,
while property (E2) has already been verified when we proved that ρ is increasing. Hence (ν, µ)
is an evolution pairing, which clearly connects µ0 and µ1. We have to verify that actually it is a
special evolution pairing: fixed h > 0, let us call

γ = (et, et+h)#Q
t.

It is easy to check that this is a transport plan between µ(t)− ρ(t) and µ(t+ h)− ρ(t) (just check
that (π2)#γ = µ(t+ h)− µ(t) + ν(t)). Using the definition of w∞ and the fact that Qt is a measure
over Lip1(I; Ω), we get

w∞(ν(t), µ(t+ h)− µ(t) + ν(t)) ≤ γ-ess sup
(x,y)∈Ω×Ω

|x− y| = Q t -ess sup |σ(t)− σ(t+ h)| ≤ h,

which finally gives (ν, µ) ∈ SEP (µ0, µ1). �

6. Equivalence between the models

Up to now, we have collected enough elements to compare our energy Lα with a Gilbert-Steiner
one. Then the main result of the paper is the following.

Theorem 6.1. Given µ0 = δx0 and µ1 ∈P(Ω), we get

min
SEP (µ0,µ1)

Lα = min
TP (µ0,µ1)

Eα.

Moreover, given any optimal traffic plan Q ∈ TP (µ0, µ1), the special evolution pairing provided
by Theorem 5.5 is optimal, and conversely, given an optimal special evolution pairing (ν, µ) ∈
SEP (µ0, µ1), the construction of Theorem 5.4 provides an optimal traffic plan.

Proof. Let us take Q ∈ TP (µ0, µ1) optimal for the traffic plan problem and suppose that it has finite
energy. We will use the following fact, as a consequence of Lemma 2.1: for every t, the following
equality is satisfied Qt−a.e.

(6.1) |(σ(t), t)|Q = Qt ({η : η(t) = σ(t)}) .
This is true since we know |(σ(t), t)|Q = [σ]t,Q, which means that we can restrict our attention to
those curves η who stayed together with σ for all the times between 0 and t. Moreover, we can
assume that σ is parametrized by arc length on [0, T (σ)]: this implies that, if σ is still moving, i.e.
T (σ) ≥ t, this is the case for all the curves η such that η = σ on [0, t] and proves that we can further
restrict our attention to those curves η with T (η) ≥ t, i.e. switching from Q to Qt, thus proving
assertion (6.1).

Exchanging the order of integration, we can write

Eα(Q) =
∫

Lip1(I;Ω)

∫ T (σ)

0
|(σ(t), t)|α−1

Q dt dQ(σ) =
∫ ∞

0

∫
Lip1(I;Ω)

|(σ(t), t)|α−1
Q dQt(σ) dt.

Then define the equivalence classes Σt,x = {σ ∈ Lip1(I; Ω) : σ(t) = x} and notice that, by finiteness
of the energy, for L 1−a.e. t the measure Qt must be concentrated on those classes Σt,x such that
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Q(Σt,x) > 0. Since they have all positive mass, these classes are no more than a countable number
and one can restrict the integral over them:∫

Lip1(I;Ω)
|(σ(t), t)|α−1

Q dQt(σ) =
∑
i

∫
Σt,xi

|(σ(t), t)|α−1
Q dQt(σ).

Yet, for all the curves σ ∈ Σt,xi we have |(σ(t), t)|Q = Q(Σt,xi) = Qt(Σt,xi), thanks to the fact that
the class is non negligible and to the condition (6.1). Hence we may go on with∫

Lip1(I;Ω)
|(σ(t), t)|α−1

Q dQt(σ) =
∑
i

∫
Σt,xi

Qt(Σt,xi)
α−1dQt(σ) =

∑
i

Qt(Σt,xi)
α.

Moreover, if one constructs the measures µ and ν associated to Q thanks to Theorem 5.5, ν(t) must
be atomic and equal to

∑
iQ

t(Σt,xi)δxi , which gives in the end∫
Lip1(I;Ω)

|(σ(t), t)|α−1
Q dQt(σ) = gα(ν(t)).

Hence, if we compare the energy of the special evolution pairing given by Theorem 5.5 with the
energy of Q, we get

Lα(ν, µ) =
∫ ∞

0
gα(ν(t)) dt = Eα(Q),

which shows that
min

SEP (µ0,µ1)
Lα ≤ min

TP (µ0,µ1)
Eα,

using the minimality of Q.

Conversely, let us take (ν, µ) ∈ SEP (µ0, µ1) optimal and construct the traffic plan Q ∈ TP (µ0, µ1)
given by Theorem 5.4. As before, we revert the order of the integration in the definition of Eα. Let
us set ν̂(t) = (et)#Q

t, and consider∫
Lip1(I;Ω)

|(σ(t), t)|α−1
Q dQt(σ) =

∫
Ω
|(x, t)|α−1

Q dν̂(t)(x).

Moreover
|(x, t)|Q = Q({σ ∈ Lip1(I; Ω) : σ(t) = x}) ≥ Qt({σ ∈ Lip1(I; Ω) : σ(t) = x})

= Qt({e−1
t (x)}) = ν̂(t)({x}),

which in turn implies ∫
Lip1(I;Ω)

|(σ(t), t)|α−1
Q dQt(σ) ≤

∫
Ω
ν̂(t)({x})α−1 dν̂(t).

It is only left to observe that∫
Ω
ν̂(t)({x})α−1 dν̂(t) = gα(ν̂(t)), for L 1−a.e. t ∈ I,

thanks to the fact that ν̂ is atomic: indeed, ν(t) is atomic for a.e. t and we have ν̂ ≤ ν. Therefore
collecting all this estimates, we end up with

Eα(Q) ≤
∫ ∞

0

(∫
Ω
ν̂(t)({x})α−1 dν̂(t)

)
dt =

∫ ∞
0

gα(ν̂(t)) dt ≤ Lα(ν, µ),

thus concluding the proof. �
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The case of µ1 atomic is interesting and deserves some words more: indeed, in this case thanks
to Proposition 4.4 we obtain SEP (µ0, µ1) = EP (µ0, µ1), so that

min
SEP (µ0,µ1)

Lα = min
EP (µ0,µ1)

Lα.

It is then sufficient to note that by means of Theorem 6.1, the left-hand side is equal to the minimum
of Eα over the set TP (µ0, µ1): summarizing, we have shown the following important fact.

Corollary 6.2. Suppose that µ1 is a purely atomic probability and µ0 = δx0. Then

min
EP (µ0,µ1)

Lα = min
TP (µ0,µ1)

Eα.

This last connection with atomic measures suggests the following question, somehow in the spirit
of Xia’s relaxation procedure (see [17]): if one considers the functional defined as Lα on those
evolution pairings (ν, µ) with µ1 which is finitely atomic and +∞ on the other evolution pairings,
what is its relaxation L∗α? Is the relaxed functional related to Lα on SEP (µ0, µ1)?
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